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Variedades de BL-álgebras generadas por BLn-cadenas

En la presente tesis se estudian subvariedades de BL-álgebras. En una
primera etapa, después de haber dado las nociones básicas acerca de BL­
álgebras, se estudian las estructuras fundamentales dentro de las variedades
de BL-álgebras: las BL-cadenas. Se prueba la descomposición de las mismas
en suma ordinal de hoops de Wajsberg y se da también una descomposición
en suma ordinal de su subálgebra de elementos regulares y la BL-álgebra
generalizada de sus elementos densos. Una vez obtenidos estos resultados, se
define una BLn-cadena como aquella que es suma ordinal de una MV-cadena
finita de longitud n y una BL-cadena generalizada para luego proceder al
estudio de subvariedades de BL-álgebras generadas por una de estas cadenas.
Se da un método para caracterizar ecuacionalmente estas subvariedades y
luego se da una descripción de las BL-álgebras libres en estas variedades
sobre un conjunto arbitrario de generadores.

Palabras claves: Lógicas difusas, Hoops, BL-álgebras, Álgebras libres, M V­
álgebras

Varieties of BL-algebras generated by BLn-chains

The present thesis is a study of subvarieties of BL-algebras. As a first step,
after introducing some basic notions about BL-algebras, the most important
structures in the varieties of BL-algebras, BL-chains, are studied. A proof of
the decomposition of BL-chains into the ordinal sum of Wajsberg hoops is
given, and another decomposition of them as ordinal sum of the MV-algebra
of regular elements of the chains and the generalized BL-algebra of their
dense elements is also presented. After this, the definition of BLn-chain as
the ordinal sum of a finite MV-chain of length n and a generalized BL-chain
is introduced. A method to equationally characterize subvarieties of BL­
algebras generated by one BLn-chain is developed and a description of free
algebras over an arbitrary set of generators in these varieties is obtained.

Keywords: Fuzzy logics, Hoops, BL-algebras, Free algebras, M V-algebras.
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0.1 Introducción

Las lógicas difusas se originan en 1965 en la publicación [37] de L. A.
Zadeh, y desde entonces se han desarrollado y han sido aplicadas exitosa­
mente en muchos problemas, principalmente en el diseño de sistemas exper­
tos que puedan tomar decisiones sobre la base de información incompleta,
incierta y/o vaga. La lógica básica (BL) es introducida por Hájek (ver [27]
y las referencias allí citadas), con el objetivo de formalizar las lógicas difusas
en las que la conjunción se interpreta por una t-norma continua en el seg­
mento real [0,1] y la implicación como su correspondiente adjunta. Hájek
también introduce en [27] las BL-álgebras como las contrapartes algebraicas
de BL. Estas álgebras forman una variedad (o clase ecuacional) de reticu­
lados residuados [27]. Más precisamente, pueden ser caracterizadas como
hoops básicos acotados [1, 7]. Las subvariedades de la variedad de BL­
álgebras están en correspondencia con las extensiones axiomáticas de BL.
Algunas subvariedades importantes de la variedad de BL-álgebras son las
MV-álgebras, correspondientes a la lógica multivaluada de Lukasiewicz (ver
[16]), las álgebras de Heyting lineales, correspondientes a la extensión de la
lógica superintuicionista caracterizada por el axioma (P —>Q) V (Q —>P),
(ver [36]), las PL-álgebras, correspondientes a la lógica determinada por la
t-norma dada por el producto usual en [0,1], (ver [19]),y también las álgebras
de Boole, correspondientes a la lógica clásica.

En la presente tesis se estudian ciertas subvariedades de BL-álgebras.
Como toda BL-álgebra es un producto subdirecto de BL-álgebras totalmente
ordenadas (ver [27]), un primer paso es investigar la estructura de estas
álgebras generadoras, a las que usualmente se conoce como BL-cadenas.

Por su importancia en el desarrollo de la teoría acerca de las BL-álgebras,
se han realizado varios estudios sobre la estructura de las BL-cadenas. En

[17],se descompone toda BL-cadena que es saturada en una suma ordinal de
MV-cadenas, cadenas de Gódel y PL-cadenas, siguiendo la descomposición
natural de las t-normas continuas. El propósito principal de esta descom­
posición es la demostración del teorema de completitud de BL. Por otro
lado, considerando el hecho que las BL-álgebras poseen como raíz algebraica



la teoría de hoops (ver [1]), se da en [2] un teorema de descomposición para
BL-cadcnas en una calse especial de hoops, llamados hoops de Wajsberg,
que no admiten ulteriores descomposiciones. Si bien esto mejora el resultado
dado en [17], porque no necesita que la cadena a descomponer satisfaga la
condición de saturación, la demostración de la descomposición se basa fun­
damentalmente en el axioma de elección (este axioma es requerido tres veces
a lo largo de la prueba). Una tercera descomposición de BL-cadenas se da en
[33]. La idea principal de esta descomposición es definir en cada BL-cadena
una relación de equivalencia de modo tal que las clases de equivalencia son
estructuras relacionadas con semigrupos abelianos totalmente ordenados a
los que llaman formas básicas. Estas estructuras formarán los bloques de
la descomposición. A pesar de que la demostración no requiere del uso del
axioma de elección, las formas básicas son estructuras ad hoc.

En la presente tesis ofrezco una prueba simple y autocontenida del teo­
rema de descomposición en hoops de Wajsberg definiendo en cada BL-cadena
una relación de equivalencia. Esta demostración no requiere del uso de
ninguna versión del axioma de elección. Además se prueba la unicidad de
dicha descomposición.

Pero hay otra manera de descomponer las BL-cadenas que será de suma
utilidad para el desarrollo de los resultados de la tesis. En [21], se estudian
dos clases diferentes de elementos en una BL-álgebra: elementos regulares
y elementos densos. Se prueba allí que el conjunto de elementos regulares
de una BL-álgebra forma una subálgebra que posee una estructura de MV­
álgebra. Por otro lado, el conjunto de elementos densos de una BL-álgebra
posee una estructura de BL-álgebra generalizada. Con base en estos hechos,
en el Teorema 2.2.1, dcmuestro que cada BL-cadena puede ser descompuesta
en la suma ordinal de la MV-álgebra de sus elementos regulares y la BL­
álgebra generalizada de sus elementos densos. Esta descomposición permite
clasificar a las BL-cadenas de acuerdo a la MV-álgebra de sus elementos
regulares. Se llamarán BLn-cadenas a las BL-cadenas cuyas MV-álgebras de
elementos regulares sean MV-cadenas finitas de n 2 2 elementos.

Como indica el título de la presente tesis, estudiaré subvariedades de
BL-álgebras generadas por BLn-cadenas. Para comenzar con este estudio, y
siguiendo ideas utilizadas en [2],doy un método de caracterización ecuacional
para las subvariedades de BL-álgebras generadas por una BLn-cadena. Más
precisamente, como las BLn-cadenas son suma ordinal de una MV-cadena
finita Ln, y una BL-cadena generalizada B, demuestro cómo las ecuaciones
que caracterizan la subvariedad generada por la BLn-cadena LnEHBdependen
de las ecuaciones que caracterizan la variedad de MV-álgebras generada por
Ln y las ecuaciones que caracterizan la variedad de BL-álgebras generalizadas
generada por B.



Una vez obtenida esta caracterización, comienzo con el estudio de álgebras
libres en subvariedades de BL-álgebras generadas por una BLn-cadena. La
descripción de las álgebras libres da la representación concreta en término
de funciones de las proposiciones de BL, puesto que las proposiciones, bajo
equivalencia lógica, forman una BL-álgebra libre. Para algunas subvariedades
de BL-álgebras dichas álgebras libres ya han sido estudiadas. El ejemplo
más conocido es la representación de proposiciones clásicas por funciones
booleanas. Otro ejemplo es la descripción de MV-álgebras libres en términos
de funciones lineales continuas a trozos dada por Mc Naughton [34] (ver
también [16]). Las álgebras libres finitamente generadas en la variedad de
álgebras de Heyting lineales fue dada por Horn [30],y una descripción de PL­
álgebras libres finitamente generadas se da en [19]. Las álgebras de Heyting
lineales y las PL-álgebras son ejemplos de variedades de BL-álgebras que
satisfacen la propiedad de la retracción booleana. Las álgebras libres en
estas subvariedades de BL-álgebras fueron descriptas en [20].

Para la descripción de las álgebras libres en variedades de BL-álgebras
generadas por una BLn-cadena utilizo la representación de BL-álgebras como
producto booleano débil de álgebras directamente indescomponibles dada en
[20]. Dicha representación, llamada representación de Pierce, consiste en
tornar los cocientes del álgebra libre por los filtros implicativos generados
por los ultrafiltros de la subálgebra de elementos booleanos del álgebra libre
en cuestión. Utilizando los resultados de [21], pruebo que la subálgebra de
elementos booleanos del álgebra libre es la subálgebra de elementos booleanos
de un álgebra libre en MV”, la variedad de MV-álgebras generada por la
cadena finita Ln. Finalmente se caracteriza el álgebra de elementos booleanos
de esta álgebra libre en MV" : es el álgebra de Boole libre sobre un conjunto
parcialmente ordenado que es suma cardinal de cadenas de longitud n- 1. En
la demostración de este resultado juegan un rol fundamental los reductos de
álgebras de Moisil de las álgebras en MV". Una vez obtenida una caracteri­
zación de los booleanos del álgebra libre realizo un estudio de los cocientes del
álgebra libre por los filtros generados por los ultrafiltros booleanos. Concluyo
que las álgebras libres en variedades de BL-álgebras generadas por una BL"­
cadena L" L+JB son productos booleanos débiles de BL-álgebras que son suma
ordinal de una subálgebra de Ln y una BL-álgebra generalizada libre en la
variedad de BL-álgebras generalizadas generada por B.

Por último, presento un método alternativo de descripción de estas álgebras
libres cuando el conjunto de generadores del álgebra es finto. Basándome
en el hecho que la subálgebra de elementos booleanos de estas álgebras li­
bres finitamente generadas es finita, caracterizo los átomos del álgebra de
Boole. Los elementos del álgebra libre se pueden vizualízar como funciones
finitas y el conocimiento de los átomos de la subálgebra de Boole permite
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una descripción detallada de cada factor indescomponible. Como el pro­
ducto boolcano débil sobre espacios finitos discretos es un producto directo,
obtengo una caracterización de las álgebras libres finitamente generadas como
el procuto directo de álgebras indescomponibles. Estos resultados han sido
aceptados para ser publicadosen AlgebraUniversalis Ambasdescrip­
ciones coinciden cuando el conjunto de generadores libres es finito, pero esta
última descripción permite obtener mayor información acerca de los factores
de la descomposición.

La tesis está organizada como sigue: En un primer capítulo se revisan las
nociones básicas concernientes a BL-álgebras necesarias para el desarrollo
del trabajo. En el segundo capítulo se presentan dos teoremas de descom­
posición de BL-cadenas: en el primero se presenta la descomposición en
hoops de Wajsberg dada en [2], pero se ofrece una demostración más sim­
ple del mismo que, a diferencia de la de [2] no requiere del uso del axioma
de elección. En el segundo se da una descomposición en la MV-álgebra de
elementos regulares y la BL-álgebra generalizada de elementos densos. En
el tercer capítulo, una vez introducida la noción de BLn-cadena, se ofrece
un método para la caracterización ecuacional de las subvariedades de BL­
álgebras generadas por una de estas cadenas. También se ofrecen ejemplos
de caracterizaciones ecuacionales para algunas de estas subvariedades. En
el capítulo cuatro, se obtiene una descripción de las álgebras libres en va­
riedades de BL-álgebras generadas por una BLn-cadena en términos de pro­
ductos booleanos débiles. Por último, en el capítulo cinco, se presenta una
descripción alternativa de dichas álgebras libres cuando el conjunto de gene­
radores es finito, y se comparan los resultados con los del capítulo anterior.
La tesis posee un apéndice donde se describen la subálgebras booleanas de
elementos idempotentes de las álgebras libres en variedades de MV-álgebras
generadas por cadenas finitas.

Denotaré con letras negritas A, B, C, . .. a las estructuras algebraicas y
con la misma letra ordinaria A, B,C, . .. a sus correspondientes universos.
Los conceptos de álgebra universal utilizados durante el desarrollo de la tesis
se pueden encontrar en [10] y en [22].



0.2 Introduction

Fuzzy logics have their origins in a paper published in 1965 by L. A.
Zadeh [37], and since then, have been far developed and applied successfully
in many problems, mainly in the design of experts systems that can take
decisions based on fuzzy or vague information. Basic Fuzzy Logic (BL for
short) was introduced by Hájek (see [27] and the references given there) to
formalize fuzzy logics in which the conjunction is interpreted by a continuous
t-norm on the real segment [0,1]and the implication by its corresponding ad­
joint. Hájek also introduced BL-algebras as the algebraic counterparts of BL.
These algebras form a variety (or equational class) of residuated lattices [27].
More precisely, they can be characterized as bounded basic hoops [1, 7]. Sub­
varieties of the variety of BL-algebras are in correspondence with axiomatic
extensions of BL. Important examples of subvarieties of BL-algebras are MV­
algebras, that correspond to Lukasiewicz many-valued logics (see [16]), linear
Heyting algebras, that correspond to the superintuitionistic logic character­
ized by the axiom (P => Q) V (Q => P) (see [36] for a historical account
about this logic), PL-algebras, that correspond to the logic determined by
the t-norm given by the ordinary product on [0,1], (see [19]), and also boolean
algebras that correspond to classical logic.

In the present thesis I study certain subvarieties of BL-algebras. Since
each BL-algebra is a subdirect product of totally ordered BL-algebras (see
[27, Lemma 2.3.16]), as a first step I investigate the structure of such gener­
ating algebras, that are usually called BL-chains.

Since BL-chains are very important in the theory of BL-algebras, they
have already been deeply investigated. Following the natural decomposition
of continuous t-norms, in [17] each BL-chain which is saturated is decom­
posed into an ordinal sum of MV-chains, Gódel chains and PL-chains. The
main purpose of such decomposition is the proof of completeness of BL.
Considering the fact that BL-algebras have as an algebraic root the theory
of hoops (see [1]), in [2] a theorem of decomposition for BL-chains (i.e., ba­
sic totally ordered bounded hoops) into some special kind of hoops is given.
These hoops, named Wajsberg hoops, can not be further decomposed. Al­
though this improves the result given in [17], for it can be applied not only to
saturated BL-chains, the given proof strongly relies on the axiom of choice
(as a matter of fact, it is invoked three times in the course of the proof).
An alternative decomposition of BL-chains is given in [33]. The main idea of
such decomposition is to define on each BL-chain an equivalence relation such
that the equivalence classes are structures related to ordered abelian semi­
groups, called basic forms. These structures are the building blocks of the
decomposition. Although the decomposition is obtained without appealing



to the axiom of choice, basic forms are ad hoc structures.
In the present thesis, I offer a simple and self contained proof of the

decomposition given in [2] by means of a suitable equivalence relation on
BL-chains, whose equivalence classes are Wajsberg hoops. This proof does
not invoke any version of the axiom of choice. I also prove the uniqueness of
the decomposition.

But there is another way of decomposing BL-chains that shall be more
useful to obtain the results of the thesis. In [21]two different kinds of elements
in a BL-algebra are studied: regular elements and dense elements. It is proved
that the set of regular elements of a BL-algebra form a subalgebra which is
an MV-algebra. On the other hand, the set of dense elements of a BL-algebra
form a generalized BL-algebra. Taking these ideas into account, in Theorem
2.2.1, I prove that each BL-chain can be decomposed into the ordinal sum
of the MV-algebra of its regular elements and the generalized BL-algebra of
its dense elements. This decomposition makes possible the classification of
BL-chains according to the MV-algebra of its regular elements. I shall call
BLn-chain each BL-chain whose subalgebra of regular elements form a finite
MV-chain of n 2 2 elements.

As it is indicated by the title of the thesis, I shall study subvarieties of
BL-algebras generated by BLn-chains. As a first step, following some ideas
of [2], I describe a method to equationally characterize subvarieties of BL­
algebras generated by one BLn-chain. Since these chains are the ordinal
sum of a finite MV-chain Ln and a generalized BL-chain B, I demonstrate
how the equations that define the subvariety generated by the BLn-chain
L,, HiB depends on the equations that define the subvariety of MV-algebras
generated by Ln and the equations that define the subvariety of generalized
BL-algebras generated by B.

Once the subvarieties of BL-algebras generated by one BLn-chain are
characterized, I study free algebras in these subvarieties. Since the propo­
sitions under BL equivalence form a free BL-algebra, descriptions of free
algebras in terms of functions give concrete representations of these propo­
sitions. Such descriptions are known for some subvarieties of BL-algebras.
The best known example is the representation of classical propositions by
boolean functions. Free MV-algebras have been described in terms of contin­
uous piecewise linear functions by McNaughton [34] (see also [16]). Finitely
generated free linear Heyting algebras were described by Horn [30], and a
description of finitely generated free PL-algebras is given in [19]. Linear
Heyting algebras and PL-algebras are examples of varieties of BL-algebras
satisfying the boolean retraction property. Free algebras in these varieties
were completely described in [20].

To describe free algebras in varieties of BL-algebras generated by one
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BLn-chain, the representation as a weak boolean product of directly inde­
composable algebras given in [20]is invoked. The mentioned representation,
called the Pierce representation, consists of taking the quotients of the free
algebra over the implicative filters generated by the ultrafilters of the subal­
gebra of boolean elements of the free algebra. Using results of [21], I prove
that the subalgebra of boolean elements of the free algebra is the subalgebra
of boolean elements of a free algebra in MV", the variety of MV-algebras
generated by the finite MV-chain Ln. Therefore a characterization of the
algebra of boolean elements of this free algebra in MVn is obtained: it is
the free boolean algebra over a poset which is the cardinal sum of chains
of length n —1. In the proof of this result a central role is played by the
Moisil algebra reducts of algebras in MV". I conclude that free algebras in
varieties of BL-algebras generated by a single BLn-chain L" w B are weak
boolean products of BL-algebras that are ordinal sums of subalgebras of Ln
and free algebras in the variety of basic hoops generated by B.

