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Abstract

Substitution spans many areas in programming language theory. It plays a central role in the
lambda calculus (hence functional programming), in first and higher-order unification (hence logic
programming), in parameter passing methods (hence imperative programming), etc. Recently re
searchers became interested in shifting from the usual atomic, coarse grained view of substitution
to a more refined, fine grained one. Substitution is promoted from the metalevel (our language of
discourse) to the object-level (our language of study). This is interesting when studying the opera
tional interpretation of the formalisms in question. Calculi of object-level or explicit substitution is
the concern of this thesis. The following three study axes are developed.

First we consider perpetual rewrite strategies in lambda calculi of explicit substitutions. These
are rewrite strategies that preserve the possibility of infinite derivations. Also, we study how to
characterize inductively the set of terms that do not possess infinite derivations (the strongly nor
malizing terms). Polymorphic lambda calculus with explicit substitutions shall receive our attention
too, including properties such as subject reduction and strong normalization.

Secondly, we put the <—ca.lculusof M.Abadi and L.Cardelli augmented with explicit substitutions
under the microscope. This calculus is at the level of the lambda calculus but is based on objects
instead of functions. Properties such as simulation of the lambda calculus, confiuence and preserva
tion of strong normalization (terms which are strongly normalizing in g are also strongly normalizing
in c with explicit substitutions) are considered.

Finally, we address the task of reducing higher-order rewriting to first-order rewriting. We fix
a variant of Z.Khasidashvili’s ERS (dubbed SERSdb) as our departing formalism and provide a
conversion procedure to encode any ERS as a first-order rewrite system in which a rewrite step
takes place modulo an equational theory determined by a calculus of explicit substitutions. The
latter is achieved with the aid of a macro-based presentation of calculi of explicit substitutions, thus
parametrizing the conversion procedure over any calculus of explicit substitutions in compliance
with the aforementioned presentation. The conversion procedure is in charge of encoding higher
order pattern matching and substitution in the first-order framework. Properties relating the rewrite
relation in the higher-order framework and that of the resulting first-order system are studied in
detail. We then identify a class of SERSdb for which the resulting first-order system does not
require the equational theory to implement higher-order pattern matching, thus contenting itself
with syntactic matching. It is argued that this class of systems is appropriate for transferring results
from the first-order framework to the higher-order one. As a non-trivial example we study the
transfer of the (strong) standardization theorem.



Resumen

La operación de sustitución constituye un engranaje básico en los fundamentos de la teoría de
lenguajes de programación. Juega un rol central en el lambda cálculo (por ende, en lenguajes de
programación funcional), en unificacón de primer orden y de orden superior (por ende, en lenguajes
de programación basados en el paradigma lógico), en modalidads de pasaje de parámetros (por
ende, en lenguajes de programación imperativos), etc. Recientemente, investigadores en informática
se han interesado en el pasaje de la noción usual de la sustitución, atómica y de gruesa granularidad,
hacia una noción más refinada, de más fina granularidad. La noción de sustitución es transportada
del metalenguaje (nuestro lenguaje de discurso) al lenguaje objeto (nuestro lenguaje de estudio).
Como consecuencia de ello se obtienen los llamados cálculos de sustituciones explícitas. Estos son
de sumo interés a la hora de estudiar la interpretación operacional de los formalismos en cuestión y
constituyen los objetos de interés de esta tesis. Se desarrollan los siguientes tres ejes de estudio:

Primero, se consideran estrategias de reescritura perpetuas en lambda cálculos con sustituciones
explícitas. Estas son estrategias de reescritura que preservan la posibilidad de reducciones infinitas.
Se propone una caracterización inductiva del conjunto de términos que no poseen reducciones in
finitas (los llamados fuertemente normalizantes). Un lambda cálculo polimórfico con sustituciones
explícitas también es analizado, incluyendo propiedades tales como subject reduction y normalización
fuerte.

Segundo, colocamos el g-cálculo de M. Abadi and L. Cardelli enriquecido con sustituciones
explícitas bajo el microscopio. Este cálculo se encuentra en un nivel semejante de abstracción
al lambda cálculo pero se basa en objetos en lugar de funciones. Propiedades tales como simulación
del lambda cálculo, confluencia y preservación de la normalización fuerte (aquellos términos que son
fuertemente normalizantes en q también lo son en g con sustituciones explícitas) son consideradas.

Finalmente, dirigimosnuestra atención a la tarea de relacionar la reescritura de orden superior con
aquella de primer orden. Fijamos una variante de los ERS (apodados SERSdb) de Z. Khasidashvili
como nuestro formalismo de orden superior de partida y definimos un proceso de conversión que
permite codificar cualquier SERSdbcomo un sistema de reescritura de primer orden. En este último,
cada paso de reescritura se lleva a cabo módulo una teoría ecuacional determinada por un cálculo de
sustituciones explícitas. La misma se formula de manera genérica a través de una presentación de
cálculos de sustituciones explícitas basada en macros y axiomas sobre estas macros, parametrizando
de esta manera al procedimiento de conversiónsobre cualquier cálculo de sustituciones explícitas que
obedece la presentación basada en macros. El procedimiento de conversión se encarga de codificar
pattern matching de orden superior y sustitución en el entorno de reescritura de primer orden.
Asimismo, propiedades que relacionan la noción de reescritura en el orden superior con aquella de
primer orden son analizadas en detalle. Se identifica una clase de SERSdb para los cuales el sistema
de primer orden resultante de su conversión no requiere una teoría ecuacional para implementar
pattern matching de orden superior, bastando para ello matching sintáctico. También se argumenta
que esta clase de sistemas de orden superior es apropiada para transferir resultados del entorno
de reescritura de orden superior a aquella de primer orden. A modo de ejemplo no-trivial de ello,
estudiamos la transferencia del teorema de standarización (fuerte).
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Résume étendu

Le calcul peut étre considéré comme la táche consistant a la transformation d’un objet, la donnée, en un objet
nouveau, le résultat, en utilisant certaines régles de transfonnation. Un systeme de réécriture de termes [K1092]
est un modéle calculatoire dans le sens oü les objets sont spécifiés comme des séquences de symboles et les regles
de transformations comme des ensembles de paires d’objets capturés par un sche’maou régle de réécn'ture. Un
premier exemple de systeme de réécriture de termes est le A-calculus [Chu41], créé par A. Church dans les
années 1930. Les objets s’appellent A-termes et représentent des fonctions ; la seule régle de transformation
est la. régle fi qui code le processus d’application d’une fonction a son argument. Par exemple, le terme “A12”
represente la fonction identité, l’occurrence la plus a gauche de “z” joue le meme róle que le paramétre formel
d’une fonction ou procédure dans un langage impératif de programmation (tel que Pascal).

Le A-terme “(A2.z) 4” est un exemple d’application d’une fonction a son argument, il représente la fonction
identité appliquée a la représentation de l’entier4. On remarque que l’application est dénotée par la juxtaposition
des termes. On peut alors calculer en appliquant efiectivement la fonction a l’argument grace a la régle fl :

—>BM{a:<—N}

oü M et N dénotent des A-termes arbitraires et a: une variable arbitraire. L’expression (M.M)N est aussi
nommée le membre gauche de la regle et abrégée LHS. Les symboles o{o <- o}1 qui apparaït dans le membre
droit (abrégé désormais RHS) de la regle represente l’opération de substitution dans le méta-langage : M {:r <
N} repr&ente donc le A-terme qui résulte du remplacement des occurrences de la variable a: (le parametre
formel) dans M par N (le parametre actuel). En réalité, seules les occurrences dites libres de la variable a:sont
remplacées, mais nous reviendrons sur les détails techniques plus tard. Un A-terme de la forme (Az.M)N est
appelé un fi-radical. L’exemple suivante illustre un calcul en un seul pas de la regle fi :

(Az.a:)4 —>p :c{z <- 4} = 4

On dit que le A-terme (Az.z)4 se fi-réduit au terme 4. Un A-terme sans fl-radical est une fi-fa'rme normale ou
plus simplement forme normale. Le A-terme 4 est en particulier une forme normale.

I'lest posible de montrer que le A-calculusavec la seule regle fi peut représenter ou coder toutes les fonctions
calculables (plus formellement les fonctions partielles récursives). Ce fait de méme que sa formulation simple
et concise justifie l’intérét de la communauté informatique pour ce formalisme. Il est cependant dificile de
concevoir des programmes concrets écrits sous forme de A-termes. Les langages de programmation fonctionnels
(comme, par exemple, ML [MTH90], Haskell [HWBB]et CAML [WL93]) sont essentiellement des représentations
utilisabla en pratique du A-calculus. Méme s’ils ont considérablement évolué ces cinq demiéres années, ils
partagent tous comme fondement théorique le A-calculus. En fait, pour tous ces langages, le A-calculus fournit
un scénario de preuve convenable pour l’étude de nouvelles constructions de langages.

Certaines questions auparavant négligéessont désormais étudiées par les informaticiens car le A-calculusest
considéré comme la base de certains langages de programmation :

o Le processus de calcul s’arréte-t-il a partir d’un A-terme quelconque 7

o Etant donné un A-terme avec au moins deux B-radicaux, ceux-ci peuvent-ils étre réduits dans un ordre
quelconque 7

o Peut-on considérer le nombre de pas de fl-réduction comme une bonne mesurede la consommation des
ressources de calcul ? Par exemple, les pas suivants de B-réduction ont-ils le meme coüt ?

(Az.z)4 —>p a:{:r:4- 4} = 4
(Aa:.a:z)4 —>p (zz){a: <- 4} = 44

1On utilisera o pour dénoter un trou qui sera remplacé dans la suite par des expresion.



Le premier de ces points, la “terminaison” ou “normalisation forte”, a été étudiée en profondeur. Le /\
calculus, tel que nous l’avons présenté, ne jouit pas de la propriété de terminaison. L’exemple le plus simplez
pour illustrer ceci est le A-terme AA oü A = Ama-ar.

(Az.a:a:)A—>p(zz){a: <- A}: AA —>pAA —>p

Cependant, pour des ensembles restreints de termes3 on a montré que la propriété de terminaison est vraie.
Revenons au deuxiéme point. Le théoréme de Church-Rosser, peut-étre le premier théoréme syntan'que

important développé pour le A-calcul, dit que si deux A-termes M1 et M2 sont obtenus a partir d’un autre A
terme M comme résultats de fi-réductions, alors il existe un autre A-terme M3 tel que M1 et M2 se ,B-réduisent
(en un nombre convenable de pas) a M3. Ce fait est illustré ainsi :

Mlí/prMz
xM/p

ou la fleche —»pdénote zéro ou plusieurs pas de fi-réduction (ce qu’on appelle aussi B-dén'vation). Par
conséquent, si l’on déduit difi'érents radicaux dans M on trouve toujours un réduit commun (M3 dans la figure).
Une conséquence importante de ce fait est que si un A-terme possede une forme normale, alors elle est unique.

Quant au troisiéme point, celui de l’analyse rafiinée des propriétés des fl-dérivations (que nous appellerons
“techniques d’implantation"), comme par exemple les techniques de partage d’information sur les graphes et
les machines abstraites. Une idée relativement récente est de donner a l’opération de substitution dans le
méta-langage (le langage du discours) le droit de citoyenneté dans le langage-objet (le langage d’étude) en
l’introduisant comme un nouvel opérateur. Ceci entraïne l’addition de nouvelles régles de réécriture, donnant
lieu au calcul dit calc'ulde substitutions qui permet de décríre son mécanisme. De cette maniére, la fi-regle doit
étre modifiéeen remplacant la substitution du méta-langage par le nouvel opérateur de substitution explicite qui
le spécifie. Comme résultat de cette transformation on obtient un A-calculus de substitutions explicites. Avant
de présenter un exemple, nous étudierons l’opération de substitution dans le méta-langage (celle qui est utilisée
dans le membre droit de la régle fi) sur laquelle sont fondés les calculs de substitutions explicites. Comme il
a été dit plus haut, M {:5<- N} représente le A-terme obtenu en remplagant les occurrences de la variable a:
(le paramétre formel) dans M par N (le parametre actuel). Cette notion est définie en considérant toutes les
formes possibles de M, c’est-a-dire : une variable, une abstraction (un terme de la forme Ay.P, oü P est un
A-terme et y une variable) ou bien une application d’un A-terme a un autre A-terme :

(PQ){a: «- N} dé‘ P{z «- N}Q{a: «- N}

(Ay-Pm «- N} dé‘ Ay.(P{z «- N}) z aéy

a:{a: 1- N} dÉf N

y{I <- N} dá y a: 9€y

La premiere clause peut étre lue ainsi : le résultat de la substitution des occurrences de a: par N dans PQ est
l’application des termes résultant de la substitution des occurrences de z par N dans P et Q. Nous pouvons
supposer qu’il n’y a pas de terme de la forme MLM’ dans M, grace a la possibilité de renommer les variables
dites liées, un rapport détaillé de ce fait se trouve au chapitre 2 de la.these. La deuxieme clause peut s’expliquer
d’une maniere semblable et les deux dernieres sont evidentes. Par conséquent, {z c- N} traverse M jusq’aux
variables et finalement les variables sont remplacées par une copie de N ou restent inaltérées en méme temps
que la copie de N est rejetée. Si les clauses de cette définition sont orientées de gauche a droite et les accolades
remplacées par des crochets, en internalisant ainsi l’opérateur de substitution du méta-langage comme un nouvel

2En effet, on a montré que AA st le A-terme le plus petit (ayant le moins de symboles) qui admet une B-réduction in
finie [RSSX99, Omega théor‘eme de Sorensen].

Par exemple, les termes simplement typ‘s ou la termes avec des types polymorphes [GLT89].



opérateur dans le langage-objet, nous obtenons le Ax-calcul [R0392, B1097] :

(Az.M)N 433m M(a: := N)
(PQ)(1: := N) ¿APP P(a: := N)Q(:c := N)
(Ay.P)(1: := N) —>Lam Ay.(P(a: := N)) a: 9€y
a:(a: := N) —»V.,,. N
y(=c:= N) —+Var¡y “¿y

Maintenant un terme est soit une variable, soit une application d’un terme a un autre terme (représenté, comme
auparavant, par juxtaposition), soit une abstraction, soit un terme de la forme P(:1::= Q) appelé une “clóture”.
De la méme maniere que la portée de a: (terme dans lequel les occurrences de a:sont liées) dans XEM est M, le
terme P est la portée de a: dans P(a: := Q). Alors le RHS de la regle Beta est un terme nouveau dans le calcul
et peut étre considéré comme une substitution en attente qui devra étre exécutée. Le calcul de substitutions de
Ax est obtenu a partir de Ax en enlevant la Beta-régle et sera dénoté par x. Chaque pas de fi-réduction peut
étre simulé dans le Ax-calcul. Considérons, par exemple, le premier pas de la fi-dérivation décrite plus haut. Il
peut étre simulé dans Axcomme suit :

(Az.zz)A 433m (zz)(z := A) 4,4”, :c(:v:= A)a:(z := A) —>va,.Az(z := A) avg, AA

L’un des bénéfices des calculs de substitutions explicites est que la substitution peut maintenant étre calculée
d’une facon contrólée. Par exemple, certaines substitutions en attente peuvent ne pas étre exécutées, comme
l’illustre l’exemple suivant :

(Ay-(AI-z)(yy))N 43m ((Arc-z)(yy))(y:= N)
—>App (Az.2)(y == N)(yy)(y == N)
_’Lam (AI-Ay r= N))(yy)(y ==N)
-'Var¡ (AI-z)(yy)(y ==N)“Beta¿(:51: i:
_’ Varj z

Il faut remarquer qu’il n’a pas été nécessaire de calculer la substitution (yy)(y := N), en réduisant ainsi le temps
de calcul et la duplication superfiue du terme N. Les calculs de substitutions explicites seront le principal sujet
d’étude de cette these.

En présence d’un calcul de substitutions explicites pour le A-calculus il est naturel de se demander si les
propriétés dynamiques (celles du A-calculus) sont toujours valides. Nous énumérons trois exemples :

o Simulation : Si un A-terme M se B-réduit a N alors M devrait aussi se réduire a N dans le calcul de
substitutions explicites. Ceci est cohérent avec notre vue des calculs de substitutions explicites en tant
qu’analyse plus précise de la fi-réduction, et par la suite du processus de substitution.

Church-Rosser : Le A-calculusjouit de la propriété de Church-Rosser. Son calcul de substitutions explicites
devrait en jouir aussi. Si l’on interprete le “sens” d’un terme comme sa forme normale (dans notre cadre
simplifié des termes sans forme normales n’ayant pas de “sens”), alors l’absence de cette propriété pourrait
rendre quelques termes “ambigus” (termes avec plus d’une forme normale). Ceci est bien sür indésirable
puisque, comme nous l’avons déja remarque, il n’y a pas de A-termes ambigus dans le A-calculus.

o Préservation de la Normalisation Forte (PSN) : Si un A-terme n’admet pas de dérivations infinies dans le
A-calculus, alors quand on réduit ce méme terme dans le calcul de substitutions explicites on ne devrait pas
engendrer une dérivation infinie non plus. Le processus d’augmenter le A-calculus avec des substitutions
explicites peut étre vu comme un processus d’enrichissement de dérivations. N’importe quelle paire de
A-termes M et N tels que M —»,3N bénéficie d’une riche provision de dérivations alternatives. PSN
garantit que l’on enrichit avec précaution.

Ii y a encore des autres propriétés tells que la normalisation forte du calcul de substitutions associé (qui
dans notre exemple serait x).
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Compte rendu de la these

Le corps principal de cette these est divisé en trois parties :

Chapitre 3 : Perpétuité dans le calcul de substitutions explicites Ax
Chapitre 4 : Perpétuité dans le calcul de substitutions explicites Aus

Partie II { Chapitre 5 : Enregistrements et substitutions explicites pour les objets et les fonctions
Chapitre 6 : Une notation de De Bruijn pour la réécriture d’ordre supérieur

Partie III Chapitre 7 : De la réécriture d’ordre supérieur a la réécriture du premier ordre
Chapitre 8 : Transfert de la standardisation

Partie I

Celles-ci sont précédées par une breve introduction aux théories de réécriture, A-calculuset calculs de substitu
tions explicites (chapitre 2). Dans la suite nous présentons un résumé du contenu de ces parties en détaillant
les principaux résultats obtenus dans chacune d’entre elles.

Partie I : Perpétuité dans les calculs de substitutions explicites
La premiere partie de la these étudie la perpétuité dans les calculs de substitutions explicites : la contraction
de radicaux qui préserve la possibilité de dérivations infinies, ces radicaux sont appelés des radicaux perpétuels.
Une stratégie de réécriture qui réduit toujours un radical perpétuel est appelée strategic de réécriture perpétuelle.
Par exemple, la stratégie “plus á gauche” (celle qui réduit le radical le plus a gauche) n’est pas perpétuelle pour
le A-caiculus. En effet, il suffit de considérer le A-terme M = (Az.y)(AA) oü A = A212. Alors M admet une
fi-dérivation infinie, tout simplement en réduisant le radical le plus a droite :

(Az.y)(AA) —>p(Az.y)(AA) -—>p

Mais si l’on réduit le radical le plus a gauche dans M on obtient le terme N = y qui est une forme normale.
Comme le lecteur peut Observer,ceci est dü á la nature d’efiacement du radical contracté puisque le sous-terme
AA n’apparaït plus dans N, il a été effacé. L’intérét des stratégies perpétuelles est que, si elles normalisent un
terme M, alors ce terme est fortement normalisant (c’est a dire, toutes les dérivations commenqant par M sont
finies). Par exernple, nous utiliserons nos études sur la perpétuité pour caractériser inductivement l’ensemble
de tous les termes du Ax-calcul qui sont fortement Ax-normalisables. Par “¡.nductivement" nous voulons dire
que l’ensemble sera décrit comme le plus petit ensemble vérifiant certaines regles, de la méme maniére que l’on
décrit l’ensemble des A-termes ou l’ensemble des théorémes d’un certain systeme logique [Acz77]. Nous utilisons
aussi la. perpétuité pour donner une preuve de normaiisation forte d’un lambda calcul polymorphe avec des
substitutions explicites.

Les stratégies de réécriture perpétuelles pour le A-calculus ont été introduites dans [BBKV76], une étude
d’ensemble récente est [RSng9]. Un systeme de réécriture de termes (TRS) est dit uniformément nomalisable
si tous ses radicaux sont perpétuels. Un TRS est dit orthogonal ou détenm'm’stesi le membre gauche de chaque
regle a. au plus une occurrence de chaque variable et si il n’y a. pas de superposition. En fin, on a les TRS
non-efiagants z dans un terme quelconque les arguments déterminés par le LHS d’une régle apparaït aussi
dans les arguments déterminés par le RHS. J .W. Klop [KloSO]a. montré que tous les GRS orthogonaux non
effagants (et alors tous les TRS du premier ordre orthogonaux non-effagants) sont uniformément normalisables,
en généraiisant ainsi le Théoreme de Church [CR36]qui établit que le Al-calcul“ est uniformément normalisables.
Quant a la caractérisation des radicaux perpétuels Z. Khasidashvili [Kha94, Kha01] a montré que tous les
radicaux non-effagants sont perpétuels dans les ERS (et donc que tous les radicaux non-effaqants sont perpétuels
dans les TRS orthogonaux du premier ordre), en généralisant ainsi le Théoreme de Conservation [BBKV76]qui
établit que les Brradicaux (i.e. les fi-radicaux dans M) sont perpétuels dans le A-calculus. Les abréviations
GRS et SERS sont des noms de formalisrnes de réécriture d’ordre supérieur, le lecteur peut trouver plus de
détaíls dans le chapitre 6 de la these. On peut se référer a [KOOOla]pour une étude exhaustive des stratégies de
réécriture perpétuelles et une caractérisation des radicaux perpétuels dans les systemes de réécriture de termes
d’ordre supérieur.

Tous cs résultats sont formulés pour des systémes orthogonaux, mais le calcul de substitutions explicites
Ax n’est pas orthogonal. Les résultats sur la perpétuité déja développés ne peuvent donc pas s’appliquer.
Nous étudierons perpétuité dans le Ax-caicul en adaptant une technique introduite á l’origine pour montrer

‘Le Arca]qu est obtenu á partir du A-calculusen rstreig'nant la formation de: temes : toute abstraction ALM doit contenir
au moins une occurrence libre de la variable z dans M.



préservation de la normalisation forte des calculs de substitutions explicites [BBLRD96]. Les applications de
cette étude sont :

o formulation d’une définition inductive de l’ensemble des termes fortement Ax-normalisables,

o deux stratégies de réécriture perpétuelles pour Ax, l’une d’elles est calculable,

o une preuve de normalisation forte d’un calcul typé polymorphe avec des substitutions explicites.

Nous étudions aussi Aus. Le Avs-calcul [DG99]est un calcul de substitutions explicites fondé sur la notation
de De Bruijn (une notation pour le termes dans lequel les variables sont codés par des nombres) qui est
considérablement plus compliqué que Ax a cause de la. presence de la composition des substitutions. Nous
développons pour Aus un programme d’étude semblable á. celui que nous venons de décrire pour Ax, la seule
différence étant que nous ne traitons pas un calcul polymorphe avec des substitutions explicites fondé sur Aus.
Pour oErir au lecteur une idée sür la maniére de composer des substitutions nous donnons un exemple de regle
qui fait cette táche dans le Ax-calcul :

M(a: := N)(y := 0) —>c M(:z::= N(y := 0)) si y n’est pas libre dans M

Dans le chapitre 4 de la these nous développons une stratégie de réécriture perpétuelle pour Aus et nous
formulons une caractérisation inductive du Aus-termes qui terminent.

Récemment, des travaux supplémentaires sur la perpétuité pour des systemes non-orthogonaux, avec des
applications a des calculs de substitutions explicites, ont été développés [KOOOlb].

Proposition de Perpétuité et quelques applications

Le chapitre 3 de la these commence par considérer les résultats fondamentaux de la technique de preuve
développées par P. Lescanne et al dans [BBLRD96] afin de démontrer la préservation de la normalisation
forte de Av, un autre calcul de substitutions explicites que nous introduisons briévement dans le chapitre 2.
Cette technique est fondée sur l’assignation d’une mesure aux dérivations et sur l’application d’un argument
de minimalité, semblable á celui que Nash-Williams [NW63] a utilísé pour arriver a une contradiction dans
la preuve du théoreme de Kruskal. Nous appliquons cette meme technique pour démontrer la proposition de
perpétm'té. Cette proposition dit que si M se réécrit dans N a l’aide du calcul de substitutions x et M posséde
une Air-dérivation infinie, alors N aussi. Dans le cas ou la regle de réécriture Varf est utilisée pour obtenir N de
M, nous devons demander additionnellement que le terme éliminé par cette régle soit fortement Ax-normalisable.

Cette proposition est suffisante pour pouvoir formuler une caractérisation inductive de l’ensemble des Ax
termes qui terminent, c’est a dire qui ne sont pas la. source d’une dérivation infinie. En eiÏet, sept schémas
d’inférence sont proposés et a partir de la proposition mentionnée auparavant, nous montrons que ces schémas
capturent exactement l’ensembledes Ax-termes qui terminent.

Ensuite, nous considérons des strategies perpétuelles pour le Ax-calcul. Une Ax-stratégie de réécriture est
une fonction Ill-"(0)de Ax-termes en termes telle que pour tout Ax-terme M on a. M —>¿¡.77(M ), a l’exception
du cas oü M soit une forme normale. Dans ce derniere cas nous avons .7:(M ) = M. On dit qu’une strategic est
perpétuelle si 00A:(M) implique oo,\x(.7"(M )), oü oo,\¡(M) indique que M est la source d’une dérivation infinie
dans Ax.

Nous formulons deux strategies de réécriture pour Ax. Nous montrons qu’elles sont perpétuelles a l’aide de
la proposition de perpétuité. Les deux strategies consistent a réécrire l’un des Ax radicaux le plus a gauche, a
exception du cas oü ce radical est un Varf-radical y(z := Q). Dans ce derniere cas soit un radical dans Q est
réduit soit le Varf-radical lui méme est réduit selon des conditions sur Q.

Le probleme suivant sur les stratégis maximales est resté ouvert. Soit .7: une Ax stratégie de réécriture.

Définissons L;(M) d-í‘min{n | f"(M) est une Ax-forme normale} ou f°(M) dé‘M et .77"+1(M) "="r.7-‘(.7-'"(M)).
Alors on dit que .‘Fest maximal ssi M posséde une Air-forme normale et L_1.-(M)coïncide avec la longueur max
imale d’une dérivation qui mene M a sa forme normale. La stratégie 170°(o)(Définition 3.16, Section 3.2.2 de
la. these) est elle maximale?

Lambda calcul polymorphe avec substitutions explicites

Le polymorphisme est une discipline de types qui permet aux fonctions de s’appliquer sur des arguments de
difiérents types. Ceci aide a la réutilisation de code et, avec les fonctions d’ordre supérieur, est l’un des
ingrédients essentiels de n’importe quel langage de programmation moderne. Un exemple classique de fonction



polymorphe est la fonction identité I = Ama. Notons que pour un terme quelconque, cette fonction retourne une
copie de ce terme, sans regarder la nature du terme en question. Ainsi, pour chaque type 'r on dit que I possede
type 7' —>7'. Ceci peut étre rendu interne dans le langage des types en assignant le type V'rxr —>7' a I, ou 7'joue
le róle d’une variable de type, qui varie sur tous les éléments de l’univers de types. Le systéme F [Gir72, GLT89]
est un ensemble de regles de typage pour typer des types polymorphes et deux regles de réécriture : le regle
[3 et une regle pour instancier des variables de type par des types arbitraires. Nous aug'mentons le calcul F
avec des substitutions explicites, en obtenant F“. Comme nous pouvons abstraire pas seulement de variables
de terme mais aussi de variables de type, deux notions distinctes de substitution seront introduites et étudiées :
substitution de terme et substitution de type. On considere alors les propriétés suivantes :

o Préservation de types : la pr6ervation de types est démontrée pour Fu. Ce résultat n’est pas vrai pour
d’autres formulations de lambda calculs avec substitutions explicits basés sur Ax [B1097].Cette situation
a été ensuite inversée dans [81099,BloOl], elle peut donc étre vue comme une solution indépendante a ce
probleme. Un travail en relation avec nos resultats est celui de C. Muñoz [Muñ97b] qui définit un lambda
calcul typé avec substitutions explicites (basé sur une variante linéaire a gauche du calcul Aa) et types
dépendants. Il démontre la préservation de types pour ce calcul en introduisant des annotations de type
dans le constructeur de substitutions o -o de Aa. Notre solution consiste a considérer des contextes de
typage dans lesquels une notion d’égalité de types modulo un calcul de substitutions explicites pour les
substitutions de types sont pris en compte.

o Normalisation forte : nous démontrons que tous les termes polymorphes typables sont fortement nor
malisables. La preuve est obtenue en appliquant la technique des candidats de réductibilité de J-Y. Gi
rard [Gir72], méme si nous suivons plutót la presentation donnée par J. Gallier [Ga190].La réductibilité
pour démontrer des propriétés de calculs avec substitutions explicites apparaït d’abord dans [Muñ97b]
et [Rit93], néanmoins elle est seulement utiliséc pour démontrer la normalisation faible. En ce qui concerne
la normalisation forte, il y a eu aussi d’autres contributions indépendantes [Rit99, DL01, HerOO].L’idée
que nous suivons consiste a définir une fonction d’efl'acement Erase(o) qui élimine toute l’information de
types d’un terme typé dans Fe3 en produisant un Ax-terme non typé.

—Montrer que si un terme résultant de l’effacement de l’information de types est fortement Ax
normalisable, alors le terme original est fortement Fu-normalisable.

—Nous obtenons ainsi le résultat suivant : si M est Fea-typable alors Erase(M) est fortement Ax
normalisable. Nous généralisons ce but en montrant que si M est typable alors Erase(M) suivi d’une
sequence de substitutions explicites est fortement Ax-normalisable, ceci implique clairement que lui
méme est fortement Ax-normalisable.

- Le point précédent est démontré a l’aidede la technique des candidats de réductibilité oü les candidats
sont des sous-ensembles de Ax-termes qui terminent. La proposition de perpétuité est cruciale pour
que cette technique puisse étre appliquée.

Partie II: Subtitutions explicites pour un calcul á objets
Nous considérons ici un calcul avec substitutions explicites pour modéliser des langages orientés objets en
enrichissant le c-calcul de M. Abadi et L. Cardelli [AC96]avec des substitutions explicites. Le g-calcul est un
formalisme qui se trouve au méme niveau d’abstraction que le lambda calcul, mais qui se base sur des objets
a la place que sur des fonctions. On peut le considérer un calcul minimal dans le sens qu’il s’avere diflicile de
concevoir un calcul plus simple pour modéliser des constructions des langages orientés objets. Un objet dans le
g-calcul est une collection de méthodes, les seules structures calculatoires dans le formalisme.

Le q-calcul est Turing complet dans le sens qu’il peut représenter toutes les fonctions calculables. En
particulier, ce résultat est démontré [A096] en proposant une traduction du lambda calcul dans le q-calcul. La
traduction simple et élégante qui acheve ce codage est appelée la traduction fonction-objet. Maintenant, si on
fixe un calcul de substitutions explicites, disons e, pour rendre la meta-substitution dans q au niveau objet, il est
naturelle d’espérer que le calcul de substitutions explicites résultant qe soit capable de coder Ac. Par exemple,
si on considere des substitutions explicites a la v [BBLRD96]pour augmenter le q-calcul, obtenant ainsi (v, on
voudrait vérifier que Av est codable dans cv, et ainsi cv serait au moins si expressif que le lambda calcul. Dans
un contexte ou les variables liées son dénotées par des noms et pas par des indices, D. Kesner and P.E. Martínez
López [KML98] ont vérifié que Ax peut étre simulé dans cx. Pour vérifier cette propriété de simulation ils
ont adapté la traduction fonction-objet en introduisant une nouvellenotion de substitution appelée substitution



d ’invocation. Cette substitution se comporte différemment de la notion usuelle de substitution car elle represente
plutót un remplacement qu’une notion de substitution d’ordre supérieur. De plus, dans l’environnement avec
indices et substitutions explicites présenté dans cette these, nous avons vérifié que les enregz'strementssont aussi
nécessaires pour coder le /\e dans ce via une traduction fonction-objet. Le chapitre 5 de la these étudie un
calcul du premier-ordre avec explicit substitutions pour le g-calcul avec enreg'istrements comme constructeurs
primitifs. Simulation du Av-calcul, confluence et préservation de la normalisation forte conforment le centre
d’attention de ce chapitre.

L’étude des calculs avec substitutions explicites s’est initiée dans le domaine du A-calculus, cependant il
y a eu plusieurs travaux dans le domaine plus général de la réécriture d’ordre supérieur connue sous le nom
des CRS [Klo80], en particulier les Explicit Combinatory Reduction Systems [BR96] et les eXplicit Reduction
Systems (XRS) de Pagano [Pag98]. Ces formalismes, meme s’ils sont définis dans un cadre d’ordre supérieur
travaillent avec un calcul de substitutions explicites fixe (E dans le cas des Explicit CBS et a" dans le cas des
XRS Nous verrons que notre calcul de substitutions explicites proposé comme une implémentation du g-calcul
n’est une instance d’aucun de ces deux formalismes mentionnés auparavant. Au moment de la rédaction de cette
these nous avons appris l’existence d’une formalisation indépendante du g-calcul publiée par M-O. Stehr [SteOO]
et basée sur une représentation alternative qui utilise les termes avec la notation de Berkling. Cette notation
peut étre vue comme le résultat de fusionner les indices de De Bruijn et les noms de variables. Ce notation
serve pas pour résoudre nos problemes.

Un autre travail mélangeant calculs avecsubstitutions explicites et calculs orientés objets at celui de F. Lang
et al [LLL98]. Le mérite de ce travail est de donner un environnement unifié pour étudier la sémantique
opérationnelle de plusieurs calculs a objets, donc il peut étre vu comme une approche orthogonale a la notre.
De plus, ce formalisme est basé sur une extension du AObj-calcul [FHM94] plutót que du q-calcul. Comme le
AObj-calcul inclut le A-calculus, les traductions fonction-objet ne sont pas nécessaires dans ce cadre.

L’incorporation de substitutions explicites á g

Le g-calcul avec substitutions explicites et indica de De Bruijn, que nous appellerons (dba-calculus, est présenté
dans le chapitre 5 de la these. Ce calcul introduit deux formesde substitution dans le langage objet : substitution
ordinaire et substitution d’invocation. Les regles de réduction pour les substitutions ordinaires sont basés sur le
calcul Av de P. Lescanne et al. Mais nous avons aussi des enregistrements (explicites) dans le langage objet de
(¿533.La section 5.4.1 de la these explique pourquoí nous avons besoin des enreg'istrements comme constructeurs
primitifs dans le langage.

Les substitutions de la forme a/ sont appelées substitutions ordinaires tandis que les substitutions contenant
©l sont appelées substitutions d ’invocation. L’ajustement des indices sera différent pour ces deux types de
substitutions. Une autre caractéristique intéressante de (“es est qu’ellepossede une forme limitée de composition
de substitutions.

Comme nous l’avons dit auparavant les enregistrements peuvent étre simulés dans le (¿b-calculus d’une
maniere tres naturelle. Cette situation n’est plus valable lorsque les substitutions explicites sont introduites
dans le formalisme et lorsque l’on veut coder le Av-calculdans le (¿ba-calculus a l’aide d’une traduction fonction
objet. Les détails se trouvent dans la section 5.4.1 de la these.

Enfin, quelques propriétés de (¿bss sont étudiées. La premiere d’entre elles dit que de la méme maniere
que g est capable de simuler A-calculus, le (¿hu-calcul peut simuler Av. On regarde aussi quelques propriétés
esentielles qui sont demandées pour n’importe quel calcul avec substitutions explicites qui implémente un
autre calcul ou la substitution est au niveau du langage du discours. La premiere de ces propriétés est la
confiuence; on utilise pour la démontrer la méthode d’intérpretation [Har89]. La deuxieme est la préservation
de la normalisation forte. On utilise pour la démontrer une technique due a Bloo et Geuvers [BH98]. Cette
propriété est l’un des ingrédients essentiels dans n’importe quel implémentation via des substitutions explicites,
surtout s’il y a quelque forme d’interaction entre les substitutions comme dans notre cas.

Partie III: de la réécriture d’ordre supérieur á la réécriture du premier ordre
La partie III de la these concerne la traduction de la réécriture d’ordre supérieur a la réécriture du premier
ordre modulo une théorie équationnelle. La réécriture (de termes) d’ordre supérieur concerne la transformation
de termes en présence de mécanismes de liaison pour les variables et des substitutions. Sa théorie a commencé
avec le travail pionnier de J .W. Klop en 1980 dans sa these [Klo80]. L’exemple paradigmatique de systéme de
réécriture d’ordre supérieur est le A-calculus. La notion de substitution dans ce calcul est une operation méta
qui peut étre vue comme la conséquence de l’existence d’un symbole spécial appelé symbole de liaison qui a



le pouvoir de iier des variables dans les termes. Ceci a pour conséquence que la substitution ne peut pas étre
considérée comme la notion usuelle de remplacement du premier ordre, mais plutót comme une operation qui
doit respecter le statut (libre ou lié) de chaque variable. Dans ce sens, il est juste de dire que la substitution
est un ‘remplacement respectueux’. Cependant, il serait erroné de considérer la substitution comme un concept
trivial : la théorie de la réécriture d’ordre supérieur est considérablement plus compliqué que celle du premier
ordre.

Plusieurs formalismes de réécriture d’ordre supérieur (HORS) existent, la recherche dans ce domaine est
actuellement tres active. Dans le travail fondateur de J .W. Klop [K1080]les Combinatory Reduction Systems
(GRS) ont été introduits. Plusieurs formalismes ont été définis plus tard : les Expression Reduction Sys
tems (ERS) de Z. Khasidashvili [Kha90], les Higher-Order Reunite Systems (HRS) de T. Nipkow [Nip91], les
Higher-Order Term Reurrite System D.A. Wolfram [W0193],les Higher-Order term Remiting System de V.
van Oostrom et F. van Raamsdonk [OR94] qui recouvrent plusieurs autres formalismes [Oos94, Raa96] et les
Ezplicit Reduction Systems (XRS) de B. Pagano [Pag98] qui utilisent les indices de De Bruijn. La these de F.
vanRaamsdonkpresenteune étuded’ensembledansce domaine

Méme si au niveau méta l'exécution d’une substitution est toujours atomique, le coüt de son calcul dépend
de la forme des termes, en particulier si la capture de variables doit étre évitée en utilisant des renommage
de variables liées (cx-conversion). En conséquence, il y a un intérét bien pratique pour essayer d’éviter l’a
conversion, car n’importe quelle implantation d’un systeme de réécriture d’ordre supérieur doit inclure des
instructions concrétes pour appliquer des substitutions. Comme nous l’avonsdéja mentionné, il y a une technique
standard introduite par De Bruijn, appelée la notation des indices de De Bruijn, pour éviter la. (iz-conversion.
La représentation des variables via des indices élimine complétement la capture de variables. Cependant, les
formalismes de De Bruijn ont été étudiés uniquement pour quelques systémes particuliers (et uniquement au
niveau des termes) et il n’y pas de formalisme général de réécriture d’ordre supérieur avec indices. Nous étudions
ce probleme dans cette these en ne nous focalisant pas uniquement sur les termes (comme il est usuellement
fait dans la littérature pour le A-calcul [KR98])mais aussi sur les méta-termes, qui sont les objets syntaxiques
utilisés pour exprimer un systeme de réécriture d’ordre supérieur. Plus précisément, nous introduisons une
notation de De Bruijn pour les ERS, en obtenant ainsi la classe SERSdb. En effet, nous formulons une version
simplifiée des ERS que nous appelons Simplified ERS (SERS), et ensuite nous considérons une notation de
De Bruijn pour ce formalisme. La raison du choix du formalisme ERS est que sa syntaxe est plus proche du
A-calcul. Ainsi la regle de réécriture fi s’écrit comme app((/\2.M),N) -> M [z <- N] ou M et N dénotent deux
termes quelconques.

Le formalisme SERS peut étre vu comme l’interface d’un langage de programmation fondé sur la réécriture
d’ordre supérieur. Comme l’utilisation de formalismes fondés sur les variables avec noms sont nécessaires pour
l’interaction des humains avec les ordinateurs d’une maniére amicale, les rasources techniques tels que les
indices de De Bruijn (et, plus tard, les substitutions explicites) ne doivent pas étre visibles, autrement dit, elles
doivent étre considerées comme une décision d’implantation. Un point clé sera l’étude détaillée de la relation
entre les SERS et les SERSdb. Les définitions dévelopées dans ce chapitre fournissen des traductions de la
syntaxe d’ordre supérieure avec noms vers celui des indices et vice-versa. Ces traductions sont des extensions a
l’ordre supérieur des traductions qui ont été présentées dans [Cur93], et aussi étudiées dans [KRQS].

Quant aux formalismes de réécriture d’ordre supérieure basés sur des indices de De Bruijn, il y a au moins, a la
connaissance de l’auteur, trois classes : les aplicit CRS [BR96], les EarplicitReduction Systems (XRS) [Pag98],
et le Calcqu of Indexed Names and Named Indices (CINNI) [SteOO].Dans [BR96]des substitutions explicites
a la Ax [R0592,B1097]sont ajoutées au formalisme CRS comme un premier pas vers l’utilisation de la réécriture
d’ordre supérieure avec des substitutions explicites pour la modélisation de l’exécution des programmes fonc
tionnels d’une fagon fidele. Comme ceci est fait dans un environnement de variables avec noms, l’a-conversion
doit étre prise en compte dans ces systémes. La classe des XRS de B. Pagano constitue le premier formalisme
de réécriture d’ordre supérieur qui utilise la notation des indices de De Bruijn et des substitutions explicites.
Ils sont présentés comme une généralisation du Aun-calcul [CHL96] mais aucune connexion avec des formal
ismes bien établis comme les CRS, les ERS et les HRS á été établie. En effet, l’expresion de regles naturelles
des SERS dans le formalisme des XRS n’est pas triviale. On peut considérer comme exemple un systeme de
réécriture pour des expressions logiques tel que si imply(e1, eg) se réduit a une constante true alors el implique
logiquement a eg. Une regle de réécriture possible serait :

imply(3:nyM,Vy3:cM) —>¡mptrue

Un essaie naïf pour représenter cette régle dans un XRS pourrait étre :

imply(3VM,V3M) aim?“ true



xi

Mais elle n’a pas l’effet désiré parce que EIVMet VEIMcorrespondent á BszM et VzElyM mais VzrílyM et
VszM ne sont pas équivalents. Observer que méme si nous incorporons des substitutions explicites aux XRS,
ce probléme se manifeste déja au niveau des indica de De Bruijn. Autre exemple qui peut étre intéressant est
la régle qui exprime l’extensionalité fonctionnelle 17:

Az.(app(M,z)) —>M si a: n’apparaït pas libre dans M

qui est usuellement exprimée dans un systeme fondé sur des indices de De Bruijn et substitutions explicites par
la regle 77:16suivante :

¿(app(M,1)) -> N si M =s NIT]

ou M =¿ N signifie que M et N sont équivalents modulo la théorie des substitutions explicites 8 (on peut
prendre par exemple U). Ni la regle imp ni 77a,peuvent étre exprimées dans le formalisme XRS. Ils n’ont
donc pas, en principe, le méme pouvoir d’expression que les ERS. Quant aux systemes de M-O.Stehr [SteOO]
mentionnés plus haut le méme probléme apparaït : aucune relation n’est établie avec les systémes de réécriture
d’ordre supérieur.

Systémes de réduction d’expressions simplifiées

Le chapitre 6 de la these introduit le formalisme de réécriture d’ordre supérieur de variables avec noms appelé
SERS. Ce formalisme est une simplification convenable des ERS de Khasidashvili [KhaQO]qui consiste a
restreindre les symboles de líaison aux symboles qui lient une seule variable et a restreindre la substitution á la
substitution simple (en opposition avec la substitution simultanée ou parallele).

Un exemple d’un SERS est le A-calculus, obtenu avec la signature qui contient le symbole fonctionnel app
et le symbole lieur A, aussi comme les SERS-regles de réécriture : app(Aa.X, Z) —>pX [a <- Z]. Observer que
nous avons des symboles de fonction (tel que app), des symboles de liaison (tel que A), des méta-variables pour
les termes (telles que X et Z) et des méta-variables pour les variables lié (telle que a). Nous avons aussi des
meta-variables pour les variables libres. Tant app(/\a.X, Z) comme X [a <- Z] sont appelés méta-tennes et sont
utilisés pour définir des régles de réécriture. L’expression o[o «- 0] est appelée l’opérateur de méta-subst'itution
et représente une substitution suspendue.

Un autre exemple est le Ax-calcul [BR96, RosQ2]. H est définit en considérant la signature qui contient les
symboles fonctionnels {app, subs} et les symboles de liaison {A,a}, avec les SERS-regles de réécriture suivantes :

app(/\a.X, Z) —>Be¿a subs(aa.X, Z)
subs(aa.(app(X, Y)), Z) 4,4” app(subs(aa.X, Z), subs(aa.Y,Z))
subs(aa.A,B.(X),Z) 4km Afi.(subs(aa.X, Z))
subs(o‘a.a, Z) —>va,- Z

subs(aa.3, Z) -' Varj B

Le E dans la derniére régle represente une variable libre (c’est un exemple d’une méta-variable pour les
variables libres), donc elle ne peut pas recevoir en assig'nation la méme variable que celle assignée á. a.

La regles de réécriture sont instanciées a l’aide des valuations pour pouvoir obtenir la relation de réécriture
sur les termes. Une valuation assigne tout simplement des termes aux meta-variables pour les termes, des
variables aux méta-variables pour les variables et elle exécute les substitutions suspendues qui sont représentées
par l’opérateur de méta-substitution. Bien sür, tout cela doit étre fait avec attention, l’ensembledes valuations
admissibles est identifié et ce sont uniquement ces valuations qui peuvent étre utilisées pour instancier des
regles de réécriture. Par exemple, le ¡hy-calculest obtenu en ajoutant la SERS-regle de réécriture suivante au
A-calculus : Aa.(app(X, 02))—>,,X. Une valuation admissible serait une valuation telle que la variable assignée
a a n’apparaït pas libre dans le terme assig'néa X.

Systémes de réduction d’expressions simplifiées avec des indices

On introduit le systéme de réécriture d’ordre supérieur avec indices de De Bruijn, appelé SERSdb, en utilisant
des exemples. En particulier, nous considérons d’abord le cas du lambda calcul avec des indices de De Bruijn :
app()\Xa,Z¿) —>XaIZJ. Les expressions app(/\Xa,Z¿) et Xalze] sont appelés méta-termes de De Bruijn.
Bien qu’il y n’a pas plus de meta-variables pour les variables liés nous avons encore des meta-variables pour les
termes (telle que Xa) et des meta-variables pour les variables libres (voir fi dans l’exemple dessous). Noter que
maintenant les meta-variables pour les termes portent une étiquette, et que ces étiquettes forment une partie



intégrale de ces méta-variables. Une méta-variable de la forme X, indique qu’elle apparaït dessous un nombre
d’opérateurs de liaison, notamment un pour chaque symbole dans l’étiquette l. L’opération alo] á.droite est
nommée l’opérateur de méta-substit'ution de De Bruijn et représente une substitution de De Bruijn suspendue.

Un deuxieme exemple est le systeme suivant qui est obtenu en traduisant le Ax-calcula l’aide de la.traduction
que nous développons dans le chapitre 6 de la these :

app(/\Xa, Ze) —> subs(aXa, Ze)
M8(0(app(Xm Ya», Ze) -> aPP(8ub8(UXa.Ze): subs(0Ya, Ze»
W3(Ü'(/\(Xfia))vzc) _’ ¿(ms(a(xafi)v Z5»
subs(0(1), Ze) ->
subs<a(s(fi)),zc) —»

CA
B

La régle subs(a(/\(Xpa)), Ze) —>/\(81Lb3(0'(xap),Zp)) est intéressante parce qu’elle montre l’utilisation de la
commutation des symboles de liaison (confronter Xpa et Xap) et elle illustre en méme temps comment quelque
sorte d’ajustement sera nécessaire pour aller de Z5 vers Z¿.

En effet, des valuations seront nécessaires pour instancier des régles de réécriture et obtenir de cette facon
la relation de réduction sur les termes. Ces valuations doivent respecter les étiquettes des méta-variables.
Considérons pour l’instant la SERS-régle de réécriture :

¿a-(Efl-X) _’r Efi-(Ea-X)

et son traduction dans les formalisme SERSdb :

¿(HX/3a» ->r¿. ¿(€(Xap))

Une valuation est dite valida si elle respecte les étiquettes des méta-variables. Par exemple, si Xpa est
instanciée avec l’indice 1 alors Xap doit étre instanciée avec l’indice 2. Quand on fait de la’instantiation des
régles de réécriture de De Bruijn, uniquement des valuations valides seront utilisées.

Propriétés

Une de propriétés élémentaires qui nous intéresse est le rapport entre les formalismes SERS et SERSdb. Nous
montrons que la réécriture dans le formalisme SERS peut étre simulée dans celle de SERSdb et vice-versa. Pour
le premier cas nous avons besoin de définir plusieurs traductions (que nous appelons T(o) sans distinction) :
de termes vers termes de De Bruijn, de méta-termes vers méta-termes de De Bruijn et de valuations vers
valuations de De Bruijn. Aprés nous étudions des propriétés de base de ces traductions. Comme nous l’avons
déjá mentionné, le dernier exemple en haut est obtenu en traduisant le Ax-calculcomme un SERS. Une fois que
ces traductions sont fixées nous pouvons montrer que si s se réécrit en t dans le formalisme SERS en utilisant
la régle de réécriture (G, D), alors T(s) se réécrit en T(t) dans le formalisme SERSdb en utilisant la regle de
réécriture De Bruijn T(G, D).

Quant au deuxiéme point on procede d’une fagon similaire pour obtenir les traductions U(o). Pourtant, ce
point a besoin d’un travail plus technique que le précédent puisque la traduction d’un terme de De Bruijn (ou
un meta-terme de De Bruijn) peut ne pas donner un terme unique (ou meta-terme). Dans le cas ou deux terms
difiérents sont obtenus ils seront a-équivalents (ou v-équivalents - une notion définie dans le chapitre 6 - dans
le cas des méta-termes). Une question additionnelle qui nous intéresse est la garantie que les valuations de De
Bruijn valides soient traduites vers des valuations admissibles dans le formalisme SERS. En fin, nous montrons
que si a. se réécrit dans b dans le formalisme SERSdb en utilisant la régle de réécriture (L, R), alors U(a) se
réécrit dans U(b) dans le formalisme SERS en utilisent la regle U(L, R).

La partie finale du chapitre 6 étudie la rapport entre les traductions mentionnées dans le paragraphe
précédent. Celle ci donne lieu a deux resultats qui disent, respectivement, qu’étant donné un méta-terme
M alors U(T(M est équivalent a M (dans un sens précis, voir la section 6.1 de la these), et qu’étant donné
un méta-terme de De Bruijn A alors T(U est identiqueá A. Ces résultats sont utilisés pour montrer que la
confluence est préservée en traduisant un systeme de réécriture SERS vers un systéme de réécriture SERSdb.
Plus précisément nos montrons que, d’un coté, si 'R est un SERS qui est confluent alors T(R) est un SERS“
confluent aussi. D’autre cóté, nos montrons que si 'R est un SERSdbconfluent alors U('R) est un SERS confiuent.



De la réécriture d’ordre supérieur vers la réécriture de premier ordre

Comme nous l’avons déja dit ci-dessus, l’opération de substitution ne peut pas étre cadrée comme une operation
simple de remplacement telle que la substitution dans les théories du premier ordre. En conséquence, des
chercheurs se sont intéressés par la formalisation de la substitution d’ordre supérieure a l’aide de substitutions
emplicz'tes,de telle facon que les formaüsmes/systémes d’ordre supérieur soient exprimables dans da formal
ismes/systemes du premier ordre : la notion de variable liée n’existe plus et la substitution devient du rem
placement. Un exemple bien connu de la combinaison d’indices de De Bruijn et de substitutions explicites est
la formulation des difi'érents calculs du premier ordre pour le A-calculus [ACCL91, BBLRD96, KR95, DG01].
D’autres exemples sont les traductions de l’unification d’ordre supérieur vers la unification du premier ordre
modulo [DHKOO],la logique d’ordre supérieur vers celle du premier ordre modulo [DHKOl], la démonstration
automatique d’ordre supérieur vers celle du premier ordre modulo [DHK98],etc.

Le cas du A-calculus est intéressant mais en méme temps pas toute á fait représentatif des problemes que
l’on peut trouver quand on fait du codage de systémes d’ordre supérieur vers le premier ordre. La raison c’est
que dans ce cas particulier il sufiit de se débarrasser de l’a-conversion et de promouvoir la. substitution du
niveau méta au niveau objet. En effet, le remplacement des variables usuelles par des indices de De Bruijn
et l’introduction de substitutions explicites suffisent pour rendre un syst‘emedu premier ordre, tels que les
exemples précédents le montrent. Pourtant, c’est ne pas le cas pour des systemes de réécriture d’ordre supérieur
arbitraires. Cette a dire, l’élimination de l’a-conversion et l’introduction de substitutions explicites n’est pas
suflisante pour obtenir un systeme simple (dans le sens de la réécriture du premier ordre modulo une théorie
équationelle vide). La raison est que dans la réécriture d’ordre supérieur5 le LHS des regles de réécriture sont
des motifs d’ordre supérieur [Nip91, 00594]. En conséquence il faut coder aussi le filtrage des motifs d’ordre
supérieur quand on se dirige vers le formalisme du premier ordre. Un exemple simple de cet fait est le cas de la
fldb-régle de réécriture :

A(Ü'PP(X0) 1)) 41m X6

Noter que Xe du membre droit de la régle, qui n’apparaït pas dans un contexte de liaison, est en relation
avec l’occurrence de XO,a gauche, que cette fois ci apparaït sous un contexte de liaison. Ceci peut étre vu
comme la raison pour laquelle la regle 17a,avait recu tellement d’attention [Rí093, Har92, Bri95, KesQG],filtrage
syntan'que ne sufñt donc pas. On peut bien dire que le test d’occurrence est une caractéristique du filtrage
d’ordre supérieur qui ne peut pas étre traité au premier ordre. Dans l’exemple de la regle 1m, le lecteur peut
vérifier que le terme /\(app(3,1)) se réécrit en 2. Dans un formalisme de réécriture du premier ordre avec des
substitutions explicites on a la formulation alternative :

/\(app(X[T],1)) -> X

Cependant, pour vérifier que le terme du premier ordre 3 soit de la forme X [T]le filtrage du premier ordre
ne suflit plus z nous avons besoin d’E-filtrage, c’est a dire, filtrage modulo une théorie équationnelle 8. Etant
donné un calcul de substitutions 8 nous aurons besoin de résoudre l’équation3 ¿g X

Un autre exemple, peut étre moins évident, est obtenu par la régle de commutation C :

imply(3a.Vfi.X,Vfi.3a.X) -» true

qui exprime le fait que la formule qui apparaït dans le premier argument de la fonction imply implique le
deuxieme argument. La traduction naïve vers le premier ordre, notamment imply(3(V(X)),V(3(X —>true,
n’est évidemment pas correcte. Autant nous prendrons son codage dans le formalisme des indices de De Bruijn
SEI-25'45et apres nous le traduirons vers le premier ordre en utilisant la conversion qui est présentée dans le
chapitre 7 de la these en obtenant Cfa :

imply(3(V(X)),V(3(Xl2-1- T21»)-> true

Maintenant, la regle Cfi, a exactement la signification que l’on attends.
Le but du chapitre 7 est de donner un algorithme de conversion, appelé la Procédure de Conversion,

qui permet de coder la réécriture d’ordre supérieur dans la réécriture du premier ordre modulo une théorie
équationelle 8. Ceci est intéressant du point de vue théorique parce que le pouvoir d’expression des systemes
de réécriture d’ordre supérieur et du premier ordre n’est pas le méme. Pourtant, un sujet plus pratique se

5Dans le formalisme SERS les LHS sont toujours ds motifs d’ordre supérieur, mais c’est ne pas le cas pour d’autres formalismes
comme par exemple les HRS.
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manifeste, la. possibilité de transférer des résultats développés dans les systemes du premier ordre vers ceux
d’ordre supérieur. Dans le chapitre 8 nous transférons le Théoréme de Standardisation de la réécriture du
premier ordre vers celle d’ordre supérieur. Des techniques concernant la confluence, terminaison, complétion,
des stratégies d’évaluation, etc., doivent étre étudiées. Ce n’est pas encore clair comment on peut transférer
des techniques telles que dependency pairs [AGOO],semantic labelling [Zan95] ou complétion [BD88] vers la
réécriture d’ordre supérieur. Méme les techniques qu'ont été déja formulées pour l’ordre supérieur comme le
RPO pour les systémes d’ordre supérieur [JR99], sont beaucoup plus compliquées que dans ses versions du
premier ordre correspondantes [Der82, KL80]. Nous obtenons aussi une caractérisation de la classe des SEI-25,“,
(qui inclut le A-calculus) telle que chaque SERSdb peut étre traduit a un systéme de réécriture du premier ordre
complet (8 = (0). Nous argumentons que ces systémes, appelés SERSdbessentiellement du premier ordre , sont
plus convenables pour transférer des propriétés.

Un commentaire final sur la.Procédure de Conversion concerne le fait que nous n’ajouterons pas un calcul de
substitutions explicites concret a cette procedure. Nous avons plutót choisit de travailler avec une formulation
abstraite des calcul de substitutions explicites comme il a été fait dans [Ke596,KesOO]pour traiter la confiuence
de plusieurs lambda calculs avec substitutions explicites. En conséquence, la méthode que nos proposons peut
étre utilisée avec plusieurs calculs de substitutions explicites tels que a [ACCL91], a1} [HL89], v [BBLRD96],
f [Ke596], d [Ke596], s [KR95], x [LRD95].

La procédure de conversion

La section 7.2 de la these introduit le formalisme du premier ordre appelé “Explicit Expression Reduction
Systems” (EzERS) utilisé pour traduire les systémes de réécriture d’ordre supérieur fondés sur les indices de De
Bruijn aux systemes du premier ordre. Un ErERS est un systéme de réécriture du premier ordre contenant :

o Un ensemble de régles de réécriture propres gouvernant le comportement des symboles de fonction et de
liaison dans la signature.

o Un ensemble de régles de réécriture des substitutions, appelé le calcul de substitution gouvemant le
comportement des symbolesde substitution dans la signature, et utilisé pour propager et exécuter/éliminer
les substitutions.

Un ensemble de régles de réécriture arbitraires ne remplit pas nécessairement la conditions requises par un
calcul de substitutions. Pour cela nous donnons une présentation générale fondée sur des macros. N’importe
quelle instance de ce calcul, obtenue en associant des opérateurs de substitution fixés a ces macros, sera donc
considérée un calcul de substitutions. Des propriétés supplémentaires imposées a ces calculs fourniront ce que
nous appelons Basic Substitution Calculiqui sera dénoté par W. Cette idée a été introduite par D. Kesner [Ke596,
KesOO]pour donner une preuve unique de confluence comprenant toute une Série de calculs de substitutions
explicites fondés sur des indices de De Bruijn. Nous bénéficions ainsi de ce fait en pouvant réduire la réécriture
d’ordre supérieur a un cadre du premier ordre oü le calcul de substitutions peut étre n’importe quel calcul de
substitutions explicites qui s’adapte á. notre presentation fondée sur des macros. Nous ne sommes donc pas
obligés de restreindre notre étude a un calcul particulier de substitutions explicites.

La réécriture dans un EIERS RW est tout simplement la réécriture dans un systéme du premier ordre 7?,mod
ulo W-égalité. Cependant, nous fournissons aussi un sous-ensemble des EIERS appelé sytémes de premier ordre
simples (FEIERS), dénotés aussi RW ou 'R.est un systeme de réécriture du premier ordre dans lequel la réécriture
est donnée tout simplement par les régles de 'R UW. Pour qu’un EIERS remplisse les conditions d’un FEIERS
nous exigeons que les LHSs des régles ne contiennent aucune occurrence de l’opérateur de substitution. Par
exemple,si W est un calculde substitution de base tel que le a-calcul et R = {app(AX,Y) ep“ X [cons(Y,
alors RW est un FEIERS, et si 72’ = 'R U {A(app(X [shift], 1)) en“ X}, 'RJWest un EIERS. Alors nous avons
1[a.pp(/\1, c) -id] en, 1[1[c-id]-id]. Aussi, /\(a.pp(3, 1)) —>—R_¿2. La derniere réduction est obtenue en remarquant
que ¿(app(3,1)) =a /\(app(2[T],1)) find. 2

Nous présentons briévement des exemples d’applications de la Procédure de Conversion, un algorithme pour
traduire un systéme de réécriture d’ordre supérieur dans le formalisme SERSdbvers un EIERS du premier ordre.
La Procédure de Conversion est assez compliquée puisque plusieurs conditions, essentiellement par rapport aux
étiquettes des méta-varíables, doivent étre vérifiées pour qu’une valuation puisse étre admíse comme valide. On
peut considérer, par exemple, la nah-regle A(a.pp(Xa, 1)) —>X0 La condition sur les valuations SERSdb pour
participer a la relation de réécriture induite sur les termes est qu’elle soit valide, comme nous le présentons
au chapitre 6. La. validité assurera, dans ce cas, que la meta-variable XO,ne soit pas instanciée avec l’indice



1. La Procédure de Conversion devra. codifier cette condition dans le cadre du premier ordre. L’idée est
de remplacer toutes les occurrences des meta-variables X, par une variable du premier ordre X suivie d’une
substitution explicita d’act'ualisation des indices appropriées qui calcule les valuations valides. Alors, le résultat
serait : /\(app(X [shift], 1)) —>X. Cependant, celui-ci est un exemple simple, mais dans la situation générale
l’ajout des macros shift ne sera. pas suffisant. Un témoin de ce fait est la regle de commutatíon de symboles de
liaison C-regle que nous avons vu plus haut.

Voici quelques exemples de conversion de r‘eglesou nous avons fixé W comme le a-calcul. Nous encourageons
le lecteur á se référer au chapitre 7 de la these pour des détails supplémentaires.

SEI-¡Sab-régle de réécriture conversion

’\(app(xaa1)) -’ X6 ’\(app(xlTlI _' X

/\(/\(Xap)) -> /\(/\(Xaa)) MAX) -> /\(/\(X[2 ' 1 ' (T o T)]))

f(/\(/\(Xaa))y z\(/\(Xpa))) -> ’\(X‘7) f(/\(/\(XlT°T]))1/\(/\(X[T°T]))) -> /\(X[T])

app()\Xa, Ze) 45“ Xa[Z¿] app(AX,Z) —>X[Z i

Le systeme résultant de la Procédure de Conversion est codé comme un EIERS. Dans quelques cas ce dernier
systeme peut étre codé comme un FEIERS oü la réduction est définie sur les termes du premier ordre et le
filtrage est tout simplement celui du premier ordre (filtrage syntaxique), en arrivant a un systeme de premier
ordre simple.

Propriétés de la procédure de conversion et des systémes essentiellement du premier ordre

Nous étudions aussi la connexion entre la réécriture d’ordre supérieur et la réécriture du premier ordre modulo :
la Proposition de Simulation dit que tout pas de réécriture d’ordre supérieur peut étre simulé ou implante par
la réécriture de premier ordre, et la Proposition de Projection dit que les pas de réécriture dans la version du
premier ordre d’un systeme 'R d’ordre supérieur peuvent étre projetés dans R. La Proposition de Simulation
établit que si a se réécrit en b dans un SERSdb 'R alors a, aussi se réécrite en b dans la version du premier ordre
fo('R)w. La Proposition de Projection établit que les dérivations dans un EIERS ou FExERS fo('R,)w peuvent
étre projetées dans des dérivations dans R: si a se réécrit en b dans fa('R)w alors W(a) se réécrit en W(b)
dans R ou W(a.) est la W forme normale de a. Ceci assure que nous n'ajoutons pas des dénuées de sens dans
le systeme traduit au premier ordre. Des propriétés supplémentaires des dérivations projetées sont étudiées au
chapitre 8, ou des dérivations standard sont considérées.

Finalement nous fournissons un critere tres simple appelé condition-fo que peut étre utilisé pour décider si
un systeme de réécriture d’ordre supérieur peut étre traduit dans un systeme de réécriture de premier ordre
simple (i.e. modulo une théorie équationnelle vide). En particulierl nous pouvons vérifier que plusieurs calculs
d’ordre supérieur dans la littérature, tel que le lambda calcul, satisfont cette propriété. Comme le lecteur
peut remarquer d’apres le chapitre 7 ou la.condition-fo est définie en détail, plusieurs résultats concernant les
systémes d’ordre supérieur (ex. perpétuité [KOOOla], standardisation [Me196])exigent linéarité á gauche (une
méta-variable peut apparatre au plus une fois dans le LHS d’une régle), et complétement étendu ou locale (si
une meta-variable X(t1, . . . ,tn) apparat dans le LHS d’une regle de réécriture alors t1, . . . ,tn est la liste des
variables liées par dessus). Le lecteur peut trouver intéressant de remar-quer aussi que ces conditions ensemble
semblent impliquer la condition-fo. Une preuve de ce fait entranerait le développement de resultats dans les
systémes de réécriture d’ordre superieur ou via une traduction convenable au formalisme SERSdb ; nous le
laissons comme travail futur.

Bien sür, tous les systémes de réécriture du premier ordre sont des SERS“ essentiellement du premier ordre,
d’ou ces dernieres systemes ne sont pas nécessairement linéaire a gauche. Aussi, un SERSdb orthogonal n’est-il
pas nécssairement essentiellement du premier ordre, l’exempleprincipal de ce fait étant le systeme dont la seule
regle est 77.15.Nous illustrons cette situation.
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Il nous semble juste de dire, d’une maniére informelle, qu’un systéme SERSdb est essentiellement du premier

ordre si le filtrage de motifs d’ordre supérieur peut étre réduit au filtrage syntaxique du premier ordre. Nous
soutenons que les systemes SEI-¡Sabessentiellement du premier ordre sont appropriées pour transférer ds
résultats des systemes du premier ordre. Comme évidence de notre these nous entreprenons dans le chapitre 8
la táche de transférer une propriété non tríviale des systemes de réécriture du premier ordre (linéaire a gauche)
a cette classe de systemes: le Théoreme de Standardisation.

’Iï'ansfert de la standardisation

La procédure de conversion est intéressante d’au moins deux points de vue. De la perspective d’expressivité
elle établit comment la réécriture d’ordre supérieur peut étre codée comme la réécriture du premier ordre
modulo une théorie équationnelle, et d’ailleurs elle caractérise un sous-ensemble des SEI-IS.“ pour lesquelles la
théorie équationnelle est vide. De la perspective pratique elle ouvre la possibilité de transférer des résultats
du cadre du premier ordre ver celui d’ordre supérieur. Le chapitre 8 de la these esaye de poursuivre cette
derniére perspective plus en detail. Exactement, nous étudions comment lever le Théoreme de Standardisation
du premier ordre a l’ordre supérieur.

Concretement, nous montrons le Théoreme de Standardisation pour la clase des systémes de réécriture
d’ordre supérieur (linéaire a gauche) qui sont essentiellement du premier ordre. Ceci prouve que certaines
techniques développées pour le premier ordre sont applicables á la classe des systemes de réécriture d'ordre
supérieur qui sont essentiellement du premier ordre. Nous retrouvons une notion similaire (méme un peu
plus forte) a celle de systéme d’ordre supérieur essentiellement du premier ordre dans l’étude de strategies
perpetuelles [KOOOlb] aussi bien que dans l’étude de standardisation axiomatique [Me196]lorsqu’on regarde
les conditions imposées au formalisme d’ordre supérieur pour que les preuves fonctionnent.

Le transfert de la standardisation est accompli en utilisant des idées dues a P-A. Melliés. En efi'et,
dans [MelOO]il montre le résultat suivant : toute dérivation standard v de M 5. N dans Aa ou N est en
0- forme normale est projetée sur une dérivation standard 47(0)de a(M) a N dans le A-calculus. Nous mon
trons que, en effet, ceci est vrai non seulement pour le A-calculus, mais pour tous les systémes essentiellement
du premier ordre, dans lequel nous retrouvons bien evidemment le A-caiculus. Nous baptisons ce résultat le
transfert de standardz'sation généralisé : si R est un SERSdb linéaire a gauche et essentiellement du premier
ordre alors toute dérivation standard v de M a N dans fo('R,).,ou N est en a-forme normale est projetée sur
une dérivation standard a(v) de 0(M) a N dans R.

La procédure résultante pour standardiser une SERSdb-dérívation 'I' consiste en :

1. “Implanter” la SERSdb-dérivation T comme une FEIERS-dérivation v en utilisant la. Proposition de
Simulation.

N) . Appliquer la standardisation du premier ordre a v [Bou85]pour obtenir une dérivation 45du premier ordre
standard.

9° Projeter la dérivation 45en utilisent la Proposition de Projection pour obtenir a'(d>). Utiliser ensuite le
résultat du transfert de standardisation généralisé pour conclure que 47(45)est une dérivation standard
dans le cadre de l’ordre supérieur.
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Nous pouvons signaler qu’un bénéfice supplémentaire de notre résultat est la possibilité d’étudier la théorie
des dérivations “nécesaires” pour les systémes linéaire á gauche et non-orthogonaux en appliquant la technique
développées dans [MelOO].Ceci est laissé comme travail futur.

En montrant á travers un exemple concret (le théoréme de standardisation) comment transférer des r‘sultat
du premier ordre vers l’ordre supérieur, notre contribution nous pouse encore plus á. l’étude des propriétés
d’ordre supérieur a travers leurs images au premier ordre. Notre traduction des systémes d’ordre supérieur
vers le premier ordre ouvre la porte a une nouvelle approche technique pour comprendre les systémes d’ordre
superieur.



A la memoria de María Elena Ferrando y Augusto Horacio Castro
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Chapter 1

Introduction

Computation may be seen as the task of transforming some given input object into some new output object by
means of transfonnation rules. A Term Rewrite System [K1092]is a model of computation in the sense that
objects are specified as sequences of symbols and transformation rules as sets of pairs of objects captured by
rewrite schemas or rules. An early example of a Term Rewrite System is the A-calculus [Chu41], devised by
A.Church in the 19305. The objects are called A-terms and they represent functions; the only transformation
rule is the fl-rewrite rule, which represents the result of applying a function to an argument. For instance, the
term ‘Azaz’represents the identity function, the leftmost occurrence of ‘z’ plays a similar role as that of the
formal parameter of a function or procedure in imperative programming languages such as Pascal. The A-term
‘(/\:c.a:)4’ represents function application, namely the identity function applied to the representation of the
number four. Note that application is represented by juxtaposition. We may compute by actually applying a
function to an argument by means of the fi-rewrite rule:

(Áz.M)N —>p M{z <- N}

where M and N denote arbitrary A-terms, and a: an arbitrary variable. The symbol o{o 4- o}1 appearing on
the right-hand side (RHS) of the rule denotes the operation of metalevel substitution: M {:5«- N} stands for
the A-term resulting from replacing the occurrences of the variable a: (the formal parameter) in M by N (the
actual parameter). In fact, just the so called free variable occurrences of a: are replaced but we shall leave these
details for the moment. A A-term of the form (Az.M)N, where M and N denote arbitrary A-terms and a: an
arbitrary variable, is called a fi-redex. An example of a one-step computation using the fi-rewrite rule is:

(Az.z)4 —>p a:{a: <- 4} = 4

The A-term (Aa:.:1:)4is said to fl-reduce or fi-contract to the A-term 4. A A-term without occurrences of a B-redex
is called a ,B-normal form, or simply a normal form. The A-term 4 is a normal form.

The A-calculus with just the fi-rewrite rule may be shown to represent or encode all computable functions
(formally defined as the partial recursive functions). This fact, together with its simple formulation, justifies its
appeal to the Computer Science community. However, it is hard to imagine writing even simple programs by
laying out A-terms. Functional programming languages are user-friendly versions of the A-calculus. Examples
of these languages are: ML [MTH90], Haskell [HW88] and CAML [WL93]. Although they have evolved a great
deal over the years, they may be seen to share the A-calculus as a common theoretical foundation. Thus, for
these languages, the A-calculus provides a convenient test-bed for studying new language features.

Some previously irrelevant issues arise with the interest of Computer Science in A-calculus as a basis for
programming languages:

o Does computation eventually terminate for any A-term?

o Given a A-term with two or more fl-redexes, can they be computed in any order?

o In terms of consumption of computational resources, say CPU time, is the number of fl-rewrite steps a
faithful measure? For example, do the following rewrite steps ‘cost’ the same?

(Az.z)4 —>¡3 :c{z 4- 4} = 4
(Az.a:a:)4 —>p (zz){z <- 4} = 44

1We shall often use the ‘o’ symbol as a place holder at metalevel.
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Termination or Strong Normalization, the first issue, has been studied rather thoroughly. The A-calculus,
as we have presented it above, does not enjoy termination. The simplest example2 is the A-term AA where
A = Azar.

(Az.za:)A —>p(:ccc){z <- A} = AA —>pAA —>p...

However for restricted subsets3 termination may be shown to hold. Let us address the second issue. The
Church-Rosser Theorem is perhaps the first important syntactic result developed for the A-calculus“. It states
that if two A-terms M1 and M2 result from some other A-term M by a number of fl-rewrite steps, then there
exists some A-term M3 such that both M1 and M2 reduce via some number of B-rewrite steps to M3 (M1 and
M2 are said to be ‘joinable’). This may be illustrated as follows:

MÁ x
M1. _M2

5...2.“ ¡“ya
M3

where the —»parrow denotes zero or more fi-rewrite steps. Thus if we contract difierent redexes in M we
may always find a common reduct. An important consequence of the Church-Rosser property is that if a A-term
has a normal form then it is unique.

As regards the third issue, a finer analysis of the properties of fi-rewrite sequences or ,B-derivations (analysis
which we shall boldly call implementation techniques), also much work has been done. Graph sharing mech
anisms and Abstract Machines are common to this area. A recent approach is to promote the substitution
operation from the metalevel (the language of discourse) to the object-level(the language of study) by introduc
ing it as a new term. This entails the addition of new rewrite rules, which make up the substitution calculus,
to describe its behaviour. Also, the fl-rewrite rule must be modified by replacing metalevel substitution with
the new explicit substitution operator which implements it. As a result of this process we obtain a calcqu of
ezplz'citsubstitutions for the A-calculus. Before looking at an example, let us take a closer look at metalevel
substitution (the operation used on the RHS of the B-rewrite rule) on which calculi of explicit substitution are
based. As already mentioned, M {z <- N} stands for the A-term resulting from replacing the occurrences of the
variable a: (the formal parameter) in M by N (the actual parameter). This notion is defined by considering all
the possible forms M may take, namer a variable, an abstraction (a term of the form Ay.P for some A-term P
and variable y) or an application of a A-term to another A-term:

def
(Pana: h N} = P{z «- N}Q{I «- N}
(Ay.P){:c c- N} dÉf Ay.(P{a: <- N}) a: 96y

m «- N} "é‘
y{a=«- N } dá y z 96y

The first clause may be read as follows: the result of substituting the occurrences of a: by N in PQ is that of
substituting the occurrences of a:by N in P on one hand, and applying the resulting term to the one obtained
by substituting the occurrences of :r by N in Q, on the other. We may assume that there is no term of the
form /\:L'.Pin M, this stems from the posibility of changing the names of so called bound variables, a detailed
account of which may be found in Chapter 2. The second clause may be explained similarly, and the final two
clauses speak for themselves. So the {z <- N} may be seen to traverse M until it reaches a variable, in which
case this variable is either replaced by a copy of N, or is left unaltered and at the same time a copy of N is
discarded.

By orienting the clauses of this definition from left to right and replacing the curly brackets by square ones,
thus promoting the substitution operator into new operator in the object-language as discussed above, we obtain

2It may be proven that indeed AA is the smallst A-ten-n,in the sense of the number of variables, applications and A-symbols,
admitting an infinite B-rewrite derivation [RSSX99, Sarensen's Omega Theorem]. See also [Ler76]

3Such as the simply typable terms, or the polymorphically typable terms [GLT89].
4A¡-ca.lculusto be precise, see introduction to Chapter 3.
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the Ax-calculus [Ros92, B1097]:

(AI.M)N 43,“, M(:c := N)
(¡>sz ==N) mp P<z := N)Q(a:==N)
(Ay.P)(:c := N) 41,0", Ay.(P(a: := N)) a: 96y
z(a: := N) —>va,. N
y“: 5: N) _’Varf y 37€?!

So now a term is either a variable, an application of a term to another term (represented by juxtaposition, as
before), an abstraction, or a term of the form P(a: := Q) called a closure. Thus the RHS of the Beta-rewrite rule
is a new term in the calculus, and may be seen as a pending substitution yet to be executed. The substitution
calculus of Ax is obtained from Axby disregarding the Beta-rewrite rule, and is abbreviated x. Each fi-rewrite
step may be simulated in the Ax-calculusby means of a number of Ax-rewrite steps, namely a Beta-rewrite step
followedby a number of x-rewrite steps. Consider, for example, the first B-rewrite step of the above mentioned
infinite B-derivation. It may be simulated in Ax as follows:

(Az.zz)A 436m (zz)(a: := A) ¿App a:(a: := A)a:(a: := A) —>Va,.Aa:(a: := A) —>Va,AA

A benefit of calculi of explicit substitutions, among others, is that substitution may now be computed in a
controlled manner. For example, some pending substitutions may not need to be executed, as illustrated below:

(Ay-(ÁI-z)(yy))N ->Beza ((Áz-Z)(yy))(y == N >
->App (Ax-2x11 == N >(yy)(y r= N)
_’Lam(Am-zh]3: :=
—>v°r¡ (Am-z)(yy)(y == N)
“Beta ZC”i: 3:N))
_’Vnrf z

Note that there has been no need to compute the substitution (yy)(y := N) thus reducing computation time
and unnecesary duplication of the term N. Calculi of explicit substitutions shall constitute the main theme of
this thsis.

When confronted with a calculus of explicit substitutions for the A-calculus, it is only natural to wonder
whether its fundamental dynamical properties (those of the A-calculus)are retained. We list three examples:

o Simulation: If a A-term M B-rewrites to N then M should also rewrite to N in the calculus of explicit
substitutions. This is coherent with our view of calculi of explicit substitutions as a fine-grained analysis
of the [Fo-rewritestep, and hence of the process of substitution.

Church-Roser: The A-calculusenjoys the Church-Roser property. Its explicit substitution calculus should
do so too. If one interprets the ‘meaning’ of a term as its normal form (hence in our Simplified5 form
setting terms without normal form have no ‘meaning’), then failure of Church-Rosser could render some
terms ‘ambiguous’ (terms with more than one normal form). This is certainly undesirable since as already
mentioned, there are no ‘ambiguous’ A-terms in the A-calculus.

Preservation of Strong Normalization (PSN): If a A-term admits no infinite fi-rewrite derivation then when
computing the same term in the calculus of explicit substitutions no infinite rewrite derivation should arise
either. The process of augmenting the A-calculus with explicit substitutions may be seen as a process of
enrichment of derivations. Any pair of A-terms M and N such that M —»pN is benefited with a rich
supply of alternative derivations. PSN guarantees that we enrich with caution.

Further propertis arise such as strong normalization of the substitution calculus (which in our example
would be x): All the rewrite derivations of the substitution calculus should terminate.

1.1 Hot Spots
Although the origins of explicit substitution dates back to the work of N.G.de Bruijn [Bru78] and also P
L.Curien [Cur86, Cur93], only in the last decade has it received full attention ([KROO]provides a survey). A
wide range of research subjects have arised of which we shall mention just a few:

51ndeed, it is Simplified since in A-calculus it is terms without a so called head-normal form that may be interpreted as having
no ‘mming’ [Bar84, Th.16.1.3].
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Discovering a A-calculus with explicit substitutions simultaneously satisfying confiuence on open terms
(CR), sirnulation of one-step ,Ü-rewrites(Simulation), and preservation of strong normalization has been
an important source of research. Although Simulation and CR are simpler to obtain, P-A.Melli‘eshas
shown that preservation of strong normalization may not hold [Me195]. A first step was taken by
C.Muñoz [Muñ96]: the AC-calculussatisfies CR and PSN but not Simulation (however, it simulates innner
most fi-rewrite steps). A further attempt was the Asa-calculus by F.Kamareddine and A.Rios [KR97]:
Ase enjoys CR and Simulation, and for some time it was not known if PSN held, however only recently
B.Guillaume carne up with a proof of failure of PSN [Gui99]. Based on the latter proof, B.Guillaume
and R.David proposed the Aus-calculus [DG99], a calculus which satisfies PSN and CR. It, moreover,
satisfies Simulation provided A-terms are decorated with certain labels, which may be seen as representing
application of the weakening rule when considering a typing discipline. Thus, although compliance with
Simulation is somewhat questionable, Avs appears to be the furthest one may get today in the direction
of a calculus satisfying all three of the above mentioned properties. Fïirther work in this direction is the
calculus of H. Goguen and J .Goubault-Larrecq [GGLOO]based on extended K , S and I combinators.

Various techniques for proving preservation of strong normalization in calculi of explicit substitutions have
appeared. The first of these proofs of PSN seems to have been given independently by R.Bloo [B1095]
and P.Lescanne [BBLRD96] (see [BloQ7]for historical remarks). Later, R.Bloo and H.Geuvers provided
a new technique for proving PSN based on recursive path orders [BH98]. In this thesis we shall have a
chance of taking a closer look at this technique, together with the one by P.Lescanne. E.Ritter introduced
a technique for proving PSN based on Girard’s ‘candidats de reductibilité’ [Rit99]. In order to prove
PSN for the Avis-calculus B.Guillaume and R.David [DG99, DGOl] have seen themselves in the need of
introducing yet a further proof technique based on constricting strategies (see Chapter 4 of this thesis for
further details), since previous techniques seem not to be applicable. Perhaps the most recent is that of
V.van Oostrom et al [KOOOlb]for Axbased on standardization. This plethora of methods suggests that
no sufficiently general technique for proving PSN has yet been found.

Reducing higher-order formalisms/problems to a first-order setting has been a further area of active re
search in explicit substitutions. Perhaps a word on our intended meaning of ‘reducing’ is in order: three
ingredients are required, some higher-order formalism/ problem, some first-order formalism/problem, and
an encoding of the former into the latter. The prime example is that of the lambda calculus. Calculi of
explicit substitutions such as Aa [ACCL91], Av [BBLRD96] and As [KR95] are first-order formulations
of the lambda calculus. Indeed, by introducing de Bruijn indices notation [Bru72, Bru78] and explicit
substitutions a first-order term rewrite system (no binding operators, substitution - as defined above -,
nor a-conversion present) is obtained in which each B-rewrite step may be encoded. G.Dowek, T.Hardin,
and C.Kirchner [DHK95] reduce higher-order unification to first-order unification modulo the calculus
of explicit substitutions Aa [ACCL91], they also consider the case of higher-order pattern unification
in [DHKP98]. M.Ayala-Rincón and F.Kamareddine do the same using the Ass-calculus of explicit substi
tutions [ARKOO].Other examples are that of reducing higher-order logic to first-order modulo [DHKOl]
and higher-order theorem proving to first-order modulo [DHK98]. In this thesis we shall address the issue
of reducing higher-order rewriting to first-order rewriting modulo.

Extending the notion of explicit substitution calculi beyond the A-calculus has also deserved much at
tention. R.Bloo and K.Rose define Explicit Combinatory Reduction Systems [BR96] by augmenting
J .W.Klop’s Combinatory Reduction Systems (CBS) [K1080]with explicit substitutions. Explicit Combi
natory Reduction Systems are not first-order rewrite systems since they require dealing with a-conversion.
B.Pagano defines Explicit Reduction Systems (XRS) [Pag98]a first-order formalism of higher-order rewrit
ing, based on an extension of the Amr-calculus [HL89], which caters for arbitrary binders and function
symbols (and not just lambda abstraction and application as in the lambda calculus). Since no relation
with existing higher-order rewrite formalisms such as HRS [Nip91], CBS [K1080],ERS [Kha90], etc. is
established, in the light of our above mentioned interpretation of ‘reducing’, we are inclined not to consider
this work as reducing higher-order rewriting to first-order rewriting. More recently, M-O.Stehr introduced
the Calculus of Indexed Names and Named Indices (CINNI) [SteOO],based on so called Berkling’s notation
- a convenient amalgamation of de Bruijn indices and names notation (see [Ste00] for references). It is
a first-order calculus which allows the encoding of binders and substitution. However, as in the case of
XRS no relation is established with existing higher-order rewrite systems. We shall study an encoding of
Z.Khasidashvili’s ERS [Kha90] in a first-order setting with the aid of explicit substitutions.
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1.2 Overview of the Thesis

This thesis is divided into three parts which conform its main body. The latter is preceded by a brief introduction
to the theories of rewriting and lambda calculus followed by an overview of some basic calculi of explicit
substitutions and their outstanding properties.

Part I In Part I we study perpetual rewrite strategies in two calculi of explicit substitutions, namely, Axand
Aus. A perpetual strategy is one that preserves the possibility of infinite derivations. Current literature
on perpetual strategies in term rewriting require that the property of orthogonality be fulfilled, however
calculi of explicit substitution are not orthogonals. We exploit the techniques developed for proving preser
vation of strong normalization in order to obtain perpetual strategies for calculi of explicit substitutions.
Moreover, we also obtain a characterization of the strongly normalizing terms (those adrnitting no infinite
derivations). The latter is particularly welcome in the setting of Aus due to the presence of substitution
composition which complicates matters. Perhaps a word or two on substitution composition may portray
the difficulties encountered when present in a calculus of explicit substitutions.

Consider the Aut-calculus. In a term of the form P(:r := Q) let us call Q the body of the substitution.
The point is that in the Air-calculusthe bodies of substitutions are sealed units: although Ant-rewritesteps
may take place inside them, they do not interact in any way with other subterms of the term in which
they occur - in the sense that there is no rewrite rule that 'combines’ a body of a substitution with some
other term. Indeed, by inspecting the rewrite rules of the Ax-calculusone may observe that the bodies
of all substitutions on the RHSs occur identically on their respective LHS. When a rule allong the
composition of substitution is introduced, such as:

M(:r := N)(y := O) —>c M(a: := N(y := 0)) ify does not occur free in M

this no longer holds. In the c-rewrite rule, the substitution body N (y := O) does not occur on the LHS.
As a consequence, bodies of substitutions which behaved well as sealed units in the sense that they were
not sources of infinite derivations may no longer do so. For example, the term z(z := yy) (y := A) has two
substitution bodies, namely, yy and A. Both are terminating terms. However, if we apply the c-rewrite
rule weobtain 2(:z::= := A)) wherea newsubstitutionbody := A), sourceof an infinite
Ax-derivation, has appeared. To sum up, devising perpetual rewrite strategies and characterizing the
strongly normalizing terms in Aus shall require more work than for Ax, this is developed in Chapter 4.

Chapter 3 deals with the Air-calculusfor which we also show how we may take advantage of our studies on
perpetuality in proving strong normalization of a polymorphic lambda calculus with explicit substitutions.

Polymorphism is a typing discipline that allows functions to be applied to arguments of possiny different
types. This promotes code reuse and, in the presence of higher-order functions, is one of the essential
ingredients in any modern functional programming language. The classical example of a polymorphic
function is the identity function I = Ama. Note that given some term, this function returns a. copy of
it, regardless of the nature of the term in question. Thus, for any type T we say that I has type 1' —>T.
This may be internalized in the language of types by assígning the type V727—>T to I, where 7' plays the
role of a type variable, ranging over all elements in the universe of typs. System F [Gir72, GLT89] is a
set of typing rules for typing polymorphic terms, together with two rewrite rules: the fi-rewrite rule, and
a rewrite rule for instantiating type variables by arbitrary types. We shall augment the F-calculus with
explicit substitutions obtaining Fc, and, in addition to strong normalization, also study subject reduction
for the extended typing rules. Since in F we may abstract not only term variables but also type variables,
two distinct notions of substitution shall be introduced and studied: term and type substitutions. Subject
Reduction and Strong Normalization are then considered. The proof of the latter property is obtained by
applying J-Y.Girard’s ‘candidats de reductibilité’ proof technique [Gir72]. The work reported in Chapter 3
of this part of the thesis has been published as [Bon99a, Bon01]. Chapter 4 is joint work with A.Arbiser
and A.R.íos.

Part II Part II introduces the g-calculus of M.Abadi and L.Cardel.li [A096]. This calculus is at the level of
the lambda calculus but is based on objects instead of functions. Objects are composed of methods. The
basic operations on objects are method invocatíon and method override. Fields may be represented as
methods which do not use their self parameter (Section 5.3). An encoding of the lambda calculus in q,

6This should be considered a virtue, not a defect!
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the function-object translation, is provided in [A096]: each B-rewrite step may be encoded as a number
of g-rewrite steps. This encoding makes use of fields and metalevel substitution. We shall augment q with
explicit substitutions a la Av [BBLRDQG],previously shifting to a de Bruijn indices notation, obtaining
the (¿ba-calculus. An attempt to encode Av in (¿53, by extending in a natural way the function-object
translation shall reveal two obstacles:

1. encoding application: explicit substitutions interfere with the encoding of fields as methods which
do not use their self parameter.

lo . encoding abstraction: the use of metalevel substitution in the function-object translation requires a
new notion of explicit substitution in order to be encoded soundly in this setting.

The first issue is taken care of by introducing fields as primitive constructs, the second by introducing
the notion of invoke substitution. Simulation of Av is then seen to hold. Finally, we consider confluence
and preservation of strong normalization. A weak form of composition between explicit substitution and
invoke substitution (which is also explicit) shall require the latter issue to be considered with care. The
work reported in this part has been published as [Bon99b].

Part III Part III is concerned with reducing higher-order rewriting to first-order rewriting modulo. This part
is subdivided into three chapters. An important requirement was fixed at the offset: a well-established
higher-order rewrite formalism was to be used as the departing formalism. Chapter 6 introduces (a
simplification of) Z.Khasidashvili’s Expression Reduction Systems (ERS) [Kha90], and introduces a de
Bruijn notation for it in order to get rid of a-conversion. The result is the SERSdb rewrite formalism.
Chapter 7 introduces the first-order rewrite formalism with explicit substitutions BrERS. We then present
an encoding, called the Conversion Procedure, translating any higher-order rewrite system into first-order
rewriting modulo an equational theory 8 (in the EzERS-formalism). The latter equational theory is that
of the substitution calculus. In other words, a rewrite step M —>RN in a higher-order SERSdb R may
be encoded as a rewrite step

M =g M, —>fo(1z)NI =g N

where M’ —>¡o(R)N’ is a rewrite step in the first-order version of R (the first-order rewrite system
resulting from applying the Conversion Procedure to R) and M =¿- M’ implements higher-order pattern
matching. Assuming the substitution calculus S; from which 8 originates is a confiuent first-order term
rewrite system, and that M, N are terms without closures, it may be proved that in fact we have:

M 44-55M' —>¡,,(1¿)N'-»s¿ N

That is to say, a higher-order rewrite step is encoded as a series of S; expansions, followedby a first-order
rewrite step in fo (R), and finally a series of rewrite steps in the substitution calculus7. Finally, we provide
a simple syntactical criterion to determine a subclass of the SEI-IS,” systems which may be encoded as
full first-order systems in the sense that M = M’, where ‘=’ denotes syntactical equality. It is fair to say
that, for these systems, higher-order pattern matching may be directly encoded as syntactic first-order
matching. In other words, in order to determine if a rewrite rule is applicable to some term syntactic
matching suflices. This class includes many systems such as, for example, the A-calculus. Chapter 8
argues that for this subclass of systems techniques developed for first-order rewriting may be lifted or
transferred to higher-order rewriting. It does so by transferring the Standardization Theorem [CF58,
HLQI, K1080, Bou85, Me196]. This is achieved by generalizing a result due to P-A.Mellies [MelOO].The
material reported in chapters 6 and 7 of this part is joint work with D.Kesner and A.Ríos and has been
published as [BKROO,BKROI].

Finally, we conclude and discuss further research directions. Also, the conclusions pertaining to each chapter
have been grouped together in this final chapter.

There is no interdependence between parts I, II and III, they may be read in any order. Due to the rather
technical nature of this thesis the reader is advised not to cover all proofs on a first reading, notably in chapters 6
and 7. In the hope of contributing to readability I have moved some of the more routine proofs to an appendix.

This work has been typeset using HIEX and XY-pic.

7A similar decomposition of higher-order rewrite steps is studied edensively by V. van Oostrom and F. van Raamsdonk [01194,
00594] in order to define a general fon-nalismfor higher-order rewriting enoompassing many known higher-order rewrite systems in
the literature. See Chapter 7 for further details.



Chapter 2

Rewriting, Lambda Calculus and
Explicit Substitutions

This chapter presents the theory and basic results of rewriting, lambda calculus and calculi of explicit substitu
tions relevant to this thesis. We shall first give a brief overview of abstract rewriting and shall also consider tenn
rewriting. We then present the lambda calculus with variable names followedby the lambda calculus where the
variable names are replaced by certain numbers, called de Bruijn indices [Bru72, Bru78]. Finally, we provide a
brief overview of some calculi of explicit substitutions.

The primary aim of this chapter is to fix notation and by no means pretends to be a tutorial on the subject.
As we go along we shall provide the reader with pointers to appropriate literature.

2.1 Rewriting
Rewriting is a model of computation in that a class of objects together with a class of transformation rules
specifying how these objects may be transformed into other objects, is provided. Depending on the choice of
objects we may have different flavours of rewriting. If the objects are terms (i.e. elements of the algebra of
terms as defined in universal algebra) then we speak of term rewriting, if the objects are graphs then we speak
of graph rewriting, and so on.

For a survey on rewriting the reader may wish to consult [Hue80, DJ90, K1092]. Recently a text book on
rewriting has appeared [BN98].

Definition 2.1 An Abstract Rewrite System (ARS) R is a pair (A, R) where A is a set of objects and R is a
binary relation on A (i.e. R g A x A). We call R the rewrite relation or the reduction relation of 'R. If a, b e A
and (a, b) e R then we write aRb or a —>7¿b and say that a R-rewn’tes or R-reduces to b. If 'R,is clear from the
context we just say that a rewrites or reduces to b.

Note that Abstract Rewrite Systems are indeed abstract since no further requirements than those of Defini
tion 2.1 are demanded.

