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Variedades de BL-algebras generadas por BL,-cadenas

En la presente tesis se estudian subvariedades de BL-algebras. En una
primera etapa, después de haber dado las nociones basicas acerca de BL-
algebras, se estudian las estructuras fundamentales dentro de las variedades
de BL-algebras: las BL-cadenas. Se prueba la descomposicién de las mismas
en suma ordinal de hoops de Wajsberg y se da también una descomposicién
en suma ordinal de su subalgebra de elementos regulares y la BL-4lgebra
generalizada de sus elementos densos. Una vez obtenidos estos resultados, se
define una BL,-cadena como aquella que es suma ordinal de una MV-cadena
finita de longitud n y una BL-cadena generalizada para luego proceder al
estudio de subvariedades de BL-dlgebras generadas por una de estas cadenas.
Se da un método para caracterizar ecuacionalmente estas subvariedades y
luego se da una descripcion de las BL-algebras libres en estas variedades
sobre un conjunto arbitrario de generadores.

Palabras claves: Ldgicas difusas, Hoops, BL-dlgebras, fflgebras libres, MV-
dlgebras

Varieties of BL-algebras generated by BL,-chains

The present thesis is a study of subvarieties of BL-algebras. As a first step,
after introducing some basic notions about BL-algebras, the most important
structures in the varieties of BL-algebras, BL-chains, are studied. A proof of
the decomposition of BL-chains into the ordinal sum of Wajsberg hoops is
given, and another decomposition of them as ordinal sum of the MV-algebra
of regular elements of the chains and the generalized BL-algebra of their
dense elements is also presented. After this, the definition of BL,-chain as
the ordinal sum of a finite MV-chain of length n and a generalized BL-chain
is introduced. A method to equationally characterize subvarieties of BL-
algebras generated by one BL,-chain is developed and a description of free
algebras over an arbitrary set of generators in these varieties is obtained.

Keywords: Fuzzy logics, Hoops, BL-algebras, Free algebras, MV-algebras.
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0.1 Introducciéon

Las l6gicas difusas se originan en 1965 en la publicacién [37] de L. A.
Zadeh, y desde entonces se han desarrollado y han sido aplicadas exitosa-
mente cn muchos problemas, principalmente en el disefio de sistemas exper-
tos que puedan tomar decisiones sobre la base de informacién incompleta,
incierta y/o vaga. La ldgica bésica (BL) es introducida por Héjek (ver [27]
y las referencias alli citadas), con el objetivo de formalizar las légicas difusas
en las que la conjuncién se interpreta por una t-norma continua en el seg-
mento real [0,1] y la implicacién como su correspondiente adjunta. Hajek
también introduce cn [27] las BL-dlgebras como las contrapartes algebraicas
de BL. Estas algebras forman una variedad (o clase ecuacional) de reticu-
lados residuados [27]. Mads precisamente, pueden ser caracterizadas como
hoops bésicos acotados [1, 7). Las subvariedades de la variedad de BL-
dlgebras estdn en correspondencia con las extensiones axiomaticas de BL.
Algunas subvariedades importantes de la variedad de BL-algebras son las
MV-dlgebras, correspondientes a la légica multivaluada de Lukasiewicz (ver
[16]), las algebras de Heyting lineales, correspondientes a la extension de la
l6gica superintuicionista caracterizada por el axioma (P — Q) V (@ — P),
(ver [36]), las PL-algebras, correspondientes a la 1égica determinada por la
t-norma dada por el producto usual en [0,1], (ver [19]), y también las dlgebras
de Boole, correspondientes a la ldgica clésica.

En la presente tesis se estudian ciertas subvariedades de BL-algebras.
Como toda BL-algebra es un producto subdirecto de BL-algebras totalmente
ordenadas (ver [27]), un primer paso es investigar la estructura de estas
algebras generadoras, a las que usualmente se conoce como BL-cadenas.

Por su importancia en el desarrollo de la teoria acerca de las BL-algebras,
se han realizado varios estudios sobre la estructura de las BL-cadenas. En
[17], se descompone toda BL-cadena que es saturada en una suma ordinal de
MV-cadenas, cadenas de Godel y PL-cadenas, siguiendo la descomposicién
natural de las t-normas continuas. El propésito principal de esta descom-
posicién es la demostracion del teorema de completitud de BL. Por otro
lado, considerando el hecho que las BL-dlgebras poseen como raiz algebraica



la teoria de hoops (ver [1]), se da en [2] un teorema de descomposicién para
BL-cadenas en una calse especial de hoops, llamados hoops de Wajsberg,
que no admiten ulteriores descomposiciones. Si bien esto mejora el resultado
dado en [17], porque no necesita que la cadena a descomponer satisfaga la
condicién de saturacion, la demostracién de la descomposicién se basa fun-
damentalmente en el axioma de eleccién (este axioma es requerido tres veces
a lo largo de la prueba). Una tercera descomposicion de BL-cadenas se da en
[33]. La idea principal de esta descomposicién es definir en cada BL-cadena
una relacién de equivalencia de modo tal que las clases de equivalencia son
estructuras relacionadas con semigrupos abelianos totalmente ordenados a
los que llaman formas basicas. Estas estructuras formaran los bloques de
la descomposicién. A pesar de que la demostracién no requiere del uso del
axioma de eleccidn, las formas baésicas son estructuras ad hoc.

En la presente tesis ofrezco una prueba simple y autocontenida del teo-
rema de descomposicién en hoops de Wajsberg definiendo en cada BL-cadena
una relaciéon de equivalencia. Esta demostracion no requiere del uso de
ninguna versién del axioma de eleccién. Ademds se prueba la unicidad de
dicha descomposicion.