I present an alternative description of the free algebras when the set of
free generators is finite. Since for the finite case the subalgebra of boolean
elements of the free algebra is finite, I characterize the atoms of these boolean
algebra. The elements of the free algebra are view then as functions, and
the knowledge of the atom that generates each ultrafilter makes possible
a complete description of each indecomposable factor. Since weak boolean
products over discrcte finite spaces are direct products, I give a description
of the finitely generated free algebra as a direct product of indecomposable
algebras. These results are about to appear in Algebra Universalis (see [11]).
Although both descriptions coincide when the set of generators is finite, this
last one gives more information about the factors of the decomposition.

The thesis is organized as follows: In the first chapter, all the basic no­
tions concerning BL-algebras needed for the development of the thesis are
recalled. In the second one, two different theorems of decomposition of BL­
chains are presented: the first one is the decomposition into Wajsberg hoops
given in [2], but a much simpler and constructive proof of the Theorem is
presented. The second one is the decomposition into regular and dense ele­
ments. In chapter three, after introducing the notion of BLn-chain, a method
to equationally characterize the subvarieties of BL-algebras generated by one
of these chains is described. I also give examples of the equational charac­
terization for some of such subvarieties. In chapter four, the main one, a
description of free algebras in varieties of BL-algebras generated by a BLn­
chain in terms of weak boolean product is given. Lastly, in chapter five,
an alternative description of such free algebras is given when the set of free
generators is finite, and I compare these results with the ones given in the
previous chapter for the general case. An appendix is also add at the end
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of the thesis. In this appendix a description of the boolean subalgebra of
idempotents elements of free algebras in varieties of MV-algebras generated
by finite chains is presented.

I denote algebras with bold face letters A, B, C, . . . and their correspond­
ing universes by the ordinary type of the same letter A, B, C, . . . . The notions
of universal algebra used in the development of the thesis can be found in
[10] and [22].



Chapter 1

Basic Notions

1.1 Continuous t-norms

Definition 1.1.1 A t-norm is s binary operation * form [0,1]2 into [0,1]
satisfying the following conditions:

1. * is commutative and associative,

2. * is non decreasing in both arguments, i. e, for all :c,1 ,z e [0,1]

xfyimpliesxawíyárzandz*a:52*y,

3.1*1:=:cand0*a:=0forallze[0,1].

A continuous t-norm is a t-norm which is continuous as a map from [0,1]2
into [0,1] in the usual sense. For each continuous t-norm a residuum —+can
be defined (see [27]) satisfying

I*zSyifi':tSZ->y.

Example 1.1.2 The following are the most important examples of continu­
ous t-norms and their corresponding residuum:

1. Lukasiewicz t-nonn: :1:* 1 = maz (0,1: + y —1),

Lukasiewicz implication: :1:—)y = min(1, 1 —I + y),

2. Gódel t-norm: z * y = min(:z:,y),

y Ur>n
G'o'del implication: a: —>y = { 1 UI < y

12



3. Product t-norm: 1:* y = 1:.y,

y/a: ifzr > y,
Goguen implication: a: —)y = { 1 ¿fx < y

In [27] for each fixed continuous t-norm * a propositional calculus PC(*)
is presented whose truth values are in the real segment [0,1], * is taken
for the truth function of the (strong) conjunction and the residuum —>of
* becomes the truth function of the implication. Hajék formulated logical
axioms for BL and he proved that each provable formula in BL is a tautology
in each PC(*) (soundness of BL). To prove the completeness of the logic he
starts an algebraization of BL. Is then when BL-algebras are introduced.

1.2 Hoops, Generalized BL-algebras and BL­
algebras

A hoop is an algebra A = (A, *, —),T) oftype (2, 2, O),such that (A, 4:,T)
is a commutative monoid and for all 1:,y, z E A:

1. a:—)1:=T,

2. :c*(:z:—)y)=y*(y—>:r),

3. :1:—)(y—)z)=(a:*y)—)z.

Hoops were introduced in an unpublished manuscript [9] by Büchi and
Owens and they were deeply investigated in [1], [6], [7] and [26]. Some basic
properties of hoops are enumerated in the next proposition:

Proposition 1.2.1 Let A = (A, *, —),T) be a hoop. Then:

1. (A, *, T) is a naturally ordered residuated commutative monoid, where
the order is defined by :r 5 y iflz —>y = T and the residuation is

:r*yízifla:5y—)z.

2. The partial order on any hoop is a semilattice order, where :r /\ y =
:1: * (¿r —+ y).

3. For any 1:,y, z G A the following hold:

(a) T —) 1: = 1:,

(b) :c —)T = T, i.e., T is the largest element in the order,
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(c) I—)y5(z—)z)—>(z—)y),

(d) I S y -> x,

(e)IS(I->y)->y,
(f) I-+(y->z)=y->(1ï->z),
(y)I->yS(y->z)->(I->z),
(h)ISyimpliesyezszazandz—>:¡:52—)y,

Igyimplieszakzgyakz,
(J') Iv * y S rc.

A generalized BL-algebra or basic hoop is a hoop that satisfies the
equation:

(((z1:—)y)—)z)*((y—):r)—)z))—)z=T (1.1)

In every generalized BL-algebra A an operation V can be defined by

sz=((I->y) ->y)/\((y->I)HI),

thus L(A) = (A, A, V, T) is a lattice with greatest element T. Besides, every
generalized BL-algebra A satisfies the equation:

(I-)y)V(y->:B)=T.

A BL-algebra is a bounded generalized BL-algebra (or bounded basic
hoop), that is, it is an algebra A = (A,*,—),_L,T) of type (2, 2,0,0) such
that (A, *,—>,T) is a generalized BL-algebra, and J. is the lower bound of
L(A). Then the set B g A is the universe of a subalgebra of a BL-algebra
A iiï T, _Le B and B is closed under * and —). Besides, if C S A is a set
closed under * and —)such that T e C, then C = (C, *, —),T) is a generalized
BL-algebra. For any integer k, a BL-term in the variables :ri,1:2,. . .zk is
a string over the set Sk = {*,—>,_L,T,zl,a;2,. . .,:1:k,(,)} that arises from a
finite number of application of the following rules:

o J_, T, 9:1,1:2,. . . ,Ik are BL-terms,

o if n and 72 are BL-terms, then (7-1* 72) and (T1 —>7'2) are BL-terms.

For each continuous t-norm *, the structure ([0, 1], *, —),0, 1) is a BL-algebra,
where —+is the residuum of *. As a matter of fact, each BL-algebra structure
on the segment [0, 1] is given by a continuous t-norm, because the continuity
of * is equivalent to the condition z a:(rr —)y) = y * (y —)21:)(see, for intance,
[25])­



On each BL-algebra, the unary operation ñ (negation) is defined by the
equation:

-|1: = 1: —) _L.

The BL-algebra A with only one element, that is J. = T, is called the trivial
BL-algebra. The varieties of BL-algebras and of generalized BL-algebras
will be denoted by BE and GBC, respectively. These are varieties of residu­
ated lattices, hence they are varieties of BCK-algebras. It is known (see [31])
that both varieties are congruence distributive and congruence permutable.

Let A be a generalized BL-algebra. As mentioned in Proposition 1.2.1,
we denote by 5 the (partial) order defined on A by the lattice L(A), i.e.
for a,b G A, a 5 biffa = aAbiHb = aVb. This order is called the
natural order of A. When this natural order is total (i.e., for each a, b,E A,
a 5 b or b S a), A is called generalized BL-chain (BL-chain in case A is
a BL-algebra).

The following theorem makes obvious the importance of BL-chains and
can be easily derived from [27, Lemma 2.3.16].

Theorem 1.2.2 Each BL-algebra is a subdirechproduct of BL-chains.

Indeed, since BL-algebras are bounded basic hoops the previous result
also follows from [1, Theorem 2.8].

1.3 Important subvarieties of BL-algebras.
Some subvarieties of BL have been studied for their own importance,

since they are the algebraic counterpart of some well known logics. MV­
algebras, for instance, the algebras of Lukasiewiczinfinite-valued logic, form
the subvariety of BL characterized by the equation:

fifimzx

(see [27]). For references about these algebras see [16]. The variety of MV­
algebras is denoted by MV and a totally ordered MV-algebra is an MV­
chain. If A is a BL-algebra, consider

MV(A)= EA: fina:=

Then MV(A) = (MV(A), *,—>,_L,T) is an MV-algebra (see [21]) which is
a subalgebra of A.



For n 2 2, we define:

0 1 2 n-lL7:_)—1_1"'1—'' {n—1n—1n—1 n-1 }.

The set Ln equipped with the operations ¡”y = max (O,:r+y- 1), x —>y =
min (1,1 —:r + y), and with _L= O and T = 1 defines a finite MV-algebra

which shall be denoted by Ln.

A linear Heyting algebra H = (H,/\,—>,_L,T) is a Heyting algebra
(or relative pseudocomplementedbounded distributive lattice, see which
satisfies the equation:

(I—)y)v(y—):c)=T.

These algebras are the algebraic counterpart of the superintuitionistic logic
characterized by the axiom (P => Q) V (Q => P). Observe that any linear
Heyting algebra H satisfies the equations:

IAy=IA(z—)y),

IVy=((I->y)->y)A((y->:v)->I)­
Then H is a BL-algebra in which /\ = *, i.e., it satisfies the equation :c* y =
:1: A y.

A PL-algebra is a BL-algebra that satisfies the followingtwo equations:

(noz*((r*z) -> (y*z))) -> (z—>y)= T,

:r /\ ña: = J_.

PL-algebras correspond to product fuzzy logic, see [19]and [27].

It follows from Theorem 1.2.2 that for each BL-algebra A the lattice
L(A) is distributive. The complemented elements of L(A) form a subalgebra
B(A) of A which is a boolean algebra. Elements of B(A) are called boolean
elements of A.

1.4 Implicative filters
Definition 1.4.1 An implicative filter of a BL-algebraA is a subsetF g
A satisfying the following conditions:

1.TEF,



2.1fxEFandz-)y€F,theny€F.

An implicative filter is called proper provided F 96A. If W is a subset
of a BL-algebra A, the implicative filter generated by W will be denoted by
(W). If U is a filter of the boolean subalgebra B(A), then the implicative
filter (U) is called Stone filter of A. An implicative filter F of a BL-algebra
A is called maxima] iff it is proper and no proper implicative filter of A
strictly contains F.

Implicative filters characterize congruences in BL-algebras. Indeed, if F
is an implicative filter of a BL-algebra A it is well known (see [27, Lemma
2.3.14]), that the binary relation Ep on A defined by:

:cEpy ifl‘ :c->y€Fandy-)a:€F

is a congruence of A. Moreover, F = {rc e A : a: Ep T}. Conversely, if E
is a congruence relation on A, then the set F = {1: e A : a: E T} is an
implicative filter, and x E y ifl' a: —>y E T and y —>z E T. Therefore, the
correspondence

F HEF

is a bijection from the set of implicative filters of A onto the set of congruences
of A.

Given a BL-algebra A and a filter F of A, we will denote the quotient
set A/ Ep by A/F. Since Ep is a congruence, defining on the set A/F the
operations

(I/F) * (y/F) = (rE*y)/F
and

(x/F) -> (y/F) = (I -+ y)/F,

the system (A/F,*,—),_L/F,T/F) becomes a BL-algebra called the quo­
tient algebra of A by the implicative filter F. Moreover,the corre­
spondence

:1:r—)x/ F

defines an homomorphism hp from A onto the quotient algebra A/F.

Lemma 1.4.2 (see Let A be a BL-algebra,and let U be a filter of
B(A). Then

(EU)={(a,b)€A><Aza/\c=b/\cforsomec€U}

is a congruence relation on A that coincides with the congruence relation
given by the implicative filter (U) generated by U.
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1.5 Initial segments
An element u of a BL-algebra A is called idempotent provided that

u * u = u. If A is a BL-algebra and u,v are idempotents in A such that
u < v, then the segment [u,v] = {are A : u 5 a: 5 v} is closed by *. It is not
hard to verify that the boolean elements of a BL-algebra A are idempotents.
Therefore new BL-algebras can be defined from a BL-algebra A by taking
segments between boolean elements. The following two results can be found
in [15].

Theorem 1.5.1 Let A = (A, *, —),_L,T) be a BL-algebra. For each u 9€ _L,
u e B(A), the system A“ = ([J_,u], *, =>u,L,u) is a BL-algebra where

z=>uy=(:v—)y)/\u.

Theorem 1.5.2 If A is a BL-algebra and a E B(A), then the correspon­
dence ¿r r—>(a: /\ a, a: A ña) is an isomorphism from A onto Aa x Afia.

A BL-algebra A is called directly indecomposable iff A is non trivial
and when it is decomposed into a direct product of two BL-algebras then
one of them must be trivial ([21]). In consequence a BL-algebra A is directly
indecomposable iff it is not trivial and B(A) = {.L,T}.

Recall that an atom of a boolean algebra B is an element a: e B such
that a: > .L and if y e B and y < :c, then y = _L.Our next theorem is the
analogous for BL-algebras of Corollary 3.8 in [19].

Theorem 1.5.3 Let A be a BL-algebra and suppose that B(A) is finite. Let
At(A) = {a1,a2, . . . ,an} be the set of atoms of B(A). Then

AE‘AHlx Aa2x ann.

Each algebra Aa. is directly indecomposable.

Proof: From the definition of atom we have that:

1.aIVazv...Van=T,

2. ifiaéj,a¿AaJ-=_L.

Leth:A-)A,,l x Aa2x ann begivenby

h(a)=(a/\a1,a/\a2,...,a/\an).

Clearly h is a homomorphism. From (1) we obtain that n?=¡[a¿, T] = {T},
consequently h is an embedding. Besides, for each element (1:1,1:2,. . . ,1") in
Aal x At12x x Aa", we have that (x¡,1:2,...,1:n) = h(I1V172v...Va:n),
thus h is surjective. Hence we conclude that h is an isomorphism. l
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1.6 Ordinal sums

From Theorem 1.2.2 we can deduce that BL-chains play a key role in
the structure of BL-algebras. One way of characterizing BL-chains consist of
studying the number and form of some of their subhoops. To describe how
the operations of a BL-chain A behave between some of its proper subhoops
we use the notion of ordinal sum introduced by Büchi and Owens in their
unpublished manuscript [9] and recalled in [26]. It is worth to remark that
this notion does not coincide with the notion of ordinal sum given in [17].

Let R = (R, *R_,—)R,T) and S = (S, ass,—)s,T) be two hoops such that
R ñ S = Wedefinethe ordinal sum Ru S of these two hoopsas the
hoop given by (R U S, *, —>,T) where the operations (*, —>)are defined as
follows:

23*Ry ifx,y€R,
runsy ifx,y€S,

angry: I ifI€R\{T}andy€S,
y ify€R\{T}anda:€S.
T ifzreR\{T},y€S,
1-)Ry ifz,y€R,
a:—>sy ifz,y€S,
y ify€R\{T}andI€S.

rey:

If R n S 7€ {T}, R and S can be replaced by isomorphic copies whose
intersection is {T}, thus their ordinal sum can be defined. Observe that
when R is a generalized BL-chain and S is a generalized BL-algebra, the
hoop resulting from their ordinal sum satisfies equation (1.1). Thus R EHS
is a generalized BL-algebra. Moreover, if R is a BL-chain, then R uaS is a
BL-algebra, where _L= _LR. In this case it is obvious that the chain REHS is
subdirectly irreducible if and only if S is subdirectly irreducible. Notice also
that for any generalized BL-algebra S, L2 EHS is the BL-algebra that arises
from adjoining a bottom element to S.

The definition of ordinal sum can be extended for a family of hoops. Let
(1,5) be a totally ordered set. For each i G I let A¡ = (A¡,*¿,—),-,T) be
a hoop such that for every i 96j, A,-ñ AJ-= Then we can define the
ordinal sum as the hoop wie,A¡ = (U¿E¡A¿,*,—>,T) where the operations
*, —>are given by:

17*¡y ifz,y€A,-,
I*y= I lfIEAi\{T},y€Ajandi<ja

y ify€A¿\{T},J:€AJ-andi<j.
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¿li-My ifaz,y€A,-,
T ifzeAi\{T},y€AJ-andi<j,

x—>y=
y ify€A¿,:c€AJ-andi<j.

Remark 1.6.1 Since generalized BL-algebras with a lowerbound are reducts
of BL-algebras, with an abuse of notation we shall refer to both algebras by
the same symbol, and we will deduce their structure from the context. For
example, Ln will denote the MV-chain (Ln, *, —),O,1) as well as the general­
ized BL-algebra (Ln, *, —>,1), and then we shall understand Ln tu Lm as the
ordinal sum of the MV-chain Ln and the generalized BL-chain Lm. We are
also going to refer to the ordinal sum of BL-chains, but, except from the first
summand, we are considering generalized BL-chains.
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Chapter 2

Decomposition of BL-chains

2.1 Decomposition into irreducible hoops
Hájek conjectured that a propositional formula d)is deducible in the logic

BL ifl' (15is a tautology for all continuous t-norms. His conjecture was proved
in [28] under some supplementary conditions. In order to show that these
conditions were redundant, a first decomposition of saturated BL-chains as
ordinal sums of MV-chains, Gódel Chains and PL-chains was given in [17],
generalizing a well known decomposition of continuous t-norms. The notion
of ordinal sum used in such decomposition differs from the one presented
in the previous chapter, and does not allow to decompose BL-chains that
are not saturated. To avoid this restriction, Agliano and Montagna give in
[2] a theorem of decomposition for BL-chains into an ordinal sum of some
special kind of hoops, named Wajsberg hoops, which can not be further
decomposed. Although this improves the result given in [17], the given proof
is non constructive, because the axiom of choice is invoked three times in the
course of the proof.