We use the ‘=’ symbol to denote equality of objects in A. Also, we write —»1¿for the smallest refiexive and
transitive relation containing —>1¿.Earthermore, :7; stands for the smallest reflexive, symmetric and transitive
relation containing —>—R_.A sequence of the form:

¿lo-mai -’R02-"R----"Ran—1->Ran

is called a (finite) R-den'vation from ao to an. Let ao, a1, . . . ,an, . .. be elements of A. A sequence of the form

«lo-ma; —>1za2->1z...->nan->n--.

is an infinite R-derivation from ao.

Definition 2.2 Let 'R = (A,R) be an ARS.

o We say 'R,satisfies the diamond property if for every a, b, c e A such that a —>Rb and a —>1¿c there exists
de Asuchthatb-¡Rdand c-md.
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o We say R is locally confluent if for every a, b, c G A such that a —>—R_b and a, —)7¿c there exists d G A such
that b #1; d and C-»'R_d.

o We say R is confluent if for every a, b, c G A such that a -»1¿ b and a -»—Rc there exists d e A such that
b -»1¿ d and c -»'R_d.

o We say R is Church-Rosser if for every a, b e A such that a, :1; b there exists d E A such that a —»7¿d
and b 411 d.

The items comprising Definition 2.2 are depicted in Figure 2.1.

RR f" R ¡"R RR ¡""71 i r
d d d

“.. =R .b

Figure 2.1: Properties of ARS

It may be shown that R is confluent if and only if R is Church-Rosser. Note that if R is confiuent then it
is locale confluent; the converse is not true, as the followingexample illustrates:

a,<—b c—>d

However if R is terminating then the converse does hold.

Definition 2.3 Let R = (A,R) be an ARS.

o An element a e A is said to be in R-normal form if there is no b e A such that a,->R b.

o If a -»R b and b is a R-normal form then b is said to be a R-normal form of a.

o An element a E A is R-normalizing if there em'sts a R-normal form of a. If all elements of A are
R-normalizing then we say R is weeklynormalizing.

o An element a,e A is stroneg R-nonnalizing if every R-derivation starting fi'om a is finite (thus ending in
a R-normal form). If all elements of A are strongly R-normalizing then we say R is strongly normalizz'ng.
We use SNR for the set of elements in A that are strongly R-normalizing.

o An element a e A is R-fim’tely branching if the set {b | a —>-Rb} is finite. R is finiter branching if every
a e A is R-finitely branching.

When R is clear from the context we often omit the prefix ‘R-‘ in the above defined notions.
Note that if a term is not strongly R-normalizing then it admits at least one infinite R-derivation. If an

element a E A admits an infinite R-derivation then we write ono-R(a,).
Another word used to designate strongly normalizing ARS is ‘terminating’. Confluence and termination are

two of the most important properties studied in ARS.

Lemma 2.4 (Newman’s Lemma) Let R be an ARS. If R is terminating and weakly confluent then it is
confiuent.

See [Hue80] for a. proof.
Below lN stands for the natural numbers including the number zero.
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Definition 2.5 Let R = (A, R) be an ARS. We define the function married-gb) : A —>INU {oo} as

def
mazredn(a) = such that for any Ederivation a —>Ra’1—>1¿(1/2...—>72_ai" we have m S n

n if there is a R-derivation a. —->-R_a1 —>7¿a2... —>Ran

oo otherwise

Thus if a e A is strongly R-normalizing and 'R-finitely branching , med-Rm) returns the length of the
longest 'R-derivation from a. otherwise it returns the special symbol oo.

The proof of the following result is left to the reader.

Lemma 2.6 Let R = (A, R1 U R2) and S = (B, >) be ARS’Ssuch that S is strongly normalizing. If

1. (A, R2) is strongly normalizing, and

2. there exists a function f : A —->B such that a en, b implies f(a) > f(b) and a -—>R,b implies f(a) 2 f(b)1,

then 'R is strongly normalizing.

We shall now consider term rewriting. More precisely, we shall present first-order term rewriting: the set of
objects are first-order terms.

Definition 2.7 (First-Order Terms) A signature 2 is a pair (2,, V) where Ef is a set of functionsymbols,
each of which is equipped with a natural number called its arity, and V is a denumerably infinite set of objects
called variables. The set of first-order terms generated by 2 is the smallest set T: such that:

l. forallzGV,:cETz.

2. for every function symbol g e 2; of arity n, for every (11,.. .,a.,, e TE we have g(a.1, . . . , an) e TE. Ifn = 0
then we just write g.

The set T2 is known as the term algebra over signature E. A term without variables is called a ground term.

Definition 2.8 (Subterm) Let a, b E T2. We say that a.is a subterm of b ifi'a g b holds. The latter is defined
as the smallest refiexive relation such that: if c g d then c Q g(a,¡, . ..,a¡_1,d,a¡+1,...,a.n) for all g e 2, of
arity n and for all (11,.. .,a.,-_1,a,'+1, . . . ,an e TE. Ifa is a subterm ofb and a 96b then we say that a is a strict
subterm of b, written a.C b.

Given some term a. E T2 we may replace the variables in a by other terms. This operation is known as
(first-order) substitution, and is specified in terms of assignments.

Definition 2.9 (Assignment) Let E = (Ef, V) be a signature. An assignment over 2 is a function p : V -—>Tx
such that p(z) 96a: for only finitely many variables. An assignment can be extended homomorphically to a
mapping ,T): TE —>T}: as follows:

_ d r

p(w) d=°f p(rr)p(g(a1|"'la’n))É
where g G 2, of arity n. This extension is referred to as a substitution and is abbreviated p (i.e. without the
overlining).

Thus a substitution replaces simultaneously all occurrences of variables by their respective p-images.

Definition 2.10 (Unifiable Terms) Let E be a signature. Two terms a, b E TE are said to be unifiable if
there exists a substitution p over 2 such that p(a) = p(b). This substitution is known as a unifier of a and b.

The notion of unifiable terms shall be required when defining orthogonal first-order term rewrite systems
(Definition 2.12).

1Tliei-elatiorr2isdefinedin.S'asexpected:a.2bili'a>bora.=b.
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Definition 2.11 (First-Order Term Rewrite System) A first-order term rewritesystem (TRS) over2 is
a pair ’R = (2, R) where 2 = (Ef, V) is a signature and R is a set of pairs of terms (l,1') in Tx called rewrite
rules (l is the LHS2 and 1-the RHS of the rule) such that: l is not a variable, and the set of variables in 1-are
included in that of l.

The rewrite relation induced by R is written a.—>7¿b and defined as:

p substitution, (l,r) e R a —>7¿b, g e 2, of arity n 2 1

p(l) ->1zp(r) g(a1. ---,a1-—1.a,ai+1,---,an) —>ng(al....,as—1,b,a1-+1,.man)

Note that if the LHS of a rewrite rule were allowedto be a variable then the resulting TRS would be trivially
non-terminating. The same happens if we permít occurrences of variables on the RHS which do not occur on
the left-hand side. In the latter case we also risk rendering our TRS trivially non-confiuent.

Definition 2.12 (Orthogonal Term Rewrite Systems) Let R = (E,R) be a TRS.

o A term a is linear if all variables occur at most once in a. R is said to be left-linear if the LHS of each
rule in R is linear.

o Let (l, r) and (g, d) be rewrite rules in R. If there exists a non-variable subterm l’ of l such that l’ and g
are unifiable, then (LT) and (g, d) are said to overlap. Since by this definition every rewrite overlaps with
itself we shall rule out this case, in other words, if l’ = l, and l’ and g are unifiable then we shall demand
that (l,1') and (g, d) are different rewrite rules 'R. is said to be non-overlapping or non-ambiguous if R
does not contain a pair of overlapping rewrite rules

o If R is left-linear and non-overlapping then we say it is orthogonal.

Orthogonal TRS enjoy good properties. In particular, all orthogonal TRS are confiuent [Hue80].

2.2 The Lambda Calculus

The theory of lambda calculus was introduced by A.Church in the 19305[Chu32]as part of a more general theory
related to his studies on the foundations of mathematics. By oríenting the equations of the theory we obtain
a confiuent rewrite system, a result which was first proved for the equational theory in order to establish its
consistency. The lambda calculus deals with functions and function application, and at the same time achieves
a high level of abstraction by using an intuitive set of constructors to represent them and just one rule, namely
the application of a function to an argument. Terms represent functions and the functions are put to work by
applying them to arguments. The strength of the calculus lies in that an argument can be another function. In
fact, a function may by applied to (a copy of) itself.

We shall present a brief introduction to the lambda calculus. First we introduce the usual presentation with
variable, then we shall consider a presentation in which variables are replaced with numbers called indices. For
further details the reader is referred to the standard reference [Ba184].See also |Kri90].

2.2.1 The Lambda Calculus with Names

Definition 2.13 Let V be a denumerably infinite set of variables.

o The set of terms of the lambda. calculus are called lambda terms or A-terms and denoted 73. They are
defined as the smallest set such that the followingthree conditions hold:

—iszVthenzG'Á.
—if M1,M2 e 73 then (M1M2)G ’T,\,and

—ifMG’ÁandzEVthen(/\:1:.M)ET,\.

We shall often abbreviate definitions of terms by using BNF-style notation. In this case we would write:

M::=a:I | (ALM)
2LHS stands for lefl-hand side and RHS for right-hand side.
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where a: ranges over the objects in V.

In order not to clutter the notation of terms with many parenthesis some conventions are taken into
account. Application associates to the left and binds stronger than abstraction. For example, Azrwzy
stands for (Az.((wa:)y)). A term of the form M1M2 is called an application, a term of the form Az.M is
called an abstraction. The symbol ‘A’is called a binder and a: in ‘/\:c’is called a binding variable.

The set of free variables of a lambda term M is denoted FV(M) and defined as:

FV(I) dÉf {z}
FV(MlMg) dé‘ FV(M1)UFV(M2)
FV(Az.M) d=ef FV(M)\{:|:}

where ‘\’ is the subtraction operation on sets. A lambda term M is closedif FV(M) = 0. The occurrences
of (non-binding) variables in a term which are not free are said to be bound. Thus, if M = Aawzy then
FV(M) = {w,y}, and a: is a bound variable. The term M = Amy has no bound variables. Note that two
different occurrences of the same variable need not be both bound nor free, as illustrated by the following
example: (Az.z)a:.

We shall use letters M, N, O, P, . . . to denote arbitrary lambda terms. The subterm relation is defined as in
the first-order case by considering the signature 2A = (2;,1?) where the set of function symbols Ef consists of
the application symbol and an infinite number of ‘binder’ symbols Ax, one for each a: E V.

It is common to identify terms differing only in the names of the variables they bind. For example, Ama:and
Ay.y are considered as representing the same function, namer the identity function. Terms identified in this
way (by renaming their bound variables) are called a-convertible or (Je-equivalent.We write =a for the relation
of a-conversion. Def. 2.14 below shall provide a formal definition of a-conversion.

Note that the subterm relation is not compatible with renaming in the following sense: if P g Q and
P’ =a P, then not necessarily do we have P’ g Q. Likewise, if P Q Q and Q’ =a Q, then not necessarin do
we have P g Q’. For an example of the first case consider P = Azar, Q = Ay./\z.:c,and P’ = Az.z. The second
case may be illustrated in a similar way.

Renaming is important for defining substitution. Substitution is the notion corresponding to replacement
as seen in TRS. However, in TRS any variable may be replaced by any term, whereas in the lambda calculus
only the free variables may undergo such a transformation. This is a key difierence. Indeed, let us consider the
lambda terms as first-order terms by using the signature El as defined above. Then the assignment p(z) = y
and p(z) = z for all z 7€a: applied to the term M = /\y.a: yields p(/\y.a:) = Ay.y. The problem with this result
is that a variable which enjoyed the status of being free in M, namer :c, has now been replaced by a variable
which is bound (y). Had we first renamed the bound variable y in M to z yielding A2.: then applying p we
would have obtained Azry, which is intuitively what we expect if abstractions are considered as representing
functions.

Definition 2.14 (Substitution) o The result ofsubstituting a term N for all freeoccurrencesofa variable
:c in a term M is written M {as<- N} and defined inductively3 as follows:

a:{:1:<- N} dÉf N

y{z‘-N} déf y íf-‘Héy
(M1M2){z«- N} dé‘ M1{z e N}M2{z e N}
(Ay.M1){:i:<- N} dg Az.M1{y <- Z}{I <- N} where z dos not occur at all in Ay.M1, a: or N

o a-conversion of lambda terms, denoted =a, is the smallest equivalence relation such that:

if M{:c <- y} =a N then MLM =a Ay.N
if M1 =a N1 and M2 =a N2 then Mle =a NlNg

31n full precision, it is defined by induction on the length of M, that is to say the number of variables, abstractions and
applications in M.



12 CHAPTER 2. REWRITING, LAMBDA CALCULUS AND EXPLICIT SUBSTITUTIONS

The important clause of the definition of substitution is the last one: when a substitution traversing a term
reaches a lambda binder we rename its bound variable to a fresh one in order to avoid unwanted capture of
variables. Note that any variable z satisfying the conditions of this clause may be selected. Thus one may think
of M {cr<- N} as a class of terms rather than just one term. The terms in this class are a-equivalent. Therefore,
substitution is defined on a-equivalence classes of terms. It may be shown that it is well-defined:

Lemma 2.15 If M1 =a M2 and N1 =a N2 then M1{a:<- N1} =a M2{a:4- N2}.

The following variable convention is adopted in order to ease the presentation of the calculus.

Remark 2.16 (Variable Convention) Names of bound variables are different from the names of free vari
ables, and moreover, different occurrences of the lambda binder have different binding variables.

Thus we consider (Ay.y):1:instead of (Az.z)a:, and (Az.zz)(Ay.yy) instead of (Az.zz)(/\z.a::r). We shall
identify a-equivalent terms, thus ‘=’ shall stand for '=a’, unless otherwise stated.

Substitution satisfies the followingproperty.

Lemma 2.17 (Substitution Lemma) M{a:<- N}{y <- O} = M{y <- 0}{a: <- N{y «- 0}} if a:é FV(O).

The fl-rewrite rule is stated as follows.

Definition 2.18 (Li-rewrite rule) We say M B-rewrites to N ifi’M —>pN, where the latter relation is defined
by the following inference schema:

___— M14,5N1 M2ap N2 M—»pN
(Az.M)N ->p M{:¡: <- N} ¡“1M2 _,p 1Vle MIM2 —>BM1N2 Az.M —>p¡\1LN

The leftmost inference scheme of Def. 2.18 is called the ¡(B-rewriteariom. It is the only inference scheme which
makes use of substitution. The substitution M {z <- N} takes place at the metalevel, thus it is external to the
calculus. The fi-rewrite rule is sometimes defined by exhibiting just the fi-rewrite axiom and then demanding
that the ‘contextual closure’ of this axiom be taken“. Contextual closure means we should add the remaining
inference schemes of Def. 2.18 to the fi-rewrite axiom. We too shall follow this practice in order to shorten the
presentation, whenever possible. Nevertheless, in this chapter and for expository purposes we present the full
inference schemes for some of the calculi. Let us see an example of a ,B-derivation in the lambda calculus.

Example 2.19 Let A = /\:c.:c:c.We may apply A to itself and obtain the followingB-derivation:

(Az.m:c)A —>p(zz){a: 4- A} = AA —>pAA ->p ...

Since we have identified a-equivalent terms it must be verified that the fl-rewrite relation is well-defined.
Indeed, the following result holds:

Lemma 2.20 If M =a M’ and M —>pN then there exists a lambda term N’ :0l N such that M’ -—>pN’.

Two further properties satisfied by the fi-rewrite relation [Bar84]are:

Lemma 2.21 If M —>pM’, then for every lambda term N we have:

1.M{a:<- N} —>pM’{a: <—N}.

2. N{a:<—M} -»p N{:v <- M’}.

This may be proved by induction on M in the first item, and by induction on N in the second one.
The abstract rewrite system induced by the lambda calculus is obtained by setting A = 71 and R = —>p.

We thus say that the lambda calculus is confiuent if the induced abstract rewrite system is, and likewise for
the other notions we saw in the previous section. Example 2.19 shows that the lambda calculus is not strongly
normalizing.

Proposition 2.22 (Confluence of the lambda calculus) The ARS (TA,—>p)is confiuent.

See [Bar84] for a proof.

4Sometims, just the axiom is provided and the fact that the contextual closure must be taken is left implicit. In this case the
axiom is called ‘Tule" and so we speak of the B-rule.
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2.2.2 The Lambda Calculus with De Bruijn Indices
The fact that the definition of substitution (Def. 2.14) is not a function on terms but rather on equivalence
classes of terms may be seen as a drawback when implementing it on a computer. In particular, the selection
of some appropriate variable z requires checking that it is not used already (we say z is a fresh variable). A
simple solution5 to this problem is that of replacing variable names (an ‘absolute addressing’ mechanism) with
de Bruijn indices [Bru72, Bru78] (a ‘relative addressing’ mechanism). A given occurrence of a bound variable
in a term, say 2:, is replaced by a number which indicates to which binder it corresponds, counting upwards
in the tree representation of the term starting from the occurrence of this variable. For example, /\a:.(/\y.(:l:y))
is replaced by /\(/\(21)). This situation is depicted in Figure 2.2, where the ‘@’symbol stands for application.
Note that although the tree representation of a term has not yet been defined formally, we leave it on intuitive
level for the time being. A formal definition is given in Chapter 8 (Section 8.2).

Figure 2.2: An example de Bruijn term

The identity function Aca: is replaced by A1, also Ay.y is replaced by /\1. Representation of free variables is
retrieved from a given ordering of the variables in such a way that an occurrence of a variable n represents the
(n —m)-th free variable in the aforementioned ordering when n > m and there are m lambda binders above
this occurrence n. For example, the term Ax.(yz) is written as /\(23) asuming y = 21 and z = 1:2.

Since variable names are no longer used there is no need for a-conversion. So can we say that substitution
in the presence of de Bruijn indices notation is reduced to replacement? Certainly not. Consider (A1)«H1<- a1}
where a is any indexed term, and bfln <- cl} stands for the result of replacing all occurrences of the index n in
b for c. Then if we use replacement we obtain (A1)<H1<- a]} = Aa, an unexpected result since the index l in
/\1 represents a bound variable and hence cannot be substituted for any term at all. When traversing a lambda
symbol the index to be replaced should be incremented by one.

A further inconvenience may arise with unwanted capture of free indices (i.e. indices representing free
variables), analogous to the case of variable names already discussed. An example is (A2){1 c- 1}}. Assuming
the above mentioned problem on bound indices has been solved, we have,

(A2){1<—1}} = A(2{{2<—1]}) = A1

The index 1 which is substituted for 2 (i.e. the rightmost occurrence of the symbol 1 in the expression (A2){1 <
1]})represents the first variable in the reference context, however after the substitution has taken place the same
index 1 is bound in A1. Thus when traversing a lambda binder substitution shall have to do some index adjusting.

All in all the de Bruijn indices notation takes care of some problems (non-determinism in the definition of
substitution) but introduces others (index adjustment).

We now introduce the formal definitions. The lambda calculus as introduced in Section 2.2.1 shall be referred
to as the named lambda calculus.

Definition 2.23 o The de Bruijn terms of the indexed lambda. calculus, denoted TA“, are defined as:

a ::= n | (aa) | (Aa)

where n is a natural number greater than zero. Notational conventions similar to those of the named
lambda calculus are adopted in order not to clutter the notation.

5There are other possible solutions which are not dealt with in this thesis such as the use of de Bruijn levels [LRD95] and
Berklings notation [SteOO].
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o The set of free indices of a de Bruijn term a, denoted FI(a,), is defined as:

F[(n) “¿f {17.}

FI(a.1a2) dé‘ Fl(a1)UFI(ag)
FI(Aa1) dé‘ F[(a1)\\1

where for every set of indices S, the operation S\\j is defined as {n - j In G S and n > j}.

There are some presentations of de Bruijn indices notation in which the first index is 0 rather than 1.
However,this is larger a matter of taste.

We shall use letters a, b, c, . . . for indexed lambda terms. The subterm relation is defined as in the first-order
case by considering the signature (2;,12) where 2; consists of the application operation, the lambda binder
and all the indices interpreted as constants. The full set of first-order terms thus obtained is called the set of
opende Bruijn terms. We restrict our attention to the induced subterm relation over the restricted set of closed
terms, that is, those terms that do not have occurrences of first-order variables (objects in V).

We shall now consider the definition of substitution in the de Bruijn indices setting. As mentioned above,
this requires introducing a family of functions that perform index updating, namer the updating functions.

Definition 2.24 (Indexed substitution) The result of substituting a term b for the index n in a term a, is
denoted afin <- b}}and defined:

(a1a2){{ne bl} dé‘ alin e b}}a2{{ne bi}

(Aalanebi dé‘ A(a1{{n+1¿b}})

{{ b}} def {Zníbi ¿min
m 17,4- _ o m-n

m ifm<n

where for i 2 0 and n 2 1 we define the updating functions ¿13(0) as follows:

anulan) dé‘ megaman)
aman dé‘ A(U.-"+1(a1))

def m+n-1 ifm>i
un“) = m ¡fmgi

Note how the index n is incremented by one unit when substitution traverses a lambda binder in the second
clause of the definition of substitution. Also, the reason for defining mfln <- b} ¿f m —1 if m > n is that
de Bruijn substitution shall be generated by the (de Bruijn version of the) fi-rewrite rule, hence the decrement
followsfrom the fact that a lambda binder has been eliminated. So one might say that this definition is tailored
for the lambda calculus.

A minor simplification is to define mfln <- b]}d=efLIS-Hb) when m = n and modify the definition of the

updating functions accordineg by allowing superindices to be zero and defining Uflm) d—-Ïfm + n when m > i.
The Substitution Lemma (Lemma 2.17) may also be formulated in the indexed lambda calculus. In this

formulation condition :c í FV(O) of Lemma 2.17 is reflected as a condition on the indices in the de Bruijn
indicessetting, namer that i S n.

Lemma 2.25 (Substitution Lemma for the Indexed Lambda Calculus) Let a, b,c e Tia. Then for all
n,2' 2 1 such thatiSnwehave afli+—b}]>{{n<—c}}=afln+1 <—c]}{i<—b{n—i+1 <—c

The fidb-rewrite rule is stated as follows.

Definition 2.26 (fidb-rewrite rule) Wesay o.fi“ -rewrites to b ifi'a.Ap” b, where the latter relation is defined
by the following inference schemes:

0.1#5“ bl 0.245a bg a ¿pa b

(Aafl’ “Ba “ill ‘- bll (110,2ap“ blog 0.10.2ep“ a1b2 Aa 45“ Ab
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The leftmost inference scheme of Def. 2.26 is called the [ida-rewrite axiom. Once again, it is not uncommon
to present the [ia-rewrite rule by taking the contextual closure of the [ia-rewrite axiom, and exhibiting just
this axiom. In the indexed lambda calculus the infinite derivation of Example 2.19 takes the following form.

Example 2.27 Let Adb = A(11). We may apply A45 to itself and obtain the following Hab-derivation:

(¿(11))Adb #54. (11){{1‘- Adal}
1H14—Adbfllfll <- A45}
“¿(AabWMAao)
AuAa

¿pa AdbAdb

Note that LIMA“) = A(u,1(1)u,1(1))= M11) since 1 5 1.

As in the named lambda calculus, the indexed lambda calculus induces an abstract rewrite system by taking
the pair (A, R) where A = '13“ and R = ep“.

Proposition 2.28 (Confluence of the indexed lambda calculus) The ARS ('13a, Hp“) is confluent.

See [KR98] for a proof. The latter proof is based on translations between terms with variables and indexed
terms.

2.3 Calculi of Explicit Substitutions
This section introduces the concept of explicit substitutions and provides a brief overview of some calculi of
explicit substitutions. The central idea is to depart from the lambda calculus and introduce new rules for
computing the substitution process from within the language, rather than interpret it as a metalevel operation.
However since we have provided the reader with two different presentations of the lambda calculus, the named
lambda calculus and the indexed lambda calculus, the calculi of explicit substitutions which we shall overview in
this section shall, accordingly, be based either on the named lambda calculus or on the indexed lambda calculus.
Since variable names provide a more user-friendly environment we shall begin the section by considering the
Air-calculus. After that, three calculi of explicit substitutions based on the indexed lambda calculus shall be
dealt with, Av, Aa and Aus. Note that this amounts to a small fraction of the calculi of explicit substitutions
published in the literature. A recent survey including pointers to relevant literature is [KROO].

2.3. 1 The Ax-calculus

The Ax-calculus [Ros92, B1097]is a calculus of explicit substitutions for the named lambdalcaiculus. We shall
follow R.Bloo’s exposition of the calculus from [B1097].

As the reader may recall, the fi-rewrite axiom (Def. 2.18) takes the following form:

(Az.M)N —>pM{a: <- N}

The expression M {2:<- N} denotes a term, namely the one resulting from M by substituting all free occurrences
of the variable a: in M with N. Therefore, the substitution takes place in one go, as an atomic operation. In
calculi of explicit substitutions this operation is computed from within the calculus by means of new rewrite
rules. The ,B-rewrite axiom is replaced by the following Beta-rewrite axiom:

(Az.M)N —>pM(a: := N)

This time, the expression M (a: := N) is just a new term in the language, and no substitution operation is
fired. One may regard M (z := N ) as a term with a pending substitution. This pending substitution is called a
substitution or a closure. The intended meaning of M (:c:= N) is of course the term resulting from substituting
all free variable occurrences of a: in M by N. However since substitution is left pending in M (z := N) new
rules must be introduced in order to compute it. These additional rules determine the substitution calculus.

As a rault one B-rewrite step shall be refined into a series of smaller rewrite steps in the calculus of explicit
substitutions. First a Beta-rewrite step shall create a closure, then the rules of the substitution calculus are
put to work in order to compute the pending substitution.
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Definition 2.29 Let V be a denumerably infinite set of variables. The terms of Ax,denoted Th, are defined
inductively as follows:

M ::= a:| (MM) l (AsnM)| (M(a::=

where a: ranges over V. A term is called pure if it contains no subterms of the form M1(a: := M2). Similar
notational conventions to that of the lambda calculus are adopted. Fhrthermore, we shall adopt the convention
that substitution associates to the left and bínds stronger than both application and abstraction.

It is instructive to compare the definition of the Ax-terms to that of the terms of the lambda calculus
(Def. 2.13). An extra binder has been added. We shall use letters M, N, O, P, . . . for Ax-terms, and u, v, w, z, y, z
for variables. A term of the form ‘M(a: := N)’ is pronounced ‘M where N is substituted for a:’. We call M the
target of the substitution, N its body,and a: the substitution variable.

In Chapter 3 we shall make use of the size of a Ax-term. The size of a Ax-term is the number of variables,
applications, abstractions and substitutions in it. This may be formalized as follows:

Definition 2.30 The size of a Ax-term M is written IM| and defined inductively as follows:

¡2| “:4 1
deflMile = 1+IM1l+lM2l

|,\a:.M| dé‘ 1+IM|

[M1(:c := M2)I déf 1 + lM1l+ lM2l

For example, |Az.(yy) (z := u)| is 6.

Definition 2.31 The set of free variables of a Ax-term M, denoted FV(M), is defined inductively as follows:

FV(a:) ‘1—i‘ {2:}

FV(M1M2) dé‘ FV(M¡)UFV(M2)
FV(A2.M) dé‘ FV(M)\{z}

dFV(M1(:B2= ¿f (FV(M1)\ {3}) UFV(M2)

Fiom this definition one may see that a closure acts as a.new binder in the language, in a term M1(1: := M2)
all free variable occurrences of a: in M1 are said to be bound by the closure.

Since we are still in the presence of variable names in the extended language of Axwe must extend the notion
of a-conversion accordingly. This requires first defining metalevel substitution. Note however that metalevel
substitution shall not be used in the rewriting process, except for possible renamings of bound variables.

Definition 2.32 (Metalevel Substitution and a-conversion) o Substitution in Ax is defined induc
tively as follows:

:z:{:1:<- N} = N

y{z4—-N} dÉf y ifzaéy
(M1M2){z ‘- N} déf M1{I ‘- N}M2{-'5‘- N}

(Ay.M1){a: 4- N} d=ef A2.M1{y <- z}{z <- N}
where z does not occur at all in Ay.M1, :1:or N

M1(y := M2){a:«- N} dé‘ M1{y ._ z}{:z:«- N}(z := Mm 4- N})
where z does not occur at all in M1, M2,y or N

o a-conversion (denoted =a) on Ax-terms is defined as the least equivalence relation such that:

if M{:1:<- y} =a N then /\:1:.M=a Ay.N
if M1 =a N1 and M2 =a N2 then M1M2 =a N1N2

M1{Z 4- y} =a N1 and M2 =a N2 then M1(:BI= M2) =a N1(y Z=N2)

We write [M]a for the a-equivalence class of M.
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A variable convention similar to the one adopted for the lambda calculus is adopted here.

Remark 2.33 (Variable Convention for Ax) Namesof bound variablesare difierent from the names of free
variables, and moreover, difierent occurrences of the lambda binder and the substitution binder have different
binding variables.

We now consider the rewrite rules of the Air-calculus.

Definition 2.34 We say M Ax-reum'testo N iff M —>,\¡N, where the latter relation is defined by the following
inference schemes:

——— Beta, APP
(Az.M)N —>,\¡M(a: := N) (MN)(a: := P) —>¿¡M(:I: := P)N(a: := P)

Lam — Var
(Ay.M)(z := P) ->,\¡ Ay.(M(:z::= P)) x(a: := P) —v,\¡P

z e FV(M)

M(a: Z= P) —>,\¡M

M1 ->,\¡ N1 M2 -’,\x N2

M1M2 ->xx N1M2 M1M2 -b\x M1N2

M —>¡\¡N M1 —>,\¡N1

MLM —>,\¡/\:1:.N M1(:v := M2) —>,\¡N1(a: := M2)

M2 -*Ax N2

M1(:B Z= M2) —?,\¡ M1(:E Z= N2)

An equivalent presentation, as discused in Def. 2.18 for the A-calculus, is given in Figure 2.3. If these
rules are adopted as axiom schemes and the contextual closure is taken (meaning that the remaining inference
schemes of Def. 2.34 are added to these axiom schemes) then we obtain the inference schemes of Def. 2.34. So
the presentation of Figure 2.3 may be seen as a shorthand for that of Def. 2.34.

(Az.M)N 433m M(z := N)
(MN)(a: := P) 4A”, M(:r::= P)N(:c := P)
(Ay-MHZ ¡= P) “’Lam ASÍ-(MCE1: P))
x(a: := P) —>v.,,. P
M(:c := P) —>Gc M :z:í FV(M)

Figure 2.3: Alternative presentation of Ax

The Gc-rule is referred to as the garbage collection rule; the substitution body P in this rule is called garbage.
The Ax-calculus without the Beta-rule is called the substitution calculus of Ax and is denoted by x. We write
x\ Gc for the rewrite system x without the Gc-rule. The x-calculus is strongly normalizing and confluent, and
its normal forms are pure terms [B1097,Ch.l3].

Lemma 2.35 The x-calculus is strongly normalizing, confluent, and the x-normal forms are pure terms.

Thus if M e 71, then we use x(M) to denote its unique x-normal form. The reason for calling x the
substitution calculus is that the followingresult holds:

Lemma 2.36 Let M,N GTh and y GV. Then x(M(y := N)) = x(M){y <- x(N)}.

Thus indeed the usual metalevel notion of substitution (Def. 2.14) may be computed step-by-step via the
x-calculus.

A variant of the Ax-calculus is the Ax‘-calculus whose rules are those of the Air-calculus except for the
Gc-rule which is replaced by the more restricted garbage collection rule y(z := P) dv”; y where a: 9€y. Note
that Ax is more general than Ax‘ in the sense that —>,\¡—C—>,\zbut —>,\¡,C->,\¡-.
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Remark 2.37 Every Ax‘-redex is a Ax-redex.

The abstract rewrite system (A, R) induced by Ax is obtained by setting A = 73, and R =—>,\¡. Thus
notions such as confiuence and normalization make sense in Ax too. For example,

o SNh stands for the set of Ax-terms that are strongly Ax-normalizing.

o If M E SN ,\¡ then mazred,\¡(M) denotes the length of the longest Ax-derivation starting from M to
its (unique, see Lemma 2.39 below) Air-normal form. Note that since there are only a finite number of
Ax-redexes in any Air-term, we may conclude Ax is finitely branching.

Definition 2.38 A substitution (a: := N) is called void in M (:2::= N) if a: g FV(x(M)). Void reduction,
denoted ¿un is Ax-rewriting inside the body of a void substitution. More precisely, it is obtained by the
inference scheme:

N —>,\¡N' a: 9; FV(x(M))

M(:z: := N) —>,\¡M(a: := N’)

together with the last five inference schemes of Def. 2.346.

The following two results are taken from [B1097].

Lemma 2.39 (Simulation, Projection, Confluence) o (Simulation). Let M,N be terms in 71. If
M —»pN then M iq, N.

o (Projection). Let M,N be terms in '13,.

1. If M —>,\¡N then x(M) -»p x(N).

2. If M ¿Beta N is not a void reduction then x(M) 135 x(N).

o (Confiuence). The ARS ('11,, —>,\¡)is confiuent.

Perhaps the most interesting property enjoyed by Ax is preservation of strong normalization (PSN): if a. is
strongly fl-normalizing then a. is strongly Ax-normalizing. The proof of this fact is not straightforward. Several
techniques have been introduced for proving PSN of which we shall see a few in Part I of this thesis. As regards
the Ax-calculus in particular, the most appropriate source for further information is [B1097].We provide a new
proof of this result in Section 4.1.2, of Chapter 3.

Proposition 2.40 Let Ax°°dÉf{M G71, IVN g M, x(N) G SN,\¡}. Then Ax°° = SN,\¡.

The above characterization of SNA, first appeared in [BG96]. The same work includes in the list of future
research lines the study of an inductive characterization of the set SN,\¡. By inductively we mean describing the
set as the smallest set closed under some set of rules, as when defining the set of A-terms or the set of theorems
of some logic system [Acz77].This shall be dealt with in Chapter 3. Note that since all strongly fi-normalizing
pure terms are in Ax°° one obtains PSN of Ax.

Proposition 2.41 (PSN of Ax) The Ax-calculusenjoys preservation of strong normalization.

Finally, we define Ax-rewrite strategies. They shall be used in Chapters 3 and 4.

Definition 2.42 (Ax-Rewrite Strategy) 1. Aone-stepAx-rewn'testrategyis a function f(o) : Th —>71,
such that for all M E TA, we have M —>,\¡.‘F(M ), unless M is in normal form, in which case .‘F(M ) = M.

2. A many-step Ax-rewritc strategy is a function .7-"(o): '11, —> TA! such that for all M e TA, we have

M LA, .7-"(M),unless M is in normal form, in which case J-"(M) = M.

3. A strategy is called Ax-perpetualif oo,\¡(M) implies oo,\¡(.7-'(M

6Where the occurrencs of a), have been replaced by —"v,\¡.
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If J-'(o) is a one-step Ax-rewrite strategy then an .7-‘(0)-derivation is a derivation of the form M —>,\¡
.7:(M ) —>,\¡[FU-"(M —>,\¡ Similarly, if .’F(o)is a many-step Ax-rewrite strategy then an J:(o)-derivation
is a derivation of the form M ir,“ .7:(M) LA, .7-"(1-"(M¿Luz Likewise, we may define rewrite strate
gies for other calculi such as the lambda calculus. If our interest in Air-strategies is that they construct valid
Ax-derivations in a deterministic manner then Def. 2.42 shall suflice. However, note the following:

o A strategy as defined above does not necessarily indicate which redex occurrence to contract in order
to go from M to JF(M ), it is possible that there be more than one. Consider for example the term
M = a:(y := N)(y := N) where y í FV(N) and z 9€y. Then M —>,\¡a:(y := N) by rewriting two difierent
Gc-redex occurrencs which we indicate by underlining them: a:(y := N) (y := N) or a:(y := N) (y := N

o A further source of ambiguity is when a redex occurrence does not suffice to determine which rewrite rule
should selected to rewrite, this occurs in rewrite systems where two difierent rules overlap at the root
position and the result of applying either of them is the same (see the example of the parallel-or rewrite
system in [KOOOla]).

In Chapter 3 we shall study perpetual rewrite strategies for Ax. When formulating the strategies we shall
indicate the redex occurrence to be contracted and the rewrite rule too.

2.3.2 The Av-calculus

The first calculus of explicit substitutions based on de Bruijn indices notation that we shall look at is the
Xu-calculus of P.Lescanne [Le594,BBLRD96].

Definition 2.43 The terms of the Av-calculus,denoted 73v, are defined by the followingtwo sorted grammar:TermsM::-
Subst s ::= TIM/|1Hs)

where n is a natural number greater than zero. Once again, the 'Q’ symbol is used for the subterm relation,
and it is defined as expected. Terms of sort Terms without subterms of the form M [s] are called pure terms.

In contrast to the Air-calculusterms may be of two sorts, namely Terms or Subst. Terms of the former
sort speak for themselves, terms of the latter sort represent substitutions. A substitution may have one of
the following forms: either it is a shift substitution (T), or it is a simple substitution (M/ ), or it is a lift of a
substitution s (fl (3)). The usual conventions that application and o[o]associate to the left, and that o[o]binds
stronger than application which binds stronger than A,are adopted. Also repeated application of lift is defined

as follows: 1to(s) dÉfs, fin“ (s) =1T (1T"(3)). All substitutions in Av are of the form 1T"(M/) or 1T"(T) for n
some natural number.

Definition 2.44 Wesay M Av-rewn'testo N iffM —>,\uN, where the latter relation is defined by the contextual
closure of the following inference axioms:

(AM)N _’Beta

(MNll-sl _’APP Mlsllel
(AM)l3l _’Lom
(n + 1) [TT(3)] _’RVarLifl nlsllïl
llil (5)] _’FVa1-Lifl 1
(n+ HRVar n

"’FVar M
_’VarShifln 'l' 1

The Av-calculus without the Beta-rewrite rule is the substitution calculus, or the v-calculus. The shift
and simple substitutions may be seen as basic substitutions, whereas the lift operator adjusts substitutions.
Shift represents the substitution which increments all the free indices of its target by one unit. For example,
1[T] ->,\v 2. However (A1)[T] —»,\,,/\l, since the index 1 is not free in the term /\1.

Note how the lift substitution operator is introduced when a substitution traverses the lambda binder in
rule Lam. 1‘r(s) indicates that if 5 assigns some term M to index n then it should now do so to index n + l.
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Also it indicates that if M is ever assigned to some index n + 1 then the free indices in M must de adjusted
since they shall now appear under a new lambda binder (the one 3 has just traversed). These two observations
are expressed by the rules RVarLift and F Va'rLift.

Lemma 2.45 The v-calculus is strongly normalizing, confiuent, and the v-normal forms are pure terms.

The relation between explicit substitution and the updating operators and implicit substitutions is expressed
in the following lemma.

Lemma 2.46 (Relating explicit and metalevel substitution) Let M,N GTM,of sort Terms. Then:

° v(M[1T'"‘ (T)] - - - [1T”‘"(T)l) = “ill...+mn(U(M))

° v(M[1T"(N)]) = v(M)Hn <- v(N)l}

Other properties of the Av-calculus are:

Lemma 2.47 (Simulation, Projection, Confluence) o (Simulation). Let M,N be terms in '11“. If
M ap“ N then M LA” N.

o (Projection). Let M,N E 7L, of sort Terms. If M —>,\,_,N then ’U(M)45a v(N).

o (Confluence). The ARS (IW, —>,\.,)is confiuent.

As Ax, Av also enjoys preservation of strong normalization [BBLRD96]. The technique which is used to
prove this result shall be studied in detail in Chapter 3.

Proposition 2.48 (PSN of Av) The Av-calculusenjoys preservation of strong normalization.

2.3.3 The Aa-calculus

The Air-calculus was introduced by M.Abadi et al [ACCL91]and has its roots in the work of P-L.Curien [Cur86].
It is usually regarded as the first calculus of explicit substitutions whose propertia such as confluence and
strong normalization of the substitution calculus were studied. For some time it was not known if Aa enjoyed
preservation of strong normalization until P-A.Mellies introduced a counterexample in [Me195].An analysis of
this counterexample is provided in R.Bloo’s PhD thesis [B1097].

Definition 2.49 The terms of the ACI-calculus,denoted '13,, are defined by the following two sorted grammar:

1|(MM)l(/\M)|(M[8])
Tlid lM-sl sos

Terms M
Subst 3

Indices greater than 1 are expressed with the aid of explicit substitutions: 2 d=ef1[T], 3 dÉf1[T o T], and so
on. Once again, the ‘g’ symbol is used for the subterm relation, and it is defined as expected. Terms of sort
Terms without subterms of the form M [s] are called pure tema.

Definition 2.50 We say M Aa-rewn'tes to N iff a —>,\,b, where the latter relation is defined by the contextual
closure of the following inference schemes:

(AM)N —>B¿ga M[N - id]

(M N NS] “App M [311V[3]
(AMHSI "Lom ’\(Mll ' (3°
M[SHt] ¿c103 M[s Ot]
llM ' 5] _’ VorCons M
1[id] -> VarId 1

(M-3)ot ¿Map M[t]-(sot)
id o s ->1dL 3
(31 ° 32) ° 83 _’Ass 31 ° (32 ° 33)
T°(M ' 8) “ShiftCons 3
T ° id _’Shijud T
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Although both Av and Aa have terms of sort Terms and Subst, only Aa provides inference schemes for
rewriting substitutions. Indeed, the last five rules of Def. 2.50 rewrite terms of sort Subst. Also, in contrast to
Av, Aa provides composition of substitutions, if s and t are substitutions (i.e. terms of sort Subst) then s ot
denota their composition: first apply substitution 3 then apply substitution t.

Aa without the Beta-rewrite rule is called the substitution calculus and is denoted a.

Lemma 2.51 The a-calculus is strongly normalizing, confiuent, and the a-normal forms are pure terms.

See [ACCLQL Rí093, Zan95].
Note that although there is no rule of the form s o id —>s or of the form M [id] —>M they are admissible in

the sense that all its ground instances may be sirnulated in the a-calculus [ACCL91].
The following lemma relates ACI-reductionand fi-reduction, and also mentions confiuence.

Lemma 2.52 (Simulation, Projection, Confluence) o (Simulation). Let M,N be terms in TM.- If
M Hp“ Nthen Miu, N.

o (Projection). Let M,N G TA, of any sort. If M —>,\,N then a(M) 4m“ 0‘(N).

o (Confiuence). The ARS (71,, —>,\,)is confiuent.

The Aa-calculus exhibits a more complex dynamical nature than Ax and Av. This is due to the presence
of substitution composition. A consequence of this fact is failure of preservation of strong normalization. This
result was proved by P-A.Melliés [Me195]and came somewhat as a surprise. Also, it has contributed significantly
to boost researchers’ interest in calculi of explicit substitutions.

2.3.4 The Aus-calculus

The Ava-calculus is a calculus of explicit substitutions based on de Bruijn indices notation which also enjoys the
presence of substitution composition however in a difierent way than that of Aa. Moreover, so called update tags
are also present. A term with an update tag is of the form (i)M, indicating that all free indices in M should
be incremented by i units. Substitutions have the form M [i/N, j] indicating that indica 2'must be replaced by
(i)N and that there was a tag embracing the Beta-redex that fired the substitution. The followingrewrite
step illustrates how substitutions may be composed in Aus:

410/00,0][0/,\oo,0] sm 4[0/(00)[0/,\oo,01, 1]W-JHF/ W
s t sot

There are no updating tags in the above two terms. Note that, as originally introduced in [DG99, DG01],
de Bruijn indices start from 0 instead of 1.

As the reader may have noted there is no explicit operator in the language to denote the composition of
substitutions as in the case of Aa. In fact there is only one sort, namely the sort of terms. However,a substitution
may be composed with another one in the sense of the example above or may even jump over another one as
described in the c2 rewrite rule of Def. 2.58.

Just as Av ‘implements’ the indexed lambda calculus, Aus also implements a calculus. This calculus, called
Av, is very similar to the indexed lambda calculus but, as already mentioned, differs in that it includs so called
updating tags. So before going into the details of the AVS-calculuswe shall briefiy go over Av.

Definition 2.53 (The Ara-calculus) The set of terms M GTA.is defined as:

M ::= N|(k)N wherekGINo
N ::= n|AM|MM wherenGlNo

The (0). operator is the updating or update operator. Note that no two consecutive updating operators may
appear in a term in TM. The updating operator has higher precedence than the application operator, so (k)PQ
means ((k)P)Q. The Air-calculusis defined on the set '11,,by the rules:

(AMW ->p¡ m(M{0/N,0})
((k)/\M)N ->52 m(M{0/NJ=})
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where m is given by the m(ixing)-rule: (2')(j)M —>m(i + j)M. Metalevel substitution o{o/o,o} is defined
as.

(AMM/NJ} dé‘ AM{i+1/N,j}

(M1M2){i/N,j} dé‘ M1({Ji/N.J'}M2{i/N,j}. . dir '+ k - 1)M ' < k
((k)M){z/N,J} — WM“ _ k/NJ} :2 k

n n < 2'

n{z‘/N,:¡} “¿f (2'>N n =i
n+j-1 n>i

where 2',j e IN.

Intuitively a term of the form (k)M representa the term M where all free indices have been incremented by
k units. The mbdng rule allows all adjacent updating tags to be fused, and hence the reducts of fi] and [32to
be terms in “11.. Note that it is the presence of the update tags that has forced the usual ,ó’db-rewriterule to be
split in two, namer ,31 and [32.

Example 2.54 Here is an example of a Av-derivation.

(/\(00))/\(00) "BI m((00){0//\(00),0})=((0)/\(00))(0)z\(00)
-*52 m((00){0/(0)/\(00),0}) = m(((0)(0)/\(00))(0)(0)z\(00)) = ((0)/\(00))(0>/\(00)

It is instructive to establish the relation between Av and the Adb-calculus. For this we need the following
translation from Aw-terms to de Bruijn terms. E : '11. —>71d, is defined as follows:

E(n) d=ef n

E(AM) d=° AE(M)

E(MN) d“ E(M)E(N)
E((k)M) É “¿(E(M))

"ñ

D. ...

The relation between this new notion of metalevel substitution and the usual notion of metalevel substitution
as defined in Def. 2.24 is as follows: E(M{i/N,j}) = UÍ+J(E(M))<H1'4- E(N)}}. This may be used to show:

Lemma 2.55 1. Let M,N GTA".If M —>,\.,N then E(M) Hp“

2. Let M G TA"and P e TM such that E(M) ap” P. Then there exists N e TM such that M —>,\.,N and
E(N) = P.

Definition 2.56 (Terms in Aws) The set of terms of the Aws-calculus,denoted '11", is defined as follows:

M ::= n | AM | MM | (k)M | M[i/M,j] where n,i,j,k e lNo

o[o/o,o] is called the substitution operator. Terms without occurrences of the substitution operator are called
pure terms. Positions in terms are defined as usual; we use M Ip to denote the subterm of M occurring at
position p.

Remark 2.57 For the readers familiar with the As-calculus [KR95] the translation into As of (k)P is <pf,‘(P),
and ofP[i/Q,j] is d+l(P)a‘Q.

We shall use to denote the sequenceof explicit updating operators (k1). . . In particular, if we
want to stress the fact that n > 0 we write (k+). Also, we shall use El: to abbreviate 2;; k,-where (k) is
(k1) . . . (kn). The following characterization of the Aus-terms may be proved by induction on M.
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Definition 2.58 (The Avs-calculus) The Avs-calculusis defined by the followingrewrite rules:

B{ (AM)N _>,,, M[0/N,0]((k)AM)N _.,,2 M[0/N,k]

(wm/NJ] e: MMli+ 1/N,j1)
(M1M2)[i/N1.'Í] _’a MIÍi/Nylezli/NJ]
(<k)M)[i/N,J'l —»e¡ (k +2“-1>M i< k
((k>M)[i/N.j1 ->e2 (k)M[i - k/N.j1 2-2 k

vs n[z'/N,j] —>n¡ n n <i
nli/NJ'] _’n2 (i)N n =i
n[z'/N,j] —>,¡3n+j—1 n>i
Mlk/NJlli/PJ] es, Mlk/Nli - k/P,j1.j +1 - 11 k s i < k +z
MÍk/Nelll‘i/PJ]-’c2 ¡Wi-1+1/ijllk/NIi-k/Pyjlall k+lSi
(i) (J')M -'m (i + 37M

The B-calculus is just rules bl and b2. The substitution us-calculus is the Avs-calculus without the rules bl
and b2. The p-calculus is the ws-calculus without the m-rule. In [DGOl] it is proved that p and ws are strongly
normalizing and confiuent. We use NF, to denote the set of p-normal forms. Note that pure terms are not
necessarin in substitution normal form (i.e. in vs-normal form) since they may contain m-redexes.

The Aus-calculus is the first" lambda. calculus with explicit substitutions to satisfy simulation of onestep
fi-rewrite reductions, confluence on open terms and preservation of strong normalization.

Lemma 2.59 (Simulation, Projection, Confluence) o (Simulation). Let M,N be terms in TA". If
M 4*. N thenM im N.

o (Projection). Let M,N e TA". If M —>,\"N then ws(M) -»,\. ws(N).

o (Confluence).The ARS (Km-u“) is confiuent.

Inofact, if the grammar of Def. 2.58 is enlarged with metavariables X, Y, . . . obtaining the set of open terms,

say A". M ::= nl X | AM | MM | (k)M | M[i/M,j] where n,i,j,k e lNo

where X ranges over the set of metavariables, then the ARS (7313,4¿"0 is confiuent too, where —>,\nois
just Avs-rewriting but over the terms in 71°“. We say that Avs is confluent on open terms.

Proposition 2.60 (PSN) Ausenjoys preservationof strong normalization.

See [DGOl] for a. proof.

7Together, it seems [DG01], with the work by H.Goguen and J.Goubault-Larrecq [GGLOO].
aI-Iowever,see Lemma 2.59(1) and note that the terms M and N belong to 71. and not Tx“.
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Chapter 3

Perpetuality in Ax

Part I of this thesis studies perpetuality in calculi of explicit substitution. Perpetuality studis the contraction
of rewrite steps that preserve the posibility of infinite derivations. Weshall mainly be concerned with perpetual
redexes, in other words redexes whose contraction preserves the possibility of infinite derivations. A rewrite
strategy which always contracts a perpetual redex is called a penaetual rewrite strategy. For example, the
leftmost strategy is not perpetual for the A-calculus. Indeed, consider the A-term M = (Az.y)(AA) where
A = A252. Then M admits an infinite B-derivation, simply contract repeatedly the rightmost B-redex:

(Az.y)(AA) —>B(Az.y)(AA) —>p

Yet by contracting the leftmost fi-redex in M we obtain the term N = y which is a normal form. As the reader
may observe, this is due to the erasing nature of the redex contracted since the subterm AA no longer appears
in N, it has been erased. The Al-calculus is obtained from the A-calculus by restricting term formation: for
every abstraction MLM there is at least one free variable occurrence of a: in M. In the Arcalculus all redexes
are perpetual [CR36]. The interest in perpetual strategies is that if they normalize a term M then this term is
strongly normalizing, that is, all derivations starting from M are finite. For example, we shall apply our studies
on perpetuality for characterizing inductively the set of all the terms in Ax that are strongly Ax-normalizing.
By inductively we mean describing the set as the smallest set closed under some set of rules, as when defining
the set of A-terms or the set of theorems of some logic system [Acz77 We shall also apply it for proving strong
normalization of a typed polymorphic lambda calculus with explicit substitutions.

Perpetual rewrite strategies for the A-calculus were introduced in [BBKV76], a recent survey is [RSSXQQ].A
Term Rewrite System is called uniformly normalizable if all redexes are perpetual. J .W.Klop [K1080]1.showed
that all non-erasing orthogonal CRSS (hence all non-erasing orthogonal Term Rewrite Systems) enjoy this
property, thus generalizing Church’s Theorem [CR36]stating that the A1-calculus is uniformly normalizable. In
the direction of characterizing perpetual redexes, Z.Khasidashvili [Kha94, KhaOl] proved that all non-erasing
redexes are perpetual in orthogonal ERSS (hence all non-erasing redexes are perpetual in orthogonal Term
Rewriting Systems), thus generalizing the Conservation Theorem [BBKV76] stating that By-redexes (i.e. ,3
redexes in A!) are perpetual in the A-calculus. See [KOOOla] for a thorough treatment of perpetual rewrite
strategies and a characterization of perpetual redexes in higher-order term rewrite systems.

All these results are formulated for orthogonal systems, but the calculus of explicit substitutions Ax is not
orthogonal. Indeed, the Beta-rewrite rule and the App-rewrite rules overlap forming a critical pair.

((A2.M)N)(y := O)

Beta APP

M(:c := N)(y := O) (Az.M)(y := O)N(y := O)

Thus the results on perpetuality already developed do not apply. So westudy perpetuality in the Ax-calculusby
adapting a technique originally introduced for proving preservation of strong normalization of calculi of explicit
substitutions [BBLRD96]. Applications of this study are a. formulation of an inductive definition of the set
of strongly Ax-normalizable terms, two perpetua] rewrite strategies for Ax one of which is computable, and a

¡Howeven see [00696].

27
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proof of strong normalization of typed terms in a polymorphic lambda calculus with explicit substitutions, Fu.
System F [Gir72, GLT89] is a set of typing rules for typing polymorphic terms, together with two rewrite rules:
the B-rewrite rule, and a rewrite rule for instantiating type variables by arbitrary types. We shall augrnent
the F-calculus with explicit substitutions obtaining Fe, and, in addition to strong normalization, we also study
subject reduction for the extended typing rules. In fact the original motivation from which the work reported
in this chapter resulted was an attempt to apply J .Y.Girard’s ‘candidats de reductibilité’ technique in order to
prove strong normalization for F“. Reducibility for proving properties of calculi of explicit substitution first
appear in [Muñ97b] and [Rit93], however only for proving weak normalization. As regards strong normalization,
apart fi'om this work, there have been independent contributions [Rit99, DLOl, HerOO].The results developed in
this chapter have been published in [Bon99a, BonO1]. Further work on perpetuality for non-orthogonal systems,
with applications to calculi of explicit substitutions, has been developed in [KOOOlb].

Structure of the chapter

We shall begin by going over the fundamental results behind the proof technique devised by P.Lescanne et
al in [BBLRD96] to prove preservation of strong normalization for Av. This technique is based on assigning a
measure on derivations and applying a minimality argument, a la Nash-Williams’ [NW63] proof of Kruskal’s
tree theorem, in order to arrive at a contradiction. We apply this technique in order to conclude that if M and
N are Ax-terms then:

1. if M = P1(a: := P2)P3 . . .Pn e SNAI then N = (Az.P1)P2 . ..Pn E SN“.

2. ifM —>¡\GcN and N E SNAxthen M G SN“.

3. if M —>GcN and P,N E SN ,\¡, where P is the garbage erased by the Gc-redex, then M e SN Ax.

This shall suflice in order to provide an inductive characterization of the terms in SNA,and perpetual rewrite
strategies for Ax. These strategies are not refinements of the usual strategies for the A-calculus. In other words,
if .‘F(o)is some one-step rewrite strategy for the A-calculus, hence M —>pIF(M ) for all A-terms M not in normal
form, then in the explicit substitution formulation .77,of f(o) we shall not necessarin have M —»,\¡.7:(M ) where
the steps in the this derivation are of the form M ->,\¡ F¡(M) —>,\¡.7-'¡(.7-'¡(M))—>,\¡.. .JT(M).

A further application of the above mentioned result is the possibility of applying Girard’s ‘candidats de
reductibilité' [Gir72] proof technique in order to prove strong normalization of a polymorphic lambda calculus
with explicit substitutions. For this we formulate F33, a polymorphic A-calculusof explicit substitutions which
incorporates two fiavours ofsubstitutions: term and type substitutions. Subject reduction is proved for F“. The
latter result was shown to fail for other formulations of higher-order lambda calculi with explicit substitutions
based on Ax [B1097]. This situation was later reverted in [B1099,BloOl], so it may be seen as an independent
solution to this problem. Additional related work is that by C.Muñoz [Muñ97b] who defines a typed lambda
calculus with explicit substitutions (based on a left-linear variant of Aa) and dependent types. He proves subject
reduction for this calculus by introducing type annotations in the o -o constructor of Aa.

Finally, we prove strong normalization for all polymorphically typable terms.

3.1 The Perpetuality Proposition
We shall begin our study on infinite derivations in Ax. For this we recall the closure tracing technique introduced
in [BBLRD96] for proving preservation of strong normalization for the calculus Av. In [BBLRD96] infinite
derivations starting from pure terms are studied since it is PSN which is of interest, here we study infinite
derivations starting from any term. On the way we shall encounter some simplifications on this technique as a
tool for proving PSN.

An overview of the Ax-calculus is given in Chapter 2. The reader already familiar with this calculus of
explicit substitutions may read on, otherwise we recommend taking a glimpse at Section 2.3.1 before continuing.
Nonetheless, we recall some of the properties of Ax which we shall use in this section.

Definition 2.38. A substitution (:v:= N) is called void in M(:c := N) if a: í FV(x(M)); M is said to be
the target of the substitution and N its body. Void reduction, denoted 1»,\¡, is Ax-reduction inside the body of
a void substitution.
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A Air-context, or simply a context, is a Ax-term with a ‘hole’. More precisely, if we use the distinguished
variable El to denote this hole then a context is just a term with exactly one occurrence of El. An example is
Az.E|(y := 2).

Let us recall how fl-rewrite steps may be executed via the Ax-calculus:

Lemma 2.39 (Projection). Let M,N be terms in Th. Then

1. HM —>,\¡N then x(M) —»px(N).

2. If M es,“ N is not a voidreductionthen x(M) ¿a x(N).

Consider some infinite Ax-derivation d) : Mo —>,\¡M1 —>,\¡ Since x is strongly normalizing an infinite
number of Beta-rewrite steps must take place in d). If all these Beta-rewrite steps were not void then we would
obtain an infinite ,B-derivationfrom the pure term x(Mo), using the Projection Lemma. Therefore, if we already
know that x(Mo) is strongly B-normalizing, then we may conclude that at some point on, in ó, all Beta-rewrite
steps are void. In fact, it may be shown that at some point on in 4: all Ax-rewrite steps are void. This result is
the starting point of P.Lescanne et al’s method for proving PSN. We formaliza it below (see [B1097,Proposition
4.151).

Lemma 3.1 If Mo, M1, . .. E 73, such that x(Mo) e SNp and Mo —>,\¡M1 —>,\¡.. . is an infinite Ax-derivation
then there is a.k e INsuch that for all i 2 k, M,-¿h Mi“.

Proof. Since x is strongly normalizing we may assume the infinite Ax-derivation has the form Mo —»x
M1 AB,“ M2 -»¡ M3 . . .. Now by Lemma 2.39(1) we have x(Mo) —»5¡(M2) —»px(M4) —»px(M6) . . ., where

by Lemma 2.39(2) we have ¡(M2n) i’p ¡(Mzn+2) if M2,,“ es,“ M2,,” is not void.
Now since ¡(Mo) e SNp there is aj e INsuch that for all 2'2 j we have Mm“ ¿»BetaMu”. We must now

prove that from some point onwards not only the Beta-reductions are void but also the x-reductions. This is
done by defining an interpretation h on Th:

h(z) dé‘ 1

h(MN) "éf h(M)+h(N)+1
h(Az.N) dé‘ h(N)+1

D(I

h(M(z:= N)) :f { ¿1x+hfz%))xh(M) isz FV(x(M))if z Q FV(x(M))

In the last clause of the definition of h note that if z é FV(x(M then h(N) is neglected, hence any
reduction steps inside N shall not alter h(M (z := N In fact one may verify that:

o ifM ¿»h N then h(M) = h(N), and

o if M —»¡N is not void then h(M) > h(N).

Thus there must be a k > j such that for all i 2 k we have that not only M2,-+1¿Beta M2“; but also
M2i 1’: M2i+1- 

Note that in contrast to [BBLRD96]there has been no need to define internal/external positions (since they
have been captured by the definition of h) and to prove commutation of internal/external reductions in order
to prove Lemma 3.1 [BBLRD96, Lemma 13]. This is clearly an advantage since commutation results are long,
tedious and technical. It thus suggests a Simplifiedvariant of the proof technique introduced in [BBLRD96] for
proving PSN.

So now we know that if d) : Mo —>,\¡M1 —>,\¡ is an infinite Ax-derivation and ¡(Mo) is strongly B
normalizing, then at some point on in d)all Ax-rewrite steps are void. We shall see that from 45we may learn
of the existence of an infinite Ax-derivation in which from some point on all Ax-rewrite steps take place within
the ‘same’ closure. This requires the notion of a Skeleton of a term which first appeared in [KRQS]. The
corresponding concept in terms of positions occurs under the name frontier in [BBLRD96].
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Definition 3.2 (Skeleton) The skeletonof a term M in Th, denoted SIC(M), is defined inductively as follows

SlC(a:) dÉ-f :c

SIC(N¡N2) dé‘ SIC(N1)SIC(N2)

SIC(Ay.N) “="f Ay.SIC(N)
ds!

SIC(N1(2 := N2)) SIC(N1)(z := o)

where the ‘o’ symbol may be seen as a place-holder (much the same as the ‘EI’symbol in a context).
Intuitively, the Skeleton of a term is the part where only reductions which do not take place in bodies of
substitutions are possible.

Remark 3.3 Note that ¡r M LA, N then SIC(M)= 31cm).

Lemma 3.4 If Mo, M1, . .. e TA!such that x(Mo) G SNp and Mo —>,\,M1 —>,\¡.. . is an infinite Air-derivation
then there exists k E lN, a variable y, a context C and Ax terms P, Qk,Qk+1,Qk+2, . . . such that

C[P(yI= lel

Ï’Ax C[P(y: Qk+1ll
->,\x C[P(y:= Qk+2)l

Mo _’AzM1 ->,\x _’Az Mk

where for i 2 k the i + 1-rewrite step takes place in Q,-.

Proof. Consider an infinite Air-derivation d) : M = M1 —>,\¡M2 ->,\¡ M3 . .. starting from M. Then since
x(M) e SNp we may apply Lemma 3.1 and obtain a k G IN such that for all i 2 k we have M,-1),“ Mi“. And
hence by Remark 3.3 we have SIC(M¡,) = SIC(M.-) for all 2'2 k.

Now as there are only a finite number of closures in SIC(Mk) and, since the reductions within these closures
are independent in the sense that they occur in parallel positions, by Kónig’sLemma an infinite derivation must
take place within the same closure in SIC(Mk). Thus Mk = C[P(y := Qk)] for some context C and

= C[P(y ==lel
l’h C[P(y 1: Qk+1ll
¿uz C[P(y ï= Qk+2ll

M1 ->,\z M2 -',\z ->,\z Mie

is an infinite Air-derivationstarting from M. .

Finally, Lemma 3.4 together with the fact, proved below, that closures may be traced back shall provide all
the tools for proving our main perpetuality result.

Lemma 3.5 (One-step closure tracing) Let M,N e 71, with M —>,\¡N = C[P(y := Then,

1. either M = C' [P’(y := Q)] for some context C’,

2. or, M = C’[P’(y := Q’)] for some context C’ and Q’ —>,\¡Q,

3. or, M = C[(Ay.P)Q].

Proof. We use induction on M and consider the following two cases:

o The reduction takes place at the root. First note that if P(y := Q) occurs in a subterm of N which is
also a subterm of M then for some context C’ and P’ = P the first item holds trivially. Also note that
this includes the cases where the rule applied at the root is Var or Gc. Otherwise we must have one of
the following:

—M = (Ay.P)Q 438m P(y := Q) = N with C = El. Then the third item holds.
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- M = (M1M2)(y := Q) 4A”, M1(y:= Q)M2(y := Q) = N where P is M1 or M2. Then we take
P’ = M1M2 and C’ = D and the first item holds.

(/\z.P)(y := Q) 41,6". Az.P(y := Q) = N. Then we take C’ = Ü, P’ = /\Z.P and item one
holds

o The reduction is internal.

- M = z. The result holds vacuously.

- M = M1M2 with either M1 —>,\¡Mí, or M2 —>,\¡M5. We consider the first case, the other being
similar. Thus N = M{M} We have two further cases to consider.

* The subterm P(y := Q) occurs in Ml’. We then use the induction hypothesis.
* The subterm P(y := Q) occurs in M2. Then the first item trivially holds.

—M = A2.M1 with M1 —>,\¡ We use the induction hy'pothesis.

— M = M1(Z 2= M2) With

* either, M1 —>,\¡Mí and N = Mí (z := M2). Then if P(y := Q) occurs in Mí we use the induction
hypothesis. If it occurs in M2 then the first item trivially holds. Finally, if N = P(y := Q) then
we take C’ = D, P’ = M1 and the first item holds.

* or, M2 —>,\¡M5 and N = M1(z := Then if P(y := Q) occurs in M1 then the first item
triviale holds. If it occurs in M5 then we use the induction hypothesis. Finally, if N = P (y := Q)
then we take C’ = El, P’ = M1 and Q’ = M2 and the second item holds.

This result extends naturally to many-step derivations. It may be proved by induction on the number of
rewrite steps.

Lemma 3.6 (Closure tracing) Let M1,...,Mn e TM such that M,- —>,\¡Mi“ for i G l,..,n - 1, and
Mn = C[P(y := Q)]. Then,

1. either there is an i E 1, ..,n —1 such that M,-= C’[(Ay.P’)Q’] for some context C’ and Q’ —»,\¡Q,

2. or, M1 = C’[P’(y := Q’)] for some context C’ and Q’ —»)\¡Q.

Definition 3.7 (Derivation order-ing) Let 45and 1/)be two infinite derivations starting from a term M1.
Then the derivation d) : M1—>,\¡_p,Mg—>,\¡,p,M3 . . . M,,—>,\¡'¡,nMn+1 . . . is said to be smaller than the derivation
1,1): M1—>,\,_q¡M2—>,\¡_q2M3. . . Mn-um,n M,’,+¡ . .. ifpi = q,-for i < n and qn is a proper prefix of pn.

Remark 3.8 Suppose M = C[P(y := Q)] ->¡ N. Then there are two possibilities:

l. either, the reduction step takes place in Q, i.e. N = C[P(y := Q’)] and Q ->¡ Q’,

2. or, it does not take place inside Q.

In the second case we then have that the substitution body Q also occurs in N or else it was erased as a
rsult of applying the Gc-rule (Q is subterm of garbage erased by Gc). This observation shall be made more
precise in the following lemma.

Lemma 3.9 Let M = C[P(y := Q)] ->¡ N such that the x-reduction step does not take place inside Q, and
let .S'be the term (substitution body) eliminated by the Gc-rule if it was applied, then

o either, Q occurs in N

o or, Q Q S.

Proof: By induction on the context C.

o C = El. Then M = P(y := Q) —>¡N. We have two further cases to consider:
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—the reduction takes place at the root. If the rule applied was App, Lam or Var then the first item
holds. If the rule applied was Gc then S = Q and the second item holds.

- the reduction is internal. Then we must have P —>¡P’ and the first item trivially holds.

o C = C'O (the case C = OC’ is analogous). Then the reduction step M = C’[P(y := Q)]O —>¡N must
be internal and N = N1N2. We have two further cases to consider:

— C’[P(y := Q)] —>,N1 and N2 = 0. Then the result follows from the induction hypothesis.

— N1 = C’ [P(y := Q)] and O —>¡N2. Then the first item trivially holds.

o C = Av.C’. Then the reduction M = Ay.C’[P(y := Q)] ->¡ N must be internal and the result follows by
the induction hypothesis.

o C = C’(:c := O). Thus C’[P(y := Q)](z := O) —>¡N. We have two further cases to consider:

- the reduction takes place at the root. If the rule applied is Gc then S = O and N = C’[P(y := Q)]
and the first item trivially holds. Suppose then that the rule applied is App, Lam or Var. Then
C’ 96D and one of the following must hold: C’ = C” R, C’ = RC” or C’ = Ay.C" for some context
C”. In all cases the first item holds.

—the reduction is internal. Then we have two cases:

either, C’[P(y := Q)] ->¡ N1 and N = N1(:c := O) in which case the result follows from the
induction hypothesis.

* or, O —>¡N1 and N = C’[P(y := Q)](a: := N1) and the first item holds.

*

o C = O(v := C’). Then we have M = O(v := C’[P(y := Q)]) -—>¡N. We consider two cases:

—the reduction takes place at the root. If the rule applied was App, Lam or Var then the first item
holds. If the rule applied was Gc then S = C’[P(y := Q)] and the second item holds.

- the reduction is internal. Then

* either, O —>¡N1 and N = N1(v := C’[P(y := Q)]) and the first item holds trivially.
* or, C’[P(y := Q)] ->¡ N1 and N = O(v := N1) and the result follows from the induction

hypothesis.

Before proceeding to the main proposition of this section we would like to discuss the relation with the work
in [BBLRD96] for proving PSN.

o What P. Lesoanne et al do for PSN. They consider a minimal infinite Air-derivation starting from a.pure
term. Thus they can alwaystrace back the closure (guaranteed to exist by Lemma 3.4) to its (unique) point
of creation (here the Beta-rule) and obtain a smaller derivation than the original one, hence contradicting
minimality.

o What we do for perpetuality. Suppose M —>¡N and N E SN ,\¡. Given a minimal infinite Air-derivation
starting fi'om M we trace back the closure (guaranteed to exist by Lemma 3.4). But now there are two
possible situations as dictated by Lemma 3.6:

—either, the closure was created by a Beta-rule. We then argue as above and contradict minimality.

—or, (an ancestor of) the body of the closure, say Q, belongs to the original term M. But then since
M —>¡N we may reason as follows:

* either, the substitution body Q also occurs in N, in which case we arrive at a contradiction since
NG SN,“and SN,\¡,

* or, Q is a subterm of garbage, i.e. M —>GcN and Q g P where P is the substitution body
eliminated by G'c,then by requiring that all eliminated garbage be strongly Ax-normalizing terms
we arrive at a contradiction,
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* or, the reduction step M —>¡N takes place inside the substitution body Q, i.e. Q —>¡Q’ for some
Q’ C N. Then we may apply inductively the same reasoning in order to obtain a contradiction.
Note that since there are a finite number of closures in M this case may not repeat itself an
infinite number of times.

These ideas may be formalized as follows.

Lemma 3.10 Let M, N G7:“.

1. Suppose M —>¡\GcN and N e SNAz then M e SN“.

2. Suppose M = C[P1(z := Pg)] —>GCC[P1] = N where the Gc-rewrite step takes place at the position of
the hole, and P2,N e SNA, then M E SN,\¡.

Proof. Both items are proved simultaneously by (course of values) induction on the number of occurrences
n of the closure operator in M. Note that since M —>¡N by hypothesis there must be at least one occurrence
of the closure operator in M.

o n = l. Suppose that M í SN,\x and let 47: M = M1 —>,\¡M2 —>,\,M3 . .. be a minimal infinite derivation
starting from M. Now since N E SNAxthen x(N) e SNp and hence x(M) e SNp (since x(M) = x(N)).
Then by Lemma 3.4 we may construct the following infinite Ax-derivation,

= ClP(yï= lelp
¿Ax ClP(y ï= Qk+1)lp
¿uz ClP(y ï= Qk+2llp

Ó'ïMi-uxMz-ux-n-nxka

for some k e IN, position p, variable y, context C and Air-terms P, Qk,Qk+¡,Qk+2, . . .. Note that the
sequence (Qk,Qk+1, Qk+2, . . is an infinite Ax-derivation.

Now by the closure tracing Lemma 3.6 there are two possibilities for the origin of the closure (y := Qk):

—either, it was created sometime before by an application of the Beta-rule, i.e. there exists j < k, a
context C’ and a position p,- such that:

Mi = Cll(Ay'P,)QledemijCIlPI(y i= Q)]Pj= :i+1

with Q —»,\¡Qk. But then we may construct the infinite Ax-derivation

Ó” 2M1 —>,\¡M2 - vv-’Az Mj = C’l(’\y'P,)Qle
-”,\x C’[(’\y'P’)Qk]Pj
¿uz C’[(Ay.P’)Qk+11p,
luz C'l(Áy-P')Qk+2lp,

Note that 45”is smaller than dzsince at step j we reduce a proper subterm of (Ay.P’)Q and obtain
nonetheless an infinite Ax-derivation. Thus we contradict the minimality of dz.

—or, (an ancestor of) the body of the closure, belongs to the original term M, i.e. M = C’[P’ (y := Q)]
for some context C’ and terms P’ and Q with Q —»,\,Qk. Here we have two further cases to consider:

1. either the reduction step M = C’[P’(y I= Q)] —’¡N takes place in Q, i.e. N = C’[P’(y := Q’)]
and Q _'! QI!

2. or it does not take place inside Q.

But the first case is not possible since n = 1 and therefore there are no occurrences of the closure
operator in Q. So the reduction step M = C' [P' (y := Q)] —»¡N does not take place inside Q, and
therefore by Lemma 3.9, we have that either Q occurs in N (which is in SNA!) or is a subterm of
garbage (i.e. Q Q P2) and hence also is in SN,\¡ as the additional requirement on application of
Gc-rule states. Thus we arrive at a contradiction (closure tracing has determined that there is an
infinite Ax-derivation starting from Q and, on the other hand, we have Q e SNAx).
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o n > 1. We start offas in the previous case; the only difierence is when the closure tracing lemma determines
that (an ancestor of) the body of the closure, belongsto the original term M , Le. M = C’[P’(y '.=
for some context C’ and terms P’ and Q with Q -»,\¡ Qk. Here it is possible that the reduction step
M = C’[P’(y := Q)] —>¡N takes place in Q, i.e. N = C’[P’(y := Q’)] and Q —>¡Q’. In this case, since
N e SN A, we have Q’ e SN,\¡ and we may apply the induction hypothesis w.r.t. Q and obtain that
Q G SN n. Hence we obtain a contradiction.

Proposition 3.11 (Perpetuality Proposition) Let M,N E Th. Then

1. ifM = P1(a: := P2)P3 . . .Pn E SNAzthen N = (Az.P1)P2 . ..P,., e SNA,

2. ifM —>¡\GcN and N E SNAI then M G SN,\¡.

3. if M = D[P1(z := P2)]<,.,—ic,-c'qD[P1]q= N for some context D and P2, N e SNAI then M e SNA,

Proof. The last two items have already been proved (Lemma 3.10). For the first item we consider the term
P1(a: := P2)P3 . . .Pn G SN ¿1. Then P1, . . . ,Pn E SN ,\¡. Therefore, any infinite derivation starting from the
term (Az.P¡)P2 . . .Pn must have the form,

(Az.P1)P2...P,, su, (Az.P1’)P2’...P,"
"’Beta P1’(a::= 2’)Pá...P,’,
—>,\¡

where P,-—»,\¡ for i e 1..n. Then there is an infinite derivation,

P1(::::=P2)P3...Pn -»,\¡ P1’(z:=P2’)Pá...P’
—>,\¡

contradicting the hypothesis. .

Remark 3.12 Note that the above technique may be applied to the explicit substitution formulation of the
substitution lemma, more precisely,we have that if y í FV(P) and C[M(z := P) (y := N (a::= P))]p is strongly
Ax-normalizing then C[M (y := N) (a: := P)]p is also strongly Ax-normalizing. Obviously this does not mean
that we may add the inferred rule (i.e. M(y := N) (a: := P) —>c,,M(a: := P) (y := N(:I: := to Ax without
(trivially) losing strong normalization.

This remark shall be used in the proof of strong normalization for a polymorphic lambda calculus with
explicit substitutions (Lemma 3.63).

3.2 Some Applications of the Perpetuality Analysis
This section considers some applications of the perpetuality analysis elaborated in Section 3.1: an inductive
characterization of SN,\¡, two perpetual rewrite strategies for Ax, and strong normalization by reducibility for
a.polymorphic lambda calculus with explicit substitutions Fu. This last issue shall be considered in detail in
Section 3.3. The technique presented in this section is based on similar results obtained for the A-calculus with
the fi-rewrite rule [R895].

3.2.1 Characterizing Terminating Terms in Ax
We give an inductive characterization of the terms in SNA, by combiníng the technique presented by F. van
Raamsdonk and P. Severi in {R595}and the Perpetuality Proposition (Proposition 3.11). This characterization
shall be used in the proof of perpetuality of some rewrite strategies studied in Section 3.2.2.

Lemma 3.13 Every M e 73, is of one of the followingforms:

1. ZPl . . . Pn

2. Az.P
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3. (Az.P)P1 . . . P"

4. P0 (1:1:= Q1) . . . (zm := Qm)P1 .. .Pn where m 2 1 and Po is not a closure (i.e. it is either a variable, an
abstraction or an application).

Proof. By induction on the term M. .

A word on notation before continuing: if M, N1, . . .,Nm E 71x and 3:1,. . . ,zm G V for m 2 0 then we use
M" to denote the term M(a:1:= N1) . . . (zm := Nm).

Definition 3.14 Let SN g T,“ be the smallest set closed under the inferenceschemes:
P¡,...,P..e8N :GV PeSN

:Pl...Pne8N A:.PesN
M(:: := N)P1...Pn e SN

(ALM)NP1...P,. e SN

N'Pl...PnGSN 1620 y'Pl...PnGSN NGSN IGV

:(x:=N)*P1...PnGSN R4 y(:I::=N)*P¡...Pn€SN

(M¡(:::= N)M2(=:= N))"P1...Pn e SN (mm: := N))’P1...P.. e SN

(M1M2)(:¡::= N)*P¡ . . . Pn e SN 6 (Ay.M)(a: := N)’P¡ . . . Pn e SN

where inference scheme (R5) is subject to the restriction a: 96y.
Each inference scheme is quantified over n. and m (if m also occurs in it). Thus for example inference scheme

(R5) should be read as: for all m 2 0 and n 2 0, if N G SN and y(a:¡ := N1)...(a:m := N,,,¡)P1...Pn e SN
and y 96:c then y(:c := N)(a:1:= N1) . . . (zm := m)P1...Pn e SN.

Lemma 3.15 SNAx= SN.

Proof.

o SN,\¡ g SN. Let M e SN,\¡. Weprove by induction on (mmedh (M), IMI), using the usual lexicographic
ordering, that M e SN. By Lemma 3.13 we have the followingcases to consider:

- M = :cP1...P,,. Then since M is strongly Ax-normalizing, P1, . . . , Pn are strongly Ax-normalizing.
By the induction hypothesis we have that P1, . ..,P,¡ E SN. Thus by inference scheme (R1) we
obtain zP1 . . . Pn G SN (note that this case includes the base case, i.e. all variables are in SN').

- M = ALP. As above P is strongly Ax-normalizing,and therefore by the induction hypothsis,
P e SN. Using inference scheme (R2) we conclude that AGLPe SN.

- M = (Az.Po)P1...P,,. Then since M 43“, Po(a::= P¡)P2 . . .Pn we have that Po(:c := P1)P2..Pn G
SNk. By the induction hypothesis Po(a: := P1)Pg . . .Pn e SN, and thus by inference scheme (R3)
we conclude that M GSN.

- M = Po(a:1:= Q1) . . . (zm := Q,n)P1...Pn where m 2 1 and Po is not a closure (i.e. not of the form
P’ (z := Q’ Thus we have the followingcases to consider:

* Po = 3:1. Then Q1(Ig := Q2) . . . (zm := Qm)P1 .. .Pn E SN,“h and by the induction hypothsis
this term belongs to SN. Then by inference scheme (R4) we obtain that M e SN.
Po = y 961:1. Then y(:cg := Q2) . . . (zm := Q,,,)P1...Pn e SNA,l and by induction hypothesis
it is also an element of SN. Also, since M G SNA, we have Q1 e SN M, and by the induction
hypothesis Q1 E SN. Then by inference scheme (R5) we obtain that M E SN.
Po = Ay.N. Then (Ay.N(:r:1:= Q1))(:cg := Q2)...(zm := Q,,.)P1...Pn G SN,\¡. By the
induction hypothesis (Ay.N(:z:1:= Q1))(a:2 := Q2) . . . (zm := Qm)P1...Pn E SN. Then using
inference scheme (R7) we obtain that M GSN.
Po = NlNg. Then we have (N1(21 := Q¡)N2(zl := Q1))(Iz := Q2) . . . (zm := Qm)P1...Pn E
SN,\¡. And (N1(311= Q1)N2(21Z=Q1))(22Z= (zm Z=Qm)P1 G SN, by the
induction hypothesis. Using inference scheme (R6) we may conclude that M E SN.

*

*

*
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o SN Q SNAx.By induction on the derivation of M E SN.

—M = :cPl ...P,, where P1, . . .,P,, e SN. By the induction hypothesis we have P1, . . .,P,, e SN“.
And therefore :cP1. . .Pn is also strongly Ax-normalizing.

—M = MLP where P e SN. Similar to the previous case.

—M = (Az.Po)P1...P,, where Po(a: := P¡)P2 . ..P,, G SN. Then by induction hypothesis we have
Po(a::= P1)P2 . . . Pn e SN,\¡. Thus by the Perpetuality Proposition 3.11(1), M e SNh.

—M = 21(a:1z= Q1)...(:l:m := Q,,,)P¡...Pn where Q1(:Bg:= Q2)...(a:m := Q,,,)P1...Pn E SN.
Then by induction hypothesis Q1(:cz := Q2) . . . (zm := Q,,,)P1...Pn e SN ,\¡ and thus by the Per
petuality Proposition 3.11(2) we may conclude that M G SNh.

—M = y(a:1 := Q1)...(:cm := Qm)P1...Pn where y 761:1, Q1 e SN and y(a:2 := Q2)...(a:m :=
Qm)P1 . . . Pn E SN. Then by induction hypothesis Q1 E SN A, and

y(:1:2:= Q2) . . . (zm := Qm)P1 . . . Pn E SN ,\¡. And applying the Perpetuality Proposition 3.11(3) we
obtain M e SN“.

- M = (N1N2)(I] Z= Q1) . . . (Em 1= Qm)P1 . . .Pn Ol'M =(/\y.N)(21Z= Q1) . . . (17m2= Qm)P1 . . .Pn.
Similar to the above cases using the Perpetuality Proposition 3.11(2).

Some variations of Def. 3.14 are possible. Rule (R5) may be replaced by the following rule (RS’) yielding
the characterization SN l:

M'Pl...Pn GSN NGSN 262...

M(:I::= N)*P1 ...Pn E SN

with the restriction that a: 5€FV(M Then Lemma 3.15 may be proved for SN l. As a consequence, we also
obtain SN = SN l.

Another possible characterization of SN Ax, as reported in [Xi96] for the A-calculus with ,B-reduction, is
SNAz = {M G TA; I 'H(M) < oo} where

R5!

H(M¡)=max{n|M¡l>M2I>...L>M,,}

and I>is the union of the strict subterm relation and leftmost reduction for Ax (written here ->¡), i.e. l>dÉfDU —»¡
where AIP Z)P, PQ 3 P, PQ D Q, P(a: := Q) Z)P, P(z := Q) 3 Q. The proof relis on the Perpetuality
Proposition.

3.2.2 Perpetua] Rewrite Strategies for /\x
Here we extend the perpetual rewrite strategies for the lambda calculus presented in [BK82] and [BBKV76]
to the calculus of explicit substitutions Ax, and, following [R895], use the characterization of SN A, (Def. 3.14)
to prove that they indeed constitute perpetual strategia. Section 2.3.1 provides the definition of Ax-rewrite
strategy. Recall that a Ax-rewrite strategy .7-'(o)is called Ax-perpetual if 00A!(M) implies oo,\¡(.7-'(M

First we present the effectivestrategy fm (o). Then the strategy 37(0)shall be considered.

Definition 3.16 (The strategy .‘Foo(o))Let M be a term in 71, which is not in normal form. Let M = C[A]
where A is the leftmost /\x'-redex2 of M. We define fm (o) as follows:

def¡“(aleman = amy :=on
wcwwxz := om "——°—‘CIM-Hz := Q)l
feo<cl<P1P2><y== om “=°‘ c{P1(y:= Q)P2(y := Q)]

feo<cly<y ==om dé‘ elegí l .f q. l fe Z l m norma orm,2: d=f{ ;= OthelW158.
In the last inference scheme we have y 96z.

23m" that a Ax'-redex is a Ax-redex.
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The idea in fuck) is to always contract the leftmost Ax--redex unless a (potentially infinite) term may be
erased by the restricted garbage collection rule (the only rule which may erase subterms).

Proposition 3.17 feo“) is a perpetua] rewrite strategy for Ax.

Proof. We prove that if fm(M) is strongly normalizing then M is strongly normalizing. For this, the
characterization of Def. 3.14 shall be used. Thus we assume 170.0(M) G SN and we shall show that M e SN
by induction on the number of derivation steps of (Feo(M) e SN. By Lemma 3.13 we have the following cases
to consider for M:

o M = yP1,.. .Pn. Then we have foo(M) = yP1...Pi.1.'/-'°c,(P,-)P,-+1...Pn where P1, . . . , P.-_1are in normal
form. Then since foo(M) e SN we have foo(P¡) e SN. Then by the induction hypothesis P,-GSN and
we can construct a derivation in SN of M.

o M = Ay.P. Then we have foo(M) = Ay..7-'°°(P).By the induction hypothesis P e SN. Hence, M GSN.

o M = (Ay.P)P1...Pn. Then we have fw(M) = P(y := P1)P2. . .P". Since foo(M) e SN using inference
scheme (R3) we obtain that M e SN.

o M = Po(y1 := Q1)...(y,n := Q,,,,)P1...Pn with m 2 1 and Po not a closure (i.e. not of the form
P’ (z := Q’ We consider four further cases: '

- Po = yl. Then FOO(M)= Q1(y2 := Q2) . . . (ym := Qm)P1...Pn. Then by using inference scheme
(R4) we obtain M e SN.

— Po = z 9€y1. Then we have two cases to consider:

* Q1 is in normal form. Then .‘Foo(M) = z(y2 := Q2) . . . (ym := Qm)P¡ ...Pn. Since Q1 E SN)ul
we have Q1 e SN. And then by using inference scheme (R5) we obtain M E SN.

* Q1 is not in normal form. Then we have ¡“(M) = z(y1 := fm(Q¡)) . . . (ym := Qm)P1...Pn.
Now since .‘Foo(M)e SN then fw(Q1) GSN and hence, by the induction hypothesis, Q1 e SN.
Then we can construct a derivation in SN of M using clause (R5).

- Po = PáPó’. Then foo(M) = (P¿(y1 := Q1)P¿’(y1 := Q1))(y2 := Q2) . . . (ym := Qm)P1...P,.. Then
by using inference scheme (R6) we obtain M e SN.

—Po = ALPá. Then foo(M) = (Az.P6(y¡ := Q1))(y2 := Q2) . . . (ym := Qm)P1...P,,. Then by using
inference scheme (R7) we obtain M e SN.

Remark 3.18 Let F be a Ax-rewritestrategy and define

Lp(M) d=efmin{n | F"(M) is in Air-normal form}

where F°(M) dé‘M and F"+1(M) dé‘F(F"(M)). Then F is said to be mmmaz ifi Lp(M) = nmedA¡(M)
for every Ax-term M. The question whether feo (o) is maxima] is left open. The perpetual rewrite strategy Foo
for the A-calculus [BBKV76] has been shown to be a. maximal strategy [Sor96].

Definition 3.19 (The strategy .7-'(o))Let M be a.term in T,“ which is not in normal form. Let M = C[A]
where A is the leftmost Ax‘-redex of M. We define 17(0) as follows:

f(C[(Ay-P)Q]) dé‘ C[P(y:= Q)]
¡(C[(A2.P)<y:=o)1) "é‘ ClAz-P(y:= 0)]
f<c{(P1P2)<y== Q)]) "é‘ C[P1(y := Q)P2(y := Q>1

T(C[y(y==o») dé‘ ong“ fQ SNdef z i e x

“T‘Clz‘y‘wm = {Clz(y==f(Q))l ífQíSN:¡

In the last inference scheme we have y 96z.
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Proposition 3.20 .7-"(o)is a.perpetual rewrite strategy for Ax.

Proof. The proof is similar to that of Proposition 3.17. .

Note that these strategies are not refinings of the original ones (those defined on the A-calculus with B
reduction) in the following sense: if we start from a pure term M then the strategy for Ax yields a rewrite
sequence consisting of a Beta-rewrite step followedby x-reduction to x-normal form, which corresponds to the
fl-reduction step induced by the original strategy. Before illustrating with an example we recall the strategy
Foo(e) [BBKV76].

Definition 3.21 (Feo(o)) Let M be a term in '13 which is not in fi-normal form (denoted M í NFp). Let
M = C[(/\y.P)Q] where (Ay.P)Q is the leftmost B-redex of M. Then Foo(M) is defined as follows:

dgf C[P{y .—Q}] ‘f e FV(P) Q e NF
Foo(C[(Ay-P)Ql) - { C[(,\y_P)F°°(Q)] g FV(P) :hd Q e NÏPB

Let M G TA. More generally, one may wonder whether there exists a positive integer n such M LA! J-‘go(M )
and HAM) = Foo(M). Consider the term M = (Az.AAz)2 where A = Ay.yy. Then Fm(M) = AAz. On the
other hand, for no positive integer n is 17:0(M) a pure term (and hence 7-},(M) 74Foo(M as the following
portion of reduction of the strategy .7-'°O(e)suggests:

M
433,0 (AAI)(:I: := 2)
4A“, (AA)(z := 2) a:(:r:= 2)
4A”, A(:c := 2) A(:1::= 2) a:(:1;:= z)
->Lam (Ay-(WN:c == 2)) ¿(I 1= Z) 33(1‘== Z)
_’Beta (ln/NI I= Z)(y == NI == zl) MI ==Z)
al”, <y<z := z) y<=c:= z))<y == A<a=:= 2)) z<z := z)
AA” y(:1::= 2)(y := A(a: := 2)) y(a: := 2)(y := A(:r := 2)) z(1: := 2)
-’c:c y<y ==Acc := z» y<z := z><y:= Acc := z» z<z := z)
—>va,. A(:l: := 2) y(:r := 2)(y := A(:c := 2)) a:(:1::= 2)

We shall continue our discussion on perpetual rewrite strategies for Axin Section 4.1. The interested reader
is invited to skip to the aforementioned section resting assured that the material on the polymorphic lambda
calculus with explicit substitutions to be presented next may be read independently.

3.3 The Polymorphic Lambda Calculus With Explicit Substitutions
As a final application of our studies in perpetuality for Ax we shall formulate a polymorphic lambda calculus
with explicit substitutions called Fe, and prove the properties of subject reduction and strong normalization
(of its typed version). The first subsection presents the untyped F-ca1culuswith explicit substitutions and then
introduces its typed version. Subject reduction followedby strong normalization is considered next.

3.3.1 F“: The Rewrite Rules
In this subsection we introduce the polymorphic lambda calculus [Gir72, GLT89] with explicit substitutions.
This rewrite system which we shall call Fe, will first be introduced as an untyped calculus in the sense that no
typing rules for terms shall be given, Section 3.3.2 shall deal with its typed version.

Let V, be an infinite set of type variables s, t, u, . . ., and v be an infinite set of term variables (referred to
simply as variables) z, y, z, . . ..

Definition 3.22 The set of types and terms (referredto, without distinction, as raw terms) of the Fu-calculus
is defined by the following two grammars, respectively:

types cr ::=t|a’1 —>0'2IVt.a|a'[t := 0']
terms M::=:c|A:c:cr.M|At.M|MN|M0|M(z:=N)|M[t:=cr]
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The operator .(o := o) is called the term substitution operator and o[o := o] the type substitution operator.
A term which does not contain occurrences of a (term or type) substitution operator is called a pure term.
Likewise, a type which does not contain occurrences of the type substitution operator is called a pure type.

We denote with RT the set of all raw terms, i.e. those generated by the terms and types grammars, and
T the set of proper terms in RT, i.e. those generated by the terms grammar. Letters p, a, 7',. . . are used for
types, letters M, N, O,P, Q, . .. are used for terms and letters A, B, C, . . . are used for raw terms.

The set of free variables of a term M is denoted FV(M) and the set of free type variables of a raw term A
is denoted FTV(A). We also use BV(M) and BTV(A) to denote the set of bound variables of M and bound
type variable of A, respectively. Also, we sometimes use BTV(A, B) as a shorthand for BTV(A) U BTV(B).
These notions are defined as usual; we give below the definition of FTV as an example.

Definition 3.23 Let A be a raw term. The set of free type variables of A is defined as follows:

FTV(t) dé' {t} FTV(At.P) 4:“FTV(P)\{t}
FTV(a —.T) L“ FTV(a) u FTV(T) FTV(PQ) dé‘FTV(P) u FTV(Q)
FTV(VLa) ‘=°‘FTV(a) \ {t} FTV(Pa) dé‘FTV(P)UFTV(a)
FTV(a[t := 1]) d=“(FTV(cr)\ {t})u FTV(T) FTV(P(: := o» dé‘FTV(P) u FTV(Q)
FTV(z) dé‘o FTV(Plt := al) "é‘ (FTV(P) \ {t})UFTV(a)
FTV(A: : a.P) ‘é‘ FTV(a) u FTV(P)

As mentioned in Chapter 2, when dealing with calculi of explicit substitution and in order to obtain first
order rewriting systems for the A-calculus,it is not uncommon to use de Bruijn indices notation. Sinoe our main
objective is to concentrate on the properties of subject reduction and strong normalization we have chosen to
use the variable name based Axin order to minimize the ‘noise’introduced by updating (i.e. f(o)index updating
in de Bruijn indices calculi) and thus provide the reader with a more intuitive setting.