Pero hay otra manera de descomponer las BL-cadenas que serd de suma
utilidad para el desarrollo de los resultados de la tesis. En [21], se estudian
dos clases diferentes de elementos en una BL-algebra: elementos regulares
y elementos densos. Se prueba alli que el conjunto de elementos regulares
de una BL-algebra forma una subdlgebra que posee una estructura de MV-
dlgebra. Por otro lado, el conjunto de elementos densos de una BL-algebra
posee una estructura de BL-dlgebra generalizada. Con base en estos hechos,
en el Teorema 2.2.1, demuestro que cada BL-cadena puede ser descompuesta
en la suma ordinal de la MV-dlgebra de sus elementos regulares y la BL-
algebra generalizada de sus elementos densos. Esta descomposicién permite
clasificar a las BL-cadenas de acuerdo a la MV-dlgebra de sus elementos
regulares. Se llamaran BL,-cadenas a las BL-cadenas cuyas MV-algebras de
elementos regulares sean MV-cadenas finitas de n > 2 elementos.

Como indica el titulo de la presente tesis, estudiaré subvariedades de
BL-dlgebras generadas por BL,-cadenas. Para comenzar con este estudio, y
siguiendo ideas utilizadas en [2], doy un método de caracterizacion ecuacional
para las subvariedades de BL-algebras generadas por una BL,-cadena. Mds
precisamente, como las BL,-cadenas son suma ordinal de una MV-cadena
finita L,, y una BL-cadena generalizada B, demuestro cémo las ecuaciones
que caracterizan la subvariedad generada por la BL,-cadena L,,&¥B dependen
de las ecuaciones que caracterizan la variedad de MV-algebras generada por
L, y las ecuaciones que caracterizan la variedad de BL-4lgebras generalizadas

generada por B.



Una vez obtenida esta caracterizacion, comienzo con el estudio de algebras
libres en subvariedades de BL-algebras generadas por una BL,-cadcna. La
descripcién de las dlgebras libres da la representacién concreta en término
de funciones de las proposiciones de BL, puesto que las proposiciones, bajo
equivalencia légica, forman una BL-dlgebra libre. Para algunas subvariedades
de BL-algebras dichas algebras libres ya han sido estudiadas. El ejemplo
mas conocido cs la representacién de proposiciones cldsicas por funciones
booleanas. Otro ejemplo es la descripcién de MV-dlgebras libres en términos
de funciones lineales continuas a trozos dada por Mc Naughton [34] (ver
también [16]). Las dlgebras libres finitamente generadas en la variedad de
algebras de Heyting lineales fue dada por Horn [30], y una descripcién de PL-
algebras libres finitamente generadas se da en [19]. Las dlgebras de Heyting
lineales y las PL-dlgebras son ejemplos de variedades de BL-dlgebras que
satisfacen la propiedad de la retraccién booleana. Las dlgebras libres en
estas subvariedades de BL-4lgebras fueron descriptas en [20].

Para la descripcion de las dlgebras libres en variedades de BL-algebras
generadas por una BL,-cadena utilizo la representacion de BL-algebras como
producto booleano débil de algebras directamente indescomponibles dada en
(20]. Dicha representacién, llamada representacién de Pierce, consiste en
tomar los cocientes del algebra libre por los filtros implicativos generados
por los ultrafiltros de la subdlgebra de elementos booleanos del dlgebra libre
en cuestién. Utilizando los resultados de [21], pruebo que la subdlgebra de
elementos booleanos del dlgebra libre es la subalgebra de elementos booleanos
de un &lgebra libre en MV, la variedad de MV-4lgebras generada por la
cadena finita L,,. Finalmente se caracteriza el digebra de elementos booleanos
de esta dlgebra libre en MV, : es el dlgebra de Boole libre sobre un conjunto
parcialmente ordenado que es suma cardinal de cadenas de longitud n—1. En
la demostracion de este resultado juegan un rol fundamental los reductos de
algebras de Moisil de las dlgebras en MV,. Una vez obtenida una caracteri-
zacion de los booleanos del algebra libre realizo un estudio de los cocientes del
algebra libre por los filtros generados por los ultrafiltros booleanos. Concluyo
que las dlgebras libres en variedades de BL-dlgebras generadas por una BL,-
cadena L, wB son productos booleanos débiles de BL-dlgebras que son suma
ordinal de una subdlgebra de L, y una BL-dlgebra generalizada libre en la
variedad de BL-algebras generalizadas generada por B.

Por tltimo, presento un método alternativo de descripcién de estas algebras
libres cuando el conjunto de generadores del dlgebra es finto. Basandome
en el hecho que la subdlgebra de elementos booleanos de estas algebras li-
bres finitamente generadas es finita, caracterizo los dtomos del dlgebra de
Boole. Los elementos del algebra libre se pueden vizualizar como funciones
finitas y el conocimiento de los dtomos de la subdlgebra de Boole permite
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una descripcion detallada de cada factor indescomponible. Como el pro-
ducto booleano débil sobre espacios finitos discretos es un producto directo,
obtengo una caracterizacién de las dlgebras libres finitamente generadas como
el procuto directo de algebras indescomponibles. Estos resultados han sido
aceptados para ser publicados en Algebra Universalis ([11]). Ambas descrip-
ciones coinciden cuando el conjunto de generadores libres es finito, pero esta
ultima descripcién permite obtener mayor informacién acerca de los factores
de la descomposicion.