In the present section a rather simple and self contained proof of the
Agliano —Montagna decomposition is going to be offered without appealing
to any version of the axiom of choice.

A trivial hoop is a hoop whose only element is T. When the order of a
hoop A is total, we say that A is an o-hoop. A Wajsberg hoop is a hoop
that satisfies the equation:

(z—)y)—)y=(y—):v)—):v.

A bounded hoop is an algebra A = (A, —>,ar,_L,T) such that (A, —),*, T)
is a hoop and L 5 a for each a e A. A Wajsberg algebra is a bounded
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Wajsberg hoop, and Wajsberg algebras are equivalent to MV-algebras (see
[16]). Recall also that a BL-algebra is a bounded basic hoop and a BL-chain
is a totally ordered BL-algebra, that is, a bounded basic o-hoop.

Definition 2.1.1 An o-hoop is irreducible if it can not be written as the
ordinal sum of two non trivial o-hoops.

The followingresults can be found in

Lemma 2.1.2 Let A be any basic o-hoop and let a 7€T be an element in A.
Let Fa = {z e A \ {T} : a —>z = z} . Then Fa is downwards closed, and
Fa U {T} is the domain of a subhoop Fa of A.

Theorem 2.1.3 For an o-hoop (BL-chain) A the following are equivalent:

I. A is irreducible;

2. Foralla,b€A, b—)a=a impliesb=T ora=T;

3. A is a Wajsberg o-hoop (Wajsberg chain).

Definition 2.1.4 A tower of irreducible o-hoops is a family r = (C¡ :
i G I) index by a totally ordered set (1,5) with first element 0 such that:

o C¡ = (Ci, *¡, —>,—,T) is an irreducible o-hoop,

o 01-an = {T} for eachi #j,

o Co is a bounded o-hoop.

It is easy to see that for each tower r = (C¡ : i E I) of irreducible o-hoops,
A, = Let-HQ is a BL-chain. We shall demonstrate the following theorem
that gives the unique decomposition of each BL-chain into an ordinal sum of
irreducible hoops:

Theorem 2.1.5 Each BL-chain A is isomorphic to an algebra of the form
A, for some tower r of irreducible o-hoops.

Proof: We have already noticed that if an algebra is of the form A, for some
tower of irreducible o-hoops T, then the algebra is a BL-chain.

To prove that each BL-chain A has this form, as in Lemma 2.1.2, for each
aEA,a;éTletFa={:r€A\{T}:a—)z=:v} andletFT={T}.We
give an equivalence relation N on A by:

amb iff VIGA,a—):c=:l:<=>b—):r=:v ifl' Fa=Fb.

Clearly N is an equivalence relation. We will see that for each equivalence
class C, the structure C’ = (C U {T}, *, ——-),T) is a Wajsberg o-hoop.
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1. C’ is totally ordered, because the order of A is inherited.

2. C’ is closed by *. Indeed, if a,b e C (that is, a N b) we can check
that a a:b N a in the following way:

Let :r G Fmb. Then a * b —):1:= z. Since a * b S a we have that

1:5a-):cSa*b-)z=:c,

and :1:e Fa. Now let :1:E Fa = Fb. Then

a*b—)z=b—)(a—)a:)=b—):c=:c,

and a: e Fmb.

Besides, since a: * T = z for every a: E C and T * T = T, we obtain
that C’ is closed by *.

. C’ is closed by —> We need the following results to obtain this
conclusion:

(a) Ifa S b, then Fa Q Fb.

V

V

IfrceFa,thena-—>a:=a:andsoa:5b—>:c5a—>a:=1:and
III E Fb.

Ifa < b and Fa 76Fb, then a G Fb.

Let an element y e Fb\Fa, that means b —)y = y and y < a —)y.
Suppose a Q Fb. Then a 5 (a —>y) -) y 9.5Fb, since Fb is
downwards closed. But

b->((a->y)->y)=(a->y)->(b—>y)=(a->y)->y

thus (a —>y) —)y e Fb which is a contradiction that arises from
the hypothesis that a í Fb.

Ifa is not equivalent to b, then a * b = min(a, b).
Suppose a < b. Since a is not equivalent to b, we have that Fa 7’:Fb,
and by (3b) a E Fb. Thus b*a = b* (b —)a) = bAa, and since
A is a BL-chain, a /\ b = min(a, b). This happens analogously if
b < a.

Now let a, b e C. We intend to see that b —)a E C’.

oIbea,thenb->a=TEC’.
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o If a < b, since a —>a = T 96 a, then a e Fa = Fb. Therefore
a<b—)aandb*(b—)a) =bAa=a96b. Thenwehave
that b * (b —>a) 7€ min(b,b —) a), and by (3c) b —>a and b are
equivalent, and that means that b -) a E C’.

On the other hand, if a e C, then T —)a = a, a —) T = T. Since
T —)T = T, we conclude that C’ is closed under —).

Up to here, we deduce from (1), (2) and (3) that for each equivalence
class C, C’ is an o-hoop.

. C’ is irreducible. Supposeconverselythat C’ E’Alqu, for some non
trivial hoops A1 and A2. Let a:be in A1 \ {T} and y be in A2 \
Then 1:,y e C, and this implies that FI = Fy. From the definition
of ordinal sum we have that y —):1:= a: < T, and this means that
:c E Fy, which implies that 1: E FI. But this can not happen because
1: —>:1:= T 96 :r. Then C’ is irreducible.

A

5. C is a convex set. Assume that a, b e C and a < u < b. From (3a) we
have that Fa g Fu g Fb. But since a N b, we have that Fa = Fu = Fb.

Let I be the set of equivalence classes C. Since each equivalence class is
a convex set, the order of A induces an order on I, defined for C, D G I, by
C j DifleitherC: Dorforalla: GCand forallye Donehas thata: 5 y.
Thus I is a totally ordered set. We shall denote by Co the equivalence class
that contains the bottom element of A, and by Cl the class that contains
the element T. Therefore we have that:

o For each C e I, C’ is an irreducible o-hoop.

o For each C sé D e I, C’ñD’ = {T}, for equivalence classes are pairwise
disjoint.

o C2, has a least element, because A is a BL-chain.

Therefore we have that T = (C’, C E I) is a tower of irreducible o-hoops.
Notice that if a e C and b e D with C j D and C 9€ D, by (3c) we
have that b —>a = a and by (3h) a * b = b. Then it is easy to see that
AT= GCGIC’É I

Remark 2.1.6 It is clear that Ci = Noticethat, with the exception
of C’l, the previous Theorem offers a constructive method for decomposing
BL-chains into non trivial irreducible o-hoops.
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Theorem 2.1.7 Each non trivial BL-chain admits a unique decomposition
into non trivial irreducible hoops.

Proof: Suppose that A = w,E,C¡ = ijJDj, where Ci and Dj are non trivial
irreducible o-hoops for each i E I and j e J, I and J are totally ordered sets.
For each i e I and j e J, the possibilities are:

1. CiñDj = {T} or,

2. there exists a e C,-ñ Dj such that a < T.

We only need to see that if the second case happens, then C¡ = Dj. Suppose
that C¡ 56Dj, and let a < T be in C,-ñ Dj. Without loss of generality we
can think that there exists b e C,-\ DJ-and a < b. Since b 9€Dj, necessarily
b < T. Since b e A there exists k e J such that b e Dk and clearlyj < k.
Therefore, from the definition of ordinal sum we obtain that b —>a = a. But,
since a,b E Ci and C¡ is irreducible, Theorem 2.1.3 asserts that b = T or
a = T. The contradictíon arises from the hypothesis that C¡ 7€Dj. I

Since irreducible o-hoops coincide with Wajsberg o-hoops, we shall in­
vestigate the structure of Wajsberg o-hoops. We have already noticed that
Wajsberg bounded o-hoops (irreducible bounded o-hoops) coincide with MV­
chains. A characterization of bounded and unbounded o-hoops is given in
[7, Section 1]. A hoop is cancellative if its basic monoid is cancellative.
Cancellative hoops form a variety characterized by the equation

y=1:—)(y*a:).

Cancellative o-hoops coincidewith Wajsberg unbounded o-hoops (see
If G = (G,+,0) is an abelian o-group (totally ordered group), and we

define G" = {1: e G : a: 5 0}, then P(G) = (G’,*,—),0) is a Wajsberg
o-hoop where the operations * and —)are given by:

I*y=x+y, and :c-)y=0A(y-:I:).
In fact, if G is an abelian É-group (lattice ordered group), then P(G) =
(G‘,*,—),0) with *,—) as defined above is a generalized BL-algebra. The
following result can be deduced from [3] (see also [6] and [19]).

Theorem 2.1.8 The following conditions are equivalent for a generalized
BL-algebra A :

1. A is a cancellative hoop,
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2. there is an É-groupG such that A E P(G),

3. A is in the variety of generalized BL-algebras generated by P(Z), where
Z denotes the additive group of integers with the usual order.

Therefore we conclude:

Theorem 2.1.9 If A is an irreducible o-hoop then either A is an MV-chain
(in case A is bounded), or A is isomorphic to P(G) for some totally ordered
abelian group G (if A is unbounded).

Corollary 2.1.10 Each BL-chain is an ordinal sum of a family of MV­
chains and hoops of the form P(G) for a totally ordered abelian group G.

Let consider a BL-algebra A. We proved that there exists a unique tower
of non trivial irreducible o-hoops T = (C¡,i E I) such that A = Lfi,-E¡C¡.If
0 denotes the first element in I then Co is a bounded Wajsberg o-hoop, i.e,
Co is an MV-chain. Besides, B = w¡e¡\{o}C¡ is an implicative filter of A.
Recall that a BL-algebra A is said to be simple provided it is non trivial
and the only proper implicativefilter of A is the Singleton Therefore a
BL-chain is simple ifi it is a Wajsberg chain.

Since finite BL-chains are bounded, from Theorem 2.1.9 and Corollary
2.1.10 we have that finite BL-chains can be uniquer decomposed into an
ordinal sum of finite MV-chains. From [16, Corollary 3.5.4] we have that an
MV-chain is simple and finite ifï it is isomorphic to an MV-chain of the form
Ln for some integer n. This implies the following theorem:

Theorem 2.1.11 Each finite BL-chain C is isomorphic to a chain of the
form

wlc=OLTi

for an integer k and where each r,- is an integer fori = 0, 1,. . . , k.

Remark 2.1.12 It is worth to notice that for each finite BL-chain C, the
number of idempotent elements different from T coincides with the number
of irreducible MV-chains that compose C, since they are the bottom element
of each of the non trivial irreducible parts.
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2.2 Decomposition into regular and dense el­
ements

There is another way of decomposing BL-chains that will be very useful
to our purpose. In order to use the results given in [21] about free algebras
in the following Chapters, we shall decompose each BL-chain into two parts.
Given a BL-algebra A we can consider the set

D(A)={I€AZ—|I=_L}.

As indicated by [21], D(A) = (D(A),*,—>,T) is a generalized BL-algebra.
The elements in D(A) will be called dense elements of A. Recall that
if MV(A) = {2:E A : fina: = :c}, then MV(A) = (MV(A),*,—),_L,T) is
subalgebra of A which is an MV-algebra. The elements of MV(A) will be
calledregular elements of A.

Theorem 2.2.1 For each BL-chain A we have that

A 2' MV(A) Hz!D(A).

Proof: From Theorem 2.1.5 we now that there exists a tower T = (C¡ : i E I)
of irreducible o-hoops, such that A = Lam-HQ.Let 0 be the least element of I
and let B = w¿€,\{o}C¡.Clearly B is a generalized BL-chain and A = COL+JB.
Therefore it is enough to prove that MV(A) = Co and that D(A) = B.

o D(A) = B.

It is clear that if 1: e B from the definition of ordinal sum ña: = _L,
then :1:e D(A). Therefore we have that B g D(A). Let suppose that
a: e D(A) \ B. Obviously a: 96 T. Since :1:e D(A), we have that
ñ-aa: = T. On the other hand, since :L‘e C0 \ {T}, we obtain that
ññz = 1: because Co is an MV-chain. Hence we arrive to the contra­
diction a: = T, and we conclude that B = D(A).

MV(A) = Co

Co g MV(A), since C0 is an MV-chain. Suppose now that there exists
a: e MV(A) \ Co. Again we have that :c 7€ T. Hence a: G B, and
-|-|a: = T. But since a: E MV(A), fina: = :c. The contradiction a: = T
arrives from the hypothesis MV(A) \ Co 76(0,hence we may conclude
that MV(A) = Co.

I

Indeed, the condition of A of being a BL-chain can be released in the
following way:
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Theorem 2.2.2 Let A be a BL-algebm such that MV(A) E“Ln for some
integer n. Then

A g MV(A) u D(A) e L,,u D(A).

Proof: In order to prove this result the followingnotation is introduced: given
1: and y in a BL-algebra we define a: 69y = ñ(-I1: a:fly). For each positive
integer k, the operations :r" and k -z are inductively defined as follows:

o 231::1: and :c"+l=:c"*a:,

01-:E=:c and (k+1)-a:=(k-a:)63:r.

Notice that ifa: e L,,\{T}, then 3:" = _L,and ifz e L,,\{_L}, then 72.3:= T.
From Theorem 1.2.2, we can think of each non trivial BL-algebra A as a
subdirect product of a family (A,,i e I) of non trivial BL-chains, that is,
there exists an embedding

e : A —)H Ai,
iel

such that 7r,-(e(A)) = A,- for each i e I, where 7r,-denotes each projection.
We shall identify A with e(A). Then each element of A is a tuple x and
coordinate i is 1:, e Ai. With this notation we have that for each x e A,
1r,-(x) = :1:,-.We will proof the following items:

1. For each i E I, MV(Ai) is isomorphic to Ln.

Since for each i e I, 7T,-is a homomorphism and 7r,-(MV(A)) Q Ai, we
have that 7r,-(MV(A)) g MV(Ai). Then 7r,-(MV(A)) is a subalgebra
of MV(Ai). On the other hand, given i E I, let 2:,-G MV(Ai). Then
—1—II¡= 1:,-and there exists an element x e A such that 7r,-(x) = zi. Tak­
ing y = ññx e MV(A) we have that 7r,(y) = a3,-and 1:,-e 7r,-(MV(A)).
Hence MV(Ai) g 7r,-(MV(A)).

In conclusion MV(Ai) = 7r,-(MV(A)) = 7r,-(L,,)and since Ln is a
simple algebra and MV(Ai) is non trivial we have that MV(A,) E”Ln.

N . Ifx G A, then x G MV(A) U D(A).

Let x e A and let y = n.(-|x). If x,-e Ln \ {T}, then fix, E Ln \ {L}
and 1,- = n.(-Ia:,-) = T. On the other hand if fix,- = _L, then y,- =
n.(ñ:c,) = _L.Now let z = (ññx)? If z,- E Ln \ {T}, then z, = _L,but

fi‘k’ll'i= T, then Zi=

Suppose there exists x e A such that x 9€MV(A) and x í D(A). It
follows from Theorem 2.2.1 that for each i e I, A, = MV(A¿)LtJD(A,-),
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then there exist i,j e I, such that mie MV(Ai) \ {T} = Ln\ {T} and
Ii e D(Aj) \ {T}­

Let y = n.(-\x). Then yi = T, yj = _Land yk E {L,T} for each
k G I \ {i,j}. Now let z = box)". We have that zj = T, z,-= J. and
zk e {.L,T} for each k e I\ {i,j}. It followsthat y and z are elements
in the chain MV(A) = Ln which are not comparable, a contradiction.

oo . Ifx e MV(A) \ {T} and y e D(A), then x < y.

The statement is clear ifzi e MV(A¡)\{T} for every i e I or if yi = T
for each i e I. Otherwise, let S = e I : z,- = T} 76(0.Since x 76T
we have that S is a proper subset of I. If yi = T for each 2'e S, then
x < y. If not, letj e S be such that yj 7€ T. Let z = x A y. Since
operations are coordinatewise, z,-G MV(A) \ {T} for each i E I \ S
and zj e D(A) \ Hencez gÉMV(A) and z í D(A) contradicting
the previous item.

A .IfxeMV(A)\{T} andy€D(A), theny—)x=x andy*x=x.
Since ñy=_L we have that

y—)x=y—)ñ-rx=y—)(ñx—>J_)=ñx—)(y—)J_)=

:fix-fiizfifix=x,
and

x=y/\x=y*(y—>x)=y*x.

From the previous items it follows that

A 2 MV(A) u D(A) = L" u D(A).

Remark 2.2.3 Notice that ifa: e D(A) then ñ-iz = T, thus fina: —)a: = 21:,
and ifz e MV(A) then -|-|z = :r and -'-|:c —):c = T.



Chapter 3

Characterization of varieties of
BL-algebras generated by
BLn-chains.

3.1 Equational Characterization of the sub­
varieties of BL-algebras generated by a
BLn-chain.

The purpose of the present section is to find an equational charac­
terization of certain subvarieties of BL generated by a single chain. Fol­
lowing the decomposition given in Theorem 2.2.1, the idea is to see how
the equations that characterize the subvariety of BL generated by a chain
A = MV(A) e}D(A), depend on the ones that characterize the subvariety
of MV generated by MV(A) and the ones that characterize the subvariety
of QBL generated by D(A). In order to do so we follow the ideas given by
Aglianoand Montagna in It is worth to note that certain subvarieties of
BL-algebras are characterized in [29]. The main difference with the present
work is that I do not introduce new constants to the original algebraic system.