We recall the familiar notions of substitution and a-conversion for terms (types are treated similarly). The
present definition extends Def. 2.32 to the extended syntax of F33.

z{a: <- N} dir N
y{I‘-N} dg snifzaéy
(M1M2){z e N} dé‘ M1{z «- N}M2{z e N}
(Aa:: a.M){a: «- N} dé‘ A: : a.M

(Ay:a.M){a:<-N} Ay’:a.M{y<-y’}{a:«—N},
ir y e FV(N) u {z}u (Fi/(rw) \ {yn

(Mie- ==Mzmz e N} "é‘ M1<zz=Mac «- N}>
(M1(y := Manz «- N} "é‘ M1{y «- y’}{==e N}(y’ := Mm e N}>,

u y e FV(N) u {z}u (Fi/(M1) \ {yn
(At.M){a; 4- N} = At.M{:c «- N}
(Manz e N} dé‘ M{=ve N}a
Tu := a]{a: «- N} dé‘ 1'[t := 0']

M[t:=cr]{a:«—N} M{t«—s}{:r<—N}[s:=a l

if s í FTV(N) U(FTV(M) \ {t})

Syntactical equality modulo a-conversion is thus the smallest equivalence relation verifying:

ifM=PandA=B then MA=PB
ifM=N,a=-randyíFV(N)\{a:} then Azza.M=/\y:T.N{z<—y}
ifM = P,N = Q and y ggFV(N) \ {z} then M(a; := N) = P{:c «- y}(y := Q)
if M = P and s í FTV(P) \ {t} then At.M = A5.P{t <- s}
if A = 3,0 = 1' and s e FTV(B) \ {t} then A[t := a] = B{t <- s}[s := 7']

As in the untyped lambda calculus we shall adopt the followingvariable convention: we assume that the names
of bound (term or type) variables shall always be chosen so that they difier from the free ones. Moreover, each
occurrence of a (term or type) abstraction operator has a difierent binding variable.
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(AIZ —)BetazM<z;=
(At.M)T —D1.Be¿a 1: 7']

(MN)(:c:= P) en” M(:c:= P)N(a: := P)

(Ay : a.M)(:z: := P) Adam ¿y : a.(M(z := P))zh: Z: P) _’z-uar
M(a: := P) —>ng M a: é FV(M)
(Mo-XI i: P) “zappt MCE3: P)0'
(At.M)(a::= P) emm At.M(a::= P)

(MN)[t := T] que” M[t := T]N[t := T]
(AyZa-M)lt t: Tl qztlom Ay:alt Z: z: 7])
tlt 5: 7'] qztvarl T
a[t := T] 4,th a t í FTV(0)
sit Ï= 7'] _’ztvar2 3
(Mallt 3: Tl qzzappz M[t := T]a'[t := T]
(Au.M)[t := T] amena Au.M[t := T]
(01 —>ag)[t := T] —>z¿ 0'1[t := T] —>0'2[t := T]

(Vu.a)[t := T] 4,, Vu.a[t := T]

Figure 3.1: The Fes-calculus

Definition 3.24 (Fe, and subsystems) The Fu-calculus is given by the rules in Figure 3.13. The Fe,
calculus without the rules Beta2 and TBeta is referred to as the ES-rewrite system (or ES-calculus). The
Fu-calculus without the Beta2 rule is called the ESÏ-rewrite system. The third group of rules is called the
ZT-rewrite system.

As regards the choice of the rules perhaps it is worth mentioning that the Gc-rule may be replaced by the
more restricted garbage collection rule RGc without affecting the results. The same applies to the ztgc-rule and
what might be called the restricted garbage collection rule for types t[s := T] qmgc t. Also, the ztvaTQ-rule
may be replaced by the more general rule M [t := T] Hztgcg M.

We shall now prove that the EST-rewrite system is strongly normalizing. Intuitively, one notes that the
substitution calculus ES ‘pushes’ substitution operators deeper and deeper into a term/type until they are
performed or eliminated. As for the rule TBeta. one notes that it eliminates an occurrence of the binder A.
Thus we shall first prove that the ES-rewrite system is strongly normalízing by interpreting it into a sirnpler
calculus equipped with a well-founded reduction notion and showing that reduction is preserved. Then for the
full system EST we use this result plus Lemmas 2.6 (see appendix) and 3.31.

Definition 3.25 The set of terms constructed from the alphabet A = {*,,\(o, o), Ao,o —>o, 0.o, olol}, denoted
S, is defined by the grammar a ::= a: | A(a, a) | Aa | a..a. | a,[a.] | a. -—va. Also, we define the following well-founded
ordering >> . >>*, /\, A, -> on the alphabet A.

Asuming all symbols of A have multiset status, this well-foundedordering induces a well-founded Recursive
Path Ordering (RPO) on the full set of terms S [Der82]denoted >-q¡(see appendix).

Definition 3.26 We define the translation R1(o) : RT —>S as

3The reason for prefixing the second group of rule with a z is somewhat arbitrary, however some rsource for distinguishing
these rules from those of Axwas sought for since reduction between Fc, and z\xis later compared (Lernma 3.48(2)).
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def
R1(z)=7z1(t) d=° * R1<M<z==N>) = R1(M)IR1(N)I
R1(MN) dé‘ R1(M).R1(N) R1(M[t:= T1) dé‘ R1(M)[R1(T)]
alma) d=°'R1(M)-R1(a) naa-w) dé‘ vam-near)
721(,\z;a.(M)) “¿f ,\(7z1(a),7z1(M)) R1(Vt.a) dé‘ AR1(a)

R1(At.M) dé‘ A‘R1(M)

Note that R1(o) simply forgets all variabls and all binding variables. For example R1(a:(z := y)) = *[*].

Lemma 3.27 The ES-rewrite system is strongly normalizingon RT.

Proof. One shows that if A, B are raw terms in 'R’Ï such that A —>EsB then we have R1 (A) >—7,R1

Since the ES-rewrite system is also locally confiuent, by Newman’s Lemma we may conclude that it is
confiuent. Thus if A G RT then we shall use ES (A) to denote the unique ES-normal form of A. Since the ZT
subcalculus is strongly normalizing (it is included in ES) and locally confiuent then by Newman’s Lemma we
may also conclude that it is confluent. Thus if a is a type then we use ZT(a) to denote its unique ZT-normal
form. Also, we shall use =ZT to denote the refiexive, symmetrical and transitive closure of one step reduction
in ZT.

Remark 3.28 One may verify in the style of [Rí093,pp.63-64] that if a' is a type then ZT(a) is a pure type
and if A is a raw term then ES(A) is a pure term or type. Note that if M 6 T then ZT(M ) not only may not
be a pure term (for example if it has occurrences of the term substitution operator) but also may not have pure
types since term substitutions may block the execution of type substitutions.

Before proceeding to the property of strong normalization of EST, we mention some technical properties of
ZT and ES which shall be used later.

Lemma 3.29 Let p, 0,7 be pure types, P and Q terms in T, and 11,12any types.

1. p{t 4- T}{u 4- a{t <- T}} = p{u <- o‘}{t4- T} ifu e FTV(7').

2. ZT(7'1[t := 73]) = ZT(1'1){t <- ZT(T2)}.

3. ES(P(:1: := Q)) = ES(P){:¡: <- ES(Q)}.

4. ES(P[t := 71])= ES(P){t «- ZT(T1)}.

Proof. The first item is the substitution lemma and is proved by induction on p. The second item is first
proved for 'rl and 12 pure types and then using Remark 3.28. Item three is dealt with in a similar fashion. Item
four is similar, but uses the observation that for a type a, we have ES(a') = ZT(a) and also uses item

Next weextend the SN property of ES to the rewrite system ES’, i.e. ES with the additional rule TBeta. For
this we use Lemma 2.6 (see appendix). We thus define a translation R2(o) from terms in RT to S such that the
conditions of Lemma 2.6 are met. The latter translation shall forget type applications and type substitutions.

Definition 3.30 We define the translation R2(o) : 'R’T—> S as

R2(z)=7a2(a) d=°‘* MMM) d=°‘ AR2(M)

R2(MN) "é‘ R2(M).R2(N) 722(M<z:= N» dé‘ R2(M)IR2(N)I
R2(Mcr) dé‘ 122w) R2(M[t:= 1]) dé‘ R2(M)

n.0n.

R2(/\I za.(M)) ¿(R2(0),R2(M))

Lemma 3.31 Let M and N be terms in T. Then

1. If M —>,BemN then R2(M) >-7¡R2(N), and
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2. M—)EsNthen :7;
Proof. In both items we use induction on the reduction M —>..N with r = TBeta or 1-€ ES. Let us

consider the first item. Suppose the reduction is at the root. Then M = (At.P)-r and N = P[t := 7'] and
R2(M) = AR2(P) and R2(N) = R2(P) and hence we obtain the desired result. If the reduction is internal
then we apply the inductive hypothesis and the monotonicity of RPOs.

The second item is similar. Note that if M —>ZTN or M am”, N then R2(M) = R2(N). For the
remaining rules we first consider the case where the reduction takes place at the root, for when the reduction
is internal we may apply the induction hypothesis and the monotonicity of >_-7¡.

o 1'= zapp. Then M = (PQ)(a: := R) andN = P(:1::= R)Q(a: := R) and R2(M) = (R2(P).'R2(Q))[’R.2(R)l
and R2(N) = (R2(P)[R2(R)]).('R2(Q)[R2(R)|). Since I] >>. we verify that R2(M) :7, R2(P)['R,2(R)]
and R2 (M) :7; R2(Q) [12202)]. Let us consider the first of these, the other one being similar. By the
‘equal heads’ case we have (R2(P).'R2(Q), R2(R)) tin (R2(P),'R,2(R))4.

o 1' = zlam. Then M = (Ay : a.P)(:r := Q) and N = Ay : cr.P(z := Q) and we have R2(M) =
(A(Rg(a),R2(P))[R2(Q)] and R2(N) = A(R2(0),R2(P)[R2(Q)]). Since I] >> A we must verify that
R2(M) ¿un Rg(cr) and 722(M) :7; R2(P)[R2(Q)]. The first is direct; for the second we may verify that
(A(R2(0),732(P)),R2(Q)) tin (R2(P),'R2(Q))

o r = 2var, zgc. The result followsby the subterm property of recursive path orderings.

o r = zlamt. Then M = (At.P)(a: := Q) and N = At.P(:z: := Q) and 'Rg(M) = (AR2(P))[R2(Q)] and
R2(N) = A('R2(P)['R2(Q)]). Then >>A and we must thus verifythat 'Rg(M) :7, R2(P)[R2(Q)l. We
conclude using the 'equal heads’ case.

Corollary 3.32 The EST-rewrite system is strongly normalizing on T.

Definition 3.33 (The z and Az-rewrite systems) Let us denote the rewritesystem obtained by taking ES
and eliminating the subsystem ZT and rules zappt and zlamt, the z-rewrite system. We define Az as z and the
rewrite rule Beta2. We recall these rules below.

(Az:a.(M))N 433m2 M(=v==N)
(MN) (a::= P) en”, M(:i::= P)N(a: := P)

/\z z (Ay: a'.(M))(a: := P) 4,1“, Ay: a.(M(a: := P))
z(:c := P) ana,- P
M(a::= P) am M a:í FV(M)

The /\z and z calculi are the explicit substitution calculus for the simply typed lambda calculus (typed Ax)
and its subcalculus for computing explicit substitutions (typed x), respectively. Note that from Lemma 3.27 we
have that z is strongly normalizing.

3.3.2 F”: The Typing Rules
In this section we introduce the typing rules for F¿3. As already mentioned, in [B1097]explicit substitutions were
added to the Pure Type Systems formalism [Bar92]. Although we deal only with an explicit substitution version
of F, already for this calculus subject reduction was sh0wn to fail. The counterexample exhibited in [B1097]is
the pure term M = (A3.(Af : 5 —>3):: : s.fz))t. We refer the reader interested in Explicit Pure Type Systems
(EPTS) to [B1097].After proving subject reduction for F”, we conclude by showing how the typing rules deal
with M. Independently in [B1099,BloOl], the notion of Explicit Type System is introduced, a presentation of
pure type systems with explicit substitutions which enjoys the subject reduction property.

Definition 3.34 (Type assignment) A type assignment is a finite set of pairs {21 : 01,...,a:n : an} such
that the variables are pairwise distinct and each 0',-is a (not necesarily pure) type. The domain of the type
assignment is the set {21, . . . ,zn}. If the types a,- with i E 1..n are pure then I" is said to be a pure type
assignment. Type assignments are denoted with capital greek letters I",A, . . .. We use Doma") to denote the
domain of I‘.

4A word on notation, (. . .) is used for multisets and ¿’71 is the usual extension of :1, to multisets [00594, Chapter 1].
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Definition 3.35 (Type judgement) A typejudgement is an expressionof the form F D M : a where F is a
type assignment, M is a term in T and a is a pure type. If, moreover, I" is a pure type assignment and M is a
pure term then F D M 1a is said to be a pure type judgement.

We shall sometimes use l"(a:,-)= a,- to denote the type assigned to the variable z,- by the type assignment
1"= {1:1:0'1, . . . ,zn :an}. Also we use the abbreviation t é FTV(F) for t í FTV(I‘(y)) for every y E Dom(F).

Definition 3.36 Let I‘ = {3:1: 01,...,:c,. : an} be a type assignment, t a type variable and T a type. Then
F[¿:=,] is any member of the set of type assignments{ {11 : 0’1,...,zn : 0;} | a; =ZT a,-[t := T]for alli G 1..n}.

Definition 3.37 (Derivable type judgements) The set of derivabletypejudgements in Fu is defined by
the typing rules given in Figure 3.2. The rule tabs is subject to the followingrestriction: t í FTV(F).

:tzaeF—var
I‘Dz:ZT(a)

I‘DM:cr—>-rFDNza F,z:aDM:T——app abs
FDMNz'r FD(/\z:a.(M)):ZT(a) —>'r

FDM:Vt.a’ FDMza—tapp —tabs
I‘DM'r:a{t<- ZT(T)} I‘D(At.M) :Vt.a

F,z:aDM:T FDN:ZT(0) FDMza
subs tsubs

FDM(a::= N) 27’ F[¿;=T]DM[t:=1'] :a{t<— ZT('r)}

Figure 3.2: 'I‘yping rules of the Fu-calculus

Definition 3.38 A term M e T such that there exists a type assignment I‘ and a pure type a such that the
judgement F D M : a is derivable in the type system of Figure 3.2 is called typable. The set of typable terms is
denotedT”.

In a typing judgement l" D M 1a the type a' assigned to the term M is always a pure type. Also, we refer
to the size of a derivation as the number of applications of rules it contains.

Example 3.39 Two examples of type derivations follow.

f:s—vs,::st:s—vs f:s—>s,:|::sD:::s
appf:s-#s,:c:st:c:s— 3

f:s-rsDz\::s.f:::s-vs
t

fit-Dt>(/\I:3.f:l:)[3:=tl:t-Dt
DO! : t -v t.(z\213.f:)[31=t])2(tqt)—’(t->t)

f:s—vs,:c:st:3->s f:s—rs,:|::sD::s
“PPfzs-rs,::st:::s—. 3

f:3—>sDAz:s.fz:s-os
ts-ubs

f: (s-r s)[s:= t]D(A:c:3.f:)[s:= t] :t-vt
abs

>1\f:(8 —vs)[s := t].(/\:I:: s.f:)|s := t] : (t —vt) -v (t -v t)

Note that for the application of tsubs in the upper type derivation we use (t —>t) =ZT (s —vs)[s := t].
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The typing rules of the usual (Church style presentation) of F is given by all rules in Figure 3.2 without rules
subs and tsubs and restricting all type judgements to pure type judgements. Thus when Speaking of derivable
type judgements in F we shall explicitly mention so, otherwise we shall assume that the type system referred
to is Fu.

In devising a rule for typing type substitutions our first intuition is that it should resemble an application
of the rule for type variable abstraction followed by that of type variable application. But the introduction
of a type substitution in a term M presents some difliculties. Consider a derivable premise I" D M : 0' and
suppose we add the type substitution [t := T] to M in order to obtain 1"D M [t := T] : a{t <- ZT(T)}. Then
we immediately note that the context l" should not remain the same for if a: G FV(M) then the type assigned
to a: by the type assignment l" has now fallen under the scope of the type substitution. For example, consider
the application of tsubs in the upper derivation of Example 3.39. The variable f , which has type s —>s in the
premise, has now fallen under the scope of type substitution [s := t], so its type must be affected accordingly.
This motivates the use of l"[u=,¡ in the rule tsubs.

An alternative approach could be to include the application of the type substitutions in the types of the
variables in the type assignment I‘ from the start. This requires some mechanism of control in order to ensure
that the type substitution applied to the term M is the same as the one which has been applied to the type of
the variable in the type assignment (and in the same order if more than one has been applied).

We shall first consider the relation between typing in F and typing in F“. As expected, all terms typable
in F are typable in F¿,(the typing rules for Fe, include those of F And if a term is typable in Fe, then its
ES normal form is typable in F (Lemma 3.42).

The followingresult is used when showing that F has the subject reduction property.

Lemma 3.40 Let 1",a:: T D M : a and l" D N : T be derivable pure type judgements in F. Then F D M {:1:<
N} : cr is derivable in F.

Proof. By induction on the size of the derivation of I‘,a: : T D M : a.

Derivability is closed under type substitution in F.

Lemma 3.41 Let I‘ D M : cr be a pure type judgement and T a pure type. If P D M : cr is derivable in F and
BTV(M, a, 1")ñ FTV(T) = 0 then 1"{t<- T} D M{t 4- T} : a{t <- T} is derivable in F.

Proof. By induction on the size of the derivation of F D M : a.

Note that the subs rule internalises Lemma 3.40 and rule tsubs internalises Lemma 3.41.

Lemma 3.42 Let I‘ D M : a be a derivable type judgement in F“. Then ZT(I‘) D ES(M) : 0' is derivable in
F.

Proof. By induction on the derivation of I"D M : a using Lemmas 3.40 and 3.41 and Lemma 3.29(2) and
(3). We shall consider the interesting cases.

o case subs. Then the derivation runs

P,z:pDP:a I‘DQ:ZT(p)
su

I‘DP(a::=Q):a
bs

By induction hypothesis we have that ZT(F),a: : ZT(p) D ES(P) : a' and ZT(I‘) D ES(Q) : ZT(p) are
derivable type judgments in F. Then by Lemma 3.40 we have that ZT(l") D ES (P){a: <- ES(Q)} : a is a
derivable type judgement in F. Finally applying Lemma 3.29(3) we are done.

o case (tsubs). Then the derivation runs

A I> P : p

Alta] D P[t := T] : p{t 4- ZT(T)}
tsubs
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where I" = A[t:=,] and a = p{t 4- ZT(T)}. Remark that p is pure. Then by the induction hypothesis the
type judgement ZT(A) D ES(P) : p is derivable in F. Applying Lemma 3.41 we obtain that ZT(A){t <
ZT(T)} D ES (P){t 4- ZT(T)} : p{t <- ZT(T)} is derivable in F. We conclude by observing the following:

—By Lemma 3.29(4) we have ES(P[t := T]) = ES(P){t <- ZT(T)}.

- On the other hand, suppose a: : pl e A. Then we have a: : pz e Alta] with pg =ZT p1[t := T]. Since
ZT is confluent and SN we have ZT(pg) = ZT(p1 [t := T]) =L ¿29(2) ZT(p¡){t <- ZT(T)}, which
concludes the case since we then have ZT(A[¿Z=,])= ZT(A){t <- ZT(T)}.

In order to prove the subject reduction property for Fe, we need two auxiliary results, the weakening lemma
and the context reduction lemrna.

Lemma 3.43 (Weakening) If I‘ D M : cr is a derivable type judgement, and a: : T is such that a: í Dom(1")U
BV(M), and BTV(M) n FTV(T) = (0then I",a: : T D M : a is a derivable type judgement.

Proof. By induction on the size of the derivation of F D M : a. The interesting cases are

o case (abs). Then the derivation runs

1",y:pDP:p’——abs
I‘DAy:p.P:ZT(p) —>p’

Now by the conditions of the lemma we have a: 9€y and thus by induction hypothesis we obtain

I‘,y:p,:1::TDP:p’
abs

I‘,z:TD/\y:p.P:ZT(p)->p’

o case (tsubs). Then the derivation runs

ADPza’
I tsubs

A[t:=p] l> P[t == Pl 10 {t ‘- ZT(P)}

where F = A[t¡=p]and a = a’ {t 4- ZT(p)}. Then by induction hypothesis we have

A,a: : T D P : o"

A[,¡=p],:c : T D P[t := p] :a’{t <- ZT(p)}
tsubs

Note that since t G BT V(P[t := p]) by the condition of the lemma we have t é FTV(T) and therefore
T[t := p] ¿me T.

We shall need the following lemma for the subject reduction property, it states that if a context typs a
term P with type 0' then the context resulting from rewriting the original one also types P with a.

Lemma 3.44 (Context reduction) Let Ra: : T D P : a be any derivable type judgement and suppose
T —>ZTT’, then I‘, a: : T’ D P : a' is a derivable type judgement.

Proof. By induction on the size of the derivation of I‘,a: : T I>P : a.

o case (var). We have two further subcases to consider.

—P = a2.Then a = ZT(T). And since T ->zr¡- T’ we have ZT(T) = ZT(T’). Then l",z : T’ D z: ZT(T)
is a derivable type judgement.
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— P = y 96:c. Then a = ZT(p) with y : p e 1"and we are done.

o cases (app), (abs), (tapp), (subs) and (tabs). We use the induction hypothesis. For the case (tabs) note
that if T —>zT7" then FTV(T’) Q FTV(T).

o case (tsubs). Then the derivation runs

A,:c:pDP':a'2
tsubs

A[¿¿=,1],a:: T D P’[t := al] :0'2{t 4- ZT(U¡)}

where 1' =ZT p[t := al]. But then 7" =ZT p[t := al]. And we may construct the following derivation (see
Def. 3.36):

A,z : p D P' : 02
I I tsubs

A[¿¡=,¡],a: : T D P [t := al] : 0'2{t <- ZT(a¡)}

Lemma 3.45 (Subject reduction) Let I‘ D M : a be a derivable type judgernent and suppose M —)p“N
Then l" D N : a is a derivable type judgement.

Proof. By induction on the reduction M Hp“ N using Lemmas 3.43 and 3.44 (see appendix).

We finish this section with the counterexample [B1097,Prop.7.27] mentioned in the introduction of the
section that states that the EPTS F a: does not verify the subject reduction property and we show how this
situation is remedied.

Example 3.46 Consider the pure term M = (As.(Af : s —>3.,\a:: s.f:c))t. It is typable in F“

f:s-v.s,:|::st:s-os f:s—vs,z:sDz:s
“PPfzs-vs,::sta::s—— 3

f:s->sD/\::s.fz:s—vs
-1...

DAf:s->3.A:c:s.f::(s-rs)—t(3—v3)

DAs.(Af : s —>3A: : s.fa:) : Vs.(s -r s) -> (s -> s)
app

D(As.(Af : s -v 3):: : s.f:c))t : (t —>t) —>(t -v t)

Now we have the following reduction sequence:

M 41323,, (Af : s —>s./\a: : s.f:1:)[s := t]
agua", Af : (s —>s)[s := t].(/\:1:: s.fa:)[s := t]
—»ZT Af:t—>t.(/\z:s.fa:)[s:= t]

The last term is also typable as illustrated by Example 3.39 (as well as the intermediate term Af z (s —>
s)[s := t].(/\a:: s.f:c)[s :=

3.3.3 Strong Normalization of Typed Fe,
In this subsection we prove the strong normalization property for the typed Fes calculus. We follow the
presentation given by Gallier in [Gal90]. The idea is to define an erasing function Emse(o) that when applied
to a.typed term in Fe, eliminates all typing information producing an untyped Ant-term,and proceed as follows:

1. show that if a term resulting from erasing all type information, say Erase(M), is strongly Ax-normalizing
then the original term, i.e. M, is strongly ch-normalizing.
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2. thus, the result follows if we can show that Erasc(M) is strongly Ax-normalizing for typable M. We gen
eralize this goal by showing that if M is typable then Erase(M) concatenated by a series of explicit sub
stitutions is strongly Air-normalizing;clearly this implies that F/rase(M) itself is strongly Aut-normalizing.

3. this previous goal is proved by using the candidates of reducibility technique where the candidates are
suitable subsets of SNM.

Although we have chosen to give a direct proof of strong normalization of Fu by means of the reducibility
technique, other proofs relating strong normalization of Fc, to that of F are possible [B1099,BloOl].

We shall begin by considering the type information erasing function and then consider the reducibility proof.

Definition 3.47 (Erasing function) Wedefine the function Erase(o) : T —>73,,

Erase(:z:) dÉf a: Erase(At.M) dÉf Erase(M)

Erase(MN) “‘="fErase(M)Erase(N) Erase(Mcr) dé‘ Erase(M)

Erase(M(z:= N)) dÉf Erase(M)(z:= Erase(N)) Erase(M[t:=a]) dÉf Erase(M)
Erase(Aa::a.(M)) dé‘ Az.(Erase(M))

We recall that x is the substitution calculus of Ax. It propagates the substitution operators until they are
performed or eliminated. The followinglemma shows that a Fu-rewrite step may collapse to a Ant-termvia the
erasing function or be simulated by a Ax-rewrite step.

Lemma 3.48 Let M,N GT”.

1. If M —>,.N with 'r e (F¿,\Az) then Erase(M) = Erase(N).

2. IfM —>,\zN then Emse(M) ->,\¡ Erase(N).

Proof. Both items are proved by induction on the rewrite step M —>,.N with 1' E (Fe, \ Az) and r E /\z,
respectively. We prove the second item:

o The reduction takes place at the root.

—1' = Beta2. Then M = (Aa:: a.(P))Q and N = P(:c := Q), and therefore we have Emse(M) =
(Az.(Erase(P)))Erase(Q) and Erase(N) = Erase(P)(:c := Erase(Q)). Thus Era3e(M) age“,
Erase(N).

- r = zapp. Then M = (PQ) (z := R) and N = P(z := R)Q(a: := R). And therefore on one hand
Erase(M) = (Erase(P)Erase(Q))(z := Era3e(R)) and on the other Eraae(N) = Erase(P)(a: :=
Emsa(R))Erase(Q)(:c := Era3e(R)) and by the rule app we are done.

—1-= zlam. Then M = (Ay : a.P)(a: := Q) and N = Ay : cr.P(:c := Q). And therefore Erase(M) =
(Ay.E'ra3e(P))(:c := Erase(Q)) and we also have Era3e(N) = Ay.Erase(P)(z := Erase(Q)) and by
the rule lam we are done.

—r = var or r = gc. We resolve as above.

o The reduction is internal. In all cases we use the induction hypothesis and compatibility of —>,\¡.Also
note that in the cases where the context is Pa or P[t := cr]only reductions in P may have taken place.

Proposition 3.49 Let M be a term in ’T”. If there is an infinite F,,-derivation starting from M, then there
is an infinite Ax-derivationstarting from Erase(M

Proof. Suppose we have an infinite Fu-derivation starting from M. Then since the rewrite system S =
Fc, \Az is strongly normalizing (as a consequence of Corollary 3.32) the derivation must have the form M =
M1 -»s M2 4),: M3 —»s M4 —>,\zM5 . .. where the reductions —>,\zoccur infiniter many times. Then by
Lemma 3.48 we obtain an infinite Ax-derivationstarting from Erase(M

Next, our aim shall be to show that if M is a typable term in the polymorphic lambda calculus with explicit
substitutions then the untyped Ax-term Erase(M) is strongly Air-normalizing,thus allowing us to conclude that
M is strongly Fu-normalizing. As already mentioned, we shall use Tait’s version of Girard’s candidates of
reducibility technique [Taí75].
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The proof of strong normalization of Fa

In this section we apply Tait’s version of the technique of candidatas of reducibility in which the candidates are
untyped Ax-terms.

Definition 3.50 (Substitution) A substitution is a function d)1V —> T,“ such that 47(2)96a: for only finitely
many a: G V. The finite set {:I: | 43(2) 9€ 1:} is called the domain of 4: and is denoted Dom(4>). When d) has
domain Doma") for some type assignment 1"of interest we write d) : 1"——>71,.

Definition 3.51 (P-substitution) A substitution 45is called a p(arallel)-substitution if for every :5.-e Dom(q>)
we have z,- é Uxepomw) FV(4>(a:)).

Definition 3.52 (Explicification of a substitution) Let 45be a (possiny p-) substitution and let [121,. . . ,in]
be any ordering of the variables in Dom(q>). Then an ezplicification a: 71, —> T,“ of 45is defined as WM) d=ef
M(:L'¡¡ := ÓCBil . . . (Iin := Ó(Iin)).

Intuitively a p-substitution represents a parallel substitution. Usually when one defines a substitution d)
and applies it to a term, the substitution process takes place ‘in parallel’. Since Ax incorporates sequential
substitution into the object-level and in order to apply the usual reducibility technique we give conditions
(definition of p-substitutions) on these sequential substitutions so that they may behave as desired. It should
be noted that the explicification of a substitution 45is not the usual notion of universal algebra that we are
accustomed to, rather 3 takes a term and applies the substitution 45in an ‘explicit’ way be means of pending
explicit substitutions. The notion of explicification depends on the ordering of the variables of Dom(d>)given
by its user.

Definition 3.53 Let C and D be sets of untyped terms in 73,. Then we define the function space of C in D,
denoted [C —>D], as [C —>D] = {M E Tu I VN e C, MN e D}. We refer to [o —>o] as the function space
constructor.

Definition 3.54 A nonempty family of sets of (untyped) terms in '13,, C, is called type closed if it verifies the
following properties

1. every C G C is nonempty,

2. C is closed under the function space constructor,

3. given any C-indexed family (Ac)cec of sets in C, then ncec Ac e C, and

4. every C G C is closed under a-equivalence.

Note that since we identify a-equivalent terms at the metalevel the last item of this definition is trivially
satisfied. We shall use the notation M e UC to say that M is an untyped Ax-term in C for some member C of
the family C.

Definition 3.55 (Assignment) Let C be a type closed family. An assignment is a function 17: V —> C. Given
a set C e C and a type variable t we use 17[t:= C] to denote the assignment such that for all v e V we have
17[t:= C](v) = C if v = t and 1][t := C](v) = 17(1))otherwise. Although the o[o := o] symbol has already been
used for the closure operator we expect the overloading not to cause any confusion.

Definition 3.56 Given an assignment 77: V —> C, for every pure type a, the set [oln is defined as

ltln dé‘ n(t) if t e v
d f

[(01 -' 02)]0 ¿f [[5117]-' [02171]
th'Ulfl É Ñceclülïllt ==Cl

In the following lemma we assume by the variable convention that the bound type variables in a do not
occur free in 7'. The third item is referred to as “Girard’s tric " [GalQO].The proof may be found in [Ga190].

Lemma 3.57 1. Given two assignments 171: V —> C and 172: V —->C, for every pure type a', if 171and 172
agree on FTV(a) then [ah] = [a]172.
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2. Let 0' and 1' be pure types. Then for every assig'nment 17: V —->C we have [a{t <- T}]17= [a]17[t := [717]].

3. Let C be a type closed family. Then for every assig'nment 17: V —> C, for every pure type 0', we have
[0117 e C.

In order to prove strong normalization on typable terms we ímpose some conditions on the members of a
type closed family. Before proceeding we recall some notation: if M, N1, . . . , Nm e TA, and 21, . . . ,zm G V then
we use M' to denote the term M(a:1 := N1) . . . (zm := Nm) for m 2 0.

Definition 3.58 We say that a family C of sets of untyped Air-termsis a family of candidates of reducibüity ifl‘
it is type closed and satisfies the following. For every set C E C we have,

. For everyvariableze V, ze C.

. For all M,N e Th, ifM(a: := N) e C then (ÁI.M) NG C.

. ForallMGUCandforallm20,andN¡,...,NmEUCifM*€Cthenz(z:=M)*€C
EEB!. ForallM,NEUCandforeveryzeVandallmZOandN1,...,NmeUCifM'eCandzeFV(M)

then M(a::= N)* GC.

R5. For all M1,M2 e Th, for every :1:e V and all m 2 0, and N,N¡,...,N,n e UC if (M1(a::= N)M2(:1::=
N))' e C then (M1M2)(a;:= N)* e C.

R6. For all M e Th, for every a: E V, and all m 2 O,and N, N1,...,Nm E UC, if (Ay.M(a: := N))* e C and
y í FV(N) then (Ay.M)(z := N)” GC.

R7. For all M,N e Tn, for all m 2 0, for all P,N1,...,Nm e UC, ify í FV(P) and M(z := P)(y := N(:c :=
P))" e C then M(y := N)(:1;:= P)* G C.

Condition (R7) is the explicit version of the substitution lemma (Lemma AA).
Now we may prove (roughly) that if a term in T is typable with type a then its image via any explicification

of a p-substitution Ó (satisfying the conditions of the lemma) is in the member set of the family C interpreting
the type cr.

Lemma 3.59 Let C be a family of candidates of reducibility. For every derivation of l"D M : a for some term
M E T, for every asignment n : V —> C, for every p-substitution 45: l" —> '13,, if 42(2) e [ZT(I"(:I:))]11for
every a: e Dom(I‘), then for every explicification d)of d)we have Ó(Erase(M)) E [ah].

Proof. By induction on the size of the derivation of 1"D M : a.

o Base case. Then the derivation consists solely of I" D a: : ZT(p) where a: : p G I". Now by hypothesis we
know that ¿(2) e [ZT(p)]n. Let [:5],. . . ,zn] be any ordering of the variables in Dom(I‘) and suppose
z,- = :17.Then we reason as follows

45(2)G [ZT(pHn hypothesis
45(z)(=vn== «Msn» e [ZT(p)]n (R4), a p-subs

¿(INIJ‘H == 442141)) ' - - (Zn == 44%)) G [ZT(P)]TI .014), 45 P'SUbS
me ==«msnm-+1 := «pm-+1». .. (sn ==mn» e [ZT(p)ln (R3)

:c(:1:1:= 45051)). . . (2,. := 42(zn)) 6 [ZT(p)]n (R4), I‘ type judg.

o Inductive case. Let k + 1 be the length of this derivation. We analyse the last derivation rule applied,

- app. Thus the derivation ends as follows,

FDM:‘r->a I‘DNz'r
I‘DMNza
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Then by the induction hypothesis wehave that E(Erase( M)) e [T —>0117and also that 3(Erase(N e
[T117for any explicification 45of 45.By the definition of [1' —>aln we have E(Erasc(M))5(Emse(N E
[0117.That is,

Ein-“(MMM 1= 4?(-'01))--(=vn1= Ó(a=n))5rase(N)(21 == ¿(371))"(311 := ¿(2,3) G [0177-Then applying
condition repeatedlyweobtain,

(Erase(M)Era.se(N))(zl := 4421)) . . . (2,. := 44%))

= .[EI'IGSC(MN)(31 1: Ó(371)) - - - (¡En 5: Ó(zn))e a n

Since this applies for any explicification a of 45meeting the conditions of the lemma we are done.
abs. Then the derivation ends as follows:

F, a: : 7' l> M : p— abs
F>A117.M: ZT(T)—>p

Let N be any term in [ZT(T)]1] and a any explicification of 4)with ordering of variables [a2],. . . , san].
We choose a representative in the a-equivalence class [(Az.Erase(M)) (21 := 45(21» . . . (zn := da(a:,,))]a,
say (Az’.E'rase(M’ := 45021)). . . := 45(zn))(note that renaming commutes with the erasing
function) such that

1. z’ í FV(d)(:c¡)) for i e 1..n and 2’ 9.!FV(N) and :5,-96a." for 2'E 1..n, and

2. 11:;é FV(42(::J-))and z; í FV(N), for i,j G 1..n.

We have to rename a: in order to avoid name clashes (first item). But since we are working with p
substitutions this entails more renaming (second item) so that we may be able to apply the induction
hypothesis when it is needed. Note that since 45is a p-substitution no renaming takes place inside
the d)(:c¡)sin the representative of the a-equivalence class chosen.
Let d)’be the resulting p-substitution, í.e. the substitution defined as

W)gq gw
Since the induction hypothesis holds for every derivation of length 5 k and_for eveg assignment 17
satisfying the conditions of the lemma, we have that for every explicification 42’of d)’,45’(Erase(M’ E
[p]17.In particular, Era.9e(M’)(:L-'1:= d>(a:¡)). . . (z;t := ¿(In))(z’ := N) G
Then by condition we obtain that (/\:1:’.E1‘a.9e(M’)(:I:’l:= 45021)). . . (ar’n:= ¿(mn)))N E [pln
Since this is valid for every N e [ZT(T)]'I] then by definition of [ZT(T) —>pln we have that,
ÁI’EranM’XIí ==M21» ---(dá ==¿(170) G [ZT(T) -> Pln
Finally since ar’é FV(ó(a:,-)) for i e 1..n (first item above) we may apply condition (R6) repeatedly
obtaining, (,\:i:’.E,"r-a,.'ze(M’))(.12’1:= ¿(30) . . . (:5;l := q>(z,,)) G [ZT(-r) -> pln

And by closure under a-equivalence we conclude,

(Az.Erase(M))(:z:1 := 45051)). . . (17,.:= ¿(2,3)

= _Era.se(A:r: 'r.M)(a:1 := qb(a:1)). . . (2,, := ¿(2,3)
= d)(Era3e(Aa::
G IZT(T) -* PIT]

ifz=zfi
ifz=:1:’

subs. Then the derivation ends as follows

I‘,:E:T>M1:cr F|>M2 : ZT(T)
subs

I"|> M1(z := M2) : 0'

Let 45be any p-substitution with domain I‘ satisfying the conditions of the lemma. Now we choose
a representative of the equivalence class
[Erase(M1)(=B == Emse(M2)(31 == ¿(20) - - - (En == ¿(20))14:

say Erase(M{)(z’ := Erase(M2)(a:1 := 45(z¡)). . . (2,. := own)», such that

1. 2’ í Doma"), and
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2. a:’ Q FV(E(Emse(M2)) (and thus z’ Q FV(45(:cJ-))with j e 1..n).

Let 45’be the substitution 45’: (F, z’ : 7') —> TA, defined as

{ flan)qb(Era.se(Mg))

Note that due to the first and second item, and that 1:,-í FV(3(Era3e(M2)) with i e 1..n (since
they are all bound and 45is a p-substitution) the resulting substitution is a p-substitution.

Since the induction hypothesis holds for any derivation of length 5 k and for every assi_gnmentsatisfy
ing the conditions of the lemma, on one hand for every explicification 45of cpwe have 45(Erase(Mg)) e
[ZT(T)]T[. Another application of the induction hypothesis to the derivation ending in the left
Eemise of the application of subs allows us to infer that for every explicification 45’of d)’we have
d/(Erase(M{)) G lala. In particular we have,
Erase(Mí)(21 := Ó(21))...(zn := 45(zn))(a:’:= Erase(M2)(:c¡ := 49(21». . . (mn:= Msn)» e [0117.
Since z’ é FV(d>(z,-))(item 2) we may apply condition (R7) repeatedly and obtain Erase(Mí)(z’ :=
Emse(M2))(=Bi == 45(21» - - - (In := d>(-'Bn))E [0117

And since [a]17is closed under a-equivalence

Erase(M1)(a: := Erase(Mg))(:v1:= M21»... (mn:= ¿(2,3)
En'ase(M1(a: := M2))(:z:1 := <,1>(:7:1))...(:i:n:= ¿(2,3)
45(ET036(M1(I := M2))) G [0171

tapp. Then the derivation ends as follows

F D M : Vt.p

I‘D MT : p{t <- ZT(T)}

ifz=zi
ifz=z’

def
«is/(z) =

tapp

By the induction hypothesis, for any exp_licification5 of 45we have Erase(M)) e |Vt.p]17.Now since
[Vt.p]'r]= flcedplïflt := C], we have 45(Erase(M)) E Ip]17[t:= C] for every C e C. In particular
if we take C = [ZT(T)]T] e C, we have ¿(Erase(M)) e [p]17[t:= [gT(T)]n]. By Lem_ma3.57(2) we
have that [p{t 4- ZT(T)}]T] = [p]17[t:= IZT(T)]1]], and therefore 45(Erase(MT)) = Ó(Erase(M)) G
[p{t <- ZT(T)}ln
tabs. The derivation ends as follows.

F D M : p

F D (At.M) :Vt.p

where t séFTV(I‘(z)) with a: e Doma").
Then t g FTV(ZT(l"(a:))) for every a: E Dom(l") (since if 7' —>ZTT’ then FT V(T’) g FTV(T)) and
by Lemma 3.57(1) we have [ZT(I"(a:))|17= [ZT(I‘(:v))]11[t:= C] for every C e C. Since the induction
hypothesis holds for every derivation of length S k, for every 17,and for every p-substitution o
satisfying the conditions of the lemma, it holds for every C G C when applied to the derivation
FDM : p, to every n[t := C] and to every p-substitution 45such that 45(2)e [ZT(1"(:r:))]17.Therefore,
Er every C e C and_for every explicificationa of 4)we have ¿(F/ra,de e [p]1][t:= C]. And thus
ó(Erase(At-M)) = ¿(Erase(M)) Gflceclplnlt ==C] = th-pln
tsubs. The derivation ends as follows.

tabs

ADPzp
tsubs

Alta] D P[t1= T] :p{t <- ZT(1')}

Let 17be any assignment and d)any p-substitution with domain A[¿:=,] meeting the conditions of the
lemma. Consider any a: : 01 e A[¿¡=,] and its corresponding a: : az e A. Then by hypothesis we
have 45(2) e [ZT(a'1)]17and since al =ZT 0'2[t := T] then ZT(01) = ZT(02){t 4- ZT(T)} using the
fact that ZT is complete and Lemma 3.29(2). Thus [ZT(01)]17 = lZT(O’2){t <- ZT(T)}]T] =L ¿57(2)
[ZT(02)ln[t r= [ZT(T)ln].
We apply then the induction hypothesis_with p-substitution 4) and assig'nment 17[t:= [ZT(T)]T]]
and obtain that for every explicification d: of 45we have 41(F/rase(P)) e [p]17[t := [ZT(T)]17]. But
since Erase(P) = Erase(P[t := 1]) and by Lemmas 3.57(2) and 3.29(2) we may conclude that
Ó(Eras€(P[t == TD) G lp{t <- ZT(T)}l77
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In order to obtain families of candidates of reducibility for proving properties of Erase(M) where M E T
Girard has shown that conditions R1-R7 must be strengthened.

Definition 3.60 (Saturated set) Let S be a nonemptyset of terms in Th.

1. We say that S is closed ifi' whenever Ma: e S then M e S where a: e V.

2. Let S be closed. A subset C g S which is closed under a-equivalence is called saturated ifi‘the following
conditions hold

Sl.
82.

S3.

S4.

S5.

SG.

S7.

For every variable :I:e V, for all 17.2 0 and all P1...Pn e S, :I:P1...Pn G C.

ForallM,N€T,\¡,alanOandallP1,...,PnGS,ifM(:c:=N)P1...PneCthen
(Aa:.M)NP1...P,,EC.
ForallMeSandforallm20,n20andallN1,...,NmeSandP1,.
then :c(a::= M)"P1...Pn E C.

For all M,N E S, all m 2 0, n 2 0, all N1,...,Nm, all P1,...,Pn E S, and every variable a: in v
such that a:í FV(M) if M"P1...Pn E C then M(:c := N)"‘P1...Pn GC.
For all M1,Mz G71x, for every variable a:E v and for allm 2 0, and N, N1, ...,Nm E Sand alln 2 0
and P1, . ..,Pn E S if (M1(a::= N)M2(z := N))'P1...Pn E C then (M1M2)(:1::= N)"P1...Pn E C.
For all M G 71x, for every a: e V. and all m 2 O, and N,N1,...,N,n e S, and all n 2 0 and
P¡,...,Pn e S if (Ay.M(z := N))"‘P1...Pn e C then (Ay.M)(a::= N)*P¡ ...P,,1 e C.
For all M,N e ’11,,for allm 2 0, for all P,N¡,...,Nm e S, for all n 2 0 and P¡,...,P,, E S if
yéFV(P) andM(:c:=P)(y:= N(a::=P))*P¡...Pn€Cthen M(y:= N)(:v:=P)*P1...P,.GC.

..,Pn€SifM*P1...Pn€C

Lemma 3.61 Let S be a nonempty closed set of terms in 71,, let C be the family of saturated subsets of S,
and assume that S is saturated. Then C is a family of candidates of reducibility.

Proof. Note that conditions (Sl)-(S7) imply conditions (RD-(R7), respectively. Therefore we are left to
verify that C is a type closed family. First of all note that the family C is nonempty since S e C. Also,

o By condition (Sl) each saturated subset is nonempty since it contains all variables.

o Let C and D be saturated subsets of S. We must show that [C —>D] = {M G '11, IVN G C, MN E D}
is a saturated subset of S.

[C -—>D] is a subset of S. Let M e [C —>D]. Since there is some variable 1: e C, we have Ma: G D.
And since S is closed, M E S.

(Sl). Since D is a saturated subset of S then by (Sl) for every variable a: e V and for all n 2 0
and P1,...,P,.,P G S we have zPl...PnP G D. Since this is valid for every P e C, we haveZP]...PnE
(52). Let M and N be any terms in TM. Let P1...Pn be terms in S. Suppose that M(:r :=
N)P1...Pn G [C —>D]. Then for every P e C we have M(a: := N)P¡...P,.P e D. Since
D is saturated, by (82) we have (Az.M) NP1...P,¡P e D. Since this holds for every P G C,
(Az.M) NPI . . .Pn e [C —>D].

(S3). Let M be a term in S. Let N1, . . . ,Nm and P1...Pn be terms in S. Suppose that M(a:1
N1)...(a:m := m)P¡ ...Pn G [C —>D]. Then for every P e C we have M(21 := N1)...(zm
Nm)P1 ...P,,P G D and since D is a saturated subset of S by (S3) a:(:z::= M)(:r:1 := N1) . . . (zm
Nm)P1...PnP e D. Since this holds for every P e C we have a:(a: := M)(a:1 := N1) ...(zm
N,,,)P1...Pn e [C —>D].

The remaining cases are dealt with likewise.

o Note that properties (Sl)-(S7) of saturated subsets of S are preserved under arbitrary intersections, and
thus for the C-indexedfamily of saturated subsets of S, (Ac)cec we have flcec Ac is a saturated subset
of S.
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o A saturated subset of .S'is closed under a-equivalence by definition.

Proposition 3.62 Let S be a nonempty closedset of terms in Th, let C be the family of all saturated subsets
of S, and assume that S is saturated. Let M e T that type checks under the type assig'nment I‘ = {1:1:
01,...,zn : an} and let 21,...,zn be fresh variables. Then E}r(z.se(M)(:z:¡l:= 21)...(:r¡n := zn) e S where
2'1,. . . , in is any ordering of the variables in Dom(F).

Proof. By Lemma 3.61 we have that C is a family of candidates of reducibility. Finally, we conclude by
Lemma 3.57(3) and Lemma 3.59. .

Therefore in order to prove properties of Erase(M) when M is a typable polymorphic term we need saturated
sets satisfying these properties. In particular, since we are interested in strongly Ax-normalizing terms (SN A!)
we shall prove that the set SN,\x is a closed saturated set. The key ingredient in the proof of this result is the
Perpetuality Proposition.

Lemma 3.63 The set SNA, is a closedsaturated set.

Proof. We must verify that SN A, is closed and verifies (Sl)- (S7). Note that if M a:is strongly Ax-normalizable
then M also, so SN A, is closed. We are left to check that SN A, verifies

o (Sl). Suppose P1 . . . Pn e SN A, then for every variable :z:e V, 2P] . . .Pn is strongly Ax-normalizing.

o (S2). By the Perpetuality Proposition 3.11(1).

o (S3)-(S6). By the Perpetuality Proposition 3.11(2),(3).

o (S7). By Remark 3.12.

Therefore since SNA, is a nonempty closed subset of 73, and is itself saturated, if we construct the family
of saturated subsets of SNA, we obtainI by Lemma 3.61, a family of candidates of reducibility. This allows us
to prove the following corollary.

Corollary 3.64 Let M be a term in T”. Then M is strongly Fu-normalizing.

Proof. Suppose M e 7'". Then there is a type assignment I‘ = {3:1: 01,. ..,:cn : an} and a pure type cr
such that l" l> M : a is a derivable type judgement.

Let 21, . . . , 2,, be fresh variables. Then by Proposition 3.62 we have Erase(M)(:z:¡l := 21) . . . (aa-n:= 2,.) G
SNA, where i1,...,i,, is any ordering of the variables in Dom(l"). But then we also have Erase(M) e SNA,
and finally by Proposition 3.49 we may conclude that M is strongly Fes-normalizing. .
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Chapter 4

Perpetuality in /\ws

This chapter studies perpetuality in the Avs-calculus. It does so by exploiting the proof technique introduced
in [DG99, DG01] for proving preservation of strong normalization of Avs. The Avs-calculus is a calculus of
explicit substitutions based on de Bruijn indices notation which is considerany more involved than Ax due to
the presence of substitution composition. Indeed, although in contrast to the case of Ax-terms the Aus-terms
are decorated with updating tags (Def. 2.53), it is the presence of rewrite rules allowing substitutions to be
composed which introduces technical difficulties which are not present in Ax. A term with an update tag is
of the form , indicating that all free indices in M should be incremented by i units. Substitutions have
the form M [i/N, j] indicating that indices i must be replaced by (2')Nand that there was a tag (j) embracing
the Beta-redex that fired the substitution. The following rewrite step illustrates how substitutions may be
composed in Avs:

4[0/oo,01[0/,\oo,01em 4[0/(00)[0/,\00,0], 1]wH-zfi
8 t 80‘

Note that, as originally introduced in [DG99,DG01], de Bruijn indices start from 0 instead of 1 as introduced
in Section 2.2.2. There are no updating tags in the above two terms. The example below shall include updating
tags.

The Avs-calculus is the first1 lambda calculus with explicit substitutions to satisfy simulation of one-step ,6
rewrite reductionz, confluence on open terms and preservation ofstrong normalization. It is often mentioned that
an advantage of calculi of explicit substitutions is that substitutions may be executed in a controlled manner.
They may be delayed, for instance, in order to avoid unwanted duplication of the body of the substitution.
However, in such a case all substitutions ‘above’ the delayed instance are blocked. This is witnessed in the
Ax-calculus for example. The interest in Aus is that these substitutions ‘above’ the delayed one may jump
(provided certain conditions are fulfilled) over it thanks to rewrite rules for substitution composition. This
constitutes an interesting scenario for the study of rewrite strategies.

As already mentioned in Chapter 3 the literature on perpetual rewrite strategies requires orthogonality, a
property which is not fulfilled by Aus. Hence these results do not apply. Furthermore, the closure tracing
technique used in Chapter 3 is not applicable either due to the presence of substitution composition. Indeed,
although as in Ax, rewrite steps in infinite Aws-derivations must be void (Def. 2.38) from some point on, the sub
stitution body which is source of an infinite Avs-derivation may have been created by composing substitutions.
An example follows.

4[0/00,01[0//\(00),0] ->m 4[0/(00)[0//\00,0],1l 4a. 4[0/(0)(/\00) (0)(/\00),1] _»¡\us. .

The substitution body (00)[O//\00,0] shall be the source of an infinite Avs-derivation. It does not seem possible
to trace back this body and make use of the minirnality argument.

Recently, an extension of uniform normalization (all redexes are perpetual) to non-orthogonal systems was
presented in [KOOOlb]. Due to the fact that decent terms are not preserved by vs-reduction (see Section 4.2.4)
the technique developed in that work does not seem to be directly applicable either.

lTogether, it seems [DG01], with the work by H.Goguen and J.Goubault-Larrecq [GGLOO].
2However, see Section 4.2.

55
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In this chapter we define a perpetua] rewrite strategy for Awsand use it to prove that an inductive char
acterization of a class of terms in Aus captures exactly those that are strongly Avs-normalizing. The results
build on the so called constricting, and in particular zoom-in strategies of the lambda calculus [Gra96, RSSX99,
Me196,KOOOla]. The strategy may be summarized as follows:

o Step 1. Given a Aus-term M admitting an infinite Avs-derivation weobtain a subterm N of M still having
an infinite Avs-derivation, but such that every strict subterm of N is strongly Avs-normalizing. Thus N
is a ‘minimal’ subterm of M admitting an infinite Aws-derivation.

o Step 2. The resulting term N may have a Beta-redex as head redex3 or a ¡vs-redex, where vs is the
substitution calculus of Aws. Now in the former case the Beta-redex is easily seen to be perpetual, that
is to say, contracting this redex does not result in a term which is strongly Avs-normalizing. However in
the latter case it is not clear that the head ias-redex (or any ¡vs-redexfor that matter) is perpetua]. This
problem is due to the non-orthogonality of Aus. We solve it by introducing a labelling strategy, described
briefly in Step 3.

o Step 3. Given a minimal (in the sense discussed above) Aus-term N admitting an infinite Aws-derivation,
the labelling strategy labels an explicit substitution operator in N, yielding fl. The resulting labelled
substitution operator enjoys the property that it may be eliminated fromJ! (by computing it) via a notion
of labelled rewriting that preserves the posibility of infinite Aws-derivations.The proof that this notion
of labelled rewriting is perpetual relies on the proof technique used for proving preservation of strong
normalization of Avs [DG99, DGOl].

The perpetual rewrite strategy shall then be used to show that a certain set of terms determined by four
inductive rule schemas are exactly the set of strongly Aws-normalizingterms.

Structure of the chapter

Due to the technical complications arising in Aus, partly because of the ‘noise’ introduced by the updating
tags, but more fundamentally due to the presence of substitution composition, we have chosen to present the
basic ideas in the context of the Ax-calculus. Of course, substitutions may not be composed in Ax, however
we believe that the efiort is nonetheless worthwhile from an expository point of view. It helps pinpoint the
main steps outlined above, and prepares the reader for the material on Avs that follows. After introducing
the labelled Avs-calculus we study the labelling strategy for Avs. This shall constitute the core of the chapter.
Finally, we formulate the rewrite strategy and prove it perpetual. We end the chapter with the characterization
of the strongly Aws-normalizing terms.

The material presented in this chapter is joint work with A.Arbiser and A.R.1'os[ABROO].

4.1 Zooming-in on Ax
In this section we formulate a perpetual zoom-in Ax-strategy, in preparation for Section 4.2 on Aus.

Definition 4.1 Let M e T,“ such that oo,\¡(M). A subterm N of M such that oo,\¡(N) and every proper
subterm of N is strongly Ax-normalizing, is called a minimal pemetual subterm.

An infinite Ax-derivation is called constricting [Gra96, RSSX99] if it is of the form

CilMil ->,\¡ CilCZlMle ->A¡C1[C2[C3[M3lll_’Az

where the M,- are minimal perpetual subterms and the redex contracted in the step Cl ..C,-[M,-]. . —r,\¡
Cl[. ..C,-[C,-+1[M¡+1]]. . is a subterm of Mi. A (one-step) perpetual rewrite strategy 17(0) for Ax is called
constricting if any infinite .‘F(o)-derivation M —->,\¡.‘F(M) —>,\¡¡(J-"(MD ->,\x is constricting. In the
case that 17(0) is a many-step rewrite strategy then it is constricting if any infinite f(o)-derivation M LA,
.7"(M) i)“ .'F(.'F(M LA, .. . is constricting. A zoom-in rewrite strategy is a constricting strategy which in

3Actually, there are two ‘Beta’ rules in Ava however at the moment it is the intuitive grasp we are seeking so we shall ignore
this isue for the time being.
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each term contracts the leftmost redex of a minimal subterm with an infinite derivation. The strategies .‘FOO(O)
and 17(0) of Def. 3.16 and 3.19, respectively, are not zoom-in strategies since in M = (Az.:c)(AA) they contract
the leftmost Beta-redex (yielding a:(z := AA». However, this redex is not the leftmost redex of a minimal
subterm of M admitting an infinite Ax-derivationsince AA is a subterm of M with this property. For the same
reason, neither of the strategies are constricting either.

The chapter aims at introducing a constricting strategy which is partly zoom-in in the sense that in a term
M, if the leftmost redex of a minimal subterm N with an infinite derivation is a Beta-redex, then it contracts
it. If not, then the leftmost Ax-redex of this subterm is an x-redex. At this point we need some indication of
which redex to contract. For this we introduce a labelling strategy which amounts to a function which selects an
x-redex in N to compute. By compute we mean label or mark the x-redex in N and then contract, repeatedly,
all marked x-redexes until none are left. The whole process shall yield a many-step Air-rewrite strategy.

Of course, from the Perpetuality Proposition 3.11 we know that contracting any x-redex (and in particular
the leftmost one) in N shall yield a full perpetual zoom-in strategy. However, this result does not hold for Aus,
but rather a more restricted one (Corollary 4.40). Therefore, since this section’s aim is to introduce the work
done for Aus in the context of Ax in order to get a grip of the main ideas, we shall use the labelling strategy
also for Ax, as discussed above.

The reader not familiar with Ax is referred to Section 2.3.1 of Chapter 2.

4.1.1 The Labelled Substitution Calculus

We shall begin by defining labelled terms and labelled Ax-rewriting. Labels shall allow us to mark x-redexes,
Beta-redexes shall not be labelled. Compare the definition of labelled terms below with that of the Air-terms,
denoted 71, (Def. 2.29).

Definition 4.2 (Labelled Air-terms) The labelled Ax-terms, denoted T,\_¡,are given by the followinggram
mar:

M ::= zIAz.M|MM|M(z:= M)|M((a::= N» whereNG'Á,
The o((o := 0)) operator is called the labelledsubstitution operator. Note that the body of a labelled substitution
operator is a Ax-term (and thus contains no occurrences of the labelled substitution operator). The set of free
variables of a term M is denoted FV(M) and defined as usual. In the sequel we shall refer to .(o := o) as the
unlabelled substitution operator.

So for instance z((:c := y))((y := z)) is a valid labelled Ax-term, however :c((a::= y((y := 2))» is not since the
term y((y := 2)) is not a Ax-term. The labels shall allow us to trace the computation of substitutions. We now
present the rewrite rules that compute labelled substitutions.

Definition 4.3 (The g, y and g-rewrite systems) The fi-rewrite systemis givenby the Ant-rewritesys
tem together with the _x-rewritesystem. The g-rewrite system is defined by the following rewrite rules:

(MN)((2 ==P» wm M((I r= P))N((z ==P))
(Ay-(M))((=vr= P» wm Ay-(M((=vr= P»)
9:«:12:= P» —>¡Var P
M((z := P)) —>,Gc M a: g FV(M)

Reduction in the /\_x-rewritesystem is called labelled reduction. The ¿gg-rewritesystem is the g-rewrite system
together with the following composition rule:

¡”(3 1= Q)((y == R» ->c P((y == R))(I == Q((y == R»)

Note that the c-rewrite rule allows labelled substitutions to jump over unlabelled substitutions. However, no
jumping is allowed between substitutions of the same kind, i.e. labelled or not.

Lemma 4.4 (Properties of E) The g-rewrite system is strongly normalizingand confluent. The set of
g-normal forms is 73,.

Proof. Confluence is a consequence of strong normalization and local confluence of E (all three critical pairs
are joinable), by applying Newman’s Lemma (Lemma 2.4). That the set of E-normal forms is ’13, followsfrom
a close study of the rewrite rules of E.
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We now prove strong normalization by means of a translation to a set of ground terms equipped with a
well-founded ordering obtained by the recursive path ordering (RPO) method [Der82]. Consider the alphabet
{*, @,.(o), o((o)), /\(o)} and the terms S over this alphabet defined as a ::= * | @(a, a) | A(a) I a(a) | a.((a.)).Then
the well-founded precedence (())>> () >> @,/\(),* induces a well-founded order on S, denoted >77, as dictated
by the RPO method (where all function symbols are assigned multiset status). Finally we show, by induction
on M , that if M —>¡¿N then T(M) >-7-,T(N) where T is the translation defined as follows:

T(z) = *

T(MN) "="‘ ©(T(M),T(N))
T(Am.M) dé‘ ,\(T(M))

T(M<z== N» dé‘ T(M)<T(N)>
T<M«zz= N») dé‘ T(M)«T(N)»

As an exampleconsiderthe case M = P(a: := := R» —>cP((y ;= R))(z ;= Q((y ;= = N_ Then

T(M): (T(P)(T(Q)))((T(R))) and T(N) = (T(P)((T(R))))(T(Q)«T(R))))- NOWsince (O)>>() we must verifytwo su cases:

1. T(M) >-7-,T(P) Accordingto the equalheadscasewemust verifythat (T(P) (T(Q)),T(R)) >37
(T(P),T(R)) where >47!is the usual multiset extension of >77. Since T(P) is a subterm of T(P)(T(Q))
we are done.

2. T(M) >-7—,T(Q)((T(R))). Similar to the case above.

Labelled substitutions may be eliminated in two ways: by erasing all labelling information (Def. 4.5) or by
executing the labelled substitutions (Lemma 4.4). The process of erasing labelling information shall be referred
to as ‘unlabelling’.

Definition 4.5 (Unlabelling for TH) For M e TL!we define [MJe '11; as:

LzJ dé‘ a:

[AIP] dé‘ A2119]
def

531w» a; lQJ)
._ def ._

LP(<z-— Q))J — LPJ<z.— Q)

Let us now see how labelled rewriting and unlabelled rewriting may be related. The following result may be
proved by induction on M.

Lemma 4.6 (Unlabelling rewrite projection and lifting) Let M,N GT,\_¡and Ml,N’ e 71,. The follow
ing diagrams hold:

M_x> N M_, N M............>N
- ¿5 i ¿E

L-J L-J l-J L-J mi L-JY Y Y Y Y

[MJ.... ¡M [MJ.....;\..!...,LN] MI T NI
(a) (b) (C)

Definition 4.7 (The /\__xiand Axe-rewrite systems) Reductionin the g-rewrite system may be partitioned
into reduction in the A_x‘and Axe-rewrite systems, i.e. a = ¿tf EHAxe, where:

1. The gi-rewrite system is Air-reductionin the bodies (denoted Axi-reduction, i.e. the contextual closure of
-—>R:if M —>,\¡N then P((:1::= M —>nP((:c := N») of labelled substitutions together with g-reduction.

2. The Axe-rewrite system is Air-reduction over 7;! except inside the bodz'esof labelled substitution operators.
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Remark 4.8 Let us denote with TS-b those terms in T¿Asuch that all bodies of labelled substitution operators

are strongly Ax-normalizing terms“; thus TXT-bC T,\_¡.Note that TÏ is closed with respect to g Uc-reduction.
This may be verified by a close inspection of the rewrite rules and observing that no new bodies of substitutions
are created. In particular, 713%,is closed with respect to ¿Kreduction

So we know that any g-derivation consists of gi and Axesteps. If the derivation starts from a term in
71’39-a.nd is infinite then in fact we shall conclude that there are infinitely many Axe-rewrite steps. We shall

reach this conclusion by showing that A_x‘is terminating on the set of terms in T

Lemma 4.9 The gi-rewrite systemis stronglynormalizingon

Proof. The idea is to define a. strictly positive total function h such that h(Ml) > h(Mg) if M1 en." M2.
This function results from merging the original interpretation used to show that the x-calculus is SN a_.ndthe
idea that each Air-rewritestep in the body of a labelled substitution must be taken into account.

Consider the strictly positive total functions g : T,“ —> IN>0 and h : T,\_¡—> lN>°

g(z) “é‘ 1 h(z) "=°‘ 1

g(MN) “¿f g(M)+g(N)+1 h(MN) dé‘ h(M)+h(N)+1
g(Az.M) “'é‘ g(M)+1 h(Az.M) dé‘ h(M)+1
g(M(z:=N)) dé‘ g(M)+g(N)+1 h(M(:c:=N)) dé‘ h(M)+h(N)+1

h(M«z== N») dé‘ h(M)(marredxx(N)+marg(N)+1)

where for N E SNAz we have maa:g(N) d=efma.:r{g(P) | N -»,\¡ P}. We now proceed to verify that h(Ml) >
h(Mz) if M1 4B.- M2 by induction on the position where the rewrite step takes place.

o The rewrite step is at the root. Let mmed,\¡(P) = n and mazg(P) = m in the followingrewrite steps:

—(lApp). Then h((MN)((a::= P») = (h(M) + h(N)+1)(n+m +1) > h(M)(m + n+ 1)+ h(N)(m +
n + 1) + 1 = h((M((z == P)))(N((=B== P))))

- (lLam). Then h((Ay.M)((:r:= P») = (h(M) + 1)(n+m+ 1) > h(M)(m+n+ 1)+ 1 = h(Ay.M((z:=
P»)

—(War). Then h(z((z := P») = n + m + 1 > h(P) by definition of m. Indeed, note that m =
mazg(P) 2 g(P) = h(P) sinceP G'13,

- (ch). Then h(M((y := P») = h(M) ('n.+ m + 1) > h(M), as in the previous case.

— (Axi). Suppose M ((z := P» —>,\¡¡M «a: := P’» (recall that a Anti-rewrite step at the root is a
Ant-rewritestep in P).
Then h(M)(mazredk(P)+mazg(P)+1) > h(M)(maznzdk(P’)+ma:rg(P')+1) sincemazredM(P)>
mmedA¡(P’) and mazg(P) 2 maIg(P’).

o The rewrite step is internal. Then we consider each possible context: if M1 = M3M4 or M1 = AnzMaor
M1 = M3(a: := M4) then we use the induction hypothesis. If M1 = M3«:c := P» then the gïrewrite step
must be in M3 (it cannot be in P since there are no labelled substitution operators in P) and we may also
use the induction hypothesis yieldíng h(Ma) > h(Má) and thus h(M3)(n + m + 1) > h(Má)(n + m + 1).

Lemma 4.10 (Labelled rewrite projection) Let M,N e T,\_¡.The followingdiagram holds:

E E

g(M) EN)
4The letters ‘snb' in TE stand for ‘stronglynormalizingbodies', and the underlining in fl recalls the reader that it is just

the bodis of labelled eubstitutions which are referred to.
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The proof of Lemma 4.10 is by induction on M and requires using metalevel substitution (Def. 2.32). Also,
Lemma 4.11 is by induction on M.

Lemma 4.11 (Axe-rewrite pro jection) Let M,N e 71;. The followingdiagram holds:

We would like to bring the reader’s attention to the fact that for the proofs of Lemmas 4.10 and 4.11 to go
through the full power of the garbage collection rule (Gc-rule) is needed. Consider the outcome if the restricted
garbage collection rule (:I:(y:= P) ->,.Gcz) were used instead: M = :c(y := z)((:r := P)) ql“. z((a: := P» = N
yet E(M) = P(y := z) and 25(N) = P but in generalwedo not have —>,.GcE(N).

As a consequence of Lemmas 4.10 and 4.11 we have the following result:

Corollary 4.12 (Perpetuality of labelled rewriting) Let M e If there is an infiniteM-derivation
from M then there is an infinite Ax-derivationfrom ¿(M —

Proof. Suppose there is an infinite g-derivation starting from M. Then since the fii-rewrite system is
strongly normalizing on 7:? (Lemma 4.9) this derivation must have the form:

M = Mo -»¿¡¡M1—>¡\¡e M2 4A: M3 —>¡\¡eM4...

Then applying Lemma 4.10 (extended to many step reduction and noting that 3‘ C A_x)and Lemma 4.11 we
may construct the following diagram and conclude the proof:

M2 . “ M3 fi M4—.»M M
° y 1 M‘ n‘ M‘ n‘

la; 1L: g s ln
¿EM/¡0).....;\.;,.H(Ml) x_.:(Mz).....ï.:.E(Ms) E(¡i/¡4)ug...»

Note that since g-reduction includes Ax-reduction Corollary 4.12 also holds if /\_xis replaced by Ax in its
statement. It is possible to strengthen this result and prove that each E-reduction step is A_x-perpetual.This
leads to a new proof of perpetuality of the strategies presented in Section 3.2.2 and allows to infer the other
results presented in that chapter, such as the inductive characterization of the set SNA, and termination of
typed F”. The reader may find further details in [ABROO].

4.1.2 A Digression: PSN
Corollary 4.12 shall be the main result used in proving perpetual our rewrite strategy (Def. 4.26). Although in
this chapter we are not interested in proving preservation of strong normalization, we would like to show how
Corollary 4.12 may be used for this purpose.

We shall use M e l><1,\xas an abbreviation for M e '11n oo“, i.e. the set of pure terms that admit infinite
Ax-derivations. Given a pure term M such that oo,\¡(M) (hence M e NA!) the followingzoom-in function V(o)
allows us to obtain a ‘minimal’ (in the sense that all strict subterms are strongly Ax-normalizing terms) pure
term N such that also N E Mi, and N Q M. This definition is a variant of Definition 4.8 in [RSSXQQ].

Definition 4.13 (Zoom-in function on pure terms) V(o) : N,\¡—>TAis defined:

WIFQÉ) dé‘ V(Q) if 13e SNA¡,Q séSNA,

V(A2.P) dé‘ V(P)

V((Aa:.P)QÉ) dé‘ (Az.P)QÉ if P, Q, ñ e SNA,

V((,\a:.P)QÉ) dé‘ V(P) ¡r P e SN,“
V((Aa:.P)ÓSÉ) V(S) ¡r P, Ó e SNh, s e SNA!
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Lemma 4.14 (Properties of V(o)) For all M GNh wehave:

1. V(M) = (mmm? for someP, Q,ñ e SN,\¡.

2. V(M) g M.

3. V(M) e D4“.

Lemma 4.15 (Lifting lemma) Let M GN,“ with V(M) = (Az.P)QI-Í. Then there exists an infinito ¿JL
derivation starting from V(M) dÉfP((a: := Q))1-Ï,i.e. the following diagram holds:

Mo-—>M1—>M2—>Ma
V(M Beta; A! A: A!

L'JÏLiv» Mi wï
A:

where Beta, just stands for leftmost Beta-reduction where a labelled substitution operator is introduced instead
of an unlabelled one.

Proof. The proof followsfrom Lemma 4.6(c) and the fact that any infinite Ax-derivation starting from V(M)
may be transformed into another one in which the first reduction step is a Beta-reduction step. .

Lemma 4.16 Let M e Nh. Then there exists N e D4,“such that M —>pN.

Proof. Let M E De)“. Then by Lemma 4.14(3) we have V(M) e NM. Using the Lifting Lemma (Lemma 4.15)
we may construct the top part of the followingdiagram:

V(M)—"Beta,M0—"h M1TM2TM3 T

Á L-JI l-JÏ L-JI MI
5' —V(M)A_—=’MÍTM5TM¿Ï“

¡S

+ +
N: _ Ea/(MD .........,, ....... ........X;.....,UML.»

The bottom part is completed by using Corollary 4.12. Finally, since V(M) g M there is a pure context
(a context without occurrences of the substitution operator) C such that M = C[V(M)] and N = C[N’] with
N E D4)“.

The following zoom-in strategy was proved perpetua] for the A-calculus by Mellies [Me196].Here we prsent
the zoom-in strategy on pure terms based on our Def. 4.13. It is perpetual for the Ax-calculus too (see proof of
Corollary 4.18).

Definition 4.17 (Zoom-in strategy for pure terms) Let M e mi, The zoom-instrategy Z(o):l><1,\¡—>
73 is defined as:

Z(a:I3QÉ) é zfiz(Q)ñ if 13e SNAnQ 93SNA,

z(,\z.P) = Az.Z(P)
Z((Aa;.P)QÉ) dé‘ P{:c «- Q}R‘ if P,Q, É e SN A,

Z((Aa:.P)QÉ) dé‘ (Az.Z(P))QÉ if P e SNA,

Z((Aa:.P)ÓSÉ) = (Am.P)ÓZ(S)É if P,Q‘ e SN“,5 q;SNA,

Finally, we conclude the section by showing PSN for Ax.

Corollary 4.18 (PSN for Ax) Let M Gl><l,\¡then M E 005.
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Proof. By applying repeatedly Lemma 4.16 we obtain an infinite fl-derivation starting from M. See [ABROO]
for details.

M 2 V(M) GMA:
al M

z(M) 2 N1 2 V(z(M)) e wn
al fill

Z(Z(M)) 2 N2 Q V(Z(Z(M))) G NA!
p fill

Z(Z(Z(M))) 2 N3

4.1.3 The Zx(o)Perpetual Strategy
In this section we introduce a substitution labelling strategy for Ax. This consists in defining a strategy over
a. class of terms (the domain of the labelling strategy) which selects an occurrence of a substitution operator
that may safely be computed while preserving the possibility of infinite Ax-derivations. But before proceeding
we present the zoom-in function for Ax.

Given a term M admitting an infinite Ax-derivation, the strategy Zx(o) shall zoom-in into the term in order
to select the redex to contract. The same efi’ectis obtained by the followingzoom-in function, the only difi’erence
being that this function just selects the minimal subterm where the strategy Zx(o) shall find its redex without
actually contracting any redex at all.

Definition 4.19 (Zoom-in function) Let M G Th such that oo,\¡(M). We define Vx(M) by induction on
M:

Vx(zPQfi) dé‘ Vx(Q) if 13e SN¿”Q e SNA,

Vx(Aa:.P) “¿f Vx(P)

Vx((Az.P)QÉ) ¿él (A:.P)QÉ if P, Q, ñ e SNA!
Vx((Aa:.P)QÉ) d="f Vx(P) ¡r P e SN A,

Vx((Aa:.P)ÓSÉ) “:3f Vx(S) if P, Q e SN“, s e SN,“
Vx(P(a: := Q)ñ) “:8f P(a: ;= Q)ñ if P, Q, ñ e SNA,

Vx(P(a: := Q)ñ) ¿:3f Vx(P) if P e SNA,

Vx(P(a: := Q)R‘) d=‘"‘fVx(Q) if P e SN h, Q e SN,“

Vx(P(a: := Q)QSR‘) “:3r Vx(S) if P, Q, Q e SN,\¡,S g SN A,

Vx(o) satisfies some properties for which we shall require the followingdefinition of decent terms which first
appeared in [Bl097].

Definition 4.20 (Decent terms) We define the set of decent terms TA?”C T,“ as: M E ’13?" iff the bodies
of the substitutions in M are Ax-strongly normalizing5 (i.e. if N1(:c := N2) Q M then N2 E SN Ax).

The set of decent terms is closed under x-rewriting, in other words, x-rewriting does not introduce sub
stitutions whose bodies posess infinite Ax-derivations if there were none in the first place. This fails for the
Avs-calculus, as we shall see.

Lemma 4.21 (Preservation of decent terms by x-reduction) Let M e Tgb. If M ->¡ N then N e
Te".

The proof follows from a close inspection of the x-rewrite rules. Now back to the properties of Vx(o).

Lemma 4.22 (Properties of Vx(o)) For all M e '13, such that oo,\¡(M) we have:

1. Vx(M) = (Az.P)QÉ or Vx(M) = P(a: := Q)ñ for some P, Q, ñ e SNA, (hence Vx(M) e 73;").

5The letters 'snb' in stand for ‘stronglynormalizingbodiw'. Note that they are not underlinedso as to remind the reader
that it is the bodies of unlabelled substitution operators which are referred to. Likewise,Axis not underlined to remind the reader
that we are dealing with Ax-terms (no labels are present).
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2. Vx(M) g M.

3. ook(Vx(M)).

Now depending on the result of Vx(M) two situations may arise. The action to be taken by Zx(o) shall
depend on this result.

1. If Vx(M) = (Az.P)Ql-Í with P. Q. É E SNk, then Zx(M) shall simply contract the leftmost Beta-redex
of Vx(M). Hence constituting a zoom-in strategy as commented in the introduction of this section.

2. However, if Vx(M) = P(z := Q)1Ï for some P, Q, É e SNA“ then Zx(o) must decide which x-redex to
contract in Vx(M This task shall be derived to the labelling strategy. The latter shall select, in this
case, the innermost-leftmost substitution, label it, and compute it by means of the E-rewrite system.

This division of the strategy Zx(o) shall prove convenient for analysing the more complex case of Aus.
Let us now address the labelling strategy. First some notation: we call an occurrence N1(a: := N2) g M of

a substitution operator innermost if N1 e ’13,that is to say, if N1 is a pure term.

Definition 4.23 (Innermost substitution labelling) Let M G'11?”then M denotesthe term M wherethe
innermost-leftmost substitution has been labelled if M is not pure, and M otherwise. Thus _o_: TA?” —> TE

(see Remark 4.8 for the definition of 732).

We now define a (many-step) x-reduction strategy that reduces innermost substitution operators.

Definition 4.24 (Substitution labelling strategy) The substitution labellingstrategy for Axis given by
the (many-step) x-reduction strategy Lx(o) : '11?" —> ff" as Lx(M) dÉfgg(M). The domain of the labelling
strategy is the set 71"".

Note that we may just as well have defined Lx(o) as Lx(M) dÉf¿(M) since the composition rule is not
used in the reduction M AE E(M) due to the fact that it is innermost substitutions that are labelled.
Note that Lx(o) is an x-strategy, indeed: if M is not pure then M i»! E(M) and hence by Lemma 4.6(a)
M = LM]i, ¡Emu = ¿(Mi Also,Lx(M)e "¡gb by Lemma4.21.

Lemma 4.25 (Properties of Lx(o)) 1. The Lx(o) strategy is x-normalizing: for all M e 73'?" there exists
n 2 Osuch that Lx"(M) is in x-normal form.

2. The Lx(o) strategy is Ax-perpetual: let M E 7;?” and also oo,\¡(M). Then oo,\¡(Lx(M)).

Proof. The first item is a consequence of strong normalization of the x-rewrite system. The second item
follows from Corollary 4.12. Indeed, since oo,\¡(M) then by Lemma 4.6(c) M has an infinite M-derivation.
Corollary 4.12 yields oo,\¡(E(M)). .

Note that if M G 71"" such that oo,\¡(M), then from repeated application of the Lx(o) strategy to Vx(M)
we obtain x(Vx(M)) GNh.

Definition 4.26 (The Zx(o) Strategy) Let M GTi, such that oo,\,(M), and let C be the context such that
M = C[Vx(M)]. We define Zx(M) as:

C[P(:r := Q)ñ] if Vx(M) = (Az.P)QÉag
MM) _ l amm: := Q)ñ)] if Vx(M)= P(z := Q)R’

Note how in the sixth clause, the Lx(o) strategy is in charge of selecting the closure to compute. By the
observation just before Lemma 4.25, Zx(o) is indeed a many-step Ax-rewrite strategy. It is also perpetual.

Lemma 4.27 The 21(0) strategy is perpetual.

This may be proved for Zx(M) by induction on M using Lemma 4.25(2).
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4.2 Zooming-in on Aws

Next we shall consider the setting of the Avs-calculus. In the lines of the work developed in the previous section
we shall formulate a perpetual rewrite strategy for Aus. Also, an inductive characterization of the terms in
SNA" shall be given. As already mentioned, due to the presence of rewrite rules allowing the composition
of substitutions the problem is technically more demanding. A brief introduction to the Aws-calculusmay be
found in Section 2.3.4 of Chapter 2. Although the rewrite rules of Aus are reproduced below for the reader’s
convenience she/he is advised to take a quick look at the aforementioned section.

Warning on notation to the reader familiar with Aus: in order to be consistent with the nomenclature
used in Chapter 3 we have adopted the term labelled instead of tagged as used in [DG01]. Thus, for example,
well-tagged terms in the terminology of [DG01]shall be referred to as well-labelled here.

4.2.1 The labelled Aws-calculus

We begin this section by characterizing the set of AVS-termsas given in Def. 2.56 of Chapter 2.

Lemma 4.28 Every term M in TA" has exactly one of the followingforms:

1. (EW?

2. (É),\P

3. ((E),\P)Qñ

4. (<E>Pli/Q,jl)ñ

5. ((É+)(PQ))É

We recall from Def. 2.58 the rewrite rules of the Avs-calculus.

B{ (AM)N —>u M[0/N,0]((k)AM)N —>b2 M[0/N,k]

(¿MW/NJ] ->1 ¿(Mli+1/N,J'l)
(M1M2)li/N,J'l ->a Mili/NJIlei/NJ]
((k)M)li/N,J'l _’el (k +:Í - 1)M i< k
((k)M)li/N,J'l ->e2 (klMli - k/NJ'] i_>_k
n[i/N,j] -—>n¡n n <i

"s nli/N,jl w (zw n =zj
n[i/N,j] —>,,3n+j—1 n>z
Mlk/N.l][i/P,j] "’cl Mlk/Nli- k/P.j],j +l - 1] k si < k +l
Mlk/NJlli/Pijl —’c2Mli_l+l/Pajllk/Nli_k/P1jlill k+lSi
(1')(J')M "’m (i + .7')M

The B-calculus is just rules bl and b2. The substitution vs-calculus is the Aws-calculuswithout the rules bl
and b2. The p-calculus is the vs-calculus without the m-rule.

Before recalling the labelled Aws-calculus from [DG01] we define the labelled Aus-terms.

Definition 4.29 (Labelled terms) The set of labelledterms, denoted Tfl, is defined as:

M ::= n | AM | MM | (k)M | M[i/M,j] | Nli/P,j] wheren,i,j,k e lNoand N,P E TA"

The elo/o, o] operator is called the labelledsubstitution operator. Note that the target and body of a.labelled
substitution operator are terms without occurrences of labelled substitution operators.
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Definition 4.30 (Labelled rewriting) The labelled Avs-calculus,denoted ¿gb consists of the Aus-calculus
together with the followingset of rewrite rules (called the fi-calculus):

(¿(M))li/N,J'l -'u ¿(Mli+1/N.J'l)
_’lo

((k)M)li/N,J'l _'lel (k +3“—1)M i< k
((k)M)li/N,J'l #132 (k)Mlí - k/N,jl 2'z k
nli/Nijl _’Inl n n (i
Tdi/NJ] —>zn2 <i>N n =i
“li/Nui] _’ln3 "+j-1 n>i
M[k/N,l][i/P,j] a,” M[k/N[z' —k/P,j],j + l —1] k g 2'< k +1

Note that there is no lm-rule (labelled version of the m-rewrite rule) in the g-calculus (this simplifies some
proofs).

In our exposition on g, the labelled Ax-calculus of Section 4.1.1, after introducing it we immediately
considered properties of its substitution calculus (5) and showed how Ax-rewriting related to g-rewriting by
an unlabelling function. Here we shall do the same. However, in contrast to Ax we shall not rewrite all labelled
terms, but instead consider labelled rewriting on a restricted set of terms of the set TL“. The reason is that
substitution composition must be taken into account. This restricted set of labelled Aus-terms shall be seen to
behave correctly in the presence of substitution composition when perpetuality is under the microscope.

Let us consider an example in order to shed further light on this issue. Let M be a Ax-term such that
oo,\¡(M From Corollary 4.12 it followsthat any x-redex in M such that the body of the substitution involved
in this x-redex (denoted by the letter P in Def. 2.34) is strongly Ax-normalizing, is a Ax-perpetual redex. Indeed,
it suifices to label this substitution, apply Corollary 4.12, and project the resulting A_x-derivationwith the help of
items (a) and (b) of Lemma 4.6. However, this does not hold in Ave. Consider the term M = 4[0/00, 0][0//\00, 0].
Then, as illustrated in the introduction of this chapter, 00,“.(M Also, the term 00 is clearly strongly Avs
normalizing (in fact it is in normal form). However, the vs-redex (more precisely, the n3-redex) involving the
only substitution whose body is the term 00 is not perpetual since the resulting term is 3[0/A00,0], which
no longer admita an infinite Aus-derivation. The problem is that we have erased a substitution that could
potentially be combined with some other substitution by means of substitution composition, on its way to
constructing an infinite derivation.

The restricted set of Aus-terms are called well-labelledterms. This notion is due to R.David and B.Guillaume
and is the key to the proof of PSN for Aus [DGOl].

Remark 4.31 In order to conveythe intuition behind Def.4.32 asume weare given a non-pure term M e 71.3.
We would like to know if the term resulting from labelling some substitution operator in M occurring at position
p is well-labelled. For this, and before labelling any substitution, three conditions must be met:

SN body. The body of the substitution operator at p is a Aws-stronglynormalizing term. We do not wish the
labelling strategy to erase terms having an infinite derivation.

Safe propagation. The substitution at p, once labelled,may safer be propagated by the g-calculus until it
is completely executed. In other words, there are no substitutions ‘below’p and which could potentially
block the propagation of the labelled substitution operator.

Non-interaction. Substitution operators above p or substitution operators which may be created above p
may not interact with (the substitution operator at) p in the sense that they may not oompose with p.
Intuitively, this seeks to uphold compliance with the SN body condition.

The predicate B(o,o) verifiesthe Safe propagation condition and H(o, o) all three of them.

Definition 4.32 (Well-labelled terms) A term M is called well-labelledif there exists m e IN such that
H(M ,m). We use WL to denote the set of well-labelled terms. The 'H(o,o) Q 73,3 x IN relation make use of
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the B(o, o) g 73‘" x lN relation. Both are defined below:

B(n.,m)
B(Á(M),m) iff B(M,m+ 1)
B(MN,m) ifi' B(M,m) and B(N,m)

is m and B(M,m—i)
B((i)M,m) ifl' or

i > m
i5m<i+j andB(N,1n—i)

B(M[i/N,j],m) iff or
i+j Smand B(N,m—i)andB(M,m-.‘Í+1)

7101.m)
H(A(M),m) iff 'H(M,m + l)
'H(MN,m) ifi' 'H(M,m) and 'H(N,m)

is m and 'H(M,m—z')
'H((i)M,m) iff or

i>mand M673“
m<ia.nd M,N€7Ï\n
or

'H(M[i/N,j],m) iff i5m<i+jand 'H(N,m—i)andM673"
or
i+j 5m and'H(N,m-i) and'H(M,m—j+1)

'H(M[i/N,j|,m) ¡ff i=1n, M,Ne'n.., Ne SN“. andB(M,m)

Example 4.33 Let M = 4[0/(0)(A00) (0)(/\00), 1]. Then 4[0/(0)(/\00) (O)(AOO),1] is not well-labelled since
the SN body condition fails.

Let N = 4[2/00,0][0//\(00),0]. Then the term 4[2/00,0][0/)\(00),0] is not well-labelledsince safe propa
gation fails. Indeed, the labelled substitution may not be computed by g-rewriting because it is ‘blocked’by
the innerrnost substitution.

Let O = 4[0/00,0][0/A(00),0]. Then 4[O/00,0][0//\(00),0] is not well labelled since the non-interaction
condition fails: O ->c, 4[0/00[0/A00,0], 1]. However, 4[0/00,0][0/,\(00),0] is well-labelled.

Now that we have restricted the terms and singled out the ‘good’ones we continue by defining an appropriate
unlabelling function and relating labelled rewriting to unlabelled rewriting, as done for Ax in the previous
chapter.

Definition 4.34 (Unlabelling for T,\_.,._)We define [o] : T,\_..—>TM, given by

[n] = n

[(MN)J Ï: LMJLNJ

5,5533} 35:1}
. . ag . .

[Mii/Pal] — [MHz/LPM]
. . d . .[Mii/Ple = Mil/PJ]

Note that in the last clause it is unnecessaryto define LMli/P,jlj as [i/[P_|,j] since the term M [i/P, j]
requires that M, P G71" (SOin this case [MJ= M and = P).

Having defined labelled and unlabelled Aws-rewriting the following lemma. relates these notions.

Lemma 4.35 (Unlabelling rewrite projection and lifting) Let M,N,Q E TE and P’ e WL. The fol
lowing diagrams hold:

124T’Y 1‘!’E’ ¡Y P’"" 9’
L-J L-J L0] l-J L-J L-J

Y V V Y =LM].... p—,ó eWLAva

(a) (b) (C)
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See [ABROO]for the proof.

Lemma 4.36 (Properties of well-labelled terms) 1. If M E NFp (i.e. M is a pure term) then B(M,m)
holds for all m 2 0.

2. If M E '13.“ (i.e. M contains no labelled substitution) then 'H(M, m) holds for all m 2 0.

3. IfMG WLanngMthenNG WL.

4. The set WL is closed under M-rewriting; i.e. for all M,N E T,\_..,if M G WL and M 4M N, then
N E WL.

As in the g-calculus labelled substitutions may be eliminated by executing them (Lemma.4.37) or by erasing
them (Def. 4.34).

Lemma 4.37 (Properties of E) The fi-rewrite system is strongly normalizingand confluent on the set of
well-labelled terms. The E-normal forms of well-labelled terms do not contain occurrences of the labelled
substitution operator, i.e. if M E WLthen E(M) e 7X“.

Definition 4.38 (The mi and/Nse-rewrite systems) Reductionin the M-rewrite systemmaybe par
titioned into reduction in the Aws‘and Ause-rewritesystems, i.e. M = M' U Avs‘, where :

1. The Mi-rewrite system is Avs-rewritingin the bodies of labelled substitutions (i.e. the contextual closure
of —->R:if M —>,\.,,N then P[i/M,j] ->R Pli/N,j]) together with E-rewriting.

2. The Ause-rewrite system is Avs-rewriting over TAL,except inside the bodies of labelled substitution opera
tors.

Lemma 4.39 (labelled rewrite projection) Let M be a well-labelledterm. The follow-ingdiagrams hold:

M-—.>N M—e>N
m' Aus

u_e a L9 u

+
EU”) “¡3' EUV) ¿SI-M)“¿g? EUV)

(1) (2)

The following key result analogous to Corollary 4.12 in the setting of Ax is formulated in [DG01]. Its proof
follows from Lemma 4.39 and the fact that Aws'-rewriting is strongly normalizing on the set of well-labelled
terms [DG01, Lemma 8.19]

Corollary 4.40 (Perpetuality of labelled rewriting) Let M e WL. If M has an infinitefi-derivation
then E(M) has an infinite Avs-derivation.

Note how, in Corollary 4.40, the set of terms is restricted to the well-labelled terms. Compare this with
Corollary 4.12 for Ax where the full set of labelled terms is considered.

4.2.2 The Labelling Strategy for Aws
We shall now study how to replay the analysis behind the Zx(o) Air-perpetua] strategy in the Aws-calculus. We
shall first begin by introducing the zoom-in function which selects the minimal subterm where sz(o) shall find
its redex. If the leftmost redex of the resulting term is a bl or b2-redex then all works smoothly. However, if
this is not the case then we shall be in the need of introducing a labelling strategy.

Definition 4.41 (Decent Aus-terms) We define the set of decent terms TA?! C '11". as: M E 712° if the
bodies of the substitutions in M are strongly Avs-normalizing (i.e. if N1[i/N2, j] g M then N2 e SNA").

Note that contrary to the x-calculus (Lemma. 4.21), the set 71’s" is not closed under vs-reduction nor
p-reduction as explained when introducing the well-labelled terms (also see Section 4.2.4).
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Definition 4.42 (Zoom-in function for Aus) Let M G TA“ such that oo»,(M We define Vvs(M) by
induction on M as:

sz((E)nPQñ) "="’fsz(Q) if 13e SNA“, Q q!SNm
Vvs((Ï¿)(AP)) dé‘ Vvs(P)

Vus(((¡?),\P)Qñ) “:3f sz(P) if P e SNA"
sz(((É)AP)QSÉ) dé‘ mm) ifP,Qe mms g SN“.
Vus(((í¿),\P)Qfi) “¿f ((IE),\P)QF¿ if P, Q, ñ e SNA“

vws<<E>(Pli/Q,j1)ñ) dé‘ vvsm u P e!SN“.
Vvs((í¿>(Plz'/Q,j1)ñ) dé‘ vws<o) ir P e SNA", Q 9!SN».
sz((É)(P[i/Q,j])ÉISÉ2) dé‘ sz(S) ifP,Q,Iïl e mms g SN“.
vvs<<E>(P[i/Q,j1)ñ) dé‘ <E>(P[i/Q,j1)ñ ir P, 0,1%e SN“.

sz((í¿+)(PQ)ñ) "="fsz(P) if P e SNA...
Vus((E+)(PQ)ñ) dé‘ sz(Q) if P e SNA" and Q e;SN,"
sz((É+)(PQ)É¡SÉ2) dé‘ sz(S) if P, Q, 5?]e SNms 9.!SNA",
vvsuíé+><PQ>ñ> dé‘ <E+><PQ)F¿ ir P, Q, ñ e SN».

Lemma 4.43 (Properties of Vvs(o)) For all M e '13", such that 00,“,a(M) we have:

1. sz(M) = ((IÉ),\P)QÉor sz(M) = (E)(P[i/Q, 31)}?or sz(M) = (É+)(PQ)É for some P, Q, ñ e SNA",
(hencesz(M) e Tia").

2. sz(M) g M.

3. ooAv.(Vvs(M)).

In the case that the zoom-in function yields (E+)(PQ)É we follow [DGOI] and use the context notation
below to access its leftmost redex.

Definition 4.44 (Body context) The set of bodyconteste is given by the grammar: B ::= El| (k)(B) | BM
where El denotes a hole. We use letters B, B’, . .. to denote body contexts. The depth of a body context B,
denoted depth(B), is definedas: depth(Ü)=0, depth((k)(B’)) = k + depth(B’), depth(B’M) = depth(B’

Lemma 4.45 If M = ((E+)(PQ))R' for P, Q, ñ e SNA".then either

o M = B[((I;’)/\P’)Q’] for some body context B and P’,Q’,Ñ, or

o M = B[(I;’)(P’[i/Q’,j])] for some body context B and P’,Q’,i,j,É’.

Moreover, the body context B in both items is unique.

Proof. Weprovethe followingmoregeneralresult: if N = where00,“,a(N), the outermost
symbol of P is not an update tag (i.e. P 96(l’)S for some l’ 2 0 and Aus-term S) and P, Q, R e SNM. then
either

o N = B[((É’)/\P’)Q’] for some body context B and P’,Q’,k-", or

o N = B[(É’)(P’[i/Q’,j])] for some body context B and P’,Q’,i,j,l€".

The proof is by structural induction on 'P. Note that P must be of one of the following forms:

o P = n. Then we contradict the assumption that 00;"(M) so this case holds trivially.

o P = P1P2. Then N = (Exa-5(P1P2)Q)IÏ. The induction hypothesís may be applied to the subterm of N:
(Í)(P1P2)Q where Ïreplaces k, P1 replaces P, P2 replaces Q, and Q replaces B. Thus two situations may
arise:
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—(Damm = B’[((k7’)/\P”)Q”lfor some P". Q”. (19').

—(Mama = B’[(k7’)(P”[i’/Q”,j’])] for some P", Q”. i’,j’, (15").

In either case let B” = (E)(u)ñ and define B = B”[B’[1]and conclude.

o P = AP1.Then by takingB = wemayconcludedirectly.

o P = P1[i/Pg, j]. Then by taking B = (É)(DQ)IÏ we may conclude directly.

. Uniqueness of B follows by contruction. .

Consider the following problem: given a non-pure Aws-term M, is it always posible to label some substi
tution operator in M such that the resulting term is well-labelled? By Remark 4.31 there are at least three
reasons why this is not necessarin true. The term 4[0/(A00)(A00),1] is an example since the body of the
only substitution is not a strongly Aws-normalizingterm, so the SN body condition fails. We may refine the
question further and ask: given a decent Aus-term M, is it always posible to label some substitution operator
in M such that the resulting term is well-labelled? The answer is, once again, no. Consider for example the
term M = (A(0[0/0,0]))1; here the problem is that the substitution operator is not 'interaction-free’ (hence
non-interaction shall fail) in the followingsense: a bl step may create a substitution that is composable with
the one under the /\ in M, posiny creating a source of an infinite derivation.

We shall prove the following result: if a decent Aus-term M is interaction-free (Def. 4.47) then it admits
a well-labelling, i.e. there is some substitution in M that can be labelled such that the resulting term is a
well-labelled term. In the case that M has an infinite Avs-derivation Lemma 4.35(c) and Lemma 4.40 shall
complete our labelling strategy. The set of decent interaction-free terms shall constitute the domain of the
labellíng strategy.

Definition 4.46 (Substitution occurrences) Let M G 73m. We shall use 80(M) to denote the set of
positions of substitution operators in M.