La tesis estd organizada como sigue: En un primer capitulo se revisan las
nociones basicas concernientes a BL-algebras necesarias para el desarrollo
del trabajo. En el segundo capitulo se presentan dos teoremas de descom-
posicion de BL-cadenas: en el primero se presenta la descomposicién en
hoops de Wajsberg dada en [2], pero se ofrece una demostracién mas sim-
ple del mismo que, a diferencia de la de [2] no requiere del uso del axioma
de eleccién. En el segundo se da una descomposicién en la MV-algebra de
elementos regulares y la BL-algebra generalizada de elementos densos. En
el tercer capitulo, una vez introducida la nocién de BL,-cadena, se ofrece
un método para la caracterizacién ecuacional de las subvariedades de BL-
algebras generadas por una de estas cadenas. También se ofrecen ejemplos
de caracterizaciones ecuacionales para algunas de estas subvariedades. En
el capitulo cuatro, se obtiene una descripcién de las dlgebras libres en va-
riedades de BL-dlgebras generadas por una BL,-cadena en términos de pro-
ductos booleanos débiles. Por ultimo, en el capitulo cinco, se presenta una
descripcién alternativa de dichas dlgebras libres cuando el conjunto de gene-
radores es finito, y se comparan los resultados con los del capitulo anterior.
La tesis posee un apéndice donde se describen la subdlgebras booleanas de
elementos idempotentes de las dlgebras libres en variedades de MV-algebras
generadas por cadenas finitas.

Denotaré con letras negritas A, B, C,... a las estructuras algebraicas y
con la misma letra ordinaria A, B,C,... a sus correspondientes universos.
Los conceptos de algebra universal utilizados durante el desarrollo de la tesis
se pueden encontrar en [10] y en [22].



0.2 Introduction

Fuzzy logics have their origins in a paper published in 1965 by L. A.
Zadch [37], and since then, have been far developed and applied successfully
in many problems, mainly in the design of experts systems that can take
decisions based on fuzzy or vague information. Basic Fuzzy Logic (BL for
short) was introduced by Héjek (see [27] and the references given there) to
formalize fuzzy logics in which the conjunction is interpreted by a continuous
t-norm on the real segment [0, 1] and the implication by its corresponding ad-
joint. Héajek also introduced BL-algebras as the algebraic counterparts of BL.
These algebras form a variety (or equational class) of residuated lattices [27].
More precisely, they can be characterized as bounded basic hoops [1, 7]. Sub-
varieties of the variety of BL-algebras are in correspondence with axiomatic
extensions of BL. Important examples of subvarieties of BL-algebras are MV-
algebras, that correspond to Lukasiewicz many-valued logics (see [16]), linear
Heyting algebras, that correspond to the superintuitionistic logic character-
ized by the axiom (P = Q) V (Q = P) (see [36] for a historical account
about this logic), PL-algebras, that correspond to the logic determined by
the t-norm given by the ordinary product on [0,1], (see [19]), and also boolean
algebras that correspond to classical logic.

In the present thesis I study certain subvarieties of BL-algebras. Since
each BL-algebra is a subdirect product of totally ordered BL-algebras (see
[27, Lemma 2.3.16]), as a first step I investigate the structure of such gener-
ating algebras, that are usually called BL-chains.

Since BL-chains are very important in the theory of BL-algebras, they
have already been deeply investigated. Following the natural decomposition
of continuous t-norms, in [17] each BL-chain which is saturated is decom-
posed into an ordinal sum of MV-chains, Godel chains and PL-chains. The
main purpose of such decomposition is the proof of completeness of BL.
Considering the fact that BL-algebras have as an algebraic root the theory
of hoops (see [1]), in [2] a theorem of decomposition for BL-chains (i.e., ba-
sic totally ordered bounded hoops) into some special kind of hoops is given.
These hoops, named Wajsberg hoops, can not be further decomposed. Al-
though this improves the result given in [17], for it can be applied not only to
saturated BL-chains, the given proof strongly relies on the axiom of choice
(as a matter of fact, it is invoked three times in the course of the proof).
An alternative decomposition of BL-chains is given in [33]. The main idea of
such decomposition is to define on each BL-chain an equivalence relation such
that the equivalence classes are structures related to ordered abelian semi-
groups, called basic forms. These structures are the building blocks of the
decomposition. Although the decomposition is obtained without appealing



to the axiom of choice, basic forms are ad hoc structures.

In the present thesis, I offer a simple and self contained proof of the
decomposition given in [2] by means of a suitable equivalence relation on
BL-chains, whose equivalence classes are Wajsberg hoops. This proof does
not invoke any version of the axiom of choice. I also prove the uniqueness of
the decomposition.

But there is another way of decomposing BL-chains that shall be more
useful to obtain the results of the thesis. In [21] two different kinds of elements
in a BL-algebra are studied: regular elements and dense elements. It is proved
that the set of regular elements of a BL-algebra form a subalgebra which is
an MV-algebra. On the other hand, the set of dense elements of a BL-algebra
form a generalized BL-algebra. Taking these ideas into account, in Theorem
2.2.1, I prove that each BL-chain can be decomposed into the ordinal sum
of the MV-algebra of its regular elements and the generalized BL-algebra of
its dense elements. This decomposition makes possible the classification of
BL-chains according to the MV-algebra of its regular elements. I shall call
BL,-chain each BL-chain whose subalgebra of regular elements form a finite
MV-chain of n > 2 elements.