We shall denote by MV” the subvariety of MV generated by Ln. The
elements of MV" are called MVn-algebras. The following result can be
found in [16].

Theorem 3.1.1 A finite MV-chain Lm belongs to the variety generated by
Ln iflm —1 is a divisor 0fn- 1.

From Theorem 1.2.2 and the previous theorem we conclude that every
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MVn-algebra is a subdirect product of a family of algebras (Lm¡,i e I) where
m,-—1divides n —1 for each i e I.

We define a BLn-chain as a BL-chain which is an ordinal sum of the
MVn-chain Ln and a generalized BL-chain B. To continue with our work we
set a fixed BLn-chain

Tn = Ln tt!B.

We shall denote by V be the variety of BL-algebras generated by Tn and by
W the subvariety of GBC generated by B.

Let Mi):l and W‘ denote the classes of totally ordered members of MVn
and W respectively. Following [2], we denote

MVn w‘ W

the variety generated by {A1 L+JA2 : A1 G MVS“ A2 e W‘}. From Theorem
3.1.1 we know that Mi}; = {Lm : m-l divides n- 1}. We shall characterize
equationally the variety

M vn w‘ W.

Let {e,-,i E I} be the set of equations that define ¡MVn as a subvariety of
BL, and {dj,j e J} be the set of equations that define W as a subvariety of
QBL, i.e., an MV-algebra A1 belongs to MVn iii the elements of A1 satisfy
e,- for each z' e I, and a generalized BL-algebra A2 belongs to W iff the
elements of A2 satisfy equations dj for each j e J. For each i E I, let e;
be the equation that results from substituting fina: for each variable a: in
ei, and for each j e J, let d;- the equation that results from substituting
-m:1: —):7:for each variable 1: in the equation dj. Let V’ the variety of BL­
algebras characterized by the equations of BL-algebras plus the equations
{62,2'e I} U {d’-,j G J}. From Remark 2.2.3, a BL-algebra A is in V’ ifi' its
regular elements satisfy equations e¡ for each i e I and its dense elements
satisfy equations d]-for each j E J.

Lemma 3.1.2 V’ = MVn H-J‘W.

Proof: Let A = A1L+JA2, with A1 e Mi}; and A2 E W‘. For each :r e A,
we have that -I-u:r G A1 and -I-Ia: —>z e A2. Therefore A satisfies equations

e; for each i E I and d; for each j e J, and .MVn LtJ‘W g V’. Now let A
be a BL-chain in V’, that is, a BL-chain that satisfies equations 62,1"G I and
equations d9,j e J. From Theorem 2.2.1 we know that

A = MV(A) wD(A).

Since for each x e MV(A) we have that -I-|a: = :v, and MV(A) is in
V’, we obtain that for each 2'e I, MV(A) satisfies the equation ei. Then
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MV(A) is a chain in MV”. On the other hand, since for each a: e D(A) we
have that fi-nzc—>1: = x, D(A) satisfies equation dj for each j G J. Then
D(A) is a generalized BL-chain in W. Then A e MVn Lü‘Wand by Theorem
1.2.2 we conclude that V’ = .MVn u‘ W. I

Following the arguments in the proofs of [2, Lemma 7.1 and Theorem
7.4], we shall see that

V = Mvn h‘J'W.

To accomplish such aim, for each class of algebras IC, let H(IC), I(KÏ), SOC),
PUC) and Pu(IC) denote the classes of homomorphic images, of isomorphic
images, of subalgebras, of direct products and of ultraproducts of algebras
from IC respectively. If 01 and 02 denote two operators we write 0102
for their composition and 01(IC1) w 02(IC2) will denote the algebras in the
class {B1L+JB2: B,- G O¡(lC,-)}. From [2, Proposition 3.1, Proposition 3.2 and
Proposition 3.4] we obtain the following three results:

Lemma 3.1.3 Given two hoops Al and A2, the subalgebras of Al LtJA2 are
of the form C1 L+JC2, where C1 is a subalgebra (possiny trivial) of A1 and
C2 is a subalgebra (possiny trivial) of A2.

Lemma 3.1.4 Let A1 and A2 be hoops. Then the set of homomorphic im­
ages ofA1 L+JA2 is H(A¡) U {A1 L+JC: C E H(A2)}.

Lemma 3.1.5 The ultraproducts Pu(Ln ttlB) consist of algebras of the form
A1L+JA2, where A1 G IPu(Ln) and A2 e IPu(B).

Lemma 3.1.6 ISPu(Ln byB) = I(SPu(L,¡) wSPu(B)).

Proof: From the previous lemmas we have that

ISP.,(Ln L+JB) g I(SP..(L,,) w SPu(B)).

Let A E SPu(Ln) and let C G SPu(B). Then there exists an embedding of
A into a power L,'¡/U, and then A e) C embeds into (Ln w C)'/U. Now let
BJ/V be the ultrapower of B in which C embeds. Then Ln LfiCembeds into
(Ln w B)J / V. Therefore we obtain that

A e) C e ISP¡,(SPu(Ln tt!B)) g ISPu(Ln L+JB).

I
We recall that Jónsson’s Lemma (see [10]) asserts that, since V is a con­

gruence distributive variety, if C is a subdirectly irreducible algebra in V,
then C e HSPu(Ln euB) and HSP.,(Ln u B) g v.
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Theorem 3.1.7 V = MV" u‘ W.

Proof: Clearly V g MV” L+J‘W.Let A be a subdirectly irreducible BL-algebra
in MV” tdt W. From Theorem 1.2.2, A is a BL-chain and from the proof of
Lemma 3.1.2, A = Ls Lt}C with s —1 dividing n —1 and some chain C E W.
Clearly C is subdirectly irreducible. Since QBL is a congruence distributive
variety by Jónsson’s Lemma, C e HSPu(B). Then, from Lemma 3.1.4 and
Lemma 3.1.6,

A e ISPu(Ln) wHSPu(B) g HSPu(Ln e B) g v.

Corollary 3.1.8 V = V’.

In conclusion we have that the variety V of BL-algebras generated by the
BLn-chain Tn = L" L+JB is equationally characterized by the equations of
BL-algebras plus the equations that result from substituting ñ-IJ: for each
variable a: in the equations that characterize MV" and the equations that
result from substituting ññz —>z for each variable :c in the equations that
characterize W as subvariety of QBL.

3.2 Equational characterization of subalgebras
of regular elements

Following the notation established in the previous chapter, for a: and y
in a BL-algebra we define a:e y = -i(ñz * -|y), and for each positive integer
k, the operations :L‘kand k - a: are inductively defined as follows:

o 11:11? and xk“ =z’°*:c,

o 1.3:]: and (k+1)-x=(k-:c)63:r.

The following three results can be found in [16, Chapters 3 and 8].

Theorem 3.2.1 Let A be an MV-algebra and n 2 2 an integer. Then A
satisfies the equation

¿vn-l = 1:", (3.1)

if and only ifA is a subdirect product of algebras Lk, with 2 5 k 5 n.
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Theorem 3.2.2 An MV-algebraA belongsto MVg iffA satisfies the equa­
tion:

3;?= z (3.2)

An M V-algebra belongs to M V3 ifi it satisfies the equation:

253= 12 (3.3)

Theorem 3.2.3 For every integer n Z 4 and every MV-algebraA, the fol­
lowing conditions are equivalent:

1. A satisfies the equations:
93"" = z", (3.4)

and
(p-Ip’l)" = n -9:”, (3.5)

for every integer p = 2,. . . , n —2 that does not divide n —1;

2. A e Mvn

The following lemmas follow from the previous theorems and Corollary
3.1.8

Lemma 3.2.4 Let V be a variety generated by a BLn-chain. IfC e V, every
:1:e C satisfies the following equations:

(ww-1) = (war, (3.6)

and ifn 2 4, for every integer p = 2,. . . ,n —2 that does not divide n —1:

(P' (“IYHY' = n -(“HIV- (3-7)

Lemma 3.2.5 Let n 2 2 be an integer and let C be a BL-chain. Then
MV(C) belongs to the variety generated by Ln ifl' C satisfies the following
equations:

(wow = me)", (3.8)
and ifn 2 4, for every integer p = 2, . . . ,n —2 that does not divide n —1:

(P' (nn-TV4)" = n ' (nn-T)”- (3-9)

Proof: Suppose the chain C satisfies equations (3.8) and (3.9). From the
fact that if :c e MV(C), then ñfiz = 1:,we deduce that the elements of the
MV-algebra MV(C) satisfy equations in Theorem 3.2.3 in case n 2 4 or,
otherwise, the corresponding equation in Theorem 3.2.2.

Now let C be a BL-chain such that MV(C) is an MVn-algebra. From
Remark 2.2.3 we know that ññz e MV(C), thus equations (3.8) and (3.9)
are satisfied. l
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3.3 Counting dense elements
In the following lemma we characterize with an equation BL-chains that

have at most m dense elements.

Lemma 3.3.1 A BL-chain C satisfies the equation

(-1-Ixm —)zm) V ((-i-ixm —)Im)—)(-|-|1:m_1 —>xm_1)) V - -- (3.10)

. . V ((ñfixg —) 1:2) —) (fi-‘Il —) 1171))= T,

ifl D(C) has at most rn elements.

Proof: Let C be a BL-chain such that D(C) has r 5 m elements. Let
I¡,...,a:m be in C. If ¿ri G MV(C) , for some i = 1,2,...,m, (3.10) is
satisfied because ñfizi —)Ii = T. Otherwise, necessarily mi G D(C) \ {T}
for every i = 1, . . . , m. This implies ññzi —):vi = :ci. There are r-1 different
elements in D(C) \ {T}, and since r —1 < m, there exist i,j such thatj 5 i,
I,- 5 :cj and (ñfizi —>Ii) —) (ñ-nzj —)ari) = 1:,-—) zj = T, thus (3.10) is
satisfied.

Suppose converser that C is a chain such that D(C) has r > m elements.
Let them be a¡ < < am< am“ 5 5 a,_¡ 5 a, = T. Foris m, we
know that -I-\a,- —>a,-= a,- < T, then ifj < i S m we have that

(ññai —)ai) —>(-i-iaj —)aj) = a,- —) aJ- < T.

Taking rr,-= a,- in equation (3.10) we obtain that

(am V (am —-)am_¡) V...V (a2 —)a¡)) < T,

because D(C) is totally ordered. Hence equation (3.10) is not satisfied by
all the elements of C. I

The next lemma is given in [2, Lemma 4.2] to characterize BL-chains that
have at most (lc+ 1) non trivial irreducible parts.

Lemma 3.3.2 Let A = L+JÏ=0Aibe a BL-chain, where every A¡ is a totally
ordered non trivial Wajsberg hoop, and consider for any k the equation:

k k+l

A((-Ïi+l —*Ii) —>10-) 113i:T. (3.11)i=0

Then the equation is satisfied in A if and only ifn S k.
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3.4 Examples
As it has been proved, the variety generated by one BLn-chain can be

equationally characterized in terms of the equations that define MV" and
the equations that define W as a subvariety of QBL. Notice that the equa­
tions that characterize MVn as a subvariety of MV are explicitly shown in
theorems 3.2.2 and 3.2.3. But in order to apply the method presented in the
first section for a given BLn-chain anB, we should also know the equations
that characterize the subvariety of generalized BL-algebras generated by B.
These equations are often unknown. For finite BL-chains, we know that B
is a finite ordinal sum of finite MV-chains (see Theorem 2.1.11). But when a
finite MV-chain Lm, with m 2 4 is considered as a generalized BL-algebra,
_Lis no longer a constant, and equation (3.5) in Theorem 3.2.3 can not be
expressed in the language of basic hoops. Then, even in this simple case the
equations that characterize the variety of generalized BL-algebras generated
by the dense part of the BLn-chain are unknown.

Indeed the given method of characterizing subvarieties of BL was intro­
duced because of its theoretical interest in the description of free algebras in
the following chapter. For some cases we can explicitly show the equations
that characterize the subvariety of BL generated by one finite BLn-chain in
an alternative way.

To achieve such aim, we will firstly describe varieties of BL-algebras
generated by finite BLn-chains that satisfy some special conditions. Let
n, m,r and k be integers such that n 2 2, m 2 2, k + 1 5 7‘ and
k.(m —1) + 1 2 r. Let Mmmm“ be the variety of BL-algebras generated
by the BL-chains that are of the form

u'ch=0L"'i ’

where ro = n, (Zilri) —(k —1) S r and 2 S 1-1-5m for each i = 1,...k.
Then the generating chains of 14mm,” can be decomposed into (k + 1) non
trivial irreducible parts, they have at most r dense elements and at least
(k + 1) dense elements, and each of the irreducible hoops that compose their
generalized BL-algebra of dense elements has at most m elements.

Proposition 3.4.1 A BL-algebra C is in V(n,m_,._k)if and only if the following
identities hold for every 33,31,. . . ,33, in C:

(-I-I:1:)"_l = (-mzc)", (3.12)

Ifn 2 4, for every integerp = 2,. . . ,n —2 that does not divide n —1:

(P' (T‘I)”_l)" = n ' FTC)”, (3.13)
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k k+l

A((Ïi+l —>zi) -+ 120-» V Ii = T (3.14)
¡:0 i=0

(-1-Ia: —)z)’"’l = (-HJ: —)1:)m, (3.15)

(ñ-nz, —)1,.) V ((ññz, —>Ir) —)(-1-Iz,_1 —)z,_1)) V - u (3.16)

.. V ((fiñzg —)1:2)—)(-|-|1:1—> 21)) = T,

Proof: Firstly, we see that each of the chains that generates the variety
satisfies equations (3.12), (3.13), (3.14), (3.15) and (3.16). Notice that if
A is one of such chains, then A is a BLn-chain and from Lemma 3.2.4, A
satisfies equations (3.12) and (3.13).

Let consider D(A). This generalized BL-chain is an ordinal sum of k
chains each one of the form L,“ with 2 5 ri 5 m. Thus, from Theorem
3.2.1, for each :v e D(A), we have that (-ma: —) :5)“ = x’" = :rm“ =
(-ma: —>3:)m'l, and equation (3.15) is satisfied by all the elements in D(A).
Of course equation (3.15) is also satisfied by elements in M V(A), hence ,
from Theorem 2.2.1, the equation is satisfied by all the elements in A. Since
(2le ri) —(k —1) 5 r, Lemma 3.3.1 asserts that A satisfies equation (3.16).
Finally, by Lemma 3.3.2 equation (3.14) is satisfied.

Let A be a BL-chain satisfying (3.12), (3.13), (3.14), (3.15) and (3.16).
By Lemma 3.2.5 and Theorem 3.1.1 we know that equations (3.12) and (3.13)
imply that MV(A) E’ Ld+1 for d dividing n —1. From equation (3.16) we
obtain that D(A) has at most r elements; from Theorem 2.2.1, the previous
results indicate that the chain A is finite. Equation (3.14) asserts that A
can be decomposed in at most k + 1 non trivial irreducible hoops. Since they
are finite, they must be all reducts of MV-chains, and from Theorem 3.2.1
and equation (3.15) we know that D(A) E’ L+Jf=an where r,- 5 m for every
i=1,...,p,forsomep5 k

Using once more Theorem 2.2.1, we have

AE'MV(A)HJD(A) EHLOL“,

where1-0-1 dividesn-1,r¿5 m foreach i: 1,...,p, p 5 lc and
(X:le ri) —(p —1) 5 7'. It is easy to corroborate that A is a subalgebra of
one of the chains that generate the variety Mmmm“. From Theorem 1.2.2,
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each BL-algebra C satisfying (3.12), (3.13), (3.14), (3.15) and (3.16) is in
v(n,m,r,k)' I

The variety 1453,53)is the variety generated by L5EULguLa, L5sz kHLa,
L5 ttng L+JL2and L5L+JL2L+JL2.The variety 145,353) is generated by the chains
L5 Ü L2 L'É'JL3, L5 Ü L3 U’JL2 and L5 EUL2Ü L2. Since L5 lt}L2 ÜL2 lS a subalgebra

of L5 w L2 L+JL3 and of L5 k6L3 w L2, we can say that V(5_3_5,2)is the variety
generated by these two algebras.

Now we shall characterize equationally varieties of BL-algebras generated
by one specific BLn-chain.

3.4.1 The ordinal sum of two finite MV-chains

We define the BLn-algebra an as the ordinal sum of Ln and Lm, that is,
LT = n w Lm for m 2 2 and n 2 2. Notice that the elements in Lm are
dense in Lf. To describe equationally the variety V generated by the chain
LT, we define the following operations:

oa: = z —-)zm’l,

and inductively,

10:c=:rand (k+1)o:r=((ko:1:)—)2:"‘"*o:r)—>:z:m_l.