Definition 4.47 (Interaction-free substitutions and terms) Let M GTM, p E 50(M) and m 2 0. The
substitution at occurrence p is an interaction-free substitution of level m in M if IF(M,m,p) holds, where
IF(o,o, o) is defined as:

IF(AN, m, Lp) if IF(N, m + 1,p)
IF(N1N2,m,1.p) if IF(N1, m,p)
[F(N1N2, m, 2.p) if [F(N2, m,p)
IF((i)N,m,1.p) if is m and IF(N, m —i,p)
ÍF(N1[i/N2,j],m, Lp) if i+j S m and [F(N1,m — +1,17)
[F(N1[z'/N2,j],m, 2.p) if i 5 m and IF(N2,m —i,p)
[F(N1[2'/N2,j],m, e) if m =i

We say M e 71.. is an interaction-fi'ee term when IF(M, m, p) holds for some p e 80(M) and m 2 0. Also,
we use C fu”: to denote the set of decent AVS-termsthat are interaction-free.

TRUE

7:3" (decent)

:r‘f (int.free)Aus

The intuition behind interaction-free substitutions followsthe lines of Remark 4.31. Consider a.decent non
pure term M. If some substitution is labelled in M the resulting term shall be well-labelled if the remaining
two conditions of Remark 4.31 are met: safe propagation and non-interaction. The interaction-free predicate of
Def. 4.47 guarantees non-interaction. Furthermore, we shall see that this suffices for a decent term to admit a
well-labelling, for the condition of safe propagation may always be met (Proposition 4.51).
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The following result formalizes the idea that if B(M, m) does not hold, for some term M and m 2 0, then
there is an interaction-free substitution blockingm-levelsubstitutions, in other words, there is an interaction-free
substitution with strictly higher level in M.

Lemma 4.48 Suppose B(M, m) does not hold. Then there is a.p E 80(M) and a level k > m such that
IF(M,k,p) holds.

Proof. By induction on M.

o M = n. Holds vacuously.

o M = MlMg. Then since B(M,m) does not hold either B(M¡,m) or B(M2,m) does not hold. Then we
apply the induction hypothesis.

o M = ,\(N). Then it must be that B(N,m + l) does not hold. Then by induction hypothsis there is a
p’ E 80(N) of level k’ such that IF(N, k’,p’) with k’ > m + 1. But then IF(A(N),k’ - 1, 1.p’) holds and
we are done.

o M = (i)N. Then it must be thati 5 m and B(N,m —2')does not hold (the case m < i is not possible since
B(M, m) would thus hold). The induction hypothesis yields a p' e 80(N) and a level k’ with k’ > m —i
such that IF(N, k’,p’). Then by Def. 4.47 we have IF(M, k' +i,1.p’) with k’ +z' > m and we are done.

o M = M1[i/N, j]. Then since B(M,m) does not hold we have three cases to consider:

1. m < 2'.Then IF(M,i,e) holds trivially.

2. i 5 m < i+j and B(N,m—i) does not hold. Then by the induction hypothesis there is ap’ e 80(N)
and a level k’ with k’ > m -2' such that IF(N, k’,p’) holds. Then by Def. 4.47 (sixth clause) also
IF(M1[i/N,j], k’ + i,2.p’) holds where k’ +1"> m.

3. i+ j 5 m and two further subcases must be considered:

(a) B(N,m —2')does not hold. Then by the induction hypothesis there is a p’ e 80(N) and a
level k’ with k’ > m -i such that [F (N, k’,p’) holds. Then by Def. 4.47 (Sixth clause) also
[F(M1[i/N,j],k’ + i, 2.p’) holds where k’ +2"> m.

(b) B(M1,m —j + 1) does not hold. Then by the induction hypothesis there is a p' E 80(M1) and a
level k’ with k’ > m —j + 1 such that IF(M1, k’,p’) holds. Then by Def. 4.47 (fifth clause) also
IF(M1[i/N,j],k’ +j —1,1.p’) holds where k’ +j —1 > m. Note that k’ +j —1 > m 2 2'+j.

Let Mp denote the term obtained from M by labelling the substitution operator at position p.

Lemma 4.49 Let M E TMS.Let p G80(M) with M|¡D= N1[i/N2, j]. Suppose furthermore that:

1. N2 G SNA“,

2. B(N1,i), and

3. IF(M, m,p) for some m 2 0.

Then HLMPm) holds.

Proof. By induction on M.

o M = n. Holds vacuously.

o M = MlMg. Supposep = 1.p’withp’ G SO(M1) (the casep = 2.p’with p’ E 80(M2) is similar). Then by
the induction hypothesis H(1_VI_1,m) holds. Also, since M2 G ’13,. then 'H(Mg,m) holds (Lemma 4.36)(2).
Thus since M = ¿Mg we may conclude 'H(_1l_/I,m).

o M = /\(N). Then p = 1.p’ with p’ e SO(N) and we must verify that H(fl,m + 1) holds which follows
from the induction hypothesis. Note that the induction hypothesis may be applied since IF(N, m + 1,p’)
follows from hypothesis 3.
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o M = . Note that since [F((2')N,m,p) holds, we must have that p = 1.p’ with p’ e 80(N) and
m 2 i and IF(N, m - i,p’). We must thus verify that H(fl, m —i) holds. For this we apply the induction
hypothesis taking N for M, p’ for p and m —2'for m.

o M = N[i’/P, j’ We have three further cases to consider depending on the form of p:

- p = 1.p’with p' e 80(N). Then since IF(N[i’/P,j’],m, l.p’) holdsby hypothesis 3 we have i’+j’ 5
m and IF(N,m —j’ + 1,p’) holds. By induction hypothesis H(LV_,m—j’ + 1) holds. Also, since
P G TM. the by Lemma 4.36(2) we have that 'H(P,m —i’) holds. Thus by Def. 4.32 we conclude
that H(Jl_/I_,m)holds.

—p = 2.p’ with p’ G 80(P). Then since IF(N[i’/P,j'],m,2.p’) holds by hypothesis 3 we have i’ _<_m
and IF (P, m —z",p’) holds. By induction hypothesis 71(2, m-i’) holds. Now we consider two further
subcases:

1. m < i’ +j’. Then since N e 71., we have H(M,m).
2. m _>_i’+j’. Then since N e 71.. by Lemma 4.36(2) we have H(N, m-j’+ 1). Then by Def. 4.32

we may conclude TKM, m).

—p = e and hence N[i’/P,j’] = N1[i/N2,j] and m = i. Then H(N1[i/N2,j],m) holds by hypothesis 1
and 2.

The followinglemma states that if a substitution at position p with target N1 is interaction-free in M, and
N1 itself has an interaction-free substitution at position q, then the latter is interaction-free in M too.

Lemma 4.50 Suppose that M G71.. and that there exist p,q e SO(M), k,l 2 0 such that

1- Mlp = Nllil/Plrjll WithIF(Mnk»P).

2. N1|q = N2[ig/P2,j2] with IF(N1,l, q), and

3. l > il.

Then IF(M,k + e +j1,p.1.q) where e = l —2']—1.

Proof. By induction on the length of p.

O p = 6. Then M = N1[i1/P1,j1] and k =i1. NOWIF(N1[i1/P1,j1],i1 + e +j1, 1.q) Ífl 1:1+6 +j1 Z il +j1
and IF(N1,i1 + e + 1,q). Since 2'1+ e + 1 =l then by hypothesis 2 we are done.

o p = 1.p’. Then we must consider each possible M:

- M = /\(M’). Then IF(/\(M’), k+e+j1, 1.p’.1.q)ifl'IF(M’, k+e+j1+1.p’.1.q). But by hypothesis 1we
lmow IF(M’, k+ 1,p’) holds. Then by induction hypothesis we have that IF(M’, k+ 1+e+j1,p’.1.q)
holds and we are done. Note that e remains unaltered since it depends solely on l and il which remain
unaltered when the induction hypothesis is applied.

—M = M1M2. Then IF(M1M2,k + e +j1, 1.p’.1.q) iff IF(M1,k + e +j1,p’.1.q). But by hypothesis 1
we know IF(M1, k,p’) holds. Then by induction hypothsis we have that IF(M1, k + e + j1,p’.l.q)
holds and we are done.

—M = (2')M’.Then IF((i)M’,k + e +j1,l.p’.1.q) ifi k + e +j1 2 i and IF(M’,k + e +j1 —i,p’.1.q).
But by hypothesis 1 we know k 2 i and IF(M’,k —i,p’) holds. Thus k + e +j1 2 2'. We are left to
verify that IF(M’, k + e + j] —z',p’.1.q)holds, a result that follows by induction hypothesis.

—M = N’[2"/P’,j’]. Then IF(N’[i’/P’,j’],k + e + j1,1.p’.1.q) ifi i’ +j’ s k + e + j1 and IF(N’,k +
e +j1 —j' + 1,p’.1.q). But by hypothesis 1 we know k 21" +j’ and IF(N’,k —j’ + 1,p’) holds.
Thus k + e +j1 21" +j’. We are left to verifythat IF(N’,k + e +j1 -j’ + 1,p’.1.q) holds. But by
induction hypothesis we have that IF(N’, k —j’ + 1 + e +j1,p’.1.q) holds and we are done.

o p = 2.p’. Here we have two further casa to consider:
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—M=Mle. ThenIF(M1M2,k+e ÍF(M2,k+e+j1,pl.1.q).But 1
we know IF(Mg,k,p’) holds. Then by induction hypothesis we have that [F(M2, k + e + j1,p'.1.q)
holds and we are done.

—M = N’Ii’/P’,j’]. Then IF(N’[i’/P’,j'],k + e + j1,2.p’.1.q) ifi'2"S k + e +j1 and IF(P’,k + e +
jl —i’,p’.1.q). But by hypothesis 1 we know k 21" and IF(P’,k - i’,p’) holds. Thus k+e +j1 21".
We are left to verify that IF(P’,k + e + j1 —i’,p’.1.q) holds. But by induction hypothesis we have
that [F(P’, k —i’ + e +j1,p’.1.q) holds and we are done.

Proposition 4.51 If a decent Aus-term M is interaction-free then it admits a well-labelling, i.e. there is some
substitution in M that can be labelled such that the resulting term is a well-labelled term.

Proof. Let p e 80(M) with M|p = N[i/P,j] and such that [F(M,m,p). We shall use induction on the
number of substitution operators n occurríng in N.

o n = 0. By Lemma 4.36(1) B(N,i) holds. Lemma 4.49 concludes the case.

o n > 0. If H(Mp,m) holds then we are done. Otherwise, Lemma 4.49 reveals that B(N,i) does not hold.
Lemma 4.48 then yields q E 80(N) and l > 2'such that NIq = N’[i’/P’,j’] and IF(N,l,q). Now by
Lemma 4.50 we have lF(M,m + e + j,p.1.q) where e déf l —2'—1. Then we may apply the inductive
hypothesis and conclude the case.

Definition 4.52 (Substitution labelling strategy for Aus) The substitution labellingstrategy for Aus is
given by the (many-step) ras-reduction strategy Lvs(o) : ’13" —> 73., defined as

def{M ifMgnjf,LVS(M) = E(M1abe1Subs(M,p)) OtherWÍse

where p G 80(M) is the outermost-leftmost interaction-free substitution operator in M. The domain of the
labellingstrategyis definedas the set

The labellingalgorithm labelSubs(o, o) is an algorithm that selects the appropriate substitution to label in
order to guarantee that the resulting term, once labelled, is a well-labelled term. It shall build on the results
developedabove. Let M E and p G 80(M) with MIp = No[io/Po,jo] and IF(M,ko,p). The algorithm
1abelSubs(o, o) on the input (M,p) is defined in Figure 4.1.

Example 4.53 Considerthe term N = ((A(0[2/1,0]))3)[0/2,0]e Then labelSubs(N,e) returns 1.1.1,
i.e. the occurrence of the inner substitution. Indeed; the term ((/\(0[2/1, 0]))3)[0/2, 0] is not well-labelled (safe
propagation falls). However, ((A(0[2/1,0]))3)[0/2,0] is well-labelled.

For the sake of comparison with the results already introduced for Ax (Section 4.1.3), if M e then
we shall abbreviate M1“,th M wherep G 80(M) is the outermost-leftmost interaction-free substitution
operator in M, b _

Note that 73"" is not closed under Lvs(o)-reduction. Let M = ((A0[0/0,0])1)[2/1,0]. Then M e TX, since
the outermost substitution is interaction-freeyet Lvs(M) = (A0[0/0,0])1E Moreover,Lvs(M) may not
evenbe decent for M e 73,; indeed, M = 440/00,ona/Mama} e 75,, yet Lus(M) = 4[0/(0)(/\00)(0)(A00),1]e
TmbAva'

,p)’

Lemma 4.54 (Properties of st(o)) 1. st(o) is a (many-step)p-(hence93-) rewrite strategy.

2. st(o) is Aws-perpetual.

Proof. For the first item suppose M e since M ¿»E É(M), then by Lemma 4.35(a) we have

M = [MJ13,, EL]! = E(M_ For the second item suppose there is an infinite Avs-derivationstarting from
M, then by Lemma 4.35(c) there is an infinite M-derivation starting from M. Corollary 4.40 concludes the
item.
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labeISubs (M,p);
begin

1' := 0;
l r= ko;

while ñHmp, l) do --Termination guaranteed by proof of Proposition 4.51
begin

--Note that IF(M,l,p) holds by Lemma,4.50"
Lemma 4.49 reveals that -|B(N,,i,.)
Apply Lemma 4.48 and obtain q,“ e SO(N,.) and a levellc,“ > i, with.

IF(Nrak'r+1)q'r+1)-Let erqrfi = T+lliT+I/Pf+lljf+1]
P :=P'1-Q1'+1;
l:=l+e+j, where e=k,.+1—i,—l;
1-:= r + 1;

end;
return p;

end ;

Figure 4.1: The labelling algorithm

4.2.3 The Zws(o)Perpetual Strategy for /\ws
We are almost in condition of defining the zoom-in reduction strategy for Aus. A final remark related to the
use of the Lus(o) by the sz(o) strategy is required. We have to guarantee that the term to which Lvs(o) is
applied is in the domain of this labelling strategy. Since Zws(o) shall recur to the labelling strategy twice we
must verify that this condition is met.

q A". Indeed, first note
that M is decent. Also, ifl = (z k) +z' where R = R1 . . . Rn and (k) = (k1) . . . (km) then IF(M,l,1"+"‘)
holds.

Remark 4.55 1. Suppose M = (E)(P[i/Q, j])1-Ïwith P, Q, ñ e SNm then M e 7”"

2. SupposeM = (P[z'/Q, with P, Q,É e SNA“ whereÉ is the set of argumentsof applicationsin
B, then M e Indeed, note that M is decent. Also,if l = depth(B) + i + Z: k and p is the position
of the hole in the body context B and (k) = (k1) . . . (kn) then IF(M,l,p.1"‘).

Definition 4.56 (The Zws(o)strategy for Aus) Let M E TM. and let C be the context such that M =
C[Vvs(M We define the (many-step) Avis-strategy sz(M) by Zws(M) dÉfM if M e SNA". otherwise
sz(M) is definedas:

cKPlo/gzñlñl a Hsz(M)=((_(íc‘>AP)Qña
ClLvs((k)(Pli/Q,j]) 12)] ífV"s(M)=(¡5)(P[i/Q,jj)R fl fi fl

MW) d=er ClBlP’IO/Q’iïk’lll KVvs<M>= <k+>(PQ)Rand (k+)({’Q)R=B[((k’)z\(P’))Q’]
a for some bodchontext Baand PLQ, R G S_J.V,\.,, _

ClLVS(B[(k’)P'li/Q’.jll)] ¡Í V"S(M) = (“XP Q) R and (k+)QPQ)R = B[(k’)P’li/Q’,J']]
for some body context B and P, Q, R E SN A",

Lemma 4.57 (sz(o) is a (many-step) Aus-strategy) Forall M G'13" wehaveM en" sz(M More
over,if M í SNA" then M ¿un sz(M).

Proof. If M e SN A". then we are done. So let us assume that M e SN A". According to Lemma 4.28 we
have the following cases to consider.

o M = (¡sul-Í. Then É = É1PÉ2 where Él e SNA" and P 9!SNA“. And sz(M) = (É)nÉ¡Zus(P)Ég.
By the inductionhypothesiswehaveP iv“. sz(P) and thereforeM LA" sz(M

o M = (I?)/\P. Then P é SNA" and we use the induction hypothesis.
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o M = If P or Q or ñ í SNA“ then weuse the inductionhypothesis.Otherwise,M —»m_.

(<2 k>A(P))Qñ ->bz PIO/«22141? = 2vs(M).

o M = ((IÉ)P[i/Q, If P or Q or É í SNM, then we use the induction hypothesis. Otherwise, we use
Lemma 4.54(1). '

o M = If P or Q or É e SNA".then weusethe inductionhypothesis.Otherwisewehavetwo
cases to consider as dictated by Lemma 4.45:

1. M = B[((I;’)/\P1)Q1] for some body context B. Then

Bl((EI)/\P1)Qll_”1nBl((zÑ)AP1)Q1l—>b2BlPilo/thí’“

2. M = B[(I;’)P1[i/Q1,j]] for some body context B. Then we use Lemma 4.54(1).

Proposition 4.58 The Zws(o)reductionstrategy is st-perpetual.

Proof. Suppose M has an infinite Aws-derivation. We prove by induction on M (using Lemma 4.28) that
sz(M) also has an infinite Avs-derivation.

o M = Then sz(M) = (É)nÉIZws(R’)É2wherel'Ï= É1R'Iïz, Él E SNA", and R’ e SNA... Then
by induction hypothesis we are done.

o M = (EMP. Then sz(M) = (E)A(Zws(P))and P 93SNA“. Thus we apply the induction hypothesis.

o M = IfP,Q í SNA"or thereissomeR’e SN,\,,,,in ñ thenweapplysz(o) andapplythe
induction hypothesis. So suppose that P, Q, R E SNA“. Then any infinite Aws-derivation starting from
M must have the form:

«mmm? su. mamar? ->aP’IO/Q.k’]Fï’su“ ..

where k’ = Z: Thus we may construct an infinite Avs-derivation fi'om Zws(M) as follows:

PIO/QWIÉ aun. P'ÍO/Q’,k’lÉ"4m -.

and conclude the case.

M = ((É)P[i/Q, If P, Q í SN,“a or there is someR’ í SNA.ain É then weapply Zws(o)and apply
the induction hypothesis. So suppose that P, Q, É e SNA“. Now since there is an infinite Avs-derivation
starting from M then by Lemma 4.35(c) there is an infinite /\_ws_-derivationstarting from M where M is
defined in Remark 4.55(1). Then by Lemma 4.40 we are done.

M = (E+)(PQ)R. If P,Q g SN“, or there is some R’ e SN“, in ñ then weapply zm.) and apply the
induction hypothesis. So suppose that P, Q, R e SNA... We consider two further cases depending on the
form of M, as dictated by Lemma 4.45:

—M = B[((Ü)/\(P1))Q1] for some body context B. Then any infinite Avs-derivation starting from M
must be of the form:

Bl((Ñ)A(P1))Q1l_”Ava -’BB’lPilO/Q’Ivlll'"Ms

where l = z IE".Then we may construct the followinginfinite Avs-derivation starting from sz(M):

BlpllO/Qly 4A“ ’"An°-

—M = B[(k7)P1[i/Q1, for some body context B. Now since there is an infinite Avs-derivation
starting from M then by Lemma 4.35(c) there is an infinite M-derivation starting from M where
M is defined in Remark 4.55(2). Then by Lemma 4.40 we are done.
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4.2.4 Characterizing Terminating Terms in Aws
We shall now formulate an inductive characterization of the terms in SNA". The proof needed for the charac
terization makes use of the perpetuality of the strategy sz(o).

Note that Bloo and Geuvers’ characterization of SNA, (Proposition 2.40) does not adapt straightforwardly
to the Avs-calculus. In other words, the inclusion {M | VN g M, vs(N) E SNAv}C SNA“ dos not hold.
Consider the term M = 4[0/00, 0][0/A(00),0]. The subterms of M are {4,0,00, /\(00),4[0/00, 0],M Note that
the ¡is-normal form of each of these terms is a strongly Av-normalizing term, however, M is not a strongly
Aus-normalizing term:

M —»c,4[0/00[0/,\oo,o],1] -»,, 4[0/(0)(,\00)(0)'(,\00),1] su" ...

This followsfrom the failure of preservation of decent terms by vs-reduction. We shall use our labelling strategy
in order to formulate a characterization of the terms in SNA...

Definition 4.59 Let SN g '13".be the smallest set closedunder the clauses:

P¡,...,P,,eSN n20 PeSN
(k)mP1 . . . Pn G SN (k)AP G SN

E(B[Pli/Q, 1'11)e SN RQ e SN “bs j = El? BIPIO/QJHe SN
BlPli/QJH e SN B[(<I'¿>A(P))Q1e SN

In clauses Subs and Betas recall that B ranges over body contexts (Def. 4.44).

Betas

Proposition 4.60 SNA".= SN.

Proof.

o SNAWQSN.

Let M e SNA... We prove by induction on (matredxn (M), I M I) where IM IIdenotes the size of M
(i.e. the number of variables, applications, abstractions, updatings and substitution operators), using the
usual lexicographic ordering, that M G SN. According to Lemma 4.28 we have the following cases to
consider:

—M = (¡6)nñ where ñ = R1...R,.. Then since M e SNA" each R,-e SN“, with i e 1..n. By the
induction hypothesis R,-G SN with i e 1..n. Then clause Ind concludes the case.

—M = (EMP. Then P e SNA“ and we use the induction hypothesis and clause Abs.

—M = ThenP[0/Q,j]BE SN“. wherej = Bythe inductionhypothesis
P[0/Q, j]É e SN. Now set B d-ÉfEl and apply clause Betas to conclude the case.

- M = ((É)P[i/Q,j])B. Then E((É)P[i/Q,j]ñ) e SNA" by Lemma 4.54(1). By the induction
hypothesisweknowE((É)P[i/Q, e SN. Also,wehaveP, Q e SN by the inductionhypothesis.

Set B dg and applyclauseSubsto concludethe case.
- M = Wehavetwocasa to considerasdictatedbyLemma4.45:

1. M = B'[((l;’)/\(P1))Q1] for some body context B’. Then B’[P1[0/Q1,ZI;’]] e SNA... The
induction hypothesis yields B’[P1[0/Q1,z E SN. Set B d=afB’ and apply Betas to conclude
the case.

. M = B’[(Ü)P1[i/Q1, for some body context B’. Then we proceed as in the previous case:

E(B’[(É’)P1[i/Q1,j]]) e SN and P1, Q1 e SN by induction hypothesis. Set B dé‘B’[(IÉ’)I:I]and
apply clause Subs to conclude the case.

N)

O SNQ SNA“.

By induction on the derivation of M E SN. The cases of clauses Ind and Abs are direct; those of Subs
and Betas follow from Proposition 4.58:
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- (Subs). Suppose M = B[P[i/Q, é SNA“. First note that the conditions P, Q G SNM. together
with gg(B[P[i/ Q, e SNA" guarantee that M is decent. Weproceedby a.case analysis on the form
of B indicating for each form the defining case of Zus(o) which allows us to arrive at a.contradiction.

* B = withn 2 0.Thenbytheninthdefiningcasewearriveat a contradic
tion.

* B = (..(((Ï+)CIM1)M2)...M,.) with n 2 o. Nínth defining case.

* B = (..(((Ï+)(B”M')M¡)Mg)...M,,) with n z o. Last defining case.

- (Betas). Suppose M = B[((Ï¿)A(P))Q] e SNA... We proceed by a case analysis on the form of
B indicating for each form the defining case of sz(o) (Def. 4.56) which allows us to arrive at a
contradiction.

* B = (..((C1M¡)M2)...Mn)with n 2 0. Then by the ñfth defining case we arrive at a contradiction.

* B = (..(((Ï+)EIM¡)M2)...M,,) with n 2 o. Last defining case.

t B = (..(((Ï+)(B”M’)M1)M2)...M,,) with n 2 o. Last defining case.

Note that SN is deterministic in the sense that if M e SNA". then there is a unique derivation of M in
SN
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Chapter 5

Fields and Explicit Substitutions for
Objects and Functions

This chapter studies a calculus of explicit substitutions for modeling object-oriented languages: the g-calculus
of M.Abadi and L.Cardelli [A096] is augmented with explicit substitutions. The c-ealculus is a formalism
which is at the level of abstraction of that of the A-calculus,but which is based on objects instead of functions.
It may be regarded as a minimul calculus of objects in the sense that it is difficult to conceive a simpler
calculus for modelling object-oriented language constructs. Objects are the only computational structures in
the calculus. An object is a collection of methods; each method has a bound variable that represents self and a
body that produces a result. Only two operations are present and both apply to objects: method invocatz'onand
method update. The calculus is 'Iïiring complete in the sense that lambda calculus may be encoded via suitable
objects [AC96]. The simple and elegant translation achieving this encoding, the function-object translation,
shall be seen shortly. Now asuming some calculus of explicit substitutions, say e, is used to render metalevel
substitution in q at the object-level, it is natural to expect the resulting calculus of explicit substitutions ge
to be able to encode Ae. For examplel if explicit substitutions a la v [BBLRD96] are considered in order to
augment the g-calculus, obtaining cv, then we would want to verify that Av may be encoded in cv, and hence
rest assured that cv shall be at least as expressive as the lambda calculus. In a variable name setting D.Kesner
and P.E.Martínez López [KML98] have verified that indeed this is so, more precisely, they have verified that
Ax may be simulated in cx. However, they have observed that in a de Bruijn indices setting, in order to verify
that this simulation property indeed holds by adapting the aforementioned function-object translation, a new
substitution notion must be introduced: invoke substitution. Invoke substitution behaves differently from the
usual notion of substitution as regards the way in which de Bruijn indices are adjusted. For example, in Av-style
calculi of explicit substitutions we have n + 1[a/] HRVMn since the substitution a/ was supposedly generated
by a Beta-redex and hence a lambda binder has now disappeared. However, for invoke substitution we have
n + 1[@l]—>R¡m,n + 1. Note that the index n + 1 sufi'ers no alteration. In an explicit substitution setting,
the author has verified that fields are an appropriate tool in order to encode Ae in ge via the corresponding
function-object translation. This chapter shall study a first-order calculus of explicit substitutions for the q
calculus with fields as primitive constructs. Simulation of the Ati-calculus,confiuence and preservation of strong
normalization shall be the focus of our attention.

As mentioned in the introduction the study of calculi of explicit substitution has arised in the setting of
A-caiculus, however there have been attempts to study explicit substitutions in a more general setting such as
Explicit Combinatory Reduction Systems [BR96], based on the higher-order rewriting formalism CBS [KloSO]
and eXplicit Reduction Systems (XRS) of Pagano [Pag98]. These formalisms although defined in a higher-order
rewriting setting deal with a fixed ‘built-in’ calculus of explicit substitutions (2 in Explicit CRS and 01.rin XRS).
We shall see below that our calculus of explicit substitutions implementing the c-object calculus is an instance
of neither of these formalisms. At the time of writing this thesis the author has learned of an independent
formalization of the g-calculus published by M-O.Stehr [SteOO]based on an alternative reprüentation for terms
called Berkling’s notation. This notation may be seen as the result of fusing both de Bruijn indices and variable
names. The variable name part of the notation is most appropriate for simulating fields (as done in the q
calculus), however the de Bruijn indices part of the notation requires index adjustment to be brought into the
scene. The latter implies that invoke substitution or some analoguous notion shall also be required in order for
the function-object translation to succeed, hence switching to Berkling’s notation does not solve our problems.

79
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Further work merging calculi of explicit substitutions and calculi of objects is that of F.Lang et al [LLL98].
This work aims at providing a unifying framework for studying Operational semantics of various object-calculi,
so may be considered orthogonal to our approach. Moreover, the framework is based on an extension of the
AObj-calculus [FHM94]rather than the q-calculus. Since the AObj-calculus builds on the A-calculus there is no
need to consider function-object translations there.

Structure of the chapter

We begin by briefiy recalling the main constructs of the g-calculus and immediately go on to consider the
(¿b-calculus, c in a de Bruijn indices setting. After addressing some basic properties of the g-calculus with
de Bruijn indices, we augment it with fields. A field may be seen as a method which does not use its self
parameter. In the c-calculus fields and proper methods have been unified as methods. By declaring methods
that have no occurrences of its self parameter. fields may be simulated. This behaviour may also be achieved
in the (¿b-calculus. Nevertheless, we introduce fields as primitive constructs (hence methods and fields coexist)
since when working in an explicit substitutions setting it shall be seen that this Simulation is no longer possible.
Having introduced fields into the (¿b-calculus we proceed to prove the confiuence of the resulting calculus.

Section 5.4 introduces the main calculus of this chapter: the (¿ba-calculus. The latter rsults from c by
introducing fields and explicit substitutions in the style of Av [BBLRD96]. In an attempt to encode Av via the
function-object translation two issues appear as obstacles:

H . encoding application: explicit substitutions interfere with the encoding of fields as methods which do not
use their self parameter.

5° encoding abstraction: the use of metálevel substitution in the function-object translation requires a new
notion of explicit substitution in order to be encoded soundly in the explicit substitution setting.

The first issue is taken care of by introducing fields as primitive constructs, the second by introducing the
notion of invoke substitution. Simulation of Av is then seen to hold. Finally, we focus on confiuence of que,
and preservation of strong normalization. We use the interpretation technique in order to prove confluence and
the recursive path ordering-based technique due to R.Bloo and H.Geuvers [BH98] to prove PSN. The latter
property requires detailed attention since two notions of explicit substitution coexist in the (¿bn-calculus and a
weak form of interaction (in the form of aIrewrite rule) is present.

The work reported in this chapter has been published as [Bon99b].

5.1 The g-calculus

We have at our disposal an infinite list of variables denoted 21:,y,z, . . ., and an infinite list of labels denoted
l,l,-, l’, . . .. The labels shall be used to reference methods. An object is represented as a collection of methods
denoted l,- á q(a:,-).a,,-.We use li for representing method names and q(a:,-).a,-for method bodies. The labels of
an object’s methods are assumed to be all distinct. Operations allowed on objects are method invocation and
method update. A method invocation of the method lj in an object [li á ((zi).a¿¡61"”] is represented by the
term [1.-á q(z;).a¡iel“"].l¿¡. The order in which the methods appear does not matter. As a result of method
invocation, not only the corresponding method body is returned but also, this method body is supplied with
a copy of its host object. Thus method bodies are represented as ((a:¡).a.,-where q is a binder that binds the
variable 1:,-in a,.-. This variable called self will be replaced by the host object when the associated method is
invoked. It is this notion of self captured by the q-calculus that allows an object to operate on itself. The other
valid operation on objects is method update. A method lj á ((zj).a,j in an object o may be replaced by a new
method l;-á ((20.03, thus resulting in a new object o’.J

The terms of the c-calculus, denoted 72, may be described more preciser by the followinggrammar:

a ::= z|a.l Ia, <1<1 á “¡ya >¡ [li i ((zi).aíi€1..n]

We say that a: is a variable, a.l is a method invocation, a. < < l á c(z).a > is a method update and
[li í c(:v,-).a¿"61”"]is an object. Free and bound variables are defined as expected. We shall write FV(a) for
the free variables of a. A variable convention similar to the one present in lambda calculus is adopted: terms
difiering only in the names of their bound variables (i.e. a-equivalent) are considered identical. For example,
[l1 á <;(a:).(a:.l1)]and [ll á ((y).(y.l1)] are identified.
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Example 5.1 (Natural numbers object) The natural numbers may be represented as objects. Here we
show the number zero. All other natural numbers may be obtained from this one by using its succ method.

zero dÉf [iszero á q(z).true,
predá ((2):,
succ á c(a;).(((:r 4 < iszero á c(a:).false >) 4 < pred á ((11).:1:>)]

Note how the succ method has two nested method override operations. It indicates that when called it must
modify the method iszero of self by replacing it with the method which returns the constant false. Moreover,
it must modify the method pred so that it answers correctly with the previous number object.

Before defining the rewrite tula of the c-calculus we need to take a quick look at substitution. The result
of substituting a free variable :5 in a term a for a term b shall be denoted a{a: <- b}. It is defined as follows.

Definition 5.2 (Substitution) Let a and b be terms in 72 and let z be a variable. Then the substitution of
z by b in a, denoted a,{z <- b}, is defined as:

[l.-á q(a:,-).m¿"61""]{z <- b} dg Il,-á ((zi).m¿{z <- b} 1Elm] if a: 76zi, ¿G l..n

a.l{z <- b} ag a,{z <- b}.l

a4<l¿q(z).c>{:v<—b} d=ufa{a:<—b}4<l='<;(z).c{:c<—b}> ifzaéz
z{z «- b} “:6f b

y{a=‘- b} dá y if I 9€y

Note that by the variable convention in the first clause we assume that z,- E FV(b) for every i in l..n, and
likewise z qÉFV(b) in the third clause.

The semantics of the g-calculus, referred to as primitive semantics in [A096], is defined by the following
rewrite rules:

[l,-á ((zi).a¿¡€1""].lj —»< aj{a:j <- [l¡ í q(:c,-).a¿"el""]} j E l..n
[li =' q(a:,-).a,¿"€1""]4 < lj á q(a:).a > —>q [lj á <(z).a, l,-á c(a:,-).a¡iel""’#j] j E l..n

The first rule defines the semantics of method invocation. The result of invoking the method lj á ((zj).a¿¡ (a
‘call’ to method q(a:,-).a._.¡)is the body of the method aj where the self variable has been replaced by a copy of
the host object. The second rule defines the semantics of method update. Note that the substitution operator
is not part of the q-calculus but rather a metaoperation.

Example 5.3 Consider the natural number object zero from Example 5.1. If we invoke the method succ of
the object zero then we may obtain an object representing the natural number one.

zero..9'ucc —»< [iszero á q(a:).faLse,
pred =‘q(:c).zero
succ i q(a:).(((a:4 < iszero i q(:r).false >) 4 < pred á ((31).: >)]

Note how the iszero method now correctly returns false, and how the pred method has also been modified
appropriately. Compare the resulting object with the z'eroobject.

Example 5.4 The followingexample is that of an object with the capability of making a backup copy of itself.

bkupObject dÉf [retrieve á ((20.21,
backupá ((22)12 4 < retrieve á ((170.22 >,
(posiny additional methods)]

Then a call to the backup method of bkupObject returns an new object bkupObject’ which when calling its
retrieve method shall return the original backup object bkupObject. In other words, o.baclcup.retrieve —»,;o.

As regards the expressive power of this calculus, it is shown in [A096] that lambda terms can be encoded
as objects and that fi-reduction can be simulated by g-reduction.
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Definition 5.5 (The function-object translation) The translation -<-<o >—>—from A-terms to 7; is defined:

¿Si-<-< a: >->- a:
d . .

-<-<Aaa >->- ¿r [arg = q(z).z.a1y, val = ((2). <—<a >->-{z 4- a:.a1-g}]
e-<-<ab>->- = <<a>+®+<b>+

where c®d d=°f(c 4 < arg á q(y).d >).val with y e FV(d)

n. ..,

For instance the A-term (Az.z)y is encoded as the q-term ([arg á q(z).z.arg, val á c(:v).z.arg] 4 < arg á
q(v).y >).val.

It is then proved for A-terms a. and b that if a —>pb then -<-<a >->-—»<-<< b >->-. In the preceding example
we have:

([arg i q(z).z.arg, val á q(a:).:r.a1y]4 < arg á q(v).y >).val
—>< [arg =' q(v).y, val á q(z).a:.arg].val
—>< (z.arg){a: <- [arg á c(v).y, val á g(a:).a:.arg]}
= [arg =' c(v).y, val á q(z).z.arg].arg
->< y{v ‘- [arg i <(v)-y, val i <(w)-=v-a1y]}
= y

5.2 The g-calculus with de Bruijn Indices
We now shift to a de Bruijn indices setting. Instead of labelling bound variables with names (as above) variables
are labelled with natural numbers (see Section 2.2.2). For example, the term [Z1á ((21).[l2 i ((yl).:vl,l3 á
g(z¡).21], Z4á ((22).;112]shall be represented as [ll á (([lg á ((2), l3 á q(1)]), Z4á {(2)}. As in the Adb-calculus the
advantage attained is that there is no longer any need to perform renaming of bound variables. Nevertheless we
must take care of index adjustments: if a substitution drags a term under a binder, its indices must be adjusted
in order to avoid unwanted capture of indices.

The terms of the c-calculus with de Bruijn indices (the (¿b-calculus), denoted TW, are characterized by the
following grammar:

a ::= m | a..l | a <1 <1 =' ((0) >I [li _.'_.<{(aí) ¡61..11]

where m is a natural number greater than zero. Since the order of methods in an object is not important
we shall hereafter identify objects which differ only in the order of appearance of their methods.

An example of a term in 7;“ is the de Bruijn representation of the abovementioned c-term resulting from
applying the function-object translation, asuming that the index of the variable y in our reference context is 1:
([arg á g.l.a'rg, val á g.l.arg] 4 < arg á (.2 >).val. _

The set of free indices of a term a e '12“, denoted FI(a.) is defined inductively as follows:

FI(m) dÉf {m}

FI(b.l) dé‘ FI(b)
FI(b4<lág(c) >) “¿f FI(b)U(FI(c)\\1)
mn.- á <(ai) ‘E""‘l) “é‘ (F1(a1)\\1)u u (Fr(an)\\1)

whereforSClNandkeINwehaveS\k={n-k:n€S,n>k}.
We now define substitution in the setting of indices.

Definition 5.6 (Ordinary Substitution) Let a and b be pure terms and n 2 1. The substitution of a.by b
at level n, denoted afin <- b}, is defined as follows:

[li :- dai) i61..m]{n 4_ b} ¿:4 [li á ((aifln + 1 ‘_ bB) ¿61..m]

(a.¿){{n «- b}} dé‘ afin «- b}.l

a4<l—-'—c(c)>{{n<—b} ¿f afln<—b}}4<lág(c{[n+1<—b}})>
m —1 if m > n

(b) if m = nmtv-b} = a
m ifm<n
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where for every i 2 0 and n 2 1, un.) is an updating function from terms in TM to terms in '12“ defined
as follows:

Uf‘([l,-á qui.) ¡61..ml) = [li í ((ugflmi» ¡e1..m]
U?(a.l) dé‘ una):
11.-"(a<l < l á ((c) >) dir una) <1< l á S.( ;1(c))>

der m+n—1 ifm>i
upon) = { m if m Si

Remark 5.7 Note that U}(a) = a. Also, U8(a) increments all indices representing free variables (in the usual
sense) by one.

Having defined our terms and substitution we may now define the appropriate rewrite rules.

Definition 5.8 (Reduction in the (¿b-calculus) Reduction in the (¿b-calculusis defined by the following
rewrite rules:

[li i <(aa‘)Ï€1""l-lj "m ajíl14- [li á <(ai) ‘€Ï"" . .
[li í <(aa) ‘ÉMI < < lj =' <(c) > em llj í <(c), ls-=' dai) ‘El""""’l

Notice that substitution is still a metaoperation in this calculus, completely external to the reduction rules
of the formalism.

We now address some basic properties concerning the behaviour of reduction in the cab-calculus. The
Substitution Lemma, preservation of reduction via the updating functions, and preservation of reduction via de
Bruijn substitution are the properties we shall look at. We first require the following technical lemma.

Lemma 5.9 1. Let a,b e 72a. Then Vi,j,k such that i > 0,j 2 0 and j < 2'S j + k we have UÏ+1(a){i <
b} =u;°(a.).

2. Let a,b e 7;“. Then Vi,n, k such that i 5 n —k we have UÉ(a){{n<- bI}=Ll,‘;(afln —i + 1 <-

3. Let a, b e 7;“. Then Vn,k such that n S k + 1 we have ¿(flafln 4- b}})= Llí+1(a,){{n4- Uí_n+¡(b)}.

Proof. By induction on a. .

As expected, the classical Substitution Lemma [BarS4, Lemma 2.1.16] also holds in the de Bruijn setting.
The usual conditions demanded on free variables, in order for this result to hold in the variable name setting,
are refiected as conditions on the indices in the de Bruijn setting.

Lemma 5.10 (Substitution Lemma) Let a,b,c e TW. Then Vn,i 2 1 such that 2'S n we have a.{{i<
b]}<|{n<—c]}=a<Hn+1 <—-c}{i<—b{{n—i+1 <—c]}B

Proof. The proof is by induction on a, using Lemma 5.9 (items 1 and 2).

The followingresults state that every rewrite step in the (¿b-calculus is preserved by the updating functions.
Since the definition of de Bruijn substitution relies on that of the updating functions Lemma 5.11 shall be
required in order to prove that also de Bruijn substitution preserves (¿b-rewrite steps. The latter result is
presented as Lemma 5.12. Both are proved by induction on a; the first uses Lemma 5.9(3), and the second the
Substitution Lemma and Lemma 5.11.

Lemma 5.11 Let a, a’ e TW. If a a“, a,’then Maa) 4m Uí(a.’).

Lemma 5.12 Let a, a.’e TM,and n 2 l. If a qm a’ then

1. afin <- b} 4% a’fln 4- b]

2. b{{n<- a} 4% bfln <- a’}
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Confiuence of the (¿b-calculus may be proved by providing translation functions from terms with variable
names to terms with de Bruijn indices and the corresponding results that these definitions are well-behaved
with respect to the updating functions, substitution and reduction. The result then followsfrom confluence of
c. The details are rather straightforward and hence ommitted.

Lemma 5.13 (Confluence of the (¿b-calculus) The (¿b-calculusis confluent.

5.3 The g-calculus With de Bruijn Indices and Fields

This section introduces de (¿b-calculus with fields, called (gb-calculus, and proves its confluence. The (gb
calculus is a straightforward extension of (¿b and is formulated in preparation for the introduction of explicit
substitutions in Section 5.4.

Fi-oma general standpoint an object may be regarded as an entity encapsulating state (fields) and behaviour
(methods) in an object-oriented language. These methods allow the object to modify its local state as well as
interact with other objects. Let us concentrate on fields. Consider an object calculator that possessesa field
which allows the user (another object) to store some intermediate result. For this the object interface includes
a method save (n) where n is the number to be stored that returns a new calculator object where n has been
saved as an intermediate result. Also, in order to retrieve this value it includes a method recall. Thus one
wouldexpect the equation calculator. save (n) .recall=n to be true. This is characteristic of the behaviour
of fields. As mentioned in [A096] the q-calculus does not include field contructs as primitive. Nevertheless,
methods that do not use the self variable may be regarded as fields. Indeed, let b be a term in the q-calculus
such that it has no occurrence of a variable 1:. Then we have

[l á <;(:1:).b].l—»<b{a: 4- [l i q(a:).b]} = b

Thus we obtain exactly b, the body of the method l i c(:¡:).b.
Now consider the setting where variables are represented no longer by variable names but by de Bruijn

indices. Then we could attempt to proceed as above. Consider a term b in the (¿b-calculus such that 1 í FV(b).
Then we have,

ll á ((b)“ _’<¿obfll ‘- ll =I<(b)lll = b

where b‘ represents b with free indices decremented in one unit. The result obtained is not the same as the
body of the method l á ((b).

Thus we may simulate fields in (¿b-calculus by representing them as methods l á <;(b+)where b+ represents

b where all free indices are incremented in one unit (b+ ag ¿{02(b)).Nevertheless, we shall introduce fields as
primitive constructs i.nthe language. The reason for doing so is that when explicit substitutions are introduced
into the calculus and the translation of (an explicit substitution version of) the A-calculus into this extension
studied, field simulation is no longer for free (Section 5.4).

Therefore in our de Bruijn setting we incorporate, as a primitive notion, that of a field. The terms of the

q-calculus a la de Bruijn with fields (hereafter the (¿b-calculus), denoted 72416,are called pure terms and are
characterized by the followinggrammar:

a. ::= n l al | a <1< m >| [m¿‘€1“"]
m ::= l í g | l := a,
g ::= ((0,)

where n is a natural number greater than zero. Note that we have chosen the above presentation for the
sort of methods over the more natural m ::= l í ((a) | l := a. This is done in preparation for the following
section where we shall extend the sort of method bodies (g above) with explicit substitutions.

An object is constructed by a list of methods and fields. A method is denoted ‘l =' g’ where l is its label and
g its body. A field is denoted ‘l := a’ where l is its label and a its body. Note that we may override a method
with a field and viceversa; so there is only one sort of labels (i.e. labels for fields and labels for methods are not
distinguished).

The set of free indices of a term a.E 7:11,, denoted Fl (a) is defined similarly as done in Section 5.2. Note that

for fields we add Fl(l := a) d=efFI (a). The same applies for ordinary substitution and the updating functions.
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For fields and method bodies we add (l := a.){[n<- b} déf l := afin <- b}}and c(a){n <- b} dÉfq(a{{n+l <- b]}),

and ¿{ya := b) dé‘ z := up(b) and u;'(g(a)) dé‘g(u,.1¡(a)).
We now define the appropriate reduction rules using the notion of substitution defined above.

Definition 5.14 (Reduction in the (¿b-calculus) Reduction in the (¿b-calculusis defined by the following
rewrite rules:

[tj e <(a),m:€‘"""*jI-lj ws, a+I1«- [lj e <(a).m.-‘E‘"""""]}}
iEl..n,i;éj]'lj[lj := a,m¿ _.<, a

[miielun] q < lj á S.(a')> qc; i g(a), miiEI..n.i-7¿.‘Í]

[miiEIHn]q < ¿j ¡= a > ¿(a “j 1: a, miiEI..n,i;Ej]

The second rule indicates that the bodies of fields should be projected without undergoing any index ad
justment. Notice that substitution is still a.metaoperation in this calculus, completely external to the rewrite
rules of the formalism.

As for the (¿b-calculus, basic properties concerning substitution (such as the Substitution Lemma), and
preservation of reduction via substitution and the updating functions, also hold for the (¿b-calculus. These
rsults are used in the appendix to prove that sáb is confluent.

Lemma 5.15 (Confluence of the (¿b-calculus) The (gb-calculusis confluent.

We finish this section with a word on the relation between the (gb-calculus and the (¿b-calculus. Firstly,

note that since 79.97% and by the definition of reduction in the (¿b-calculus and in the (gb-calculus we have

that for any a, b e 72d, if a e“, b then a,—>¿bb. In order to show that the (¿b-calculus can be simulated in the
(¿b-calculus we define the following translation function.

Definition 5.16 The translation h(o): 7;; —>7;“ is defined as,

h(n) "=°‘n haeg) dé‘ temg)
h(b.l) dé‘ h(b).! h(l:= a) dé‘ lág(u02(h(a)))

h(b<1<m>) “=°‘ h(b)<<h(m)> h([m,."€1--"]) “¿f [h(m¿)"€1--"]
h(<(b)) “'é‘ cazan)

Note that ift is a.term in T“, then h(t) = t.

We may now verify that if a, and b are terms in 'Jzáband a aga b then h(a) eq, h(b). This requires first
proving the following two items.

1. Let a. e Tcá, i 2 0 and k > 0. Then h(Z/lf(a,))= UÏ(h(a)).

2. Let a,b G 723 and k > O. Then h(aflk <- bB) = h(a){k <- h(b)}.

The proofs are straightforward but tedious and hence omitted.

5.4 Introducing Explicit Substitutións
The c-calculus with explicit substitutions and de Bruijn indices, which we shall hereafter refer to as the (¿1,3,
calculus, is prsented in this section. This calculus introduces two forms of substitution into the object-language:
ordinary substitution and invoke substitution. Also, since the (¿ba-calculus builds on (gb we have (explicit)
fields in the object-language at our disposal. We sum up the object calculi we have already seen in Figure 5.1.
In this section we shall explain why we have incorporated fields into the object-language.

Let us begin by describing the set of terms of our new calculus. The set of terms of the (¿ba-calculus, denoted
72d“, consists of terms of sort Termand terms of sort Subst. These are defined by the followinggrammar (sort
Term to the left and sort Subst to the right):
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variables

Figure 5.1: Variants of g

a := n | a.l | a. <1< m >| [miiE 1""] | a[s]
m := lágllz=a 3 ::= a/|@l|fi(s)|T
9 I= ((0) I gls]

where n is a natural number greater than zero.
Unless otherwise stated when we say that “a.is a term in 7245"“we mean “a. is a term in ’12th of sort Term”.

A closure is a term of the form a[s]. A term that does not contain occurrences of closures as subterms is called
a pure term A term a,[s]may be regarded as the term a with pending substitution s. The substitution operator
o[o] is part of the calculus (i.e. it is at the object-level). A substitution s with an occurrence of a/ is called
an ordinary substitution whereas a substitution s with an occurrence of @l is called an invoke substitution.
Properties of invoke substitutions shall be studied later. Note that if we erase the grammar rules generating
closures then we obtain the set 72h

The substitution grammar (and substitution calculus) for ordinary substitution is based on the calculus of ex
plicit substitution for the lambda calculus, Av [LesQ4].Although there are many calculi of explicit substitutions
in the literature we are inclined to using Av due to its simplicity.

We shall frequently use the notation Tr"(s) and a,[.sr]idefined inductively as

1to(3) dÉf s a[s]° a

n‘+‘(s) “¿f mms» alsl‘“ dé‘ alsl‘ls]

The semantic of the (¿m-calculus is defined by the set of rewrite rules given in Figure 5.2.
The rule MI activates a method invocation. The rule FI activates a field invocation. The rules MO, F0

activate method override and field override respectively. Rules SM, S0, SF, SB, SI, SU allow the propagation
of the substitution operator through method body, object, field, method, invocation and override constructors.
Rules FVar, RVar, Finv, RInv, FVarLz'ft,RVarLift, VarShift allow the computation of substitutions on indices.
Finally, the rule CO expresses a form of interaction of substitutions, and SW expresses a (weak) form of
commutation or switching of substitutions. These two rules will be used in simulating Av in the (¿ba-calculus.

It is interesting to compare rules RVar and Rlnv. The creation of a substitution of the form b/ is accompanied
by the elimination of a binder (see rule MI). Hence all ‘free’indices should be decremented in one unit. Whereas
in the case of the invoke substitution operator ‘@o’no such adjustment is made. This is because the invoke
substitution is only applied to bound indices, as we shall see below. This may be illustrated by the following
observation, which may be verified by induction:

def

Proposition 5.17 For every term a in fimand n 2 1 and every i 2 0,

- nl n=i+1 . "'71 n>l+1
"Í"‘(@‘)l rm: {n' naéi+1 nm‘<a/)143, Zur 2:23

where R¡ = {FInv, RIrw, FVarLz'ft, RVarLift, Van-Shift}and R2 = {FVar, RVar, FVarLz'ft, RVarLz'ft, VarShift}

The exact relationship between the explicit substitution operators and their metalevel counterparts shall be
made precise in Section 5.5.

The (¿ba-calculus without the rules MI , M0, FI and F0 is referred to as the ESDB rewrite system. Note
that ESDB is not locally confiuent since for example the term 1[@ll][[ll := b]/] reduces to two difierent terms
by the rules Fhw and CO respectively, and requires FI to close the diagram. The rewrite system obtained by
eliminating rules CO and SW is called the BES (Basic Explicit Substitution)-rewrite system.
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[li á C(a),"lite1...1¡J'9É7l'lj ¿Mi aulj i g(a),Tni'LE1..-n.,19¿_7]/]
ug-== a. miel"""*’1.zj en a _ . .
[mii e 1..n] q < lj ¿ g > _¡Mo [l- á g, m2É1"n'lÏéJ] G 1..n
[mii e 1""1 <1< lj := a > ->Fo llj ï= a, "1361"""9611 j e 1""

(<(c))ls] —>sm <(clfl (9])
[miteLuna] _,so se1..n]
(l := a.)[s] —>sp l := a[s]
(l á 9)lsl -'SB l i gls]
a..l[s] —>s¡ a[s].l
a. <1 < m > [s] —>su a[s] <1< m[3] >
lla/l _’PVor a
P+ _’RVar P
1[@l] —>p¡,w 1.l
p + 1l@ll _’Rlnv P + 1
1le (3)] ->PVarL¡/z 1
P + 1m (5)] _’RVarLífl PlsllTl

Plïl _ _ _ . ->Varsm¡z p+_1
alflÏ(@lj)][1l'(llj ==bimilel'fl’Wl/H ->co a“Hb/H ,
alfi‘(@l)llflk (3)] -*sw alfr"(8)ll1ï‘(@l)l k >i

Figure 5.2: The (¿m-calculus

5.4.1 The Need for Explicit Fields

In Section 5.3 wesaw that although the (gb-calculusincorporated fields as primitive constructs this is not strictly
necessary as fields may be simulated in the (¿b-calculus in a rather natural way (Definition 5.16). This situation
no longer holds when explicit substitutions are introduced and when we attempt to encode the Av-calculus in
the (gba-calculus using the function-object translation (Definition 5.5). Let us delve deeper into this isue.

Let us ignore fields as a primitive construct in the language for the moment and return to our simulation of
fields as discused in Section 5.3. A field b is represented as the method l á <;(b+). The cam-calculus is then
reduced to, say, (gba, where rules FI, F0, SF and CO have been eliminated.

Now when we attempt to translate the Av-calculus into the qábcs-calculusin the style of << o >->-(Defini
tion 5.5) we arrive naturally to the followingtranslation function k:

def
k<a/) dé‘ k(a)/ un)
kms» “é‘ mus» wa) dé‘ [argic(1-ar9),val¿<(k(a)[@ar9])l
k(a[sl) “é‘ k(a)[k(s>1 km “'é‘ T

k(ab) dé‘ (k(a) 4 < arg e q(k(b)+) >).val

But the meaning of k(b)+ is no longer clear since k(b) may have occurrences of the explicit substitution
operator (it is no longer a pure term). To remedy this situation the next logical step would be to introduce an
‘explicit substitution version’ of the 0+ operator which in fact we already have: the Toperator. The final clause

of the definition of k is now replaced by k(a.b) dÉf(k(a) <1< arg á g(k(b)[T]) >).va.l
So now we proceed to verify that the translation is correct (preserves Ati-reduction). Consider for example

the Av-reduction rule (Aa)b 433m a.[b/]. Then we must have k((Aa)b) 4‘35“ k(a[b/]). We can go as far as:

k((Aa)b) dsf
([arg i q(1.arg), val á q(k(a)[@arg])] <1< arg á <;(k(b)[T])>).val —>Mo
[arg i 's'(k(l>)lTl),v'1lá <(k(a)[@arglll.val _’MI
k(a)[@arg][[arg á <(k(b)[T]),val i <(k(a)[@aryl)l/l



88 CHAPTER 5. FIELDS AND EXPLICIT SUBSTITUTIONS FOR OBJECTS AND FUNCTIONS

Thus in order to arrive at k(a)[k(b)/] we are in need of adding to the ¿dm-calculus a.commutation rule of
the form: am‘ (@lj)][1‘ri([lj i q(b[T]),mi'El“""#’]/)] —>CO,,,ah‘r‘(b/)] (taking i = 0 sufiices for our example).
But adding a rule like Com clearly introduces confiuence problems.

A variant could be Com’ defined as: ah}i (©lj)][1ï"([lj á ((b),m¿"€1""'#j]/)] doom: am" where
b :355 c[T]. The major drawbacks are then the fact that the rule is conditional and (computationally)
expensive checking on the equational substitution theory is required (this resembles problems studied when
dealing with n-contraction in explicit substitution calculi [Bri95, Rí093, KesOO]).

These problems stem from the fact that the formulation of rules which are subject to restrictions on the free
variables in a de Bruijn indices setting and in the presence of explicit substitutions is non trivial. Here, we have
solved these issues by a minor change in the syntax so as to represent fields as primitive operators. In fact, the
rewrite rule C0 of the named (Es presented in [KML98]is conditional, whereas the CO-rule presented in this
work, in a de Bruijn index setting, is actually simpler since no condition is present.

5.4.2 Encoding Av-terms in the (¿m-calculus

Let us now consider how to encode the lambda calculus with explicit substitutions Av in the (¿ba-calculus. We
start by augmenting the grammar productions for the terms of the (¿bg-calculus in order to allow abstractions
and applications as legal terms. We then define a translation from terms in the Av-calculus into this augmented
set of terms which preserves reduction. We recall the main definitions of the Av-calculus, see Section 2.3 for
further details. Terms are defined by the following grammars t ::= n | tt | At | t[3] with n a. natural number
greater than zero, and 3 ::=T | t/ | 1T(s). We recall the rules below.

(AGM) _’Beta alb/l n + lla/l Haya,- n,
(a b)lsl ->App alslblsl 1l1l (5)] ->FVarL.-¡z 1
Aalsl —’Lam ¿(a-[1T(3)” n + 1l1l (5)] —>RVaer nlsllT]
lla/l ¿1’ch a _’ VarShifl 77-+ 1

The mixed set of terms, which we shall call 71m“, consists of terms of sort Term and terms of sort Subst
(which remain unaltered). The terms of sort Term are defined by the followinggrammar:

a. ::= n | a.l | a 4 < m >I [miie 1""] | a[s] | Aa | (a a)
m := li g l l := a
9 = <(a) Iglsl

where n is any natural number greater than zero.
The rewrite rules of the Acum-calculus consists of the rewrite rules of the (¿bos-calculustogether with the

rules Beta, Lam and App of the Av-calculus (note that the remaining rules of AUalready belong to the (¿bes
calculus). The resulting system may be proved confiuent using the interpretation technique [Har87] and the
fact that the corresponding system with metalevel substitutions is an orthogonal rewrite system.

The encoding of Av-terms into Agua-terms makes use of the invoke explicit substitution operator ‘@o’and
fields.

Definition 5.18 ('Iï'anslation of Acaba-terms into (¿ba-terms) The translation -<o >- from ACM-terms
into terms in '12,,“ is defined as follows:

a r
<1»- drïf n <<(a)>— É c(-<a>-)

<a.l>— d=ef -<a.>- .l <a/>— d=ef <a>—/
r

-<a<1<m>>- dÉf «a» <1<-<m>-> <fr(s)>- dé 1ï(<s>-)
. . d f

¿[mit e 1..n]>_ déf [<m¿>_ z e 1..n] 4* é T
. def . def

<l =g>- = l=<g>— <©l>— = @l
-<l := a>— dÉf l:=-<a>- «Aa»- dÉf [arg á c(1.arg),va.l á q(<a>— [©arg])]

<a[s]>— c'=“f «a» [<s>-] -<ab>- dÉf -<a>-®<b>—
where p® q d-¿f(p <1< arg := q >).val
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The translation interprets the lambda expresions abstraction and application into objects leaving the rest of
the constructions without modifications. The translation of an abstraction introduces the invoke substitution.
Note that the index level 1 (to which the invoke substitution applies) is bound. This reveals a difference as
regards the behaviour of ordinary and invoke substitutions, as discussed above. Ordinary substitution is of no
use since its index adjusting mechanism does not exhibit the desired behaviour.

We illustrate the translation with an example. Consider the K combinator defined as K = AAZ

<K>—=[arg á q(1.arg),val á (([a'rg á q(1.arg),va.l á q(2[@arg])])[©arg]]

The principal motivation behind the introduction of the rules describing the interaction of ordinary substi
tution and invoke substitution lies in the followingproposition.

Proposition 5.19 (que, simulates Av) Let a, b be Aqua-terms. If a —>,\.,b then <a>——»mu<b>-.

Proof. The proof is by structural induction on the Av-term. We just consider the cases < (Aa)b>-—»<¿,u-<
alb/] >- (Case 1) and <Aa[s]>--»<¿m<)\(a[fr (s)])>—(Case 2) as examples.

Case 1.

<(Aa)b>— dé‘
([arg í q(1.arg),'ua,l á g(-<a>- [©arg])] <1< arg :=<b>—>).va,l —rMo
[arg :=<b>—,va,lá g(<a>—[©arg])].val 4M,
«a.» [©arg][[arg :=-<b>-,val á g(-<a>- [©arg])]/] —>CO

<a>— [-<b>- /] déf
<a[b/] >

Case 2.

«(MM > dé‘
[arg á q(1.arg),val i g(<a>- [©arg])][<s>—] —>so
[arg é- (q(1.arg))[-<s>-],va.l á (g(<a>- [©arg]))[-<s>—]] —»BEs
[arg é- c(1.arg[1‘r (-<s>-)]),'ual á <(-<a.>- [©a1'g][1‘r(<3>—)])] 4335
[arg á ((1.arg), val =' q(-<a>- [©arg][1‘r(<s>-)])] —>sw

[arg á q(1.arg), val i q(<a>— [1T(<5>—)][@arg])] dÉf
-</\(a[1l (3M) >

The cases where the reduction is internal are similar and may be dealt with by applying the induction hypothesis.

We may therefore conclude that Xv-derivations may be translated into (¿bas-derivations, thereby implement
ing objects and functions at the same time.

5.5 Confluence and PSN of the (¿bss-calculus

In this section we shall prove some essential properties required for any calculus of explicit substitutions im

plementing a calculus where substitution operates at the metalevel. Firstly, we stud; some properties of the
substitution calculus such as strong normalization. Then the relation between the (¿b-calculus and the (¿1,3,
calculus is stated (Propositions 5.30 and 5.31). This allows us to prove confluence of the full calculus with
explicit substitutions. Finally, we shall prove the property of preservation of strong normalization, that is, that
every strongly normalizing term in (¿b-calculus must also be strongly normalizing in the ques-calculus. Since
we allow some interaction between substitutions this property is essential in our current setting.

For the proof of confluence we shall use the interpretation method; the proof of preservation of strong
normalization is based on the technique introduced by R.Bloo and H.Geuvers in [BH98, B1097].
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5.5.1 Confiuence

Confluence shall be the first of the propertie we shall look at. We shall use the interpretion method which
requirs that we study how (¿b may be simulated in gb“, and viceversa (via some appropriate interpretation
function). For this we shall use the BES-calculus to interpret terms in '12,," into terms in 7;; . Figure 5.3 pictures
the diagram we shall complete in this section. Diagrams 1 and 2 of this figure shall be closed by Proposition 5.31,
namer that each (¿m-rewrite step may be projected via BES interpretation into a (¿b-derivation. Diagram
3 follows from confiuence of (¿b (Lemma 5.15). Finally, the fact that BES(bl) am“ c and BES(bz) 4€ko c
follows from BES(bl) —»<¿°c and BES (bg) —»¿° c and Proposition 5.30, since after all (¿1,63is a calculus of
explicit substitutions for gáb.

a

Á “ha
b] BES ¿72

1 2

BES BES (a) BES

si. <1.

BES(bl.) 3 BES(bz)

<1. <4
C

Figure 5.3: The Interpretation Method

Strong normalization of BES may be obtained fiom strong normalization of ESDB. The latter result is
rather tedious but standard techniques sufl'ice. The details may be found in the appendix (Section A.2.2).
Confluence of BES then follows from local confluence (there is no overlapping) by applying Newman’s lemma.
This entails the following result.

Corollary 5.20 (Uniqueness of BES-norma] forms) The BES-normalforms are unique.

Thus we shall use BES-normal forms to interpret terms of 72d,“into terms in 7;; . We shall now show that
BES-normal forms are exactly 7:1],.

Proposition 5.21 (BES-normal forms are pure terms) The BES-normalforms (of terms of sort Term)
are pure terms (of sort Tem). Thus if c is a term (of sort Term) then we use BES(c) to denote the BES-normal
form of c.

Proof. Pure terms are clearly in BES-normal form. So we must show that every term in BES-normal form
is a. pure term. We proceed in the style of [Rí093]. Supposé c E 72M is a. BES-normal form, we use induction
on c.

o c = n. It is clear that for any n, n is a pure term.

o c = a.l,<;(a),(l á g),(l := a),a 4 < m > or [mii E 1""l. Then since c is a BES-normal form then
the subterms must be BES-normal forms. Thus, by the induction hypothesis they are pure terms and
therefore also c is.

o c = g[s]. Suppose g[s] is a BES-normal form. Then g is a BES-normal form, thus, by the induction
hypothesis, g is a pure method. But then g = ((a) for some pure term a, in which case, ((0,)[3] cannot
be a BES-normal form due to the presence of the rule SM in BES. Therefore g[3] is not a BES-normal
form.
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o c = als]. Since a[s] is a BES-normal form then a must be in BES-normal form. Thus by the induction
hypothesis we may assume a is a pure term and therefore cannot be a closure. By S0, .S'F,SB, SI, SU
the term a. cannot be [mii e 1""], al, (l := a), (l á g) 01'a. <1< m >. So a. must be an index p and we
analyse s.

- 3 961}(3’) since FVarlift, RVarlift are in BES.

- s 7É©l since Flnv, RInv are in BES.

— s 9€b/ since FVar, RVar are in BES.

— s aéT since VarShift is in BES.

Thus a[s] may not be a BES-normal form and therefore this case does not arise.

The next step in our studies is to consider how (¿b may be simulated in cab“ and viceversa (via BES
interpretation). In order to accomplish such a task we must take a closer look at the relation between explicit
substitutions in the (¿ba-calculus and their implicit (or metalevel) counterparts. This concerns not only usual
substitution but also invoke substitutions. We shall thus continue with some technical results on invoke substi
tutions and then resume (with Lemma 5.28) our analysis between explicit and implicit substitutions.

We shall use o <<0 <- o >>to denote invoke substitution at the metalevel. Intuitively, if a. is a term in Tú , 2'
is an index and l is a label, then a.<<2'<- l >>denotes the term that results by replacing every occurrence ofi in
a.with the method invocation il. The difierence with a term such as afli «- HB is that in ordinary substitution
all indices greater than i are decremented in one unit. This owesto the fact that an ordinary substitution arises
when a binder (such as g) symbol has been elirninated and thus adjustment of indices is needed. In contrast,
since invoke substitution is used in an encoding process and is not generated by a rule eliminating a binder,
no such adjustment is necessary. We consider this operation to be a substitution in the sense that constructors
such as binders and override operators are traversed until indices are reached, at which point the replacement
takes place.

Definition 5.22 (Invoke Substitution) Let a.e 721°,l a label, and 17,> 0. Then the invoke substitution of
a. with l at level n, noted a. << n <- l >>, is defined as follows:

def
(g(c))<<n<—l>> = <;(c<<n+1<-l>>)
[mii61..m]<<n‘_l>> dg [mi<<n(_l>>i€1..m]
(a.l’)<<n<-l>> dé‘ a.<<n<—l>>.l’
a<I<m><<n<-l>> dÉf a<<n<—l>><1<m<<n<—l>>>

def(lág(c))<<ni—l>>
(l:=b)<<n4—-l>>

(l¿q(c)<<nc—l>>)
(l:=b<<n<-l>>)

, dír n’.l ifn’=n
n<<n<-l>> — {nl ¿ntaÉn

Remark 5.23 Note that if k > i then (15(1))<<i <- l >>= (15(1))since ¿(6°(b)increases all free indices in b by k
units.

The following lemmas shed some light on the interaction between ordinary substitutions and invoke substi
tutions and the updating functions. All items are proved by induction on a.

Lemma 5.24 For any terms a,b,ce’T<¿, labels l,l’ and indicesi,j,k,n

1. Ifi,k>0andk>ithena<i<—l>{k<—b}}‘=a{{k<—b]}<i<—l>

2. Ifi,k>0andk>ithena<i<—l><k<—l’>=a<k<—l’><i<—l>

3. Ifi>0thena<<i<—l>>{i<—b}=a{{i<—b.l}}

4.Ifi,n>0,kZOandiSn-kthenuua)<n<—-b>=U,Í(a<n-i+1«—b>)
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5. Ifi>0and1SiSnthenafli<—b}<n<—l>=a<n+1<—l>{{i<—b<n—i+1<—l>]}

6.Ifi,j>0andk20andk2ithenuí(a<i<—l>)=Llí(a)<i<—l>.
Invoke substitution preserves reduction in the (¿b-calculus as the following lemma illustrates. It may be

proved for k = 1 by induction on a (using Lemma 5.24(5)) and then extended to derivations of length k > 1.

Lemma5.25 Leta,a’€7;ábandi>0andk20.Thenifaicáb a’thena<<i<-—l>>¿>qra’<<i<—l>>.db

We may no resume the plan we set out to follow. Our first result relating explicit and implicit substitution
considers the updating functions. Ordinary and invoke substitution shall be the subject of the second result,
namely Lemma 5.29

Lemma 5.26 (Relation between explicit and implicit substitutions I) For any c e 7‘; and i 2 0 wedb

have, BES(cl1l‘ (T)]) = ¿(HC)

Proof. We use induction on c. And for the base case (c is a de Bruijn index n) we use induction on n.

Lemma 5.27 Let a G T46 and k,i 2 0. Then we have BE.S'(a.[1‘r'C(T)]‘) = u;+1(a,).

Proof. By induction on 2'using lemmas 5.26 and A.3(3).

Corollary 5.28 Let a e T<de and k,z' 2 0 we have BES(a[1'r’°(T)]")= UZ“(BES(a.)).

Proof. By the previous lemma we have BES(amk(T)]¡)= BES(BES(a)[1ï'° = Lli+1(BES(a)).

Lemma 5.29 (Relation between expliéit and implicit substitutions II) For any a, b G72M and 2'2 0
we have:

1. BES(a[1t" = BES(a,)fli+ 1 <- BES(b)]}

2. BES(a.[1‘r"(@l)]) = BES(a,) << i + l <- l >>

Proof. We prove the first and second item using structural induction on a and consideríng firstly the case
where a. is a pure term. Then, in order to complete the proof of these two items, we consider the case where a
is not a pure term.
As for ordinary substitution we have

o a. = n. By Proposition 5.17(2) and the uniqueness of BES-normal forms we have
n > i + 1n-l

BES(n[Tr"(b/)]) ={ BES(b[Tl") n=i+ 1n n < i +1

And by the definition of substitution (Def. 5.6) and Corollary 5.28 one may verify that in each case the
term is exactly nfli + 1 <- BES(b)}.

o a = c.l. Then we have

BES(c.l[1ï" = BE.S'(c[1Ti = BES(c[1‘ri(b/)]).l = c{{i+ 1 «- BES(b)}}.l= c.l{{i+ 1 4- BES(b)}

The other cases hold by the induction hypothesis, just as the second case considered above.
Now for the invoke substitution we proceed analogously, consideríng a pure term a and using structural

induction on a.

o a = n. By Proposition 5.17(l) and the uniqueness of ÉES-normal forms we have

mmm" («al»)= { Z'l Zííïl
And by the definition of invoke substitution (Def. 5.22) we may easily verify that in each case the term is
exactlyn<<i+14—l>>.
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o a, = c.l’. Then we have BES(c.l’[1Ti (©l)]) = BES(c[fr" (@l)].l’) = c << i+ 1 <- l >> .l' = c.l’ << i+1 <- l >>

The other cases hold by the induction hypothesis, just as the second case considered above.
Now suppose a is not a pure term, then we have:

o BE.S'(a[1'ri(b/)]) = BES (BES (a) [1'ri(b/ by uniquenes of BES-normal forms. Now since BES (a) is pure
(Proposition 5.21) the previous case for pure terms applies and we have by uniqueness of BES-normal
forms BES(BES(a))<[i + 1 <- BES(b)]} = BES(a.){i + 1 4- BES(b)]} .

o BES (a.[1ri(©l)]) = BES (BES (a) [1ki(@l)]) by uniqueness of BES-normal forms. Now since BES (a) is pure
(Proposition 5.21) the previous case for pure terms applies and we have by uniquenes of BES-normal
forms BES(BES(a)) <<z'+ 1 «- l >>= BES(a)<<i+1<-l>>.

The following lemma states that reduction in (gb is preserved by the (¿ba-calculus.

Proposition 5.30 (The (¿ba-calculus simulates the (¿b-calculus) Let a, bbe pure terms. If a.¿á bthen
a fica“. b'

Proof. By structural induction on a. For each case we consider the cases where reduction takes place at the
root or is internal.

Oa=
—The reduction is not at the root: then c 4;” c’ and b = c’.l and we may apply the induction

hypothesis.

— The reduction is at the root and c = [lj í <;(d),1rn¿iE 1"""áé’l with 1 S j 5 n. Also, b = ¿«[{1<- c]}.
Therefore we have, c.lj —>M1d[c/] avg," BES(d[c/]). By Lemma 5.29(1) and the fact that d and c
are pure terms we have BES(d[c/]) = ¿{{l <- c1}.

- The reduction is at the root and c = [lj := d,m¿i e 1""".;é'7.]with 1 5 j 5 n. Also, b = d. Therefore
we have, c.lj —>p¡d

o a = ((c). Then the reduction must be internal and we may apply the induction hypothesis.

o a, = c <1< m >.

- The reduction is not at the root: then c Agra c’ or m acá, m’ and we may apply the induction
hypothesis.

—The reduction is at the root and c = [mf e 1""] and m = (lj á q(d)) with 1 5 j 5 n. Then
b = [lj á <;(d),1n¡i e 1"""üéi'l. Therefore we have, a —>Mob.

—The reduction is at the root and c = [mf e 1""] and m = (lj := d) with 1 S j S n. Then
b = [l_.¡:= d,m¡i e ¡"n'i’éjL Therefore we have, a. —>pob.

o a = [m¿i E 1""]. In this case the reduction is internal and we may apply the induction hypothesis.

The remaining cases are similar and may be handled accordineg by making use of the induction hypothesis.

Proposition 5.31 (The (¿b-calcula simulates the (¿ba-calculus) Let a,b e 72M. If a 4m” b then
BES(a) 4»ch BES(b). Moreover, if a ->R b with R = {M1, FI, MO, FO} and the reduction takes place
at the root then BES(a) 4€!“ BES(b).

Proof. By structural induction on a. For each case we consider the case where reduction takes place at the
root, the other cases followby applying the induction hypothesis.

Suppose that a. —»,.b with 1'e BES then BES(a.) = BES (b). Therefore the only interesting case are those
wherer e {M1, FI, M0, FO, CO, SW}.
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o Case 1'= MI. a = [lj á <;(bJ-),m¿íe 1""'#j].lj and b = bj[[lj á c(b,-),m¿¡ e 1"""I9éj]/].Then

BES“) = [lg-á <(BES(bJ-)),BES(m¿) 2'e ¡“nm-H.

:L 5.29(1) BES(bJ-[fllj á S-(bj),mii e 1..n,i;ej]/]
= BES(b)

o Case r = FI. a, = [tj := d, m} e 1--""'*‘J'].z,-and b = d. Then

BES(a) = [1,-:= BES(d), BES(m.-) i e 1--"#i].z,
_.<, BES(d)db

= BES(b)

o Case r = MO. a = c 4 < l_.¡á f > where c = [mii e 1""], and b = [L i f,m¿i61""'#j]. Then we have

BES(c4<lJ-='f>) = BES(c)44lj¿-BES(f)>
= [BES(m,-) =€ 1""1 q < z,-i BES( f) >4€” =' ie1"n’i#j]
= BES(b)

o Case 1'= FO. a = c 4 < lj := d > where c = [mii E 1""], and b = [l- := d, mi"e ¡“n'ifiL Then we have

BES(c <1< z,-:= d >) BES(c) q g ¿j := BES(d) >
[BES(nu) "E ¡""1 4 < l- := BES(d) >

qa“ [lj := BES(d), BES(m,-) i e 1"""I9é-7']
= BES(b)

o Case r = CO. a = cm" (mmm (llj ==d,m361"""*"1/)1 and b = emi (dm.

Now by Lemma 5.29 we have:

BES(a) BES(c) <<i+ 1 (-1,- >> «Hi+ 1 «- [zj := BES(d), BES(mi) ¡eL-"¿#13
=L 5.24(3) BES(CHÏi + 1 ‘- [lj ï= BES(d)' BES(mi) ‘61"""'*"']-lj}

Note that [l].;= BES(d), BES(M) ¡€1--"v‘7‘j].lj4* BES(d). Thus by Lemma A.5(2) we have

BES(c){{i+1<— [zj ;= BES(d), BES(mi) ‘EL-"MMB 4% BES(c){{i+ 1 «- BES(d)}}
L 5.290) BES(CÍTfi (¿i/H)

BES(b)

o Case 1' = SW. a. = c[1‘r"(@l)][1‘r"(3)] and b = chi" (3)][1'r‘ (©l)] where k > i. We shall analyse each
possible form of s.

—s =1ïn Then BES(a.) = BES(c) <<i + 1 «- l >> {k +n+ 1 <- BES(b)} and also BES(b) =
BES(cHIk + n + 1 <- BES(b)]I><<i+1<—l>>. Both terms are equal by Lemrna 5.24(1).

— s =1T"(T). On one hand we have

BES(G) = BES(BES(C[1T‘_(@Z)])[1T"+"(TN)
=L 5.28 Uz+n(BES(CÍÍT' (mm)=uniqueBES-nf[1T1
=L5_2g(2) << +1‘-l

On the other hand we have
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BES(b) = BES(BES(cm*+"(mw («mm
=b 5.290) BES(clfl"+" (T)]) << i + 1 .- z >>
=unique BES-nf BES(BES(C)[‘fl'k+n <<i + 1 <- l >>
=L 5.23 u,3+,,(BES(c)) << 2'+ 1 4-1 >>

Due to the restriction k > 2',it follows that k + n 2 i + 1. Then by applying Lemma 5.24(6) both
terms are equal.

— s =1‘r"‘(©l’ On one hand we have

BES(G) = BES(BEÑCHT'.(@l)l)l1lk+" (©l')l)
=L 5.29(2) BES(CHI‘ (©l)]) << k + n + 1 <- l’ >>
=L5.29(2) BES(C)<<i+l<-l>><<k+n+1<—l’>>

On the other hand we have BES(b) = BES(c) <<k + n + 1 <- l’ >><<i + 1 4-1 >>. Both terms are
equal by Lemma 5.24(2).

Theorem 5.32 (Confluence of (dba-calculus) The (¿ba-calculusis confluent.

Proof. Let a, b,c be terms of sort Tem in 72‘,“ such that a.4m" b and a 4m” c. Then by Proposition 5.31

we have BES(a) a?“ BES (b) and BES (a) #91“ BES (c). Since by Lemma 5.15 the (gb-calculus is confluent we
may obtain a pure term d such that BES (b) 4€; d and BES (c) —»¿bd, and by Proposition 5.30 we may close
the diagram by b 4335 BES(b) wm“ d and c -»3Es BES(c) fica" d. See Figure 5.3

5.5.2 Preservation of Strong Normalization
Preservation of strong normalization for the (¿ba-calculus is the last property we shall look at. We shall use
a technique due to Bloo and Geuvers [BH98]. As remarked before, this property is an essential ingredient in
any explicit substitution implementation of a calculus, more so if there is some form of interaction between
substitutions as is our case.

The idea is to define a subset .7:of terms in '12“, which is closed under (¿bss-reduction and which contains
all the pure terms which admit no finite (¿b-derivations. Then, one defines a translation S(o) fi'om terms in .77
to terms in a set T, the latter of which are equipped with a well-founded order >-q-,.Finally, it is shown that
if a em“ b for a. E .7’,then S(a) is strictly greater than S(b) in this order >17. In full rigour we shall see that
(¿ha may be partitioned into two subsystems, say R1 and R2, with R2 strongly normalizing. Then it is shown
that if a, en, b for a e .7-',then S(a.) >-7, S(b) and if a —>R,b for a G f, then S(a) :7, S(b). By Lemma 2.6
this suflices for our purpose.

We recall the definition of maz'red. (o) from Chapter 2, more preciser of magia-¡241%b(o).

Def. 2.5.

We define the function mazred‘ább) : 72‘}.—>IN U {oo} as:

n if there is a derivation a —>c;a1 —>¿ a2... —>¿ an
ed dï' chthtf d ' t' 45-» 45’ ’a ’ h <

mazr (¿(41) — su a or any enva ion a ¿b a,1¿(gb a2... acá am we ave m _ n
oo otherwise

Thus if a, is a term in 7:10,then if a. is strongly normalizing, mazreddbm) returns the length of the longest
(¿b-reduction sequence from a otherwise it returns the special symbol oo. Below we state some properties
satisfied by this function.

Lemma 5.33 (Properties of mazred<15(o))Let a G 721°,i > 0 and k 2 O. And suppose mazredcua) < oo
and marredcábflmfelmb < oo. Then we have:

1. mazndgáh(a)=maa:red¿b(<(a))
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2. mmedggxmj) 5 maxred ([míiel..n]) for each J. e lunl
‘45

GO . mazredcáb(a)=ma.rred<¿(l := a), marredcá (g)=maa:red<áb(lá g)

4. mwedcábh.) S nmed<áb(a.l)

5. marred<¿(a)=marred<á°(ui(a))

6. mazred<¿°(a)5 macred<á°(a<1< m >) and mamredcdm) S mweddbm 4 < m >)

7. mweddb(a) = mazredcája <<2'<- l >>)

Note that all items but for (5) and (7) are direct. One observes that the argument of left-hand side (for
example, a in the first item) is included in the argument of the right-hand side (q(a.)),and moreover, no reduction
rules apply at the root of the argument (in our example c(a.)). The intuition behind the proofs of items (5) and
(7) is that the updating functions as well as the invoke substitution operator do not introduce new redexes.
The former merely adjusts indices and the latter modifies a term by substituting occurrences of an indice,
say n, with occurrences of n.l. Thus informally, a. and U};(a) have the same set of redexes, likewise for a. and
a <<2'<- l >>. These proofs require the development of additional lemmas that we shall tackle below, namer
Lemma 5.34, 5.35 and 5.36.

Lemma 5.34 Let a G 7:15,j > 0 and k 2 O. Then we have the following:

. “14(0) = [miiEIHnl'Then a = i61..n]e 72:6where = 1771-,

o ifug(a) = (l á ((17)). Then a. = (l á q(b’)) E 72d!"where Llí+¡(b’) = b.

o ifuí(a) = (l := b). Then a = (l := b’) e 72:5where Uflb’) = b.

. if ug (a) = ((b). Then a = ((b') e 7% whereugflw) = b.

Proof. By a close inspection of the clauses defining the updating functions.

Lemma 5.35 Let a e Tú and j > 0. Then we have the following:

o if a. <<j 4-l>>=[m¿¡61""]. Then a = [m;"61""]e 722:,where m2 <<j <- l >>= m..-.

o ifa <<j <- l >>= (l’ á g(b)). Then a, = (l’ á g(b’)) G Tab where b’ <<j + 1 <- l >>= b.

o ifa<<j<—l>>= (l’:=b). Thena=(l’:=b’)€7;¿ whereb'<<j<—l>>=b.

o ifa<<j<-l>>=c(b). Then a=<;(b’)67:44whereb’<<j<—l>>=b.

Proof. By a close inspection of the clauses defining the invoke substitution.

Lemma 5.36 Let a,b E 72:15,j > 0 and k 2 0.

1. If U¿(a) acá b then there exists c E 'Izábsuch that b = Llí(c) and a —>¿°c.

2. Ifa<<j<—l>>—>¿bbthen thereexistsce'Ïdb suchthatb=c<<j<—l>>anda—>¿b c.

Proof. By induction on a using lemmas 5.34 and A.3(4) for the first item, and lemmas 5.34 and 5.24(4) for
the second item.

o a. = n. Trivial since there is no redex.

o a = dlj. Then ug (d.lj) = ui (d).l¿¡¿(gb b. Thus we have three cases to consider:
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- The reduction is internal. Thus (¿(41) 44“ d’ and b = d’.lj. Then by the induction hypothesis there

is a c’ e 72:5 such that d’ = Uí(c’) and d —>¿bc’. Then we take c = c’.l¡¡. Note that since d acá, c'

we have (1.1,-—»¿“c’lj, and also aga/1,.) = u,{(c').zj = ¿41,?= b.

—The reduction takes place at the root and Mi(d) = [ZJ-á q(e),m¡iel""’i#j] and b = e{{1<—.
Now by Lemma 5.34 there is an e’ and m; with 2'e 1..n.i 9€j such that d = [lJ-á q(e’),m; 'amfiÉJ]
with e = Lli+1(e’)and m,-= Mi Then wehave,

b = u,{+1(e’){{1 <-L{¡{(d)]}
=L A.3(4)(n=1) “¿(611 ‘- dB)

Thus we take c = e’fll <- d}.

- The reduction is at the root and Had) = [lJ-:= e,miiel""’i#j] and b = e. _Now by Lemma 5.34
there is an e’ and m2 with i e 1..n,i 7€j such that d = [lj := e’,m2'61”""#7] with e = “¿(e’) and

m,- = Mi(m2). Then since d.lj ¿ng e’ we take c = e’.

o a. = [miiel‘m]. Then a = Miamfel'ml) = (m,-)"€1""]. So the reduction must be internal. Thus
= [b',u¡'Z(m-¿)ie1""""“‘] with Uflmh) ag; b’. Then by induction hypothesis there is a c’ such that

rei..n_i;eh]_

0'

b’ =Uí(c’) and mh ect/ü d. So we take c = [c’,m¡

o a = d 4 < m >. Then 14,];(a) = Mi(d) 4 < Ham) >. Thus we have three further cases to consider,

—The reduction is internal. Then Had) acá, e (the case where Uflm) ¿(a e is treated similarly).

Then by induction hypothesis there is a c’ such that e = ug (c’) and d acá. d. In which case we take
c = c’ 4 < m >.

—The reduction is at the root and Uí(d) = [mfel'fl] and Ham) = (l;l =' g(e)) and b = [l;1í
g(e),m¡iel"”’i#h]. Now by Lemma 5.34 we have d = 1Elm] where m,- = (¿(mfi), and also,
m = (lh á c(e’)) where e = uí+l(e’). Then we take c = [hl á q(e’),m; 1lel“"".’H‘].

- The reduction is at the root and Uí(d) = [m¡‘el""] and Llí(m) = (lh := e) and b = [lh :=
e, mi'61"""#h]. We proceed as in the previous case.

In the remaining cases the reduction must be internal and we proceed as above.
For the second item the proof is in the line of the proof of Lemma 5.36. The only difierence is that in the

case where a.= d.lj instead of using the Lemma A.3(4) we use Lemma 5.24(4).

o a = d.lj. Then (d.l_.,-)<<j <- l >>= d <<j <- l >> .lj eg“ b. Thus we have three cases to consider:

- The reduction is internal. Thus d <<j <- l >>—>¿bd’ and b = d’.lj. Then by the induction hypothesis
there is a c’ e 72;, such that d’ = c’ <<j <- l >> and d —>¿bc'. Then we take c = c’.lj. Note that

since d acá c’ we have d.l,- acá c’.l_.¡,and also (c’.lj) <<j 4-1 >>= c’ <<j <- l >> .lj = d'.l¡¡ = b.

—The reduction is at the root and d <<j <- l >>= [lj á <(e),m¡i€1""‘i#j] and b = e{[1<- d <<_j<-
}. Now by Lemma 5.35 there is an e’ and m; withi E 1..n,i 76j such that d = [lj á q(e’),m2 'El“""’éJ]
withe=e’<j+1«—l>andm¡=m2«j<-l>. Thenwehave,

b e’<<j+l<—l>>H1i—d<<j<-l>>B
L 5.24(4)(n=1) eliil ‘- dii <<j ‘- l >>

Thus we take c = e’fll <- d}.

- The reduction is at the root and d <<j <- l >>= [lj := e, miielm'iïéj] and b = e. Now by Lemma 5.35
there is an e’ and m2 with i e 1..n,i 96j such that d = [lj := e’,m;'61""’#‘7] with e = e’ <<j <- l >>
and m,- = m2 <<j <- l >>. Then since d.lj dci e’ we take c= e’.
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We are now in conditions of províng items (5) and (7) of Lemma 5.33.

Proof. The proof of both items is similar: We concentrate on the first item. Recall that Lemma A.5(3)
indicates that if a —>¿ a’ then Hua.) —>crL1,:(a’). Thus we have mazred 1 (a) 5 mom-ed y (u,‘;(a)). And by

¿a ¿a _ ‘45 <4» . '

Lemma 5.36(1), we have mazredú (a) 2 mazredgáb(U,:(a)). Hence marred<áb(a) = mameddb (U;(a)).

Definition 5.37 (SN pure terms of 72a") Let SN(¿bdenote the set of all the (¿b-stroneg normalizingpure
terms of TW“.

Then we may define IF as .7:= {a G Z‘MI for all b Q a of sort Term, BES(b) e SN<¿}.

Next we show that .‘Fis closed with respect to reduction in the (¿be,-calculus. We recall the reader that we
write b Q a to indicate that b is a subterm of a.

Lemma 5.38 (.7: is closed under (¿hu-remiting) Let a, b G'Ïdb. If a E .7:and a 4%“ b then b GIF.

Proof. We show that for every e Q b we have BES (e) G SN (¿b. The proof is by induction on a.

o a = n. 'Ii'ivial since there is no redex.

o a.= c.l. Then there are three subcases to consider

- The reduction is internal. Thus c am" c’ and since c Gf (since a GF) by the induction hypothesis
we obtain that d e .F. It remains to see that BES(dl) e SNCJ. Thus suppose that BES(c’.l) e

SNdb, then since a 4m“ b we have by Proposition 5.31 thataBES(a,) —»¿bBES(b). But then
BES (a) e SN(¿a, contradicting the hypothesis that a,E f.

—The reduction takes place at the root, c = [lj á q(d),m¿iel""'#j] and l = lj. Then b = d[[l¡¡á
((d),m¿’€1“""#’] If e Q d or e Q c then since a E .7: we are done. Suppose then that e = b.
Then by Proposition 5.31 we have BES(a) 4% BES(b). Therefore since a. e .‘Fit must be that
BES(b) e SNqáb.

—The reduction is at the root and c = [lj := d,m¿iel""'#j Then b = d and since b Q a we are done.

o a,= c 4 < m >. Then there are three subcases we should consider

- The reduction is internal. Here we have either c 4%“ c’ or m am” m’. In both cases we use the
induction hypothesis.

- The reduction is at the root, c = [miiEI'J‘] and m = (lj á ((41))and b = [lj á ((d), mi 2'e 1..n,i 7€j].
Now if e Q (lj á q(d)) or e Q m,- with 2'G 1..n,i 9€j then since a G .‘F we are done. If e = b we
proceed as in the previous cases.

—The reduction is at the root, c = [meLn] and m = (lj := d). Similar to the previous case.

o a c[5]. Then we must consider the following subcases

—The reduction is internal. Here it may occur that c 4%" d or that s =1‘ri(d/) and d ama d’. In
both cases we conclude as above.

—The reduction is at the root. Here we consider each possible rule applied,

* SM. Thus c = ((d). We must consider,
- e Q d. We use the induction hypothesis.
t e Q 3. We use the induction hypothesis.

- e = dm (3)]. Note that BES(a) = BES(g-(d)[s])= BES(g(e)) á g(BES(e)). Then since

BES(a) G SNdb it must be that BES(e) e SNcáb.
- e = b. Using Proposition 5.31 and hypothesis a G .7: as before.

The rules SO, SF, SB, SI, SU are treated similarly.
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FVar. Direct since b C a.

LVar. Direct since indicesare strongly normalizing. The same applies to FI nv, RI nv, FVarL-if t
and VarShif t.

* RVarLz'ft. The interesting case is e = n[s]. Then we have BES(a.) = BES (b) =L 535
¿{02(BES(n[3])).Now BES (n[3]) must be strongly normalizing for otherwise using Lemma A.5(3)
we would contradict the strong normalization of BES(a).

*

*

* CO. This rule presents no problems.

SW. Then c = a’m‘ (©l)] and s =1'r’°(3’). If e g a’ or e g 3’ then we use the hypothesis. If
e = b then since BES (a) = BES(b) (see case SW in the proof of Proposition 5.31) we may use
the hypothesis. As for the case e = a’mk (s’)], we have BES(b) =L ¿29(2) BES(a’[fl'° (3’ <<
i + 1 <- l >>. Then BES (a’[11"(3’ must be strongly normalizing for otherwise by Lemma 5.25
we wouldcontradict the strong normalizationof BES(a) = BES

*

o a = g(c).Then the reduction must be internal, ie. c aga“ c'. As before, since a G .7: we have c' G .7-'.
For the interesting case e = b we proceed as above: since no rule may be applied at the root of b by
Proposition 5.31 and the hypothesis a. E .7: we may conclude.

o a = [miiel'm]. Then the reduction must be internal, ie. m,- —>¿am; for some j G 1..n. We use the
induction hypothesis.

The remaining cases may be dealt with similarly.

Lemma 5.39 Let a,b e 72‘16.Then a —>¿bb implies masred<¿(a)2ma:rred<áb(b). If mddb(a)< oo then
nmed<áb(a)>mazred<¿(b).

Proof. The interesting case is the second statement. Suppose that marreddb(a)< oo, say marredá (a): n.
Then mmedcíb (b)7é oo, thus we may assume that maz'red‘áb(b)= k and therefore there exists a derivation
b 4‘15 bl 4‘55 bz... Act/ubh which is maximum. Suppose k 2 n, then we would obtain the derivation a acá.
b acá. bl —>¿“bg... acá bk of length k+ 1 greater than n.

Lemma 5.39 generalizes to one or more (¿b-rewrite steps as follows.

Corollary 5.40 Let a,b e 7:1. and mazredcá (a)< oo then a.¿(a b implies maz-red‘á(a)>ma:vred<¿:b(b).

We now move on to labelled terms. Recall that the aim is to define a set of labelled terms ’Iï equipped with
a well-founded ordering >7¡, and a translation S(o) from terms in JF to terms in 'Jï. We shall then show that

1. ifa E .77then a —>Ra’ implies S(a) >-7-lS(a’), where R = {MI,FI,MO, F0}, and

2. ifa, e .‘Fthen a —>Ra’ implies S(a) :1, S(a’), where R = (¿ha —{M1, FI. M0,F0}.

Rom this we shall obtain PSN reasoning by contradiction (Proposition 5.46).

Definition 5.41 (Labelled terms) We define the set labelled terms, denoted ’Jï, over the alphabet A =
{*,o, omo, <(o, o), o(o)n, ololmg(o), [o],o á o, o := o} by the following grammar:

t = ir I t.no I t(t)n | t[o],, | 405m) I [uiiEIHn]
u = 0 á f | o := t
f = €(t) l f(t)n

where n is a natural number greater or equal to zero.

Definition 5.42 (Translation from .77to 7ï) The translation 48(0): JF-> 'IÏ is defined as follows:
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S(n) déf "k

€1..n]):é: €1.11]
S(l i 9) ff S(l) i S(g)

:El := a.) d; S(l) := S(a.)((0)) — ((501))

S(a.l) dÉf S(a).,.S(l) where n = maan'ed<¿(BES(a.l))

:Éa<1< m >) :Í: <1(S(a),S(m)) _
a.[1‘r d-f S(a)(S(b))n wheren = mautd<¿(BES(amt

S(am‘(nl) é S(a)

S(ami (om) dé‘ S(a.)[S(l)]n where n = mazred<¿(BES(a[1T‘(own)

where S(l) = o.

We define a precedence (partial ordering) on the set of operators of A as follows: em“. >>o(o),, >>ololn >>
0.“. >> <|(o, o) >>((0), o á o, o := o, [o],*, o. Then since >>is well-founded the induced Recursive Path Ordering
‘>—q—,’defined below is well-founded on 7ï [Der82].