As it is indicated by the title of the thesis, I shall study subvarieties of
BL-algebras generated by BL,-chains. As a first step, following some ideas
of [2], I describe a method to equationally characterize subvarieties of BL-
algebras generated by one BL,-chain. Since these chains are the ordinal
sum of a finite MV-chain L, and a generalized BL-chain B, I demonstrate
how the equations that define the subvariety generated by the BL,-chain
L, ¥ B depends on the equations that define the subvariety of MV-algebras
generated by L, and the equations that define the subvariety of generalized
BL-algebras generated by B.

Once the subvarieties of BL-algebras generated by one BL,-chain are
characterized, I study free algebras in these subvarieties. Since the propo-
sitions under BL equivalence form a free BL-algebra, descriptions of free
algebras in terms of functions give concrete representations of these propo-
sitions. Such descriptions are known for some subvarieties of BL-algebras.
The best known example is the representation of classical propositions by
boolean functions. Free MV-algebras have been described in terms of contin-
uous piecewise linear functions by McNaughton [34] (see also [16]). Finitely
generated free linear Heyting algebras were described by Horn [30], and a
description of finitely generated free PL-algebras is given in [19]. Linear
Heyting algebras and PL-algebras are examples of varieties of BL-algebras
satisfying the boolean retraction property. Free algebras in these varietics
were completely described in [20].

To describe free algebras in varieties of BL-algebras generated by one
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BL,-chain, the representation as a weak boolean product of directly inde-
composable algebras given in [20] is invoked. The mentioned representation,
called the Pierce representation, consists of taking the quotients of the free
algebra over the implicative filters generated by the ultrafilters of the subal-
gebra of boolean elements of the free algebra. Using results of [21], I prove
that the subalgebra of boolean elements of the free algebra is the subalgebra
of boolean elements of a free algebra in MV, the variety of MV-algebras
generated by the finite MV-chain L,. Therefore a characterization of the
algebra of boolean elements of this free algebra in MYV, is obtained: it is
the frce boolean algebra over a poset which is the cardinal sum of chains
of length n — 1. In the proof of this result a central role is played by the
Moisil algebra reducts of algebras in MV,. I conclude that free algebras in
varieties of BL-algebras generated by a single BL,-chain L, & B are weak
boolean products of BL-algebras that are ordinal sums of subalgebras of L,
and free algebras in the variety of basic hoops generated by B.

I present an alternative description of the free algebras when the set of
free generators is finite. Since for the finite case the subalgebra of boolean
elements of the free algebra is finite, I characterize the atoms of these boolean
algebra. The elements of the free algebra are view then as functions, and
the knowledge of the atom that generates each ultrafilter makes possible
a complete description of each indecomposable factor. Since weak boolean
products over discrete finite spaces are direct products, I give a description
of the finitely generated free algebra as a direct product of indecomposable
algebras. These results are about to appear in Algebra Universalis (see [11]).
Although both descriptions coincide when the set of generators is finite, this
last one gives more information about the factors of the decomposition.

The thesis is organized as follows: In the first chapter, all the basic no-
tions concerning BL-algebras needed for the development of the thesis are
recalled. In the second one, two different theorems of decomposition of BL-
chains are presented: the first one is the decomposition into Wajsberg hoops
given in [2], but a much simpler and constructive proof of the Theorem is
presented. The second one is the decomposition into regular and dense ele-
ments. In chapter three, after introducing the notion of BL,-chain, a method
to equationally characterize the subvarieties of BL-algebras generated by one
of these chains is described. I also give examples of the equational charac-
terization for some of such subvarieties. In chapter four, the main one, a
description of free algebras in varieties of BL-algebras generated by a BL,-
chain in terms of weak boolean product is given. Lastly, in chapter five,
an alternative description of such free algebras is given when the set of free
generators is finite, and I compare these results with the ones given in the
previous chapter for the general case. An appendix is also add at the end
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of the thesis. In this appendix a description of the boolean subalgebra of
idempotents elements of free algebras in varieties of MV-algebras generated
by finite chains is presented.

I denote algebras with bold face letters A, B, C, ... and their correspond-
ing universes by the ordinary type of the same letter A, B, C,.... The notions
of universal algebra used in the development of the thesis can be found in
[10] and [22].



Chapter 1

Basic Notions

1.1 Continuous t-norms

Definition 1.1.1 A t-norm is s binary operation * form [0,1]? into [0,1]
satisfying the following conditions:

1. * is commutative and associative,

2. x is non decreasing in both arguments, i.e, for all z,y,z € [0, 1]

z<yimplieszxz<y*xzandzxz < zx*y,

8. 1lxz=zand 0%z =0 for all z € [0,1].

A continuous t-norm is a t-norm which is continuous as a map from [0, 1)?
into [0,1] in the usual sense. For each continuous t-norm a residuum — can
be defined (see [27]) satisfying

zxz<yiffr<z—y.

Example 1.1.2 The following are the most important ezamples of continu-
ous t-norms and their corresponding residuum:
1. Lukasiewicz t-norm: z+xy = maz (0,z +y — 1),

Lukasiewicz implication: z — y = min(1,1 — z + y),

2. Gédel t-norm: z x y = min(z,y),

y x>y,

Godel implication: T —> y = { 1 ifr<y
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3. Product t-norm: zxy = 1.y,

y/z ifz >y,

Goguen implication: T — y = { 1 ifzr<y

In [27] for each fixed continuous t-norm x a propositional calculus PC(x)
is presented whose truth values are in the real segment [0,1], = is taken
for the truth function of the (strong) conjunction and the residuum — of
* becomes the truth function of the implication. Hajék formulated logical
axioms for BL and he proved that each provable formula in BL is a tautology
in each PC(x) (soundness of BL). To prove the completeness of the logic he
starts an algebraization of BL. Is then when BL-algebras are introduced.