Proposition 3.4.2 Let V be the variety of BL-algebras generated by L2. A
BL-algebra C is in V if and only if the following identities hold for every
z,a:l,...,a:m in C:

(“10H = hem)", (3-17)

ifn 2 4, for every integer p = 2,. . . ,n —2 that does not divide n —1:

(p- (anz)"")" = n -hem)", (3-18)

l 2

A((:ci+1 —>zi) —>:ci) —>\/z,— = T. (3.19)
i=0 i=0

(T11 —):r)’"‘l = (ñ-rz —)x)“, (3-20)

ifn 2 4, for every integer p = 2,. . . ,m —2 that does not divide m —1:

(p o (fina: —):12)”")”' = m o (fina: —>z)”. (3.21)
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(ñ-‘xm —)Im) V ((-mzm —>zm) —) (-i-izm_¡ —):cm_1)) V - -- (3.22)

.. V ((ññzg —)22) —)(-I-I1:1 —>11)) = T,

Proof: Firstly we see that LZ‘satisfies equations (3.17), (3.18), (3.19), (3.20),
(3.21) and (3.22). Since LT is a generator of the variety V(n'm,,,,_1),we
know that equations (3.17), (3.18), (3.19), (3.20) and (3.22) are satisfied.
If :1:e MV(L,’{') = Ln, then -I-I:r —)1: = T and equation (3.21) is satisfied.
Otherwise, :r e D(Ln’") \ {T} = Lm \ {T} and fina: —>:v = :c. This being
the case, (fina: —)1:)"1’l is the lower bound of Lm, and equation (3.21) is
equivalent to equation (3.5) in Theorem 3.2.3, therefore, it is also satisfied
by the elements of D(Ln’").

From equations (3.17), (3.18), (3.19), (3.20) and (3.22), we know that V
is a subvariety of Mmmm”. Remind from Proposition 3.4.1 that a chain A
is in this last variety, then it is of the form

Ld+l w L3

where d divides n —1 and s 5 m, or A is a subalgebra of L". Now let A be
one of these BL-chains that also satisfies equation (3.21). If A is a subalgebra
of Ln then A is a subalgebra of LT. Otherwise, D(A) \ {T} sé (D.Notice that
for every a: e D(A)\{T},:1:’"’l =(-'-'1: —>:i:)""l = (ñ-az —)z)“ = :c’"is an
idempotent element difl'erent from T and difl‘erent from _L. Since there is at
most one non-extreme idempotent element, then for every 21:,y e D(A) \ {T}
we obtain that 12m“ = ym“. We shall denote by c to this element. From
its definition we have that c 5 :1:for every :ve D(A). Consider the structure
D’(A) = (D(A), *, -), c, T). If we consider c as a constant, D’(A) is a finite
MV-chain. From Theorem 3.2.3 we have that the MV-chain D’(A) is in the
variety generated by Lm ifl'every a: e D’(A) satisfies the following equations:

I(m_l) = :cm. (3.23)

For m 2 4 and every integer p = 2,. . . ,m —2 that does not divide m —1:

(p o zP-‘yn = m e :c", (3.24)

where the operation (Dis inductively defined by

1®I=Iand(k+1)®:c=ñ'(ñ'(k®1:)*-1'z),
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and -1’ denotes the negation in D’(A). From the fact that for :1:e D(A),
-I-|:r —>a: = x, equation (3.20) asserts that equation (3.23) is satisfied in
D(A). Now we will check equation (3.24). It is easy to see that k G)T = T
for every integer k and that T satisfies equation (3.24). If a: e D'(A) \ {T},
since 4:1: = :r —>c = a: —)mm" = 09:, from equation (3.21) we have

(pGIP-lyn = (pozp_l)m = mOIP = mQIP.

Therefore, D’(A) is an MV-chain in the variety generated by L"l and
D(A) É Ls“ as generalized BL-chain for some s that divides m —1. In
conclusion, the BL-chains in V are of the form

I"¿1+1Ü Ls+l

and where d divides n —1 and s must divide m —1. It is easy to corroborate
that these are all subalgebras of LZ‘, thus V is the variety of BL-algebras
generated by Lf. I

3.4.2 The ordinal sum of a finite number of finite MV­
chains of the same length

In a similar manner as in Proposition 3.4.2 we can characterize equation­
ally varieties generated by chains whose dense part is an ordinal sum of lc
chains of the form Lm.

Let

Lflm'k)= of: L,..

where ro = n and r,-= m for each i = 1,...,k, and let r = k(m- 1) +1.
Once more we set

oa: = :r —)12m“,

and inductively,

loz = a: and (k+1)o:r = ((koz) —>:c""1*<>a:)—):c”"l.

Proposition 3.4.3 Let V be the variety of BL-algebras generated by Lgm'k).
A BL-algebra C is in V if and only if the following identities hold for every
1,21,...,xs in C:

(fiñl'yl-l= (fi-izr)",
ifn 2 4, for every integer p = 2,. . . ,n —2 that does not divide n —1:

(P‘ (nnI)”'l)" = 71'PMI)”, (3-26)
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k k+l

/\((Ii+¡ -> Ii) -> Ii) —>V zi = T. (3.27)
i=0 i=0

(-ma: —>a:)'"’l = (ñfix —)x)“, (3.28)

ifn 2 4, for every integerp = 2, . . . ,m —2 that does not divide m —1:

(p o (fina: —)2:)p’l)“ = m o (ñ-ua: —)rc)”. (3.29)

(ñ-Ix, —>(12,.)V((-|-|17r —):cr) —) (-I-Izr,_¡ —):c,_1)) V - -- (3.30)

. . V ((fifiívg —) 122) —) (fifixl —) 171)) = T,

Proof: Verifying that LS?“ satisfies equations (3.25), (3.26), (3.27), (3.28),
(3.29) and (3.30) is analogous to the proof of Proposition 3.4.2.

Again equations (3.25), (3.26), (3.27), (3.28) and (3.30), asserts that V
is a subvariety of V(n_m',_k).So let A be one of the chains in Mmmm“, that
also satisfies equation (3.29). We know that MV(A) É Ld+1for some d that
divides n-l and that D(A) = wf=an wherep 5 k and r,-5 m. We also know
that D(A) has at most r elements and that the number of dense idempotent
elements is p + 1, p of which correspond to the bottom element of each chain
LT...We shall call these dense idempotents Oi for i = 1,. . . ,p. Then, for each
:c e D(A) there exists i = 1,...,p such that (-n-m:—>2:)"“l = zm‘l = Oi.
Now if -|¡ represents negation in Ln. then for each m e L“. \ {T} we have that

-|¿:v=1:—>0¿=z—>a:""l =o:r.

Reminding once more that, if a: E D(A), then ññx —>:1:= :c, from Theorem
3.2.3, equations (3.28) and (3.29) asserts that L,_.is in the variety generated
by Lm, and Theorem 3.1.1 asserts that ri - 1 is a divisor of m —1. Then the
chains that in V are of the form

uï=0LTi

where ro = d + 1 for some d that divides n —1, p 5 k and 7‘,-— 1 divides
m —1 for each i = 1,. . . ,p, that means they are subalgebras of LS?“ and
the theorem follows. I
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3.4.3 The ordinal sum of a finite MV-chain and a finite
Heyting chain

Recall that a linear Heyting algebra H = (H,*,—),_L,T) is a BL­
algebra in which A = ar, i.e., it satisfies the equation z * y = a: A y. Clearly,
each element :r of Hm is an idempotent element, since

122=1:*a:=a:/\x=x.

This chain can be decomposed to obtain : Hm+1 2’ 651-”;ng.Hence Hm+¡\{_L}
is the universe of a generalized BL-chain isomorphic to D(Hm+¡). Notice
from Remark 2.1.12 that if A is a finite BL-chain such that for each a: G A,
:c is idempotent, then A E”e17;ng for some integer m. Hence A is a finite
Heyting chain.

Given m 2 2 and n 2 2, we define the BL-algebra TZ‘ as the ordinal sum
of the MV-chain L" and the Heyting chain Hm, that is , Tn’"= Ln LaHm.
The subalgebras of Tn’"are of the form Tí,“ if d divides n —1 and j 5 m.

Proposition 3.4.4 Let V be the variety of BL-algebras generated by Tn’".A
BL-algebra C is in V if and only if it satisfies the following identities for
every :r,:r¡, 22, ...,2:m in C:

(.mzfln-l) = (_._.IyI_ (3.31)

Ifn 2 4, for every integerp = 2,. . . ,n —2 that does not divide n —1:

(P' (“IV-W" = n -beat)”, (3-32)

(ñ-azm —):rm) V ((nnarm —>crm) —) (ññzmq —>zm_1)) V - -- (3.33)

. . V ((fifilïg —) 172) —) (fi-‘Ilïl —) 171)) = T,

(-I-IJ: —):c)2 = -I-Ia: —)I. (3.34)

Proof: As in the proof of Proposition 3.4.1, it is easy to verify that Tnmsatisfy
these equations. Let now A be a chain that satisfy equations (3.31), (3.32),
(3.33) and (3.34). Lemma 3.2.5 asserts that MV(A) = La,“ for some d that
divides n - 1 and Lemma 3.3.1 indicates that D(A) has at most m elements.
By equation (3.34) dense elements are all idempotents, thus D(A) 2' HJ- for
some j 5 m. Clearly, A is a subalgebra of the generator TZ‘ and the result
follows from Theorem 1.2.2. I

Remark 3.4.5 In [2]the equations that characterize certain subvarieties of
BL generated by a BL-chain which is a finite ordinal sum of Wajsberg hoops
are given. But such equations also depend on the equations that characterize
certain subvarieties of Wajsberg hoops that aren’t explicitly shown.
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Chapter 4

Free algebras in varieties of
BL-algebras generated by a
BLn-chain.

4.1 Introduction

Since the propositions under logical equivalence form a free BL-algebra,
descriptions of free algebras are important from the point of view of algebra
as well as from the point of view of logic. In [21], it is shown that free algebras
in varieties of BL-algebras can be described in terms of free MV-algebras and
free algebras in certain varieties of hoops. The aim of this chapter is to apply
the methods of [21] to obtain a description of the free algebras in varieties
of BL-algebras generated by one BLn-chain Ln U B. These free algebras are
going to be described in terms of weak boolean products of BL-algebras
that are ordinal sums of subalgebras of Ln and free algebras in the variety
of basic hoops generated by B. The boolean products are taken over the
Stone spaces of the boolean algebras of idempotent elements of free algebras
in Mvn, which are described in Appendix A. An important role is played
by the axiomatization of the variety generated by L" Lt}B in terms of the
equations defining the variety generated by Ln and the variety generated by
B (Corollary 3.1.8).
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4.2 Characterization of the free algebra as a
weak boolean product

Recall that an algebra A in a variety ICis said to be free over a set Y
if and only if for every algebra C in ICand every function f : Y —)C, f can
be uniquely extended to a homomorphism of A into C. Given a variety IC
of algebras, we denote by FreeK(X) the free algebra in ICover X.

Let Tn = LnL+JBbe a BLn-chain and let again V be the variety generated
by Tn. We shall describe Freev(X), the free BL-algebra in V over a set X
of generators.

Recall that a weak boolean product of a family (Ay,y e Y) of algebras
over a boolean space Y is a subdirect product A of the given family such
that the following conditions hold:

o ifa,b€A, then[a=b] ={y€Y:ay=by} isopen,

o ifa,b€ A and Z isaclopen in X, then aleb|x\Z E A.

An algebraA is representable as a weak boolean product whenit is iso­
morphic to a weak boolean product. Since the variety BL is congruence dis­
tributive, it has the boolean Factor Congruence property. Therefore each non
trivial BL-algebra can be represented as a weak boolean product of directly
indecomposable BL-algebras (see [5] and [24]). The explicit representation
of each BL-algebra as a weak boolean product of directly indecomposable
algebras is given in [20] by the following lemma:

Lemma 4.2.1 Let A be a BL-algebra and let Sp B(A) be the boolean space
of ultrafilters of the boolean algebra B(A). The correspondence:

a H (a/<U))U€Sp B(A)

gives a representation of A as a weak boolean product of the family

(A/(U)) : U G Sp B(A)

over the boolean space Sp B(A). This representation is called the Pierce
representation. Any other representation of A as a weak booleanproduct
of a family of directly indecomposable algebras is equivalent to the Pierce
representation.

Therefore, to describe Freev(X) we need to describe B(Freev(X)) and
the quotients Freev(X)/(U) for each U e Sp B(Freev(X)). In the next
section wewillobtain a Characterizationof the boolean algebra B(Freev(X
Once this aim is achieved, we shall consider the quotients Freev(X)/(U).
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4.3 The boolean subalgebra of the free BL­
algebra

The next two results can be found in [21].

Theorem 4.3.1 For each BL-algebraA, B(A) 2’ B(MV(A)).

Theorem 4.3.2 For each variety IC of BL-algebras and each set X one has
that:

MV(Fl‘eeIc(X))g FreeMvn/d‘mxl

Theorem 4.3.3 Vñ MV is the variety MVn.

Proof: Since MV(Tn) = Ln is in V ñ MV, we have that MV" g V ñ MV.
On the other hand, let A be an MV-algebra in V ñ MV. Suppose A is not
in MV". Then there exists an equation e(:v¡, . . . ,xp) = T that is satisfied by
Ln and it is not satisfied by A, that is, there exist elements a1,. ..,ap in A
such that e(a¡, . . . , ap) 96T. Since (ññb1,...,-u-|bp) is in (Ln)", for each tuple
(b1,...,bp) in (Tn)”, the equation c’(1:¡, . . . ,zp) = e(fi-I:z:¡, . . . , fi-nxp) = T is
satisfied in V. Since A e V ñ MV, it follows that

T = e’(a¡,...,a,,) = e(ñ-|a¡,...,-map) = e(a¡,...,ap) 76T,

a contradiction. Hence MV" = Vñ MV. I

From these results we obtain:

Theorem 4.3.4

B(Freev(X)) E’B(F‘reeMvn(fi-1X)).

Boolean elements of FreeMvn(-I-|X) depend on some operators

0'? 2FreeMvn (fifiX) —)B(Fl'eeMvn(fifiX)), = 1,. . . ,n -1,

that can be defined on each MVn-algebra. Such operators provide each MV"­
algebra with an n-valued Moisil algebra structure. Notions concerning these
algebras are study in Appendix A. In Theorem A.0.11, it is proved that for
a set Z of generators, B(FreeMv"(Z)) is the free boolean algebra generated
by the poset Y = {02(2) : z E Z,i=1,...,n —1}. From Theorem 4.3.4 we
obtain:
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Corollary 4.3.5 B(Freev(X is the free booleanalgebra generated by the
poset Y = {Urb-wz) ::c e X,i = 1,...,n— 1}.

Remark 4.3.6 Notice that if n = 2, i.e, the variety considered V is gener­
ated by a BLg-chain, then (¡12(2)= a: for each :1:e X. Therefore, in this case,
Y = {-ma: : a: E X}, and the cardinality of Y equals the cardinality of X. It
follows that B(Freev(X)) is the free boolean algebra over the set Y.

Our next aim is to describe Freev(X)/(U) for each ultrafilter U in the free
boolean algebra generated by Y = {afin-uz) : a: e X,i = 1,...,n —1},
where (U) is the implicative filter generated by the boolean filter U. The
plan is to prove that MV(Freev(X)/(U)) is a subalgebra of Ln and then,
using Theorem 2.2.2, decomposeeach quotient Freev(X)/(U) into an ordinal
sum.

4.4 Regular elements of the indecomposable
factors

Theorem 4.4.1 Let A be a BL-algebm and U e Sp B(A). Then

MV(A/(U)) ”=‘MV(A)/((U) n MV(A))­

Proof: Let V = (U) n MV(A) and let f : MV(A)/V —>MV(A/(U)) be
given by

f(a/V) = a/(U),

for each a e MV(A). It is easy to see that f is a homomorphism into
MV(A/(U)). Besides, we have that:

1. f is injective

Let a/(U) = b/(U), with a,b E MV(A). From Lemma 1.4.2 we know
that there exists u E U such that a A u = b A u. Since U g MV(A),
then u e V. From the fact that u is boolean (see [20, Lemma 22]), we
have that: a*u = aAu = bAu 5 b, thus u 5 a —)b and similarly
u S b —) a. Then a —>b and b —) a are in V and this means that
a/V = b/V.

2. f is surjeetive

Let a/(U) e MV(A/(U)). Then

a/(U) = “(a/(UH = fina/(U),

and since fi-ra e MV(A) we obtain that f(-r-aa/V) = a/(U). l
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By Theorem 4.3.4, if U e Sp B(Freev(X)), then U is an ultrafilter in
B(FreeMvn (-mX)). Moreover,

(U) ÑMV(Freev(X)) = (U) ÑFreeMvnhnX)

is the Stone ultrafilter of FreeMvn (ññX) generated by U. From [16,Chapter
6.3], we have that (U)r‘lFreeMvn(-n-1X) is a maxima] filter of FreeMvn (ñ-IX).
Since the only simple algebras in MV” are the subalgebras of the chain Ln
(see [16, Corollary 3.5.4]), from Theorem 4.4.1 it follows that:

Theorem 4.4.2
IIZMV(Freev(X)/(U))

with s — 1 dividing n — 1.

Ls

From Theorems 2.2.2 and 4.4.2 we obtain:

Theorem 4.4.3 For each U E Sp B(Freev(X)) we have that

Freev(X)/(U) E Ls EUD(Freev(X)/(U))

for some s — 1 dividing n — 1.

4.5 Dense elements of the indecomposable fac­
tors

In order to obtain a complete description of Freev(X) there is only left
to find a description of D(Freev(X)/(U)) for each U e Sp B(Freev(X)).
This last description will depend on the characterization of the variety W of
generalized BL-algebras generated by the generalized BL-chain B. We recall
from Corollary 3.1.8 that V can be characterized in terms of the equations
that define MV" and W.

Theorem 4.5.1 The variety W of generalized BL-algebras generated by B
consist of the generalized BL-algebras C such that Ln tu C belongs to V.