Note that since RPOs are Simplification Orderings [Der82]the subterm property holds, that is, if s,t G ’Jï
and s is a proper subterm of t then t >71s.

Lemma 5.43 Let a.e f. Then a ->R a’ implies S(a) >17S(a’) where R = {M1,FI, M0, F0}.

Proof. The proof is by structural induction on a.

o a = n. Trivial since there is no redex.

o a, = b.l. Then we have three cases to consider.

- The reduction is internal. Thus b —>Rb’ and by induction hypothesis we have S(b) >17 S(b’ Note
that S(b.l) = S(b).mo and S(b’.l) = S(b’).no. Now by Proposition 5.31 we have that BES(b) —»<¡db

BES(b’ Therefore we consider two cases:1

* BES (b) = BES (b’). Then m = n and therefore we must use the ‘equal heads’ case for comparing
the terms. And in efl'ect, we have (S(b),o) >55 (S(b’),o).

* BES(b) ¿cía BES(b’). Then by Corollary 5.40 mmedcáb(BES(b)) > muredcáb(BES(b’)). But
then since .m >> .n and S(b).mo >-7¡S(b’) and S(b).mo >-q-,o, we are done.

—The reduction is at the root and a.r: í c(c),m¡iel”"#j].lj. Then a’ = c[[l_.¡á c(e),miiel""'i’éj]/].
Now S(a) = S([lj á q(c),m¿‘€1"""’é’]).mo and S(a') = S(c)(S([lj á ((c),m1-'El"""'9é'7]))nand by
Proposition 5.31 and Corollary 5.40 we have m > n. Then since .m >><>n and S(a) >71 S(c) and
S(a) wn S([tj á g(c),m¿i€1""#j]) we may conclude S(a) >-7-,S(a').

- The reduction is at the root and a. = [lj := c,miiel""#j].lj. Then a’ = c. Now S(a.) = S([lj á
g(c),m¿iel“"'i#j]).mo and S(a’) = S(c) and therefore S(a) >-7¡S(a’).

o a, = b <1< m >. Then we have three cases to consider:

—The reduction is internal in which case either b —>Rb’ or m —>Rm’. Both are handled as in the
previous case but making use of the ‘equal heads’ case.

—The reduction is at the root and m = (lj á ((c)). Then b = [miiel'm] and a’ = [lj á ((c),m¡i€1"""'#j].
Therefore S(a) = <I(S(b),S(m)) and S(a’) = [S(lj á ((c)),S(m..-) z'el""'"9‘j].And, since <1(o,o)>>
we must verify that S(a.) >-7,S(lj á ((c)) and S(a) >-7¡ with i e 1..n,z'75j all of which are
valid.

lNote that strictly speaking it sufficesto consider the case BES(b) = BES(b’) since if t = f(t1, ..,tn) and s = g(31,.., sm) then
(t1, .., tn) HT. (31, .., sm) implis t >-q-¡.91,..,t >-1¡ sm. We Chose to consider both for the sake of clarity.
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—The reduction is at the root and m = (lj := c). Then b = [miiELn] and a’ = [lj := c,m¿iel“"'#j].
Analogous to the previous case.

o a = [mfam]. Then the reduction must be internal and we make use of the induction hypothesis.

o a = b[s]. Then the reduction must be internal and we have two cases to consider,

— case b —>Rb’. Then by induction hypothesis S (b) >-q—,S(b’). Now we analyse by cases on s.

* s =1r‘(c/). Then S(a) = S(b)((5¡(c))nwhere n = med<á(BES(a)) and S(a’) = S(b’)(S(c))m
where m = maned<dlb(BES(a’)). Now by Proposition 5.31 we have BES(b) -»¿b BES(b’).
Therefore we consider,

' BES(b) = BES(b’).Then m = n since BES(a) :1, 5,29 BES(b){{i + 1 <- BES(c)]} =
BES(b’){{z'+ 1 <- BES(c)]} =L 5.29BES(a’). And the fact that (S(b),S(c)) >-Í¡¡(S(b’),S(c))
concludes this case.

- BES(b) ¿»á BES(b’). Then by Lemma A.6(1) we obtain BES(a.) =L 5,29BES(b){{i + 1 <

BES(c)]} ¿(gb BES(b’){{2'+1 <- BE'S(c)}}=L 529 BES(a’). Thus by Corollary 5.40 we have
n > m. Now since <>n>><>m and S(a) >-7¡S(b’) and S(a) >-q; S(c) we may conclude
S(a) >7; S(a’).

* a =1Ti(T). Then S(a) = S(b) >-7¡S(b’) = S(a’).

* s =1ri (©l). Then S(a) = (5'(b)[o]nwhere n = mazred<¿(BES(a)) and S(a’) = S(b’)[o]m where

m = marred<áb(BES(a’)) and we reason as in the first subcase but making use of Lemma 5.25.

- case a =1Ti(c/) and c —>Rc'. Thus by induction hypothesis S(c) >—q—,S(c’). Also, S(a) = S(b)(S(c))n

where n = mazreddb(BES(a)) and S(a’) = S(b)(.S'(c’))m where m = marredcdyb(BES(a’)). Now by
Proposition 5.31 we have BES(c) -»¿b BES(c’ Therefore we consider,

* BES(c) = BES(c’). Then m = n since BES(a.) =L 5.29BES(b)<Hi+1 <- BES(c)}} = BES(b){{i+
1 c- BES(c’)} =L 5.29BES(a’). And as (S(b),S(c)) >-’7¡(S(b),S(c’)), we are done.

* BES(c) ¿»ci BES(C’). Then by Lemma. A.6(2) we have BES(a) :1, 5.29 BES(b)<Hi+ 1 <

BES(c)]} -»¿b BES(b){i+1 <- BES(d)]} =L 539 BES(a’). Then we must consider two subcases:

1. BES(a) ¿{gb BES(a’). Then by Corollary 5.40 w.ehave n > m. And in order to conclude
S(a) >-7¡ S(a’) we may verify that S(b)(.Sï(c))n >-7'¡S(b) and .S'(b)(.S’(c))n>-7, S(c’).

2. BES(a) = BES(a’). Then n = m and we may verify that (S(b),S(c)) >45 (S(b),8(c’)).

The remaining cases (a. = (l á g), a = (l := c) and a = <(c)) are handled by making use of the induction
hypothesis.

Lemma 5.44 Let a e F. Then a —>Ra.’implies S(a) :7; S(a’) where R = Cdbes- {ML FI, M0, F0}.

Proof. The proof is by structural induction on a.

o a. = n. Trivial since there is no redex.

o a = bl. Then the reduction must be internal and therefore b —>Rb’ and by induction hypothesis we have

S(b) :7; S(b’ Now by Proposition 5.31 we have BES(b) avi; BES(b’ Thus we must consider two
cases:

- BES(b) = BES(b’). Then BES(b.l) = BES(b’.l) and mazredcá(BES(b.l)) = mazredqáb(BES(b’.l)),
which allows us to conclude that S(b).,,o :7; S(b’).,,o.

- BES(b) ¿{a BES(b’ Here we reason as in the corresponding case of the previous lemma.

o a. = b <1< m >. Then the reduction must be internal and have two cases to consider,
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—case b —>Rb’. Thus by the induction hypothesis S (b) ¿en S(b’) and therefore one may verify that
<1(5(b)15(m))>_'1¡ <1(S(b’),8(m))

- case m —>Rm’. Then we use the induction hypothesis as above.

o a = [m¿‘€1""]. Then the reduction must be internal and we make use of the induction hypothesis.

o a = b[s]. Then there are three cases to consider,

—The reduction is internal and b —vRb’. Then we proceed as in the corresponding case of the previous
lemma, considering additionaly the case BES (b) = BES(b’) from which we may infer the desired
result using the ‘equal heads’ case.

—The reduction is internal and s =1‘ti(c/) and c —>Rc’. Then we proceed as in the corresponding case
of the previous lemma considering additionaly the case BES(c) = BES (c’).

—The reduction takes place at the root. Then there are several cases we must consider depending on
the rule applied,

* SM. Then a,= ((c)[s] and a.’= ((chï (s)]). Now depending on s we have,

- s =1P Then we have S(a) = (g(S(c)))(S(d))n and S(a’) = q(S(c)(S(d))m) where
n = manedqáb(BES(a)) and m = mmed<¿(BES(c[1‘r (s)])). Note that,

n = mazred<¿¡°(BES(g(c)[s]))

= mmd<¿(BES(<(c[1‘r m1)»
= maered,¿,<e(BEs(em(sum
=L 5.330) W<¿b(BES(ClTl (3)”)
= m

Now since ()n >> <;()we must verify that S(a) = (q(S(c)))(S(d)),, ¿en S(c)(S(d))m and
therefore that (c(S(c)),S(d)) ¿{TI(S(c),S(d)) which is valid.

- 5 :1}i Then S(a) =' ¿'(S(c))= S(a’).
- s =1’ri(©l). This is similar to case when s =1'ri Note that S(a) = (g(S(c)))[o]m and

S(a’) á c(S(c)[o],,). By a similar argument we have m = n and [In >>C and we proceed
similarly.

- SO. Then a = [miiel“"][s] and a’ = [nu-[s]Elm]. Then depending on s we have,

e e =1r‘ (en. Then su») = [s(m.-) ‘61""1<s(d)>n.ahdsw) = [S(me)(8(d)>,:'fl""] where n =
mazreddb(BES(a)) and n,- = maxreddb(BES(m.-[s])). Now since ()n >> we must verify that
S(a) = [S(mi) ‘61""](S(d))n >_-7-,S(mi)(5(d))n, for each i e l..n. By Lemma 5.33(2) we have
n 2 m so we have two further cases to consider,

1. n > m. Then since (),, >>(),,_.we verifythat S(a) = ‘61""](S(d))n :7, S(mi) and
S(a) = [S(mh) *€l--"1<S(d))n:7, S(d).

2. n = ni. Weverifythat 'el""l.5(d)) ¿517(S(mi)18(d))
e e =1r"(T)- Then S(a) = [S(mi) ‘61-“1= S(a').
* s =1'ri(©l). This is similar to case when s =1'ri(d/).

- SF. Then a = (l := c)[s] and a,’= (l := c[s]). Then depending on s we have,

* 3 :1}i Then S(a) = (o := S(c))(S(d))n and S(a’) = o := (S(c)(S(d))m) where n =
marredcáb(BES((l := c)[s])) and m = mazred<áb(BES(c[s])). Now since On >>:= we must verify
that S(a) = (o := S(c))(S(d))n >_-7,o and that S(a) = (o := S(c))(S(d))n >_-q¡S(c)(S(d))m. The
first is valid trivially. As for the second item note that,

n = nmed<¿(BES((l := c)[s])).
_ nmamedcáb(l := BES(c[s]))

=L 5.33(3) "Wq¿(BES(Cl-’l))
m

so we must verify that (o := S(c),S(d)) tin (S(c), S(d)) which is valid.
* s =1‘ri Then S(a) = (o := S(c)) = S(a’).
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* s =1’ri(©l). This is similar to case when s =1ïi

—SB. Then a.= (l = f)[s] and a,’= (l = f[s]) and we proceed as in the previous case.

— SI. Then a. = b.l[s] and a’ = b[s].l. Then depending on s we have,

4: s =1T‘ Then we have S(a) = (.S'(l7).¡,o)(S(d))nand S(a') = S(b)(S(d))q.mo where n =
mazred<áb(BES(a))and m = mzred<¿(BES(a’)). Note that m = n. Nowsince ()n >> .n we must
verify that S(a) = (S(b).¡,,o)((5o'(d))n:7; S(b)(S(d))q and that S(a) = (.S’(b).,,o)(.S'(d))n>_-7,o.
The second is valid trivially. As for the first we have,

n = mazredgá(BES((b.l)[s]))
= mazred<¿b(BES(b[s].l))

= mazreddh(BES(b[s]).l)
2L 5.33(4) mm<¿(BES(bl-9l))

So we have two further cases to consider,

1. n > q. Then since On >> oq we simply verify that (.S’(b).¡,,o)(4S'(cl))n:7; S(b) and that
(S(b)-p°)(5(d))n :7. SM)

2. n = q. We verify that (S(b).po,S(d)) ¿ln (S(b),S(d)).

a: 3 =1’r‘(T). Then S(a) = S(b).,,o and S(a’) = S(b).mo where n = marred<áb(BES(b.l)) and
m = marredcáb(BES(b[s].l)). Then we reason,

m = nmred<¿(BES(b[s].l))
= mwedgáb(BES(b[s]).l)
=L 5.26 Wed<¿(u¡2(BES(b))-l)
= mazredcáb(u¿2(BES(b.l)))
=L 5.33(5) marred<¿(BES(b.l))
= n

And we may verify that (S(b), o) tin (S(b), o).
ar s :1}i (©l’). Then S(a) = S(b).m o [o]n and S(a’) = S(b)[o]q_,,o. Then since n = p and []n >> .n

we proceed analogously to the case s =1ï"(d/).

- SU. Then a = b <1< m > [s] and a.’= b[s] <1< m[s] >. Then depending on a we have,

* s =1r' (cm. Then son) = (<<s<b),s(m)))<s(d»n and sw) = «(abuse)»,s(m)<s<d)>q).
Now since On >> 4 we must verify that S(a.) = (<(S(b),.'S'(m)))(.S'(d))n :7; 8(b)(S(d))p and
that S(a) = (<(S(b)»8(m)))(8(d))n :7. S(m)(5(d))q
Recall that n = mazred<áb(BES(b4 < m > [s])) = marredcáb(BES(b[s]) <1 < BES(m[s]) >),
p = marredcáb(BES(b[s]))and q = mmed<¿(BES(m[s])). Then by Lemma 5.33(6) n 2 p and
n 2 q. We consider the first item (the second is similar). If n > p then since S(b) and S (d) are
subterms of S(a) we may conclude S(a) >_'7¡S(a’). The case n = p is similar.

* s =1ïi Then S(a) = <1(S(b),S(m))= S(a’).
* s :1}i (©l). Then S(a) = (<(S(b),S(m)))[Oln and S(a’) = <1(S(b)[o]p,S(m)[o]q). Then we

proceed analogously to the case s =1t"(d/).

—FVar. Then a. = l[b/] and a.’ = b. Then S(a) = *(S(b))n and S(a’) = S(b) where n =

mazred<á(BES(1[b/])). Since S(a’) is a subterm of S(a) we are done.
—RVar. Then a = m +1[b/] and a’ = m. Then S(a) = *(S(b))n and S(a’) = * where n =

mazredcá(BES(m + 1[b/])). Since S(a’) is a subterm of S(a) we are done.

— FInv. Then a. = 1[@l]and a.’ = 1.l. Then S(a) = *l0l0 and S(a’) = *.oo. Since [lo >> .0 we may
verifythat indeedS(a) :7; S(a’

— RI nv. Then a = 1[1‘r(3)] and a,’= 1. Then S(a’) = * and as for S(a) we must consider the following
cases depending on s,

* s =1‘r"(d/). Then S(a) = *(S(d))o and we are done.
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* s :1}i (T). Then S(a.) = * and we are done.

* 3 =1‘r"(@l). Then S(a) = *[o]0 and we are done.

—RVarLi f t. Then a = p + 1m (5)] and a’ = p[s][T]. We must consider the following cases depending
on s,

* s =1’ri(d/). Then S(a.) = *(S(d))m and S(a') = *(S(d))n where n = mamada (BES(a)) and

m,= marred<áb(BES Then wereasonas follows, a
m "maig! (BES(a))

nmredcz (BES(a’))
=L 5.26 "10171344(ug(BES(P[3l)))

=L 5.33(5) metigáb (BES(P[-9l))

Thus we use the ‘equal heads’ case and we are done.
* s =fl‘ Then S(a) = * = S(a.’)and weare done.
* s =1'r"(©l). Then S(a.) = *[o]o = S(a’) and we are done.

—VarShift. Then a = n[T]and a": n +1. Then S(a.) = * = S(a’).

—CO. Then a = bm" (.[lj:= c,m¡iel""’i#j]/)]and a.’= bm" Then we haveS(a.)=
S(b)[o]p(S([l,- := c,m,-"El"""’é¡’]))nand S(a,’) = S(b)(S(c))q. Then by Proposition 5.31 we have

BES (a) arca BES (a’), thus by Lemma. 5.39 n 2 q. As remarked before it suffices to consider the
case n = q. We must verify that (S(b)[o],,,S([lj := c,m,-iel""'#j])) tin (S(b),S(c)) which is valid.

— SW. Then a = b[1Ti(@l)][1ï'° (3)] and a’ = b[1‘r'°(3)][1'ri(©l)] with k > i. We must consider the
following cases depending on 3,

4:s =1ïj Then S(a,) = S(b)[olm(8(d))n and S(a’) = S(b)(S(d))q|o]p. Since n = p and
<>,.>> [ln we must verify that S(a.) = ¡So'(b)[ol,,n(.'3(d))n:7; S(b)(8(d))q and that S(a) =
S(b) [olm(S (41))n:7, o. The second item is straightforward. As for the first item we reason as
follows,

n

-L 5.29(2)

=L 5.330)

mamred<¿(BES(a))
marredqá(BES(a’))
mwed<á(BES(b[1Tk (3)]) << i + 1 <- l >>)

mwedqáb (BES (blflk(5)]))
q

And since (S(b)[o]m,S(d)) :5]; (S(b),S(d)) we are done.

* 3 =flj Then S(a) = S(b)[o]n and S(a,’) = S(b)[o]¡, where n = 171.41..'1:r'ed<dyb(BE.’3o'(b[1‘ri

and p = mwedcáb(BES(a’)). Th
n

=L s.29(2)

=L 5.33(5)

=L 5.2405)

=L 5.23

=L 5.29(2)

en we reason as follows,

mmegBEswm‘ (4201))
mmed<¿(BES(b) <<2'+ 1 4- l >>)

mazredqáÁUgH-(BESÜ) << i + 1 <- l >>))

mazred<áb(lzlf+j(BES(b)) << 2'+ l <- l >>)

mazred<¿(BES(b[1ï’°+j <<i + 1 <- l >>)
macredqáb(BES(a’))
P

* s =1Tj (@l’). Then S(a.) = S(b)[o]m[o]n and S(a.’) = S(b)[o]¡,[o]q. Since n =. q we must
verify that (S(b)[o]m,o) tir] (S(b)[o]p,o). Recall that m = mairedcdyb(BES(b[1‘r'(©l)])) and

p= mweddwasmej (mom.
m

=L 5.29(2)

=L 5.330)

=L 5.33(7)

We show below that m = p,

ma.:n:'redqáh(BESÜ’HTi
maxred<áb(BES(b) << i + 1 <- l >>)

mwedcdyb(BES(b))
mmed<¿b(BES(b) <<k +j + 1 <- l’ >>)
P
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The remaining cases (a = (l á g), a = (l := c) and a. = ((c)) are handled by making use of the induction
hypothesis.

Remark 5.45 Lemma.5.43 still holds if the rules RVar, FVar, FInv, CO are added to R.

We may now prove the main proposition of this subsection, namely, the proposition of preservation of strong
normalization for the (¿m-calculus.

Proposition 5.46 (PSN of the (¿m-calculus) The (¿hu-calculuspreservesstrong normalization.

Proof. Suppose that the (¿ba-calculus does not preserve strong normalization. Thus there is a.pure term
a which is strongly cab-normalizing but which possesses an infinite derivation in the (¿bg-calculus. Since the
rewrite system S = ESDB U {M0, F0, FI} is strongly normalizing this derivation must have the form

0:01-"sa2—’MIaa-”sa4->Mras--

where the reductions 02k —>M¡agk+1 for k 2 1 occur infiniter many times. Now since a is in 1-",and since by
Lemma 5.38 the set .‘Fis closed under reduction in (¿b we obtain an infinite sequence

501): 5(01) ¿'71S(02) >-T.S(aa) :7, S(a4) >-7¡S(a5) . ..

This contradicts well-foundedness of the recursive path ordering >77.
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Part III

From Higher-Order to First-Order
Rewriting
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Chapter 6

A de Bruijn Notation for Higher-Order
Rewriting

Higher-order (term) rewriting concerns the transformation of terms in the presence of binding mechanisms for
variables and substitution, its theory may be seen to start with the pioneering work of J .W.Klop in his 1980
PhD thesis [K1080].The paradigmatic example of a higher-order rewrite system is the A-calculus:

(Az.M)N —>,3M{a: <- N}

The right-hand side of this rule makes use of substitution: M {:z:<- N} denotes the term which results from
substituting N for all free occurrences of a: in M. Substitution is a metalevel notion (it lives in the world of
our language of discourse) that may be seen as a consequence of the existence of special symbols called binder
symboLsthat have the power to bind variables in terms. This entails that substitution may not be confined
to usual first-order replacement, but rather has to be careful to respect the status (free or bound) of variables
when doing its work. In this sense, it is fair to say that substitution is ‘respectful replacement’. However, it is
a mistake to dismiss substitution as a trivial concept: the theory of higher-order rewriting is considerany more
involved than that of first-order rewriting.

Many higher-order rewrite systems (HORS) exist and work in the area is currently very active. In the seminal
work of J.W.Klop [KloSO]Combinatory Reduction Systems (CRS) were introduced. Several formalisms intro
duced later, of which we mention some, are: Z.Khasidashvili’s Elpression Reduction Systems (ERS) of which an
early reference is [Kha90], T.Nipkow introduces Higher-Order Rewn'te Systems (HRS) in [Nip91], D.A.Wolfram
defines Higher- Order Term Rewn'te Systems [Wol93],V. van Oostrom and F. van Raamsdonk introduce Higher
Order term Rewriting Systems [OR94]as a general higher-order rewriting formalism encompasing many known
formalisms [00594, Raa96] and B.Pagano defines Esplicit Reduction Systems (XRS) [Pag98] using de Bruijn
indices notation. F. van Raamsdonk’s PhD thesis provides a survey [Raa96].

This chapter aims at getting rid of a-conversion in the substitution process. Although from the metalevel
the execution of a substitution is atomic, the cost of computing it highly depends on the form of the terms,
especially if unwanted variable capture conflicts must be avoided by renaming bound variables. So this aim has
a practical interest since any implementation of higher-order rewriting must include instructions for computing
this notion of substitution. As illustrated in Section 2.2.2, there is a standard technique introduced by de Bruijn
to get rid of a-conversion. De Bruijn indices take care of renaming because the representation of variables by
indices completely eliminates the capture of variables. However, de Bruijn formalisms have only been studied
for particular systems (and only on the term level) and no general framework of higher-order rewriting with
indices has been proposed. We address this problem here by focusing not only on de Bruijn terms (as usually
done in the literature for A-calculus [KRB8])but also on de Bruijn metaterms, which are the syntactical objects
used to express any general higher-order rewrite system formulated in a de Bruijn context. More precisely, we
shall introduce a de Bruijn notation for Expression Reduction Systems, obtaining SERS“. In fact, we shall
formulate a slightly Simplified version of ERS that we shall call Simplified ERS (SERS), better suited for our
purposes, and then consider a de Bruijn notation for this formalism. The reason for choosing the ERS formalism
is that its syntax is close to the ‘usual’ presentation of the A-calculus. For example, the B-rewrite rule is written
app((A1:.M), N) —>M [:r <- N] where M and N can be instantiated by any terms.

The SERS formalism may be viewed as an interface of a programming language based on higher-order
rewriting. Since the use of variable name based formalisms are necexary for humans to interact with computers
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in a user-friendly way, technical resources like de Bruijn indices (and, later on, explicit substitutions) should
live behind the scene, in other words, should be implementation concerns. Moreover, it is required of whatever
is behind the scene to be as faithful as possible as regards the formalism it is implementing. So a key issue
shall be the detailed study of the relationship between SERS and SERSdb. The definitions developed in this
chapter give formal translations from higher-order syntax with names to higher-order syntax with indices and
vice-versa. These translators are extensions to the higher-order setting of the translations presented in [Cur93],
also studied in [KR98].

As regards existing higher-order rewrite formalisms based on de Bruijn index notation and/ or explicit substi
tutions to the best of the author’s knowledge there are three: Explicit GRS [BR96], Ezplicz'tReduction Systems
(XRS) [Pag98], and the Calculus of Indezed Names and Named Indices (CINNI) [SteOO].In [BR96] explicit
substitutions a la Ax [RosQ2,B1097]are added to the CBS formalism as a first step towards using higher-order
rewriting with explicit substitutions for modeling the evaluation of functional programs in a faithful way. Since
this is done in a variable name setting a-conversion must be dealt with as in CBS. Pagano’s XRS constitutes the
first HORS which fusa de Bruijn indices notation and explicit substitutions. It is presented as a generalization
of the Aun-calculus [CHL96]but no connection has been established between XRS and well-known systems such
as GRS, ERS and HRS. Indeed, it is not clear at all how some seemingly natural rules expressible, say, in the
ERS formalism, may be written in an XRS. As an example, consider a rewrite system for logical expressions
such that if ¿mph/(e;, 62) reduces to the constant true then el logically implies 62 in classical first-order predicate
logic. A possible rewrite rule could be:

imply(3:nyM,Vy3:cM) —>,-mptrue

A naïve attempt might consider the rewrite rule:

implyGVM, VEIM)Him?“ true

as a possible representation of this rule in the XRS formalism, but it does not have the desired effect.
Indeed, for example the term imply(3:1:Vy.:c,Vyaamc)is an instance of the ¿mp-rule, whereas its naïve de Bruijn
representation imply(3V2,V31)is not an instance of impdb. Note that regardless of the fact that XRS incorporate
explicit substitutions, this problem arises already at the levelof de Bruijn notation. Another example of interest
is the extensional rule for functional types 17:

Az.(app(M,:c)) —>M if a: is not free in M

which is usually expressed in a de Bruijn based system with explicit substitutions as 17.11,

/\(GPP(M, 1)) -* N if M =5 NIT]

where M =¿ N means that M and N are equivalent modulo the theory of explicit substitutions 8 (for example
8 might be v). Neither the ¿mp-rule nor 71a,is posible in the XRS formalism so that they do not, in principle,
have the same expressive power as ERS. Recently, the author has learned of an alternative representation for
terms introduced by K.J.Berkling (see [SteOO]for references). This notation is used by M-O.Stehr [SteOO]to
eliminate a-conversion from higher-order rewrite systems. As in B.Pagano’s XRS, no relation to established
HORS in the literature is presented. In fact, the definition of the higher-order rewriting setting is not provided.
We shall show that SERSdb allows rules such as those previously mentioned to be faithfully represented, and at
the same time shall stablísh precise links with ERS.

Structure of the chapter

We begin by introducíng our work and study scenario, the SERS formalism. After defining notions such
as pre-metaterms, metaterms and terms and their corresponding notions of substitution, we consider rewrite
rules. Valuations are then introduced in order to put rewrite rules to work. Metaterms are used to specify
rewrite rules, and rewrite rules are used to rewrite terms. The de Bruijn based formalism SERSdb is defined in
Section 6.2, and analogous concepts are considered in that setting. Next we undertake the task of comparing
these two formalisms: Section 6.3 studies an encoding of SERS in SERSdband Section 6.4 considers the opposite
enooding. In each case, this requires that we deal with a static phase by showing how terms and rewrite rules
may be encoded, and a rewrite-preservation phase or dynarnical phase in which we must show that valuations,
and hence the induced rewrite relation, may also be encoded appropriately. The SERSdb-to-SERS direction
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shall prove to be technically more demanding than the other. The reason is that we have a choice for selecting
appropriate names for variables and metavariables, and we must rest assured that the results are not biased
by our selection. Also, the valuations obtained by this process of translation must yield ‘good’ valuations in
the sense that they are permitted to be used in order to use the rewrite rules for rewriting terms. Finally we
consider preservation of confiuence:

o if 7?.is a confiuent SERS then its translation to the de Bruijn indices setting, U('R), is a confiuent SERSdb.

o if R is a confiuent SERSÜ, then is translation to the named setting, T('R), is a confiuent SERS.

6.1 Simplified Expression Reduction Systems
We introduce the name based higher-order rewrite formalism SERS. The latter is an appropriate simplification
of Khasidashvili’s ERS [Kha90] which consists in restricting binders to those which bind one variable and
restricting substitution to simple substitution (in contrast to simultaneous or parallel substitution).

Definition 6.1 (Signature) A SERS-signature 2 consistsof the denumerable (and possiny infinite) disjoint
sets:

o 2” = {21,zg,a:3, . . a set of variables, arbitrary variables are denoted z,y, . . .

o 25m, = {(21,012,013,. . a set of pre-bound o-metavariables (o for object), denoted (1,5, . . .

o 21m” = {3,553,512},. . a set of pre-free o-metavariables, denoted «13,...

o Zum, = {X1,X2,X3, . . a set of t-metavariables (t for term), denoted X,Y, Z, . ..

o 2, = {f1, f2, f3, . . a set offunction symbolsequipped with a fixed (possiny zero) arity, denoted f, g, h, . . .

o Eb = {A1,Ag,A3,. . a set of binder symboLsequipped with a fixed (non-zero) arity, denoted A,p,u,¿, . . .

The union of 25m, and Ef,“ is the set of o-metavariables of the signature. When Speaking of metavariables
without further qualifiers we refer to o- and t-metavariables. Since all thae alphabets are ordered, given any
symbol s we shall denote O(s) its position in the corresponding alphabet.

Definition 6.2 (Labels) A label is a finite sequence of symbols of an alphabet. We shall use k, l,l¡, . .. to
denote arbitrary labels and e for the empty label. If s is a symbol and l is a label then the notation s G l
means that the symbol s appears in the label l, and also, we use sl to denote the new label whose head is s
and whose tail is l. Other notations are |l| for the length of l (number of symbols in l) and at(l, n) for the n-th
element of l assuming n S |l|. Also, if s occurs (at least once) in l then pos(s, l) denotes the position of the first
occurrence of s in l. If 0 is a function defined on the alphabet of a label l = 31. . .sn, then 0(l) denotes the label
0(51) . . . 0(sn). In the sequel, we may use a label as a set (e.g. if S is a set then S nl denotes the intersection
of S with the underlying set determined by l) if no confusion arises. A simple label is a label without repeated
symbols.

Definition 6.3 (Pre-metaterms) The set of SERS pre-metatenns over E, denoted 'PMT, is definedby:

M ::= a|8|X|f(M,...,M) |€a.(M,...,M) | M[oz<-M]

Arities are supposed to be respected, i.e. a pre-metaterm like f(M1, . ..,Mn) (resp. ¿a.(M1, . . .,Mn)) is
generated by the grammar only if f (resp. E) has arity n 2 0 (resp. n. > 0).

We shall use M, N, Mi, . . . to denote pre-metaterms. The symbol o[o <- o] in the pre-metaterm M1[a <- M2]
is called metasubstitution operator. The o-metavariable a in a pre-metaterm of the form €a.(M1,...,Mn) or
M1[a <- Mz] is referred to as the formal parameter. The set of binder symbols together with the metasubstitu
tion operator are called binder operators, thus the metasubstitution operator is a binder operator (since it has
binding power) but is not a binder symbol since it is not an element of Eb.
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The main difference between SERS and ERS is that in the latter binders and metasubstitutions are de

fined on multiple o-metavariables. Indeed, pre-metaterms like (al...ak.(M1,...,Mm) and M [011...ak 4
M1,...,Mk] are posible in ERS, with the underlying hypothesis that a1 ...a¡. are all distinct and with the
underlying semantics that M [a1 . “ak <- M1, . . . , Mk] denotes usual (parallel) substitution. It is well known
that multiple substitution can be encoded by simple substitution. Indeed, M [a1 ...ak <- M1,. . . ,Mk] can be
encoded as the pre-metaterm M[a1 <- fl1][ag <- flz] . . . [oqc<- fik][,61 <- M1][flg <- M2] . . . [fik <- Mk], where
51,“ .,fik are fresh pre-bound o-metavariables. As for ¿al ...ak.(M1, . . .,Mm) it may be encoded with the
help of two binder symbols E and 5’ as the pre-metaterm ¿a1.(€ag.(...¿’ak.(M1,...,Mm))). There is also a
notion of scope indicator in ERS, used to express in which arguments of the quantifier variables are bound.
Scope indicators shall not be considered in SERS since they do not seem to contribute to the expressive power
of ERS.

A pre-metaterm M has an associated tree, denoted tree(M), in the following way:

o the tree of a metavariable a, 62or X is the tree with the single node a, 52and X, respectively.

o if T1, . . . ,Tn are the trees of M1, . . . , Mm then the tree of f(M1, . . . ,Mn) is that of Figure 6.1(a).

o if T1, . . . ,Tn are the trees of M1, . . . , Mn, then the tree of ¿a.(M1, . . . ,Mn) is that of Figure 6.1(b).

o if T1,T2 are the trees of M1, M2, then the tree of M1[a <- M2] is that of Figure 6.1(c).

The tree of f (M1, . . . , Mu) has the expected form, however the tree of M1[a <- M2] may seem somewhat odd
since there are two nodes above the tree of M1. The reason is that the metasubstitution operator is asymmetric
in that its left argument M1 is considered to be under a binding effect whereas M2 is not. We would like this
to be refiected in the structure of the tree, enabling us to look “above” a position (Figure 6.1(c)) in a tree to
know under which binders it occurs.

f ¿a sub/ \ / \ / \
T1 Tn T1 Tn “a T2

IL

(a) (b) (C)

Figure 6.1: Pre-Metaterms as 'Irees

A position is a label over the alphabet IN. We use e to denote the empty word in IN". Given a pre-metaterm
N appearing in M, the set of occurrences of N in M is the set of positions of tme(M) where tree(N) occurs
(positions in trees are defined as usual). The parameter path of a position p in tree(M) is the list containing all
the (pre-bound) o-metavariables occuring in the path from p to the root of tree(M). Likewise, we may define
the parameter path of an occurrence of N in M.

Example 6.4 Consider the pre-metaterm M = f ((6a.(X )),Y). Then X occurs at position 1.1 and Y at
position 2. The parameter path of 1.1 (or just X) is a and the parameter path of 2 (or just Y) is e. Consider
the pre-metatermM = pfi.(X[a <- A7.(g(fi,g(7, Then the submetatermA7.(g(fl,g(-y,Z)))occursat
position 1.2 and g('7,Z) occurs at position 1.2.1.2; the parameter path of 1.2 (or just A7.(g([3,g(7, is fi,
the parameter path of 1.2.1.2 is yfl.

The following definition introduces the set of metaterms, which are pre-metaterms that are well-formed
in the sense that they prevent the use of the same name for two difierent occurrences of a formal parameter
appearing in the parameter path of a given pre-metaterm, i.e. all the formal parameters appearing in the same
path of a pre-metaterm must be difierent. Also, it guarantees that metavariables in 25m” only occur bound.
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Definition 6.5 (Metaterms) A pre-metaterm M e 'PM’Ï over E is said to be a metaterm over 2 ifi the
predicate W]: (M) holds, where WT (M ) ifi WJ’¿(M) holds, and WII-"¿(M)is defined by induction on the
structure of the pre-metaterm M for any label l as follows:

o WJ-‘¿(a)iffa El

o WJ-"¡(<ï)and Wf¡(X) hold iff l is a simple label

o Wf¡(f(M1, . ..,Mn)) ifi for all 1 Si S n we have WF¿(M,-)

o WJ-'¡({-'a.(M1,...,M,.)) ifi'a é l and for all 1 51's n we have Wfa¡(M.-)

. Wf,(M1la «- M2]) ifi a g l and WJ-'¡(M2) and wav-1.,(M1).

Example 6.6 The pre-metaterms f(foí.(X),/\a.(Y)), f(E,/\a.(Y)) and g(Aa.(€fi.(h))) are metaterms, while
the pre-metatermsf(a,{a.(X)) and f(fi,/\a.({a.(X))) are not.

In the sequel, pre-bound (resp. pre-free) o-metavariables occurring in metaterms shall simply be referred to
as bound (resp. free) o-metavariables. Also, we shall assume, whenever possible, some fixed signature 2 and
hence speak of pre-metaterms or metaterms instead of pre-metaterms over 2 or metaterms over E. As we shall
see, metaterms are used to specify rewrite rules.

Definition 6.7 (Free metavariables of pre-metaterms) Let M be a pre-metaterm,then FMVar(M) de
notes the set of free metavan'ables of M, which is defined as follows:

FMVar(X) dé‘ {X} FMVar(a) dé‘ {a} FMVar(a) ‘*="f{a}

FMVar(f(M1,...,Mn)) dÉfUÏ=1FMVar(M.-)

FMVar(¿a.(M1,. . . ,Mn)) “¿f (UÏ=1FMVar(M1-))\{a}

FMVar(M1[a ‘- M21) dé‘ (FMVar(M1) \ {a}) u FMVar(M2)

All metavariables in a pre-metaterm M which are not free are bound. We use BMVar(M ) to denote the
bound metavariables of a.pre-metaterm M. Note that only o-metavariables may occur bound in a metaterm,
metavariables of the form a or X,- shall always occur free (if they occur at all) in a. metaterm. We denote
the set of all the metavariables of a metaterm or a pre-metaterm M by MVar(M So we have MVar(M) =
FMVar(M) U BMVar(M).

Let M be the metaterm f(É,/\a.Y). Then FMVar(M) = {3, Y}, MVar(M) = {3, Ka}, and BMVar(M) =
{a}. If M is the metaterm f(fi,Aa.a) then FMVar(M) = BMVar(M)= {a} and MVar(M) = {(1,3}.

Definition 6.8 (Terms and contexts) The set of SERS terms over 2, denoted T, and contestaare defined
by:

Terms t ::= z|f(t,...,t)|fz.(t,...,t)
Contexts C = El|f(t,...,C,...,t)|{z.(t,...,C,...,t)

where Ü denotes a ‘hole’. We shall use 3, t, ti, . .. for terms and C, D for contexts. Contexts are just terms
with exactly one occurrence of a hole. The a: in ¿ar is called a binding variable. We remark that in contrast to
other formalisms dealing with higher-order rewriting such as CBS, the set of terms is not contained in the set
of pre-metaterms since the set of variables and the set of o-metavariables are disjoint. Terms shall be obtained
from metaterms by suitable instantiation of o- ‘ iables and t- ‘ íables

With C[t] we denote the term obtained by replacing t for the hole El in the context C. Note that this
operation may introduce variable capture. We define the label of a context as a sequence of variables as follows:

1abe1(I:I) "=“fe

1abel(f(t1, . . . , C, . . . , tn)) “¿3‘1abe1(C)

1abe1(ga:.(t1, . . . , C, . . . ,tn)) Cl=eflabel(C)a:
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For example, the label of the context f (Az.(z,€y.(h(y, D)))) is the sequence yz. The label of a context is a
notion analogous to that of a.parameter path of an occurrence, but defined for terms instead of pre-metaterms
and where the only occurrence considered is that of the hole. The reason for not using the name ‘parameter
path’ is just because the latter notion is defined on pre-metaterms, and contexts are not pre-metaterms.

Definition 6.9 (hee variables of terms) Let t e T, the set FV(t) of free variablesin t is defined by:

sz) d=°‘{:c}
FV(f(t¡,...,t,,)) “¿f 1* wm)1=1

Fv(¿z.(t1,...,tn)) "=°‘(U2; Fv(t.-)>\{z}

This definition can be extended to contexts by adding the clause F V(El) déf0.

Substitution on terms can be defined as follows:

Definition 6.10 ((Restricted) substitution of terms) The (restricted)substitutionof a term t for a vari
able a; in a term s, denoted s{z <- t}, is defined:

dgfz{a: <- t} t

y{w«- t} défy ifzaéy
¡(31, . . . ,sn){a: «- t} dé‘ f(31{z «- t}, . . . ,sn{:1: ._ t})

{2.031, . . .,sn){a: 4- t} d=3f€az.(31,...,sn)

{y.(31, . . .,s,,){a: <- t} dÉf€y.(sl{:r <- t}, . . . , 3,,{1 «- t})
ifa: 96y, and (y í FV(t) or a: g FV(3))

Thus o{o <- 0} denotes the substitution operator on terms, but it may not apply a-conversion (renaming
of bound variables) in order to avoid variable captures. Therefore this notion of substitution is not defined for
all terms (hence its name). For example (Ey.z){z <- y} is not defined. When defining the notion of rewrite
relation on terms induced by rewrite rules we shall take a-conversion into consideration in order to guarantee
that any substitution to be performed may be completed with restricted substitution. This shall allow us to
‘localize’ a-conversion when applying rewrite rules.

The fourth clause of Def. 6.10 could be avoided. Howeverthis complicates the definition of a-conversion, and
also of v-equivalence (Def. 6.11) if the notion of restricted substitution for pre-metaterms is modified accordingly.
So we shall stick to Def. 6.10 as it stands.

We may define a-conversion on terms as the smallest refiexive, symmetric and transitive relation closed by
contexts verifying the following equality:

(a) Ez.(31,. . .,sn) =a €y.(31{a: <- y}, . . . , 3,,{2 <- y}) y does not occur in 31, . . . ,sn

Note that since y does not occur in 31, . . . , sn substitution is defined. We shall use t =a s to denote that the
terms t and s are a-convertible. This conversion is sound in the sense that t =a s implies FV(t) = FV(s). In
fact, the latter identity holds at the occurrence level: if p is an occurrence of a free variable :1:in t then we find
:1:at position p in s too (and vice-versa).

The notion of a-conversion for terms has a corresponding one for pre-metaterms which we call v-equivalence
(v for variant). The intuitive meaning of two v-equivalent pre-metaterms is that they are able to receive the
same set of potential 'valuations’ (Def. 6.19). Thus for example, as one would expect, Aa.X 7%,AfiX because
when a and X are replaced by z, and fi is replaced by y, one obtains A2.: and Aya, which are not a-oonvertible.
However,since pre-metaterms contain t-metavariables, the notion of v-equivalence is not straightforward as the
notion of a-conversion in the case of terms. More on the intuitive idea of v-equivalence shall be said below.

Definition 6.11 (v-equivalence for pre-metaterms) Given pre-metaterms M and N, we say that M is
v-eqm'valent to N, iff M =,, N where :1, is the smallest refiexive, symmetric and transitive relation closed by
metacontexts1 verifying:

(v1) fa.(P1, . . . ,Pn) =,, €fi.(P1<<a4—fi>> ...P,,<<a<—fl>>)
(v2) Pila ‘- Po] :1) P1«OH-fi» [.5‘- Pol

1Metaconteauctsare defined analogously to contexts. The notion of llabel of a oontext’ is extended to metacontexts as expected.
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where P,- does not contain t-metavariables for 1 S i S n, and

('01) fi is a pre-bound o-metavariable which does not occur in P1, . . . , Pm and
(v2) ,3 is a pre-bound o-metavariable which does not occur in P1

P<<a<—Q>>is the restricted substitution for pre-metaterms:

a<<a<—Q>> dÉfQ

a'<<a<—Q>> dÉfa’ a 9€a’

o7<<a<—Q>> “'36?

X<<a<—Q>> dÉfX

¡(M1,...,Mn)<<a«—Q>> dé‘f(M1<<au—Q>>,....M,.«ou—Q>)
(ea.(M1,...,Mn))<<a«-Q>> ü‘ga.<M1,...,M,.)
(Ea’.(M1,...,Mn))<<a4—Q>> déffia’.(M1<<a<—Q>>,. . .,M,,<<a«—Q>>)

if a 76a’ and (a’e FMVar(Q) or ai FMVar(M¿))

dÉfM1[a <- M2<<a<—Q>>]

déf (M1<<ou—Q>>)[a’ «- M2<<a<—Q>>]
if a 96a’ and (a’í FMVar(Q) or agéFMVar(M1))

(M1[a <- M2]) <<a<-Q>>

(M1[a’ <- M2])<<ou-Q>>

Example 6.12 Aaa :1, M15, Aa.f :1, Afif, but AOLX96,,mx, Afi./\a.X 96.,Aa./\fi.X.

Note that pre-metaterms may be seen as contexts where the holes of a context are represented by t
metavariables. However, metaterms are not treated as first class Citizens as in [BdV99].

We shall now consider the rewrite rules of a SERS. The rewrite rules are specified by using metaterms,
whereas the rewrite relation is defined on terms.

Definition 6.13 (SERS-rewrite rule) A SERS-rewn'te rule over 2 is a pair of metaterms (G,D)2 over 2
(also written G —>D) such that:

o the first symbol (called head symbol) in G is a function symbol or a.binder symbol,

o FMVar(D) Q FMVa/r(G), and

o G contains no occurrence of the metasubstitution operator.

Definition 6.14 (SERS) A SERS is a pair (2, R) where E is a SERS-signature and R is a set of SERS-rewrite
rules over 2.

We shall often omit 2 and write 'R instead of (2, R), if no confusion arises.

Example 6.15 The A-calculusis defined by considering the signature containing the function symbols 2, =
{app} and binder symbols Eb = {A}, together with the SERS-rewrite rule: app(Aoz.X,Z) ->p X [a 4- Z]. The
An-calculus is obtained by adding the following SERS-rewrite rule: Aa.(app(X, a)) —>,,X.

Example 6.16 The Ax-calculus [BR96, R0592]is defined by considering the signature containing the function
symbols 2¡ = {app, subs} and binder symbols Eb = {A,a}, together with the following SERS-rewrite rules:

app(/\a.X, Z) 433“, subs(aa.X, Z)
subs(aa.(app(X, Y)), Z) ¿App app(subs(aa.X, Z), subs(0'a.Y,Z))
subs(cra.Afi.(X), Z) —>¡,am Afi.(subs(aa.X, Z))
subs(aa.a, Z) -> Var Z
subs(aa.fi, Z) ->ch fi

2We shall reserve letters L and R for the de Bruijn formalism SERSÜ.
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Example 6.17 The AA-calculus [R894]is defined by considering the signature containing the function symbols
2, = {app} and binder symbols 2;, = {A,A}, together with the following SERS-rewrite rules:

app(/\a.X, Z) Hada X[a <- Z]
app(Aa.X. Z) _’A1 Afl-(X [a <- A7.(app(fl, apph. Z)))])
Aa.(app(a, X)) —’42 X
ACI-(amm.(Afl-(app(a.X))))) 443 X

Example 6.18 A further example is the foldl recursion scheme over lists.

foldl(€a.(€B.X),Y, —>¡¡ Y
foldl(€a.(¿',6.X),Y,con3(Z, —>¡2foldl(€a.(€fl.X), Xla <- Y][fl <- Z], W)

We shall now proceed to define the way in which rewrite rules are instantiated in order to obtain the induced
rewrite relation on terms. This implies defining how the ‘holes’ in the metaterms of the rule, represented by
t-metavariables and o-metavariables, are replaced by terms and variables, respectively. Thus the notion of
valuation shall be introduced, followedby some additional conditions imposed on these valuations in order to
single out the ‘good’ valuations (referred to as admissible valuations) from the ‘bad’ ones. A word on notation:
if 0 is a (partial) function fi'om a set Sl to a set Sg then we use Dom(0) to denote its domain, i.e. the subset
of S] for which it is defined.

Definition 6.19 (Valuation) A variable assignment over 2 is a (partial) function 0., from o-metavariables
to variables with finite domain, such that for every pair of o-metavariables ¿1,3 we have Ova 9601,3 (pre-bound
and pre-free o-metavariables are assigned different values).

A valuation 0 over 2 is a pair of (partial) functions (0”, 0,) where 0., is a variable assignment over 2 and 0g
maps t-metavariables in E to terms over 2. It is defined as:

def
0a = 00a
oa “¿f ova

0X ¿2‘ ax

A valuation 0 may be extended in a unique way to the set of pre-metaterms M such that MVar(M) g Dom(0),
where Dom(0) denotes the domain of 0, as follows:

5(f(M1_...,M,,)) dé‘ ¡(70M1,...,6M,,)
5(¿a.(M1_. .. ,Mn)) "¿3‘ Eüva.(ÜM¡, . . . ,ñMn)

5(M1[a «- M21) e 6(M1){0.,a «- 70M2}
O. w.

We shall not distinguish between 0 and 5 if no ambiguities arise. Also, we sometimes write 0(M) thereby
implicitly assuming that M Var(M) Q Dom(0).

Returning to the intuition behind 'u-equivalencethe idea is that it can be translated into a-conversion in
the sense that M :1, N implies 0M =a BN for any valuation 0 such that 0M and 0N are defined. Indeed,
coming back to Example 6.12 and taking 0 = {a/z,fi/y,X/a:}, we have 0(/\a.a) = Ama:=a Ay.y = 0(Afi.fi)
and 0(Aa.f) = Aaf :0, Ay.f = 0(A,B.f). However 0(Aa.X) = A2.: 96a Aya = 0(Afl.X) and 0(Afl.Aa.X) =
Ay./\:c.a:aéa Az.Ay.:1:= 0(/\a./\B.X).

As the reader may have observed, a valuation computes a metasubstitution operator by executing metalevel
substitution. However, since metalevel substitution is restricted in that no a-conversion is allowed to take place,
we must require the valuation to be capable of executing all metasubstitution operators in a given pre-metaterm.

Definition 6.20 (Safe valuations) Let IVI_be a pre-metaterm over 2 and 0 a valuation over 2. We say that
0 is safe for M if MVar(M) g Dom(0) and 0M is defined, i.e. the substitutions generated by the_last clause of
Def. 6.19 can be computed. Likewise, if (G, D) is a rewrite rule, we say that 0 is safe for (G, D) if 0D is defined.

Note that if the notion of substitution we are dealing with were not restricted then a-conversion could be
required in order to apply a valuation to a pre-metaterm. Also, for any valuation 0 and pre-metaterm M with
MVar(M) g Dom(0) that contains no occurrencs of the metasubstitution operator 0 is safe for M. Thus, we
only ask 0 to be safe for D (not G) in the previous definition.
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The following condition is the classical notion of admissibility used in higher-order rewriting [Raa96] to avoid
inconsistencies in rewrite steps. It runs under the name “variable-capture-freeness” in the case of ERS [KOOOIa]
and aims at ruling out certain valuations which after instantiating a rewrite rule leave some free and bound
occurrences of the same variable. An example is the rewrite rule Aa.X —>X and the valuation which asigns z
to a and X. The resulting rewrite step is Adm:—>a: which has an occurrence of a: which is bound on the left
and and occurrence of :t which is free on the right.

Definition 6.21 (Path condition for t-metavariables) Let X be a t-metavariable.Considerall the occur
rences p1, . . . ,pn of X in (G, D), and their respective parameter paths l1,...,ln in the trees corresponding to
G and D. A valuation 0 verifies the path condition for X in (G, D) if for every a: e FV(0X), either (for all
1Signwehavezeüh) or(foralllSiSnwehavezíüli).

This definition may be read as: one occurrence of a: E F V(0X ) with X in (G, D) is in the scope of some
binding occurrence of a: iff every occurrence of X in (G, D) is in the scope of a bound o-metavariable a with
00: = :5. For example, consider the SERS rule Aa.(€fi.X) —>¿[1X and the valuations 01 = {az/3:,fl/y, X /z}
and 02 = {cz/1:,fi/y, X/a:}. Then 01 verifies the path condition for X, but 02 does not since when instantiating
the rewrite rule with 02 the variable z shall occur both bound (on the LHS) and free (on the RHS).

Note that our formalism allows us to specify the restricted garbage collection rule ch of Ax (Example 6.16)
as originally done in [Ros92], while formalisms such as CRS force one to change this rule to a stronger one,
namer Gc, written as subs(aa.X , Z) —>GcX, where the path condition (Def. 6.21) on valuations guarantees
that if X/t is part of the valuation 0, then 0(a) cannot be in FV(t).

We may then single out the ‘good’ valuations by the following notion of admissible valuations.

Definition 6.22 (Admissible valuations) A valuation 0 over 2 is admissiblefor a rewn'te rule (G,D) over
E ifl' the following conditions hold:

o 0 is safe for (G, D),

o if a and B occur in (G, D) with a 9€fi then 0,,0:76005, and

o 0 verifies the path condition for every t-metavariable in (G, D).

Note that an admisible valuation is safe by definition, but a safe valuation may not be admisible: consider
the rule Aa.app(X, a) —>X, the valuation 0 = {cx/z,X/:c} is trivially safe (there is no metasubstitution operator
on the RHS) but is not admissible since the path condition is not verified: 17€0(a) but mías) (a:occurs bound
on the LHS and free on the RHS).

Having defined rewrite rules and (admisible) valuations we find ourselves ready to present the rewrite
relation induced on terms by a rewrite rule.

Definition 6.23 (Rewriting terms) Let (2, 'R) be a set of SERS-rewriterules and s, t terms over 2. Wesay
that s R-rewn'tes or 'R-reduces or R-contracts to t, written s —->—R_t, ifi there exists a rewrite rule (G, D) E 'R,
an admisible valuation 0 for (G, D) and a context C such that s =a C[0G] and t =a C[0D]. The term 0G is
called a (G, D)-rede:c. A redex in a term M is determined by a rewrite rule and a position in tree(M

We shall occasionally drop the subscript in the rewrite relation when it is clear from the context. Note that,
as in first-order rewriting, rewriting does not create new variables.

Lemma 6.24 Let 0 be an admissible valuation for a rewrite rule (G, D). Then FV(0D) g FV(GG).

Proof. Suppose a: E FV(OD). Then

o if a: comes from a free o-metavariable É occurring in D with 03 = :c, then since FM Var(D) g FM Var(G)
we also have that fi occurs in G. Moreover, by definition of valuation, variables asigned to free o
metavariables cannot be captured, so that we necessarily have a:e F V(0G).

o if a: comes from instantiating a t-metavariable Z occurring in D, then Z occurs in D at position pp,
a: E FV(ÜZ) and a: does not appear in 0(lp), where lp is the parameter path of pp in D. Now, since
FM Var(D) g FM Var(G), we also have that Z occurs in G, let us say at position pa. Suppose that
z e FV(BG). The only possible case is that a: was captured in 0G so that a: e BV(ÓG). Therefore a:
appears in Bac), where la is the parameter path of pc in G, which contradicts the fact that 0 verifies the
path condition for Z in (G, D).
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The rewrite relation on terms satisfies the followingproperty:

Corollary 6.25 Let s,t G T, if 3 -—>12_t, then FV(t) Q FV(3).

Proof. If s —>Rt, then there exists a rule (G, D) e R and a context C such that s =a C[0G] and t =a C[0D]
where 0 is an admissible valuation for (G, D). Since FV(C[OG]) = FV(3) and FV(C[0D]) = FV(t) we can
reason directly on C[0G] and C[0D]. Suppose a: G FV(C[0D]). Then either :1:G FV(C), in which case we
trivially have a: E FV(C[0G]), or a: E FV(0D). Then by Lemma 6.24 a: e FV(0G) and since a: is not captured
in C, we also have a: G FV(C[GG]). .

6.2 Simplified Expression Reduction Systems with Indices
We introduce the de Bruijn indices based higher-order rewrite formalism SEI-IS“. We shall follow Section 6.1
and introduce de Bruijn metaterms, de Bruijn terms, de Bruijn valuation, and finally, de Bruijn rewriting. We
shall thus put in practice the followingnotational convention: in order to distinguish a concept defined for the
SERS formalism from its corresponding version (if it exists) in the SERSdb formalism we may prefix it using
the qualifying term ‘de Bruijn’, eg. 'de Bruijn metaterms’.

Definition 6.26 (de Bruijn signature) A SERSdbsignature 2 consists of the denumerable (and possiny
infinite) disjoint sets:

o 21,,-= {421.012,a3, . . a set of symbols called binder indicators, denoted a, ,3, . . .

o 2,,“ = {63,6}, . . a set of i-metavan'ables (i for index), denoted 8,25,. ..

o 2m“, = {X,1,X¡2,X,3,. . a.set of t-metavan'ables (t for term), where l ranges over the set of labels built
over binder indicators, denoted X1, Yl,Z4, . . .

o 2, = {f1, f2, f3, . . a set offunction symbolsequipped with a fixed (possiny zero) arity, denoted f, g, h, . . .

o 25 = {A1,A2,A3,. . a set of binder symbols equipped with a fixed (non-zero) arity, denoted A,p, 11,5,. . .

We remark that the set of binder indicators is exactly the set of pre-bound o-metavariables introduced in
Def. 6.1 (2mm). The reason for using the same alphabet in both formalisms shall become clear in Section 6.3,
but intuitively, we need a mechanism to annotate binding paths in the de Bruijn setting to distinguish metaterms
like €fi.(€a.X) and €a.(€fi.X) appearing in the same rule when translated into a SERSdbsystem.

Definition 6.27 (de Bruijn pre-metaterms) The set of de Bruijn pre-metatermsover2, denoted 'PM'Ïdb,
is defined by the following two-sorted grammar:

metaindices I ::= 1 | S(I) | a
pre-metaterms A ::= I | X1| f(A,...,A) | f(A,...,A) | AIA]

The symbol elo] in a pre-metaterm AlA] is called de Bruijn metasubstitution operator. The binder symbols
together with the de Bruijn metasubstitution operator are called binder operators, thus the de Bruijn metasub
stitution operator is a binder operator (since it has binding power) but is not a binder symbol since it is not an
element of Eb.

We shall use A, B,A,-, . . . to denote de Bruijn pre-metaterms and the convention that S°(1) = 1, 80(8) = a
and Sj+1(n) = S(S«'i(12)). As usually done for indices, we shall abbreviate Sj'1(1) as j.

Positions may be defined by associating a tree to each de Bruijn pre-metaterm, as was done in the case of
SERS. As one might expect, tree(A) must have one of the forms depicted in Figure 6.2. The ‘subs’ in the
rightmost tree may be seen as a dummy function symbol.

Even if the formal mechanism used to translate pre-metaterms with names into pre-metaterms with de Bruijn
indices will be given in Section 6.3, let us introduce intuitiver some ideas in order to justify the syntax used for
i-metavariables. In the formalism SERS there is a clear distinction between free and bound o-metavariables.
This fact must also be refiected in SERSdb, where bound o-metavariables are represented with indices and free
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Figure 6.2: de Bruijn Pre-Metaterms as 'Il'ees

o-metavariables are represented with i-metavariables (this distinction between free and bound variables is also
used in some formalizations of A-calculus [P0193]).However, fi'ee variables in SERSdb appear always in a binding
context, so that a de Bruijn valuation of such kind of variables has to refiect the adjustment needed to repreent
the same variables but in a different context. This can be done by surrounding the i-metavariableAbyas many
operators S as necessary. ets an example consider the pre-metaterm Eafl. If we translate it to Efi, then a de
Bruijn valuation like ¡e= {,B/1} binds the variable whereas this is completely impossible in the name formalism
thanks to the conditions imposed on a name valuation (condition on variable assignments in Def. 6.19). Our
solution is then to translate the pre-metaterm ¿(2.3 by E(S(E)) in such a way that there is no capture of variables
since K(¿' is exactly g(2). The solution adopted here for translating pre-freeo-metavariablesinto the de
Bruijn formalism is in some sense what is called pre-cooking in [DHK95]: the pre-cooking function takes a
Aa-term with t-metavariables and sufiixes them with as many explicit shift operators as the number of binders
present in its parameter path. This avoids variable capture when the higher-order unification procedure finds
solutions for the t-metavariables.

We use M Var(A) (resp. MVan-(A) and M Var¿(A)) to denote the set of all metavariables (resp. i- and
t-metavariables) of the de Bruijn pre-metaterm A.

As in the SERS formalism, we also need here a notion of well-formed pre-metaterm. The first motivation is
to guarantee that labels of t-metavariables are correct w.r.t the context in which they appear, the second one is
to ensure that indices likej (resp. 57(6)) correspond to bound (resp. free) variables. Indeed, the pre-metaterms
¿(Xap), €(¿(4)) and ¿(8) shall not make sense for us, and hence shall not be considered well-formed.

Definition 6.28 (de Bruijn metaterms) A pre-metaterm A e 'PMTdb over E is said to be a metaterm
over 2 iff the predicate W]: (A) holds, where WIF(A) iff Wf'e (A), and WII-"¡(A)is defined by induction on the
structure of the pre-metaterm A for any label l as follows:

. wmsja» 161+1s lll

o WJ:¡(S-7(&)) ifi'j = |l| and l is a simple label

o W.7-'¡(X¡.)iffl = k and lis a simple label

o W.7-'¡(f(A1, . . . ,An)) iff for all 1 5 i S n we have W.7-'¿(A¿)

o WJ-"¡(€(A¡,. . . ,An)) ifl' there exists a í l such that for all 1 Si 5 n we have Wfa¿(A,-)

o W.7-'¿(A1[A2])ifi' WII-"¡(Ag)and there exists a í l such that Wfal (A1)

Therefore indices of the form (1) may only occur in metaterms if they represent bound variables and well
formed metaindices of the form 81(6) always represent a free variable. Note that when considering W]:¿(M)
and W.7-'¡(A) it is Definitions 6.5 and 6.28 which are referenced, respectively.

Example 6.29 Pre-metaterms ¿(XM/«Yang», ¡(ELA(Ya,s(&))) and g()\(€c)) are metaterms, whereas the
premetatenns¡(s(a).s(xp)), Mana», ¡(muaswnn arenot.

Definition 6.30 (Linear metaterms) A de Bruijn pre-metaterm (or metaterm) M is linear if it contains at
most one occurrence of any X-based metavariable. Note that the de Bruijn metaterm f (A(€(Xap)),¿(MXpa)»
is not linear since there are two occurrences of X-based metavariables, neither is f (,\(Xa),€ (Xa)). However,
app(/\Xa, Y¿) is linear.
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Definition 6.31 (Pattern of a metaterm) The pattern of a metaterm A is the metalcontext3obtained by
replacing every metavariable X1 by some hole Elxl. Note that if there is more than one occurrence of a
metavariable then there shall be more than one occurrence of its associated hole. We write pattern(A) for the
pattern of A.

Definition 6.32 (de Bruijn terms and de Bruijn contexts) The set of de Bruijn terms over 2, denoted
Tab, and the set of de Bruijn contexts over E are defined by:

de Bruijn indices n :'- 1 | S(n)
deBruijnterms a n|f(a,...,a)|{(a,...,a)
deBruijncontextsE El|f(a,...,E,...,a)|E(a,...,E,...,a,)

We use a, b,a,¿,b,-,. .. for de Bruijn terms and E, F, . .. for de Bruijn contexts. The notion of tree(a) may
be defined as for de Bruijn pre-metaterms. We may refer to the binder path number of a context, which is the
number of binders between the Eland the root. In contrast to Def. 6.8, we have here that de Bruijn terms are
also de Bruijn pre-metaterms, that is, Tau,C 'PMTdb, although note that some de Bruijn terms may not be
de Bruijn metaterms, i.e. may not be well-formed de Bruijn pre-metaterms. Indeed, the valid term E(€(4)) is
not a metaterm, however, the index 4 may be seen as a constant in the metaterm E(€(4)). If an arbitrary free
variable is wished to be represented in a metatermI then i-metavariables should be used.

Definition 6.33 (Free de Bruijn variables) We denote by FV(a) the set of free variables of a de Bruijn
term a, which is defined as follows:

mn) dé‘ {n}
FV(¡(a1....,an)) dé‘ U?=1FV(a¿)
FV(¿<a1,...,an)) é‘ (UZ‘=1FV(a.-))\\1

where for every set of indices S, the operation S\\j is defined as {n —j | n e S and n > j}.

O.

When encoding SERSdbsystems as SERS systems we shall need to speak of the free variable names (objects
in 2”, from the definition of a SERS signature) associated to the free de Bruijn indices. For example, if
a = ¿(1,2, 3), then FV(a) = {1,2}. The named variable associated to the free index 1 is 1:1,and likewise for
2 it is 22. In general, we write Names(S) for the names of the variables whose indices are in the set S. For
example, Names(FV(a)) = {21,22}.

Definition 6.34 (de Bruijn substitution) The result of substituting a term b for the index n 2 1 in a term
a is denoted afin «- b} and defined:

f(a1,...,a.n){n1—bB> = f(a1Hn<—b]},...,an{n+—bB)

¿(a1,...,a,.){{n._b}} dé‘ ¿(a1{n+1e-b},...,an{n+1<-b})
m-l ifm>n

mfln«—b}} d-í‘ {ugm ifm=nm ifm<n

where for i 2 0 and n 2 1 we define the updatz'ngfunctions UH.) as follows:

Uí‘(f(al,--.,an)) = f(U?(01),---,U?(an))
U?(€(ai,---.an)) É €(&1(ai)‘---,Ufil(an))

n df m+n—-1 ifm>z'
udm) É {m ifmSi

Due to the various notions of substitution and replacement introduced so far, in Figure 6.3 we give a brief
synopsis of the situation. We abbreviate “not applicable” by "na". In the case of valuations, we use the same
notation for SEI-IS valuations and SEI-¡Sa valuations.

31h fqu precision we obtain a metaterm with posiny many holes. However, by abuse of notation we shall speak in terms of
metacontexts.
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na

Figure 6.3: Notions of substitution

Definition 6.35 (Free de Bruijn metavariables) Let A be a de Bruijn pre-metaterm. The set of free
metavan'ables of A, FM Var(A), is defined as:

def
FM Var 1 = 0

FMVarEsiI» dé‘FMVar(I) ¡“WWW ---yAn» UL] FMVar(A1-)
FMVGTG) ¿2; {a} FMVa1-(€(A1,...,An)) é Uy=1FMVar(A,-)_ FMVar A A "¿f FMV A UFMVar A
FMVar(X¡) d-ï-f{xl} ( 1' 2D a“ 1) ( 2)

Note that this definition also applies to de Bruijn metaterms. The set of names of free metavariables of A
is the set of free metavariables of A where each X1 is replaced simply by X. We shall write NFMVar(A) for
the names of the free metavariables in A. For example, NFMVar(f(/\Xa, Y“ 8)) = {X, Y,a}. This notion will
be used for the first time in Def. 6.36.

We now consider the rewrite rules of an SERSdb. This includes defining valuations, their validity, and the
term rewrite relation in SERSdb. Rewrite rules are specified with de Bruijn metaterms, whereas the induced
rewrite relation is on de Bruijn terms.

Definition 6.36 (de Bruijn rewrite rule) A de Bruijn rewrite rule over 2 is a pair of de Bruijn metaterms
(L, R) over 2 (also written L —>R) such that:

o the first symbol (called head symbol) in L is a function symbol or a binder symbol,

o NFMVar(R) Q NFMVar(L), and

o the metasubstitution operator does not occur in L.

Definition 6.37 (SERS) A SEI-¡Sa is a pair (2, R) where 2 is a SERSdb-signatureand R is a.set of SERSdb
rewrite rules over 2.

As in the case of SERS, we shall often omit 2 and write R instead of (E, 'R), if no confusion arises.

Example 6.38 The Adh-calculusis defined by considering the signature containing the function symbols 2; =
{app} and binder symbols Eb = {A}, together with the following SERSdb-rewrite rule: app(/\Xa,Z¿) HB“
X a [Ze]. The Adhfldb-CEICUIUSis obtained by adding the following SERSdb-rewrite rule: A(app(Xa, 1)) en“ Xp

See also Examples 6.53 and 6.54.

Definition 6.39 (de Bruijn valuation) A de Bruijn valuationK,over 2 is a pair of (partial) functions (Ki,nt)
where n,- is a function from i-metavariables to positive integers“, and K4is a function from t-metavariables to
de Bruijn terms. It is defined as:

K1 déf 1

¡98(1) dé‘ sw)
A def A

no: = ¡qa

NX; dé‘ mx,

4Integers greater than 0.
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A valuation K.determines in a unique way a function ñ from the set of pre-metaterms A with FM Var(A) g
Damos), where Dom(K) denotes the domain of K, to the set of terms as follows:

E(f(A1,...,A,.)) dé’ ¡(2A1,...,¡A,.)

E(€(A1,...,An)) ¿él ¿(EA1,...,EAn)

¡(Allan dé‘ ¡(Agua-¿i423

Note that in the above definition the substitution operator oflo 4- o] refers to the usual substitution defined
on terms with de Bruijn indices (Def. 6.34).

We now introduce the notion of value function which is used to give semantics to metavariables with labels
in the SERSdb formalism. The goal pursued by the labels of metavariables is that of incorporating ‘context’
information as a defining part of a metavariable. As a consequence, we must verify that the terms substituted
for every occurrence of a fixed metavariable coincide ‘modulo’ their corresponding context. Dealing with such
notion of ‘coherence’of substitutions in a de Bruijn formalism is also present in other formalisms but in a more
restricted form. Thus for example, as mentioned before, a pre-cooking function is used in [DHK95] in order
to avoid variable capture in the higher-order unification procedure. In XRS [Pag98] the notions of binding
arity and pseudo-binding arity are introduced in order to take into account the parameter path of the different
occurrences of t-metavariables appearing in a rewrite rule. Then it is required (roughly) that the binding
arity of a t-metavariable on the LHS of a rewrite rule (rewrite rules are required to be left-linear) equals the
pseudo-binding arity of the same t-metavariable occurring on the RHS of the rule. Our notion of ‘coherence’ is
implemented with valid valuations (Def. 6.41) and it turns out to be more general than the solutions proposed
in [DHK95] and [Pag98].

Definition 6.40 (Value function) Let a e '13,,and l be a label of binder indicators. Then wedefine the value
function Value(l,a.) as Value°(l,a) where

_ n if n Si
Value‘(l,n) dé‘ at(l,n —i) if o < n —2'g ¡1|

In_¡_“¡ if n -'¿ > lll

Valuei(l,f(a1, . ..,an)) dÉf f(Valuei(l,a1), . .. Valuei(l,a.n))

ValueiU,¿(0.1,. . . , f( Valuei+1(l,a1), . . ., Value'i'H(l,

It is worth noting that Valuei(l,n) may give three different kinds of results. This is just a technical resource to
make easier later proofs. Indeed, wehave for example Value(afi, E(f(3, = E(f(fi. 1)) = Value(Ba, E(f(2, 1)))
and Value(e,f(€1,/\2)) = f(€l,/\a:1)7éf(€1,z\a)= Value(a,f(€1,A2)). Thus the function Value(l,a) interprets
the de Bruijn term a in an l-context: bound indices are left untouched, free indices referring to the l-context are
replaced by the correspondíng binder indicator and the remaining free indices are replaced by their corresponding
variable names. It might be observed that if repeated binder indicators are allowed in the label l of Def. 6.40
then this intuition would not seem to hold. Indeed, for our purposes the case of interest is when the label l
is simple. Nevertheless, many auxiliary results may be proved without this requirement thus we prefer not to
rstrict this definition prematurely (by requiring l to be simple).

In order to introduce the notion of valid de Bruijn valuations let us consider the following rule:

Ea-(Efivx) ->r EB-(Ea-X)

Even if translation of rewrite rula into de Bruijn rewrite rules has not been defined yet (Section 6.3), one
may guess that a reasonable translation would be the followingrule:

¿(€(X5a)) _’r¿5¿(€(Xap))

which indicates that fi (resp. a) is the first bound occurrence in the LHS (resp. RHS) while a (resp. fi) is the
second bound occurrence in the LHS (resp. RHS). Now, if X is instantiated by z, a by a: and B by y in the
SERS system, then we have an r-rewrite step €z.(€y.(:c)) —>Ey.(€z.(z)). However, to reflect this fact in the
corresponding SEI-2.5"“,system we need to instantiate Xpa by 2 and Xap by 1, thus obtaining an rdb-rewrite
step ¿(€2) -—>E(E1). This clearly shows that de Bruijn t-metavariables having the same name but different label
cannot be instantiated arbitrarily as they have to refiect the renaming of variables which is indicated by their
labels. This is exactly the role of the property of validity:
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Definition 6.41 (Valid de Bruijn valuation) A de Bruijn valuation Kover 2 is said to be validif for every
pair of t-metavariables X1 and X1: in Damos) we have Value(l,KX¡) = Value(l’,KXp). Likewise, we say that
a de Bruijn valuation ¡e is valid for a rewrite rule (L, R) if every metavariable in (L, R) is in Damos) and for
every pair of t-metavariables X; and Xp in (L, R) we have Value(l,KX¡) = Value(l’,nXp).

It is interesting to note that there is no concept analogous to safenes (Def. 6.20) as used for named SERS due
to the use of de Bruijn indices. Also, the last condition in the definition of an admissible valuation (Def. 6.22)
is subsumed by the above Def. 6.41 in the setting of SERSdb.

Example 6.42 Returning to the above mentioned example we have that n = {Xpa/ 2,Xap / 1} is valid for the
rule rdb since Value(fia, 2) = a = Value(afl, 1).

Another interating example is the n-contraction rule Az.app(X,a:) —>X if :1:í FV(X It can be ex
pressed in the SERS formalism as the rule Aa.app(X,a) —>,,X, and in the SERSdb formalism as the rule
A(GPP(Xm1))_’na Xe

Remark that this kind of rule cannot be expressed in the XRS formalism since it does not verify the binding
arity condition. Our formalism allows us to write rules like 174:;because valid valuations will test for coherence
of value. Indeed, an admissible valuation for 17is a valuation 0 such that 0X does not contain a fi'ee occurrence
of 0(a). This is exactly the condition used in any usual formalization of the n-rule. A valid valuation Kfor 1741,
could, for example, be a valuation n = {XQ/m,X¿/n} such that Value(a,KXa) = Value(e,KX5),that is, m = 1
is not posible, and n is necessarily m —1.

To summarize, valid valuations guarantee that the unique value assigned to a t-metavariable X in the
framework with names is translated accordineg in the de Bruijn framework w.r.t the different label contexts of
all the occurrences of X in the rewrite rule. This is, in some sense, an updating of X w.r.t the different label
contexts where it appears, and it gives us the right notion of coherence for valuations.

Definition 6.43 (Rewriting de Bruijn terms) Let R be a set of de Bruijn rules over E and a, b de Bruijn
terms, over E. We say that a R-reum'tes or R-reduces or 'R-contmcts to b, written a, -m b, ilï there is a de
Bruijn rule (L, R) E R and a de Bruijn valuation ¡evalid for (L, R) such that a = ElKL] and b = EIKR], where
E is a de Bruijn context. The term KL is called an (L, R)-redea:. A redex in a term a is determined by a rewrite
rule and a position in tree(a.).

Thus, the term /\(app(/\(app(1,3)),1))rewritesby the na, rule to /\(app(1,2)), using the valuation
n = {Xd/Aolppa'i3))XC/A(app(11

Lemma 6.44 Let K.be a valid valuation for a rewrite rule (L, R). Then FV(KR) Q FV(KL).

Proof. Suppose n e FV(KR). Then

o if n comes from a free o-metavariable E occurring in R, then there is an m such that S’" occurs in R

and KB= n, where m is the number of binders ‘above‘ ,6 in R. Since L and R are de Bruijn metaterms
and the names of FM Var(R) are included in the names of FM Var(L) there is an m’ such that S'" (B)
occurs in L where m’ is the number of binders ‘above' this occurrence of Hence by definition of free
variable n e FV(KL).

if n comes from instantiating a t-metavariable Z, occurring in R then n + Ill e F V(I€Z[). Since L and
R are de Bruijn metaterms and the names of FM Var(R) are included in the names of FM Var(L) then
there is an occurrence of Zu in L for some label of binder indicators l’. Since rc is valid for (L, R) then
Value(l, KZI) = Value(l’, KZp). Now as n+|l| e FV(KZI) we have that :cnoccurs in Value(l, KZ¡) and hence
also in Value(l’,KZu). Therefore n + Il'| G FV(KZy). Finally, by well-formednss of the pre-metaterm L
we have n e FV(KL).

The rewrite relation on de Bruijn terms satisfies the followingproperty:

Corollary 6.45 Let a G Tdb. If a —>-Rb, then FV(b) g FV(a).

Proof. If a a1; b, then there exists a valid valuation K for a rewrite rule (L, R) in R such that a = E [KL]
and b = E[KR] . Then either n G FV(E), in which case we trivially have n E F V(a), or otherwise n G FV(KR).
Then by Lemma 6.44 also n e FV(KL) and since n is not captured in E, we also have n G FV(a).
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6.3 From Names to Indices...

In this section we show how rewriting in the SERS formalisrn may be simulated in the SEI-IS“ formalism.
This requires two well-distinguished phases which we can refer to as the definition phase and the rewrite
preservation phase. The definition phase consists in defining appropriate translations from pre-metaterms,
terms and valuations in the SEI-ISsetting into the corresponding notions in the SERSdb setting, work which is
carried out in the first part of this section. The second part deals with the rewrite-preservation phase, that is,
showing how SERS rewrite steps can be simulated via SERSdb rewrite steps. The rewrite-preservation phase
shall use the results developed in the definition phase.

6.3.1 The Definition Phase

We shall begin by showing how to translate terms to de Bruijn terms.

Definition 6.46 (Horn terms (and contexts) to de Bruijn terms (and contexts)) The translationof
a term t, denoted T(t), is defined as T¿(t) where

e os( ,k) "f ek
T14“) d f { 59(2): Ikl e k
Tk(f(t1,...,tn)) ‘LE‘¡(Tk(t1).....Tk(tn))

Tk(€I-(t1:---ntn)) dé‘ ¿(Tzk<t1)....,Tu(tn))

The translation of a context, denoted T(C), is defined as above but adding the clause Tk(El)ag El.

As a consequence of the previous definition, there is a clear bijection between the set of free variables of a
term t and the set of free variables of its de Bruijn representation T(t).

The following lemma will be used in the main statements of this section; it states that variable renaming
commutes with translation.

Lemma 6.47 Let s e T, let l, k be labels of variables and z,y variables such that y does not occur at all in s
and z,y G l. If s{z 4- y} is defined then T¡yk(s{1:4- y}) = T1343).

Proof. By induction on s.

o s = z. Then we reason as follows:

lek(x{z (- y}) = lek(y)
= P°s(y, lyk)
= Ill + 1 (y É l)
= pos(:r,la:k) (a:e l)
= Tla:k(3)

o s = z 76ar. Then T¡y¡.(z{z 4- y}) = szk(z). We consider two further cases:

- z e lyk. Since y 76z (y does not occur in s) T¡yk(z) = pos(z,lyk) = pos(z, lzk) = T¡=k(z).

- z í lyk. Then lek(z) = 0(z) + Ilykl= 0(z) + llzkl = lek(z).

o a = f (51, . . . ,sn). We use the induction hypothesis.

o s = €z.(31,.. ., sn). We reason as follows:

T¡yk(s{z <- y}) = T1yk(¿a:.(31,.. .,sn)) = '173k(€z.(sl, . . . , 3n))

Now it may be shown that for any term s and variable a: such that z í FV(3), we have T¡:k(s) = TM,(s)
for any z é FV(3). The last equality then follows from the fact that a: é FV(€:I:.(3¡, . . .,sn)) and by
considering z = y.



6.3. FROM NAMES TO INDICES... 125

o s = Ez.(51,. . . , sn) with z 961:. Note that z 96y by hypothesis. We reason as follows:

Ttyk(5{=5‘- yl) = ¿(thyk(31{93 ‘- 11D,” -uTzlyk(3n{I ‘- SID)
= ¿(Tzl:k(3l)v---yTzl=k(3n))
= lek(3)

As expected, the translation satisfies:

Lemma 6.48 (T is compatible with a-conversion) Given two terms 3,t e T such that 3 =a t we have
Tk(s) = Tk(t) for any label of variables k.

Proof. By induction on the derivation of s =a t.

o Base cases. If s = t then the result holds trivially, so suppose 3 =al t and the conversion takes place
at the root. Then s = ¿2.(31,...,s,.) =a Ey.(31{:c<- y}, . . .,sn{a: <- y}) = t where y is a variable not
occurring in 31, . msn. Then by Lemma 6.47 we have Tk(s) = ¿(T:k(31),. .. ,T:k(s,¡)) = E(T,,¡,(51{a:<
y}), - - - ¡Tyk(3n{3 <- y})) = Tk(t)

o Inductive cases:

—s =a t follows from t :0, s. We use the induction hypothsis.

- s =al t follows from s =a 3’ and 3’ :0, t. We use the induction hypothesis.
—the conversion is internal. Then two further cases are considered:

* s = f(31,...,s,-,...,sn) and t = f(31,...,82,...,5n) wheres,-=a 3;. Weconcludeby using the
induction hypothesis.

* s = €z.(31,...,s,-,...,sn) and t = 53.031,...,s;,...,sn) where s,-=al 3;. Then we have Tk(3)=
¿(7111430, . . . , Txk(8¡), . . . , T¡k(3n)) =¡.h. {(T:k(81), . . . ,T:k(8;), . . . , T:k(8n)) = Th“).

We now consider a translation from pre-metaterms to de Bruijn pre-metaterms. We shall also use the letter
T for this translation in an attempt to avoid having to introduce yet another symbol.

Definition 6.49 (From pre-metaterms to de Bruijn pre-metaterms) A pre-metatermM is translated
as T(M), where T(M) is defined as T¿(M) where Tk(M) is defined by

ma) dé‘ pos(a,k),ifa€k Tk(f(M¡,...,M,,)) “¿f f(Tk(M¡),...,Tk(Mn))
me) "=°‘ SMG) Tk(sa.(M1,...,Mn)) "=°‘ ¿(Tak<M1),...,Tak(Mn))

Tux) “=°‘ xk mmm-M21) d=°‘Tak<MnITk<M2n

Note that if M is a metaterm, then T(M) will be defined and will only have t-metavariables with simple
labels. Note also that, for some pre-metaterms, such as ¿02.5, the translation T(o) is not defined. Moreover, if
M is a metaterm then T(M) is a de Bruijn metaterm.

Lemma 6.50 (T preserves well-formedness) If M is a metaterm, then T(M) is a de Bruijn metaterm.

Proof. We need to prove a more general result: let M be a pre-metaterm, if W.7-'¡(M),then WÏ¡(T¡ (M
This is proved by induction on M.

o M = a. Then a e l and we have W.7-'¡(T,(a))ifi Wf¿(pos(a, And the latter holds trivially.

o M = 62. Then W751(T1(5)) ifi' WJ-"¡(S“'(62)). And the latter holds trivially.

o M = X. Then we have W.7-'¡(T,(X ifi’Wf¡(X¡) and l is simple. And the latter holds trivially.

o M = f(M¡,...,Mn). By inductionhypothesis.
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o M = {a.(M1,...,M,,). Then WJ:¡(T¿(Ea.(M¡,...,M,,))) ifi Wfp¡(Ta¿(M,-)) with 1 5 i 5 n for some
fi g l. Since WJ-"l(M) we have a í l and Wfal(Mi), so that we may take fi = a and conclude by the
induction hypothesis.

o M = M1[a <- M2]. Similar to the previous case.

Example 6.51 Let M = ¿a.(X,/\fi.(Y,0t)). Ml = f(E,z\a.LY,a)) and M” = g(Aa.(€,6’.(h))). Then their
respective translations are A = ¿(Xa,/\(Ypa,s(l))), A’ = f(fi,/\(Ya,S(Ei))) and A” = g(A(€(h))), which are
metaterms as remarked in Example 6.29.

Definition 6.52 (Hem SERS rewrite rules to SERSdbrewrite rules) Let (G,D) be a.rewrite rule i.nthe
SERS formalism. Then T(G, D) denotes the translation of the rewrite rule, defined as (T(G), T(D)).

As an immediate consequence of Lemma 6.50 and Def. 6.52, if (G, D) is an SERS rewrite rule, then T(G, D)
is an SEI-25a, rewrite rule.

Example 6.53 (Ax continued) FollowingExample 6.16, the specification of Ax in the SERS“ formalism is
given below. It results from translating the rewrite rules of Example 6.16.

app('\Xan Ze)
subs(a(app(xav ya», Ze)
sub3(0(/\(Xfia)). Ze)
subs(a(1),AZ¿)
Wbs(0(s(fi)). Ze)

subs(aXa, Ze)
app(3ub3(axauZe)»subs(aYar

¿(subfldxaah 25))
fi

The rule subs(a(/\(Xpa)), Ze) —>/\(3‘Ub3(0‘(Xap),Zp)) is interesting since it illustrates the use of binder
commutation from Xpa to Xap and shows how some index adjustment shall be necesary when going fiom Z5
to Z¿.

11111

Example 6.54 (The AA-calculus continued) The translation of the AA-calculus(Example 6.17) yields the
following rewrite rules in the SERSdb formalism:

app(’\(xa)a Zé) qfldb Xa [Ze]
app(A(Xa). Ze) ->A, A(Xaplz\(apP(S(1),app(1, va)))l)
A(app(1, Xa)) —>A. X6
A(app(1,(A(aPP(S(1),Xpa))))) ->A, XC

We remark that the translation of A1, A2 and A3 would not be possible in XRS.

Suppose some rewrite rule (L, R) is used to rewrite a. term s. Then s =a C [0(L)] for some context C and
admissible valuation 0. When encoding this rewrite step in the SERSdbsetting we shall have to encode not only
terms and metaterms, but also the valuation 0. Def. 6.55 below shows how one may encode valuations. This
definition is parametrized over a label k, an issue which we would like to clarify. Suppose the metavariable X1
occurs in L, then when 0 instantiates X, the status of any variable a: in the resulting term, 0(X¡), can be of one
of four clases:

o either, a: is bound in 0(X¡),

o or, :5 free in 0(X¿) but is bound by some binder above X1in the rewrite rule, in other words, there is a
binder indicator a e l such that 0(a) = :c,

o or, a: is free in 0(X¡) and a: is not bound by the binders above X1 in the rule, i.e. a: í 0(l), but a: is bound
by a.binder above the El in the context C,

o or, a: is free in 0(X¿), it is not bound by the binders above X, in the rewrite rule, and it is not bound by
a binder in the context C above the CI. Thus a: is free in s.
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Therefore, when translating a valuation to the SERSdb setting we need to know what the names of the
variables of the binders above the Elare. For example, if the third case holds then when translating to indices
we must assign a: an index which avoids being captured in the context. This is the role of the label k in the
following definition.

Definition 6.55 (Horn valuations to de Bruijn valuations) Let 6 be a valuation and k be a label of
variables. Then the translation of 0 w.r.t the label k (referred to as the context label) is defined as the de Bruijn
valuation:

T,(a)(x,) dé‘ Ta(,)k(0(X)) if aa) is defined
A def A

Tk(0)(a) = Tk(0(a))

where X,62 G Dom(0).

6.3.2 The Rewrite-Preservation Phase

In this section we study the rewrite-preservation phase, that is, we show that the translations of the definition
phase ensure that the notion of rewriting in the formalism with de Bruijn indica has the same semantics as the
corresponding one with names.

The following lemmas will be used in the proof of the main result of this section, namer Proposition 6.62,
which states that SERS-rewriting may be simulated as SERSdb-rewriting.

Lemma 6.56 Let 3 G T and a e Ta, let a: be a variable and l,k be labels of variables with |l| = i —1 and
a: e l. Then T¿k(s) = Tlsk(s){{i «- a}.

Proof. By induction on s. We shall consider the case that s is a variable, the others followfi'om the induction
hypothesis.

o s = 1:. Then T¡,c(a:)= pos(a:,lk) = pos(:c,la:k) = pos(a:,l:ck)<[i «- a]}. The last equality holds since
pos(a:, lzk) < 2'.

o s = y 9€1:. We have three cases to consider:

—y G l. Then = pos(y,lk) = pos(y,lzk) = pos(y,la:k){i <- aB. The last equalityholdssince
pos(y,l:vk) < 2'.

—y í l and y E k. Then T¡k(y) = pos(y,lk) = pos(y, lzk) —1= pos(y,lzk){{i 4- a,}. The last equality
holds since pos(y, lzk) > 2'.

- y 11k. Then Tuc(y) = 0(y) + IlkI = 0(y) + Ilzkl —1 = Tisk(y){{z'<- a1}.

Lemma 6.57 Let s e T, let l1,lg,k be labels of variables such that |11|= j, |l2| = i —1 and FV(s) n lg = (0.
Then111112,60?)=

Proof. By induction on s. We shall consider the case that s is a variable, the others followfrom the induction
hypothesis. Suppose 3 = :17.Note that since by hypothesis :I:í lg we have three cases to consider:

o a: e ll. Then T,lhk(a:) = pos(a:,lllzk) = pos(a:,11k) = u;(pos(z,llk)). The last equality holds since
P°S(z.l1k) Sí

o a: é Z1and a:e k. Then Tmzk(:v)= pos(z,l1l2k) = pos(a:,l1k) +i - 1 = U;(pos(z,l1k)).

o a:g llk. ThenThlzk(1:)=0(a:)+ llllgkl= O(a:)+ Illkl+12- 1=

Lemma 6.58 Let 3,t e T, l, lcbe labels of variables with |l| = i - l, let a: be a variable such that a: í l, and
suppose FV(t) nl = 0. If s{a: <- t} is defined then T,k(s{:v<- t}) = T,:¡c(s)fli <- Tk(t)B.

Proof. By induction on s.
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Tac“) “¿(110?”
¿{i '- TN) l}

Tzuüfili <- Tk(i)l} (a:é l)

(L.6.57)

o s = y 96az. Then we have three subcases to consider:

- y 6 l. Then = pos(y,lk) = pos(y,lzk) = Tuk(y) = Tlsk(y){i<- Tk(t)B. The last equality
holds because pos(y, l) < i.

- y 9€l and y e k- Then le(y) = pos(y.lk) = pos(szk) - 1 = Tl:k(y) - 1 = Tzuü/Hli <- Tk(t)l}
The last equality holds because pos(y, lzk) > 2'.

—y e tk. Then my) = oe) + Ilkl= my) + Ilzkl—1 = Take) —1 = Tina/Mi «- Tim. The last
equality holds because 0(y) + Ilrckl> 2'.

O3=f(81,...

o s = €y.(31,..

si.

,3"). The we have

Tnc(8{93<- t})
f(le(31{I ‘- t}))' ' -thk(3n{-T‘- tl»
f(Tl::k(51){i ‘_ Tk(t)llv---:Tzuhnmi “ Tk(t)l})
Tzu(8){li ‘- Tk(t)B

.,3,,). Note that since s{a: <- t} is defined by hypothesis we know that y é FV(t) for
otherwise s{z 4- t} would not be defined. We consider two further cases:

— y 96z. Then we have

Tuc(3{97‘- Él)

- y = 1:. Then we have

Ttk(3{9’‘- tl)

¿(Tyzk(51{z <- t}, - v- , 3n{z 4- t}))
¿(Ty1=k(81){li+ 1 <- Tk(t)l}, - - - ITyl:k(5n){i + 1 <- Tk(t)})
7i:k(8){ii ‘- Tk(t)B

=i.h.

Ïik(€z-(31,....8n))
¿(Tzlk(31)v ' ' ' i Tzu: (511))
¿(Tzlxk(31){i+ 1‘- Tk(t)BI' ' ' iTzlzk(3"){i+ 1‘-
Ïlzk(€3-(31, - - ' y311))Hi ‘- Tk(t)l}

(L.6.56)

As expected, the translation is well-behavedw.r.t contexts and valuations. We take the opportunity to recall
the reader that the notion of a label of a context is given in Def. 6.8. Induction on the context C i.nthe following
result may be used for proving it.

Lemma 6.59 (T is modular w.r.t contexts) Let C be a context, l the label of C and t e T. Then forevery
label k we have, Tk(C[t]) = Tk(C)[T,k(t)].

Lemma 6.60 (T is modular w.r.t. valuations) Let M be a pre-metaterm, l a label of binder indicators,
and suppose

1. WÏKM),

2. 0 = (0”, 0t) is a.valuation such that 0,, is injective on the bound o-metavariables, and

3. 0 is safe for M.

Then for every label k we have T0(¡)k(0M) = Tk(6)(T,(M)).

Proof. By induction on the pre-metaterm M. Since W.7-'¡(M) we have the following cases to consider:

o M = a e l. Then T9(,)k(0a) = pos(üa, 0(l)) =hyp_2pos(a, l) = Tk(0)(pos(a, l)) = Tk(0)(T¿((1)).
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o M = a. Then by the definition of valuation and since 62í l because l is a label of binder indicators:

A _ pos(0íï,k) + l0(l)| if 08 E k
Taaww") - { owa) + |0(l)k| otherwise.

_ S"'(pos(0íï,k)) if 06?E k
S'”(0(08)+ otherwise.

= Tkwxswa»
= Tkwxma»

o M = x. Then T9(,)k(0X) = Tk(0)(X¿) = Tk(0)(T¡(X)).

o M =f(M1,...,M,.). Then wehave

T9(,)k(0f(M1,. . . ,Mn)) f(Ta(z)k(0M1). - . - ¡T0(l)k(0Mn))
'.h. f(Tk(0)(Tl(M1))¡ - - -y71(9) (T1(Mn)))II

..

o M = {a.(M1, . . .,M,¡). Then we have

T9(,)k(0¿a.(M1, . . _, Mn)) = ¿(Te(a)9(,)k(0M1), . _. , Ta(a),(,)k(aM,.))
=-.r.. ¿(Tk(0)(Ta¡(M1)), . . . |Tk(a)(Tal(Mfl)))
= Tk(0)(7}(Ea-(M1,...,Mn)))

¡b

o M = M1[a <- M2]. Then we have

T0(l)k(0(M1la ‘- = To(1)k(9M1{0u(a)<- 0M2})
=L- 6-58 Ta(a)o(z)k(9M1){1 ‘- Te(t)k(9M2)B

h. Tk(9)(Tat(M1))ll1 ‘- Tk(0)(Ïl(M2))}}
Tk(9)(Tat(M1)lÏl(M2)l)
Tk(0)(TI(Mlla‘- lel)

go.

Note that since 0 is safe for M we may apply Lemma 6.58 above with l = e. Indeed, 0,,(a) é 0(l) and
FV(0M2) n aa) = 0 for z = e.