1.2 Hoops, Generalized BL-algebras and BL-
algebras

A hoop is an algebra A = (A, *, =, T) of type (2, 2,0), such that (A4, x, T)
is a commutative monoid and for all z,y, z € A:

lL.z—o2z=T,
2.zx(z>oy)=y=*(y—> 1),
Jzoa(y—=z)=(rxy) > 2.

Hoops were introduced in an unpublished manuscript [9] by Biichi and
Owens and they were deeply investigated in [1], [6], [7] and [26]. Some basic
properties of hoops are enumerated in the next proposition:

Proposition 1.2.1 Let A = (A, *,—, T) be a hoop. Then:

1. (A, %, T) is a naturally ordered residuated commutative monoid, where
the order is defined by x <y iff £ - y = T and the residuation is

zxy<ziffr<y-— =z
2. The partial order on any hoop is a semilattice order, where T Ay =
zx*(z > y).
3. For any z,y, z € A the following hold:
(a) T o z=nz,

(b)) x > T =T, ie, T is the largest element in the order,
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(c)z—oy<(zoz)>(2>7y),
(d) z<y—rz,
(e) < (z—y) >y,
(flz—=(y—o2)=y-(z—2),
(9) 2=y <(y—2)—>(z—2)
(h) <y impliesy > 2<zr—ozandz—>z<z->Y,
(i) x <y impliesz x 2 < y*z,
(G) zxy <z
A generalized BL-algebra or basic hoop is a hoop that satisfies the

equation:
((z=y)—=2)x(y=2z2)>2)>2=T (1.1)

In every generalized BL-algebra A an operation V can be defined by
zVy=(z—-y) 2y A(ly—>z) - ),

thus L(A) = (A, A,V, T) is a lattice with greatest element T. Besides, every
generalized BL-algebra A satisfies the equation:

(-y)Vvy-2)=T.

A BL-algebra is a bounded generalized BL-algebra (or bounded basic
hoop), that is, it is an algebra A = (4,*,—, L, T) of type (2,2,0,0) such
that (A, *,—,T) is a generalized BL-algebra, and L is the lower bound of
L(A). Then the set B C A is the universe of a subalgebra of a BL-algebra
A iff T,L € B and B is closed under * and — . Besides, if C C A is a set
closed under * and — such that T € C, then C = (C, x, =, T) is a generalized
BL-algebra. For any integer k, a BL-term in the variables z;, z5,...zx is
a string over the set Sy = {x,—, L, T,zy,2,...,Z, (,)} that arises from a
finite number of application of the following rules:

e |, T,z,,x9,...,x, are BL-terms,
e if 7 and 7, are BL-terms, then (7, * 72) and (1, = 72) are BL-terms.

For each continuous t-norm x, the structure ([0, 1], ¥, —, 0, 1) is a BL-algebra,
where — is the residuum of . As a matter of fact, each BL-algebra structure
on the segment [0, 1] is given by a continuous t-norm, because the continuity
of x is equivalent to the condition z* (x — y) = y x (y — z) (see, for intance,
25)).
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On each BL-algebra, the unary operation - (negation) is defined by the
equation:
r=1— 1.

The BL-algebra A with only one element, that is L = T, is called the trivial
BL-algebra. The varieties of BL-algebras and of generalized BL-algebras
will be denoted by BL and GBCL, respectively. These are varieties of residu-
ated lattices, hence they are varieties of BCK-algebras. It is known (see [31])
that both varieties are congruence distributive and congruence permutable.

Let A be a generalized BL-algebra. As mentioned in Proposition 1.2.1,
we denote by < the (partial) order defined on A by the lattice L(A), i.e.
for a,b € A, a < biffa = anbiffb = aV b This order is called the
natural order of A. When this natural order is total (i.e., for each a,b, € A,
a < borb<a), Ais called generalized BL-chain (BL-chain in case A is
a BL-algebra).

The following theorem makes obvious the importance of BL-chains and
can be easily derived from [27, Lemma 2.3.16).

Theorem 1.2.2 Fach BL-algebra is a subdirect product of BL-chains.

Indeed, since BL-algebras are bounded basic hoops the previous result
also follows from [1, Theorem 2.8].

1.3 Important subvarieties of BL-algebras.

Some subvariecties of BL have been studied for their own importance,
since they are the algebraic counterpart of some well known logics. MV-
algebras, for instance, the algebras of Lukasiewicz infinite-valued logic, form
the subvariety of BL characterized by the equation:

=T

(see [27]). For references about these algebras see [16). The variety of MV-
algebras is denoted by MYV and a totally ordered MV-algebra is an MV-
chain. If A is a BL-algebra, consider

MV(A)={z€ A: -~z =z}

Then MV (A) = (MV(A), *,—, L, T) is an MV-algebra (see [21]) which is
a subalgebra of A.
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For n > 2, we define:

0 1 2 n-—1
n—-1"n-1"n-1"n-1

L,={ }.

The set L, equipped with the operations z*y = max (0, z+y—1),z 2y =
min (1,1 — z + y), and with L =0 and T = 1 defines a finite MV-algebra
which shall be denoted by L,.

A linear Heyting algebra H = (H,A,—, L, T) is a Heyting algebra
(or relative pseudocomplemented bounded distributive lattice, see [4]) which
satisfies the equation:

(z->y)V(y—-2)=T.

These algebras are the algebraic counterpart of the superintuitionistic logic
characterized by the axiom (P = Q) V (Q = P). Observe that any linear
Heyting algebra H satisfies the equations:

ztAhy=zA(z->y),

tVy=((z—=y)=2yYA((y—z)— 1)

Then H is a BL-algebra in which A = #, i.e., it satisfies the equation z xy =
TAYy.