Proof: Given C G W, for each 1: G Ln ¡3|C, we have that -Ha: satisfies the
equations that defines Mvn as a subvariety of MV and -m:c —>1: satisfies
the equations that define W as a subvariety of QBL. From Corollary 3.1.8, we
deduce that Ln L+JCG V. On the other hand, if C is a generalized BL-algebra
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such that Ln L+JC G V, since fina: —)z = a; for each z e C, again Corollary
3.1.8 asserts that the elements of C satisfy the equations that define W.
Hence C is in W. I

Every upwards closed subset of the poset

Y= {0?(fi-KE):meX,i= 1,...,n— 1}

is in correspondence with an increasing function from Y onto 2, the two el­
ements boolean algebra. From the definition of free algebra over a poset we
know that every increasing function from Y can be extended to a homomor­
phism from B(Freev(X)) into 2. We know that the homomorphisms from a
boolean algebra into the two elements boolean algebra are in bijective corre­
spondence with the ultrafilters of the boolean algebra. Then we can conclude
that the ultrafilters of B(Freev(X)) are in bijective correspondence with the
upwards closed subsets of Y. This is summarized in the following lemma:

Lemma 4.5.2 Consider the poset Y = {UH-mz) za: G X,i = 1,. . . ,n- 1}.
The correspondence that asslgns to each upwards closed subset S Q Y the
boolean filter U3 generated by the set

{0?(nnfv) ïUl'hnI) GS} U {"UZ‘FW) =0?(““I) í S},

defines a bijection from the set of upwards closed subsets of Y onto the ul­
trafiltersofB(Freev

Taking this fact into account, weshall refer to each member of B(Freev(X))
by Us making explicit reference to the upwards closed subset S that corre­
spond to it.

Lemma 4.5.3 Let U3 E Sp B(Freev(X)) and let F5 be the subalge­
bra of the generalized BL-algebra D(Freev(X)/(U5)) generated by the set
X5 = {az/(U5) :1: E X, —|—|Ie (U5)}. Then

F5 = D(Freev(X)/(Us)).

Proof: Freev(X)/(Us) is the BL-algebra generated by the set ZS = {sc/(U3) :
a: E X}. From Theorem 4.4.3 there exists an integer m such that

Freev(X)/(U5)=LmH‘J
Henceeach element of ZS is either in Lm\{T} or it is in D(Freev(X)/(U5)).

Isz = (ll,then F5 = D(Freev(X)/(Us)) = Solet supposeX5 7€(ll.
Let y e D(Freev(X)/(U5)). Recalling that FS is the generalized BL-algebra
generated by X5, we will check that y is in F5. Since y G Freev(X)/(Us), y
is given by a term on the elements x/(Us) G Zs. Making induction on the
complexity of y we have:
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o If y is a generator, i.e, y = x/(Us) for some :v/(Us) G Zs, since
y G D(Freev(X)/(Us)), we have that T = ñ-ry = ñ-I(:r/(U5)) =
(-HI)/(U5). This happens only if -|-|:1:E X5.

o Suppose that for each element z e D(Freev(X)/(Us)) of complexity
less than k, z can be written as a term in the variables :r/(US) in
X5. Let y G D(Freev(X)/(Us)) be an element of complexity k. The
possible cases are the following:

1. y = a —)b for some elements a, b of complexity < k. In this case
the possibilities are:

(a) a 5 b in which case a —) b = T and y can be written as
:c/(US) —>at/(Us) for any x/(Us) G X5, thus y e F5,

(b) a > b. Since y = a —)b is in D(Freev(X)/(U5)), the only
possibility is that a, b e D(Freev(X)/(U5)) and by inductive
hypothesis y is in F5.

2. y = a * b for some elements a,b of complexity < k. In this case
necessarily a, b e D(Freev(X)/(U5)) and by inductive hypothesis
y is in F5.

Then for each y G D(Freev(X)/(U5)), y can be written as a term on the
elements of X5, therefore y e F5 and we conclude thatFS=

With the notation of the previous lemma, we have:

Theorem 4.5.4 For each U5 in Sp B(Freev(X)),

D(Freev(X)/(U5)) É FreeW(Xs).

Proof: As a consequence of Theorem A.0.4 and Lemma 4.5.2 we have that
-I-Iz E (U5) iff aflññx) G S ifï (JH-Hz) E S for 2'= 1,...,n —1. Hence if
ñ-‘I Q (U5) there is aj such that aflfifiz) í S. We define for each :ve X,

. _ J. if —Ifi.'17E (U5),

JI _ max{i e {1, . . . ,n —1} :0?(-|-|1:) í S} otherwise.

Let C E W and let C’ = LnAlüC. From Theorem 4.5.1, C’ is in V. Given
a function f : X5 —)C, define f : X —)C' by the prescriptions:

¡(1) = {ni/51115)) if w e (Us),"¿-L otherwise.n-l
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There is a unique homomorphism

h : Freev(X) —>c'

such that h(a:) = ¡(12) f9r each :5E X. We haveáthat Us Q h‘l({T}). Indeed,
if “I 6 (Us), then MUI-“fina?”= 0?(“n(h(1=)) = 0Ï(""f(ï/(Us))) =
0,9(T) = T. If fina: í (Us), then

n-j1—1
n'jx_1)={_L if igjx,n-l¿(arhfizn = atï'lbfi ) = a“ n —1 T otherwise.

Hence there is a unique homomorphism

h] :Freev(X)/(U5) —>C'

such that h1(a/(US)) = h(a) for all a e Freev(X). By Lemma 4.5.3,
D(Freev(X)/(U5)) is the algebra generated by X5. Then the restriction
h of hl to D(Freev(X)/(Us)) is a homomorphism

h I D(Freev(X)/(Us)) -> C,

and for each a: such that -ma: e (U5), we have that

h(-'v/(Us)) = h¡(iv/(U9) = ¿(1) = ¡(13) = f(1=/(Us))­

Therefore we conclude that D(Freev(X)/(U5)) 2 FreeW(X5). n

As a conclusion of all the results developed in the present chapter we
have:

Theorem 4.5.5 Thefree BL-algebraFreev (X) can be represented as a weak
boolean product of the family

(Freev(X)/(US)) : U3 G Sp B(Freev(X))

where B(Freev (X)) is the free booleanalgebra over the poset Y = {UM-HI) :
:1:e X,i = 1,...,n —1}. Moreover, for each Us E Sp B(Freev(X)) there
ezists m 2 2 such that m —1 divides n —1 and

Freev(X)/(Us) = LmwFreew(X5)

where X5 = {ar/(Us) : fina? G (Us)} and W is the variety of generalized
BL-algebras generated by B.
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4.6 Free PL-algebras
We have already noticed in chapter 2, that if G is a lattice-ordered

abelian group (É-group) and G‘ = {z e G : 1:5 0} is its negative cone, then
P(G) = (G‘, *, —>,0) is a generalized BL-algebra, where

a:*y=a:+y and a:—)y=0/\(y—a:).

From Theorem 2.1.8 we know that, if Z denotes the group of integers, then
P(Z) generates variety of cancellative hoops. So let consider W, the vari­
ety of generalized BL-algebras generated by P(Z). In [18] a description of
FreeW(X) is given for any set X of free generators. Therefore we can have
a complete description of free algebras in varieties of BL-algebras generated
by the ordinal sum

PL" = Ln EHP(Z).

Indeed, if we denote by ’PCn the variety of BL-algebras generated by PL”,
from Theorem 4.5.5 we obtain that Freep¿n(X) is a weak boolean product
of algebras of the form

Ls H-JFreeW(X’)

with s - 1 dividing n —1 and some set X’ of cardinality less or equal than X.
Therefore, in the present case, the BL-algebra Freean (X) can be completely
described as a weak boolean product of ordinal sums of two known algebras.

From [19, Theorem 2.8] 'PLïg is the variety of PL-algebras PL and by
Remark 4.3.6, Sp B(Freep¿(X)) is the Cantor space 2'X'. Therefore Theorem
4.5.5 asserts that the free PL-algebra over a set X can be described as a weak
boolean product over the Cantor space 2"“I of algebras of the form

L2LUFreew

for some set X’ of cardinality less or equal than X.

Given a BL-algebra A, the radical R(A) of A is the intersection of all
maximal implicative filters of A. We have that r(A) = (R(A), *, —),T) is a
generalized BL-algebra. Let

"PU = {R : R = r(A) for some A e 'PE}.

'PL' is a variety of generalized BL-algebras. In [20]a description of Freep¿(X)
is given. From Example 4.7 and Theorem 5.7 in the mentioned paper we ob­
tained that Free-p,;(X) is the weak boolean product of the family

(L2wFreepds) ; 5 g 2m)
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over the Cantor space 2m. In order to check that our description and the
one given in [20]coincide there is only left to check that ‘PC' = W. Recalling
that 'Pfi = M122 w‘ W, from Theorem 4.5.1 we have that W consist of the
generalized BL-algebras C such that L2 EHC e 'PL.

Theorem 4.6.1 'PC' = W.

Proof: Let C e PU. Then there exists a BL-algebra A E 'PL’ such that
r(A) = C. It is not hard to check that L2EHC is a subalgebra of Au C, thus
L2 haC is in 'PC. It follows that C E W. On the other hand, let C G W.
Then L2 L+JC is in "PL, and C E PU. l

4.7 Free MVn-algebras
We know that MV", the variety of MVn-algebras is the subvariety of BL­
algebras generated by the finite MV-chain Ln. Of course Ln is a BLn-chain,
because Ln = Ln tu T, where T denotes the trivial generalized BL-algebra
of one element. Then Theorem 4.5.5 asserts that FreeMvn(X) is a weak
boolean product of subalgebras of Ln over the boolean space of the free
boolean algebra generated by the poset Y = {03(2) : a: e X,z' = 1,. ..,n—1}.



Chapter 5

Finitely generated free algebras
in varieties of BL-algebras
generated by a BLn-chain.

5.1 Comparison with the general case
In the previous chapter we described free algebras in varieties of BL­

algebras generated by a BLn-chain. These algebras were taken over an ar­
bitrary set of generators X. Notice that when the set X of generators is
finite, of cardinality k, then Y = {0?(ññas) 2:1:e X,i = 1,. . . ,n —1} is the
cardinal sum of k Chains of length n —1. Therefore the number of upwards
closed subsets of Y is nk. Since weak boolean products over discrete finite
spaces coincide with direct products, Theorem 4.5.5 asserts that Freev(X)
is a direct product of n'CBL-algebras of the form Ls L+JFreew(X’), with s —1
dividing n —1 and X’ a set of cardinality less or equal than k.

When the set X is finite, the boolean elements of Freev(X) form a finite
boolean algebra. Then it is possible to apply Theorem 1.5.3 to describe
the free algebras in terms of directly indecomposable algebras. Indeed, this
Theorem also asserts that the free algebra over a set of cardinality k it is
a direct product of n" algebras obtained by taking the quotients by the
implicative filters generated by the atoms of B(Freev(X)). In this chapter,
we shall characterize the atoms of the finiter generated free algebra in terms
of functions and then, based on the knowledge of the atoms, we shall describe
the initial segments of the decomposition. Of course the description we shall
present coincide with the one given in the previous chapter, but it will provide
more information about the indecomposable factors Freev(X )/ (U).
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5.2 Alternative description of the finitely gen­
erated free algebras

Let Tn and V be as in the previous chapter. For every integer k, we will
denote by Freev(k) the free algebra with k generators in V.

Theorem 5.2.1 ([22, Chapter IV, Theorem313]) Ifa variety ICof algebras
ts generated by an algebra A, then Freex (k) is isomorphic to the subalgebra
of A“ generated by the projection functions 7ra: A" —>A, a e k.

Then Freev(k) is the subalgebra of TnT: generated by the projection
functions. We shall refer to each element of Freev(k) with a function

f I (Tn)'° -> Tn,

and we will denote by x = (1:1,. . . ,xk) each k-tuple in the domain of f.
Recall from Theorem 4.3.4 that B(Freev(k)) = B(FreeMvn(k)). From

Theorem 5.2.1 we know that FreeManc) is a subalgebra of LnLi', thus
B(FreeMv,_(k)) is a finite algebra. Then Theorem 1.5.3 can be applied to
describe Freev(k) as a direct product of indecomposable algebras. To obtain
a complete description of each indecomposable factor we will study the atoms
of B(Freev(k)). For the sake of readability we shall denote T by 1 and _L
by 0.

Remark 5.2.2 As it is well known, f E Freev(k) ifl‘f is the interpretation
of a BL-term. Then, if D is a subalgebra of Tn and f e Freev(k), we have
that f(x) e D for every x e D".

Lemma 5.2.3 Let f E Freev(k) andx = (31,12, . . . ,zk) in (Tn)'°. Suppose
that there ezists i such that zi = q e D(Tn). Let p E D(Tn) and let x’ =
(Ilhítlz, . . . ,arjc) be a k-tuple such that

II.= Ij 7€i}
J p ifJ' = z:

For each y e Ln \ {1} one has that: f(x) = y iflf(x’) = y.

Proof: According to Theorem 5.2.1 it is enough to prove that the set

P = {f e TF sw e La\ {1},f(x) = y ifmx') = y}
k

is a subalgebra of T3" that contains the projection functions. Indeed, we
have:
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1.

2.

oo

Projections functions are trivially in P.

Iff,g€P,thenf*g€P.
Suppose that (f*g)(x) = y, for some y G Ln\{1}. This is only possible
if one of the following cases happens:

(a) f(x) = y and g(x) e D(Tn). In view of the fact that f and g are
in P, f(x’) = y and g(x’) e D(Tn). Consequently (f * g)(x’) = y
as we wanted.

(b) g(x) = y and f(x) E D(Tn), is analogous to the case before.

(c) f(x) = z and g(x) = z’ for z,z' e Ln \ {1} such that z * z' = y.
Then f(x’) = z, g(x') = 2' and (f *g)(x') = y.

Therefore (f * g)(x) = y implies (f * g)(x’) = y. By symmetry,
(f * g)(x’) = y implies (f * g)(x) = y, so we conclude that

(f * g)(x) = y ifï (f * g)(x') = y­

.Iff,g€P,thenf-)g€P.
Suppose that (f —)g)(x) = y, for y e Ln\ This is only possibleif
f(x) > g(x) and if one of the followingconditions is satisfied:

(a) f(x) E D(Tn) and g(x) = y. Then g(x’) = y, f(x’) E D(T,,) and
(f -+ g)(x') = y­

(b) f(x) and g(x) E Ln\{1} and y = 1- f(x) +g(x). If this happens
we have f(x’) = f(x), g(x’) = g(x) and y = 1 —f(x') + g(x’). It
follows that (f —)g)(x’) = y.

Interchanging x by x’ in the above proof, the other implication is ob­
tained. Therefore

(f -> g)(x) = y ifl' (f -> g)(x') = y

which concludes the proof of the theorem.

Remark 5.2.4 Since Freev(k) is a subalgebra of TF, an element f in
Freev(k) is boolean iff f(z) G {0,1} for each z E (Tn)'°.
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Corollary 5.2.5 Let f e B(Freev(k)) and x = (I¡,Ig,...,.’17k) in (Tn)".
Suppose that there ezists i such that 1:,-= q e D(T,.). Let p G D(Tn) and let
x’ = (III/1,1,2,. . . ,12) be a Ic-tuple such that

J P ¿fi = i­

Thenf(x) =1 iflf(x’) = 1.

Proof: Since f e B(Freev(k)), from Remark 5.2.4 we know that for every
z E (Tn)'° either f(z) = 0 or f(z) = 1. It is straightforward from Lemma
5.2.3 that f(x) = 0 iff f(x’) = O.Then f(x) = 1 ifi' f(x’) = 1. I

Our next aim is to characterize the atoms of B(Freev(k)). For that
purpose, for each y e Ln we will define a function

hy : Tn —) Tfl

and we shall show that every atom in B(Freev(k)) is given by

k

9(x) = H hyi(mi)
i=l

where yi e Ln for each i = 1,2, . . . ,k and HÏ=1hy¡(:r,-) is inductively defined
as follows:

1 k+l

thim) =html) and thxxi) =(
iz] i=l

Foreachz': 1,2,...,n—2andj=0,1,...n—1, let Jian —){0,1}be
as in Definition A.0.7, that is,

_ J' _ 0 ¡“961)
J‘(n—1)_{1 ifi=j.

za­ hy¡ *hyk+l(1:k+l)'
l....

II

From A.0.7 we know that J,- is the interpretation of an MV-term. Since
MV-terms are BL-terms, J,- can be extended to Tn, and its extension J} :
Tn —>T" is the interpretation of a BL-term on one variable.

We define hy for each y in L" in the following way:

{ HIV" ify = 0,
hy(z)= ñ((:rV-I:r)"")*J{(a:)ify=fifor0<i<n—1,

ñ-n(:r"‘l) if y = 1.

Then we have
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oforOSi<n-1,

u

1 ¡{1:57,
h‘(‘”)’{01fz;en—¿l.

1 if :1:e D(T )h = n )
la) { 0 otherwise.

Theorem 5.2.6 Every atom g in B(Freev(k)) has the form

k

g(x) = Hill/¡(Ii)!
i=l

whereyi E L" for each i = 1,2,...,k.

Proof: Let g(x) = Hill hy..(a:,-)with yi e L". We will verify that g is an atom
of B(Freev(k)). Observe that each hy is an interpretation of a BL-term on
Tn, thus g e Freev(k) and, by Remark 5.2.4, g is a boolean element. Clearly
g > 0. Let f E B(Freev(k)) and f < g. It remains to see that f E 0 (i.e., f
is the zero function). Considering the form of g, the possibilities are:

1. yi 961 for all i = 1,2,...,k. Letting y = (y¡,y2,...,yk) we have that

_ 1 if x = y,
g(x) _ {0 otherwise.

Therefore f(x) = Oif x 76y and f(y) < 1. By Remark 5.2.4, necessar­
ily f(y) = 0 that implies f E 0.