Lemma 6.61 Let k, k’ be labels of binder indicators, l a label of variables and 0 be an injective function on the
set of binder indicators. Then for every t e T, every p 2 0, every 1:1,. . . ,zp, if for every z G FV(t) \ {21, . . . , zp}
we have z E 0(k) ifi' z G 0(k’), then

Value?“Tn...=,e(k)t(t)) = Valuep(k'aTz,...=,e(kl)z(t))

Proof. We use induction on t.

o t = z. We have the following further cases to consider:

- :c=a:¿ with ISz’SP. Then

Valuchc,T:l_._zpo(k)¿(a:))= ValuePUc, = = Valuep(k’,i) = Valuep(k,,T:l__-=Pg(k¡)l(z))

- :c E 0(k) n 0(k’) and the previous case does not hold. Let i = pos(a:,0(k)) and j = pos(:z:,0(k')).
Then at(k,z') = at(k’,j) by injectivity of 0 and we have

ValuePUc,p + i)
at(k, i)
aÍ=(k’,.7')
Valuep(k’,p+ j)
valuepoc,’Tn ...:I:,0(k')l

ValuePUc.Tn...=,a(k)t(°’))
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—a: e l and the previous cases do not hold. Then for some i with 1 5 i S Ill we have

Valuep(k,T:1___Ip0(k)l(2)) = value"(k,p + I0(k)l + i)
Ii
Valuep(k',p+ I0(k’)|+
Value"(k’, T31...zp0(k')l(z))

— a: Q {21, . . . ,zp}, :1:í 0(k) U 0(k’), :v í l. Then we have

ValuePUc,Tunzpo(k)l(z)) = Value”(k,0(a:) + p + |0(k)l|)
30(z)+lu
Valuep(k’,O(z) + p + |0(k’)l|)
Valuep(k/_'11“:l".Ip9(kl)l

o t = f(t¡, . . . ,tn). By induction hypothesis we have Valuep(k,T11___:P9(k)¡(t¡))= ValuePUc’,Tn___:p9(k,)¿(t¿))
so the property trivially holds.

o t = 52:.(t1, . . .,tn). Then we have

Valuep(k, T:l__.:pa(k)l(€z.(t1, . . . ,tn»)
= Valuep(k’¿(T::¡...:p0(k)l(t1)' ' ' ' ’T221...z,9(k)l(t")))

= a Valuep+1(krT121...:,,0(lc)l(t1))i- - -v Valuep+1(k’T::¡...:,0(k)l(tn)))
=i.h. valuep+l(kl' Tzzi...=p0(k’)l(t1))’' ' ‘' valuep+1(k” T:I|_...3pa(k')l(tn)))
= ValuePUc’,T:1___zpo(k,)¡(¿z.(t1,...,tn)))

We can finally conclude with the main result of this section which ensures that the SERSdb formalism
preserves SERS-rewriting.

Proposition 6.62 (Simulating SERS-rewriting via SERSdb-rewriting) Supposes -v t in the SERS for
malism using the rewrite rule (G, D). Then T(s) —>T(t) in the SERSdb formalism using the de Bruijn rewrite
rule T(G, D).

Proof. By definition of the rewrite relation (Def. 6.23) there is an admissible valuation 0 for (G, D) and there
is a context C such that s =a C[0G] and t =a C[0D]. By Lemma 6.48 T(a) = T(C[0G]) and T(t) = T(C[0D]).
Note that T(G, D) = (T(G),T(D)) is a de Bruijn rewrite rule by Lemma 6.50. The proof thus proceeds in
two steps: in Step 1 we show that there exists a de Bruijn valuation K,and a de Bruijn context E such that
T(s) = ElKT(G)] and T(t) = E[K.T(D)]; Step 2 consists in showing that K is a valid de Bruijn valuation for
(T(C), T(D))

o Step 1. By Lemma 6.59 we have T(s) = T(C)[T,c(0G)] and T(t) = T(C)[Tk(0D)], where k is the label of
the context C, and T(C) is a de Bruijn context. By hypothesis G is well-formed and 0 is safe for G (so
that 0,, is injective on the set of bound o-metavariables). As a consequence we can apply Lemma 6.60 so
that Tk(0G) = Tk(0)(T(G)) and Tk(0D) = Tk(0)(T(D)), where Tk(0) is a de Bruijn valuation. Thus we

may take K d=efTk(0) and E d-ÉrT(C).

Step 2. We have still to show that Tk(0) is valid for (T(G),T(D)). By Def. 6.41 we have to check
that Value(l,Tk(0)(X¡)) = Value(l’,Tk(0)(Xy)) for every pair of t-metavariables X, and X1: appear
ing in the de Bruijn rewrite rule (T(G),T(D)), that is, by Def. 6.55, that Value(l,To(,)k(0(X))) =
Value(l’,TM”),e(0(X))). Finally, verifying the following conditions allows us to conclude from Lemma 6.61
with p = 0:

—0(X) is a term in T by definition of valuations.
—0 is injective on bound o-metavariables since it is admissible,

—finally, we need to show that for every variable z E FV(0X) we have z e 0(l) iff z G 0(l’ But this
immedíately follows from the fact that 0 verifies the path condition for X in (G, D) because it is
admissible.
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6.4 ...And Back

In this section we show that SERS are operationally equivalent to SERSdb. For that, we show how the notion
of rewriting in the SERSdb formalism may be simulated in the SERS. As in Section 6.3 we shall develop the
required results by distinguishing the definition phase and the remite-preservation phase.

6.4.1 The Definition Phase

In this section we study the definition phase, that is, we define translations from the SERSdb to the SERS
formalism. We shall begin with a translation from de Bruijn terms to terms with variable names. This shall
make use of the Names(o) function given below Def. 6.33.

Definition 6.63 (From de Bruijn terms (and contexts) to terms (and contexts)) The translationof
a G Tau,, denoted U(a), is defined as Urm°(FV(a))(a) where, for every finite set of variables S, and every label
of variables k, Uf(a.) is defined as follows:

d;f{ at(k,n) ifn 5 |k|
S

Uk(n) In_|k| TL> and In_|k| GS
def

UíÏ(f(a1,---.an))d=f f(UkS(01),---,U¡Ï(an))
Uf(€(a¡, . . = {2.(Ufk(a1),. . . , Ufk(an)) for any :1:é kU S

The translation of a de Bruijn context E, denoted U(E)I is defined as above but adding the clause UE(EI)drÏf
D. We remark that we can always choose a: e k U S since both k and S are finite.

Note that U(o) is not a function in the sense that the choiceof bound variables is non-deterministic. However,
one can show that if t and t’ belong both to U(a), then t =a t’. Thus, U(o) can be seen as a function from de
Bruijn terms to a-equivalence classes.

We remark that given a set of variables S, a de Bruijn term a,and a label k, the translation Uks(a) is always
defined if Names(FV(a.)\\|k|) g S. It is quite evident that FV({(a))\\n is exactly FV(a)\\(n + 1). Also, if
Uf(C[a]) is defined and |l| is the binder path number of C (see Def. 6.32), then U¿Í(a) is also defined. Note,
moreover, that if :ce FV(U,Ï(a)) then :vG SU k..

Definition 6.64 (From de Bruijn pre-metaterms to pre-metaterms) The translationof the de Bruijn
pre-metaterm A, denoted U(A), is defined as U¿(A), where U1(A) is defined as follows:

U¿(s"(1)) dé‘at(l,i + 1) ifi+ 1 5 ¡1|

U,(s"'(a)) d=°‘a

Ul(Xl) dá X

Uz(f(x‘11,..-.An))d=ef¡(U,(A1),. ..,U1(An))
Uz(€(A1,---,An)) d=°‘¿«(vam/11).. .. ,Uazmn»

if 1 S i 5 n Wfa¿(A,-) for some a el

U.(A1[A21) dé‘ UamAnla «- U1(A2)1
if Wfa¡(A1) for some a í l

As in Def. 6.63 we remark that the translation of a de Bruijn pre-metaterm is not a function since it depends
on the choice of the names for o-metavariables. Indeed, two different pre-metaterms obtained by this translation
will be v-equivalent. Also, for some de Bruijn pre-metaterms such as f (2), the translation may not be defined.
However, it is defined on de Bruijn metaterms.

Definition 6.65 (From SERSdbrewrite rules to SERS rewrite rules) Let (L,R) be a de Bruijn rewrite
rule then its translation, denoted U(L,R), is the pair of metaterms (U(L),U

Note that if A is such that W.7-'¿(A)holds then its translation U1(A) is also a named metaterm, that is,
Wf¡(U¡(A)) also holds. Therefore, by Def. 6.13 the translation of a de Bruijn rewrite rule is a rewrite rule in
the SERS formalism. As mentioned above, if a de Bruijn pre-metaterm A is not a de Bruijn metaterm then
U¡(A) may not be defined.
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Example 6.66 Consider the de Bruijn rule app(AXa,Z¿) —>A(Xap[,\(app(s(1), app(1,Z.,p)))]) from Exam
ple 6.54. The rule obtained by the translation of Def. 6.64 is

app(Aa.X, Z) -> Afi-(Xla ‘- M-(appm. apph, Z)))l)

Whereas, for the rule subs(o‘(S(E)), Ze) —>,3 we obtain subs(a7.(E), Z) —>E for some bound o-metavariable 'y.

Definition 6.67 (From de Bruijn valuations to valuations) Let n = (rei,nz) be a de Bruijn valuation,S
be a finite set of variables and k a label of variables, and 0,, be a variable asignment such that:

1. 0.,(a) í SU k, for any a e Dom(0,,), and

A _ A _ at(k,Ki(cï)) if Its-(3) S lkl
2. for every a E Dom(rc,), 0.,(a) —{ whom-m otherw with Zhao-“Cl e S

The translation of K is the valuation U(gv_slk)(K)dÉf(01,,0;), where

0¿X dÉf U¿(0k(KX¡) for any X1 in Dom(K.)

Condition 2 on 0., says that if an i-metavariable in A is bound (or free) in the context k as interpreted via
K then the new valuation U(av_s'k)(n)must reflect this fact. We will now show that if n is a valid de Bruijn
valuation then this definition is correct, that is, the definition does not depend on the choice of the t-metavariable
X1 in Dom(rc). For that, we need some lemmas which are developed in the appendix (Section A.3.1).

Lemma 6.68 (Translation of de Bruijn valuations is correct) The valuationU(a’s'k)(K.)givenin Def.6.67
is correct if K.is valid, where correct means that for every X, and Xp in Dom(rc) we have Uá(l)k(IcX¿) :0,
U3;(1,)k(KX¡I),whenever both terms are defined.

Proof. Since rc is valid we have Value(l, KXl) = Value(l’,KXu) for every X1 and X ,’ in Dom(K). Then by
Lemma A20 we may conclude UÏUUMOCXO=a Uá(¿,)k(an). .

6.4.2 The Rewrite-Preservation Phase

In this section we study the rewrite-preservation phase, that is, we show that the translations of the defini
tion phase ensure that the notion of rewriting in the formalism with names has the same semantics as the
corresponding one with de Bruijn indices. More precisely, we seek to prove the following:

Proposition 6.73 (Simulating SERSdb-rewriting via SERS-rewriting) Assume a —>b in the SERSdb
formalism using rewrite rule (L, R). Then U(a) —>U(b) in the SERS formalism using rule U(L, R).

For that we need to develop some intermediate results. These results start with Lemma 6.69 and end with
Lemma 6.72.

Lemma 6.69 (U is modular w.r.t de Bruijn contexts) Let E be a de Bruijn context, Lk labels where
|l| is the binder path number of E and a. e Tdb. If UE(E[a]) and Ufi(a.) are defined, then Uf(E[a.]) :0,
UÏ(E)[U1Ï(0)]

Proof. By induction on the context E.

o E = El. Then l = e and the result holds trivially.

o E = f(a,¡, . . . ,E’, . . . ,a"). Note that the binder path number of E and E’ are the same. We reason as
follows:

UE(f(a1.- . .,E’[a1,. ..,an)) f(U¡Ï(a1),...,U,f(E’[a]),. ..,U,f(
a f(U,f(a1), . . . , Uf(E’)[U¡',í(a)], . ..

= UÉ(E)leï(a)]

an))
,UÏ (4111)) (i-h-)
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o E = ¿((11,. . .,E’, . . .,a,,). Since l is a label such that Ill is the binder path number of E, we have l = l’y
for some label l’ and variable y. We now reason as follows:

Uks(€(a1,...,E’[a],...,a.,,))
autismo, .. .,Ufk(E'[a1),“mit an»

Ez-(UÏk(ai){=B ‘- Z}, - - -»Ufk(E’lal){z ‘- Z}, - - -»Ufk(an){z <- z}) (É 36:2)
D

a Ez.(Usz(a.1), . . . ,Ufk(E'[a,]), . . . , Ufuan .
a ¿2.(U5:(a1){y e z}, . . . ,U5k(E’la]){y «- z}. . . . , U5k<an){y «- z}) (L.A.18)

=a Ey-(UÏÁGILU '1Ufk(Ellal)) -- '1U5k(an))
—a €y.(UÏk(a1),.. .,U¿(E’)[Ufiyk(a)], .. .,U5k(an)) (i.h.)
= UÏ(E)[U¡Í(0)]

Note that z 9.!k and y qÉk for otherwise they could not have been chosen by the U: (o) translation mapping
as candidate variables for binding.

Lemma 6.70 Let a e Tdb,ll, lg and k be labels of variables with |l1| = j and llzl = i-l. Then U,‘Ï¡2k(UJ‘Ï(a))=a
Uíïk(a) if U,‘Ïk(a) is defined.

Proof. We proceed by induction on a. The case a = f (a1, . . . ,afl) holds by the induction hypothesis, so we
consider the other ones.

o a. = n. We have two cases to consider:

- n S j. Then U¿Ï¿2k(lzl}(n))= Uíïbkm) = at(l1l2k,n) = at(l¡k,n) = Uñk(n).

- n > j. Then Ulï¡2k(uJ‘Ï(n))= Uiïlzfln + i —1) and we have two further subcases to consider:

* n + i -1 5 Illlgkl. Then since n S Illk| we have U¿‘Ï¡2k(n+1" —1) = at(lllgk,n + i —1) =

* n - 1> Thensincen > wehaveUlïlzko‘ï — = In+¿_1_“¡¡2k|= Gn_l¡¡kl=
Uiïk(n)

o a = ¿(ah . . . ,afl). Then we reason as follows:

Utftzdufla» ¿Z'(Ufi¡lzk(u;+l(a1))i‘"’ U51l2k(u;+l(al)))
a €z.(Uf’;k(a1),...,Ufhk a.m (i.h.)
a {z’.(Uz¡lk(a1){z <- z'}, . . . . Ujlk(an){z 4- z’}) (z’ fresh)
a ¿ll-(thlÁal), -' ' vU311k(a'n)) (L'A’ls)

¿z'xvñlualny «- z'}, . . . . U51k(an){ye 2'}) (L.A.18)

_ ¿ys'(Uyl¡k(a'1)1 ' ' ' 1UÏuk a"
= [1k a

IoIn

The phrase “z’ fresh” should be read, in full rigor, as “z’ does not occur in Uik(a¿) nor in Ufllk(a¿)
for 1 S z' S n”. The definition of U: (o) and the hypothesis that Uñk(a) is defined, allows us to apply
Lemma A.18 above.

Lemma 6.71 Let a, b e Tau,Il and k labels of variables with |l| = i- 1. :1:a variable such that a: QElkUS. Then
U,i(a.fli <- b}})=a U¡‘ík(a.){3:<- Uf(b)}, assuming both sides of the equation are defined.

Proof. The proof is by induction on a.

o a = n. We have three further cases to consider:



134 CHAPTER 6. A DE BRUIJN NOTATION FOR HIGHER-ORDER REWRITING

- n < 2'.Then we reason as follows:

Uñlali <- bll) UfiJn)
at(lk,n)
at(la:k, n)
at(lzk, n){z «- Uf(b)} (a: e: z)
Uuík(n){=v <- UE (17)}

- n > i. Then since Ufic(afli 4- b}})= Uñ(n - 1) we consider two further cases:

* n - 1 5 |lk|. We reason as follows:

Ul‘Ï(n —1) = at(lk,n —l)
= at(lzk, n)
= at(la:k,n){:c <- U¡;9(b)} (:1:í k)
= mama: «-UM}

* n —1 > |lkl. We reason as follows:

Uz‘ÏÜI- 1) In-l-ukl
¿En-¡tuu

In_uzk|{-T ‘- UÉUÜ} (z í S)Uíïkmllï ‘- Uk(bll

—n = 2'. Then on one hand we have U¡ï(i{{i <- b]}) = U,í(u¿(b)). And on the other Ulík(i){a: <
Uf(b)} = z{a: <- Uf(b)} = Uf(b). Lernma 6.70 concludes this case.

o a. = f (a1, . . . ,an). We use the induction hypothesis.

o a = {(01, . . .,a,.). Then we reason as follows:

UiïÁaHi <- {7})
= €2.(Ufik(a1{[i+ 1 4- b}}),. . .,Uf,k(a.n{i + 1 «- (z e lkU S by..

(..Def. 6.63)
=a Ey-(Uídalli + 1 ‘- 171WZ‘- y}, . -_, UÏchnlli + 1 '- b}}){z<- y}) (y fresh)
=a ¿y.(UyS,k(a1{i+1«— b}}),. . . ,Ufik(%{i + 1 «- b}})) (L.A.18)
=a ¿yxvjxnamz «- UE(b)}.. . . ,Ujuxannz «- Usan» ah.)
=a ¿y.(Ui,,,k){,a,,}(a1>{z «- Usao}, . . . , vá,,:k){,ay}(an>{z «- Usan» (see below)
=a mus,“ (a1){z'«-mz «- UEM, . .-,Ustkmnz' «-yn: «- Usaan) (mus)
=a ¿wz-91mm: «- Uf(b)}{z'«- y},. . . ,Ustuannz +- UE(b)}{z’«- yn (Subst.L.)
=a ¿z'wstuamz «-Uf(b)}.... ,Ustkmnz e Usan»
= vam: «-Usan}

Note that since the RHS of the equation to prove is defined, from the last line above we learn that
z' g lzk u s and 2' 9.!FV(U¡Ï(b)).

“Subst.L.” refers to the substitution lemma for the A-calculus [BarS4],which is also valid for our restricted
notion of substitution and reads as follows: s{:c <- t}{y <- u} = s{y «- u}{a: <- t{y <- u}} if a: Q FV(u)
for distinct variables a: and y, and both sides of the equation together with the term t{y <- u} are defined.

Lemma 6.72 (U is modular w.r.t valuations) Let us consider a. de Bruijn valuation K,= (¡q-m4), a. de
Bruijn pre-metaterm A, a finite set of variables S , a variable assignment 0., verifying the hypothesis in Def. 6.67,
a. label of binder indicators l and a label of variables k. If the following conditions hold:

1. K is validl

2. KA is defined,

3. 0,, is defined over l and the bound o-metavariables in U¡(A),



6.4. ...AND BACK 135

4. 0., is injective on the bound o-metavariables,

5. Names(FV(KA)\\|0,,(l)kI) g- S, and

6. WII-"¡(A).

Then, Uá(¡)k(KA) =a U<gv's'k)(K)U[(A).

Intuitively k represents the context information where the reduction is performed (thus k is a label of
variables). We also require Names(FV(KA)\\|0,,(l)k|) g S to ensure that U¿(l)k(K,A)is defined.

Proof. By induction on A. Below we shall use LHS and RHS to denote the left and right hand side
respectively, of the equation to prove.

o A = Xh. Since WJ-'¡(Xh) by the Hypothesis 6, we have that h = l and so LHS = Uá(l)k(K,X¡). And on
the other hand

U(ou.s.k)(K)(U1(X0)
U(6.,,S,k)(K')X
U,í(,,)k(nx¿,) ( with XV e Dom(n))

RHS

Then since n is valid (Hypothesis 1) we may apply Lemrna 6.68 to conclude.

o A = 83(8). Since WII-KS"(8)) holds by the Hypothesis 6, then j = |l|. We have

LHS Uá(l)k(IcS“'(&))
Uóï,(1)k(slll("i(a)))

_ { at(k,m(3)) ima) s lkl_ IK¡(3)_¡k¡ otherw. with zn¡(a)_¡k¡ G .S'

On the other hand we have A
RHS U(au.s.k)(K)(AUt(S"'(00))

U(91_s_k) K, a
11(0)

We can conclude LHS = RHS because 0,, satisfies the requirements of Def. 6.67.

o A = Sj(l). Since WINS-¡(1)) holds by the Hypothesis 6, j + 1 S Ill. Thus,

LHS = Uá(¿)k('€_5j(1)) RHS = U(a.,.s.k)('°)(Ul(Sj(1)))
= Uei(:)k(s’(1)) = U(ou.S.k)(K)(at(l,J'+1))

at(0,,(l),j+1) = 0v(at(l,j+1))
09(“(LJ' +1))

o A = ¿(A1,. ..,A,¡). Then we reason as follows

RHS U(9.,,S,k)(K')(Ul(€(A1)---)Afl)))
U(9.,.S,k)(n)(€a‘(Ual(Al), . . . ,Ual(An))) (where a satisfies 1 5 i 5 n..)

(..WJ-'a¡(A,-),fora í l)
¿00(a)'(U(0.,.S,k)(K')(Ual(A1))l' --1U(0.,,S.k)(K)(Ual(An))))

In order to apply the induction hypothesis we need to verify the hypothesis for A.-. The Hypothesis 1 holds
by definition and the Hypothesis 2 is evident since KAis defined. Hypothesis 3 holds since by hypothais 0.,
is defined over l and the bound o-metavariables in U¡(A) = €a.(Ua¡ (A1), . . . , Ua¿(A,.)), hence it is defined
over the bound o-metavariabls in Ua¿(A,-)U al for 1 5 i 5 n. We have then to verify the Hypothesis 5,
that is, Names(FV(KA¿)\\|0.,(al)k|) g S; but this is evident by the Hypothesis 5 for A and the general fact
that FV(€(a1,.. . , an))\ n = FV(a,1,. . . , an)\\n+ 1. Hypothesis 6 is also true because when translating the
de Bruijn pre-metaterm A we choose a verifying the condition WÏa¿(A,-). Thus applying the induction
hypothesis we have:
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RHS = €0v(a)'(Uégu(al)k(KA1)'""Uá(al)k(KA"))
=a €2’.((Usu(al)k(K,A1)){0..,(a)«- z’}. . . . , (Uï(a,),.(KAn)){09(a) <- z’}) (2’ does “0'; occur")

Uáï.)(at)k(K'Ai))
__ s

_°' Ezl'wg’danewaawz'}("gm ' ' ‘’Uáaatwnoumwz'}("Am (LA-13
=a ¿z .(Uz,av(l)kKA1)....,U2,9V(¡)k(KAn)) (0,, injective and..)

(..hyp. Def. 6.67)

= €z:.(U(:zaua)k){m_z,}(nAl),...,U¿0u(l)k){z‘_z,}(KAn)) (z g 0.,(1)kUS)
=a ¿z .(Uzov(l)k(KA1){z <- z’}, . . . , Ufou(¿)k(nAn){z «- z’}) (L.A.18)
=a €2.(U59v(l)k(K,A1),...,U¿v(l)k(KAn))

On the other hand we have

LHS = Ué(l)k(n(€(A1.---.An)))
= U0v(¡)k(€(KA1, . . . , m1,,»

= ¿2.(Ufou(,)k(KA1),...,Uj,va)k(nAn)) (zeov(z)ku.5')

o A = f(A1, . . .,A,.). Then we have

LHS = U¿(,)k(n(f(A1,...,A,.))) RHS = U(gv_s_k)(n)(U¡(f(A1,...,An)))
= Uá(zk(f(K'Alav-'1KAn)) = U(9.,,S.k)(K')f(Ul(A1)n-"»Ul(An))

f(Uau(z)k(KA1)a- - - i Uá(¿)k(KAn)) = f(U(0.,.S,k)(K)Ul(A1)a -"1U(0.,,S,k)(K)Ul(An))

We can immediately conclude by induction hypothesis.

o A = AllAgl. Then we have
LHS = Uá(¡)k(K(A1|A2]))

On the other hand we have

RHS U(0u.S,k)(K)(Ul(A1[A2l))
U(ov_s,k)(K)(Ua[(A1)[a<- U¡(A2)]) (where a is such that 1 Si 5 n..)

(..W.7-'a¡(A1), for a e! l)

(Usgau.s.k)(K)(Uat(A1))){9u(a) ‘- U(ou.s.k)(K)(Ut(A2))}
a U0u(al)k(K‘A1){0v(a) ‘- Uoíaw KAZ (i.h.)

Remark that in the last step the inductive hypothesis may be applied by the same reasons we used in the
case of the binder.

Now, since 0,, is injective and satisfies the conditions of Def. 6.67, then 09(01)í S U 0,,(l)k and we can
then conclude by applying Lemma 6.71.

The reader should note that the translation of a valid de Bruijn valuation is an admissible named valuation.
Recall that a valuation is admissible for a rewrite rule (G, D) iff the following conditions hold:

o 0 is safe for (G, D) (Def. 6.20),

o if a and fi occur in (G, D) with a aéfi then 00a aé01,5,and

o 0 verifies the path condition (Def. 6.21) for every t-metavariable in (G, D).

Safeness is considered in Lemma A.21 and Lemma A23 goes on to consider admissibility. Both results are
developed in the appendix (Section A.3.2). So we move on directly to the main result of this section, i.e. that
the SEI-ESformalism preserves SERSdb-rewriting.
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Proposition 6.73 (Simulating SERSdb-rewriting via SERS-rewriting) Assumea —>bin the SERSdbfor
malism using rewrite rule (L, R). Then U(a) —>U(b) in the SEI-IS formalism using rule U(L, R).

Proof. Let us consider the de Bruijn rewrite step a. —>b using a de Bruijn valuation K.which is valid for
(L, R). Without loss of generality we can suppose that K is only defined on the metavariables of (L, R). And,
let U(L, R) = (G, D). By definition of the rewrite relation we have a de Bruijn context E such that a.= ElnL]
and b = ElKR]. We proceed as follows:

o Take S as the set of variables Names(FV(a,)) so that UE(a) is defined. Note that since FV(b) g FV(a.)
holds by Corollary 6.45, Uf(b) is also defined.

o Take any simple label k of variables such that S n k = (0and Ikl is the binder path number of E .

o Now, to apply Lemma 6.69 we need to show that UkSOeL)and UE(RR) are defined, which follows from the
first and second items. Therefore, U¿S(E[KL])=a U¿S(E)[UE(KL)]and U¿S(E[I€R])=a Uf(E)[UE(KR)].

o The next step is to apply Lemma 6.72 in order to decompose UfOcL) and UEMR). First of all, let us fix
any variable assignment 0,, such that it verifies the following requirements:

—it is defined over all the o-metavariables in U¿(L) and U¿(R) and only on these.
—it is injective on the bound o-metavariables,

—0.,(a) í S U k for any bound o-metavariable a e Dom(0.,) (i.e. the variables assigned to bound
o-metavariables in the rewrite rule (U(L), U(R)) are not confused with the free variables in a. and b,
that is, with the variables in S, nor with the variables bound in (the label of) the context where the
rewrite-step takes place, that is, the variables in k).

—We also define 0,, on the free o-metavariables the rewrite rule (U(L), U(R)) as the hypothesis dictates,
i.e. for all 8 we define

a (a)¿g “(aman ima) s IkI
v zm(a)_¡k¡ otherw. With 2K¡(a)_|k| E S

We shall now consider the case of U¡Ï(KL), the other one being similar. We must thus meet the conditions
of the lemma in order to resolve UE(KL). Let l = e.

. K,is valid by hypothesis.

. KL is defined since a = E[KL].

. We also have that 0,, is defined over e and the bound o-metavariables in Ue(L) and U¿(R),
The assignment 0,, is injective over the bound o-metavariables,

. NameS(FV(KL)\\|kI) holds since by definition we set S = Names(FV(a)) (Note that by Corollary 6.45
we have Names(FV(b)) g S),

Finally, Wf¿(L) holds since (L, R) is a. de Bruijn rewrite rule and hence L and R are well-formed
de Bruijn pre-metaterms.

OïghCOMH

F"

We may thus apply Lemma 6.72.

Let us summarize our situation:

UeS(ElKLl) =a UÏ(E)ÍUÏ(KL)I (11-6-69)
=a UÑE) [U(a,.s.k)(K)(Ue(L))] (L-6-72)
= U5 (E) [U(au.s.k)MG]

and

UÏ(ElñRl) =a UÏ(E)ÍUIÏ(KR)J (II-659)

=a U;(E)[U(Ou.S.k)(K')(Ue(R))l (L-6-72)
= Ue (EllU(ay,s,k)(K)Dl

So we now define the named context C dÉfUf (E) and we also define the named valuation 0’ défU(9”_s_k)(n).
Then we have U(a) = C[0’G] and U(b) = C[0’D]. In order to conclude that U(a) —>U(b), by definition of
SERS-rewriting, we are left to verify that 0’ is admisible for (G, D). Now,
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1. We have that U(gmsik)(Kl)is defined for all the metavariables of G and D since U(ng,k)(K.)(G) and
U(gu’slk)(K)(D) are defined.

2. We have that 0,, is injective on all the bound o-metavariables in (G, D) by definition of 01,.

We can then apply Lemma A23 and conclude that 0’ is admissible for (G, D).

6.5 Preserving Confluence
This section studies the relationship between the translation functions over pre-metaterms and terms introduced
above. This givesrise to two results stating, respectively,that givena metaterm M then U(T(M is v-equivalent
to M (see Figure 6.4), and that given a de Bruijn metaterm A then T(U(A)) is identical to A. These results
are used to show that confluence is preserved when translating an SERS rewrite system into a SERSdb rewrite
system, and are listed below and proved in the appendix (Section A.3.3):

o LetM e 'PM’Tsuchthat ThenU(T(M))=.,M (CorollaryA26).

o Let t e T. Then U(T(t)) =a t (Corollary A28).

o Let A e 'PM'Ïdb. If W.7-'(A)then T(U(A)) = A (Corollary A.30).

o Let a G Tdb.Then T(U(a)) = a (Corollary A32).

named metalerms de Bruijn maaterms

Figure 6.4: v-equivalence

Lemma 6.74 Let (G, D) and (G’,D’) be SERS rewrite rules such that G =,, G’ and D =., D’. Then
—)(G’D)=—)(G¡'DI),

Proof. Without loss of generality we prove that if 3 —>(c;_D)t then 3 ->(GI_DI)t. Thus let us asume that
there is an admissible valuation 0 for (G, D) and a context C such that s =a C[0G] and G[0D] =a t.

The set of bound o-metavariables occurring in (G’,D’) may be divided into two (not necessarily disjoint)
sets 31 and BZ. In 81 we find those bound o-metavariables which occur in the parameter path of some t
metavariable in (G’,D’), and in Bg the other bound variables occurring in (G’,D’ The o-metavariables in 31
are not renamed in any way by the v-equivalence relation (Def. 6.11). We define the valuation 0’ = (92,05) as
follows:

def
agx = mx
03a dÉf 09a ifaeBl
935 dé‘ ova

In order to fully define 0’ we must consider the value it assigns to those o-metavariables in Bz which are not in
B]. For these we simply require 0’ to assign any variables such that: the resulting valuation is safe for (G’, D’),
and 0:, is injective on the bound o-metavariables.

Observe the following:



6.5. PRESERVIN G CONFLUENCE 139

1. MVar(G’,D’) g Dom(0’),

2. 0’ is by construction an admissible valuation for (G’, D’), and

3. s =a C[0G] =a C[0’G’] and t =a C[0D] :4,l C[0’D’].

Hence s —>(G',DI) t. _ .

Corollary 6.75 Let (G, D) be an SERS rewrite rule. Then the rewrite relations generated by (G, D) and
U(T(G, D)) are identical.

Proof. Use Corollary A26, Lemma 6.74 and the fact that the translations preserve well-formednes.

Theorem 6.76 If R is a confluent SERS then T(’R) is a confluent SERS“.

Proof. Suppose a -»T(-R_)b and a -» Tag) c for some de Bruijn terms a, b,c. Applying the translation mapping
U(o) and using Proposition 6.73 we may obtain the diagram (b) of Figure 6.5. The reductions denoted by the
dotted lines are obtained by Corollary 6.75 and the confluence of R.

Now applying the translation mapping T(o) and using Proposition 6.62 we obtain the diagram (c) of Fig
ure 6.5. Finally, Corollary A32 and Corollary A.30 yield the desired diagram illustrated as diagram (a) in
Figure 6.5.

a U(a.) J T(U ((1))

nm/ Vaz) uumï/ Kuna» muuuy wir/(Tam
b.___ U(b) U(c) T(U(b)) T(U(c))Tn n

( N r ( ) “mz” "i i" mm” mima)» T(U(T(‘R-)))
T(3) 3 11(5)

(a) (b) (C)

Figure 6.5: Diagrams for preservation of confiuence

Theorem 6.77 If 'R is a confluent SEI-¡Sabthen U(R) is a confiuent SERS.

Proof. Suppose a —>U(-R_)t1 and s -—>U(R)tz for some terms s, t1, tz. Applying the translation mapping T(o)
and using Proposition 6.62 we may obtain the diagram (b) of Figure 6.6. The reductions denoted by the dotted
lines are obtained by the confluence of 'R. Note also that Corollary A.30 has been used.

Now applying the translation mapping U(o) and using Proposition 6.73 we obtain the diagram (c) of Fig
ure 6.6. Finally, Corollary A28 and the definition of reduction Def. 6.23 yield the desired diagram illustrated
as diagram (a) in Figure 6.6.

Note that in fact the proofs of Theorem 6.76 and Theorem 6.77 are applicable to the more general diamond
property (Def. 22(1)) hence we obtain preservation of this property in both directions.
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Chapter 7

From Higher-Order to First-Order
Rewriting

As observed in Chapter 6 substitution may not be dismissed as simple replacement (also known as grafting
in some circles) as in first-order theories. Thus many researchers became interested in the formalization of
higher-order substitution by explicit substitutions, so that higher-order systems/formalisms could be expressible
in first-order systems/formalisms: the notion of variable binding is dropped because substitution becomes
replacement. A well-known example of the combination of de Bruijn indices and explicit substitutions is the
formulation of different first-order calculi for the A-calculus [ACCL91,BBLRD96, KR95, DG01]. Other examples
are the translations of higher-order unification to first-order unification modulo [DHKOO],higher-order logic to
first-order logic modulo [DHKOI],higher-order theorem proving to first-order theorem proving modulo [DHK98],
etc.

Now the case of the A-calculus is interesting but at the same time not fully representative of the problems
we are faced with when encoding a higher-order system into a first-order setting. For in this particular case it
is enough to take care of a-conversion and promote metalevel substitution to the object-level. Indeed, replacing
the usual variables names by de Bruijn indices and introducing explicit substitutions suflices to yield a first
order rewrite system, as the above mentioned examples illustrate. However, this is not always the case for
an arbitrary higher-order rewrite system. In other words, eliminating a-conversion and introducing explicit
substitutions is not enough to yield an equivalent full first-order system (full in the sense of first-order rewriting
modulo an empty equational theory). The reason is that in higher-order rewriting1 the LHS of a rewrite rule is
a higher-order pattern [Nip91, 00694]. So we must somehow also encode higher-order pattern matching when
encoding in the first-order framework. The fact that introducing de Bruijn indices plus explicit substitutions
suffices for the A-calculusis saying that for this particular rewrite system higher-order matching is doing nothing
more than what first-order matching could do. We stress, once againI that this is not always the case. A simple
example of such a fact, which we shall consider in this chapter, is the nah-rewrite rule:

A(app(Xan1)) #1745X6

Note that Xe on the right-hand side of the rule, which does not appear in any binding context, is related to
the occurrence of XO,on the left-hand side, which appears inside a binding context. This may be seen as the
reason why the ndb-rule has received so much attention [Rí093, Har92, Bri95] since syntactic matching no longer
sufl‘icesz.That is to say, ‘occurs check’ is a feature of higher-order pattern matching which first-order matching
cannot cope with. In an example naa-rewrite step the reader may verify that the term /\(app(3,1)) rewrites to
2. In a first-order setting with explicit substitution, we have the alternative formulation:

A(app(X[T].1)) -> X

1That is, higher-order rewriting in the SERS higher-order rewrite formalism, though in an arbitrary higher-order rewrite
formalism (such as HRS) the LHS need not be a (higher-order) pattern.

2When represented in the HRS formalism [Nip91] the LHS of 17is a higher-order pattern, moreover it is a non-fuJIy-extended
pattern (there are free variables not applied to al] bound variables above it). The problems introduced by 1]in this case are due to
the latter fact. However, this is not the only problematic situation. It may be the case that the LHS of a rule is a fully-extended
pattern yet introducing de Bruijn indices and promoting substitution to the object-level does not sufñoe to obtain a full first-order
system. An example of the letter phenomenon is the rule f(Az.Ay.F(:,y), A:.Ay.F(y, a:)) —oc. See Section 7.4.3.
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However, in order for the term X [T]to match the subterm 3 we need S-matching, that is, matching modulo an

equational theory 8 . For an appropriate substitution calculusE wewouldneed to solve the equation 3 ¿e X
Another, perhaps less evident, example is given by a commutation rule C such as:

imply(3a.Vfl.X,Vfi.3a.X) —>true

which expresses that the formula appearing as the first argument of the imply function symbol implies the
one in the second argument. The naive translation to first-order, namely imply(3(V(X)),V(3(X))) —>true, is
evidently not correct, so that we take its encoding in the de Bruijn higher-order formalism SERSdb and then
translate it to first-order via the conversion presented in this chapter obtaining CIO:

imply(3(V(X)),V(3(X[2 ' l. T2]))) —>true

Now, the rule Cfo has exactly the same intended meaning as the original higher-order rule C: in order for
a term to be an instance of this rule the term t’ instantiated for the rightmost X must be the one instantiated
for the leftmost X, say t, except that all 1-leveland 2-level indices in t shall be interchanged in order to obtain
t’. Of course, The following rewrite rule Cía also does the job:

imply(3(V(X[2' 1- T2])),V(3(X))) -> ¿me

However, note that both Cfo and C'o induce the same rewrite relation on terms.
The goal of this chapter is to provide a conversion algorithm for encoding higher-order rewrite systems

in first-order rewriting modulo an equational theory 8. This is interesting from a theoretical point of view
because the expressive power of higher and first-order formalisms may be compared. However, another more
practical issue arises, that of the possibility of tmnsfening results developed in the first-order framework to
the higher-order one. In Chapter 8 we shall transfer the Standardization Theorem from first-order rewriting to
higher-order rewriting. Techniques concerning confiuence, termination, completion, evaluation strategies, etc.
should be looked at. Moreover, this is interesting for two further reasons: on one hand it is still not fully clear
how to transfer techniques such as dependency pairs [AGOO],semantic labelling [Zan95] or completion [BD88]
to the higher-order framework, and on the other hand, termination techniques such as RPO for higher-order
systems [JR99] turn out to be much more complicated than their respective first-order versions [Der82, KL80].
Also, we obtain a characterization of the class of SERSdb (including the A-calculus) for which a translation
to a full (8 = (ll)first-order rewrite system exists. We shall argue that it is this class of systems, dubbed the
essentially first-order SERSdb,that are better suited for the above mentioned transfer of properties.

To the best of our knowledge there are, at least, two formalisms, B.Pagano’s XRS [Pag98] and M-O.Stehr’s
CINNI [SteOO],which study encoding of higher-order rewrite formalisms as first-order rewriting using explicit
substitutions. The formalism XRS, which is a first-order formalism, is based on de Bruijn indices and is
presented as a generalization of the first-order Aun-calculus [HL89] to higher-order rewriting and not as a
first-order formulation of higher-order rewriting. Consequently, as we have seen in Chapter 6, many well-known
higher-order rewriting systems cannot be expressed in such a formalism. In the case of CINNI a similar situation
arises, no relation to established HORS in the literature is presented. Also, the fact that the definition of the
higher-order rewriting formalism used is not fully clear does not allow us to consider transferring results from the
first-order framework. Chapter 6 has provided a presentation of higher-order rewriting based on de Bruijn indices
(SERSdb) which does away with a-conversion and has established precise links between the ERS formalism and
SERSdb. Here we take the next step, and encode all SERSdbas first-order rewrite systems with the aid of explicit
substitutions. Moreover, we do not attach to the encoding any particular substitution calculus. Instead, we
have chosen to work with an abstract formulation of substitution calculi, as done for example in [Ke596,KesOO]
to deal with confluence proofs of A-calculiwith explicit substitutions. As a consequence, the method we propose
can be put to work in the presence of different calculi of explicit substitution such as a [ACCL91], a1}[HL89],
'U [BBLRD96], f [KesQG],d [Ke596], s [KR95], x [LRD95].

Finally, we mention the work of van Oostrom and van Raamsdonk [OR93]. Although it is common to
call rewriting in the presence of binders and substitution higher-order rewriting (practice which we have also
followed), in full precision it is only over terms that we abstract. However, in higher-order rewrite formalisms
such as HRS we may abstract over functions or functions that take functions as arguments, and so on. In [OR93]
it is shown that GRS and HRS have the same “matching power” when attention is restricted to pattem HRS.
However, HRS have more “rewriting power" than CBS, in other words one HRS-rewrite step needs (possibly)
many GRS-rewrite steps in order to be simulated. This is because substitution is computed in CBS by means of
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a subclass of B-derivations called developments (cf. Def. 8.37) whereas HRS have full B-rewriting at its disposal
for computing substitutions.

Structure of the chapter

The chapter begins by taking a closer look at i-metavariables (Def. 6.26). In particular we explain why the
present chapter deals with SERSdb without i-metavariables. We trust the reader is convinced of the convenience
of such a decision. We then introduce the first-order rewriting framework with explicit substitutions F/LERS
which shall constitute the destination formalism of our Conversion Procedure. This requires defining Basic
Substitution Calculi, a macro-based presentation of calculi of explicit substitutions adapted to the present
setting from [Ke596,KesOO].This general presentation shall allow us the freedom of choosing from a wide range
of calculi of explicit substitution when converting a higher-order rewrite system to first-order.

Section 7.3 introduces the Conversion Procedure. heart of this chapter, and illustrates its use with some
examples. This procedure takes a SERS.“ 'R and produces a first-order modulo rewrite system fo('R)w, where
W is some Basic Calculus of Explicit Substitutions (such as for example 0'). It is the Conversion Procedure’s
responsability to compute index ajustments in order correctly encode higher-order pattern matching in the
first-order setting. The rewrite rules produced may or may not have occurrences of the explicit substitution
operator on the LHSs. If this is not the case then syntactic matching suflices. Otherwise, as in the 11,“,example,
we need matching modulo the induced equational theory of the basic substitution calculus W. The former
systems are dubbed essentially first-order higher-order rewrite systems.

This is followed by a study of the properties of this procedure: independence of pívot selection (a techni
callity concerning the Conversion Procedure), the Simulation Proposition and the Projection Proposition. The
Simulation Proposition states that fo(R)w is able to simulate R-rewriting. Conversely, the Projection Propo
sition states that if a —>¡o(1¿)wb then W(a,) —»p_W(b), in fact we shall see that one fo(72)w-rewrite step may
be encoded as one parallel R-rewrite step.

We conclude by presenting the definition of essentially first-order higher-order rewrite systems, the class of
higher-order rewrite systems that lend themselves to a full first-order conversion (rewrite system modulo an
empty equational theory). Chapter 8 shall transfer the Standardization Theorem for this olas of systems.

7.1 On Index-Metavariables

In this chapter we shall deal with the SERSdb formalism without i-metavariables. The main reason for excluding
them is that they appear to be nothing more than a ‘hack' in order to represent calculi such as Axand, in general,
do not enjoy good properties. In order to delve a little deeper into this issue we shall make informal use of the
notions of descendant and residual, however Chapter 8 presents full formal definitions. These notions shall not
be used beyond the present section in this chapter.

The idea behind orthogonality in term rewriting is that the contraction of a redex does not destroy other
redexes but instead leaves a number of their ‘residuals’ (for a precise definition see Section 8.2 in Chapter 8).
This is referred to as the Residual Property. Having this in mind the following is a posible definition of
orthogonality for SERSdb (see [GKK00, KOvR93]):

Definition 7.1 (SERSdb-Orthogonality) Let (2,72) be a SERSdbsuch that 7?,= {(Li, R4) | i e I

1. 'R is non-overlapping if the following holds:

o Let L,-= C[X¡11].. . where C is the pattern of L.- (Def. 6.31) and XI”;are all the metavariables
in L.-. If the redex K(C[X,11]. . . [Xi l) contains an instance of LJ- for some j 7€2', then this instance
must be already contained in one of the mori).

o Likewise if K,(C[X,11]. . . [X[1]) properly contains an instance of Li.

2. R is left-linear if all L,- are linear (Def. 6.30).

3. 'R is orthogonal if it is non-overlapping and left-linear.

These are what one might consider as the ‘natural’ syntactic conditions for an SEI-¡Sa to be considered
orthogonal. They are a straightforward extension of orthogonality for first-order rewriting [K1092]. Consider
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the following SERSdb S consisting of two rewrite rules: S = {app(/\XO,,Y¿) Hp“ XalYe], f (a) —>¡c} where
app, f, c are function symbols and A is a binder symbol.

Intuitively, S should by all means be regarded as an orthogonal system. One is relieved to know that indeed
S satisfies orthogonality. Yet to one’s surprise S is not confiuent! Indeed,app(/\( f (1)), b) reduces to f (b) by the
fidb-rule and to c by the f-rule followed by an application of the Bdb-rule.

The problem stems in that S does not satisfy the Residual Property, a fundamental property of orthogonal
systems, which in the case of first-order systems (and ERS and GRS) is implied by SERSdb-orthogonality:

Definition 7.2 (Residual Property) Let 'R be a SERSÜ and let (L, R) be a rewrite rule in 'R. The Residual
Property for 'R reads: the descendants of an (L, R)-redex u in a.under contraction of any other non-overlapping
redex v in a, are (L, R)-redexes.

In [KOOOla], Z.Khasidashvili et al define Context Sensitive ERS (CCERS). A CCERS is a ERS where
term formation may be restricted (such as when considering typed terms in the A-calculus) and the rewrite
relation may be restricted to operate in certain contexts (possiny all in which case it is said to be context
free), and where the valid assignments K may be restricted to some relevant subclass. In order to account
for orthogonality in CCERS they consider a difierent definition of orthogonality which explicitly requires the
Residual Property to be fulfilled. The reason for bringing this issue to the reader’s attention is that one may
consider S as a CCERS (more preciser a context-free conditional ERS, term formation and contexts are not
restricted but valid valuations are) where for the f-rule we may replace a by a t-metavariable Ze and define the
set of admissible assignments as those that assign only indices to this metavariable.

Definition 7.3 (CCERS-Orthogonality) A CCERS is orthogonalif

1. every LHS is linear,

2. redex patterns do not overlap, and

3. 'R.satisfies the Residual Propertya.

Under this new definition S is no longer orthogonal: the term f (b) (descendant of f (1) in app(/\( f (1)),b))
is not an admissible redex since the valuation which assigns the term b to the metavariable ZEdoes not belong
to the subclass of allowed valuations. This means that the local conditions of left-linearity and non-overlapping
do not ensure that S behaves as expected (that is, is orthogonal in the sense of the Residual Property).

In full precision, S suffers a problem we might call ‘lack of sort generality’. Let the sort I be the subset of
de Bruijn terms that are de Bruijn indices and T be sort of de Bruijn terms. Then I is a subsort of T. Consider
once again the term a = app(A(f (1)),b). When we apply the f-rule to a we are claiming that 1 is of sort I
(for these are the only valid values that the metavariable Ze may be instantiated with). Yet when we apply the
fldb-rule to a we replace 1 with b: hence a term of sort I has been 'transformed’ to a term of sort T. This is
perfectly valid since I is a subsort of T, h0wever the f-rule no longer copes with terms of sort T.

As regards literature on higher-order rewriting where the presence of ‘variable’ metavariables in rewrite
rules are allowed the work by P.A.Mellies in his PhD thesis [M6196]should be mentioned. Melliés defines CRS
with names where names are just a new sort of terms (See Remark 4.14 in [OosQ7]). All in all we have the
following sorts in the CRS with names framework: variables, names, term metavariables, name metavariables,
terms and metaterms. Now name metavariables may only be substituted by names. This allows the LHSs of
rewrite rules to contain free name metavariables and guarantees that the above mentioned problem does not
arise. Also, this may be generalized to n-sorts. Note that although the LHSs of rules may contain free name
metavariables, free variable metavariables are not perrnitted in the formalism since this would introduce the
difficulties mentioned above. Returning to the SERSdb framework we see that this sort-scheme prsent in the
CRS with names formalism is not straightforwardly applicable as long as indices may be bound and potentially
substituted by terms.

So we have, at least, three approaches to this problem:

1. Approach a la Mellies: introduce a new sort of variables which, either may be bound by binders but may
only be substituted by other variables of the same sort (and not by terms), or may not be bound at all,
in which case they behave as constants. The problem with these solutions is that they do not address the
original motivation for introducing i-metavariables: representing indices which are free in the context of

3Forrnulatecl as Def. 7.2 but for CCERS.
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where X ranges over V, f over I}, Eover I‘b,and o over F3. The arguments of o are assumed to respect the sorts
prescribed in its substitution declaration (i.e. d; is a term or substitution in compliance with its substitution
declaration), and function and binder symbols are assumed to respect their arities too.

Letters a, b, c, . . . and 3, si, . . . are used for terms and substitutions, respectively. Letters o, o’, . . . are used for
all objects of the term algebra without making distinction of sorts. The o[o]operator is called the substitution
operator. Binder symbols and substitution operators are considered as having binding power. We shall use a[3]"
to abbreviate (¡[3]. . . [s] (n-times). Terms without occurrences of the substitution operator (resp. objects in V)
are called pure (resp. ground) terms. Similarly for contexts. A context is a ground term with one (and only
one) occurrence of a distinguished term variable called a ‘hole’ (and denoted El). Letters E, Ei, . .. are used
for contexts. The notion of binder path number is defined for pure contexts exactly as in the case of de Bruijn
contexts (Def. 6.32). Note that contexts have no variables (except El).

The formalism of EIERS that we are going to use in order to encode higher-order rewriting consists of two
sets of rewrite rules, a set of proper rewrite rules, and a set of substitution rules. Let us define these two concepts
formally.

Definition 7.6 (Substitution macros) Let F3 be a substitution signature. The followingsymbols not in
cluded in F3 are called substitution macros: cone : (TS), lift : (S), id : (e) and shiftj : (e) for j Z 1. We shall
abbreviate shift1 by shift. Also, if j 2 0 then liftj(s) stands for s if j = 0 and for lift(liftj—1(s)) otherwise.
Furthermore, ifj 2 1 then cons(a.1,. . .,a,j,s) stands for cons(a1, . . . cons(aj,s)).

Definition 7.7 (Term rewrite and equational systems) Let l" be an EIERS signature. An equationis a
pair of terms L á R over l" such that L and R have the same sort and a term rewrite rule is a pair of terms
(L, R) over F, such that:

1. L and R have the same sort,

2. the head symbol of L is a function, binder or substitution symbol, and

3. the set of variables of L includes those of R.

An equational (resp. term rewrite) system is a set of equations (resp. term rewrite rules).

As usual, we shall need some mechanism for instantiating rewrite rules.

Definition 7.8 (Assignment) Let p be a (partial) function mapping variables in v to terms. We define an
assignment 'fias the unique extension of p over the set T such that:

mn) “2‘ n

mx) dé‘ por)
ï2(alsl) dé‘ mama)!
fi(f(a1,-.-,an)) dé‘ f(z(a1),...,7><an))
z(¿(a1,...,an)) “é‘ ¿(r(a1),...,z(an))
z(a(dl,...,d,.)) “=°‘a(z(d1)....,z(dn))

We shall often abbreviate p as p. Assignments are required in order to define the rewrite relation induced
by a rewrite system.

Definition 7.9 (Rewriting and Equality) Let o and o’be twoground terms of sort T or S. Given a rewrite
system R, we say that o rewrites to o’ in one step, denoted o en o’, iff o = E[pL] and o’ = E[pR] for some
assignment p, some context E and some rewrite rule (L, R) in 'R. We shall use —»1¿to denote the refiexive
transitive closure of the one-step rewrite relation.

Given an equational system 8, we say that o equaLao’ modulo 8 in one step, denoted o =É o’, iff o = E LDL]
and o’ = E [pR] for some assignment p, some context E and some equation L á R in E. We use :5 to denote
the reflexive symmetric transitive closure of =É, and say that o equaL9o’ modulo E if o :5 o’.
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Definition 7.10 (Substitution calculus) A substitution calculus over an. EIERS signature I" consists of a
set W of first-order term rewrite rule, and an interpretation of each substitution macro as some combination
of substitution symbols from 1‘8of corresponding signature. Def. 7.11 shall require certain properties for these
interpretations to be considered meaningful.

An example of a substitution calculus is a [ACCL91]with cons(t, s) = t -s, lift(s) = 1 - (so T), id = id and
shift" =Ï o. . . (T o T), where Tappears j tims. In [Ke596,KesOO]the reader will find full detailed proofs of this
fact (that a is a substitution calculus), and examples of further calculi of explicit substitutions that are also
substitution calculi.

The next step is to add further requirements on substitution calculi in order for them to dserve that name.
These conditions are assembled in the definition of a Basic Substitution Calculus.

Definition 7.11 (Basic substitution calculus) A substitution calculus W over I‘ is said to be basicif the
following conditions are satisfied:

1. W is complete (strongly normalizing and confluent) over the ground terms in T. We use W(a) to indicate
the unique W-normal form of a.

to . W-normal forms of ground terms are pure terms.

W . For each fe I} and E E F5:

W(f(01, --- ,an»
W(€(011-- '1an))

f(W(a1), . . . , W(an))
¿(W(a1), - -- ,W(an))

¡h . Rules for propagating substitutions over function and binder symbols are contained in W, for each f e 1",
and E G P54:

(Funq) f(X1, . . .,X")[s] —> f(X1[s], . . .,X"[s]
(Bind¿) ¿(X1,...,X")[s] —> ¿(X1[lift(s)],. ..,X"[lift(s)])

For every substitution s, 1[lift(s)] =w 1.

For every substitution s and every m 2 0, m + 1[lift(s)] =w m[s][shz'ft].

For every term a and substitution s we have 1[cons(a, 3)] =w a.

For every term a, substitution s, m 2 0 we have m + 1[cons(a, 3)] =w m[s].

paises" For every m,j 2 1 we have m[shiftj] =w m + j.

10. For every ground term a we have a[id] =w a.

The first four conditions may be seen as primitive conditions that W should satisfy in order to be called a
substitution calculus. The remaining conditions describe the behaviour expected of the substitution macros.

Example 7.12 The a [ACCL91], 01?[HL89] and 45[Muñ97a] calculi are basic substitution calculi where the
set of function and binder symbols are {app} and {A}, respectively.

The reader may have noted that the macro-based presentation of substitution calculi makes use of parallel
substitutions (since cons(o, o) has substitution declaration TS). Nevertheless, the results presented in this work
may be achieved via a macro-based presentation using a simpler set of substitutions (such as for example the
one used in [KesOO]),Where scons(o) (the ‘s’ in scans is for ‘simple’) has substitution declaration T and the
macro shift-l is only defined for j = 1. Indeed, the expression a[cons(b¡, . . . , bn, shift:l could be denoted by the
expresion

a[lift"(shift)]j[scons(bl [shift]"’1)] . . . [scons(b,,)]

Definition 7.13 (EIERS and FE/IERS) Let F be an EJERS signature, W a basic substitution calculus over
I" and R a set of term rewrite rules. If each rule of 7?,has sort T then RW dÉf(1“,‘R, W) is called an Explicit
Expression Reduction System (EzERS). If, in addition, the LHS of each rule in R contains no occurrences of
the substitution operator o[o] then RW is called a Fully Explicit Expression Reduction System (FEIERS).

4111contrast to the previous item we use -> instead of =w.
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Since rewriting in SEI-¡Sawonly takes place on terms, and first-order term rewrite systems will be used to
simulate higher-order rewriting, all the rules of a term rewrite system R are asumed to have sort T. However,
rewrite rules of W may have any sort (i.e. T or S).

Example 7.14 Consider the signature I" formed by l"¡ = {app}, 1'},= {A} and Ps any substitution signature.
Let W be a basic substitution calculus over F. Then for 7?,: {app(,\X,Y) ep“ X [cons(Y, we have that
'Rw is an FExERS, and for 'R,’: RU {A(app(X[shift],1)) 4M X}, 'R/w is an FAtERS.

Rewriting in an EIERS RW is first-order rewriting in 7?,modulo W-equality. In contrast, rewriting in a
FF/IERS 'Rw is just first-order rewriting in 'R U W.

Definition 7.15 (EazERSand FEIERS-rewriting) Let RW be an EIERS, R’w a FEíEERSand o,o’ ground
terms of sort S or T. We say that o Rw-red'uces or reum'tes to o’, written o —>1¿wo’, ifi' o —>-R_/wo’ (i.e.
o =w 01 —»R_o’1=w 0’); and o R’W-reduces or rewn'tes to o’, iff o —>‘R_Iuwo’.

We apologize for the abuse of notation: o dR/W o’ intuitively suggests that it is equivalence classes of terms
that are rewritten however, as defined above, this is not the case. Instead, it is terms that are rewritten.

Example 7.16 Fix W to be the a-calculus and consider the FEIERS 72., of Example 7.14. Then we have
1[app(/\1,c) - en, 1[1[c-id] - Also, A(a.pp(3,1)) 41;; 2, where R; is that of Example 7.14. This follows
from observing that ,\(app(3,1)) =, A(app(2[T],1))4,,“ 2.

7.2.1 Properties of Basic Substitution Calculi
This subsection takes a look at properties enjoyed by basic substitution calculi and introduces a condition
called the Scheme [KeSOO].Basic substitution calculi satisfying the scheme ease inductive reasoning when
proving properties over them without compromising the genericity achieved by the macro-based presentation.

Definition 7.17 (The Scheme) We say that a basic substitution calculus W obeys the scheme iff for every
index m and every substitution symbol a e 1"sof arity q one of the following two conditions hold:

1. There exists a de Bruijn index n, positive numbers 2'],. . . ,2",-(r 2 0) and substitutions 11.1,.. .,uk (k 2 0)
such that

o 1 5 2'1,. . .,i, 5 q and all the ij’s are distinct

o for all 01, . . .,oq we have: m[a(01,....oq)] =w n[o,-¡]...[0¿,][u1]...[uk]

2. There exists an index 2'(1 S 2'S q) such that for all 01, . . . ,oq we have: m[a'(ol, . . . , oq)] =w s,

We assume these equations to be well-typed: whenever the first case holds, then oil, . . . , oi, are substitutions,
whenever the second case holds, o,-is of sort T.

Example 7.18 Example of calculi satisfying the scheme are a, a1},v, f and d [Ke596,KesOO].

We now take a quick look at some propertis of arbitrary basic substitution calculi (that is, of basic substi
tution calculi that may or may not satisfy the scheme). On a first reading the reader may wish to Skim over
this section and proceed to the main section of this chapter, namely Section 7.3.

Lemma 7.19 (Behavior of Substitutions in Basic Substitution Calculi) Let W be a basicsubstitution
calculus and m 2 1.

_ . n .

1. For all n 2 0 and substitution s in S: m[hft"(s)] =w { 2 nlsllsmft] Z : Z

2. For all n 2 m 2 1 and all terms a1,...,a.n: m[con3(a¡,...,a.n,3)] =w a,"

3. For all pure terms a, b and m 2 1: aflm <- b}}=w a[liftm_1(cons(b, id))].

The first and third items of Lemma 7.19 are proved in [KesOO],the second item follows from the definition
of a basicsubstitution calculus. For the proofof the followinglemmathe reader is referredto
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Lemma 7.20 Let W be a.basic substitution calculus, a a pure term and s a.term of sort S. Then the following
holds: W(a[5][3hift]) = W(a[shifl][lift(s)]).

Corollary 7.21 Let W be a. basic substitution calculus, a a. pure term and 3 a. term of sort S. For every
m 2 n 2 0 we have a[shift]"[lz‘fim(s)]=w a[liftm_"(s)][shift]".

Lemma 7.22 Let W be a basic substitution calculus, a a pure term, and b a.term of sort T. For every n 2 0,
allift"(shift)lllift"(cons(b,wm =w a

Proof. The proof of this fact uses the following result:
If W is a basic substitution calculus, c is a term of sort T and s a term of sort S. Then for every m 2 1 and

n 2 0
m - n - 1[s][shift]" ifm > n + 1

m[lift"(cons(c, s))] =w m if m < n + 1
c[shift]" if m = n + 1

Lemma 7.23 (Substitution commutation) Let W be a.basic substitution calculus, a a pure term, b any
term, s a term of sort S. Then for every m 2 n 2 0 we have:

allift"(cons(b. id))llh'ft’"(s)] =w alliftm“(8)][lift"(cons(b[lift’"‘"(s)l, id))]

Proof. By induction on the structure of a.

o a. = j. Then we consider three further cases:

- j > n + 1.
W(a[lift"(00n3(b, id))llüflm(8)l)

=L. 7.190) W(.'Í - “lam-90?,¿d)ll3hifllnlliflm(5)l)
= W(J' - n - 1l8hifllnlüftm(3)l)
=L 7.21 W(.'Í- n ' llliflm_n(3)ll3hifll")

and

W(alüftm+1(5)]llifl"(°0n3(blliftm_"(3)li id))l)
= W(.'Í- n - llliftm‘"(s)u-shift][shiftPllifl"(cons(bllift'"’“(s)]. 13)”)
= W(.’¡- n - llliflm_"(3)I-Shiflllwn3(blliflm_"(8)l, Z'ti)ll"5’11'f'tl")
=L 722 - n - llliflm_n(8)lllid][8hifl]n)
=Def 7.11(1o) WO " n —“¡wm-"(8) Shiftl")

—j = n + 1.
WÜllï'finwmü id))ll¡iflm(8)l)

=L. 7.19(1) W(1lC°"-9(bv Z3)]l-‘-""Ïtlnlh'flmhfï)”
= W(b[3hiftl"lliftm(3)l)
= W(bl1iflm_"(8)ll3hifil")

and
W(:i[1ifl'"+1(8)]llift"(con-9(blliflm’"(3)ly MDI)
W(1[Mim-"+1(3)]IMM"llifl"(con8(b[üflm_"(s)l, id))l)
W(1[shiftP[lift"(con8(blliftm'"(3)], MDI)
W(n + lllifl"(cons(bl1iftm’"(3)l.44))1)
W(1[wm(bllift'"’"(8)], id)l[8hiftl")
W(b[lift'"‘"(s)llshiftl")

- j < n + 1. Then we have:

W(J'[1ifl"(00n8(b,id))lllift"'(8)l)

=L. 7.19(1) W(jlliflm(5)l)
=L. 7.190) J
=L. 7.19(1) W(j[lift"(cons(b[lift"""(s)l.id))])
=L. 7.190) W(J'[h'ft’"“(8)][lift"(com(b[lift'"’"(s)].id))])

o a = f(a,1, . . . ,an) or a = ¿(a1,...,a.n). Use the induction hypothesis.
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7.3 From Higher-Order to First-Order Rewriting
We now present the Conversion Procedure, an algorithm to translate any higher-order rewrite system in the
formalism SERSdb to a first-order EIERS. The Conversion Procedure is somewhat involved since several condi
tions, mainly related to the labels of metavariables, must be met in order for a valuation to be admitted as valid
(Def. 6.41). Consider for instance the nah-rewrite rule /\(app(Xa, 1)) —vXt. The condition on valuations ín
SERSdb in order to participate in the induced rewrite relation on terms is that they be valid, as we have seen in
Chapter 6. Validity shall ensure, in this case, that the metavariable Xa is not ínstantíated to the index l. The
Conversion Procedure shall have to guarantee that this holds in a first-order setting. The idea is to replaoe all
occurrences of metavariables X1 by a first-order variable X followedby an appropriate index-adjusting ezplicit
substitution which computes valid valuations. Thus, the output would be: /\(app(X [shift], 1)) —>X. However
this is just a simple case, and in the general situation, íncorporatíng shift macros shall not suffíce. A wítness
to this fact is the commutatíon of binders rule in the introduction to this chapter.

We first give the conversion rules of the translation, then we prove its properties ín Section 7.4.

7.3.1 The Conversion Procedure

Definition 7.24 (Binding allowance) Let A be a metaterm and {X¿1,. . . , Xln} the set of all the metavari
abla with name X occurring in A. Then, the binding allowance of X in A, noted BaA(X), ís the set [12;] li.
Likewise, we define the binding allowance of X in a rule (L, R), written Baafia) (X), as the set “1;, l,-where
{X¡,, . . . , Xln} is the set of all metavariables with the name X in L and R.

Example 7.25 Let A = f(€(xa)»9(€(/\(Xfia))v€(’\(xon))))v then BaA(X) = {0‘}

Definition 7.26 (Shifting index) Let A be a metaterm, X1a metavariable occurring in A, and i a position
ín l. The shifting index determined by X1 at position i, denoted Sh(X¡, i), is defined as

Sh(Xm') “3 ¡{j l atw) e ¡aa/¡(xm-e u - 1}I

Thus Sh(X¡,i) is just the total number of binder indicators in l at positions 1..i —1 that do not belong to
BaA Remark that Sh(X¿,1) is always0.

Example 7.27 If A = f(€(Xa), g(€(/\(X¡3a)),€(/\(Xa.,)))) then sn(Xa, 1) = Sh(Xa.,, 2) = 0, s1:(X,3,_.,,2) = 1.

Definition 7.28 (Pivot) Let (L, R) be a SERSdb-rewríterule and {X¡,,...,X¡,_} be the set of all X-based
metavariables in (L, R). If Ba(¿IR)(X) 96(0,then X11.for some j E l..n is called an (X -based) pivot if

l. ¡[J-IS |l,-| for alli G l..n, and

2. X1].e L whenever possible.

A pivot set for a rewrite rule (L,R) is a set of pívot metavariables, one for each name X in L such that
Ba(L_R)(X)760. This notíon extends to a set of rewrite rules as expected.

Note that Def. 7.28 adrníts the existence of more than one X-based pívot metavariable. A pívot set for
(L, R) fixes a metavariable for each metavariable name having a non-empty binding allowance.

Example 7.29 Both metavariables Xap and Xpa can be chosen as X-based pívot in the rewrite rule

Implies(3(V(Xap)),V(EI(Xpa))) —>true

In the rewrite rule f (Ye,g(/\(€(Xap)), /\(€(Xpa))) —>{(Xm Ya) the metavariable XC,is the only possible X-based
pívot, also, Ye is the only Y-based pívot.

Let us recall some notatíon from Def. 6.2. If l = a1 man is a label of binder indicators then at(l,i) = a,
for i G l..n. Also, pos(a,l) = a,- where i is the smallest number in l..n such that a = ai, and is undefined
otherwise.

Definition 7.30 (Conversion of metavariables) Considera SERSdb-rewriterule (L,R) and a pívot set for
(L, R). We consider the following cases for every metavariable name X occurring in L:
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1. Ba(L'R)(X) = (0.Then convert each metavaríable X, in (L, R) to the term X [shiftlll], and those metavarí
ables X1 with l = e simply to X.

This shall allow, for example, the rewrite rule f (Á(app(Xa, 1), X¿)) —>Xe to be converted to the first-order
rewrite rule f(A(app(X [shift], 1),X)) —>X.

N) . Ba(L'R)(X) = {61, . . . ,fim} with m > 0. Let X1 be the pívot metavaríable for X given by the hypothesís.

We convert all occurrences of a metavaríable Xk in (L, R) to the term X [cons(b1,. . . ,bm, shiftj where

j d=ef|k| + |l\Ba(LIR)(X)|. The b,-’sshall depend on whether Xk is a pívot metavaríable or not, as described
below. As an Optimization and in the particular case that the resulting term X [cons(b1, . . . , bm,shift-7)]is
of the form X[c0n3(1,. ..,|l|,shift|”)], then we simply convert Xk to X.

The substitution cons(b1, . . . , bm,shiftj) is called the index-adjusting substitution corresponding to X1.and
each b,-is defined as follows:

(a) if Xk is the pívot (hence l = k), then

b. __ i if at(l,i) G Ba(L,R)(X)
' _ IlI+ 1+ Sh(X¡,i) if at(l,i) e Ba.(L’R)(X)

(b) if X). is not the pivot then

b_= pos(fih, k) ifz' = pos(flh, l) for some fih E Ba(L'R)(X)
‘ |lc| + 1 + Sh(X¿, i) otherwise

Recall that at(l,z') returns the symbol in label l at position 2'with 1 5 2'5 Ill, and pos(a,l) returns the
position of a in the label l assuming it is in l.

Note that for an index-adjusting substitution cons(b1,. . . ,bm, shiftj) each b,-is a distinct de Bruijn index
and less than or equal to j. Substitutíons of this form, in the particular case where we fix the basic substitution
calculus to a, have been called pattern substitutions in [DHKP98], where unification of higher-order patterns
vía explicit substitutions is studied.

Now that we know how to convert metavaríables we can address the conversion of rewrite rules. Before
proceeding we recall that the name of a metavaríable X, is X. The names of the free metavaríables of a
metaterm M is written NFMVar(M) (Def. 6.35).

Definition 7.31 (Conversion of rewrite rules) Let (L, R) be a SERSdb-rewriterule and let P be a pívot
set for (L, R). The conversion of the rewrite rule (L, R) via P, denoted Cp(L, R), is defined as Cp(L, R) d=ef

(CÉL'R)(L),C),L'R)(R))where CÉL'RRA)is defined by induction on A, where NFMVar(A) g NFMVar(L), as:

CÉL'RRn) dÉf n
X[shift”'] if Ba(L'R)(X) = (aand z ae e
X[con.s(b¡, . . . , bm, shift-7)] ÍÍ Ba(L'R)(X) # Ü and

ch'Rüxo dé‘ cons(b1,...,b¡,¡,shiftj) ae
con3(1, . . . , m, shift“)

X otherwise

ClaL'R)(f(A1, . . . , An» d“ ¡(CLL'R)(A1),.. .,CS,L'”)(An))

cgvmwl, . . . ,An)) ¿(6253)(A1).. . . .ctL'RRAn»
¿“RR/441421) Cía”)(A1)lcons(CÍ>L'R)(A2))id”¡fiuiu

The term X [cons(b¡, . . . , bm,shift-m on the RHS of the second clause is the index-adjusting substitution com
puted in Def. 7.30.

It should be noted how the de Bruijn metasubstitution operator ole] is converted to the term substitution
operator o[o].

Example 7.32 Below we present some examples of conversion of rules. We have fixed W to be the a-calculus.
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SERSdb-rewrite rule Pivot selected Converted rule

/\(app(Xa, 1)) -> X: A(app(X[T],1)) -> X

A(/\(Xap)) -> /\(/\(Xpa)) Xap MAX) -> z\(/\(X[2 - 1 . (T o T)]))

f(/\(/\(Xaa)), /\(/\(Xaa))) -> ¿(XQ f(/\(/\(X[T ° TD).¿(MXIT ° T]))) -’ ¿(XITD

app(/\Xa,Z¿) 45,, X425] xa, Ze on LHS app(,\x, Z) —>X[Z -id]

The dash in the ‘pivot selected’ column for the first and third rows indicates that the binding allowance of X
in the respective rule is the empty set and hence no pívot is required.

Note that if the SERSdb-rewrite rule (L, R) which is input to the Conversion Procedure is such that for every
name X in (L,R) there is a label l with all metavariables in (L, R) of the form X1, then all X, are replaced
simply by X. This is the case of Ba, of Example 7.32.

Example 7.33 (Foldl) Let us represent the usual foldl-recursion scheme over lists as defined for example in
Haskell. Consider the EIERS signature containing 1", = {m‘l,consts, foldl} and I‘b= {fi Then the foldl-rewrite
system:

folduaaxap», K, m!) —» n
foldl(€(E(Xapll.Ye.con-9t(Ze.We)) -> faldl(€(g(xafi))vXGBIYBHZCLWe)

is converted to

foldl(€(€(X)), Y, m'l) —>
f01d¡(€(€(X)), Y, comflzi Wll -> f01d1(€(E(X))¡X[YlTl ' MHZ ' id], W)

Example 7.34 (Natural numbers recursor) Considerthe EJERS signature containing the function sym
bols l"; = {zero, suc, rec} and binder symbols I‘b= {f Then the rec-rewrite system:

Tec(€(€(xafi))v YC!zero) _’ Y!
Tec(€(€(Xap)),Ye,suc(Zc)) -* Xaplzpllrec(€(€(xap)). Ye:Ze”

is converted to
rec(€(E(X)), Y, zero) —>
Tec(€(€(X)). Y.suc(Z)) . -' XIZÍT] ' idllmc(€(€(X)). Y,Z) - id]

Also, observe that if we replace our cons(o, o) macro by a scons(o) of substitution declaration T as defined
in [Ke596, KesOO]then the last clause of Def. 7.31 converts a metaterm of the form AIB] into A[scon3(B)],
yielding first-order systems based on substitution calculi, such as v, whichdo not implement parallel substitution.

The system resulting from the Conversion Procedure is coded as an EEERS, a framework for defining first
order rewrite systems where W-matching is used. Moreover, if it is possible, an EIERS may further be coded as
a FEkrERS(Def. 7.13) where reduction is defined on first-order terms and matching is just syntactic first-order
matching, obtaining a full first-order system.

Definition 7.35 (Conversion Procedure) Let I‘ be an EIERS signature, let R be a SERSdb,and let W be
a substitution calculus over I‘. The Conversion Procedure consists in selecting a pivot set for each rewrite rule
in 'R and converting all its rewrite rules as dictated by Def. 7.31. The resulting set of rewrite rules is written
fo('R). The EzERS fo(R)w is called a first order-versionof R.

In what follows we shall assume given some fixed basic substitution calculus W. Thus, given a SEI-¡SabR
we shall speak of the first-order version of 'R.

Of course, we must also consider pivot selection. Asume given some rewrite rule (L, R) and different pivot
sets P and Q for this rule. It is clear that Cp(L, R) and CQ(L, R) shall not be identical.

5Although com: is the usual abbreviation for the list constructor, we shall use const so as not to cause confusion with the
comi-macro.
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Example 7.36 Consider the followingbinder-commutation rule

imply(3(V(Xpa)),V(3(Xap))) -’c true

If we select Xfia as the X-based pívot we obtain the following conversion of C: imply(EI(V(X)),V(3(X [2 - 1 
—>c¡°true. However, Xap may also be selected as an X-based pívot metavariable. In this case, the

resulting converted rewríte rule shall be different: imply(3(\'/(X[2- 1 - id])),\'/(3(X de}, true

Nevertheless, the rewríte relation generated by both of these converted rewríte rules is identical.

Proposition 7.37 (Pivot Selection) Let (L, R) be a SERSdb-rewríterule and let P and Q be differentpívot
sets for this rule. Then the rewríte relation generated by both Cp(L, R) and Cq(L, R) are identical.

Proposition 7.37 is important, for ít makes clear that the Conversion Procedure is not biased by the selection
of pívot sets (as regards the induced rewríte relation). Thus only now may we speak of the first-order version of
a SEI-IS“ R. The proof of this proposition is rather technical and is relegated to Section A.4.1 of the appendix.

7.4 Properties of the Conversion Procedure
This section studies the connection between higher-order rewriting and first-order rewriting modulo. Sec
tion 7.4.1 first shows that the Simulation Proposition holds: any higher-order rewríte step may be simulated or
ímplemented by first-order rewriting. Section 7.4.2 considers the Projection Proposition, namely, that rewríte
steps in the first-order version of a higher-order system 72 can be projected in R. Finally, we give in Sec
tion 7.4.3 a syntactícal characterization of higher-order rewríte systems that can be translated into first-order
rewríte systems modulo an empty theory. We shall see that, for example, the A-calculus is covered by this
characterízatíon.

7.4.1 The Simulation Proposition
In order to simulate higher-order rewriting in a first-order framework we have to deal with the conversion of
valid valuatíons into assignments. Recall that valuatíons are the devices through which SERSdb-rewríte rules
are ínstantiated in order to obtain the induced rewríte relation. Likewise,assígnments are used for ínstantiating
first-order rewríte rules, i.e. EzERS-rewrite rules. For convertíng valuatíons to assignments two families of
index-adjustment operations are required, decrementors and adjusters.

Consider a metavariable X1 in a SERSdb-rewrite rule (L, R), and suppose we are given a valid de Bruíjn
valuatíon K. Let X [con3(b1,. . . , bw, shiftj)] be the conversion of the metavariable X, (Def. 7.30) where k is the
label of the X-based pivot metavariable. We shall seek to define an assígnment p such that the value that p
assigns to X satisfies the followingequatíon:

P(X)[°0n3(b1.---.bik1.3hiflj)l =w MX!)

The term assígned to p(X) shall be obtained from K(X[). This result is stated as Lemma 7.45.

Definition 7.38 (Decrementors) For every i, j 2 0 and de Bruíjn ground term a.we define D301)as follows:

- d_ef n ífn5i+j
Dun) - n-j ifn>i+j
DÍ(f(a1---an)) d=°‘ ¡(Dz(a1)...7>z(qn))
02(¿(a1...an)) dé‘ ¿(192,1(a1>...vz+1(an))

Lemma 7.39 Consider a SERSdb-rewrite rule (L, R), metavariables X¡,Xk e (L, R), and a valuatíon ¡e valid
for (L, R). For all i 2 0, if

l. ¡9X1= D[a.] for some pure context D having binder path number i,

2. Valuei(l,a) = Valuei(k,b), and

3. the bínding allowance of X in (L, R) is the empty set (i.e. BauhR)(X) = (2)),
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then DL"(a) = 'DLWb).

Proof. By induction on a.

o a = n. We consider the following cases:

- n S i + Then Dyl(a) = n. If n S i then since Valuei(l,a) = n = Valuei(k,b), we have b = n and
the result holds. l .
Otherwise, if i < n S i+|l| then since by Hypothesis 2 wehave Value‘(l,n) = at(l, n-i) = Value‘Uc,b)
we must have b = m with i < m 5 i+ |k| and at(l, n —i) = at(k,m - i). But by Hypothesis 3 there
must be some X1! in (L, R) such that at(l,n —i) é l’, and hence Value(l’,KXp) 96 Value(l,IeX¿) by
Def. 6.40 (since at(l, n — occurs in Value(l,KXI) but at(l,n —i) dos not occur in Value(l’,KX¡I)),
contradicting the assumption that Kis valid.

n > i + Ill. Then 'Dy|(a,) = n —Ill. Also, since Valuei(l, a) = zn_,-_¡¡¡ = Valuei(k,b), we have b = m

with m > |k| +2" and n —|1|—t= m —|k] —i. Then D¿*'(b) = m —|k| and the result holds.

. a,= f(a¡, _. . ,an). Then Dyl(a.) = ¡(19,!"(e1)_...,1)1”(e,,)).

Now by Hypothesis 2 we have that b = f(b1, . . .,bn) with Value¡(l.aj) = Valuei(k,bj) for all 1 S j 5 n.
Then the induction hypothesis yields 'Dyl(a.j) = Dik|(bj) for j e l..n and we may conclude the case by
Def. 7.38.

o a = ¿(a1,...,a.n). Then Dyl(a) = ¿(1111010, . . . ,Dlïl(an)).

Now by Hypothesis 2 we have that b = ¿(b1,...,b,.) with Value‘+1(z,e,-)= Valuei+1(k,bj) for all 1 g j 5
n. Then the induction hypothesis concludes the case.

Lemma 7.40 Consider a SERSdb-rewriterule (L, R), metavariables Xth e (L,R) and a valuation K valid
for (L, R). For all i 2 0, if

1. EX; = D[a] for some pure context D having binder path number i,

2. Value‘a, a) = Value‘(k, b), and

3. the binding allowance of X in (L, R) is the empty set (i.e. Ba<L_R)(X)= (0),

then 01"(a)[hft"(shtfi“°‘)] =w b.

Proof. By induction on a.

o a,= n. Then we have three further cases to consider:

1.

2.

W

n 5 2'. Then ’Dy|(n)[lifti(shift'k')] = n[lifti(shift'k')] :591 n. Now by Hypothesis 2 we have
Value"(l,n) = n = Value‘(k,b) and therefore b = n and we are done.

i < n S i+ Then since by Hypothesis 2 we have Valuei(l,n) = at(l,n —i) = Valuei(k,b) we
must have b = m with i < m S i + IkI and at(l,n —2')= at(k,m —2'). But by Hypothais 3 there
must be some X1: in (L, R) such that at(l,n - i) í l’, and hence Value(l’,K.X¿’)76 Value(l,KX¡) by
Def. 6.40 (since at(l,n— i) occurs in Value(l,KX¡) but at(l,n —z')does not occur in Value(l’,KX¡/)),
contradicting the assumption that K,is valid.

.n >i+ Then
l . - .

Di '(n)lhft‘('sh4ft"°')l
= (n —|l|)llift‘(shift”°')l

:1? 7 (n —¡1|—i)[shifl'k'][shift]'
=w°’- “(9) (n —Ill —i + Ikl)[shift]’
=w n - Ill+ Ikl

The last equality follows from i applications of Def. 7.11(9).
Now by Hypothesis 2 we have Value‘(l,n) = zn_,-_¡,¡ = Valuei(k, b) and therefore b = m with
m > i + |k| and n —'i—|l| = m —i— Rom this it follows that n —Ill = m —|k| and we are done.
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o a = f(a¡,...,a.,,). Then DL”(a)[zm‘(sm-fi"=l)]=w ¡(01"(agluflüshmlkln,.._,DL"(a,,)[ufti(shifc"=')]) by
condition 2 of Def. 7.10.

Now by Hypothesis 2 we have that b = f(b1, . . .,b,,) with Valuei(l,aj) = Valuei(k, bj) for all 1 5 j g n.
Then the induction hypothesis yields Dlll(aj)[lift¡(shiftlkl)] =w b,-for j e l..n and we may conclude the
case.

o a = ¿(0.1, . . . , an). Then by condition 2 of Def. 7.10 we have that

Dl"(a)llift"(shift"")l =w ¿(DLL(a1>¡zm*+1(shm“")1.. . . ,Dlill(an)[lifti“(shift”")])

Now by Hypothesis 2 we have that b = ¿(bh . . . , bn) with Valuei+1(l,aj) = Valuei+1(k,bj) for all 1 5 j S
n. Then the induction hypothesis concludes the case.

de Bruijn ground term and let cons(b¡, . . . , bm,shiftlll+”\h('-'R)(x)l) be the index-adjusting substitution corre
sponding to X1. Then Aí(a) is defined as follows:

Definition 7.41 (Adjusters) Let X1 be a pivot metavariable in a SERSdb-rewrite rule (L, R), i > 1, a a.

n ifn Si
n ifat(l,n—i)€Ba(L'R)(X)andO<n-i5|l|

dÉf undefined if at(l,n —i) í Ba(L'R)(X)and 0 < n —iS Ill
pos(n —i,b1...b¡¡¡)+i if |l| < n —i S [ll+ |l\Ba(L_R)(X)|
n- Il\Ba(L.R)(X)| Ífn-i > Ill+ Il\Ba(L.R)(X)|

Aumentan» Ïff(Aí(a1)---Aí(an))
Aí(€(a1---an)) “¿‘¿(A2+1(a1)...«44+1<an)>

Lemma 7.42 (Well-definedness of Adjusters) Consider a SERSdb-rewriterule (L, R) and some pivot set
P for (L, R). Let X1 e (L, R) be the X-based pivot metavariable for some X e NFMVar(L), and let K be a
valuation valid for (L, R). For all i 2 0, if

1. EX; = E{a.]for some pure context E with i the binding path number of E, and

2. the binding allowance of X in (L, R) is not empty (i.e. Ba(L_R)(X) 76Ü),

then Aka) is defined.

Proof. By induction on a. We shall only consider the base case, the others follow by using the induction
hypothesis. Suppose a = n. We have four further cases to consider:

1. n 5 2'. Then there is no problem.

2. i < n S i+ The only case of conflict is if at(l,n —i) Q Ba(¿_R)(X). Then there must be a Xp in
L such that at(l,n —i) Q l’. Consequently Value(l,rcX¿) aé Value(l’,rch) since at(l,n —2')occurs in
Value(l,KXl) but at(l,n —i) does not occur in Value(l’,KXp). This contradicts the assumption that K.is
valid for (L, R).

3. |l| < n —i 5 Ill + Il \ Ba<L_R)(X)|. Then we must verify that pos(n —i,b1...b¡¿¡) is defined. Now
let 1' = |l\Ba(L'R)(X)| then by Def. 7.30 there are subindices j1 < < j, such that bj, = |l| + l +
Sh(X¿,j¡), . . . , b_.¡r= |l| +1+ Sh(X¿,j,). By noting that 1 + Sh(X¡,j,.) = r we are done.

4. n —i > Ill+ Il\Ba(L,R) This case presents no problems.

Lemma 7.43 Consider a SERSdb-rewriterule (L, R) and some pívot set P for (L, R). Let X, e (L, R) be the
X-based pívot metavariable for some X e NFMVar(L), let Xk e (L, R), and let rc be a valuation valid for
(L, R). For alli 2 o, if
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1. RX; = D[a] for some pure context D having binder path number equal to i,

2. Valuei(l,a.) = Valuei(k,b), and

3. The binding allowance of X in (L, R) is not empty (i.e. Bauhg) (X) 760),

then A.I¿(a)[lifti(s)] =w b where s = cons(c1, . . . , cl”, shiftlkl+ll\a‘(L-R)(X)I)is the index-adjusting substitution
corresponding to Xk.

Proof. Let j = lk| + ll \ Ba(L,R)(X)|. We proceed by induction on a.

o a,= n. Then we have four further cases to consider:

1. n 5 2'.Then Aí(n)[lifti(con3(c1,...,c“¡,shiftj))] = n[l'ift"(con3(c1,. . . , cm, shift-7D]:591 n
Now by Hypothesis 2 we have Value'(l,n) = n = Value‘(k,b) and therefore b = n and we are done.

2. i < n S 2'+ |l|. Here we consider the two cases:

—at(l, n — e Ba(¿_R)(X). Then

Aí(n)_[lifti(cons(c1,...,cl¡¡,shiftj))]
- n[lift’(cons(c1,...,c|¡¡, shift"))]
4701 (n -i)[°07?3(011-- -, CIII»Shifljlllsmflli
=w Ci,¡’_1"[3hiyft]1
=w Cn-i + i

So we are left to verify that c.,,_,-+ i_= b. l
Now by Hypothesis 2 we have Value‘(l,n) = at(l, n - i) = Value‘(k,b) and therefore b = m with
i< m 5 |k| +11and at(l,n-—z') = at(k,m —i).
We consider where cn..¿ might ‘come from’.

(a) n -z' = pos(fih,l) with fin e Ba(L,R)(X) and cn_,-= pos(fih,k). But then by Hypothesis 2
and the fact that k is a simple label we must have c,._,-= m —i, which concludes the case.

(b) There is no fih e Ba(L'R)(X) with n —i = pos(fih, l). This contradicts our assumption that
at(l,n —i) e Ba(L_R)(X).

Note that in the particular case that X1;= X1 then cn_,-= n —i and we have n - i +2‘ = n.

—at(l, n-z') 9!Ba(L'R)(X). By Well-definedness of Adjusters (Lemma 7.42) this case is not possible.

3. |l| < n —i 5 |l| + |l\Ba(L'R)(X)|. Then

Al(n)lüftz(con3(cl)' ' ' acIIII .
(pOS(TL—7;,d1 . . .dl”) + i)[lift'(con3(c1, . . ..,CHI,

w pos(n —'i,d1...d¡¡¡)[con3(c1,...,c”¡,shift’)][shift]i
w crÍShifll'
w Cr+i

where r = pos(n —i,d1 . . .dlu). Note that Lemma 7.42 is used here.
So we are left to verify that cr +2' = b.
We must consider where cr might ‘come from’:

(a) r = pos(,3h,l) with [3h E Ba(L_R)(X) and c, = pos(,Bh,k). Then clearly, at(l,1') E Ba(L_R)(X).
However, since r = pos(n —i,d¡ . . . dm) this means that dr = n —i. Also, recall that we are
currently considering the case d, = n -i > |l|. But then by Def. 7.30 at(l,r) í Ba(L,R)(X)
contradicting our knowledgeof the opposite fact.

(b) c,- = |k| + 1 + Sh(X¿,r).
Now note that it is not possible for d, = 1' (and hence at(l, r) E Ba(L'R)(X since then we may
reason as in item 3a. So d, = n —i = |l| + 1 + Sh(X¡,r) (*). Recall that we are left to verify
that |k|+ 1+ Sh(X¿,r)+i = b. .
Now by Hypothesis 2 we have Value‘(l,n) = :rn_,-_“¡ = Valuei(k, b) and therefore b = m with
m > 2'+ IkIandn-i- Ill= m-i- FÏ'omthis it followsthatn- |l| =m-—|Ic|.Sonowwe
must see that |k| + 1 + Sh(X¡,r) +z' = n —Ill+ |k|, or simply 1 + Sh(X¡,r) +2" = n — This
followsfrom
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Note that in the particular case where Xk = XI then cT= n —i and we have n —2'+ i = n.

4. n-i > |l| + |l\Ba(LIR)(X)|. Then

¿(n)[lift‘(cons(c1.---,c|;|»8hiftj))] _
= (n —ll \ Ba(L_R)(X)|)[lift‘(con3(c1, . . . , CHI,shifl’))]

w (n - \ Ba(LIR)(X)I - i)[00713(61,. . . , cm, shift-7)][shz'flr'

w n _=Í|\BlaI:ILJ-Z)(X)l‘71-lll'l'lkl'l'll\Ba'(L,R)(X)l+in — +

Note that in the particular casethat Xk = X1we have k .= l and the result holds directly. Otherwise,
by Hypothesis 2 we have Value‘(l, n) = 2,,_,-_¡¡¡= Value‘(k,b) and therefore b = m with m > i+ |k|
and n —i —|l| = m —i —IkI. From this it follows that n —|l| = m —|k| and we may conclude the
case.

o a,=f(a1,...,a.,,). Then

4(a)[lifti(cqns(c1, . . . ,cIu, shiftj))]. I .
=w f(Ai(ai)llïfl‘(°0n3(Ci.-- -,C|t|,3h1fl'7))ly-v-1Al(an)llifi'(60n3(c1,- --.C|u. 8hifi’))l)

Now by Hypothesis 2 we have that b = f(b¡, . . .,b,,) with Valuei(l,a¿¡) = Value‘Uc,bj) for all 1 5 j S n.
Then the induction hypothesis concludes the case.

o a.= ¿(a1,...,an). Then

A_I¡(a)[l’ifli(60n-’:(Cly - - . i cl”) shiftle _ . 
=w E(4+1(al)llifti+l(60713(clv -- aCIlIwShiftJDl)- -viAi+1(an)ll'Ïflt+1(c°n3(clv ' ' ' 'CIIÍIShifH))])

Now by Hypothesis 2 we have that b = ¿(b1,...,b,,) with Value‘+1(z,aj) = Value‘+1(k,bj) for all 1 5 j 5
n. Then the induction hypothesis concludes the case.

We know how to convert SERSdb-rewrite rules. In order to prove our simulation result we must convert
SERSdb-valuations. This makes use of decrementors and adjusters.

Definition 7.44 (Valuation conversion) Let (L, R) be a SERSdb-rewriterule, K.a valid valuation for (L, R)
and P a pivot set for (LI R). The conversion of K via P is defined as the assignment p where for each X G
NFM Var(L):

o Case Ba(L_R)(X) = (0. Then p(X) dÉf Dg|(K,X¡) where X; is any metavariable from L. Note that
Lemma 7.39 guarantees that this is a correct definition (take D = Ü).

o Case Ba(L,R)(X) = {fi1,...,fln} with n > 0. Then we define p(X) d=erA¿(KX¿) where X1 is the X-based
pívot metavariable as dictated by P.

Lemma 7.45 Let (LI R) be a SERSdb-rewrite rule, K.a valid valuation for (L, R) and fi the conversion of K,via.P
for some pivot set P for (L, R). If L = C[A] for some metacontext C and metaterm A, then fi(C},L'R)(A))=w KA.

Likewise, if R = C[A] then z(c},L'R)(A)) =w rc(A).

Proof. Both items are proved by induction on A.

o A = n. Then LHS =fi(n) = n = ¡en= RHS.

o A = Xk. Note that since Xk is a subterm of a metaterm (i.e. a.well-formed pre-metaterm) k is a simple
label. According to Def. 7.31 we have three subcases to consider:
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1. Ba(L_R)(X)= Then

LHS = fi(X[shift"°'])
= fi(X)[8hift”°']
=De¡. 7.44 Dg'mxnpmfllkl]
=L. 7.40 ka

where X1 is any metavariable from L.

2. Ba(L'R)(X) 7€0 and cons(b¡, . . .,b¡¡¡,shiftj) 7€cons(1, . .., |l|,shift”') where X1 is the X-based pivot
metavariable as dictated by P. Then

LHS = 73(X[cons(b1, . . . ,b¡,¡,shiftj)])...,bm,shift’)]I
= A¿(K,X[)[COM(b1,...,b|[|,3h1'ftJ)]
:5‘.) 7.43 K’Xk

3. Ba(L'R)(X) 960 and con3(b¡,...,b¡¡¡,shiflj) = 0011.9(1,. . . , |l|,shifl“l) where X1 is the X-based pivot
metavariable as dictated by P. Then

LHS = fi(X)
= AMKXI)
=w A¿(KX¡)[con3(1,...,|l|,shzfi“')]
:5; 7‘ KXk

Note that the third equality holds by the fact that cons(1, . . . , |l|, shift'”) behaves as the identity
substitution.

. A = f(A1, . . .,A,.). Then LHS = f(p(c},L'R)(A1)), . . . ,p(c},Lv”)(A,,))) :3} f(KA1, . . .,KA,.) = RHS.

. A = ¿(A1,...,A,.). Then LHS = ¿(p(c},L'R)(A1)),. . . ,¡‘3(C),L'R)(An))):3} ¿(KA1,...,KA,.) = RHS.

o A = A1[A2]. This case is considered for the second item only since the de Bruijn metasubstitution
operator may not occur on the LHS of a SERSdb-rewrite rule.

LHS fi(CÉ>L’R)(A1lA2D)

3(Cl>L’R)(A1))[cons(fi(ClDL'R)(A2)),un
ya. (KA1)[con3(KA2, id)l
L. 7.19(3) ¿Alp <- K142}

null/u)
RHS

n.

Proposition 7.46 (Simulation Proposition) Let 'R.be a.SERSdband let fo(R)w be its first-order version.
Suppose a, —>'R_b then

1. if fo(R)w is an EEERS then a —>¡o(7¿)/wb.

2. if fo(R)w is a FEIERS then a AMR) o —»wb where o denotes relation composition.

Proof. For the first item, suppose a —->Rb. Then there must be a SERSdb-rewrite rule (L, R) G 'R, a
valuation n valid for (L, R) and a pure context E such that a = ElKL] and b = ElKR]. Let (L’, R’) = Cp(L, R)
be the converted version of rule (L, R) via some pivot set P for (L, R). Let fi be the conversion of K.via P
(Def. 7.44). By Lemma. 7.45 we have:

¡.i . fi(L’) =w KL and

N fi(R’) =w KH.
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Thus from fi(L’) =w KL and ¡(I-2’) =w KR we have E[fi(L’)] =w E[KL] and E[T)(R’)] =w EIKR], re
spectively. Finally, we have on the one hand a = E[KL] =w E[fi(L’)], so a =w E[fi(L’)], and on the other,
b = EIKR] =w Elfi(R’)], so b =w Elfi(R’)l

As for the second item note that if fo('R)w is a FELERS then L’ is a pure term. Also, by definition, K
is a pure assignment. Thus 73(L’)= KL. And fi(R’) -»w KR since KR is a pure term. Therefore we have
a = ElnLl= Elfi(L’)lmm EmR'n -"w EIKRI

7.4.2 The Projection Proposition
We now wish to prove that derivations in an EIERS or FEIERS fo('R)w may be projected into derivations
in 'R. This ensures in some sense that we did not add meaningless computations in the translated first-order
system. As a consequence we prove that fo('R)w is conservative over 'R (Def. 7.57). Further properties of the
projected derivations shall be studied in Chapter 8, where standard derivations shall be considered.