A PL-algebra is a BL-algebra that satisfies the following two equations:
(mmzx((zx2) 2> (y*2)) 2 (z 2 y) =T,
T A-z=1.
PL-algebras correspond to product fuzzy logic, see [19] and (27).

It follows from Theorem 1.2.2 that for each BL-algebra A the lattice
L(A) is distributive. The complemented elements of L(A) form a subalgebra
B(A) of A which is a boolean algebra. Elements of B(A) are called boolean
elements of A.

1.4 Implicative filters

Definition 1.4.1 An implicative filter of a BL-algebra A is a subset F' C
A satisfying the following conditions:

1. T eF
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2. IfreFandr—y€F, thenye€F.

An implicative filter is called proper provided F # A. If W is a subset
of a BL-algebra A, the implicative filter generated by W will be denoted by
(W). If U is a filter of the boolean subalgebra B(A), then the implicative
filter (U) is called Stone filter of A. An implicative filter F of a BL-algebra
A is called maximal iff it is proper and no proper implicative filter of A
strictly contains F.

Implicative filters characterize congruences in BL-algebras. Indeed, if F
is an implicative filter of a BL-algebra A it is well known (see [27, Lemma
2.3.14)), that the binary relation = on A defined by:

z=rpy f zoyeFandy—->z€eF

is a congruence of A. Moreover, F = {z € A : z =¢ T}. Conversely, if =
is a congruence relation on A, then theset F = {z € A:z = T} is an
implicative filter, and z = yiff t > y = T and y — z = T. Therefore, the
correspondence

F o=

is a bijection from the set of implicative filters of A onto the set of congruences
of A.

Given a BL-algebra A and a filter F' of A, we will denote the quotient
set A/ =r by A/F. Since =f is a congruence, defining on the set A/F the
operations

(z/F)* (y/F) = (zxy)/F
and
(z/F) = (y/F) = (z = y)/F,
the system (A/F,*,—, L/F, T/F) becomes a BL-algebra called the quo-
tient algebra of A by the implicative filter . Moreover, the corre-

spondence
z—z/F

defines an homomorphism hg from A onto the quotient algebra A/F.

Lemma 1.4.2 (see [20]) Let A be a BL-algebra, and let U be a filter of
B(A). Then

(=y) = {(a,b) e Ax A:aAc=bAc for some ce U}

is a congruence relation on A that coincides with the congruence relation
given by the implicative filter (U) generated by U.
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1.5 Initial segments

An clement u of a BL-algebra A is called idempotent provided that
u*xu = u. If A is a BL-algebra and u,v are idempotents in A such that
u < v, then the segment [u,v] = {z € A: u < z < v} is closed by *. It is not
hard to verify that the boolean elements of a BL-algebra A are idempotents.
Therefore new BL-algebras can be defined from a BL-algebra A by taking
segments between boolean elements. The following two results can be found
in [15].

Theorem 1.5.1 Let A = (A,*,—, L, T) be a BL-algebra. For each u # L,
u € B(A), the system A, = ([L,u],*, =, L,u) is a BL-algebra where

z=2,y=(z > y)Au.

Theorem 1.5.2 If A is a BL-algebra and a € B(A), then the correspon-
dence  — (z A a,z A —a) is an isomorphism from A onto A, x A_,.

A BL-algebra A is called directly indecomposable iff A is non trivial
and when it is decomposed into a direct product of two BL-algebras then
one of them must be trivial ([21]). In consequence a BL-algebra A is directly
indecomposable iff it is not trivial and B(A) = {1, T}.

Recall that an atom of a boolean algebra B is an element z € B such
that £ > L and if y € B and y < z, then y = L. Our next theorem is the
analogous for BL-algebras of Corollary 3.8 in [19].

Theorem 1.5.3 Let A be a BL-algebra and suppose that B(A) is finite. Let
At(A) = {a1,ay,...,a,} be the set of atoms of B(A). Then

A=A, XA, X -~ XA,
FEach algebra A,, is directly indecomposable.
Proof: From the definition of atom we have that:
l.ayVaaVvV...Va,=T,
2. ifi#j,a;Na; = L.
Let h: A > A, x A,, X --- X A,, be given by
h(a) = (aAaj,aAhay,...,aNay,).

Clearly h is a homomorphism. From (1) we obtain that (_,[a;, T] = {T},

consequently h is an embedding. Besides, for each element (z),z,,...,z,) in
A, X Ay, XX A,,, we have that (z1,Zs,...,2Z,) = R(Z1 VI V...V I,),
thus h is surjective. Hence we conclude that h is an isomorphism. [
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1.6 Ordinal sums

From Theorem 1.2.2 we can deduce that BL-chains play a key role in
the structure of BL-algebras. One way of characterizing BL-chains consist of
studying the number and form of some of their subhoops. To describe how
the operations of a BL-chain A behave between some of its proper subhoops
we use the notion of ordinal sum introduced by Biichi and Owens in their
unpublished manuscript [9] and recalled in [26]. It is worth to remark that
this notion does not coincide with the notion of ordinal sum given in [17].

Let R = (R, *g, >R, T) and S = (S, s, —s, T) be two hoops such that
RNS = {T}. We define the ordinal sum R S of these two hoops as the
hoop given by (RU S, *,—, T) where the operations (*,—) are defined as
follows:

rz*py ifz,y€ R,
zxgy ifz,y€S,

TrY=9 g ifz€e R\{T}and y € S,
Ly ifye R\{T}and z € S.
(T ifre R\{T}, y€ S,

x_)yzl:c—)ny ifr,y € R,

z-osy ifz,yes,
LY ifye R\{T}andz € S.