2. yi = 1 for some 2' = 1,2,...,k. This being the case, let p be the
cardinality of the set P = : yi = 1} and a the cardinality of D(T").
We may infer that there are ap k-tuples x3 (1 5 s 5 a”) such that

g(z)={1 ifz=x,forsome153_<_ap,0 otherwise.

Indeed, if yi = 1, then hy¡(aj) = 1 for each aJ-e D(Tn), 1 5 j 5 a.
Thus for each i such that yi = 1, there are a different values z,- where
hy¡(a:,-)= 1. Since there are p of these cases, the number of k-tuples
where the atom g takes the value 1 is a”. Notice that two k-tuples xt
and x3 díffer in coordinate 2'only ifz' e P.

The only possibility for f < g is that f(z) = 0 for each z 76 x5,
1 S s 5 a” and that f(xg) = 0 for some 1 5 s 5 a”. In this case, by
Lemma 5.2.3, f(xs) = 0 for every 1 S s S a”, thus f E O.
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Thus we have proved that for each k-tuple y = (yl, . . . ,yk) e Ln there exists
an atom gy such that gy = HL! hy...We shall see that these are the only
atoms of B(Freev(k)). Suppose g E B(Freev(k)) and g is an atom. From
Remark 5.2.4 we know that g(z) E {0,1} for each z e (Tn)'° and that g > 0.
Hence there must exists y = (yl, . . . ,yk) G (Tn)'c such that g(y) = 1 and one
of the following cases happens:

o Every coordinate of y is in Ln \ In this case g 2 gy. Since gy and
g are atoms the only possibility is that g = gy.

o There are 0 < p 5 k coordinates j1,...jp such that yi G Ln \ {1}
for each i = j1,...j,,. Then yi e D(Tn) for each i = j1,...jp. From
Corollary 5.2.5 we know that g(x) = 1 for each x = (121,...,Ik) such
that

__ yi ifiyéjrforallr=l,...,p,
13- qr ifi=j,., forsomer=1,...,p, q,€D(Tn) and qraéyJ-r.

Then g 2 gz where z is the k-tuple given by

___ yi ifiaéjrforallr=1,...,k,
z‘_ 1 ifi=j,,forsomer=1,...,k.

Once more we must have that g = gz.

Therefore we can conclude that all the atoms of B(Freev(k)) are of the form
gy = [15:1 hyl. for some y E (Ln)'°. I

Remark 5.2.7 We recall that Theorem 4.3.4 asserts that B(Freev(k)) is
B(FreeMvn(k)). It is easy to check in [16, Theorem 8.6.1] that the number
of atoms of B(FreeMvn(k)) is n", hence this could be an alternative way to
prove that the functions g = 11:7:th with yi e Ln are the only atoms of

Thus we have defined a bijection between (Ln)’° and the set of atoms of
B(Freev(k)) such that

k

y=(y1,y2,--.,yk)H9y=tha­
i=l

Ifgl, 92,. . .gni. is an enumeration ofthe atoms ofB(Freev(k)), Theorem 1.5.3
asserts that
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Freev(k) = Fgl x F92x x ank

where Fg = Freev(lc)g = ([O,g],*,=>g,0,g). We will apply the previous
results to describe Fg for every atom g G Freev(k).

We know from Theorem 4.5.5 that for each atom gy, the initial segment
ng is a BL-algebra of the form L, w Freew(p) for some s —1 that divides
n-1, some p 5 k and where W denotes the variety of generalized BL-algebras
generated by D(Tn) = B. In the next Theorem we shall give an alternative
proof of this result that will specify for each atom gy the constants p and s.

To accomplish this, let gy be a fixed atom and

bl bg bk
n-l’n-1""’n—1y=(y1,y2...,yk)=( )

its corresponding associated k-tuple in (Ln)". We shall denote by Fy the
algebra Fgy to make explicit reference to the k-tuple y that characterizes
the atom. Associated with the k-tuple y we define a pair of integers (p, d)

where p is the cardinality of the set P = : yi = 1}, and d = "T‘l with
q = gcd{b1, bg, . . . bk,n —1}. We shall call this pair of integers the gy-pair.

Proposition 5.2.8 Let gy bean atom ofB(Freev(k)) and (p,d) the gy-paz'r.
Then

Fy = Ld+1wFreew(p)

where W is the variety of generalized BL-algebras generated by D(Tn) and
Freew(0)=
Proof: By Theorem 1.5.2 we know that the correspondence

f H f Agy

defines a homomorphism from Freev(k) onto Fy. Since Theorem 5.2.1 asserts
that Freev(k) is the subalgebra of TF“ generated by the projection functions
7r1,1r2,...,7rk, it follows that Fy is the BL-algebra generated by the images
under this homomorphism of the projections, that is the functions

pi=7TiAgy

fori=1,2,...,k.
Recallthaty = (y1,y2,...yn_¡)= Letconsiderthe

set G = {x e (Tn)" : gy(x) = 1}. Ifx E G, then

._ aforsomea€D(Tn) ifbi=n—1
“"- n—"_¡—l if05b¿<n—1.
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Then
_ 0 ifxqÉG

mod-{Ii ifxEG.
Let consider the sets

and

A={i:y¡;É1}={i:b,-9Én—1}

B={i:y,-=1}={i:b,-=n—1}.
We are going to consider two algebras:

o Let A’ be the BL-algebra generated by all p,-such that i e A and f E 0
(i.e., the zero function). For each 2'E A,

0 ifxqÉG',
¡vi-(x)= { "¿g-lwith b,-< n- 1 ifx e G. (5'1)

n-l
Recall that d = with q = gcd{b1,b2,...bk,n —1}. Clearly q =
gcd{{b, : i G A}U{n — Notice that Ld+1is the smallest subalgebra
of Ln that contains for each i = 1,2, . . .,k. Indeed, there exists

c.-.(n—l)
bian integer c,-such that b,-= qq. This implies that d = and

17"},= Edi,thus G La“. On the other hand, if there exists t < d
such that t divides n —1 and E Lt“ for each i = 1,2, . . .,k, then

n-"j-l= for each i = 1, 2, . . . , k. Therefore q’ = "T’l divides b,-for each
i = 1, 2, . . . ,k and q’ > q contradicting the definition of q.

Consequently, e La“ for each i = 1,2, . . . , k and the BL-algebra
generated by the coordinates of the k-tuple y is Ld+1. From the defi­
nition of d it is easy to see that, unless = 1 for every z'= 1,. . .,k,
Ld+1is indeed generated by the coordinates such that 961.

From this we can conclude that the images of the functions p,- with
i E A, generate L4“. Therefore the functions p,-generate Lam, that
is, for each z in La“ there is an interpretation of a BL-term qz such
that z = qz(y) = qz(p1(Y),-.-,pk(>'))- For each z e La“ \ {1} let
lz = gy /\ qz and let ll be the atom gy. Then, for each z E La“ the
function lz belongs to Fy and because of Lemma 5.2.3

14x)=
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The correspondence z i—)l, gives an embedding from Ld+1into A’. Now
let f e A’. Since A’ is generated by the functions p,- with i E A and
f E O, from equation (5.1) we can deduce that the images of f are in
La“ and iff 96gy, then there exists z e Ld+1\ {1} such that f(x) = z
for some x e G. Once more Lemma 5.2.3 asserts that f = lz, and we
conclude that A’ E’L¿+¡. Hence Fy has a subalgebra A’ isomorphic to
Ld+l'

Notice that if A = (0, then A’ = L2, since it is the subalgebra of Fy
generated by the zero function. On the other hand, if A 9€(0,the BL­
algebra generated by p,-such that i e A necessarily contains the zero
function. If B = (0it is clear that F, = A'.

If B 7€ (0, let B’ be the generalized BL-algebra generated by p,- with
2'6 B. In this case,

0 ifxíG',
m") = {a e Dm) ifx e G. (5'?)

and we deduce that if f e B’, then f(x) e D(Tn) for each x E G'.

We set il = min{i : = 1} and 2', = min{i : i 7€ is Vs < t and
—‘>_Ll:1}. Then B = {i1,i2,...,i,,}.

y Theorem 5.2.1 we know that Freew(p) is the subalgebra of functions
from (D(Tn))" in D(T,,) generated by the projection functions 711,m1,,
...,7r;,. Letting t : (D(T,.))P —)G be given by x +—)x’ where

m = { fi ifi 95B,mi ifi=i3forsomes=1,2,...,p."N

we obtain a bijection from (D(T,.))" onto G and for each x e (D(Tn))P
we have that 7T;(X)= p¡,(t(x)), for i, e B.

Defining (p : Freew(p) —)B’ by

90(7r2)= pt,

for each is e B we have an isomorphism from Heew(p) onto B’.
Hence Fy has as subalgebra the generalized BL-algebra B’ isomorphic
to Freew(p).

Clearly A’ is a subalgebra of MV(Fy). On the other hand, notice that if
f 96gy and f E MV(Fy), then f(x) = z for somex e G and z E Ld.“ \
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From Lemma 5.2.3 we know that for any other x’ e G we have that f(x’) = z.
Then f = lz is in A'. From this we obtain that

MV(Fy) = A’ E La“.

Then Theorem 2.2.2 asserts that

Fy = Ld+l Ü D(Fy)­

To obtain the desired result there is only left to prove that D(Fy) = B’.
In order to achieve such aim, it will be checked that, in fact, if f G Fy, then
either f e A’ \ {gy} or f e B’. Notice that the only element in A’ n B’
is the atom gy. For the reason that Fy is the BL-algebra generated by the
functions p,- with 2'= 1, . . . , k , the result will be proved by induction on the
complexity of f.

o Iff = piforsomei=1,...,k,sincei€ AUBwehavethat f e A’\{gy}
or f G B’.

o If f = fl a:f2 we have the following possibilities:

1. f1 and f2 E A’ \ {gy} or f1 and f2 G B’. Because A’ and B' are
closed by *, we have that f E A’ \ {gy} or f E B’.

. f1 E A’ \ {gy} and f2 G B’. In this case there exists z E Ln \ {1}
such that f1 = lz and f2(x) e D(T,.) for each x e G. Since
operations between these two functions are coordinatewise, we
have that f = f1 E A’\{gy}.

3. f2 e A’\ {gy} and f1 e B’. Commutativity of * lead us to the
previous case.

to

o If f = f1 —>f2 we have the following possibilities:

H . f1 and f2 G A’ \ {gy} or f1 and f2 e B’. Recalling once more the
fact that A' and B’ are closed by —),we conclude that f e A’\{gy}
or f e B’.

. f1 e A’\ {gy} and f2 E B'. Again there exists z e Ln \ {1} such
that f1 = l, and f2(x) e D(T,.) for each x e G. Thus f is the
atom gy, so is in B'.

. f2 e A’ \ {gy} and f1 e B’. In this case we have that f = f2 is in
A, \ {gy}­

lo

co
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Then
D(Fy) = B' '=Vmew),

and Fy is isomorphic to the ordinal sum Ld+1Lt!Freew(p), that we denote
F5“­

Notice that B = (lliffp = 0. Then, if B = (0,we obtain

Fy = A’ = A’ IdFreew(0).

When A = (0,Fy is the BL-algebra generated by the functions p,-with i E B.
It is not hard to corroborate that this BL-algebra is the BL-algebra that
arises from adjoining a bottom element to the generalized BL-algebra B’ E“
l'ü'eeWUc).Thus Fy = ngFreeWUc). Recall that in this case A’ E”L2, then
Fy is well defined. I

Thus we may conclude:

Theorem 5.2.9 Let 91,. . .,g,,r-, be the atoms of B(Freev(k)) and for each
2'= 1,. ..,n" let (d¿,p,-) the gi-paz'r. The free algebra Freev(k) with k gener­
ators in V is given by

nl:

Freev(k)= H F2“.
i=l

where F52“ = Lali.“ e}Freew(p,-).

5.3 Remarks on the atoms

As it was mentioned in Lemma 4.5.2, the ultrafilters of B(Freev(k))
are in bijective correspondence with the upwards closed subsets of the poset
Y = {0?(ññ12p) : xp e X,i = 1,...,n —1}, where a? denotes the Moisil
operators defined on the Appendix A. On the other hand, we have proved that
the atoms of B(Freev(k)) are in bijective correspondence with the elements
of Lfi.

The aim of the present section is to settle a bijective correspondence be­
tween atoms of B(Freev(k)) and upwards closed subsets of Y = {UN-HIP) :
:cpe X,z' = 1,. . .,n —1}. To accomplish such aim, we must think of the free
generators 1:1,. . . ,Ik of Freev(k) as a functions

z, : T: —>Tn.

Therefore we have the functions

ñ-izp : T: —)L",
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and

(JH-HIP) : T: —){0,1}.

For each atom y E L: and for each p = 1,. . . , k, let s(p, y) be the numerator
of fi-‘xp(y). For each i = 1,. . .,n —1, we have that

n _ 0 ifs(p,y)<n—i;
ai (fifimp)(Y)_ {1 S(p, 2 n _

For each atom y e B(Freev(k)) and for each p = 1,...,k, let ip =
n —s(p, y). Then we have that

i = { min{i =arenas) = 1} if {i zarenas) = 1}aeo;p n otherwise.

Let

Sy = U;=l Uizip 0'?("-'.’17p).

Since for each atom y e B (Freev(k)), the set Sy is an upwards closed subset
of Y = {0?(ññzp) : xp e X}, from Lemma 4.5.2 U5ywould be the ultrafilter
of B(Freev(k)) generated by the sets

{UM-mii?) 10:1(ñfizp) e sy} and {fiaflfifixfi 30:1(fifixp) í sy}­

In order to establish a bijection between the upwards closed subset of Y =
{UH-I-Izvp): xp E X} and the elements of L: it is enough to prove that the
atom gy is in Usy.

Setting 08(ññzp) E Oand ash-'15,) E 1 for all p, for each p = 1,. . .,k,
we define

Jn-ip

Let g : T: —>{0,1} be given by

(“11%) = 03(fiñzp) A fi‘7zl:,—1(_""5511)­

k

g(x) = /\ Jn—i,,(enzp)(x)­

Clearly g e Usy. We are going to prove that this function g is the atom
gy. It is clear that g(y) = 1. Besides, if x e L: and x 96y, then there exists
p E {1,...,k} such that fifizp(x) 76-l-|1:,,(y). Indeed, since x e Li, then
ññzp(x) = ñfixp(y) for each p = 1,. . .,k, would imply that :cp(x) = :vp(y)
for each p. Since the atoms are generated by these functions :vp,p = 1, . . . , k,
then gx(x) = gy(x), contradicting Theorem 5.2.6. Therefore, for each x e L5,
such that x 7€y, we have that g(x) = 0. Let consider x e Tlf. Let x’ be given
by

,_ 1:]-iijELn\{1};
Ii — 1 if 1,. e Dm).
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Then x’ e L: and from Theorem 5.2.5 we know that g(x) = g(x’). Conse­
quently we have that, if x’ = y, then g(x) = 1, otherwise g(x) = 0. From
this we can conclude that g = gy.

5.4 Examples

L2 H‘JB

Consider T = L2 w B for any generalized BL-chain B, and let V be
the variety of BL-algebras generated by T. Following Proposition 5.2.8 we
obtain that for any integer k

k
I:

Freev(k) = H(Fg)(p).
p=0

LgLfiB

Now let T = L3 w B for any generalized BL-chain B, and let V be the
variety of BL-algebras generated by T. By Proposition 5.2.8 we have

k k-l

Freeva) = L2 x Law-l) x H(FS)(:) ><MEME-¿1” (‘ï”)

k k k_l k k k

= (pg)(p) x H(Fg)(p)2.-;f( í”).
= op:OP

)(3’°-i —2.2'=-i + 1),

o ag = (.)(4'°’i —3.3’°’i + 32"-i —1).
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If T = L5 e) B for any generalized BL-chain B, and V is the variety of
BL-algebras generated by T, we obtain

k k-l

Freev(k) e L2 x L3,?“l x L54*-2*x H (F;)(Ï) x (H(F¡5)°’)2><

k-2 . k-l . _ k-3 . —

x(_1’[(F:r,)°2)3x He‘s)“ x (H(F'5)°=*.
' l i=l

Ln L+JB (when n —1 > 2 is prime).

Let Tn = Ln L+JB for any n —1 2 2 and V the variety generated by Tn.

For any integer k > 0, let denote t = min(k, n —2). We define

forr=2,3,...,t,

pr: (kïi‘)(...(Ï(k’i'’¿"’i"'))))z
i¡=l i2_l 2 i..=l

wherek1=k—(r—1) andforj=2,3,...,r,

kj=k—'i1—i2-...-ij_l—(7'—j).

Fori=1,2,...,kandr,-=1,2,...,(t-—i)wedefinet¿=min(k—i,n—2)
and

k.—l _ k.-,_, . k¡r¡ , .¡_ k-‘L k-ll k-Z¡—...—Zr¡_1
p"—z( il )(z( iz )'”(z( ))))

i1=l i2=l ¡pl-:1

wherekil =k—i—(r,-—1) and forj=2,3,...

ki}.=Í€-i-i1-i2—---_ij—l_(7'i_j)'

k k-l t­

Freev(k) e L2 x Ham???) x H((F;)<ï>) x H<H<(F:.>(?>P'w)("rï)).
r=l r=l i=l r¡=l



Ln w {T}

In this case we have that Tn = Ln, thus V = MV". Since the variety W
of generalized BL-algebras generated by {T} has as only element this trivial
algebra, Freew(p) = {T} for each integer p. Thus FreeMvn(k) is a direct
product of algebras of the form Ls with s that divides n —1. A description of
FreeManc) is done in [16, Theorem 8.6.1]. The reader can verify that such
description coincides with the one obtained by applying Proposition 5.2.8.