We shall first begin by showing that if a :¡(L’m b then for any term s of sort S we have W(a[s]) 2mm)
W(b[s]). The meaning of a :(LIR) b shall be made precise shortly, however on an intuitive level it means that
a rewrites to b by applying a number of parallel (L, R)-rewrite steps.

Remark 7.47 Let A be a pre-metaterm and suppose Wfk (A). Then any metavariable occurring in A must
be of the form Xlk for some label l. Moreover lk is a simple label.

Lemma 7.48 Let A be a pre-metaterm and suppose WII-"¡.(A). Consider a valuation K with M Var(A) Q

Dom(K). Then W((KA)[liftlkl(3)]) = LkAwhere ¿k is a valuation defined as: “.(Xuc) dÉfW((KX¡k)[lift“kl(s)])
for all l such that Xlk occurs in A.

Proof. By induction on A.

o A = n. Note that since WJFk(n) we have n 5 Ikl. Then LHS = W((Kn)[lift|kl(s)]) = W(n[liftlk'(s)]) =
n = ¿kn = RHS.

o A = Xkr. Then since Wfk(Xkr) we have k = k’ and LHS = W((K.Xk)[liftlkl(3)])= LkA.

o A = f(A1, . . . ,An). Then

LHS =P;’- “19"” f(W((nA1)llift""(s)]), . . .,W((nAn)llift'*'(s)1))
=ïv f(¿}cA1,. . . ,LzAn)
= f(LkA1, . . . ,¿kAn)
= RHS

where ¿k = ULI Li. Note that if Xp G Dom(v;) n Dom(¿{) for j,j’ E 1..n with j aé j’ then ¿{(XP) =

Li (Xp).

A = ¿(A1,. . . , An). By hypothesis there is an a such that WII-'ak(A,-)for all i e 1..n. Then

LHS =Def. 7.11(3.4) ¿(W((KAl)lh-fllkl+1(s)l), ___, W((KAn)[lif¿Ikl+1(8)l))
{(¿ákAh. . . ,¿ZkAn

= ¿(LakA1,..., LakAn)

where ¿ak = Uï=1L;k. Note that if Xp G Dom(¿ík) ñ Domuílk) for j, j’ e 1..n with j 9€ j’ then

¿{11:09)= ¿ÉÁXpl

By the well-formedness predicate we know that since any metavariable in A,-has the form Xpak for some
label p we have ¿k(A,-) = LakAi for all i e 1..n. More precisely, in the definition of ¿ak let p be a label
such that Xpak is a metavariable in Ai for some i E 1..n, then in the definition of ¿k we take p’ = pa and
obtain ¿k(Xp/k) = ¿ak(Xpak). Hence we may continue as follows:

¿(LakA1,.. .,LakAn) = ¿(LkA1,...,LkA,,) = ¿kA
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o A = A1[A2]. By hypothesis there is an a such that Wfak(A1), and Wfk(A2). Then

LHS = W((KMI[Azlllllífllwslll
= W((nAlll e nA2})[üfl“°'(s)1)
=L.7.19(3) W((KA1[W(KA21¿dllllüflw(3)l)
=L.7.23 W((KAlllüfllkH1(3)ll°0"3((KA2)lHfllkl(3)], id)l)
= W(W((KA1)lñftlkl+1(sll)lCO"-3(W((KA2)llifilkl(sllla ¿dlll
=L.7.19(3) W((KAillliftlk'+1(3)l)lÏ1 ‘- W((KAzllliftlkl(3)l)B
=u.. Lak(A1)H1‘- “(112”
= lvIc(x‘11)H1‘- ¿k(A2)ll
= ¿Ic(A1[A2D

The before last equality may be justified as in the previous case.

We now verify that the valuation Lfrom Lemma. 7.48 (k = e) is a valid valuation assurning K,is, and hence
can be used in rewriting terms. More precisely,

Lemma 7.49 Let rcbe a valid valuation for a SERSdb-rewriterule (L, R) and let s be any substitution. Then
e is also valid for (L, R), where ¿(xo ‘13!W((KX¿)[lift”'(s)]) for 8.1le ¡h (L, R).

be pure terms. Then for all i 2 0, Value'(k1, a.) = Value‘(kg,b) implies Value‘(k1,W(a[lift'k"+i(s)]))
Value‘(k2, W(b[z¿fi|*='+‘(s)])).

The latter is proved by induction on a. We shall consider the case where a is an index for the other casa
follow by using the induction hypothesis. Let a = n, we consider three further subcases:

Proof. This follows fi'om the following _more general result by considering the case 2' = 0 Let a,b

o n 5 2'. Then b = n and Valuei(k1,W(allift'k"+i(s)])) = n = valueükz,W(b[hfi"°='+‘(s)])). The latter
holds by Lemma 7.19(1), and therefore, the result holds.

oi < n S |k1| +i. Then b = m withi < m 5 Ikzl+i and at(k1,n—i) = at(k2,m—i). We
have W(allift"°‘l+i(s)]) = n and Value¿(k2,W(b[lift¡k"+i(s)])) = m, by Lemma 7.19(1). Thus, we have
Vezueükl,W(e[z¿ft"°1'+*(e)])) = at(k1, n —i) = at(k2, m —i) = Valuei(kg,W(b[lift"°"+"(s)])).

o n > |k1| +11. Then b = m with m > Ikgl +'¿ and zn_¡k¡¡_,- = zm_¡k2¡_,-. Then we reason as follows:

W(a[lifllkll+i(3)l) = W(n - Ik1I- i[s][shift]lkrl+i) .
= W(W(n _Ik1I_i[s])[shifl]Ikll+1)

And likewise,

W(blzift"°='+‘(s)l) = W(m —Ikzl —¿[8][shift]”‘=¡+")
= W(W(m —Ikzl - i[3])[shifi]|’°=|+‘)

Now W(n —|k1| —i[s]) = W(m —Ikgl —i[s]), since n —|k1| —2'= m —|k2| - i.

Observation: for any pure term a, Valuei(k1,a) = Valuei(k2,b) implies Valuei(k1,W(a[sh'ifl]"°1'+i)) =
Value'(kg, W(b[shifl]'k='+‘)). This may be verified by induction on a and using condition 9 of the definition
of a Basic Substitution Calculus (Def. 7.11).

By the observation we may conclude the case.
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Definition 7.50 (Parallel SERSdb—rewriting) Let R be a SERSdband let a and b be de Bruijn terms. We
say that a 'R-rewn'tes in.parallel to b iff a :m b, where the latter relation is defined as:

nvalid for (L,R)€’R
a :‘R a (refl) (red)KLZIRKR

cin-kb,- foralllSiSn (1 Í) aizknbi foralllSiSn (l b)cos- cos
f(a1)'--)a7t):Rf(b11"'1b‘n) ¿(alumna-n):‘Rga’lu-uubn)

Note that 41123119411, and that 2:7; is refiexive. In the case of R = {(L, R)} weshall abbreviate a :tn b
as a :C(L_R) b.

Lemma 7.51 Let a, b be pure terms and let (L, R) be a SERSdb-rewrite rule. If a :t(L'R) b then for any term
s of sort S we have W(a[s]) zum) W(b[s]).

Proof. By induction on the derivation of a :(L'R) b.

o refl. Then the result holds trivially.

o red. Let G = pattern(L) (Def. 6.31). Then a = GIKXÏIIIXP..[KXÍ:]XI.-..where XÍ:,...,XÍ: are all the
metavaríables in L, and ¡e is a valid valuation for (L, R). Then

W(a[8]) = GlW((KXÍ,‘)[lift”"(5)])]x;¡ ---[W((KXÍ:)llift“"(sllllxï:

So define LX dÉfW((I€XÍ: )[lz‘ft”-"'I(s)]).Then since 1,is valid for (L, R) by Lernma 7.49, an application of
red allows us to conclude: W(a[3]) 3am) ¿(l-2)=L_7480:“) W((KR)[s]) = W(b[s]).

Clos-Í. Then by the induction hypothesis we have W(a.¡[s]) :1“. R) W(b.-[s]) for all 1 S i S n. We con

clude(using ahí-l; W(f(a1, . ..,an)[8]) = )"(W(a1[s])I. . . ,W(a,¡[s])) 2mm) f(W(b1[s]), . . .,W(bn[s])) =b1,...,bn8 .
Clos-b. As in the case Clos-f.

Note that in particular Lemma 7.51 holds when a ¿(“2) b since the one-step rewrite relation is included in
the parallel rewrite relation.

Lemma 7.52 (Projecting assignments) Let (L, R) be a SERSdb-rewriterule, (L’,R’) = Cp(L, R) for some
pivot set P for (L, R), let p be an assignment for (L’,R’

Define the valuation rc as: def (L R)
KXI: = W(fi(Cp' (Xk)))

If L = C [A] for some metacontext C and metaterm A, then W('fi(CE,L’R)(A)))= KA. Likewise, if R = C[A] then

w(r»(c}o“‘)(A>)) = KA.

Proof. Both items are proved by induction on A.

o A = n. Then LHS = W(fi(n)) = n = rm = RHS.

. A = xk. Then LHS = W(p(c}f"‘)(Xk))) =hypozhesísnXk

o A= f(A¡,...,An). Then

LHS =Del-7-116)¡(w(z(cíf'”’(A1))).....w(z(clp‘*'”)(An)))) =w ¡(KA1...-,nAn) = RHS

o A = ¿(A1,...,An). Then

LHs =D°L “¡(3) ¿<w(z(cLL'R)(A1))),.. . .w(z(cía’*'”)(An)))) =w ¿(KA1,...,nAn) = RHS
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o A = A1[A2]. This case is considered for the second ítem only since the de Bruíjn metasubstítutíon
operator may not occur on the LHS of a SERSdb-rewríte rule.

LHS = W(fi(c¡(.,L'R)(A1[A2])))
= www’ml))[com(a(c}pL'”>(A2)>,mm
=°°"’-“<1> W(W(ï>(cíf'”)(«41»)[cons(w(z(cíf'")(Az))),¿dm
:9} W(K,A1[cons(IcA2,
=L. 7.19(3) KAIH 1 4- M121}
= KMIIAZÍ)
= RHS

In order to use the valuatíon of Lemma 7.52 we need to prove that ít ís valid. This ís the issue of Lemma.7.53
and Corollary 7.54.

Lemma 7.53 Consider a SERSdb-rewríte rule (L, R), metavaríables Xkl, Xk, occurring in (L, R) and a desig
nated pívot metavaríable X1. Let a.be any pure term. Then for all i 2 0 we have:

Value"(k1,W(a[uft‘(sl)])) = Valuei(k2,W(a[lifti(32)]))

where 31 = cons(b1, . . . , bl”, shift'k"+”\3‘(’--R)(x)l) and 32 = cons(c1, . . . , cm, shiftlk’l+”\a'('-'R)(x)l) are the index
adjusting substitutíons (using pívot X1) of Xk, and Xk2, respectively.

Proof. We shall assume that Xk, 7€X1 and Xk, 9€X¡. The case where X,cl = X¡ or xk, = X, ís analogous.
We proceed by ínductíon on a.

o a.= n. We have three subcases to consider.

—n 5 i. Then by Lemma 1 Value‘.(k1,n) = n = Valuei(k2,n).

- 2'< n 5 |ll + i. Now we consider two further cases:

* n —i = pos(flh,l) for some [3hG Ba(¿,R)(X). Then b _,- = pos(fih,k1) and cn_,- = pos(fih,k2)
by Def. 7.30. Therefore Value‘(k1,b,._.-+1) = ah = Valuei(k2,CH + i).

* There is no fi}.e Ba(L'R)(X)such that n-z' = pos(fih,l). Then bn_¡ = |k1|+l+Sh(X¡,n—i) and
cn_¡ = |k2|+ 1+Sh(X¡,n-i). Hence, Value'(k1,bn_¡+i) = 21+3h(xhn_¡)= Value‘(k2,c,¡_,-+i).

—n > |l| + i. Then W(a[lifti(51)]) ='n —Ill + Ik1| + Il \ Ba(L,R)(X)| and W(a[liftí(sg)]) = n —|l| +
Ikzí +.|l \ Ba(L.R)(X)I- Thus ValW'Üh" - Ill + Ikll + Il \ Ba(L,R)(X)I) = zn-i-[ll+|l\Ba(,__R)(X)|=
Value'(k2,n - Ill + |k2| + Il \ Ba-(L.R)(X)I)

o a=f(a¡,...,a.,.). Then

Value‘.(k1,W(a[lift‘(31.)])) .
= Value‘Uï], f(W(al IliflÏ(31)l), - - -1W(an[1_ift’(81)]))) ,
= f( Value'.(k1, W(a1[l'ifl'_(31)])), . . . , ValueÏUcl, W(a.n[lift‘_(31)])))
=ih f( Valïleïkz. W011 [_lifl‘(82)l)),v- - . Value‘Ucz,W(anlh'ft‘(32)])))
= Value'(k2, W(a.[lift‘(5g)]))

o a.= ¿(a1,...,a.,,). Similar to the previous case.

Corollary 7.54 (Rom assignments to valid valuations) Considera SERSdb-rewríterule (L,R), metavarí
ables Xk1, Xk, occurríng ín (L, R) and a designated pívot metavaríable X¡. Let p be a.n assignment. Then

Value(k1,W(ÏJ(X)[31])) = Valudkz; W(Ï(X)Í32]))

where 51 = cons(b¡, . . . , bm, shift"°"+”\5“‘--R)(x)l) and 32 = cons(c1, . . . , cm, shift'k"+"\n‘('-'R)(x)l) are the index
adjusting substitutions (using pívot X1) of Xk, and Xk2, respectively.
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Proof. Since W is a basic substitution calculus it has unique normal forms. Also, by condition 2 of Def. 7.11
we have that W(a) is a pure term for any term a. Thus

Valu€(kln W(fiÜÜÍ-SID) value(k1vW(W(Í-9(X))[31]))
Value°(k1,W(W(5(X))[31]))

7.53 Valueo(k2. W(WWO‘» [32]»
Val"€(k2,W(W(F(X))[82]))
ValueUcz,W(F(X)[52I))

b

Lemma 7.55 (Interpretation of EzERS-rewriting) Let W be a basic substitution calculussatisfying the
scheme. Let o be a. term of W of sort T or S. Let (L’, R’) = Cp(L, R). If o —>(L,_R,)o’ then

1. if o is of sort T then W(o) :(L'R) W(o’).

2. for every pure term d of sort T such that d[o] is a. term of sort T, and every n 2 0, W(dlh‘ft"(o)]) :mha)
W(dllifl"(0’)])

Proof. We show simultaneously the two items by induction on the lexicographic ordering (o, d), where o and
d denote, respectively, the ordering induced by their structures.

o o is a de Bruijn index or a substitution constant. Then both items holds vacuously since by definition the
LHS of a SERSdb-rewrite rule must have a function or binder symbol as head symbol. Thus o is a normal
form.

o o = f(a.¡, . . . , a") or o = ¿(ah . . . , an). There is nothing to prove for the second item. For the first:

- the reduction is at the root. Then o = pL’. Define rcfor all Xk E L as:

xxl. “é‘w(fi(cíf'”)(xk)))

Note that ¡e is a valid valuation by Corollary 7.54, and also, W(pL') = KL by Lemma. 7.52. So
KL 3am) RR =L. 7.52W(pR’) = W(o’).

—the reduction is internal. Then we use the induction hypothesis.

o o = a.[s]. There is nothing to prove for the second item. We consider two cases for the first property:

—o’ = a’[s] with a ¿(L/3:) a’. By the i.h. W(a) =(L'R) W(a’). Then W(a[3]) = W(W(a)[s]) Sam)
W(W(a,’)[s]) by applying Lemma 7.51.

—o’ = a[s’] with s dal/'31) s’. Since W(a.) is a pure term we have that W(o) = W(W(a)[s]) jam)
W(W(a.)[s’]) = W(o’) by the induction hypothesis of item 2 since (s,W(a)) < (a[s], W(a.)).

o o is a substitution a(31, . . .,s_.¡, . . .,sq) (q > 0), and o’ = a(51,...,sg¡, . . . ,sq), where s,- —>(LI,R:)s_’.¡,then
there is nothing to prove for the first property since o is not a term. For the second property we proceed
by induction on d.

- d = f(d1, . . .,dn) or d = ¿(d1,...,dn) then the property holds by the induction hypothesis since
(o, (1.-)< (o,d) for all 1 S i 5 n, and applying clos-f or elos-b.

—d = m. Then we must verify that for all n 2 0: W(mllift"(o)]) zum) W(m[lift"(o’)]).
We proceed by induction on n.

1. if n = 0, then we proceed by cases as dictated by the definition of the scheme (Def. 7.17).

(a) Suppose there exists a de Bruijn index r, indices i1,. . . ,ip (p > 0) and also substitutions
u¡,...,uk (k 2 0) such that 1 5 i¡,...,ip S q, the ij’s are all distinct and for all 31....94
m[a(31, . . . sq)] =w r[s¿¡] . . . [sipHul]. . .
i. ifj í {i1, . . . ,z'p}, then W(m[o’]) is also equal to the terrn W(r[s,-¡] . . . [sip][u1] . . . [uk]) and

the property is trivial since W(m[o]) = W(m[o’]).
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ii. if j e {2'1,...,ip}, let us say j = ih, then the term W(m[o’]) is equal to the term
W(rlsil] . . . [32h]. . . [sip][u1]. . . and W(r[5¡¡] . . . [5¡h_l]) = e is a pure term (Def. 7.11(2)).
We have (sim e) < (a 31, . . . ,sj, . . . , 8g),m), so that we can apply the induction hypothesis
(2) to obtain:

W(elsul) 3am) W(elsihl)

Now, the term W(e[s,-h])is pure, so that we can repeatedly apply Lemma 7.51 to obtain:

W(m[ol) = W(W(e[sih])[sih+l]"'[sipl[u1]“'[uk])
=!(L.n) W(W(e[8ihl)[3ih+ll - - - [sipllull - - - lukl)
= W(m[o'l)

(b) Suppose there exists an index i with 1 5 i 5 q such that for all 31....sq we have that
m[o‘(31,...sq)] =w si.
i. if i 94j, then the term W(m[o’ is also equal to W(si) and the property is trivial since

W(m[ol) = W(m[0’1)

ii. if i = j, then W(m[o’I) = W(sg) (where sj is a term because the equations are well-typed)
and (sj,m) < (a(51, . . . , 33-,. . . , sq), m), so the property holds by the induction hypothsis
(1) since W(m[on = W(sj) nm) W(sg) = w(m[o'1).

2. if n > 0, then we consider two cases:
(a) if m 5 n, then by Lemma 7.19(1) we obtain:

W(m[lift"(0)l) = m = W(m[lift"(0’)l)

(b) if m > n, then by Lemma 7.19(l) we obtain:

W(m[lift"(0)l) = W(m - lllift"’1(0)][3hiftl)

and
W(mllifl"(o’)l) = W(m —1[h'fl"'1(o’)1lshift1)

Since variables are equivalent with respect to our ordering (0,41), (a(31, . . . , 33-,. . . , sq), m) =
(a(31, . . . , sj, . . . , sq), m- l), and then the induction hypothesis on n can be applied to obtain

W(m —1lhfi"“(o)1) =l(L.R)w(m —llliftn“(o’)])

Since every W-normal form is a pure term by Def. 7.11(2), we may finally apply Lemma 7.51,
so that

W(mlh'ft"(o)l) = W(W(m-lllift""(o)])lshift])
a“) w<w(m- lllift"“(o’)])[shiftl)
= w(mum"(o')1)

Proposition 7.56 (Projection Proposition) Let R be a SERSa, and let fo('R)w be its first-orderversion
where W is a basic substitution calculussatisfying the scheme. If a.—>¡,,(R)wb then W(a) :tn

Proof. We consider two cases, one for EzERS-rewriting and one for FEIERS-rewríting.

EIERS-rewriting Suppose that a —>¡°(R)/wb using rewrite rule (L’, R’) = Cp(L, R) where P is a pivot set for
(L, R) e R, a context E and assignment p. Thus a.=w E[p(L’)] and b =w E[p(R’)].

Now since E[p(L’)] quam) E[p(R’)] then by Lemma 7.55 we may conclude that W(E[p(L’)]) :mhn)
W(EUJ(R’)]). Also since a. =w E[p(L’)]) we know that W(a) = W(E[p(L’)]), likewise we know that
W(b)= ThereforeW(a)=W(E[p(L’)]):(L'R) =W(b)asdesired.

FEIERS-rewriting Suppose fo(72) is a FEIERS and that a. —>¡0(R)Uwb. Then if a —>wb the result holds
trivially. Thus let us assume that a, ama) b using rewrite rule (L’, R’) = Cp(L, R) where P is a pivot
set for (L, R) e 'R, a context E and assignment p. Then a = ELO(L’)]and b = E[p(R')]. Now since
E[p(L’)] —>(LI,RI)E[p(R’)] then by Lemma 7.55 we may conclude that W(a) = W(E[p(L’)]) :I(L_R)
W(E[p(R’)]) = W(b) as desired.
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Since Zag-nn, we may replace W(a) :t-R W(b) by W(a) -»'R W(b) in the statement of the Projection
Proposition.

Definition 7.57 Let R and S be binary relations defined over sets A and B with A Q B, respectively. We say
S is conservative over R if aSb implies aRb for all a e A.

Noting that W(a) = a for pure terms a (Def. 7.11(2)) we may conclude.

Corollary 7.58 (Conservativity) Let R be a SEI-IS“. Then fo(R)w-rewriting is conservative over R
rewriting.

7.4.3 Essentially First-Order HORS

This last subsection gives a very simple syntactical criterion that can be used to decide if a given higher-order
rewrite system can be translated into a full first-order rewrite system (modulo an empty equational theory). In
particular, we can check that many higher-order calculi in the literature, such as the lambda calculus, verify
this property.

Definition 7.59 (Essentiale first-order HORS) A SERSdbR is called essentiallyfirst-order if fo(R)w is
a FEIERS for W a basic substitution calculus.

Definition 7.60 (fo-condition) A SERSdbR satisfies the fo-conditz'onif every rewrite rule (L, R) e R satis
fies: for every name X in L let X,“ . . . , X,“ be all the X-based metavariables in L, then

1. ll = lg . .. = ln and (the underlying set of) l] is Ba(L'R)(X), and

2. for all Xk e R we have IkI 2 |11|.

In the above definition note that ll = ¿2. .. = ln means that labels l], . . . , ln must be identical (for example
afl 76Ba). Also, by Def. 6.36, l] is simple, in other words, it does not have repeated elements.

Example 7.61 Consider the Adh-calculusconsistíng of the sole rule: app(AXa,Y¿) ep“ Xa The Ba,
calculus satisfies the fo-condition.

Proposition 7.62 puts forward the importance of the fo-condition. Its proof relies on a close inspection of
the Conversion Procedure.

Proposition 7.62 Let R be a SERSdbsatisfying the fo-condition. Then R is essentially first-order.

Phrther examples of essentially first-order SERSdb are the foldl-rewríte system of Example 7.33 and the
natural numbers recursor rewrite system rec of Example 7.34.

Note that many results on higher-order systems (eg. perpetuality [KOOOla], standardization [Me196])
require left-linean'ty (a metavariable may occur at most once on the LHS of a rewrite rule), and fully-extendedness
or locality (if a metavariable X (tl, . . . ,tn) occurs on the LHS of a rewrite rule then t], . . . , tn is the list of variables
bound above it). The reader may find it interesting to observe that these conditions together seem to imply the
fo-condition. A proof of this fact would require either developing the results of this work in the above mentioned
HORS or via some suitable translation to the SERSdb formalism, and is left to future work.

Of course, all first-order rewrite systems are essentially first-order SERSdb: índeed all metavariables in first
order rewrite systems carry e as label. Hence the latter systems need not be left-linear. Also, an orthogonal
SERSdb (Def. 7.1) need not be essentially first-order, the prime example of this fact being the rewrite system
consisting of the sole rule 7141,.Below we picture this situation.
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SERSdb

Essentially First-Order W

fidb U Tldb

Informally, it seems fair to say that a SEI-IS“ system is essentially first-order if higher-order pattern matching
may be reduced to syntactic first-order matching. We claim that essentially first-order SERS“ systems are
appropriate for transferring results from first-order systems. As evidence of our claim we shall undertake the
task of transferring a non-trivial property of (left-linear) first-order rewrite systems to this class of higher-order
rewrite systems, namer the Standardization Theorem. This shall constitute the focus of our attention in
Chapter 8.

However, before considering the Standardization Theorem the transfer of a more basic property presents
itself, namer the Critical Pair Theorem (CPT): a first-order rewrite system is locally confiuent ifi all its critical
pairs are joinable [BN98, Th.6.2.4]. This result is useful for proving that a finite and strongly normalizing TRS
is confluent since by Newman’s Lemma we only have to check that all critical pairs are joinable. One may
obtain rather immediately the following:

Proposition 7.63 (Transfer of the CPT) Let 'R.be an essentiallyfirst-order SERSdb.If all the critical pairs
of fo('R)w are joinable then R locally confluent.

Proof. Suppose A —>,.,31 and A —>,-,.32, where 11,72 are rewrite rules in 'R. Then by the Simulation
Proposition A —>¡,,(,.,)Bí -»w Bl and A 4M") Bé —»w 32 as depicted in Figure 7.1. Then 1 may be
completed by hypothesís (we use CPT for first-order rewriting and the fact that all critical pairs of fo('R)w
are joinable). Note that since 'R, is essentially first-order then it is the usual first-order critical pairs that we
are referring to. The items marked 2 follow from the Projection Proposition and the fact that W implements
metalevel substitution (Lemma 7.19(3)).

A

“y Yu)
B; 1 35

10(R)w 10(R)w
2 C, 2

C

31 BZ

Figure 7.1: 'Il'ansferring the CPT

So let us now move on to the Standardization Theorem.



Chapter 8

Transferring Standardization

The Conversion Procedure (Def. 7.35) is of interest from at least two perspectives. From the ezpressabüz'typer
spective it establishes how higher-order rewriting may be encoded as first-order rewriting modulo an equational
theory, and it moreover characterizes a subclass of SERSdb for which the equational theory is empty. From
the practical perspective it opens up the possibility of transferring results from the first-order framework to the
higher-order one. This chapter attempts to pursue the latter perspective in more detail. In full precision, we
shall study how to lift the Standardization Theorem from first-order rewriting to higher-order. Before plung
ing ourselves into such a task we provide the reader with an informal discussion on standardization and then
consider a more detailed (although still brief) survey.

When studying rewrite systems the Standardization Theorem allows one to single out certain aanom'cal
derivations in the class of a larger set ofderivations. This is useful since many properties dealing with derivations
may then focus their attention on the canonical ones. In particular, standardization is a convenient tool when
considerlng normalizing rewrite strategies. For instance, given some term M in a rewrite system, it may
have a normal form while at the same time admit infinite derivations. As an example, consider the A-term
M = K c(AA) where K = Aaa/wa:and A = Amas. Then M admits the normal form c:

Kc(AA) —>p(Ay.c)(AA) —>pc

However, we may also reduce the fi-redex AA in M , obtaining the same term, hence repeating the process we
may obtain a derivation of arbitrary length. Assuming we are interested in obtaining a normal form from M
we would like to have some strategy at our disposal indicating which redex in M to contract next in order to
achieve our goal. Avoiding the nondeterminism caused by a term with more than one redex is of particular
importance when implementing rewrite systems on a computer. A reasonable normalizing strategy for M, as
suggested by the above mentioned example, is to contract the leftmost redex. So what is a standard derivation
and how does it relate to this normalizing strategy? A standard derivation is one in which redex contraction
takes place in a left to right direction. Once a fi-redex has been contracted in a term M, all the (residuals of)
,B-redexesto the left of M are forbidden to be contracted in subsequent rewrite steps. The latter fi-redexes
thus remain ‘frozen’ for the rest of the derivation. In 1958 the first standardization theorem was proved by
H.B.Curry and R.Feys [CF58] for the A-calculus: for every fi-derivation from a term M to a term N there exists
a standard B-derivation from M to N. As a consequence of this result, it was shown that the leftmost rewrite
strategy is normalizing for all terms. Indeed, a standard derivation from a term M to a term N in fl-normal
form must be a leftmost derivation for otherwise there would be some frozen redex which is present in N.

In first-order rewriting one would like similar results to hold. Since non-orthogonal rewrite systems may not
be confluent the fundamental results on standardization began with the class of orthogonal (left-linear and non
overlapping) systems. The major question was how to extend the notion of standard derivations to the first-order
case. For a restricted class of orthogonal systems (the left-normal systems) a straightforward generalization of
the notion of standard derivation of the A-calculus is available. An orthogonal first-order rewrite system is
left-normal if all function symbols occur to the left of all variables in every LHS of a rule. For this class
of systems the standardization theorem holds, and moreover, the leftmost-outermost rewrite strategy may be
shown to normalize any term [O’D77]. To see that the leftmost-outermost strategy may fail to normalize for
non-left-normal systems consider the following example. Let 'R = {f (X , a) —>b, c —>c, cl —>a}. Note that the
constant a occurs to the right of the variable X in the LHS of the first rewrite-rule, hence 'R is not left-normal.
There is a derivation from the term f (c, d) to a normal form: f(c, d) —>f (c, a) —>b yet the leftmost-outermost
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strategy leads to an infinite derivation: f (c,d) —>f (c, d) —> A strategy that normalizes all terms in any
orthogonal first-order term rewrite system is the parallel-outermost rewrite strategy [O’D77,K1092].

A generalization of the notion ofstandard derivations for all orthogonal systems was presented by G.Huet and
J-J. Lévy [HL79]. They show that the Standardization Theorem holds for all orthogonal systems. Normalizing
strategies may be obtained from this result, by contracting, so called neededredexes. However, determining if a
redex is needed or not is not decidable in general, so a subclass of orthogonal systems was also considered, the
stroneg sequential systems, for which efficient normalizing strategies are exhibited.

This notion of standard derivations was later extended to non-orthogonal left-linear first-order rewrite sys
tems by G.Boudol [Bou85]. Also, work by J .W.Klop [Kl080]has allowed a simpler formulation of the notion of
standard derivation, based on rewriting derivations.

Finally, we consider the case of higher-order rewriting. Just as in the first-order case, a straightforward
generalization of the notion of stande derivation of the A-calculusmay be obtained for the class of left
normal orthogonal CBS. For this notion of standard derivations the Standardization Theorem holds, and
normalization of the leftmost-outermost rewrite strategy too [K1080].For the full class of orthogonal systems
the Standardization Theorem also holds by providing a definition of standard derivation based on rewriting
derivations (an idea apparently due initially to J .W.Klop) [00596]. It should also be mentioned that work on
standardization in Aziomatic Reduction Systems allowsone to obtain the standardization theorem for left-linear
fully-extended (called local in [Me196])higher-order rewrite systems (hence not necessarin orthogonal) [GLM92,
Me196]. In [Oos96] standardisation of second and higher-order rewriting are related: each HRS [Nip91]-rewrite
step is decomposed into a replacement step (in which no substitution takes place) followedby fi-rewrite steps to
,B-normalform. It is claimed that by decomposing an HRS-derivationI standardizing the decomposed derivation
and then ‘projecting’ back a standard HRS-derivation is obtained. Our work relates first and second-order
rewriting.

We shall prove the standardization theorem for the class of (left-linear) essentially first-order higher-order
term rewrite systems (Def. 7.59). Our contribution is not in the standardization theorem itself since this may
be obtained, for example, as an instance of the axiomatic standardization theorem of P-A.Mellies [Me196]but
rather by the proof method we use: weshall transfer the standardization theorem from the first-order setting to
the higher-order setting. This is put forward as evidence that, for the class of essentially first-order higher-order
rewrite systems, techniques developed for the first-order setting are applicable. Fiirther evidence of this fact,
as already mentioned in Chapter 7, is available: a number of results proved for higher-order systems require
that certain conditions be imposed on the higher-order formalism in question (for example, GRS [Me196]or
HRS [KOOOla]) for the proofs to go through; it so happens that these conditions force, as it seems, the resulting
class of restricted higher-order systems to be, what we have called in the SERSdb framework, essentially first
order systems.

It may be observed that a further benefit of our result is the possibility of applying the theory of needed
derivations for non-orthogonal left-linear systems, as developed in [Me196,MelOO],in order to show that all
needed derivations are normalizing for calculi of explicit substitution implementing any orthogonal essentially
higher-order rewrite system (and not just for Aa as shown in [MelOO]).This is left to future work.

The transfer of standardization is achieved by applying ideas due to P-A.Melliés. In [MelOO]P-A.Mellies
shows the following:

Proposition 8.1 (Melliés) Every standard derivation v : M -» N in Aa with N in a-normal form is pro
jected1 onto a standard derivation a(v) : a(M) -» N in the Afl-calculus.

We shall show that in fact this not only holds for the Afi-calculus, which lives comfortany in the class of
essentially first-order higher-order rewrite systems, but for the wholeclass.

Proposition 8.2 Let 'R be a left-linear essentially first-order SERSdb. Every standard derivation v : M —»N
in fo('R), with N in a-normal form is projected onto a standard derivation a(v) : a(M) -» N in 'R.

The resulting standardization procedure for standardizing a SERSdb-derivationT consists in:

1. ‘melement’ the SERSdb-derivation T as a FEIERS-derivation v (see Figure 8.1) by means of the Simu
lation Proposition (Proposition 7.46).

2. Apply first-order standardization on v [Bou85]yielding a standard (first-order) derivation d).

1See Section 8.3 for the definition of the projection of a derivation.
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3. Project the derivation d:by means of the Projection Proposition (Proposition 7.56) obtaining (¡(6). Use
Proposition 8.2 to conclude that a(d>)is a standard derivation in the higher-order framework.

In fact, we shall take a small step further and prove that T a.ndo‘(45)are Lévy permutation equivalent, when
v and d)are.

HI a(«15)

Simulation Projection

e<—í

WW
first-order Ó

standardization

Figure 8.1: Standardization Procedure

Structure of the chapter

We begin by formalizing the notion of descendant and residual in SERS“. Residuals allow redexes to be
traced along derivations. Thus if R and U are redexes in a term M and M g» N, then the residuals of R
via the U-rewrite step in N may be defined with the aid of the notion of descendant. In general, R and U
are required to be non-overlapping since otherwise there seems to be no general way of defining the notion of
residual. However, given a FFAERS 'Rw it shall make sense for us to trace 'R-redexes via W-derivations, even
though 7Z-redexes may overlap W-redexes. Thus a difierent notion of tracing, which we call con-espondence,
shall be introduced.

After defining what it means for a derivation to be standard we recall the definition of the projection of a
fo(’R)w-derivationó into its higher-orderderivation

The notions of uncontributable symbol (intuitively, those that verify the property that any rewrite step
below them cannot create redexes above them) and correspondent allow P-A.Mellies’ proof technique to be
applied to the case of arbitrary fo(R)w-derivations, obtaining Proposition 8.2.

The final section of this chapter proves a strong standardization theorem. This is achieved by showing that
if a first-order derivation d)standardizes to another first-order derivation 1/),with o Lévy permutation equivalent
to 1p,then their projections W(45)and W(1,b),are also Lévy permutation equivalent.

8.1 Preliminaries

This section presents a more detailed survey on standardization in rewriting, and then introduces some notation.
The reader already familiar with standardization may safely skip to the subsection on notation.

8.1.1 A Brief Survey

In 1958 the first standardization theorem was proved by H.B.Curry and R.Feys [CF58] for the AB-calculus:
for every fl-derivation from a term M to a term N there exists a standard fi-derivation from M to N. Before
defining standard fi-derivations we illustrate by means of an example the concept of descendant of a symbol
(which we shall use for defining standard derivations) via some fi-derivation, a formal development of this notion
may be found in Section 8.2.

Example 8.3 Let M = A((Az.z)z). The descendants of the rightmost A-symbol in M via the derivation
M = A((/\a:.:r)z) —>p((A'z.z)z)((A'z.z)z) = N are all the A-symbols marked with an asterisk in N. The
leftmost A-symbol in M has no descendants in N.

By marking the head A-symbolof a fi-redex we may trace fi-redexes. A standard B-derivation is defined as
follows (we present an equivalent definition due to J .W.Klop [K1080]):
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Definition 8.4 (Standard fi-derivation) Let v : M0 r—°>M1 r-‘o be a finite or infinite fl-derivation. We
decorate v with markers ‘*’as follows:suppose up to M -1 the markets have already been attached and consider
the step Mn h Mu“. Mark

1. every /\ in Mn which descends from a /\" in Mn_1, and

2. every A of a fi-redex in Mn whose head /\ is to the left of that of rn, if not yet marked.

We say v is standard if no marked redex is contracted.

Note that a redex that is marked may be considered frozen in the sense that it shall never be reduced.
Moreover, by observing that contracting a non-marked redex in a term M does not erase the marked redexes
in M , we may conclude that not only are marked redexes never reduced but also they are never erased. Let us
consider examples of standard and non-standard derivations.

Example 8.5 Let I = Ama. Then the derivation: A(Iz) —>Az —>zz is not standard: indeed by applying
Def.8.4 we obtain the following derivation decorated with markers: (A'z.:c:c)(Iz) —>(A‘z.a:a:)z —>zz; note that
the last redex contacted is a marked redex since its A is marked with an asterisk. The derivation A(Iz) —>
(I z)(I z) —>(I z)z -> zz is not standard either. However, the fl-derivation: A(Iz) —>(I z)(Iz) -> z(Iz) —>zz is
standard.

We may observe that in a standard derivation computation takes place from left to right. As a consequence
normalization of the leftmost rewrite strategy in the Afi-calculus is obtained. Indeed, a standard derivation
from a term M to a term N in fi-normal form must be a leftmost derivation for otherwise there would be some
marked redex which is present in N.

In 1978 J-J.Lévy [Lév78] strengthens this result and proves, with the aid of a notion of equivalence on
B-derivations (Lévy permutation equivalence), that there exists a unique standard rewrite derivation in each
equivalence class of fi-derivations. This result is sometimes referred to as strong standardization in the literature.

In 1980 J .W.Klop [K1080]provides two new proofs of strong standardization for Afi. The first proof consists
of computing a standard derivation by repeatedly extracting the so called leftmost contracted redex. The second
proof [K1080,Section 1.10] is based on rewriting fi-derivations: a so called anti-standard pair is replaced by a
standard pair in a B-derivation. By proving strong normalization and confluence of this notion of 2-dimensional
rewriting he establishes strong standardization. He also shows that the equivalence of B-derivations induced by
this notion of 2-dimensional rewriting coincides with Lévy permutation equivalence.

Perhaps the most important step in standardization was its extension to first-order rewriting. The task
of freeing oneself from the left-to-right bias introduced by standardization in the context of the Afi-calculus
was perhaps the challenging task, as remarked in [MelOl]. Let us restrict attention to the class of orthogonal
first-order rewrite systems (OTRS). Consider the followingadaptation of Def. 8.4 to first-order rewriting:

Definition 8.6 (K-standard derivation) Let 'R be an OTRSand v : Mo3 M1 3 .. . be a finite or infinite
R-derivation. We decorate v with markers ‘*’ as follows: suppose up to Mn_1 the markets have already been
attached and consider the step Mn 2‘»Mu“. Mark

l. every symbol s in Mn which descends from a s" in Mn_¡, and

2. every R-redex in Mn whose head symbol is to the left of that of rn, if not yet marked.

We say v is standard if no marked redex is contracted.

Let us consider some of the problems presented by OTRS as regards standardization.

Example 8.7 The leftmost-outermost strategy no longer normalizes. Indeed, consider the following OTRS
'R = {f (X, a.) —>b, c -> c, d -> a} taken from [HL91]. There is a standard derivation fi'om the term f (c, d)
to its normal form: f (c, d) —>f (c, a) -> b yet the leftmost-outermost strategy leads to an infinite derivation:
f(c,d) —»f(c,d) —>

Thus the leftmost-outermost strategy is no longer normalizing for OTRS. But things may get worse for the
standardization theorem itself may fail.
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Example 8.8 Consider the OTRSS = {f(X,a) —>g(X,X), c —>d, i(X) —>X} taken from [K1080]and
consider also the derivation v : f (c,i(a)) —>f (c, a) —>g(c,c) —>g(d,c). Then recalling the definition of K
standard derivation (Def. 8.6) and inspecting the derivation graph of the term f(c, i(a)) in Figure 8.2 the reader
may note that there is no standard derivation from f(c, 2'(a)) to g(d, c).

f (C.i(a))

f (d, z'(a)) f (c, a)

f(d, a) g(c, c)

9(d,d)w 9(d,c)
Figure 8.2: S-graph of the term f(c,i(a))

In 1979 G.Huet and J-J.Lévy [HL79] (later published as [HL91])proposed the following notion of standard
derivation for OTI-IS:

Definition 3.9 (HL-standard derivation) Let 7a be an OTRSand let v : M0 2» M1 2» be a finite or
infinite ’R-derívation. We say v is standard if for every rewríte step 1-nwith Mn = C[pL],, and Mn+1 = C[pR]P:

1. either all rj with j > 17.are not above2 p,

2. or, if Mm = C’[p’L’]q and Mm“ = C’[p’R’]q is the first rewríte step with m > n in v above p then
p = q.p’ with p’ a non-variable position of L’.

Thus in a HL-standard derivation computation proceeds in an outside-in fashion. The only situation where
a redex rj occurring at a position q may be contracted after and above a redex n- (with 2'< j) at position p
with q above p, is when r.- ‘contributes’ to the redex 1'_.,-.The derivation f (c, d) -> f (c, a) —>b of Example 8.7 is
a HL-standard derivation. The derivation v of Example 8.8 is also a HL-standard derivation.

It is also shown in [HL91] that if R is an orthogonal term rewrite system and v : M —»RN then there is a.
unique (up to permutation of disjoint redexes) HL-standard derivation 45: M —»RN with 45Lévy permutation
equivalent to v.

In 1985 G.Boudol [Bou85]extended the work of G.Huet and J-J.Lévy to the case of lefi-linear ambiguous
term rewríte systems. This extension to term rewrite systems allowíng the presence of critical pairs is a non
trivial extension. First-order conditional rewriting has been dealt with by T.Suzuki [Su296].

In 1992 G.Gonthier, J-J.Lévy and P-A.Mellies [GLM92]published an axiomatic standardization theorem.
Abstract Reduction Systems [K1092]are equipped with a primitive residual relation for tracing redexes along
derivations and also a primitive nesting relation between redexes yielding Axiomatic Reduction System. For
those Axiomatic Reduction Systems satisfying some axioms an abstract proof of standardization was obtained.
Thus by an appropriate instantiation of the axioms they obtain a proof of standardization covering, among oth
ers, the AB-calculus, OTRS, orthogonal CBS. and some graph based systems (eg. dags, interaction networks).
The proof is based on ideas taken from J .W.Klop’s first proof of standardization for A5 [KloSO].

In his 1996 PhD thesis P-A.Mellies [Me196]continues the study of andomatic rewríte systems, and in par
ticular, axiomatic standardization. Based on a modified axiomatics for his Axiomatic Reduction Systems he
presents a new proof of strong standardization. Although the construction of a standard derivation proceeds by
extracting external redexes as in [GLM92],this process of extraction is computed by a notion of 2-dimensional
rewriting, as in J .W.Klop’s second proof (although, in contrast to J .W.Klop, a notion of 2-dimensional rewriting
modulocertain permutations is put to work). Finally, the full power of the 2-dimensional approach to standard
ization is explored in [MelOl]:Axiomatic Rewn'te System (AIRS) are introduced as a pair consisting of a graph

2Def. 3.10.
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and a binary relation between the paths in this graph. The axioms on AIRS impose conditions on this relation
between paths and no longer speak in terms of residual relations, nesting relations and compatibility [GLM92].

As regards graph-rewriting, in 1995D.Clark and R.Kennaway [CK96]extended the work of G.Huet, J-J.Lévy
and G.Boudol to graph rewriting systems.

In the realm of higher-order rewriting in his PhD thesis [K1080]J .W.Klop proves strong standardization
for the class of left-normal orthogonal (called regular in [K1080])CRS. The notion of standard derivation he
uses is K(lop)-standard derivation of Def. 8.6. The problems mentioned in examples 8.7 and 8.8 are avoided
by restricting attention to the subclass of left-normal orthogonal CBS: a GRS 'R is left-normal if all function
symbols occur to the left of all metavariables in every LHS of a rule in ’R. Examples of left-normal orthogonal
CBS are Afi and Combinatory Logic.

As already mentioned [GLM92, Me196]also cover higher-order rewriting. Moreover, the abstract standard
ization theorem in [Me196]applies to left-linear CRS admitting critical pairs (see also [WM00]). In [00396]
van Oostrom provides a proof of standardization based on 2-dimensional rewriting for orthogonal HRS thus
extending3 the work of J .W.Klop. The results by G.Gonthier et al, P-A.Mellies and van Oostrom do not insist
on left-normality hence the standard derivations obtained are unique up to disjoint permutation of redexes,
in contrast to the uniqueness of standard derivations obtained by J .W.Klop for left-linear orthogonal CBS.
However, as a.bonus J .W.Klop obtains normalization of the leftmost rewrite strategy for left-normal orthogonal
CRS [K1080,Remark 6.2.8.10].

8.1.2 Notation

We shall use letters r, u, v, for FEIERS-redexes and R, U,V, for SERSdb-redexes;v, 45,1l),w, for FEIERS
derivations and T,<I>,\II,Q, for SERSdb-derivations; and 72,8 for SERSdb. We say that a derivation of the
form M1 "-5M2 "4 M3 . . . Mn 13 MM] has length n; this derivation is also written u]; . . .;u,.. Every term M
induce an empty derivation eM which we abbreviate e that satisfies e; 4)= o; e = 43(where ó is a FEzERS or
SERSdb-derivation).

Recall that fo(’R)w denotes the FEIERS which is the first-order version of the SERSdb 'R (Def. 7.35) and
where the substitution calculus has been fixed to be the W-calculus, for some basic substitution calculus W.
The rewrite rules in fo('R,)w are fo('R)UW (Def. 7.15). In the sequel we shall fix a as basic substitution calculus
unless stated otherwise.

We recall that a SERSdb-metaterm M is linear if it contains at most one occurrence of an X-based metavari
able (Def. 7.1). We say 7?,is left-linear if the LHS of each rewrite rule in R is linear.

8.2 Descendants and Residuals

This section introduces the notions of descendants and residuaLswith the primary objective of fixing notation.
Descendants shall allow us to trace subterms and to define residuals. In full precision, we shall study the
descendants of positions along rewrite derivations. We then study some specific properties of descendants in
the substitution calculus a.

8.2.1 Definitions

A position is a sequence of natural numbers (i.e. elements of IN'); e denotes the empty sequence. We use
letters p, q, . . . for positions. The set of positions of a SERSdb-pre-metaterm (Def. 6.27) M is denoted Pos(M),
and the subterm of a pre-metaterm M at a position p G Pos(M) is denoted M Ip; both notions are defined
simultaneously as follows:

o if M is a de Bruijn index or a metavariable then: Pos(M) "1:3f{e} and MIc déf M.

o if M = f(M1,...,M,¡) for f a function symbol, or M = ¿(M1,...,Mn) for E a binder symbol then:
Pos(M) déf {e} U {Lp | p e Pos(M,-), 1 S 2'S n} and MIe dÉfM. Also, MI”: d=efM,-|,,I where 1 S i 5 n.

o if M = M1[M2] then: Pos(M)dÉf{e}U{1.p|p e Pos(M1)} u {2.p Ip e Pos(M2)} and M|¿ dé‘M. Also,

Mi”: “¿f M,-|,,, where 1 52’ 5 2.

3And also correcting (see [Mel96, Section 6.2.2l).
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Note that this definition coversde Bruijn terms (since they are de Bruijn pre-metaterms) and FEZERSterms
(since they are first-order terms, in particular the substitution operator elo] is regarded as a binary function
symbol [](o,0)). Also, this definition of positions is different (in the case of the de Bruijn metasubstitution
operator) from the one we dealt with in Chapter 6 (just after Def. 6.27), where positions were defined on the
basis of trees which were associated to de Bruijn pre-metaterms. The latter definition introduced a dummy
function symbol sub when associating a tree to a pre-metaterm containing a de Bruijn metasubstitution operator
(Figure 6.2), and proved appropriate for studying parameter paths. In this chapter we revert to the classical
definition of position where the de Bruijn metasubstitution operator is considered as a binary function symbol
(see [KOOOla]).

Definition 8.10 (On positions and symbol positions) We write 5 for the prefia:orderingon positions (
p 5 q ifi'q = p.p’) and < for the strict prefix ordering on positions. When p 5 q we say p is ‘above’ or is a ‘prefix
of’ q, and when p < q we say p is ‘strictly above’ or is a ‘strict prefix of’ q. If p ¡<_q and q ¡<_p then p and q are
said to be disjoint, written p || q. A position p in M is called a symbolposition if M |p = f (M1, . . . , M") for some
function symbol f, or MIp = ¿(1M1,...,Mn) for some binder symbol E. In that case we write p e SPos(M
Furthermore, SPos(M, f) stands for the set of positions of the symbol f in the term M (be it a binder or a
function symbol). The position of a redes:in a term is the position of its head symbol in that term. A position
is above (resp. strictly above) a redex if it is above (resp. strictly above) the position of its head symbol.

Definition 8.11 (Preservation of a position) A derivation u1;. . . ru." preserves a position p when none of
the redexes u..-is above p.

If p = p’.i is a position in M where i is some natural number then we define prev(p, M) dÉfp’.

Definition 8.12 (Patterns, arguments, and nested redexes) Subtermsof a redexM = p(L) that corre
spond to metavariables in L are the argumenta of M, and the pattern of M is the pattern of L (Def. 6.31). If
V and U are redexes in a term M then we say V nests U in M if U occurs in an argument of V in M.

Note that in order to determine if V nests U not only do we need to know that V is a redex but we also
have to know what rewrite rule it is an instance of. For example if R = {a —>ab, f (XC) —>¡¡b, f (a) —>¡2b}
then both a and f (a) are redexes, however to determine if f (a) nests a we need to lcnowwhat redex f (a) is an
instace of.

Example 8.13 Consider the term M = app(A(A(app(A1,1))),2). Note that M is a fi-redex. The subterms
A(app(/\1, 1)) and 2 are arguments of M, the remaining symbols in M conform the pattern of M. If we replace
the arguments of M with some distinguished constant El then the pattern of M may be written app(/\(Ü), El).
The ,B-redex in /\(a,pp(/\1,1)) is nested by M.

In the literature on higher-order rewriting it is not uncommon to decompose each rewrite step into two
parts (we shall follow [KOOOla]): a TRS part in which the LHS is replaced by the RHS without evaluating the
metasubstitution operators, and a substitution part where the delayedmetasubstitution operators are evaluated.
The reason for introducing this refinement of a higher-order rewrite step (initially due to J .W.Klop [K1080])
is that the RHSs of rewrite rules may contain nested metasubstitution operators rendering the task of tracing
terms via the rewrite step non-trivial. The descendant relation of a reduction step can be obtained by composing
the descendant relation on the TRS part and the descendant relation of the metasubstitution evaluation part.

Definition 8.14 Let (2, 'R) be a SEI-¡Saband let 2’ be the SERSdb-signatureresulting from aug'menting 2 with
a fresh function symbol f and binder symbolE. The substitution-frozenvariant of (2, ’R),written (2’, SF'V
(or simply SF V('R) is no confusion may arise), is obtained by replacing every occurrence of the metasubstitution
operator M [N] on the RHS of a rewrite rule with the metaterm f(€(M), N The sobstitut'ion-evaluatzonvanant
of (2,71) is defined as the SERSdb consisting of the alphabet 2’ and the sole rewrite rule:

f(€(Xa)| _”xau/el

We write (2’, SEV('R)) (or, simply SE V('R)) for the substitution-evaluation variant of (2,71).

A SERS“ whose RHSs do not contain occurrences of the metasubstitution operator o[o] is called simple.
The substitution-fi'ozen variant of a SERS“ is always simple. We shall define the descendant relation on a
simple SERSdb and on the substitution-evaluation variant of SERSdb separately.
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Definition 8.15 (Descendants of positions in a TRS step) Let 72be a simple SERSdband let U be an
(L, R)-redex for (L, R) E 'R occurring at a position p in a term M , let M E»N, and let q be a position in M.

¡.1 . If p and q are disjoint, then the descendant of q is the same“ position q in N.

.N’ If q 5 p, then again the descendant of q is the position q in N.

9° If q = p.p’ where p’ is a nonvariable position of L, then the descendant of q is the position p in N (i.e. the
position of the contractum of U) 5.

a“ If q = p.p,-.p’ where p,- is the position of the ith-from-the-left metavariable occurrence in L, then the
descendants (possiny none at all) of q are all the positions in N of the form qj = pp} .p’ for 1 5 j 5 n,
where p}, . . . ,pz“ are the positions of all occurrences of that same metavariable in R.

We write pIUflq if the the position q in N is a.descendant of the position p in M.

Subterms may be traced by their positions. If P is a subterm of M occurring at a position p and plUlq,
then the subterm of N at position q is the descendant of P via U. Note that every subterm except erased ones
have one or more descendants.

Example 8.16 Consider the step M = app(c,A(app(AP,Q)[id])) Apnea” app(c,A(app((AP)[id],Q[id]))) =
N. Here are some examples of descendants of this TRS step. The term N is a descendant of the term M by
case 2 of Def. 8.15. The term app((/\P)[id],Q[id]) is a descendantof app(/\P, and app(,\P,Q) by case
3 of Def. 8.15; the subterm AP of N is a descendant of the same subterm in M by case 4 of Def. 8.15; both
occurrences of the subterm id in N are descendants of id in M (i.e. it has two descendants). The subterm c in
N is a dscendant of c in M by case 1 of Def. 8.15.

If S is a set of positions we use the notation S [U] for {q I pIUlq for some p e S}. Let us consider now how
to trace terms via a substitution step.

Definition 8.17 (Descendents of positions in a substitution step) Let U = f (¿(01),Oz)be a SEVCR)
redex in M at a position p, let M E»N, and let q be a position q in M.

H . If p and q are disjoint, then the descendant of q is the same position q in N.

. If q 5 p, then again the descendant of q is the position q in N.

. If q = p.1.1.p’ (i.e. Mlq g 01), then the dacendant of q is the position p.p’ in N.

¡BOOM . If q = p.2.p’ (i.e. M [q Q 02), then the descendants (possiny none at all) of q are the positions in N of
the form q,-= p.p,-.p’with 1 5 i S n where p1,.. . ,pn are the positions of all occurrences of the constant
symbol * in Olfil «- *}5.

The descendants of arbitrary derivations of a SERSdbmay be obtained by decomposing each step into a TRS
step and (zero or more) substitution steps, applying the dscendant concept as defined above, and taking the
transitive closure and noting that relation composition is associative. If T is an 72-derivationthen T-descendants
are defined to be the descendants under the decomposition of 'I'. Also, we shall speak of the T-descendants
of a position p for p G SPos(M) meaning the T-descendants of the subterm at position p in M. The ancestor
relation is the inverse of the descendant relation.

Residuals shall be defined for redexes only whereas descendants are defined for all subterms. Contracted
redexes shall not have residuals (however, they do have descendants).

Definition 8.18 (SERSdb-rsidual) Let M E»N in a SERSdb'R with U an (L, R)-redex, let V Q M be an
(L’, R’)-redex, and let P g N be a U-descendant of V. We call P a U-resz'dualof V, written V[U]P, if

4There is a slight abuse of notation here since positions are relative to terms.
5This definition coincides with that of G.Boudol [Bou85] where the term trace is used instead of desoendant and that of

Z.Khasidashvili [Kh393] where a related notion called essentialh'ty 'mstudied.
GSincet is a. constant note that for the updating functions we have Urol) = t. Also, recall that ofio o- o} is the de Bruijn

substitution on terms (Def. 6.34)
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1. the patterns of U and V do not overlap, and

2. P is an (L’, R’)—redex.

A redex in N is said to be created if it is not the residual of a redex in M. When considering the class of
left-linear SERSdb the second condition in Def. 8.18 may be dropped, as in the first-order case. Observe that
since first-order rewrite systems are a strict subclass of SERSdb the above definition applies to them too.

Example 8.19 Consider the following OTRS from Example 8.7 R = {f(X, a) —>¡b, c —>cc, cl—>¿a} and the
rewrite step M = f (c, d) —>¿f (cIa) = N. The redex f (c, a.) in N is created since it is not a residual of a redex
in M. However, the occurrence of c in N is a residual of the c-redex in M.

We would now like to introduce the correspondence relation, a notion belonging to the first-order rewrite sys
tems FEIERS. In a FEzERS RW we shall sometimes be interested in tracing R-redexes through W-reductions,
for W some basic substitution calculus. Although first-order rewrite systems are particular SERSdbs, Def. 8.18
is too general for our purposes. The problem is that R-redexes may overlap W-redexes since W is in charge
of propagating the substitution operator. This entails that an 7Z-redexmay be ‘lost’ when traversed by a
substitution operator.

Example 8.20 Consider the basic substitution calculus o‘. The Beta-redex in M is lost in the following0'
reduction-step:

M= app(’\P) _)F‘unc.,,app((’\P)[id]!
A notion of residual for the particular case of the Aa-calculus relating to that of the A-calculus has been

studied in [Ber92]. In order to regain lost 'R-redexes through W-derivations we shall introduce the correspon
dence relation. Owing to the fact that a basic substitution calculus is a first-order rewrite system (Def. 7.10)
this notion makes use of the descendant concept for the TRS part of higher-order rewrite steps (Def. 8.15).

Definition 8.21 (FEzERS-correspondence) Let 'Rw be a FEIERS. Let r be an (L, R) G'R-redexoccurring
in M. Let v : M —»wN be a W-derivation. Suppose

1. 1'g M v-descends to a subterm u g N at position q, i.e. plvlq where p is the position of the head symbol
of r, and

2. u = NIq is an (L, R)-redex.

thenu is a v-correspondentof1'in N, written

Example 8.22 Assume P and Q are pure terms (they contain no occurrences of the substitution operator)
and consider the derivation: M = app(AP,Q)[id] 4p.".ch app((AP)[id],Q[id]) —»,app(/\(P),Q) = N Then
the Beta-redex at position 1 in M has the Beta (or B)-redex at position e in N as correspondent.

As remarked before there seems to be no general way of defining the residual of a redex under the contraction
of some other overlapping redex. However, for the particular case of substitution calculi (in particular we shall
use it in the case of a' only; see Remark 8.46) Def. 8.21 shall accomplish its duty, and it is only in the context
of such calculi that the latter definition must be considered. However, this Def. 8.21 seems to make sense for
any basic calculi of substitutions satisfying ‘similar properties as those of a which we shall study in the next
subsection, of which three important ones are: a' may not create function or binder symbols, the ancestor relation
induced by a rewriting over the function and binder symbols is a total function, and any two a-derivations to
a-normal form induce the same descendant relation on positions.

8.2.2 Tracing Terms in the Substitution Calculus
We now study some basic properties concerning a-residuals and a-correspondents of 7Z-redexesin a FEIERS 72,.
This entails the study of descendants of positions of function and binder symbols via a-derivations. Figure 8.3
recalls the rewrite rules of the basic substitution calculus a over some signature I". We begin w1th a remark.

Remark 8.23 If p e SPos(M, f) for some function or binder symbol f, v : M —»,N and p[p]q then q e
SPos(N, f). That is to say, tir-descendants of function or binder symbols are once again function or binder
symbols, and moreover, they have the same ‘name’. This may be verified by inspecting the rewrite rules of the
a-calculus.
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Figure 8.3: The a-calculus

The next property we look at is parametn'cz'ty [00594] of a over function and binder symbols. The intuition
is that the names of function and binder symbols which are traced is of no importance in a a-derivation to
normal form. As mentioned in [00594], an example of a parametric calculus is the A-calculus: it is parametric
over ‘symbols’ [K1080,[10.1.2] (any two AB-derivations from M to a fl-normal form N are Lévy permutation
equivalent). Let us write M H, N when M a-rewrites to a-normal form N.

Lemma 8.24 (Parametricity of 0') All derivationsv : M H, N (i.e. N in a-normal form) induce the same
descendant relation [v] over SPos(M) x SPos(N

Proof. We use a proof technique due to van Oostrom [Oos94]. We must prove that if 11,45: M H, N then
[U]= Beforeproceedingtwo observations:

Observation 1. The a-calculus does not create function or binder symbols, i.e. if S Q SPos(M) is the set of
all positions in M of some (binder or function) symbol f and M —'>,N’ then Slr] is the set of all symbol
positions of f in N’ .

Observation 2. If we replace some (function or binder) symbol f in M occurring at a position p with a fresh
symbol g obtaining M’, then the derivation v is transformed into a new a-derivation v’, and

plvlq <=> Plv’lq

This may be verified by induction on the length of v.

Now let p e SPos(M, f) (i.e. p is a position of the symbol f in the term M) and let g be a fresh symbol.
Then replacing f with g in M yields a term M’ and two new a-derivations v’ and 45’from M’ to N1 and N2,
respectively, such that:

plvlq <=> Plv’lq and plólq => pló’lq (8-1)

Since g is a fresh symbol then:

pflv’lqfi the head symbol of NII, is g (8.2)

Indeed, the left-to-right direction follows from Remark 8.23. For the right-to-left direction suppose the head
symbol of N1|q is g and that p e SPos(M, g) then by the first observation it followsthat p must be an ancestor
of q, that is, plv’nq.

So, completing the equivalences 8.1 with the equivalence 8.2 we obtain:

plvlq <=>plv’lq => the head symbol of N¡|, is g

and
pfldalq<=> pló’]q <=> the head symbol of Nglq is g

Finally, the result follows from noting that N1 = N2 from the confluence of the a-calculus.
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It is not clear that Lemma 8.24 holds for arbitrary a-derivations due to the possibility of “syntactic coin
cidences” [HL91]. The following example illustrates this phenomenon when arbitrary symbols are traced over
arbitrary a-derivations.

Example 8.25 Let P = 1[id][id] and Q = Then v : 1[id][1'd]actos 1[idoid] —>¡¿L1[id] and 45:
1[id][id] —>Va,.¡¿1[id]. If we trace the subterm 1[id] in P occurring at position l we obtain llvle and 1[d>]1.

Given a FExERS 72, we shall be tracing 'R-redexes. Thus the followingresult shall be useful. Its proof relies
on Lemma 8.24.

Corollary 8.26 (Parametricity of a over R-redexes) Let 7€, be a FEcERS.Allderivationsv : M H, N
(i.e. N in a-normal form) induce the same correspondencerelation over R-redexes.

Corollary 8.26 allows us to speak of the correspondents of some 'R-redex in M, in a(M). A related notion
of equivalence of derivations is strong equivalence as defined by Hindley in [Hin78] (see also [K1080]): two
derivations v : M -» N and 4): M —»N are Hindley-equivalent if for every redex 1-€ M the residuals of 1' via
v coincide with those of r via d).

The following notion of lined-up symbol positions shall be used when dealing with strong standardization.
It was introduced by the author in an early proof of the Projection Proposition, and independently in [Me196]
as part of a “dynamical order” on ACI-terms(see Section 8.3.2 for further details).

Definition 8.27 (Lined-up symbol positions) Let p,q e SP03(M We say p is lined-upwith q in M ifl'
p = 0.1.p’ and q = 0.2.q’ and one of the following two conditions hold:

o either, the head-symbol of M |o is o[o],

o or, the head-symbol of MIO is o o o.

A set S of disjoint symbol positions in a term M is lined-up if for every p, q e S either p is lined-up with q in
M or q is lined-up with p in M. Also, if 1' and u are redexes in M, we say 1' is lined-up with u. in M ifl' the
positions of their head symbols are lined-up.

As an example of lined-up symbol positions consider the term M = f (c)[g(1)-f (2) -id) o (g(2) eid))]. Then
the position 1 is lined-up with position 2.1 (and with 2.2.1.1, and with 2.2.2.1), however 2.1 is not lined-up with
1. Also 2.1 is not lined-up with 2.2.1.1. The position 2.2.1.1 is lined-up with 2.2.2.1.

Note that the relation ‘is lined-up with’ is not symmetrical since if p is lined-up with q in M then p is to the
left of q in M. The intuition behind Def. 8.27 is that lined-up R-redexes may potentially yield nested residuals
via a-reduction.

Definition 8.28 (Conflict-free set of symbol positions) A set S of symbol positions in M is called a
conflict-free set of positions in M if S is a set of disjoint non-lined-up symbol positions in M.

Lemma 8.29 (Descendants of a conflict-free set) Let M be a term and S be a conflict-freeset of symbol
positions in M. Suppose M ¿»o N. Let S’ be the set of u-descendants of positions in S in N. Then S’ is a
conflict-free set in N, i.e. all u-descendants of positions in S are once again disjoint and, moreover, they are
non-lined-up.

Proof. Let S be a conflict-fi'eeset in M and suppose M ¿»a N. The proof is by induction on the (length of
the) position where the rewrite step takes place. We shall consider only the cases where the rewrite takes place
at the root, for the other cases followby applying the induction hypothesis.

1. f(P1, . . . , Pn)[3] —>f(P1[3], . . . , Pn[s]). If S = {p} then the u-descendants ofp are a conflict free-set in N
(note that if p G s then p shall have n descendents). Otherwise, consider any two positions p, q e S with
p 7€q. Then

o either, there are indices i,j with 1 S i,j _<_n such that p E P,- and q G .Pj,

o or, p,q E s.
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In both cases their u-descendants are disjoint and non-lined up. Note that it is not possible that p e P,
for some 1 5 i 5 n and q e s since .S'is non-lined-up.

5° ¿(P1,. ..,Pn)[8] —>¿(P1[1-(soT)],...,Pn[1-(soT)]). As in the previous case.

9° P[s][t] —>P[sot]. If S = {p} then either p E P, or p e s or p e t. These cases are seen to hold. Otherwise,
consider any two positions p, q E S with p 96q. Then it must be that p,q e P, or p,q e s or p,q e t, in
all cases S’ is seen to be a.conflict-free set in N.

e“ 1[2'd]—>1 or Toid —>Ï.These cases hold trivially since S = 0 and there are no u-descendants to consider.

F" 1[P - s] —>P. If S = then either p E P, or p e s and the result follows since p has at most one
u-descendant. Otherwise, consider any two positions p, q e S with p 7€q. Then either p, q G P or p, q e s
or p G P and q G s, and the result holds as above.

9° ¿dos —>s, To(P-s) —->s, (31032)os3 -> slo (32033), and (P-t)os —>P[s] - (tos) are analogous to
the previous case.

We recall the reader that M H, N indicates that M a-rewrites to the a-normal form N.

Corollary 8.30 (Correspondents of a conflict-free set) Let 'R, be a FEzERS.Considera terrn M and a
conflict-free set S of R-redex positions in M. Suppose v : M H, N. Let S’ be the set of v-correspondents of
redexes in .S'in N. Then S’ is a conflict-free set in N, i.e. all v-correspondents of redexes in S are once again
disjoint and, moreover, they are non-lined-up.

We have seen how descendants of non-lined up positions behave, now we shall look at how descendants of
lined-up positions behave. This is not required for the standardization theorem (Proposition 8.2 anounced in the
introduction of the chapter), it shall be required when considering strong standardization (Proposition 8.58).
We seek to prove the following two propositions:

Proposition 8.31 (Correspondents of lined-up redexes) Let 'R, be a FErERS. Let 1',u.be R-redexesin
M such that 1' is lined-up with u in M. Let v : M H, N and let 1" be a v-correspondent of r and u’ a
v-correspondent of u in N. Then one of the followingholds:

1. either, 1" nests u’,

2. or, r’ is disjoint with u’.

Proposition 8.32 (Correspondents of nested redexes) Let 'R, be a FEEERS.Let 1',u be R-redexesin M
such that r nests u. Let v : M H, N and let 1"be a v-correspondent of r and u’ a v-correspondent of u in N.
Then one of the following holds:

1. either, 1" nests u’,

2. or, 1" is disjoint with u’.

In order to prove Proposition 8.31 and 8.32 we need to prove more general statements. This we set out to
do below.

Lemma 8.33 (One-step descendants of symbol positions which are one above the other) Letp,q G
SPos(M) with p < q. Let M 1), N and let p’ be a u-descendant of p and q’ a u-descendant of q in N. Then
either p’ < q’ or {p’,q’} is a conflict-free set in N.

Proof. By a close inspection of the rewrite rules in the a-calculus. We proceed by induction on the (length
of the) position where the rewrite step takes place. Also, we shall assume M is either a term of sort T or S.

o rewrite-step at the root position.
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1. f(M1, . . . , Mn)[3] —>f(M1[s],...,M,,[s]). pr,q G M,-for some 1 5 i S n then p’,q’ are unique and
<q’. pr= 1anquMi with1Signthenp'=e<zf. Finally,ifp,q€sthen
p’<q’ ifi<p’andi<q’forsome15i5n
{p’, q’} conflict-free otherwise

2. ¿(M1,. . . ,Mn)[s] —>¿(P1[l'(soT)],...,Pn[1-(soT)]). As in the previous case.

3. P[s][t] —>P[s ot]. Then either p,q e P, or p, q e s, or p,q e t. In each case p’, q’ are unique and
p’ < q’.

4. 1[id] —>1 or Toid —>T.These cases hold trivially since there are no symbol positions in M.

5. 1[P - 3] —>P. Then p,q e P and p’, q’ are unique, and p’ < q'.

6. idos —>s. Then p,q E s and p’,q’ are unique, and p’ < q’.

7. T o(P - s) —>s. Analogous to the previous case.

8. (sl o s2) os3 —>31 o (s20 s3). Then either p,q G 31, or p,q e 32 or p,q e 33. In all cases p’,q’ are
unique and p’ < q’.

9. (P-s)ot —>P[t] - (sot). pr,q e P or p,q E s then p’,q’ are unique and p’ < q’. Otherwisep,q et
and we reason as follows:

p’<q’ if1.2<p’and1.2<q’
p’<q' if2.2<p’a.nd2.2<q’
{p’, q’} conflict-free otherwise

o rewrite-step at an internal position.

1. M = f(M1,...,Mn) and M,-ï», for some i e l..n. If p,q e Mj with z'9€j then the result is
direct, if 2'= j then we use the induction hypothesis. Otherwise p = e in which case p’ is unique and
p’ < q’ for all q’ e q[u].

2. M = ¿(M1,. ..,Mn). As in the previous case.

3. M = P[s]. Then either p, q e P or p, q G 3. In both cases we apply the induction hypothesis.

4. M = P-sor M =sot. As in the previouscase.

The reader should note that Lemma 8.33 no longer holds if arbitrary positions in M are considered. Indeed,
recall that the substitution operator traverses function and binder symbols.

Corollary 8.34 (Descendants of symbol positions which are one above the other) Letp,q GSPos(M)
with p < q. Let v : M -»., N and let p’ be a v-descendant of p and q’ a.v-descendant of q in N. Then either
p’ < q' or {p’,q’} is a conflict-free set in N.

Proof. By induction on the length n of v.

o n = 0. The result holds directly.

o n > 0. Suppose v = 42m and M A)? M’ ¿»a N. Since plvlp’ and qllvlq’ there exist (unique) positions
p1,q1 e SPos(M’) such that pldalpland pl [u]p’, and qflqblqland q]

By the induction hypothesis two cases may aríse:

1. Either, pl < ql. Then by Lemma 8.33 we are done.

2. Or, {p1,q1} is a conflict-free set in M’. Then by Lemma 8.29 the set , q’} is conflict-free in M and
we are done.

Lemma 8.35 (One-step descendants of lined-up symbol positions) Let p,q E SPos(M) with p lined
up with q. Let M ¿»a N and let p’ be a u-descendant of p and q' a.u-descendant of q in N. Then one of the
following holds:
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1. either, p’ < q’,

2. or, {p’, q’} is a. conflict-free set in N,

3. or, p’ is lined-up with q’ in N.

Proof. By a close inspection of the rewrite rules in the a-calculus. We proceed by induction on the (length
of the) position where the rewrite step takes place. Also, we shall assume M is either a. term of sort T or S.

o rewrite-step at the root position.

1. f(M1,....Mn)[3] -> f(M1[s],...,Mn[3]). Then
- If p,q e M,-with 1 Si 5 n then p’, q’ are unique and p’ is lined-up with cf.
—pr=1mqusthenp’=e<q’forallq'quu].
—If p, q E 3 then one of the following cases holds:

p’lined-upwithq’ ifi<p’a.ndz'<q’forsomeq5i5n
{p’, q’} conflict-free otherwise

- pEM, forsomelSignandqes.
p’ lined-up with q’ if 2'< q’
{p’, q’} conflict-free otherwise

. ¿(M1,...,Mn)ls] —>¿(M1[lift(s)], . . .,Mn[lift(s)]). As in the previous case.

. P[s][t] —>P[s o t]. If p, q e P, or p,q e .3,or p,q e t then p’,q’ are unique and p’ is lined-up with q’.
pr E M and q E s or q e t then the same holds. pr E s and q e t then also p’, q’ are unique and p’
is lined-up with q’. No other cases are possible.

WN

. 1[id] —>1 or T oid —>T.These cases hold trivially since there are no symbol positions in M.

. 1[P ' s] -—>P. Then p,q G P and p’, q’ are unique, and p’ is lined-up with

id o s —>s. Then p, q e s and p’, q’ are unique, and p’ lined-up with q’.

. T o(P - 3) —>s. Analogous to the previous case.

. (31 o 32) o s3 —>.31o (s2 o s3). Then p’, q’ are unique and p’ is lined-up with q’.

.(P-s)ot —>P[t] -(sot). Then
- If p, q E P or p, q e s then p’, q’ are unique and p’ is lined-up with cf.
—If p e P and q e t (the case p e s and q E t is analogous) then we reason as follows:

{ p’ lined-up with q’ if 1.2 < q’{p’, q’} conflict-free otherwise
— If p, q G t then we reason as follows:

{ p’ lined-up with q’ if 1.2 < p’ and 1.2 < q’

omxlgacnuk

p’ lined-up with q’ if 2.2 < p’ and 2.2 < q’
{p’, q’} conflict-free otherwise

o rewrite-step at an internal position.

1. M = f(M1,...,Mn) and M,-1», for some i e 1..n. Then either p,q E MJ-with j 762'and the
result is direct, or p, q e M.-and we may use the induction hypothesis.

. M = ¿(M1, . . .,Mn). As in the previous case.

3. M = P[s]. Then if p,q e P or p, q e s we apply the induction hypothesis. Otherwise p e P and
q E 8 in which case p’ is lined-up with q’ for all p’ Gplu] and q’ E qlu].

. M = P -s. We use the induction hypothesís.

. M = so t. Analogous to the case M = P[s].

M

011D

Corollary 8.36 (Descendants of lined-up symbol positions) Letp,q e SPos(M)'withp lined-upwith q.
Let v : M —»,N and let p’ be a v-descendant of p and q’ a.v-descendant of q in N. Then one of the following
holds:
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1. p’ < q’, or

2. {p’, is a conflict-freeset in N, or

3. p’ is lined-up with q’ in N.

Proof. The proof makes use of Lemma 8.35, Lemma 8.33 and Lemma 8.29. We proceed by induction on the
length n of v.

o n = 0. The result holds directly.

o n > 0. Suppose u = (¡tu and M 43 M’ ¿»a N. Since plvlp’ and qlvlq' there exist (unique) positions
p1.q1GSPos(M’) such that plqblpland p1[u]p’,and qlólql and ql
By the induction hypothesis three cases may aríse:

’_¡ . Either, pl < ql. Then by Lemma 8.33 we are done.

IO . Or, p; is lined-up with ql in M’. Then by Lemma 8.35 we are done.

W . Or, {ph ql} is a conflict-free set in M’. Then by Lemma 8.29 the set {p’, q’} is conflict-free in M and
we are done.

Note that in Corollary 8.36 if v is a a-derivation to cr-normal form then the case p’ lined-up with q' in N
is not possible. The proof of Proposition 8.31, however, is not a direct consequence of this fact since a priori it
is not clear that p’ < q’ in N, where p’ (resp. q’) is the v-descendant of the position of the head symbol of r
(resp. u), assures us that r’ nests u’. We shall see that indeed 7" nests u’.

Proof. [of Proposition 8.31]
Let p (resp. q) be the position of the head symbol of r (resp. u) in M. First an observation.

Observation: Note that r((v))r’ implies the following:

o Let plulp’. For every position o in the pattern of r there is a.unique o’ with olvlo’ such that p’ 5 o’.

o Let o and prev(o, M )7 be positions in the pattern of 1'. Let o’ and o” be the unique (by the previous item)
symbol positions such that oflvlo’and prev(o, M)[v]o” and p’ 5 o’ and p’ 5 o”. Then o” = prev(o’, N
Moreover, if the term at position o is in the i-th argument of the function or binder symbol at position
prev(o, M) then also the term at position o’ is in the i-the argument of the function or binder symbol at
position o”.

This observation simply states that the pattern of r may be reconstructed in 1".

Suppose plv]p' and q[v]q’. By Corollary 8.36 either p’ < q’, or {p’,q’} is a conflict-free set in N, or p’ is
lined-up with q’ in N. Since N is a a-normal form, the last case is not possible. If {p’,q’} is a conflict-free set
in N , then r’ and u’ are disjoint and we are done. Otherwise, suppose p’ < q’. We are left to verify that r’ and
u’ do not overlap.

Suppose that u’ overlaps r’, that is, there is a position o’ in the pattern of 1"such that o’ is also a position in
the pattern of u’. We have p’ < q’ S 0’, as Figure 8.4 illustrates. By the previous observation applied to r there
must be a position 01 in the pattern of r such that ollvlo’. Likewise,applying the observation to u there must
be a position oz in the pattern of u.such that aglvlo’. But this contradicts the fact that the ancestor relation
is a (partial) function. Therefore, r’ nests u’.

Proposition 8.32 may be proved in a similar manner.

7R.ecallthat prev(p.n, M) dÉrp, where n. e IN and p.n e Pos(M).
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Figure 8.4: Non-overlapping redexes may not have overlapping correspondents.

8.3 From Standard fo(R)a-derivations to Standard R-derivations
We shall now show that standard fo(R),-derivations project onto standard 72-derivationsvia a-interpretation
(Hardin interpretation). This requires recalling the notion of finite developments and standard derivations.

Definition 8.37 (Developments) A developmentof a set of non-overlappingredexes S in M, in a SERSdb
7?,is an R-derivation T : Mo 1°»M1 ï‘» M2 3» . . . which only contracts residuals of redexes in S. T is a complete
development if no residuals of redexes in S remain.

Thus in a development of a set of redexes S of a term M no newly created redexes may be contracted,
only residuals of those redexes in S are allowed to be contracted. The property of Finite Developments (FD)
states that all developments of a set of non-overlapping redexes are finite. FD is usually proved in the setting of
orthogonal (first or higher-order systems) in which case any set of redexes in any term is always non-overlapping.
However, in the case of left-linear ambiguous systems FD still makes sense provided a set S of non-overlapping
redexes is considered, and that the residuals of two non-overlapping redexes is non-overlapping. The latter
property may be verified in first-order term rewrite systems and SERSdb, among other higher-order rewrite
formalisms, in the style of Proposition 8.31.

Proposition 8.38 (Finite Developments) All developmentsof redexes in a term M in a SERSdb'R are
finite and cofinal (they end in the same term).

For a proof of FD in the setting of (orthogonal) SERS see [KhaOl]. FD for regular GRS may be found
in [KloSO],for the more general HRS (and correcting [K1080])see [00597]. In fact, the following strengthening
of FD is seen to hold [00594]:

Proposition 8.39 (Strong Finite Developments) All developmentsof a finite set of non-overlappingre
dexes in a term M in a. SERSdb 7?,are finite and cofinal. Moreover, all complete developments of the same set
of redexes induce the same residual relation.

Our interest in strong FD is that it shall be used for defining standard derivations following the Klop
Mellies [MelOl]presentation based on rewriting derivations. More precisely, we shall require strong FD in order
to define irreversible permutatlons. It is also required for ‘sequentializing’ parallel rewrite steps.

Definition 8.40 Let 7?,be a SERSdb. Let S be a set of disjoint 'R,-redexesin M. Let M :KR N be a parallel
R-rewrite step (Def. 7.50) contracting only redexes in S. A sequentz'alizationof the rewrite step M zm N is
any complete development of S in M.

Note that if M zm N then any sequentialization of S in M is a derivation ending in N. This followsfrom
the Strong Finite Developments proposition.

Definition 8.41 (Reversible and irreversible permutations) Let R be a SERSdb.
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1. Let R and U be 'R-redexes in M occurring at disjoint positions. A reversible permutation is a pair of
derivations R; U’<>U; R’ such that U’ is the unique R-residual of U, and R’ is the unique U-residual of R.

2. Let R and U be Eredexes in M such that R occurs in an argument of U. An irreversible permutation is
a pair of derivations R; U’ l>U; T such that U’ is the unique R-residual of U, and the derivation T is a
complete development of the (possiny empty set of) U-residuals of R.

The reversible permutation relation is symmetric. It relates any two complete developments of a fixed pair
of disjoint redexes in a term.

Definition 8.42 (Standardization preorder, Lévy permutation equivalence) Let 'R be a SEI-IS“.

1. A reversible (resp. irreversible) standardization step is a pair of 'R-derivations T =r>d) (resp. T <I>)
such that T = T1; \I';T2, Ó = T1;9;T2, and ‘IIOQ (resp. ‘IJD Si). In either case we write T Á (I). The
standardizationpreorderá is the least refiexiveand transitive relation containing

2. The Le'vypennvtation equivalence E is defined as the least equivalence relation containing 2.».

3. The reversible permutation equivalencez is defined as the least equivalence relation containing :3.

Since first-order rewrite systems are a particular case of SERSdb the followingdefinition of standard deriva
tions apply to them too.

Definition 8.43 (Standard derivation) Let 'R be a SERSdb. A derivation T : M -»R N is standard in 'R
when there is no sequence:

r=ro¿r¡='>...='>rk_1=‘>rk

of k —1 reversible steps ¿3’followed by an irreversible step á, for k 2 1. Or equivalently, if T is in normal form
with respect to ¿“v-rewritingmodulo z.

The reversible standardization steps are necessary for the nested and nesting redexes of an irreversible
standardization step to ‘meet’ each other.

Example 8.44 Let 'R = {f (X, a.) —>b, c —>c, d —>a} be the OTRS of Example 8.7 and consider the derivation
(contracted redexes have been underlined): f(d,f(d,g)) —>f(d,f(¿,a)) —>f(g,f(a,a)) —»f(a,f(a,a)) —>
f (a, b). There is no irreversible standardization step applicable, however we may reorganize it via reversible
standardization steps as follows: f(d,f(d,i)) —>f(_d,f(d, (1)) —>f(a,f(¿,a,)) —>f(a,f(a, (1)) —>f(a, b). The
final two rewrite steps constitute an irreversible standardization redex.

Before ending the subsection we shall define how to project fo('R)W derivations onto 'R-derivations, for R
an esentially first-order SERSdb (Def. 7.35). We recall the Projection Proposition (Proposition 7.56) for it shall
be used for projecting first-order derivations to the SEI-¡5‘11>framework. Also, we shall seize the opportunity to
recall the other main result of Chapter 7, namely, the Simulation Proposition (Proposition 7.46). The latter,
although not used for defining the projection of a derivation, shall be used when defining our standardization
procedure, as observed in the introduction to the chapter.

Proposition 7.56 (Pro jection Proposition) Let 'R be a SERSdband let fo('R)w be its first-orderversion,
where W is a basic substitution calculus satisfying the scheme. If M 4,00;)“, N then W(M) 31?, W(N).

That is to sayI a fo(R)w-step u may be simulated by a parallel 72-step (Def. 7.50). If u is a W-step then
W(M) = W(N), otherwise W(M) rewrites to W(N) by rewriting the disjoint correspondents of u in W(M)8.
We recall the reader that this parallel rewrite relation is refiexive.

Proposition 7.46 (Simulation Proposition) Let 'R be a SERSdband let fo('R)w be its first-order version.
Suppose M 47; N then

1. an thenM—>IO(R)/w
8The notion of correspondent has been defined for the basic substitution calculus a only, and we shall make use of this result in

the latter case only.
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2. if fo('R)w is a FEIERS then M —>¡o(p_)o —»wN where o denotes relation composition.

The second item of the Simulation Proposition, the item of our interest in this chapter, may be interpreted
as: all derivations in a SERSdbR may be ‘implemented’ by derivations in the first-order setting via its first-order
version. So now we consider what it means to project a derivation from the FEkcERSsetting to the SERSdb
setting.

Definition 8.45 (Projection of fo('R)w-derivations) Let o be a fo('R)w-derivation. We define W(qb)by
induction on the length of 45:

W(eM) ‘13 ewm) u
. dai ¿W(M);W(1l)) if M ¿W Nw , — 

(u W) l v1;...;vn;w(w) lfM ¿vom N

where 111;.. . ;'v.,1is any sequentialization of the parallel rewrite step W(M) :7; W(N), the latter of which
results from applying the Projection Proposition to the rewrite step M ibm) N.

In full precision, W applied to a fo('R,)w-derivation yields an z-equivalence class of 72-derivations. In this
section we shall only deal with the case in which W is the a-calculus.

Remark 8.46 It seems appropriate to shed some light on the motivation behind introducing both the usual
first-orderresidualrelationfor FEIERS ( and the newcorrespondencerelationfor FEIERS Recall
that we shall ‘implement’ a SERSdb-derivation T as a FEIERS-derivation v (see Figure 8.5) by means of the
Simulation Proposition. We then shall apply first-order standardization on v making use of the usual first-order
residual relation yielding a standard (in the first-order fi'amework) derivation 45. Finally, we are lefi to verify
that the projection of o, namely 0145),is a standard derivation in the higher-order framework. This is where
the correspondence relation comes inI since it shall allow us to trace the destination of fo('R)-redexes appearing
in ó, in the derivation 0'(4>).

H; 0013)

Simulation Projection (oorrespondence relation ((0)))

c!<—|

W
first-order 4,

stand lZ on
(residualrelation

Figure 8.5: Standardization Procedure

8.3.1 Standardization

Definition 8.47 ((Un)contributable symbol) Let RW = (RR, W) be a left-linear FFAcERS.A functionor
binder symbol g e F of arity n is called uncontributable in RW if

1. either, g doa not occur on the LHS of any rule in RW,

2. or, g occurs on the LHS of a rule in RW only under the form g(X¡,..,Xn) (i.e. it occurs applied to
metavariables) .

A symbol in 1"which is not uncontributable is called contributable.

The idea behind uncontributable symbols is that redexes strictly below them cannot create redexes above
them (Lemma 8.50).
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Example 8.48 The A-symbolis an example of an uncontributable symbol in the Aa-calculus, i.e. in fo(,6),.
Whereas, the application symbol is a contributable symbol in Aa due to the Beta-rule. As a further example,
for any essentially first-order SERSdb 'R the cons-symbol o -o is uncontributable in Ra.

Although the definition of uncontributable symbol as it stands shall suflice for our purposes a more general
formulation is possible. One may define the notion of i-uncontributable symbol for i a non-zero natural number.
A symbol g of arity n is i-uncontributable for 2'5 n if either the first case of Def. 8.47 holds, or g occurs on the
LHS or a rule in RW only under the form g(M1, . . .,M,-,X,M,-+1, . . . , M"). That is to say, it may only occur
on the LHS of a rewrite rule with its ith argument applied to a metavariable. We may then define a symbol of
arity n as uncontributable if it is i-uncontributable for all 1 S i 5 n.

Also note that the notion of uncontributable symbol does not coincide with that of constructor symbol in a
constructor TRS [K1092]:given a constructor TRS there may be constructor symbols which are contributable
(e.g. ‘s’ in f (s(s(:z:))) —>9:)and likewise there may be uncontributable symbols that are not constructor symbols
(e-g- f in f(=v) -> a).

The proof of the following lemma [MelOO,Lemma 6.3] originally formulated for the Aa-calculus holds without
further ado for an arbitrary FEIERS 'Rw, and is included here for the sake of completeness.

Lemma 8.49 Let 72Wbe a FEIERS. Suppose that a position p is strictly above a redex P L» Q. For every
derivation d) = 111/):

1. either, 45preserves p,

2. or, 4ais equal modulo z to a derivation 451mm);432such that 451preserves the position p, the position p is
strictly above the redex u, and the redex v is above p.

Proof. We begin by proving a claim: if ul; ..;uj : P -» R is a Rw-derivation which preserves the position
p, and contracts a redex strictly below p then it may be reorganized into a derivation 111;.. .;vj which is :
equivalent to ul; ..;uj such that vj is strictly below p. Let ul; ..;uj : P -» R be a “RW-derivationwhich preserves
the position p, and contracts a redex strictly below p. Let uk be the last redex strictly below p. If k < j, the
redex uk.“ which is not strictly below p may be permuted reversiny before uk. Observe that the resulting
derivation u1;...;uíc;u;c+1;...;uj preserves p, and contracts the redex uf:+1 strictly below p. Repeating the
process j —k times, one constructs a derivation v1; . . . ;v,- z ul; . . . mi whose last redex vj is strictly below p.

Let 45= r1; . . . ;1'n be a derivation and p an occurrence which strictly above r1. We suppose that ó does
not preserve p. Let rj+1 be the first redex in d)which is above p. By the above claim, there exists a derivation
'01;. . . ;v¡¡ equal to r1; . . . ;rJ- modulo e: whose last redex u = vj is strictly below p. We conclude.

Lemma 8.50 Let 72, be a left-linear FEIERS. Suppose that a position p is strictly above a redex P L) Q.
Every standard derivation d)= 1111)preserves p when:

1. either, p is a g-node for g an uncontributable symbol in Ra,

2. or, p is a g-node for g a function or binder symbol in 72., and 1/)is a a-derivation.

Proof. Given the standard derivation 4)= r;1/) and the occurrence p strictly above 1' we apply Lemma 8.49.
If the first case holds then we are done, we shall see that given the hypothesis the second case cannot hold.

Suppose that v is above the occurrence p and that p is strictly above u in a. pair M 3» N -—>P. The
derivation u;v cannot be standard, unless u creates v. Now, in at least the following two cases creation is not
possible:

1. When the occurrence p is the occurrence of an uncontributable symbol in Ra. Note that this includes the
cons-node o - o.

5° When the occurrence p is a function or binder symbol node and u is a a-redex the only possible pattern of
creation is when u is a (Punch-redex for some function symbol f or a (Bindk-redex for some binder symbol
E and v is an fo('R)-redex. This may be seen to hold due to the fact that function and binder symbols
are uncontributable in the a-calculus, or stated equivalently: substitutions are created “downwards”. For

example, the pair M = g(h(c)[z'd]) —->¡u,.C,_g(h(c[id])) —>c where 'R d-Éf{g(h(X)) —->c}, p = e in M, the
position at which v occurs in N is e and the position at which u occurs in M is l.
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The restriction to left-linear FEIERS in Lemma 8.50 is essential for otherwise a redex strictly below p could
create a redex above p.

Lemma 8.51 Let R, be a left-linear FEEERS. Let v : M -» N be a standard Rg-derivation with N in
a-normal form. Then no Ra-redex ever appears below a cons-node o -o.

Proof. By contradiction. Suppose there exists an 1',-contracted in 1/)= r1; . . . ;r,. strictly below the occurrence
p of a cons-node. Then by Lemma 8.50(1) the derivation 131.. .;r,, preserves p. Since N is a pure term we
arrive at a contradiction.

A remark before proceeding to the main proposition.

Remark 8.52 Let 72 be an essentially first-order SERSdb and let fo('R), be its first-order version. Let 1' be
a fo('R.)-redex in M occurring at a position p with 1' not in the body of a substitution. Let R be its (unique)
corresponding R-redex in a(M) occurring at a position p’, i.e. 1'(('u))Rfor 'U: M H, a(M) any a-derivation
from M to a-normal form. Then for every q’ G SPos(a(M with q' < p’, we have q < p where q G SP03(M)
is the (unique) ancestor of q' (see Figure 8.6). Note that although the ancestor relation, in general, is not a
(partial) function, in the case of the a-calculus and when dealing with positions of (function or binder) symbols,
we do indeed obtain a unique ancestor (see the rewrite rules in Figure 8.3). For example, in the rewrite-step
M = f(M1,...,Mn)[s] Apu“, f(M¡[s],...,M1[3]) = N both e and 1 in M are ancestors of e in N, yet when
considering solely the positions of f-symbols it is just 1 in M we are interested in.

Figure 8.6: Ancestors of symbol positions.

We are now ready to prove the main proposition.
Proposition (8.2. Let R be a left-linear essentially first-order SERSdb. Every standard derivation v :

M -» N in fo('R), with N in a-normal form is projected onto a standard derivation a(v) : cr(M) -» N in R.

Proof. First note that by Lemma 8.51 no fo('R)-redex contracted in v : M -» N ever occurs inside a
substitution s, since fo(R)-redexes are of sort T and thus would have to take place inside a cons-node. As
remarked in [MelOO]this does not hold for a-redexes as the following example T : M -», N illustratesgz

r : M = 1[(1. id) o (N . un} ¿Map 1[1[N'1'd]- (ido(N-id))] WWW 1[N-1'd]AWG”, N

This property implies that every fo(R)-redex contracted in ‘Uhas a unique correspondent R-redex in a(v).
Let a(v) = R1;...;Ro and let p : {1,...,o} —>{1,...,n} be the function which associates to any R-redex
Rk in a'(v) the unique fo(R)-redex rpm in v = 1'1;...;'rn to which it corresponds. Let Rk and Rk+1 be two
consecutive R-redexes in o‘(v). Note that the fo(‘R),-derivation ri; . . . ;rj = rpm“; . . . ;rp(k+1)_1between rpm
and 1390:“) contracts only a-redexes.

We shall now show that:

9Although brackets are kings in A: [K0001b], they are 'almost’ kings in Aa.
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Case 1. every reversible standardization step a(v) =r><I>in ’R may be mirrored as a (non-empty) series of
reversible standardization steps v =r>. . . É» dain fo('R),, where a'(45)= (I),and

Case 2. every irreversible standardization step a'(v) (I)in 'R may be mirrored as a (non-empty) series of
standardization steps v =r> =r>d)’=1>... =‘>43in fo('R),, where 47(4))= (I>.

Hence the result follows by reasoning by contradiction since every standardisation step acting on the pro
jected higher-order rewrite derivation may be mimickedby projection-related standardisation steps of the same
nature (reversible/ irreversible) over first-order derivations. So we shall now focus on these two items.