If RNS # {7}, R and S can be replaced by isomorphic copies whose
intersection is {T}, thus their ordinal sum can be defined. Observe that
when R is a generalized BL-chain and S is a generalized BL-algebra, the
hoop resulting from their ordinal sum satisfies equation (1.1). Thus Rw S
is a generalized BL-algebra. Moreover, if R is a BL-chain, then RwW S is a
BL-algebra, where L = Lgr. In this case it is obvious that the chain R®S is
subdirectly irreducible if and only if S is subdirectly irreducible. Notice also
that for any generalized BL-algebra S, L, & S is the BL-algebra that arises
from adjoining a bottom element to S.

The definition of ordinal sum can be extended for a family of hoops. Let
(I,<) be a totally ordered set. For each i € I let A; = (A;, *;,—;, T) be
a hoop such that for every i # j, A; N A; = {T}. Then we can define the
ordinal sum as the hoop W;c;A; = (UiesrAi, %, —, T) where the operations
*, — are given by:

zxy ifz,y€ A,
zxy=<z ifze A;\{T},y€e 4; and i < j,
Y ifye A;\{T}, z € 4; and i < j.
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r—>y ifI,yEA,',

T ifze A;\{T}, y€ 4; and i < j,
Ty =
Y ifye A,z € Ajand i < j.

Remark 1.6.1 Since generalized BL-algebras with a lower bound are reducts
of BL-algebras, with an abuse of notation we shall refer to both algebras by
the same symbol, and we will deduce their structure from the context. For
example, L,, will denote the MV-chain (L,, *,—,0, 1) as well as the general-
ized BL-algebra (L,, *,—, 1), and then we shall understand L, & L, as the
ordinal sum of the MV-chain L, and the generalized BL-chain L,,. We are
also going to refer to the ordinal sum of BL-chains, but, except from the first
summand, we are considering generalized BL-chains.
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Chapter 2

Decomposition of BL-chains

2.1 Decomposition into irreducible hoops

Hajek conjectured that a propositional formula ¢ is deducible in the logic
BL iff ¢ is a tautology for all continuous t-norms. His conjecture was proved
in (28] under some supplementary conditions. In order to show that these
conditions were redundant, a first decomposition of saturated BL-chains as
ordinal sums of MV-chains, Gédel chains and PL-chains was given in [17],
generalizing a well known decomposition of continuous t-norms. The notion
of ordinal sum used in such decomposition differs from the one presented
in the previous chapter, and does not allow to decompose BL-chains that
are not saturated. To avoid this restriction, Agliano and Montagna give in
[2] a theorem of decomposition for BL-chains into an ordinal sum of some
special kind of hoops, named Wajsberg hoops, which can not be further
decomposed. Although this improves the result given in [17], the given proof
is non constructive, because the axiom of choice is invoked three times in the
course of the proof.

In the present section a rather simple and self contained proof of the
Agliano - Montagna decomposition is going to be offered without appealing
to any version of the axiom of choice.

A trivial hoop is a hoop whose only element is T. When the order of a
hoop A is total, we say that A is an o-hoop. A Wajsberg hoop is a hoop
that satisfies the equation:

(zoy)oy=(y—z)—ozx
A bounded hoop is an algebra A = (A4, —,*,.L, T) such that (4, —, %, T)
is a hoop and L < a for each a € A. A Wajsberg algebra is a bounded
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Wajsberg hoop, and Wajsberg algebras are equivalent to MV-algebras (see
[16]). Recall also that a BL-algebra is a bounded basic hoop and a BL-chain
is a totally ordered BL-algebra, that is, a bounded basic o-hoop.

Definition 2.1.1 An o-hoop is irreducible if it can not be written as the
ordinal sum of two non trivial o-hoops.

The following results can be found in [2].

Lemma 2.1.2 Let A be any basic o0-hoop and let a # T be an element in A.
Let F, = {z € A\{T}:a—> z =2z} . Then F, is downwards closed, and
FoU{T} is the domain of a subhoop F, of A.

Theorem 2.1.3 For an o-hoop (BL-chain) A the following are equivalent:
1. A is irreducible;
2. Forallajbe A, b a=awmpliesb=T ora=T,
3. A is a Wajsberg o-hoop (Wajsberg chain).

Definition 2.1.4 A tower of irreducible o-hoops is a family 7 = (C; :
i € I) indez by a totally ordered set (I, <) with first element 0 such that:

o C; = (Cy, *;, =i, T) is an irreducible o-hoop,
e C;NC; ={T} for each i # j,
o Cy is a bounded o-hoop.

It is easy to see that for each tower 7 = (C; : 7 € I) of irreducible o-hoops,
A, = W, ;C; is a BL-chain. We shall demonstrate the following theorem
that gives the unique decomposition of each BL-chain into an ordinal sum of
irreducible hoops:

Theorem 2.1.5 FEach BL-chain A is isomorphic to an algebra of the form
A, for some tower T of irreducible o-hoops.

Proof: We have already noticed that if an algebra is of the form A, for some
tower of irreducible o-hoops 7, then the algebra is a BL-chain.

To prove that each BL-chain A has this form, as in Lemma 2.1.2, for each
a€Aa#Tlet F,={ze€ A\{T}:a— z ==z} and let Fr = {T}. We
give an equivalence relation ~ on A by:

a~b if VieAda—osz=z2boz=2 iff F,=F,.
Clearly ~ is an equivalence relation. We will see that for each equivalence

class C, the structure C' = (CU {T},*,—, T) is a Wajsberg o-hoop.
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1. C' is totally ordered, because the order of A is inherited.