LnLtJHm

Given m 2 2 and n 2 2, we define the BL-algebra TL“ as the ordinal sum
of the MV-chain Ln and the Heyting chain Hm. The free algebra Freev(k)
for finite k, is described in Proposition 5.2.8. We have that if gy is an atom
in B(Freev(k)), then Fy 2' Ld+1k5Freew(p) = F3“ for d dividing n —1,
p 5 k and W the variety of generalized BL-algebras generated by D(Tn"‘). A
description of Freew(p) is given in [23, Theorem 5.3] in terms of the gener­
alized BL-chains Hj, j 5 m. Therefore Freev(k) is completely characterized
in terms of Lukasiewicz finite Chains and the generalized BL-chains of the
form Hj.

LnHJLm

We define the BL-algebra Lnmas the ordinal sum of L" and Lm, that
is, LIT = Ln L+JLm for m 2 2 and n 2 2. In this case, since we want to
distinguish between the BL-algebra and the generalized BL-algebra, we shall
denote Lm the BL-algebra and Lin its corresponding generalized BL-algebra.
Therefore D(Ln"‘) 2' Lin.

From Proposition 5.2.8, we know that for each atom gy in B(Freev(k)),
the algebra Fy is isomorphic to La,“ EHFreew(p) for d dividing n —1, p 5 k
and W the variety of generalized BL-algebras generated by Lin.

For each c 2 2 let Div(c) be the set of divisors of c and MaxDiv(c) the
set of proper and maxima] divisors of c, i.e., d e Div(c) such that d 9€c and
if d divides b and b E Div(c), then b = c. If c = 1 let MaxDiv(c) = (ll. For
X g MaxDiv(d), if X 76(llwe call gcd(X) the greatest common divisor of
the elements of X, and we stipulate that gcd(0l)= d.

Lemma 5.4.1 For any two integers m 2 2 and p 2 1, we have that

Freew(P)= H (L;+1)°‘""P's’
sEDiv(m— l)
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wherea(m,p, s) = znguD¡v(3)(-1)5X(gcd(X) + 1)”for s > 1 and
a(m,p, 1) = 2P- 1.

Proof: From the development done in [16, Chapter 8.6], we have that

FreeMvmlpl = 51 X sz X X Smp,

where each S¡ is the subalgebra of Lm generated by the elements e¡(yJ-) =
(#317E meorj=1,2,...,p. Therefore

Freew(P) = S'l X S’2x x S’mp,

and now each Sí is the generalized BL-algebra generated by the elements
e¿(yj)= forj = 1,2,...,p. Noticethat if aij 961 for somej =
1,2,...,p , the generalized BL-algebra Sí is the BL-algebra S¡ whithout
considering 0 as a constant. But if aij = 1 for each j = 1,2,...,p, then
Si = L2 and Sí = Thus the theorem followsfrom [16, Theorem 8.6.1].I

Consequently, Freev(k) can be completely described in terms of subalge­
bras of Ln and Lm'.

Example 5.4.2 Let V be the variety of BL-algebras generated by Lg and
W the variety of generalized BL-algebras generated by L3'. Then for any
integer k 2 1 we have that

k k Ic-l

Freev(k) = L2 x H L3“) x H(L2 HiFreew(i))(l) x H(L3 wFí'eew(i))°",
1=l i=l

wherea,-= (kJTi).Usingthe previouslemmawe have that

k k

Freev(k) = L2 x H La“) x H(L2 w H (L;+l)a(m,P,5))(Ï)x
i=l seDiv(m—l)

kl
xH(L3w H (Landwbm.

i=l sEDiv(m-l)
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PL-algebras
We recall from the last section of the previous chapter that the variety

of PL-algebras ’PL',is generated by L2 L+JP(Z),where P(Z) is the generalized
BL-chain defined in chapter two. In this case, from Proposition 5.2.8, we
obtain:

k k

Freepdk) = H(L2 L+JFreew(P))(:) = L2 X H(L2 HdFreew(p))(:),
p:0 p=l

where W is the variety of generalized BL-algebras generated by P(Z) (i.e,
the variety of cancellative hoops, see Proposition 2.1.8).

Since a description of Freep¿(k) is given in [19]we can compare our result
with the one in that paper. Let G be an Z-group, and G‘ = {1:e G : a: S 0}
its negative cone. Let .L be an element not belonging to G. In [19],the authors
define on the set G’ U {.L} the binary operations * and —)as follows:

1*y={a:+y ifcr,y€G’,_L otherwise.

0A(y—:r) ifz,y€G’,
a:—>y= 0 ifa:=_L,

J. ifzveG’andy=_L.
and they obtain a PL-algebra (G‘ U {L},*,—>,L,0), that they denote by
B(G). Then they describe the free PL-algebra with k generators by

k

Freepdkl = H(B(Gp))(ï),
p=0

where Go = {0} and for any p > 0, Gp is an É-group such that Gp = Sp and
Sp is the smallest set of functions f : (P(Z))P —)P(Z) that contains the pro­
jections functions 7r1,1r2,.. .,7r,, and is closed under addition and truncated
subtraction:

(f G 9)(X) = min(0,g(x) - f(X))­

With the definitions of chapter two in the present thesis, it is clear that
B(G) = L2 L+JP(G). From the definition of G0 we conclude that

lc

F‘I'eep¿(k) = L2 ><H(B(Gp))(ï).
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By Theorem 5.2.1, Freew(p) is the generalized subalgebra of functions from
(P(Z))P into P(Z) generated by the projection functions. It is easy to see
that SP = (Sp, +, e, O)is a generalized BL-algebra and that Freew(p) E”Sp.
Moreover, L2 L+JFreew(p) E B(Gp). Therefore both descriptions coincide.



Appendix A

Moisil algebras and boolean
elements in free MVn-algebras

Definition A.O.3 For each integer n 2 2, an n-valued Moisil algebra
([8] and [12]) or n-valued Lukasiewicz algebra ([4], [13] and [14]) is
an algebra A = (A,/\, V, 10?, . . . ,0:_¡,O, 1) of type (2, 2, 1, . . . , 1,0,0) such
that (A,/\,V,0, 1) is a distributive lattice with unit 1 and zero O, and o,
af, . . . ,0:_¡ are unary operators defined on A that satisfy the following con­
ditions:

N . ñfir = 1:,

--'(IVy)=nI/\—'y,

. UNI Vy) = crm Vaï‘y,

UFIVñUÏI = 1,

UÏUÏI= 05‘1‘,f0ri,j=1,2,...n—1,

arme) = 40:42:),

. OÏxVJÏ+11=af+1Lf0ri=1,2,...,n—2,
n . _ 1),

:1:V 0"_¡1 — 0"_¡a:,

topoxrpssn-fxcow. (IA-IUI'IAafiLly)V1=y, f0ri=1,2,...,n—2.

Properties and examples of n-valued Moisil algebras can be found in [4]
and in The variety of n-valued Moisil algebras will be denoted Mu. An
important property of n-valued Moisil algebras is the following:
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Moisil’s determination principle: Let A e Mn and let 1:,y G A. Then
:cSyifand onlyifahíaz'y foreachi= 1,...,n— 1.

We also have that:

Theorem A.0.4 (see LetA bein Mu. Thena:e B(A) if and onlyif
a:_¡(2:) = 3:. Furthermore,

02_1(ar) = min{b e B(A) : a: S b} and UNI) = max{a e B(A) : a 5 :5}.

Definition A.0.5 For each integern 2 2, Post algebra of order n is a
system

A = (A,A, V,-|,af, . . . ,a:_l,e¡, . . . ,en_¡,0, 1)

such that (A,A,V,-\,af,...,a:_l,0,1) is an n-valued Moisil algebra and
61,. . .,e,._1 are constants that satisfy the following equations:

0 ifi+j<n'n _ _ ,

“¡W-{1 ifi+j2n.
For every n 2 2 we can define one-variable terms CHI), . . . ,a:_l(:r) in

the language (-|, —>,T) such that evaluated on the algebras Ln give:

onL) = 1 ifi+j2n,
(71-1) 0 if 2'+j < n,

for i = 1,. . .,n —1 (see [14] or [35]) . It is easy to check that

M(Ln) = (Ln,/\,V, 20?, . . . ,a:_¡,0, 1)

is a n-valued Moisil algebra. Since these algebras are defined by equations
and Ln generates the variety MV", we have that each A E MVn admits a
structure of an n-valued Moisil algebra, denoted by M(A). The chain M(Ln)
plays a very important role in the structure of n-valued Moisil algebras, since
each n-valued Moisil algebra is a subdirect product of subalgebras of M(Ln)
(see [4]or [13]). If we add to the structure M(Ln) the constants

fori = 1,...,n—1, thenPT(Ln) = (Ln,/‘\,V,ñ,0}‘,...,0;¡‘_l,e¡,...,en_1,0,1)
is a Post algebra.
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Not every n-valued Moisil algebra has a structure of MVn-algebra (see
[32]). For example, a subalgebra of M(L,,) may not be a subalgebra of Ln
as MVn-algebra. That is the case of the algebra whose universe is the set

0 1 3 4

C - (2’ z, z, z)

which is a subalgebra of M(L5), but not a subalgebra of L5. On the other
hand, every Post algebra has a structure of MVn-algebra (see [35, Theorem
10]).

The next example will play an important role in what follows:

Example A.0.6 Let C = (C, A,V, WO,1) be a boolean algebra. We define

Cln]= {z = (21,...,z,,_¡) e C"_12215 zz 5 5 zn_1}

For each z = (21, . . .,z,,_¡) G CW we define:

finz=(ñzn_1,...-Iz¡),

0=(0,...,0),
1=(1,...,1),

0,'-'(z)= (z,,z,-,...,z,-) fori: 1,...,n— 1.

With A and V defined coordinatewise, CW = (CW, A, V, fin, of, . . . , 0:4, 0, 1)
is an n-valued Moisil algebra (see [8, Chapter 3, Example 1.10]). If we define
ej = (CJ-,1,. . . , ej,n_1) by

e“ _ 0 if i < j,
J" _ 1 ifi 2 j,

then CW = (C["],/\,V,fin,af, . . .,a,’:_¡,e1,...,en_1,0, 1) is a Post algebra.
Consequently, CW has a structure of MVn-algebra.

It is easy to see that for each MVn-algebra A, the boolean subalgebras
B(A) and B(M(A)) are the same. We need to show that the boolean ele­
ments of the MVn-algebra generated by a set G coincide with the boolean
elements of the n-valued Moisil algebra generated by the same set. In order
to prove this result it is convenient to consider the following operators on
each n-valued Moisil algebra A:

Definition A.0.7 For eachi = 0,. . .,n - 1

¿(37)= a: An03_i_1(13),

where 08(1) = 0 and O'ïl(:l:)= 1.
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Notice that in M(Ln) we have:

. j _ 1 ifi =j,
J‘((n—1))_{0 ¡{17631

Lemma A.O.8 Let A be an MVn-algebra, and let G C A. If < G >Mvn is
the subalgebm of A generated by the set G and < G >Mn is the subalgebra
of M(A) generated by G, then

Proof: Since < G >Mn is always a subalgebra of M(< G >Mvn), we have
that B(< G >Mn) is a subalgebra of B(< G >Mvn).

We will see that B(< G >Mv") Q B(< G >Mn). The case G = (0is
clear. Suppose that G is a finite set of cardinality p 2 1. Since MV"­
algebras are locally finite (see [10, Chapter II, Theorem 10.16]), we obtain
that < G >Mvn is a finite MVn-algebra. Since finite MVn-algebras are direct
product of simple algebras, there exists a finite k 2 1 such that

k

< G >Mvn= HLmn
i=l

where each mi — 1 divides n — 1, for each i = 1,...,k. If k = 1, then
< G >Mn and < G >Mvn are finite chains whose only boolean elements are
their extremes. Otherwise, we can think of the elements of < G >Mvn as
k-tuples, i.e., ifx €< G >Mvn, then x = (11,...,1:k). We shall denote by lj
the k-tuple given by

. 1 Hi=j
J . = 1

(1 )' {o ifi 7€j.

It is clear that for each j = 1,...,k, lj is in < G >Mv" . From this fact
follows that for every pair i 7€j, i,j e {1, . . .,k}, there exists an element
x e G such that Ij 7€zi. Indeed, suppose on the contrary that there exist
i,j 5 k such that 3:,-= :vj, for every x E G. Since these elements generate
< G >Mvn, for every z €< G >Mvn we would have z,-= Zj contradicting the
fact that lj is in < G >Mvn.

It is obvious that in order to see that every boolean element in < G >Mv"
is in < G >Mn it is enough to prove that lj is in < G >Mn for every
j = 1,...,k. For afixed j, for each i séj, i = 1,...k, we choosexi GGsuch
that :cj-76 Let j,- be the numerator of sr;-E L". It is not hard to verify that

k

11'= /\ Jj¡(xi).
i=1.i;ej
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From the definition of the operators Ji, we conclude that li must be in
< G >Mn . Hence B(< G >Mvn) Q B(< G >Mn).

If G is not finite, let y be a boolean element in < G >Mv" . Hence,
there exists a finite subset Gy of G such that y belongs to the subalgebra of
< G >Mvn generated by Gy. Therefore, since y is boolean, y belongs to the
subalgebra of < G >Mn generated by Gy, and we conclude that

B(< G >Mv,.) S B(< G >M,.)

for all sets G. I

Given an algebra A in a variety IC,a subalgebra S of A, and an element
:c E A, we shall denote by < 5,2 >¡c the subalgebra of A generated by the
setSU inIC.

Lemma A.O.9 Let C be in Mu and a: e C. Let S be a subalgebra ofC such
that a?(a:) belongs to B(S) for each i = 1,. . .,n —1. Then

B(< S,:c >Mn) = B(S).

Proof: Clearly B(S) is a subalgebra of B(< 8,11:>Mn), then it is left to
check that B(< S,:v >Mn) Q B(S). To achieve such aim, we shall study the
form of the elements in < S,:r >Mn . We define for each s E S

o a(s) = s A 1:,

o fl(s) = s /\ -ua:,

o 71(3)= sAa?(:r), fori: 1,...n- 1,

o 61(3) = 3A -|a¿"(:r), for i = 1,...n —1.

Notice that for all s e S we have that 'y¿(s) and 6,-(s) are in S for i =
1,...,n— 1. Let

ku PJ

M ={1/ = VAfi(si):fi€{a1fi171161)"'7n—116n—l}and SiGS}­
j=li=l

Weshall see that < S,:r >Mn= M =(M,/\,V,fi,aï‘,...,a,':_l,0,1).Indeed,
for all s E S, s = 71(8) V 61(3), then S g M. Besides, :5 E M because
a: = 01(1). Lastly, it is easy to see that M is closed under the operations of
n-valued Moisil algebra, thus < 8,1: >Mn is a subalgebra of M. From the
definition of M, it is obvious that M g< S, a: >Mn, and the equality follows.
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Now let z e B(< 8,1: >Mn). Then

k, Pj

Z= V Afi(5i)
j=l i=l

with fi E {a,fi, 71,61, . . .7n_¡,ó,¡_¡} and si e S. By Theorem A.O.4, we have
that a" (z) = z thenn-l

Bj k: PJ'

fi(3i)) = V A0:—1(fi(3i)),

k:

z = 02-1(2) = 02-1(V
j=li j=l i=l

isinB(s) calm-(sa)=musa) orauto») =meus»),
forsomek=1,...,n—1. l

Theorem A.O.10 Let C be an MVn-algebra and a: e C. Let S be a subalge­
bra of C such that a?(a:) belongs to B(S) for each 2'= 1, . . .,n —1. Then

B(<8,13>Mvn)=

Proof: By Lemmas A.O.8 and A.O.9 we obtain:

B(< Sra:>MVn)= B(< Saz >Mn)=

I
Recall that a boolean algebra B is said to be free over a poset Y if for

each boolean algebra C and for each non-decreasing function f : Y —)C, f
can be uniquer extended to a homomorphism from B into C. As before, we
shall denote by Free Mvn(Z) the free algebra in MV" over a set Z.

Theorem A.O.11 B(FreeMvn(Z is thefree booleanalgebra over the poset
Z’= {0?(2): ze Z,i= 1,...,n— 1}.

Proof: Let S be the subalgebra of B(FreeMvn(Z)) generated by Z’. Let C
be a boolean algebra and let f : Z’ —>C be a non-decreasing function. The
monotonicity of f implies that the prescription

f'(z) = (¡(Uï'(z)), ---,f(03_1(2)))

defines a function f’ : Z —>C["], where Cl") is defined as in Example A.O.6.
Since Clnl E MV", there is a unique homomorphism

h' ; FreeMvn(Z) —>clnl
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such that h’(z) = f’(z) for every z G Z. Let 7r : Clnl —) C be the pro­
jection over the first coordinate. The composition 7roh’restricted to S is a
homomorphism h : S —)C, and for y = 02(2) E Z' we have:

h(y) = 7T(h'(0Ï(z))) = 7r(0'5‘(h'(z)))= 7r(0}‘(f'(2))) =

= 7r(0}‘(f(0í‘(z)), ---,f(03_1(z)))) =

= 7T(f(0}‘(z)), . . -af(0_;'1(z)))= f(0}‘(2)) = f(y)­

Hence S is the free boolean algebra over the poset Z’. But since aflz) is in
S for all z e Z and j = 1,. . .n —1, Theorem A.0.10 asserts that

S= = B(<8,2>Mvn)
for every z e Z. From the fact that S is a subalgebra of B(FreeMvn(Z)) we
obtain:

S = B(< 5,2 >MVn)= B(FreeMvn(Z))

that is, B(FreeMvn(Z)) is the free boolean algebra over the poset Z’. I
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