Case 1. Suppose two R-redexes Rk and RH] can be permuted using a reversible permutation, that is,
Rk; Rk+1<>RL;RL+1.We construct afo('R),-derivation 45such that v z gband 17(4))= R1;...;RL;R;C+1;. ;Rp
By Lemma 8.50, the derivation 13-;. . . ;1-J-praerva the occurrence of any function or binder symbol strictly
above rpm. And, in particular, the lowest function or binder symbol g appearing above Rk 1a(P) —ra(Q)
and Rk+1 in the term a(P) which, by Remark 8.52, is strictly above rpm in P. Then the derivation 1,0=
rp(k);r¡;...;rj;rp(k+1) may be reorganized modulo z into a derivation 1,11’such that 0'(1/)’)= BBB}:+1 as
follows: let p be the occurrence of g in P and assume PIp = g(N1, . . . , Nm) and suppose rpm occurs in Nh and
the head symbol of 1300;“) occurs in N1, for l1,l2 G 1..m and [1 76lg:

1. First contract all the redexes in 1pprefixed by p.lg

2. Second contract 1390:“),

3. Third contract the (unique) raidual of rpm,

4. Finally contract the remaining redexa of 1,1).

Case 2. Suppose two R-redexes Rk and Rk+1 can be permuted using an irreversible permutation Rk; Rk+1I>
¿311. Observe the following:

Observation: by Remark 8.52 all the symbols in the redex pattern of (the ancator of) Rk+1strictly above
Rk in a(P) are present in P above the occurrence of rpm. Moreover, none of these symbols occurs embraced
by a substitution. This followsfrom two facts:

H . on the one hand, by Lemma 8.50, the derivation 13-;. . . ;1-¡¡praerves all these symbols (in particular the
lowest one), and

lo . on the other, rp(k+1)is an fo('R)-redex hence its LHS contains no occurrences of the substitution operator
o[o].

Having concluded with our observation we proceed with the proof of Case 2. We consider two subcases,
reasoning by contradiction in each one:

o The redex rpm in P occurs under an uncontributable symbol g belonging to the pattern of Rk+1. By
Lemma 8.50 the path 13-;. . . ;1-npraerva every uncontributable symbol strictly above rpm. Among these
symbols is the symbol g involved in the pattern of RH]. The redex rp(k+1) is above the position of this
symbol. We reach a contradiction.

All symbols above rpm in P belonging to the pattern of RH] are contributable. Suppose that the two
R-redexes Rk and Rk+1 can be permuted using an irreversible permutation RHRH] I>RLHII;we shall
arrive at a contradiction. Let p be the occurrence of the unique ancestor of the head symbol g of RH]
in P, and P|p = g(M1, ..,Mm). By Lemma 8.50 the derivation ri; ...;rj preserva p. Let l e 1..m such
that rpm occurs in Ml. We may then reorganize modulo 2 the derivation 1/2= rp(k);r,-; . . . ;r_.¡;rp(k+1)
obtaining 1/2’,as follows:

1. First rewrite all redexa in 13-;. . . ;rj prefixed by p.1,p.2,...,p.l —1,p.l + 1,..,p.m in turn (i.e. first all
those prefixed by p.l, then those by p.2, and so on) and those disjoint to p.

2. Second, rewrite all redexa prefixed by p.l but disjoint to the (unique) residual of rpm. At this
moment the redex Tp(k+1)must have emerged since
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—by the Observation there are no substitution symbols in M, between p and the position of rpm,
and

—rj+1 = 50,“), i.e. it is an fo('R)-redex and hence its LHS contains no occurrences of the
substitution operator ole].

3. Thirdly, rewrite the (unique) residual of rpm, say 1?“ , followed by the redexes in ri; . . . ;r_,-prefixed
by the occurrence of rpm, i.e. those not rewritten in tep l or Step 2.

4. Finally, rewrite 50:“).

Note that 1,11’= 11/51/25where 1,1);consists solely of a-rewrite steps and 1,115= r;(k);rk¡; . . . ;rkm;rp(k+1)
for some m 5 j - i. Applying m + 1 irreversible standardization steps starting from 1/25we may obtain
vá = r’p(k+¡);1,brp(k);1/),h; . . . ;1/1,km. Finally, setting 1,!)= iván/¡á we may conclude.

Note that Proposition 8.2 fails for arbitrary standard derivations v : M -» N in fo(R),.

Example 8.53 Let 'R be the A-calculus,and let Aa = fo(R), be its first-order version. Then the derivation
starting from M = ((A(11))1)[(A1)c- id], 45is a standard first-order derivation:

Ó 1((Á(11))1)IM -id] ->Bezo((/\(11))1)[1[C‘¿dl ' idl ->Beza(11)I1'i¿1[1[6'idl-idl

However, cr(d>)is not standard in the SERS“ framework.

0(d>)2(¡(11))((/\1)C) “a “(11))6 "’B CC

The reader may have noticed that although the (only) two fi-redexes in M are disjoint, they are lined-up
(see Proposition 8.31). Thus although they occur at disjoint positions in M, when we project via a their
correspondents become nested. A solution proposed by Mellies [MelOl] is to divide the class of reversible
permutations (used for standardization in the first-order framework) into two subclasses: one subclass which
remains reversible, and another which is transformed into irreversible. So now we have two classes of irreversible
permutations, the usual (say nesting) ones, and the new lined-up (lu) irreversible permutations. The latter are
defined as follows. Let R, be a FF/IERS. Then R; U’ Du. U; R’ where the 'R-redex U is lined-up with the 72
redex R in M and U’ is the unique R-residual of U, and R’ is the unique U-residual of R. Under this extended
definition of permutation (and induced notion of standardization) Proposition 8.2 seems (verifying the details
is left to future work) to apply to arbitrary standard derivations v : M -» N in fo('R),. Note, however, that
when implementing a higher-order derivation via the Simulation Proposition as illustrated in Figure 8.1 of the
introduction to the chapter, the resulting derivation shall always end in a pure term.

The full standardization procedure takes the followingform.

Definition 8.54 (Standardization Procedure) The standardizationprocedureapplied to a derivationT :
M —»RN of a left-linear essentially first-order SERSdb 'R consists in the following steps (see Figure 8.1):

Step 1 (Simulation). Apply the ConversionProcedure to R obtaining a full first-order rewrite system fo('R),
(Def. 7.35). Note that fo(R), shall always be ambiguous10 even if 'R is orthogonal. The Simulation
Proposition yields as output a fo(R),-derivation v : M 4700;), N implementing the R-derivation T.

Step 2 (Standardization). Use the standardization procedure described in [Bou85]applicable to first-order
left-linear ambiguous rewrite systems. The output is a fo('R),-derivation d) such that cpE v and d) is
standard in fo(‘R),.

Step 3 (Projection). Project the standard derivation. Define the R-derivation (12'as 17(4)).Proposition 8.2
guarantees that <I>is standard in 'R.

Note that the standardization procedure yields a unique standard derivation modulo reversible permutations.
This procedure allows us to conclude with the following result:

Theorem 8.55 (Standardization for SERSdb) Let 'R be a left-linearessentiallyfirst-order SEI-ES“.Assume
T : M 4m N. Then there is a standard derivation ‘I>: M -»-R_N.

The restriction to essentially first-order SEI-IS“ is necessary since it is this class of systems that may be
converted to full first-order rewrite systems. We now consider a strong version of standardization.

loAssurning the alphabet contains some symbol of strictly positive arity.
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8.3.2 Strong Standardization
This subsection deals with strong standardization of SERSdb-derivations. Given a. derivation T in some left
linear essentially first-order SERS“ 'R, the Standardization Procedure provides us with a.standard derivation
<1)in R. However, we would like <I>to be not just any standard derivation coinitial and cofinal with 'I‘, but also
Lévy permutation equivalent to (I), in other words, <I>E T. We shall see that this transfer of standardization
not only provides us with a standardization result but also yields strong standardization.

Proposition 8.56 Let v and 45be fo('R),-derivations. If v é, 4)then a(v) E cr(45).

Before providing a proof we would like to draw the readers attention to the statement of this proposition.
It does not hold that v á 43implies o‘('u) =>0019).

Example 8.57 Let 7?,be the A-calculus, and let Aa = ¿"oC/¿1)abe its first-order version. Then 'u ¿o dz(more
precisely, 1204))where (the redexes contracted at each step have been underlined in order to ease readability)

v t ((/\(11))1)[(/\1)C'idl“Beta (11)[1'idll(z\1)c-idl 43cm (11)[1‘idll1[c-idl'idl
Ó: ((Á(11))1)l(/\1)C - id] _’Beta (A(11))1l1l6' z'dl' id] ->Beza(11)[1'idll1[0'idl 'idl

However, o‘(4>)¿o a(v) (and a'(v) al»0145)), since

0(v) 1(/\(11D((/\1)C) _’fi ((/\(1))c)((/\1)c) -'p C((/\1)C)-'a CC
a(45) i (/\(11))((/\1)c) -*p (/\(11))c -’B CC

The reason for this is that v<>daby permuting two disjoint but lined-up redexes as illustrated in Example8.53.

Proof. [of Proposition 8.56] Let U’ : M -r> N1 1,» N for {nu} fo(’R),-redexes in M such that 1'does not nest
u, and u’ is the (unique) r-residual of u. It suflices to show that the claim holds for the following two cases:

Case 1. if v’Oql’ for 4')’= u; r' then a(v’) E a(d>’),and

Case 2. if v’ l> 42’for 43’= u; q)” then a(v’ E 17(45’).

Our analysis depends on whether 1' and u are a or fo(7Z)-redexes in M and shall distinguish cases 1 and 2
as needed.

1. In either case, if r and u are a-redexes then the result holds trivially.

2. Suppose u is a a-redex and 1'a fo('R)-redex (the viceversa case is analogous). Then

0(v') 10(M) 311 0(N1) = JUV) 8nd JW) 10(M) = 0(N2) 32 0(N')

By parametricity of a over fo('R)-redexes (Corollary 8.26) the correspondents of 1' G M in 0'(N2) are
the same as those in o‘(M Then any two sequentializations of the parallel R-step shall yield equivalent
derivations modulo 2.

3. Suppose both u and r are fo('R.)-redexesin M. Here we distinguish the two subcasa:

o Reversible permutation (Case 1). Suppose {1',u} are disjoint redexes in M. Then if the corre
spondents of {1',u} via o‘ are disjoint in a'(M) we may simply sequentialize the derivation of the
corresponding redexes. Otherwise, by Corollary 8.30 we may assume that r is lined-up with u. Let
S = {1-1,. . .,rn} be the set of (pairwise disjoint by Corollary 8.30) correspondents of r in a(M
Then by Proposition 8.31 each corrspondent u’ of u is either disjoint with all redexes in S or is
nested by some (one) redex in S. Finally, note that set of correspondents of u in a(M) are pairwise
disjoint too by Corollary 8.30.
Thus we may construct the standardization a(v’) <=47(6) where a'(v’) rewrites all r,-s in some order
and then rewrites all the correspondents of u’s in some order, and a(d>’)rewrites all (correspondents
of) u in some order, and then all the (unique) correspondents of the ns in some order.
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o Irreversible permutation (Case 2). Suppose u nests 1'. Let S = {u1,. . . ,un} be the set of (disjoint
by Corollary 8.30) correspondents of u in a'(M Then by Proposition 8.32 each correspondent of r
i.na(M) is either disjoint with all redexes in S or is nested by some (one) redex in S. FinallyI note
that the set of correspondents of r in a(M) is pairwise disjoint too by Corollary 8.30.
Thus we may construct the standardization a'('u’) =>a(d>’)where o‘(v') rewrites all the correspondents
of 1' in some order and then rewrites all the (unique correspondents of the) uis in some order, and
a(d>’)rewrites all the u¡s in some order and then all the (correspondents of) 1' in some order.

As a consequence of Proposition 8.56 if v E q)then a(v) E 014)). We may now formulate the strong version
of the standardization theorem.

Proposition 8.58 (Strong standardization for SEI-IS“) Suppose R is a. left-linear essentiallyfirst-order
SERSdb and T : M -»7z N. Then 'I' may be standardized to a unique (modulo reversible permutation equiva
lence) standard derivation <I>: M —»—RN which is Lévy permutation equivalent to T.



Conclusions

This thais is concerned with term rewriting and, in particular, calculi of explicit substitutions. We have
considered perpetual reductions in calculi of explicit substitutions in Part I, we have dealt with the Alt-calculus
and then considered the more involved Aus-calculus. Part II augmented M.Abadi and L.Cardelli’s object
calculus g with explicit substitutions and analyzed some difliculties arising when simulating the lambda calculus
(more precisely, Av). Part III studied the encoding of higher-order rewriting in first-order rewriting and then
considered the transfer of the Standardization Theorem from the first-order case to the higher-order one. A
brief synopsis of the contents of the thesis together with hints at future research directions follows.

Part I: Perpetuality in Calculi of Explicit Substitutions

Calculi of explicit substitutions are non-orthogonal by nature. This state of affairs may be witnessed by
considering how the class of derivations between terms is afi'ected when a calculus is augmented with explicit
substitutions. In particular, any two pure terms M and N such that there is a derivation fiom M to N are
furnished with a rich supply of alternative derivations between them. Preservation of strong normalization
(PSN) is in charge of verifying that we enrich with caution.

Let us expound further on this issue fixing the lambda calculus as our setting in order to simplify matters.
Define a pair of pure A-terms (M, N) as boundedif there exists n 2 0 such that for all derivations v zM -»p N
we have IvI < n. Then an appropriate condition for avoiding indiscriminated enrichment of derivations could
be the followingnotion of preservation of boundedness (PB): let /\e be a calculus of explicit substitutions for the
A-calculus; we say /\e satisfies preservatian of boundedness if for every bounded pair (M, N) the following holds:
Ein 2 0.Vv : M —»,\eN’ with e(N’) = N we have |v| < 17..Although PSN is not strictly equivalent with this
notion, the more general techniques required to prove PSN are enough to prove preservation of boundedness.
However, in some settings PB could be preferred over PSN. An example is the infinitary A-calculus [KKSdV95],
where potentially infinite normal forms are of interest. PSN would not be of much use in infinitary lambda
calculus with explicit substitutions, however PB is applicable.

The techniques developed in order to prove PSN have not been fully exploited. Part I shows how these
techniques may fi‘uitfullybe applied in order to yield perpetual rewrite strategies and inductive characterizations
of strongly normalizing terms in calculi of explicit substitutions. In the case of Ax it is worth noting that these
results have been applied with success in order to verify, via the Tait-Martin Lóf-Girard proof method, strong
normalization of a polymorphic lambda calculus with explicit substitutions. The latter calculus is defined and
studied in Chapter 3. As for the Aus-calculus the presence of substitution composition makes the inductive
characterization of its strongly normalizing terms a.pleasant newcomer. Future lines of research are:

o An open problem is that of finding a maximal strategy for Ax (Remark 3.18). Although the strategy .‘Foo(o)
is a candidate, we have not succeeded in verifying this. Note that this has also been left pending in [BH98]
(together with the task of providing an inductive characterization of the set of strongly Ax-normalizing
terms which we have addressed in this thesis).

o It is rather unfortunate that nothing on strong normalization of typed Awshas been said. The reducibility
technique should be applicable with the aid of the characterization of the strongly Aws-normalizingterms.

o From a more general standpoint, the plethora of methods for proving PSN, as described in the introduction
of the thesis, suggests the lack of a sufliciently general proof technique for dealing with this property.
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Part II: Explicit Substitutions for a Calculus of Objects
The origins of calculi of explicit substitution stem in category theory and lambda calculus, however current
widespread use of the object-oriented programming paradigm gives rise in a natural way to the question of
whether the virtues of promoting metalevel substitution to the object-level in the context of foundational calculi
for functional programming, make themselves present in analogous calculi for the object-oriented paradigm. In
an attempt to answer this question Part II of this thesis puts Abadi and Cardelli’s q-calculus [A096] under the
microscope; it is presented in a de Bruijn indices setting and is augmented with explicit substitutions. Although
the minimum properties of q, such as confluence, are shown to be retained subtle issues concerning simulation
of functional calculi have driven us to introduce a new substitution operator (invokesubstitution) together with
fields into the language. Compliance with the property of preservation of strong normalization in the presence
of interaction between the new substitution operator and the usual explicit substitution operator is the isue of
the last section of this part. As regards future research directions we mention:

o Type systems for the q-calculus are thoroughly studied in [A096], including subtypes and polymorphism.
It would be interesting to extend our work to these settings.

o As already mentioned, existing formalisms for implementing higher-order rewriting via explicit substitu
tions, such as XRS and explicit CRS, are not able to cope with our augmented c-calculus due to the
presence of two distinct notions of substitution. Therefore, an issue which deserves further attention is
how to extend these frameworks for higher-order rewriting in order to revert this situation.

Part III: From Higher-Order to First-Order Rewriting
Among the virtues of explicit substitutions is the fact that it allows higher-order calculi to be reduced to first
order ones, the A-calculus being the prime witness of this fact. Part III inquires into the followingfundamental
issues:

1. What other calculi besides the A-calculus are witnesses of this reduction to first-order?

2. What benefits result from it (hence justifying our calling it a virtue)?

As regards the first of these issues, we consider the general case of reducing higher-order rewrite systems
to a first-order setting by presenting an encoding of the former into the latter. A distinctive advantage of our
approach is that a well-established higher-order rewrite formalism is used as the departing formalism, namer
a Simplified variant of Khasidashvili’s Expression Reduction Systems [KhaQO].Explicit Expression Reduction
Systems is the first-order formalism defined as the destination formalism. A translation, called the Conversion
Procedure, to first-order rewriting modulo an equational theory is considered, followed by a simple syntactic
criterion to determine if a system may be reduced to a first-order rewrite system where the equational theory is
empty (systems we have dubbed essentially first-order higher-order rewrite systems). Moreover, this translation
commits to no particular calculus of explicit substitutions but rather relieson a generic macro-based substitution
calculus encompassing many existing calculi, of the kind, in the literature. Also, it is argued that relating higher
order rewriting to first-order rewriting is not only appealing from an expressive-power point of view but also
from the posibility of transferring results from the vast body of properties of the first-order framework to the
higher-order one. This is the approach we take for shedding some light on the second issue. We argue that the
class of essentially first-order SERSdb is appropriate for such a task. Of course, this program is worthy of no
serious consideration unless the class of essentially first-order systems includes ‘interesting’ systems, however
the A-calculus, among others, lives comfortany inside this class. The last chapter of Part III is devoted to the
transfer of standardization. We list some interesting research directions:

o The Conversion Procedure amounts to incorporating, into the first-order notion of reduction, not only
the computation of substitutions but also the higher-order (pattern) matching process. Indeed, so called
pattern substitutions [DHKP98], arise naturally in the setting of the Conversion Procedure. It would
be interesting to distinguish by means of different substitution operators and calculi, substitutions for
matching and for ‘usual’ substitution in the rewrite system resulting from the Conversion Procedure.
This would yield calculi of explicit substitutions and explicit matching.
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We have not considered preservation of strong normalization for the translation of higher-order rewrite
systems. In the case of Explicit CRS some work has been done [BR96, B1097].In a first approach it seems
convenient to fix some calculus of explicit substitutions. However, in order to maintain the parametricity
achieved by using a general macro-based substitution calculus (basic substitution calculi) it would no
doubt be of interest to identify additional conditions on basic substitution calculi which would guarantee
PSN. This is related to the above mentioned research line on sufl‘iciently general proof techniques for
proving PSN.

The transfer of other properties such as completion are left to future work.

Chapter 8 raises the question of whether not only Aa but the whole class of essentially first-order SERSdb
enjoy finite normalization cones. From this one would be able to conclude that external derivations are
normalizing in the explicit substitution counterpart of any orthogonal essentially first-order SERSdb.

A precise comparison in the lines of [OR93] but between SERS and the HRS formalism would be inter
esting. Also one could compare SERS' and HRS. As already mentioned the metasubstitution operator
may not occur on the LHS of a SERS rewrite rule. However, it seems that our results on simulation and
projection can be extended to the case where they may occur on the LHS of a rewrite rule (the lemmata
required are the same as those already developed in Part III). Let us denote this variant of SERS by
SERS'. Observe that SERS' has more 'matching power’ than SERS. However (and in relation to the
previous item), note that this would not be ‘equivalent’ to lifting the pattern condition on HRS since
matching is computed by ‘developments’ in SERS'.
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A.1 Perpetuality in Calculi of Explicit Substitutions
Definition A.1 (RPO) Let 3 = f(31, ..,3m) and t = g(t1, ..,tn) be terms in 7}. Then 3 >77 t if and only if
one of the following holds:

1. (subterm) s,- >-7¡ t or 3,-= t for some i e 1..m

2. (decreasing heads) f >>g and s >-7¡t], ..,3 >71 tn

3. (equal heads) f = g and (31,..,3m) HH (t1,..,tn)

where >-’T'is the extension of >-7-,to multisets.

Lemma A.2 (Subject reduction) Let l" D M : a be a derivable type judgernent and suppose M —>p“N.
Then I‘ D N : a is a derivable type judgernent.

Proof. By induction on the reduction M —>,.N with r e F63. Thus we consider the cases when the reduction
takes place at the root and when the reduction is internal.

Suppose the reduction takes place at the root. Then we have the followingcases to analyse:

o r = Beta2. Then M = (Am: T.P)Q and N = P(:c := Q) and the derivation runs

P,::TDP:U——abs
PDM:T.P:ZT(-r)-va PDQ:ZT(-r)

a
PD(/\2:T.P)QZU

PP

and we obtain

P,::TDP:a I‘DQ:ZT(1')

P D P(= := Q) : a

o r = TBeta. Then M = (At.P)'r and N = P[t := 7']and the derivation runs

FD P : a'— abs
I‘DAt.P:Vt.a’— tapp

l" > (At.P)'r : a'{t 4- ZT(T)}

where t í FTV(1"). We may obtain

F D P : a'——tsubs
FD P[t := 'r] : a'{t <- ZT(1')}
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Note that l" e { {1:1:aí,...,:c,, :o‘á} 02:21 cr,-[t:= T]for all 2'e 1..n} where I‘ = {a¡,...,a'n}, since
t séFTV(I‘) and we may use the rule ztgc.

o r = zapp. Then M = (PQ)(a: := R) and R = P<z := R)Q(a: := R) and the deriv'ation runs as follows

I‘,:I::-rDP:a¡-va l",:|::'rDQ:a¡
“PP

I‘,:|::-rDPQ:a’ PDR:ZT('r)
subs

l" D (PQ)(:|: := R) :a'

and we may obtain

l",:c:7'DP:a'1—vcr I‘DR:ZT(-r) 1",:r:'rDQ:a¡ I‘DR:ZT(-r)
subs

l‘DP(:¡::=R):a¡-ra PDQ(:::=R):01
“PP

PD P(a: := R)Q(a: := R) : a

o r = zlam. Then M = (Ay: 01.(P))(:c := Q) and N = Ay101.(P(:c := Q)). The derivation runs

l",a::-r,y:a1DP:a2
abs

I‘,z :rDAy:al.(P: ZT(a’1)->a2) I‘DQ: ZT(-r)
. subs

l"D (Ay: al.(P))(:|: := Q): ZT(a¡)-r 02

Now by the variable convention we may assume that all bound type variables in Q do not occur free in a]
and that y does not occur bound in Q. Then by Lemma 3.43 we have that I‘,y : al D Q : 7' is a.derivable
type judgement. This allows us to construct the followingderivation.

P,I:T,y:01>PZU2 I‘,y:a1DQ:ZT(-r)
subs

I‘,y:01DP(::=Q):ag
8

I"D Ay: a1.(P(z := : ZT(01) -v 02

o 1-= zvar. Then M = :1:(a::= P), N = P, a = ZT(0’) and the derivation runs

l",:|:: a’ D:|: : ZT(a') I‘D P: ZT(a')

l" D :|:(:|::= P): ZT(0')

And the subderivation ending in the F D P : ZT(o") suffices.

o r = zgc. Then M = Q(a: := P) and N = Q with :I:fi FV(Q), and the derivation runs

I",z : ‘rDQ : ZT(a’) I‘D P: ZT(1')

I‘D Q(z := P) : ZT(a")

But one may verify by induction that if 1",a: : TDQ : a is a derivable type judgement such that a: 9!FV(Q),
then 1"D Q : a' is also a derivable type judgement. This concludes de case.

o r = zappt. Then M = (PT’)(z := Q) and N = P(:z::= Q)7J and a = a’{t 4- ZT(T’)} where

I‘,:|::1'DP:Vt.a"——— ¡app
1",::rDP‘r’:a’{t<-ZT(T')} I‘DQ:ZT(-r)

subs
P D (PT')(:: := Q) :a'{t 4- ZT(-r’)}

Then we may commute the application of rules tapp and subs as follows

I",z:‘rDP:Vt.a' I‘DQ:ZT(7')
subs

l" D P(z := Q) :Vt.a'
tapp

l" D P(z := Q)1" :a’{t 4- ZT(-r')}
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o r = zlamt. Then M = (At.P)(a: := Q) and N = At.P(a: := Q) and the derivation runs

l",:I: : 'r D P : p—— tabs
I‘,:r::-rDAt.P:Vt.p FDQ:ZT(1')

subs
F D (At.P)(:I::= :Vt.p

where t 5€FTV(F,:¡: : T). And we may obtain

I‘,a::-rDP:p PDQ:ZT(T)— subs
I‘ D P(:|: := Q) : p

l" D At.P(:: := Q) :Vt.p

o r = ztapp. Then M = (PQ)[t := T] and N = P[t := T]Q[t := T] and the derivation runs

At>P=al —v02 ADQHII

A > PQ : 02
tsubs

A[l:=-r!D :=T]=02{t‘-

CPP

And we may obtain

ADP:al-vaz A>Q¿,1
tsubs tsubs

A(t:=‘I-]DPlt := Tl2(al _’‘72){t'- A[t:=‘r]DQltz: Tl:al{t ‘-
“PP

A[¿Z=,]D Plt := 'rIQlt := 1'] :az{t 4- ZT(T)}

o r = ztlam. Then M = (Ay: a’.(P))[t := 7']and N = Ay : a’[t := T].(P[t := 7]) and the derivation runs

A,y:a”DP:p——abs
ADAy :a'.P:ZT(a”) —vp

tsubs
A[t:=1‘]I>(/\11=t7'-P)lt == ‘rl =(ZT(U') -> IJ){t '- ZT(T)}

and we may obtain

A,y : a’ D P : p
tsubs

A[¿¡=,],y : ajlt := 1']D P[t := 1'] : p[t 4- ZT(T)}

Al¿:=,¡ D Ay: a'lt := T].P|t := 7'] : ZT(a’lt := 1]) -v p[t 4- ZT(T)}

Then by Lemma 3.29(2) we are done.

o r = ztva1'2. Then M = a:[t := T] and N = a: and the derivation runs

A D :I:: ZT(p)
subs

A¡¿:=,¡ D :[t := 1'] : ZT(p){t <- ZT(T)}

where :1:: p e A. Let :1:: p’ e Ama} and therefore p’ =ZT p[t := 1']. Then ZT(p’) = ZT(p){t <- ZT(T)}
using Lemma. 3.29(2) and the fact that ZT is complete. Then A[z;=,]D z : ZT(p’) = ZT(p){t <- ZT(T)}
is a derivable type judgement (using var).

Note that if the ztvar2-rule were replaced by the ztgc2-rule then the followingresult, which may be proved
by induction on the size of the derivation, would be required: if A D M : p is derivable and t é FTV(M)
then A[¿¡=,) l> M : p{t <- ZT(1')} is derivable for any type T.

o r = ztappt. Then M = (P'r)[t := T’]and N = Plt := T’]T[t:= T’]and the derivation runs
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A D P : Vu.p—— tapp
A D P-r :p{u 4- ZT(T)}

mbs
AIM] >(mu :=r’]=p{uh zmmt .- zw»

and we may obtain

ADP:V‘u.p
ts-ubs

A[¡¡=.,.:]D Plt := 'r’] : (Vu.p){t <- ZT(1")} = Vu.p{r 4- ZT(T’)}

A¡¿,=.,.I¡D P[t := -r’]'r[t := 'r’] : p{t <- ZT('r’)}{u 4- ZT(1'[t := T’])}

Then using Lemma 3.29(1) and (2) we are done.

o r = ztlamt. Then M = (Au.P)[t := 'r] and N = Au.P[t := 7']and we assume by the variable convention
that u í FTV(T). Then the derivation runs

ADP:p——tabs
ADAu.P:Vu.p

tsubs
A[¿¡=,.]D (Au.P)[t := 1'] : (Vu.p){t 4- ZT(T)}

where u í FT V(A). We may assume by the variable convention that u 5€FTV(A[¿:=,]) and thus obtain
the derivation

A>P2p
tsubs

A[t¡=,] D Plt := 'r] :p{t 4- ZT(T)}

A[¿,=,.] D Au.P[t := 1'] :Vu.p{t 4- ZT(1)}

Suppose now that the reduction is internal. Then we consider the followingcases according to each possible
context C

o C = A2 : -r.P. We must consider two possible cases:

—P ap“ P’ and therefore N = Aa:: 1'.P’. This case is handled by the induction hypothesis.

— 7' ->z'p -r’ and therefore N = Aa:: 7".P. Then the derivation runs

I“, :c : 'r D P : p— abs
PDA::1'.P:ZT(1) —op

And we may conclude by using the context reduction Lemma 3.44 on the derivation ending in the
premise of abs followedby a new application of abs, and noting that ZT(T) = ZT(T’).

o C = At.P. Then P —>p“P’ and N = At.P’ and we use the induction hypothesis.

o C = PQ. Then either P Hp" P’ and therefore N = P’Q, or Q —>puQ’ and therefore N = PQ’. In both
cases we use the induction hypothesis.

o C = Pp. Then either P —>puP’ and therefore N = P’ p, or p —>ZTp’ and therefore N = Pp’. For the
first case we use the induction hypothesis. The second case is resolved by a new application of tapp and
noting that ZT(p) = ZT(p’).

o C = P(a: := Q). Then either P ->p" P’ and therefore N = P’ (a: := Q), or Q —>puQ’ and therefore
N = P(a: := Q’). In both cases we use the induction hypothesis.

o C = P[t := T]. Then the derivation runs

ADPzp
ts-ubs

Alta.) D Plt := 1']:p{t 4- ZT(T)}
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And either P —>p"P' and therefore N = P’ [t := T], or 7' —>ZT7“ and therefore N = P[t := T' For the
first case we use the induction hypothesis. For the second we construct the following derivation.

ADP:p
tsubs

A[¿:=,] D P[t := T'] :p{t á- ZT(-r')}

We are left to verify that the assignment A[¿:=.,¡is in the set of type assignments { {2:1 : aí, . ..,:cn :
0;} | a; =ZT 0’¿[t:= 7"]for all i e 1..n} = A[¿:=,:},where A = {1:1: 01,...,a:n tan}, which is true since
T —DZT TI.

A.2 Explicit Substitutions for a Calculus of Objects

A.2.1 Confluence of (¿b

We prove confiuence of (¿b by adapting a proof technique presented in [Tak89], a. variation of the Tait-and
Martin Lóf technique. For this, a notion of parallel rewriting is required, analogous to that defined in [Tak89]
for the A-calculus but in the g-calculus. But before that, some basic properties of (gb-rewriting and preservation
of qá-rewriting by updating and substitution, must be considered

As regards the behaviour of substitutions with respect to substitution, the updating functions and reduction
we have the followingresults (similar properties in the fiamework of calculi of explicit substitution appeared in
[KR95]):

Lemma A.3 1. Let a, b e ’Jzáb.Then Vi,j,k such that 2'> 0,j 2 0 and j < i 5 j + k we have UÏ+1(a){{i <
b}}= Llfla).

to . Let a,b e 7215and i 5 n —k. Then Llfi(a){{n<- b]}= ¿(“afin —i + 1 <-

W. Let a GTú and p 5 k < p + j. Then u;(u¿(a)) = U¿+"‘1(a).

a; . Let a,b E Tú and n S k +1. Then ¿{flafln <- b]})= Uí+1(a){{n <- Uí_n+¡(b)}}.

01 . Let a e 7% and n 5 1+ 1. Then u{;p(u;(a)) = u;(uf'+p+1_n(a)).

0’) . Let a,c e 7gb. Then UE(a){[k + 1 <- c}}= a.

Proof. A11but the last item are proved by induction on a. The last item may be proved by using item (1)
and the fact that for any j 2 0 we have U}(a) = a.

The Substitution Lemma also holds for the (gb-calculus. For the sake of completeness we have included its
proof in full detail.

Lemma A.4 (Substitution Lemma) Let a, b,c E 7%. Then V17.> 0,Vz', 1 5 i S n, afii <- bBHn <- c} =
a{n+1<—c}}{{i<—an-i+1 <—c}}}}.

Proof. By induction on a. using Lemma A.3, items (1) and (2). .

The reduction relation is preserved by substitution and the updating functions. Since the proofs of these
results resemble those of the corresponding results in the (¿b-calculus we have omitted them.

Lemma A.5 Let a, a’,b E 7;; . Then if a —><¡a’ thendb db

1. afin <- b} acá, a'fln <- b}
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2. anA-a} wei (¡firm-al}

3. Ufla) ¿db Ufla’).

In fact the following, more precise, variant of the preceding lemma shall be used later. Its proof relies on
Lemma A.5.

Corollary A.6 Let a, a.’E 7g. and k 2 O. Then if a ¿»<3 a.’then

k , ‘_
1. aflnh b} acá a {{n b}}

I
2. bflru-afl -»¿b b{n<—a]}

We now consider its confluence by adapting a. proof technique presented in [Tak89], a variation of the
Tait-and-Martin Lóf technique. For this, a notion of parallel rewriting is required, analogous to that defined
in [Tak89] for the A-calculus but in the c-calculus. Figure A.1 provides such a definition. Also, the results
developed in the previous subsection shall be used.

a,=>a,’ aáa’ g=>g’
ná" a.l=>a.’.l l:=a=>l:=a,’ l=g=>l=g’

a.=>a,’ m,-=>m;2'€1..n a,=>a.’ m=>m’ o— . - v
<(a) =“ <(a’) [Mmm] => [mi ‘61“"1 a <1< m >=> a’ <1< m’ >

b=>b’ m.-=>m;iel..n,z';éj I
[li á ((b)'miz€1..n.z#:l]_lj => bIHI ‘_ [li i g.(b/)),m;161.371,136313

a.=>a,’ b=>b’ miámSÍGI..n,i7Éj

[lj 2: a’mZEI..n,1#J]_lj => al [mizEIHn] <1< ¿j á ((b) >=_ [lj á (“J/ym; ¡61.1.1

b=>b’ mi=>m,’¡iGIJ7,,i7Éj

[miiEI..n] q < lj := b >á [tj := (Jam; i61..n]

Figure A.1: Parallel reduction in the (¿b-calculus

Definition A.7 (Maximal Complete Development) Let a e 7:15then we define a" (the Maximal Com
plete Development of a) inductively as follows:

n" dÉf n

(llj í €(b),mii61""'#jl-lj)‘ déf b'lll ‘- [lj á <(b'),mï ¡61“"¿7513
([lj 2: b'miiel..n,i#j]'lj). dér b.
(a.l)" déf a".l if a.l is not a redea:
«br dé‘ car)
(ze gr dé‘ zí 9*
(z := b)‘ dé‘ z := b'

([miiel..n] 4 < ¿j z: c >)t déf z: cl, 1'61..n,i96j]
([mit'EI..n] 4 < ¿j á ((b) >). ag “j :- ((bm)' m; iEl..n,i96j]
(a.<l<m>)‘ déf a"<1<m">ifa<1<m>isnotaredez.
[miielnnln ¿g Im;- i61..n]
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The result below considers the behaviour of the parallel reduction relation respect to the updating functions
and substitution.

Lemma A.8 Let a, b e 'Ïcáb.If a.=>b then Vk,n 2 0 we have una) =>Hub).

Proof. By induction on a.

o a = p. Then b = p and we may use rule (Ind).

o a. = c.lj. Then there are three subcases we must consider:

—b = c’.lj and c =>c’. Then by the induction hypothesis we have u: (c) =>Uf(c’). Then using rule (I)
we obtain Uf(c).lj =>Uï(c’).lj.

_ c = [lj á g,(d),¡rr-¿{ie141,175.7]and b = dIHI ‘_ [lj i g(¿i/xr”;42'61..n,i;é‘7']:fl,where d => dl and mi :3.
Then by inductionhypothesiswehaveUf+1(d)=>Ug+1(d’)and =>¿(“m9, and therefore,

awáwmwuwmáwmo m
[li í <(uï+1(d)),uï(mi) i61""fi’é’l-¿j="u?+1(d'){1 ‘- [lj á <(Uï+1(d')),uï(mí) ¡61""#le

And by Lemma A.3(4) (n = 1) we have that Up+1(d'){1 <- [lj á q( {+¡(d’)),u,:‘(mfi) ¡El-“"5".” =
wwmemáwmfimswm.

—c = [lj := ¿miiel'm'ifiI and b = d’, where d =>d’. Then by the induction hypothesis we have
:(d) =>Ufld’), and therefore by rule (Ia), we have [lj := f(d),lzl,:‘(m,-) ie1""".9‘-"'].l¡¡=>Ufld’)

o a = c 4 < m >. Then we consider three cases, one for each of the possible rules that could have been
applied (i.e. (Ov), (Om), (0a.)). They are dealt with as above.

The remaining cases are similar and are dealt with as above.

Lemma A.9 Let d,d',e, e’ e 721°and n Z 1.Ifd=> d’ and e á e’ then we have ¿{{n<- eB =>d'fln 4- e’]}.

Proof. We use induction on d.

o d = p. Then d’ = p and we have

p-1=P{{n<-e’}} ifp>n
Film-el} = U6‘(e)=>U6‘(e’)=Pfln<-€’l} ifp= n

P=Pfln‘-C']} ifp<n

Case p = n is justified by using Lemma A.8.

o d = c.l_.,-.Then we must consider three subcases:

- d’ = c’.lj with các’. Then c.l{n <- eB = c{{n4—e]}.l=>c’{n<—e’}}.l = dlfln <- e’}}by the
induction hypothesis.

- c = [lj á g(b),m¿iel""#j] and d’ = b’fll <- [lj í c(b’),m;"€1""'#j]} with b=> b’ and m,-=>m2.
Now aljfln <- eB = [lj i ((bfln + 1 4- e}}),m¿fln <- e}}‘51""¿9‘j].lj.
By induction hypothesis an + 1 <- e}}á b’fln + 1 <- e’}}and mifln <- e}}=>mifln 4- e’}, therefore
by applying rule (Im) we obtain

c.lj{{n <- e}} [lj í ((bfln + 1 <- e}}),m¡{{n <- e}} i‘51""".9‘-7'].lj
; bill" + 1 ‘- e’lllll ‘- [li i “bill” + 1 ‘- e’}}).mfi{n<- e’]}¡eL-"¿fin
= blgn+ 1 ‘_ e/BHI ‘_ á s(¿70,1774i61..n,i#j]{n (_ el}B

b/HI4_ i 1€]..n,i;éj]}ün‘- 6,}
||II

l“ P“a.

d’fln «- e’]}
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—c = [lj := b,miielm’ifi ] and d’ = b’ with b =>b’. Now by the induction hypothesis we have that
bfln 4- e}}=> b’fin <- e’} thus resulting in

bflnhefláb'flnhe'fi I
[zi := bfln «- e}.m,."€1--"#ï].z,. e b’fln ‘- e’]} a

o d = ((0,). Then from the definition of parallel reduction it must be that d’ = ((a’) with a =>a’. By
induction hypothesis a.{{n+ 1 <- e]} => a’fln + 1 4- e’1}thus resulting in

afln+1 <—e}}=>a’{n+1<—e’]}

q(a{n+1<—e}}) =><;(a’<Hn+1 <—e’})

and by the definition of substitution we are done.

d = (l á g). Then by studying the inference rules defining the parallel reduction relation we conclude that
d’ = (l á g’) with g =>g’. We resolve using the induction hypothesis in a similar fashion to the previous
case.

d = (l := a). Then by studying the inference rules defining the parallel reduction relation we conclude
that d’ = (l := a’) with a =>a,’. We resolve using the induction hypothesis in a similar fashion to the
previous case.

o d = a. < < m >. There are three subcases we must consider:

- d’ = a’ <1< m’ > with a =>a’ and m =>m’. Then we resolve using the induction hypothais.

— d = [miiel'm] <1< lj á ((b) >. Then d’ = [lj á q(b’),m; 1.el'l‘fij] where b => b’ and m,- =>m2.
Now by induction hypothesis an + 1 <- e]} =>b’fln + 1 <- e’}}and m.-{n <- e} =>máfln <- e'] a1
lowing us to conclude using the 0m-rule:

bil” + 1 t- el} =>b’lln +1<- e'}} mill” <- el} =>mill" ‘- e’l}

[mifln <- e}}lam] 4 < lj á ((bfln + 1 <- eB) >=> [lj i ((b’fln + 1 1- e’}),mífln <- e’} ¡el-“'iïáj]

And by the definition of substitution we are done.

— d = [miiel'm] < < l_.¡:= b >. Then d’ = [lj := b’,m;i€1""'#j] where b => b’ and m,- => m2.
Now by induction hypothesis we have b{{n«- e]} => b’fln <- e’}}and mifln <- e]} => mgfin 4- e’]} al
lowing us to conclude:

b{{n<—e}}=>b’{{n<—e’]} m¿{{n<—e]}=>m;{n<—e’}} o. . . . a

[mifln <- e]}‘61""] <1< lj := b{n <- eI} >=> [lj := b’fln <- e’},méfln <- e’}}‘61"""7‘1]

And by the definition of substitution we are done.

o d = [m¿‘61""]and therefore d’ = 1Elm] where mi =>mg. Then we resolve using the induction hypoth
esis.

Proposition A.10 Let a, b E 72‘15.If a =>b then b =>a‘.

Proof. We use induction on a and lemmas A.8 and A.9.

o a, = n. Then b = n and we are done.

o a = c.l where c.l is not a redex. Then b = c’.l and c =>c’. By induction hypothesis c’ :5 c" then by rule
(I) we may conclude c’.l =>c".l and since (c.l)" = c'.l we are done.

o a = [lj á g(d),m¿iel“"'#j].lj. Then there are two subcases we must consider.
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_ b = ¿li With [li i €(d)'miielhn,i#j] =>c’. Studying the rules we verify that c’ = [m3,mí‘61""'#j11

where (l_.,-á q(d)) => mg.and m,- => mi. And we may further state that mg. = (lj á c(d’)) with d => d’.
Then using the induction hypothesis we may obtain

d’ => d“ m2 => m;

[li í (mmm; i61..n.í#j]_lj => ¿nn-H1(_ [l].á ((dn),m; i61..n,i;éj

Note that [tj ¿_g(d'),m;"€1--"v‘9‘í].z,-= ¿tj and also ¿‘51 «- ¡tj á q(d"),m;' i61-"¿9‘1'133= ([zj e
((d),mi1€1..n,1géglllj).‘

— b = d’Hl 1- [lj á q(d’),m; ¿61""'i’éj]}}.Then we must have d á d’ and m,- =>m; with 2'e 1..n,i aéj.
Then by induction hypothesis d’ á d" and m2 =>mï. Thus

d’ => d‘— M,Mm
láq(d’)=>lág(d") méám;i€1..n,iaéj

[l á S.(dl),,m; 1'61..n.i#j]=> [l á ((dtxmz iEI..n,i;éj]

Im
1]}

Ob

Now since d’ =>d‘ by Lemma A.9 we may conclude

d/‘Hl (_ [lj á “¿0,1112 1'61..n.i#:i]}á ¿in-H1(_ [li i “du-x172: ¡EL'miíílB

i61..n,i;éj]'ljo a = [l- := d, m,- . Then there are two subcases we must consider.

— b = c’.l,- with [lj := d,miiel""'#j] => c’. Studying the rules one may verify c’ = [m’-,m2¡61""¿96'7'1
where (lj := d) =>m;- and m,- =>m2. And we may further state that m; = (lj := d’s with d => d’.
Then using the induction hypothesis we may obtain

d’ => af“ I. . . a

[1,-;= d’,m; 'El--"v‘9‘J].z,.g d“

1'Note that [zj ;= d’,m’ ‘e‘--""'9‘J'].z,-.= c’.l,- and a.” = [zj := d,mj€1--"I"#].z;

— b = d’ with d => d’ and by induction hypothesis d’ =‘>d" and we are done.

o a = [miiel'm]. Then it must be that b = film] where mi =>mg. By induction hypothesis we have

that =>m; and therefore applyingrule (Ob) weget film] =>[mg' iel""]. Note that [m¿‘€1""]'=1 un].
o a= d4 < m > and aisnotaredex. Then b: d’ 4 <m’ > withd=>d’ andm=>m’. Weconclude

using the induction hypothesis.

o a,= [miia'fl] 4 < lj á {(d) >. Then we must consider two subcases:

—b = a.’4 < m’ > where [mii61""] =>a’ and (lj í c(d)) =>m’. Then it must be that a.’= film]
with m,-á m2 and m’ = (lj i q(d’)) with d =>d’. Then by induction hypothesis we obtain mí á m;
and d’ => d“ and therefore

d’ => d' m; e» m: O
¿61..n]q <lj á ((dl)>á :- iE]..n,i96j]

m

— b = [lj á g(d’),m; ¡61“"'#j] where m,-=>m2 for i e 1..n,i 96 j and d=> d’. Then by induction
hypothesis we obtain m; =>m; and d’ =>d" and obtain

d’=>d" m2=>m;' i61..n,iaéj

[ljá g(¿i/LT“;iEl..n.i#J']á i i61..n,i#j]

o a = [miiel'fl] 4 < lj := d >. Then we must consider two subcases:

—b = a’ 4 < m’ > where [ijL'n] =>a’ and (lj := d) =>m’. Then it must be that a’ = iElm]
with m.- =>m; and m’ = (lj := d’) with d =>d’. Then by induction hypothesis we obtain m; =>m:
and d’ => d" and therefore
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d’ => d‘ m; =>m; o
i61..n]q < ¿j := d/ >=> [li := dt’m; iel..n,i;éj]

a.

—b = [lj := d’,m;i61“""'#] where m,- =>m2 for i E 1..n,z' 96 j and d=> d'. Then by induction
hypothesis we obtain mi =>m: and d' =>d" and therefore

d’=>d" mí=>mï i61..n,iaéj
[lj Z: dl, ¿61..n.i#j]=>[lj Z: ¿i’m? iGl..n,i;éj]Ob

The cases for methods and fields are similar.

As an immediate corollary of Lemma A10 we may conclude that the parallel reduction relation satisfies the
diamond property. This entails confluence of gáb.

Proof.[ofLemma 5.15] Firstly, note that acá; á g-»<¿b. The first inclusion follows from the form of the
rules defining the parallel reduction relation and the fact that for every a, e 7:15we have a á» a. The second
inclusion may be proved by induction. Therefore we have that =>"=-»¿“. The diamond property of =>concludes
the proof.

A.2.2 Strong Normalization of BES
We shall denote the rewrite system whose only rule is SW by the S W-rewriting system or SW for short.

Definition A.11 (External form) We define an external form as a term afir‘l (¡c1)][1'[iz(k2)]...[1ï‘" (kn)]
where kj may be ©l, b/ or T in 72‘,“ such that it verifies the following conditions:

1. a. is not a closure.

2. Vj €1..n —1 if kj = ©l then ij Z ii“.

Note that in an external form a[1‘ril(lc1)][1ïi2(k2)]...[fr‘" (kn)] the only possible S W-reductions may occur
in a or in k,-with 2'e 1..n. We shall use the following lemmas for the proof of weak normalization.

Lemma A.12 If a[51][32]...[sn]is an external form then for every sn.“ =fii"+1 (an) there is an external form
b = a[3j1][3j2]...[3jn+l]such that “1,...,jn+1] is a permutation of [1,..., n+1] of the form [1,. . . ,i-l, n+1,i, . . . , n]
and a[31][sg]...[sn+1] —»sw b.

Proof. By induction on n.

o Case n = 0. Since a is not a closure, (¡[31]is an external form and a[s¡] -»sw a[31].

o Case n > 0. We may assume :3n:1?" (©l) and in“ > in otherwise we are done. Now we consider the
following cases:

— If kn“ = ©l’ then a.[s¡][.92]...[.‘3,,][1‘[""+l(©l’)] —>sw a.[.<31][.32]...[1'r‘l"+l(©l’)][s,.]. Now we apply the
induction hypothesis to a[31][32]...[sn_1]and [1‘r""+l(©l’ and obtain an external form e such that
a[:31][.32]...[.s,,_1]HP“1(@l’)] —>sw e. Now the resulting permutation of [1, . . . ,n —1,n + 1] can have
one of two forms

* [1, . . . , n- 1,n+ 1]. Then e ends in the substitution [TP-"+1(©l’)] in which case e[3n] is an external
form. The resulting permutation of [1, . . . ,n +1] is [1, . . . ,n —1,n+ 1,17,].

* [1,. ..,2' —1,n +1,i,...,n - 1]. Then e ends in the substitution [sn_1] = [fiin-1 (©l”)] and
therefore ¿[sn] is an external form since a[31][52]...[sn] is. The resulting permutation is [1, . . . ,2'—
1,n+ 1,i,...,n— 1,17.].

Therefore we have a.[31][.132]...[.s,,][1‘r""+l(©l’)] —>sw a[31][32]...[‘fl'i“+1 (©l’)][sn] -»sw elsn] and e[sn]
is an external form.
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— If kn“ = c/ then we may apply SW and obtain a,[:31][52]...[fl""+1(c/)][1T‘" (©l)]. Now by applying
the induction hypothesis to the term a,[31][32]...[s,,_1]and [1T‘"+1(c/)] we obtain an external form e.
Now the resulting permutation of [1, . . . ,n —1,n + 1] can have one of two forms

* [1,. . . , n- 1,n+ 1]. Then e ends in the substitution min“ in whichcase e[s,.]is an external
form. The rsulting permutation of [1, . . . ,17,+ 1] is [1, . . . ,n —1,n + 1,n].

* [1,...,i —1,17.+ 1,i,...,n —1]. Then e ends in the substitution [sn_1] = [fiin-1 (©l”)] and
therefore e[sn] is an external form since a[31][32]...[sn]is. The resulting permutation is [1, . . . ,i
1,n+ 1,i,...,n— 1,n].

The case where kn.“ =T is similar.

Lemma A.13 If a[31][sg]...[sn]is a term in TM“ such that a is not a closure then for every su“ =1‘r¿"+1(knfl)
there is an external form b = a[5¡,][3¿,]...[3¿n+,]such that [i1,...,i,,+1] is a permutation of [1,...,n + 1] and
a[51][32]...[sn+1[ —»SWb_

Proof. By induction on n and using Lemma A12.

Lemma A.14 (Weak Normalization of SW) The SW-rewritingsystem is weaklynormalizing.

Proof. Using the technique presented in [KR97]. Let a. be any term in TQM. We shall use structural
induction on a to prove that there exists a’ e SW-normal forms such that a —»swa,’.

o If a = n then we are done.

o The other cases where a is not a closure are straightforward since the normal form is computed by obtaining
the normal forms of the subterms.

o So suppose a = b[31][52]...[s,,]and b is not a closure. By the previous lemma, a -»sw b[s,-,][s,-,]...[s.¡n].
Since b and every 3,1.is simpler than a we may apply the induction hypothesis and obtain normal forms
b’ and j such that b -»sw b’ and 3.-}.—»sw 323..Note that if si). =1'r"5(kj) with kj being of the form ©l

or c/ or T then 32,.must be of the form sii :1?!" (k9) where k;- is ©l or c’/(with c -»sw c’) or T. But then
we may obtain a normal form for a, namer b’[321“:322...[s;n].

For the proof of strong normalization of SW we shall need the following lemma which we state without
proof (see [Oos98] for a proof and some historical remarks) .

Lemma A.15 Let A = (S, R) be an Abstract Reduction System such that:

o R is weakly normalizing.

o R locally confluent.

o there exists a function f : S —>IN such that aRb implies f (a) < f (b).

then R is strongly normalizing.

Lemma A.16 (Strong Normalization of SW) The SW-rewritesystem is strongly normalizing.

Proof. We define the following function f : 72‘," H INE“,

nn) dé‘ 1 f([m.-"€1""l) “é‘ mmm.»
¡(«1.1) “=°‘ ¡(«2) f(a[s]) dé‘ 2f(a)+f(s)
¡(a<<m>) "=°‘¡(a)+¡(m) rms» d=°‘me)
¡«(un "é‘ ¡(«2) ¡(«21) "é‘ 1

mig) d=°‘¡(9) ¡(bn dé‘ 1
¡(z:=b) dé‘ f(b) m) d=°‘ 1
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We prove by induction on a. that if a. —>5wb then we have f (a) < f (b). Below we consider the cases where
the reduction takes place at the root, the other cases hold by the induction hypothesis.

In fact, since k > i we have

f(a[1Ti (©l)][1ï’°(8)l) = 4f(a) + 2*+ 2‘ + 2"f(8) < 4f(a) + 2"¡(3) + 2"1’(8) + 2‘ = f(a[1‘r’°(3)ll1Ti(©l)l)

Since SW is locally confiuent (the rule SW overlaps itself and the corresponding critical pair may be closed
in SW) the strong normalization property followsfrom weak normalization and by applying Lemma A.15.

For the proof of strong normalization of ESDB we shall need Lemma 2.6.

Lemma A.17 (SN of ESDBU{MO,FO, FI}) ESDBU{M0, F0, FI} is strongly normalizing.

Proof. We define a lexicographic order based on a measure f : 72M,H INE; x INE; by providing two

polynomial components h : 'JÉMH N22 and k : TQMH INZg and then letting f(:1:) déf (h(z),k(z)). The
functions h and k are defined in Figure A.2. Note that for any substitution s, h(s) 2 2.

h(n) dé‘ 2" k(n) dé‘ 2"

h(a.l) dé‘ h(a)+h(l) k(a,.l) dé‘ k(a)+k(l)
h(a<l<m>) dé‘ h(a)+h(m)+1 k(a<1<m>) “¿f k(a)+k(m)+1
h<<(a)) dé‘ h(a)+1 lema» dé‘ k(a)+1
h(l:= a) “¿f h(l)+h(a) k(l:= a) dé‘ k(l)+k(a)
haág) "=°‘h(z)+h<g) kaág) ag "(t)+k<g)
h([m,-"“""l) d=°‘22=1hm>+n+1 kamseL-"n L“ zgluminn“
Mala!) dé‘ h(a)h(s) k<als1> "¿f k(a)k(s)

hms» dé‘ h(s) kms» dé‘ 2km
h(b/) “5‘ ha») k(b/) “é‘ k(b)

h(@l) dé‘ 3 k(@l) dé‘ 3

ha) d=°‘ 2 km dé‘ 3

where h(l) = k(l) déf 1

Figure A.2: Polynomial interpretation

Now we may show by structural induction on u that if u, —>BESU{Mo'po’p¡'co}v then f (u) > f (v), and if
u —»swv then f (u) = f Finally, we conclude by applying Lermna 2.6 and A.16.

We shall consider reductions at the root only since for internal reduction the property holds by the induction
hypothesis.

. ifu = uj z: a,m: elvmwuj -»n a = v thenh(u) = ha,- := a) + mw h(mi)+ n + 1 > h(a) = mv).

ifu = [mfel'm] <1< lj á f >->Mo [lj á f,m¡iel""'#j] = v, then

h(u) = (Z?=1h(m.-) + n + 1) + ha;- = f) + 1 > hai = f) + EL?“ h(m.-)+ n + 1.

o ifu =[m¿i61""] <1< lj := a >—>po[lj := a,m¿i€1""'#j] = v, then

h(u) = (22:1 h(m,-)+ n + 1)+ haj := a) +1 > haj := a) + 2:2?" h(m.-)+ n + 1.

ifu = (g(c))[s] —>5M((chï (s)]) = v, then h(u) = (h(c) + 1)h(s) > h(c)h(s) + 1 = h(v).

o ifu = [mii e 1""'][5]—>so[rm-[3]"e 1""] = v, then h(u) = (2:?=1 + n + 1)h(s) > Eï=1h(m¡)h(s) +
n + 1 = h(v).
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ifu = (l := a)[3]asp l := a[s] = v, then h(u) = (1 + h(a))h(s) > 1 + h(a)h(s) = h(v).

ifu = (l á g)[3] —>53l á g[5] = v, then h(u) = (1 + h(g))h(s) > 1 + h(g)h(s) = h(v).

if u = a.l[3] —>s¡a,[s].l= v, then h(u) = (h(a) + 1)h(s) > h(a)h(s) + 1 = h(v).

o if u = a. <1 < m > [s] —>suals] < < m[3] >= v, then h(u) = (h(a) + h(m) + 1)h(s) > h(a)h(s) +
h(m)h(s) + 1 = h(v).

if u = 1[a/] ->pv°,. a = v, then h(u) = 2h(a) > h(a) = h(v).

if u = n + 1[a/] —>Rv°,.n = v, then h(u) = 2n+1h(a.) > 2" = h(v).

ifu = 1[@l]—>p¡m,1.l = v, then h(u) = 6 > 3 = h(v).

ifu = n + 1[@l]->R¡,wn + 1 = v, then h(u) = 2"“3 > 2"+1 = h(v).

if u = 1[1}(3)] —>FVa,L,-fl1 = v, then h(u) = 2h(s) > 2 = h(v).

ifu = n + 1[1’r(3)] ¿gym-¿m n[s][T] = v, then

f(u) = (2"“h(8)'2"+2k(8)) > (2"+1h(3)12"k(3)3)= f(v)

ifu = n[T]¿Vas-bm n + 1 = v, then f(u) = (2"+1,2"3) > (2"+1,2"+1) = f(v).

if“.=.al1ï" («Dig-Mm"([lj r= b,m.-‘El"""""l/)l -'co am" (b/)] = v, then h(u) = h(a)3(h(l == b) +
2;?! h(m¿)+ n + 1) > h(a.)h(b)= h(v).

O ifu = ami (©l)][fl'° (3)] —>swa,[1’rk(3)][1'ti(©l)] with k > i then f(u) = (h(a)3h(3),k(a)2‘.3.2k.k(s)) =
(h(a)3h(s), k(a)2’.3.2’°.k(s)) = h(v).

A.3 A de Bruijn Notation for Higher-Order Rewriting
A.3.1 From de Bruijn Valuations to Correct Valuations
In this section we shall prove that the translation of a valid de Bruijn valuation (Definition 6.67) does not
depend on the choice of the t-metavariable.

Lemma A.18 (Renaming and the U: (o) translation) Let l be a label of variables, z and y be two vari
ables, S be a.set of variables and a. be a de Bruijn term such that:

1. z E l and z É S,

2. y does not occur in U¡s(a), and

3. Names(FV(a)\\IlI) Q S.

Then we have U¿S(a){z <- y} =a U¡S{z._y}(a).

Proof. The condition Names(FV(a)\\ll|) Q S is required for U¿S(a.)and UI‘ÏZHy}(a) to be defined. The proof
proceeds by induction on a,. The case where a is of the form f (a1, . . . , a") follows from the induction hypothesis
so we consider the remaining ones.

o a = n. We have two further cases to consider:

—1 S n 5 Ill. Then on one hand U,S(n){z «- y} = at(l,n){z <- y} = at(l{z ‘- y},n) = U¿Ï2hy}(n).

—n > Then since z é S we have U¿S(n){z <- y} = zn_¡¿¡{z <- y} = 2,14” = zn_¡¡{z._y}¡ =
Uña-fl“)
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o a = ¿((11, . . . , a“). Then we reason as follows:

UF(a){z <- y} = €2.(Uf,(a1),--- ,Uá(am)){z ‘- y}
€z.(Uf,(a1){z <- y}, . . . , UIS¡(a,,,){z4- y}) (z el hence z 96a:

and y not in Uls(a))
:0, €2.(Uá{z,_y}(a1),. . . ,Uflhhy} (i.h.)
=a ¿v.(Ufi{z_y}(a1){z 4- v}, . . . , quz._y}(a,,){z <- v}) (v fresh)
:0, €v.(U3{z._yH:._u}(a1),...,U5{z,_y}{m_u)(am)) (i.h.)
=° Ev‘(UIí{24—y}(a'1)' ' ' ' ' U<iisl{z4—y}(afl (z 7€y and z í

-a ¿"-(Ugutizw}){ww}(°1)' - - -vUgvl{z4-y}){w4-v}(a"))
:0, €v.(U5,{z,_y} a1){w <- v}, . . . , U5,{z._y}(a,n){w <- v}) (i.h.)
=.¡,l ¿w.(U3¡{z._y}(a1), . . . , Uithhy} (w E l{z <- y} US)
= UIÏHHG)

Since the translation function on the LHS and RHS of the equation to prove may have chosen different
variables for the g binder we relate them through a fresh variable v.

Lemma A.19 Let a and b be_de Bruijn terms, l and l’ labels of binder indicators and a a binder indicator.
Then for j 2 0 we have: Value7+1(l,a) = Value-“¡(1217)implies Val'ue'7(al,a) = Value’(al’,b).

Proof. By induction on a.

o a = m. Since Valuej+1(l,m) = Valuej+1(l’, b) we have b = n for some index n. We proceed by cases:

—m S j + 1. Then since Valuej+1_(l,m) = m = Valuej+1(l’,n) by Definition 6.40 we have n = m and
therefore Value’(al,m) = Value’(al’,n).

—m > j + l. We have two difierent cases:

* m-(j+1) 5 Ill. Then by hypothesiswehave Valuej+1(l,m) = at(l,m—(j+1)) = Valuej+1(l’,n),
and hence 0 < n — + 1) S Il’Iand at(l,m - + 1)) = at(l’,n —(j + Therefore
Value7(al,m) = Value’(al’,n) since 1 < m —j S |al| and 1 < n —-j5 lal’I.

* m —(j + 1) > Then by hypothesis we have Valuej+1(l,m) = zm_(j+¡)_¡¡¡ = Valuej+1(l’,n),
and hence n —(j +.1) > Il’Iand m —(j + 1)—|l| = n —(j + 1) —|l’|. Therefore Valuej(al,m) =
zm_j_¡a¡¡ = Value’(al’, n).

o a = f(a1,:..,a,,). By Definition 6.40 and the hypothesis we have necessarily that b = f(b1,...,bn)
and V_alue’+1(l,a.,-)= _Value’+1(l’,b,-)for 1 S .z' S n so that by induction hypothais we can conclude
Value1(al,a,¡) = Value1(al’,b,-) and thus Value’(al, a) = Val'ue'7(al’ , b).

o a = ¿(a1,¿..,a.,.). By Definition 6.40 and the hypothesis we have necessarily that b = €(b1,...,b,,)
and V_alu67+2(l,a.,-)= Vqlue7+2(l’,b¡) for 1 5 2' S .n so that by induction hypothesis we can conclude
Value3+1(al,a,-) = Value’+1(al’,b,-) and thus Value’(al, a) = Value’(al’,b).

Note that the converse of Lemma A.19 does not hold (for a may already be present in l or l’ Indeed,
Value°(aa, 2) = Value°(aa, 1), yet Valuel(a, 2) 7€ Valuel(a, 1). The value function is used to determine when
a de Bruijn valuation is valid or not. It is defined in the SERSdb formalism in order to describe reduction
on de Bruijn terms. A natural question which arises is that of the relationship between value equivalent de
Bruijn terms considered as named terms via de U,’(o) translation in the SERS formalism. The followinglemma
investigates this matter.

Lemma A.20 Let a, b e 7'45,S be a set of variables, l, l’ be labels of binder indicators, k a label of variables,

and 0., a variable assignment. If both Uá(¡)k(a) and US"(1,)k(b) are defined, then Value(l,a.) = Value(l’,b)

implies Uá(¡)k(a) =a Uá(¿,)k(b).



A.3. A DE BRUIJN NOTATION FOR HTGHER-ORDER REWRITING 209

Proof. By induction on a.

o a, = m. Since Value°(l, m) = Value°(l’,b) we have b = n for some index n. The left hand side reads

at(av(l)ym) m S IlI
UosvaMÜn) = “(la m —Ill) |l| < m 5 |kl|

xm-Ilkl m > |kl| and zm_|¡k| e s

We now consider the following cases:

- m S Ill. Then since Value°(l,m) = at(l,m) = Value°(l’,n) we have n S ll’l and at(l, m) = at(l’, n).
Then Uá(l,)k(n) = at(0,,(l’),n) = 0,,(at(l’,n)) = 0,,(at(l,m)) = Uá(l)k(m).

— |l| < m S |lk|. Then since Value°(l,m) = zm_¡¿¡ = Value°(l’,n) we have n > |l’| and zm_¡¿¡ = zn_w¡.
Then m —|l| = n —|l’|. Thus Uá(¡,)k(n) = at(k,n —|l’|) = at(k,m — = Uá(¿)k(m).

—m > |lk|. Then since Value°(l,m) = zm-“ = Value°(l’,n) we have n > |l’| and zm-“ = :cn_¡¿:¡.
Then m —|l| = n —|l’| and since m > |lk| we also have n > |l’k|. Thus Uá(,,)k(n) = 2,14,,“ =
zm-Ilkl = Uá(¡)k(m)

o a = f(a,1,...,a,n). Since Value°(l,a) = Value°(l’,b) we have b = f(b1,...,b,.) and Value°(l,a,-) =
Value°(l’,b,-) for 1 5 i S n. Then by the induction hypothesis we have Uá(¡)k(a,-) =a Uá(,,)k(b¡) and
hence Uáa)k(a) =a Uá(,,)k(b).

o a. = ¿(a1,...,an). Since Value°(l,a,) = Value°(l’,b) we have b = {(b1,. . . ,bn) and Value1(l,a.¡) =
Value1(l’,b,-) for 1 5 i S n. Then Value°(fil,a¡) = Value°(fil’, bi) holds by Lemma A.19, where in
particular we can take fi to be a fresh o-metavariable such that 6‘, is undefined on fi. Let us extend the
function 0,, to fi by defining 00(5) dÉrz, where z is a fresh variable such that z í 0,,(l)01,(l’)kU S. Then

since Ufgv(l)k(a.¡)and U5,V(l,)k(b,-)are defined we can apply the induction hypothesis to get Uéïmnkwi) =

Ufev(l)k(ai) =a Uzuarwwi) = Uoí(pll)k(bi) for 1 S i S n
We now reason as follows:

U¿(l)k(€(ala - h- ,an))

¿z-(Ufau(l)k(al)v - - -vUfav([)k(an)) (a7í 00(l)k U S)
=a ¿2-(Ufau(l)k(al){z "‘ z}»-- -oUfov(1)k(an){z ‘- zl)
= Ez.(UZ9u(¿)k(a.1),. . . , U5v(¡)k(an)) (L.A.18)
=a ¿z.(Uj,u<l,)k(b1), . . . ,U¿v(,,)k(bn)) (i.h.)
= EZ-(Ufzu(u)k(b1){y‘- zlv -- ' t Uje"(l')k(bn){y ‘- zl) (LA-18)
=a fy.(U590(l,)k(b1), . . . , U59v(¡,)k(bn)) (y Q 0,,(l’)k U S by Def. 6.63)

Uá(u)k(¿(b1,...,bn))

Note that, in general, the converse of Lemma A20 does not hold. Indeed it sufl'lcesto consider k = e, l = a,
l' = ,6, a = 1, b = 1, S = (0and the variable assignment 00a = 0,,[3 = as. Then Uf(a.) = z = Uf(b) but
Value(a, 1) = a 7€fl = Value(fl, 1).

We can now show that the translation of de Bruijn valuations is correct in the sense mentioned above. This
is completed in Chapter 6 as Lemma 6.68.

A.3.2 From Valid de Bruijn Valuations to Admissible Valuations
This subsection shows that if we depart from a valid valuation K,in the de Bruijn indices setting and we
translate this valuation as dictated by Definition 6.67 into a valuation in the SERS setting, then we obtain
an admissible valuation. In other words, the resulting valuation is safe (Definition 6.20) and verifies the path
condition (Definition 6.21).

A word on notation: we shall use 6,1%,. . . to denote o-metavariables (that is, 6 may either be a pre-bound
o-metavariable such as a, or a pre-free metavariable such as E).
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Lemma A.21 (valid de Bruijn valuations translate to safe valuations) Let K,be a validde Bruijn val
uation for a rewrite rule (Ll R), 0., a variable assignment satisfying the requirements of Definition 6.67, S a
finite set of variables, k a label of variables, and U(L, R) = (G, D) the translation of (L, R). If the following
conditions hold

1. U<gmslk)(K.)is defined for all metavariables of G and D, and

2. 0., is injective on the set of bound o-metavariables of (G, D).

then U(9ms_k)(n) is safe for (G, D).

Proof. Recall that U(9mslk)(rc)déf (0”, 0;) where:

0¿X d=ef UáaflcOch) for any X, e Dom(n)

So first we must verify that for every t-metavariable in (G, D), U(gms'k)(K.)is indeed defined, but this is
guaranteed by Hypothesis 1.

In what follows we shall abbreviate U(gu_s_k)(K.)with 0’ for the sake of readability. Suppose that 0' is not safe
for (G, D), then unwanted variable capture arises in 0’D (since the metasubstitution operator does not occur
on the LHS of a rewrite rule, no renaming problems can arise in G). Thus there exist metaterms M1 and M2
and a formal parameter a such that

o M1[a <- M2] occurs in D (or equivalently D = C[M¡[a <- M2]] for some metacontext C),

o 0’ is defined for M1 and M2,

o 0’01e FV(0’M1), and

o for some variable a: we have a: e BV(0’M1) and also a: G FV(0’M2).

The metaterm D may be depicted as in Figure A.3(a) where l] denotes the label of the metacontext C.

sáb sub sub/ \ \ \
[ ]a M2 [ ]a M2 [ ]|a o: [ ]Ia
I I

Z 2'

(a) (b) (C) (d)

Figure A.3: Tree form for D

Before proceeding we will show the following:

Fact A.22 The free variable occurrence a:e FV(0’M2) cannot be bound by a formal parameter fi e 11(i.e. for
all fi e Z; we have 0’(fl) 7€2.). This may be verified by contradiction as follows. Suppose that for some fl E 11
we have 0'(fi) = z. Thus, by definition of U(om5'k)(f€)we have 6.,(fi) = 1:. Let us consider the bound occurrence
of 1: in 0’M1. There are two possibilities:

1. :1:comes from the instantiation of a bound o-metavariable, so that a: = 0’05”) for some formal parameter
fi’ in M1. Now since D is a well-formed pre-metaterm we must have fi aé ¡6’. But 0’(fi’) is equal to 0.,(,B')
by definition, so that flv assigns the same value, namely z, to two difierent bound o-metavariables fi and
fl’ of D, thus contradicting Hypothesis 2.
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2. a:comes from the instantiation of a t-metavariable, so that a:e BV (t) with t = 0’Y for some t-metavariable
Y occurring in M1. By Definition 6.67 we have

t: Uá(l)k(K'Yl)

for some t-metavariable Y;occurring in Dom(K) with l = l’all (see Figure A.3(b)). Therefore by definition
of the term translation function U: (o) (Definition 6.63) the variable a:cannot be a candidate for binding
in KY,since it already occurs in the label 0.,(l)k, indeed, fi e l and 09(5) = :v.

Thus we have proven that the free variable occurrence a: in 0'Mg cannot be bound by a formal parameter in
the label of the metacontext C.

We now return to the proof of the lemma. Let us consider where the free variable occurrence of z comes from
in 0’M2. We have two possible cases:

1. There is an occurrence of an o-metavariable 6 in M2 such that 0.,(ó) = 3:. As observed above, since a: may
not be bound by a formal parameter in [1 (i.e. there is no fi e l; with 00(5) = z) then 6 í [1. Thus ó = 5’
for some free o-metavariable 5’ or else the pre-metaterrn D would not be a metaterm. So then 5’ is a
free o-metavariable in D and thus by the Hypothesis 1 U(gws_k)(n)is defined on fi’. Now, the asignment
0,, satisfies the requirements of Definition 6.67, so that in particular by the second requirement we must
have 0,,(B’) = a: G SU k.

We now analyse where the bound occurrence of z comes from in 0’M1 in order to arrive at a contradiction.
Here too we have two cases to consider:

(a) a: = 0,,(,B”) for some formal parameter fi” occuring in M1. Now, 0,,(5”) í SU k since 0., satisfies the
requirement of Definition 6.67 by hypothesis, so that we arrive at a contradiction.

(b) a: comes from instantiating some t-metavariable Z in M1, i.e. a: e B V(0’Z) for some t-metavariable
Z in M1 (Figure A.3(b)). Thus there is a t-metavariable Z; with l = l’all in Dom(K,),a simple label
H and an index m such that Ufiav(¿,a¿l)k(m)= a: = at(k’0u(l’al1)k,m) .
Now since a: is bound in 0’Z we have m 5 |k’0,,(l’)|. But then by definition of U:(o) we have
a: í S U 0v(al1)k, in other words, a: cannot have been used as a candidate variable for binding. In
particular, a: í S U k. This is a contradiction since we already know that :I:e S U k.

.N’ There is an occurrence of a t-metavariable Y in M2 such that a:E FV(0’Y). Then there is an occurrence
of Y; in Dom(K) with l = 1211such that :v e FV(Uá(¡2h)k(KY¡)) where 11 is the label “above” M2
(Figure A.3(c)). Note that since for this occurrence of a: we have a: e FV(0’M2) then we must have that
a: e S or a: e 0.,(l1)k.

We now analyse where the bound occurrence of a: comes from in 0’M 1. Here too we have two cases to
consider:

(a) a: = 00m”) for some formal parameter B” occurríng in M1. If a: e S or a: e k we arrive at a
contradiction with the fact that 0., verifies the requirements of Definition 6.67 (saying that 0.,(13”) G
S U k). Moreover, if a: e 09(11)we contradict Fact A22.

(b) a: coma from instantiating some o-metavariable Z in M1, i.e. :1:E B V(0’Z) for some t-metavariable
Z in M1 (Figure A.3(d)). Thus there is an o-metavariable Z1 in Dom(K.) with l = l’all, a simple
label k’ and an index m such that U30v(l,ah)k(m) = a: = at(k’0v(l’al1)k,m).
Now since a: is bound in M1 we have m S |k’0v(l’)|. But then by definition of U:(o) we have
a; e S U 0,,(al1)k. In particular, a: í S U 00(l¡)k. This is a contradiction since we already know that
a: G S or a: e 0.,(l1)k.

Lemma A.23 (Rom valid de Bruijn valuations to admissible vaJuations) Let Kbe a validde Bruijn
valuation for a rewrite rule (L, R), 0,, a variable asignment verifying the hypothesis in Definition 6.67, and
U(L, R) = (G, D) the translation of (L, R). If the followingconditions hold

1. U(gu_s,k)(n)is defined for all metavariables of G and D, and
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0., is injective on the set of bound o-metavariabls of (G, D).

then U(oms_k)(f€)is admissible for (G, D).

Proof. We shall abbreviate U(9ms_k)(n)by 0’ in order to improve readability. Since by Lemma A21 we have
that 0’ is safe then by Definition 6.22 we have still to check the following properties:

0 verifies the path condition for X in (G, D): If no t-metavariable occurs more than once then the property
is trivial so let us suppose that there is a t-metavariable X in (G, D) occuring at two different positions p
and p’. Let us take any variable a: e FV(0’X) and let l and l’ be the parameter paths of p and p’ in the

trees corresponding to G or D. Suppose 0'X = U(9w5_k)(K.)XdÉfUÏUUMMX‘). Then since K is valid by

Lemma 6.68 Uosva)k(reX¡)=a Uá(¿,)k(nXu). As a consequence, the set of free variables of both terms is
the same. Now, to show that 0 verifies the path condition for X in (G, D) let us suppose that a: e 0,,(l).
Since the o-metavariables in l are bound in the rule (G. D), and 0,, is defined for all the metavariables of
(G, D) by Hypothesis 1, then by the requirements of Definition 6.67 a: í .S'U k. Now, since a: is free in

Uá(,,)k(nXp) then a: must be in S U0,,(1’)k, which implies that a: is necessarin in 0.,(l’ This allows us
to conclude that 0 verifies the path condition for X in (G, D).

if the pre-bound o-metavariables a and fi occur in (G, D) with a sé fi, then 09a 7600,6: this property
trivially holds by Hypothesis 2.

A.3.3 Preserving Confiuence
We start by a technical lemma that will be used later.

Lemma A.24 Let M e 'PMT without occurrencesof t-metavariables, and let

1. kal be a simple label, k’ a label such that lkl = lk’l, a’ a pre-bound o-metavariable,

2. fi a bound o-metavariable such that it does not occur in Uka;(Th/GAM)), and

3. Wszaq(M) hold.

Then (Uka[(TkIaI[(M))) <<aFfl>>=v Ukpl(Tk’a’l(M))

Proof. By induction on M. Let k = 51...,f3n and k’ = ¡63 By Hypothesis 3 we have the following
cases to consider:

o M = a” e k’ and hence a” = for some 1 5 j S n. Then we have

Ukal(Tk’a'l(M)) <<Ot‘-fi>>= fij <<0H-Á3>>=hyp.1flj = Ukfil(Tk'a'l(M))

o M = a” e l and a” í k’. Then we have

Ukal(Tk'a’l(M))<<a<-fi>>= a”<<a*-fl>>=hyp.1 a" = Ukpt(Tk'a't(M))

o M = a’ and a’ e k’. Then we have

Uka¿(Tkzaq(M))<<a<-fi>>=a<<a«-fi>>= 5 = Ukpt(Tk'a'l(M))

o M = a. Then we have

OM=f(M1,...

Uka((Tklall(M))«CU-,3»: a<<a‘—¡3>>=a = Ukfil(Tlc’a'l(M))

,Mn). Then we use the induction hypothesis.
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o M = fa”.(M1,...,Mn). We reason as follows:

(Ukal(Tk’a’l(M)))) <<a<—fl>> = (¿Ü-(Uplkat(Ta"k'a't(M1)), ---. Up'kat(Ta"k'a'l(Mn)))) «OH-fl»

for fi” í kal such that Wfplka[(TaHklaI1(M¡)) holds for 1 5 i 5 n. Since fi 7€B’ by hypothesis 2, continue

(EW-(UEM: (Ta"k'a'l(M1))v - --yUfi'kal(Ta”k’a'l(Mn)))) <<a‘-fi>>
¿fl-((Ufi’kal(Ta”k'a'l(M1)))«Cn-fi», . . . . (Ufi'kal(Ta”k'a’l(Mn)))«Ch-fi») by i.h.
¿[3'-(Up'kat(Ta"k'a't(M1))‘ -- -l Ufi’kfil(Ta”k’a’l(Mn)))

é Ukp¡(TklaI¡(€o/’.(M1, . . . , Mn)))

IlIle
O. ..,

o M = M1[a’ <- M2]. Similar to the previous case.

Lemma A.25 Let M E 'PMT and l a simple label. If W.'F¡(M) then U¡(T¡(M)) :1, M.

Proof. By induction on M.

o M = a. Then since WJ:¡(M) we have a e l and thus U¿(T¿(a))= U¡(pos(a,l)) = a.

o M = a. Then U¡(T¿(&))= U¿(Sl”(&)) = a.

o M =X. Then U¡(T¡(X)) = U¿(X¿)= X.

o M = f(M1, . . .,Mn). We use the induction hypothesis.

o M = €a.(M1,...,M,.). We reason as follows:

U1(T1(€a-(M1,..-,Mn))) = Uz(€(Taz(M1))---,Tat(Mn))) = Efi-(Ufil(Tal(M1))v---:Ufil(Tal(Mn)))

where fi 9.!l. We have two further cases to consider:

1. There are no occurrences of t-metavariables in M. Now if fi = a we conclude by using the induction
hypothesis so let us assurne then that fi 96a.

Efi-(Upt(Tat(M1)). - - - , Ufil(Tal(Mn)))
€5’-(Upt(Tat(M1))<<fl*-fi’>>, --. , Upt(Taz(Mn))<<fl‘-5’>>) (5' not in Ufil(Tal(Mi)))
ffll.(qu(Tal(M1)),. . . , Upll(Ta[(M,-,,))) (L.A.24
¿gl-(Ual(Tal(M1))<ahfll>>r---yUal(Tal «CU-BI»)
Ea.(Ua¡(Ta1(M1)), . . . . Ua¿(Ta¿(Mn)))
€a.(M1,...,M,.) (i.h.)

e

e
<2

2. There is an occurrence of a t-metavariable X in M. In this case since U¿(T¿(M is defined we observe
that it must be that fl = a. Indeed, we have that Xp“, occurs in T¡(M) for some label l’. Hence
when translating this metavariable to the de Bruijn setting we shall arrive at Uplp[(X1Ia[),which is
defined only for l”fil = l’al. Therefore, fi = a and we use the induction hypothesis.

o M = M1[a <- M2]. We proceed as above.

Corollary A.26 Let M E 'PMT such that W.’F(M).Then U(T(M)) =,, M.

Lemma A.27 Let t e T such that F V(t) Q S Ul for l any label and S a finite set of variables. Then
UIS(Tl(t)) =a t

Proof. By induction on the structure of t.

o t = az. Then there are two cases to consider:
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- a:e l. Then = U¡s(pos(:c,l))= z.

—¿"Se l. Then U¿5(T,(a:)) = Uls(0(a:) + Ill). By hypothesis z e S Ul so that a: e S and then
U1 (005) + Ill) = 20(3) = I

o t = f(t1,...,t,.). Then = f(U,S(T¡(t1)),...,U,5('1](t,,)))=a f(t1,...,t,¡). Thelaststepholds
by induction hypothesis.

O t: €2.(t1, . .

D

D

D

.,t,.). Then

UIS(TI(Ez-(tlt - - - ,tn)))
Uls(€(Tzl(t1)r“sziltn»)
Ez-(UZ(T:1(t1)),---,UZ Tzl(tn)))

€=’-(U%(sz(t1)){z ‘- z’}, ---, U5(Tu(tn)){z <- 2’})
gzl'(l’jz’l(,1“::l(t1))t - - - i Uf’l (Tri (tun) - 

¿2’.(U;,(Tzl(t1)){z «- z'}, . . . , U5<Tu(tn)){z «- z'}) (L.A.18)

gm‘gjzl(Tzl“1))!' ' ' i (T21(tn)))

(z í S Ul)
(z’ not in Uzs,¿(T:¡(ti)))

A 18)

ntn

Corollary A.28 Let t E T. Then U(T(t)) =a t.

Lemma A.29 Let A G 'PM’Ïa, and l be any simple label. If WIFI(A) then T¡(U¡(A)) = A.

Proof. By induction on A.

o A = Sj(1_).Then T¿(U¡(A))= T¡(at(l,j + 1)) = pos(at(l,j + 1),l). Since l is simple then pos(at(l,j +
1),l) = S-7(1)and we are done.

o A = SNE). Then j = |l| and T¡(U¡(A)) = 71(8) = 87(6).

OA=Xk.Thenl=kand = =Xk.0
O

,A

,An). Then

T¿(U1(A)) = T:(f(Uz(A1),....U:(An)))
=i.h. f(Tt(Ut(Al)))-...ÏÏ(UI(A1)))
= f(A1)"')A1)

n). Then

TI(UI(A)) = 77(Ea-(Uat(A1),---.Uaz(An)))
= ¿(Tat(Uat(A1))_---,Tal(Uat(An)))
=i.h. ¿(A1. - - - , An)

We remark that a í l by Definition 6.64 so the induction hypothesis can be applied.

o A = AllAgl. Then
T¡(U¿(A)) = Tl(Ual(A1)la ‘- UI(A2)l)
T¡(U1(A)) = Tal(Ual(Al))HTl(Ul(A2))l
T¡(U¡(A)) =i.h. AllAzl

We remark that a e l by Definition 6.64 so the induction hypothesis can be applied.

Corollary A.30 Let A G'PM'Ïdb. If Wf(A) then T(U = A.

Lemma A.31 Let a be a de Bruijn term and l be any simple label such that Names(FV(a)\\|l|) g S and
ln S = (0.Then T¿(U¿S(a))= a.
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Proof. By induction on the structure of a.

o a = n. Then there are two cases to consider:

—n S |l|. Then T¿(U,S(a))= T,(a't(l,n)) = pos(at(l,n),l). Since l is simple, then pos(at(l,n),l) = n.

—n > |l| and zu-“ E S. T¡(U,s(a.)) = T,(a:n_¡,¡). Since l does not contain variable in S, then
T¡(In—|t|) = n - Ill + Ill = n

. a= f(a,1,...,a.n). Then T,(U,S(a))= f(T,(U,S(a1)),...,:I}(U;5(a,.))) =,-.,.f(a,¡,...,a.n).

o a, = ¿(a1,...,an). Then T,(U,5(a,))= ¿(Tz,(Uf,(a1)),...,T=,(Uá(a1))) =.-.h¿(a1,...,a.,.). We remark
that a: í lU S by Definition 6.63 so that zl is simple and it does not contain variables of S so that we can
apply the induction hypothesis.

Corollary A.32 Let a.E 735. Then T(U(a.)) = a.

A.4 From Higher-Order to First-Order Rewriting
A.4.1 On Pivot Selection

It is clear that Cp(L, R) and CQ(L,R) shall not be identical. Nevertheless, the rewrite relation generated by
both of these converted rewrite rules is identical.

Before proving this proposition, let us consider a rewrite rule (L, R) and let X11,. . . ,X¡n be all the X-based
metavariables in (L, R) with Ba(L_R)(X)7€0. Let X1l and X1, be two possible X-based pivots for (L, R). Note
that we must have either X¿¡,X¡, G L, or X¡¡,X¡, e R (in which case IkI > |l1| and |k| > |12| for alle G L).
Also, we have |l1| = |l2|, a fact that shall be made use of freer below.

Let us consider two different conversions (a) and (b) as dictated by Definition 7.30 taking any metavariable
XL. for 1 S z'S n and yielding a first-order term:

(a) XII. M X[cons(a‘í, . . . , ali“, shiftu‘l+I"\B'<‘--R)(x)')]
and

(b) XL. M X[cons(b‘í, . . . , bfm, 3h1fi|"¡+“’\s‘(’-'R)(X)I)]

Note that clause 1 of Definition 7.30 does not present itself since the case of interest is when Ba(L_R)(X) 76Ü.
The first translation (a) corresponds to the conversion dictated assuming X11as the pívot, while the second

translation (b) assumes that X1, is the pívot.

On an informal account, the substitution cons(a‘í,...,afhl,shift”"+”‘\5‘(""‘)(x)') may be seen as repre
senting a function f,- from indices to indices (hence assuming X is only instantiated with indices). Likewise,

cons(b‘í,. . . ,bl‘m,shiftil"+"’\a‘('--")(X)I) represents a function gi. We shall therefore be intersted in finding a
function h which may be represented by a pattern substitution such that fi = g,-o h. We shall see that the
pattern substitution cons(c1, . . . ,C”¡¡,3hifi”1l) defined below satisfies this requirement. Define the following
indices c_.¡for all l Sj 5 |l1|:

._ a? ifat(l1.j)6 Ba(L_R)(X) A
CJ_{ pos(a?,b}...b¡1¿l¡) otherwise ( '1)

Remark A.33 Note that the second clause of the definition of cj is defined. Indeed, if at(l1, j) G Ba(L_R)(X)
then a? = |l2| + 1 + Sh(X¡¡,j) and since |l1| = |12|, l1 and lg are simple, and Ba(L'R)(X) 7€ 0 both 11and lg
have the same number of o-metavariables not included in Ba(L'R)(X Thus there is a j’ G 1..|l1| such that
b},= |l1|+1+ Sh(X¡,,j’) with Sh(X¿,,j') = Sh(X¿¡,j), and hencea? = by

The relation between the two translations (a) and (b) given above can be summarized by the followingresult:
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Lemma A.34 Let n be the number of X-based metavariables in (L, R) and let X“ and X1, be two distinct
pivots for (L, R). Let h 2 0 and 1 S i S n. Take any assignment p and indices a;- (1 5 j S |11|) and
b;-(1 5 j 5 |12|) as indicated above in the translations (a) and (b). Then

(pxnh'rt'wcommáw--.aïtpshift“'+"1\“<L-R><X”))1
=w (pX)[1ifl"(s)l[lift"(cons(bï1---»himshift“'+”’\3“""(x"))]

where s = cons(c1, . . . ,thhshiftll“) defined in the equation A.1.

Proof. Note that we may assume that pX is a pure term without loss of generality. We proceed by induction
on pX.

o pX = j. We consider three subcases:

—j S h. Then Lemma 1 allows us to conclude this case.

- h<j S Il1l+h. Then

LHS =w j —h[com(a;, . . . ,aï‘m,sm"-'+"1\B‘<L-m(x>|)][shifqh =w aj._,, + h
RHS =w cj_,.[cons(bg, . . . , bfhl, shift”"¡+“’\B‘<’-'R)(x)l)][shift]"

We shall consider two further cases. Recall that X11is an X -based pivot for conversion (a) and X1,
is an X -based pivot for conversion (b).

1. 2': 1. Suppose

a: at(l1,j —h) = ,3 G Ba(L,R)(X). Then

RHS = a}_h[cons(b}, . . . ,bIIM,shiftl‘l'+"=\‘“<L-R>(X)')][ahi/11"

= P°s(fi,12)[60n8(bl,---,bhwshift'“'+“’\B‘“'"’(X”Mishifll"
=W bll>°l(fi.lz)+ h
= pos(,6,l1) + h
= j—h+h

Recall that all labels are simple (no repeated elements).

* at(l1,j— h) É Ba(L,R)(X).

RHS

= pos(ag_,,, b}..b¡1h¡)[cons(b}, . . . , bllm,shifi"1'+“=\“<L-R><X>')][shift]h

= P°5(|12| + 1 + Sh(xlnj - h)»bi"bllz¡¡)[c°n3(bia-- - iblllglishift“IHIABRL'MOÜI)][3mft]h

=
=w LHS

2. iz 2. Suppose
* at(ll,j - h) = B e Ba(L_R)(X).Then

RHS = a?_h[cons(b‘í, . . . , bflzl,shift'"'+”‘\B‘('--R)(x)l)][shift]"

msm. ¿2)Í00n3(á, . . . , bi“, shift“"+”‘\“‘"“’(x)'Mishifll"
=W bin-(p.12)+ h

Pos(fi) + h
LHSW

Ifi = 2 then the last step follows from the case 2(a) of Definition 7.30 (since Jn, is a.pívot
metavariable occurrence for conversion (b)), otherwise it follows from case 2(b) of the same
definition.
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* at(l1,j - E Ba(L_R)(X).Then LHS=w +1+ Sh(X[¡,j —h) + A180,
RHS

= mamá-h, bi--b¡‘o.)lcons(ba.. . . .bïma shirt"*'+!‘=\"<L-f>(x>'tafira]: a. x
= pos(I12I+1+ som“ j —h), b}..b¡1¡l¡)[cons(b'¡,. . . ,bïlzl, shift' -|+| =\ (MK )l)][shz'ft]"

Now since |l2| + l + Sh(X¿¡,j —h) > |11| and |11|= |12| there must be some 1 S j’ S |l1| such
that b} = |l1| + 1 + sn(X,,, j’) (and hence at(lz, j’) 95Ba(L'R)(X)) with Sh(X¡¡, j —h) =
Sh(X¿2,j’) (see Remark A33). Thus we may continue as follows:

p°s(|l2| + 1+ snm, .j —h), bi..b.1.l.)lcons(bá,. . . mt“, shift""+“*\B“"“’(x)')llshiftlh
= ‘. . ,bïlal,shiflllil+llz\ka(¡__n)(x)|“lab/¡flv
=w +h
= |l,-|+ 1+ sn(X,,,j’) + h

The last equality followsfrom the fact that at(l2, j’) e Ba(L'R)(X
- j > |l1|+h. Then

LHS

j - hlcons(aá,. . . , at”. shift""+"‘\“‘"“’(x)')][shiftl"
w j - h _Il1I+IliI+ Il1\Ba(L.R)(X)I+h

j - |11|+ Ilil + Ill \Ba(L,R)(X)I
J' - |12|+ Ilil fl-|12\Pa(L,R)(X)|

w J'llift"(cons(b‘1,...,bïrwshift""+“’\““-"’(x"))]
-w j —hlcons(c1. . . . , Cumshift'“')]l8hifl]"[lift"(cons(bí, . . . . him, shift""+“’\“‘"”’(x)'))]
=w RHS

o pX = f(d1, . . .,d,,). We use the induction hypothsis.

||ll||II

S

o pX = ¿((11,. . . , d"). Then by the induction hypothesis we have

dillz'fl"“(cons(aï, . . . ,aï'tt shift""+"‘\°‘“'"’(x)'))]_ _
=w djlüfth+1(60n3(ch. . . ,clm, shift'“'))1Ílifl"“(com(bï, . . . , bt“. shifl""+"’\°“""(x)'))]

for all j E 1..n which allows us to conclude the case.

Proof.[of Proposition 7.37]Let (L1, R1) dé‘cp(L_ R) and (L2,Hg) dé‘cQ(L, R). Suppose a su,“ b. Then
there exists a context E and an assignment p such that a.=w E[p(L1)] and b =w E[p(R¡)].

For all X e NFMVar(L) define the assignment 17as: 17XdÉfp(X)[s] where s = com(c1, . . . ,C¡¡¡¡,shift“‘¡)
and the qa are defined in equation A.1. Consider now an occurrence of a metavariable Xl‘. e (L, R) where
{XIU . . . , Xln} are all the X-based metavariables in (L, R).

o If Ba(L,R)(X) = 0 then both conversions shall convert X“ to the term X [shiftll‘l]. This case needs no
further consideration.

o If BqL'R)(X) 96fl then each conversion shall convert XL. to (possibly) difierent terms:

X[con.9(a.‘i,. . . ,ail1 ,shiftl"l+”1\5‘('--")(X)I)] on one hand, and X[cons(b‘í, . . . ,bI‘hI,shift""+”’\n'*"-")(x)')],
on the other. Here we may apply Lemma A.34 and obtain:

(pX)[cons(a‘i, . . . ,aï'm, shift“"+“‘\h“-'R)(x)l)] =w (17X)[cons(b‘í,. . . , bflzl,shift”"+”2\3‘('—-R)(x)l)].
If conversion (a) deployed the identity Optimization then

cons(a.‘í, . . . ,afm, shifi'l‘l+“1\B‘(’-'R)(X)I) = 0011.9(1,. . . , |l1|, shiflil‘l)

and Xl‘. is converted to X and we may use the fact that pX =w (pX)[cons(1,...,|l¡|,shift”‘l)] and
Lemma A.34 as above. A similar observation holds for the (b) conversion.

Therefore we may obtain p(L1) =w 17(L2)and p(R1) =w 17(R2),so that a =w E[p(L1)] =w E[7](Lg)]and
b =w E[p(R1)] =w E[n(Rz)l. Í-e- a -’(L..R.) b
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