2. C' is closed by *. Indeed, if a,b € C (that is, a ~ b) we can check
that a * b ~ a in the following way:

Let z € F,,;. Then a*xb— z = z. Since a * b < a we have that

r<a—-zr<axb-or=1,

and z € F,. Now let £ € F, = F},. Then

axboz=bo(a>z)=b>oz=1,

and z € F,.,.

Besides, since £ * T = z for every x € C and T * T = T, we obtain
that C’ is closed by *.

3. C' is closed by —» We need the following results to obtain this
conclusion:

(a)

(b)

Ifa<b, then F, CF,,.

Ifre F,,thena—z=zrzandsoz<b—ozr<a—z=1zand
T €F,.

Ifa<band F, # F,, thena € F,,.

Let an element y € F},\ F,, that meansb > y=yandy<a—y.
Suppose a ¢ Fy. Then a < (@ = y) - y ¢ Fy, since F} is
downwards closed. But

bo(a-y)—=y)=(@@=y)->0b-2y)=(a=>y) >y

thus (a — y) - y € F, which is a contradiction that arises from
the hypothesis that a ¢ F,.

If a is not equivalent to b, then a x b = min(a, b).

Suppose a < b. Since a is not equivalent to b, we have that F, # Fy,
and by (3b) a € F,. Thus b*xa = b=* (b = a) = b A a, and since
A is a BL-chain, a A b = min(a,b). This happens analogously if
b<a.

Now let a,b € C. We intend to see that b —» a € C'.

e Ifb<a, thenb—oa=TeC(C.
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e Ifa<b sincea—>a=T # a, thena ¢ F, = F,. Therefore
a<b-—>aand bx(b—>a) =bAa=a#b Then we have
that b * (b = a) # min(b,b — a), and by (3c) b — a and b are
equivalent, and that means that b = a € C'.

On the other hand, if a € C, then T - a =a,a - T = T. Since
T —= T =T, we conclude that C' is closed under — .

Up to here, we deduce from (1), (2) and (3) that for each equivalence
class C, C’ is an o-hoop.

4. C'is irreducible. Suppose conversely that C' = A WA, for some non
trivial hoops A; and A,. Let z be in A; \ {T} and y be in A2\ {T}.
Then z,y € C, and this implies that F, = F,. From the definition
of ordinal sum we have that y =& £ = £ < T, and this means that
z € F,, which implies that z € F;. But this can not happen because
z =z =T # z. Then C' is irreducible.

5. C is a convex set. Assume that a,b € C and a < u < b. From (3a) we
have that F, C F, C F,. But since a ~ b, we have that F, = F, = F}.

Let I be the set of equivalence classes C. Since each equivalence class is
a convex set, the order of A induces an order on I, defined for C,D € I, by
C <X D iffeither C = D or for allz € C and for all y € D one has that z < y.
Thus I is a totally ordered set. We shall denote by C, the equivalence class
that contains the bottom element of A, and by C, the class that contains
the element T. Therefore we have that:

e For each C € I, C' is an irreducible o-hoop.

e Foreach C # D € I, C'ND’ = {T}, for equivalence classes are pairwise
disjoint.

e Cj has a least element, because A is a BL-chain.

Therefore we have that 7 = (C',C € I) is a tower of irreducible o-hoops.
Notice that if a € C and b € D with C < D and C # D, by (3c) we
have that b — a = a and by (3b) a * b = b. Then it is easy to see that
A, =B, C = A. [ |

Remark 2.1.6 It is clear that C] = {T}. Notice that, with the exception
of Cj, the previous Theorem offers a constructive method for decomposing
BL-chains into non trivial irreducible o-hoops.
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Theorem 2.1.7 FEach non trivial BL-chain admits a unique decomposition
into non trivial irreducible hoops.

Proof: Suppose that A = W;¢;C; = W,c;Dj, where C; and Dj are non trivial
irreducible o-hoops for each ¢ € I and j € J, I and J are totally ordered sets.
For each : € I and j € J, the possibilities are:

1. C;nD; ={T} or,
2. there exists a € C; N D; such that a < T.

We only need to see that if the second case happens, then C; = Dj;. Suppose
that C; # D;, and let a < T be in C; N D;. Without loss of generality we
can think that there exists b € C; \ D; and a < b. Since b ¢ D;, necessarily
b < T. Since b € A there exists k € J such that b € Dy and clearly j < k.
Therefore, from the definition of ordinal sum we obtain that b — a = a. But,
since a,b € C; and C; is irreducible, Theorem 2.1.3 asserts that b = T or
a = T. The contradiction arises from the hypothesis that C; # D;. [

Since irreducible o-hoops coincide with Wajsberg o-hoops, we shall in-
vestigate the structure of Wajsberg o-hoops. We have already noticed that
Wajsberg bounded o-hoops (irreducible bounded o-hoops) coincide with MV-
chains. A characterization of bounded and unbounded o-hoops is given in
(7, Section 1]. A hoop is cancellative if its basic monoid is cancellative.
Cancellative hoops form a variety characterized by the equation

y=1 - (y*1).

Cancellative o-hoops coincide with Wajsberg unbounded o-hoops (see [7]).

If G = (G, +,0) is an abelian o-group (totally ordered group), and we
define G- = {z € G : = < 0}, then P(G) = (G~,*,—,0) is a Wajsberg
o-hoop where the operations * and — are given by:

zxy=z+y, and z—o>y=0A(y— ).

In fact, if G is an abelian ¢-group (lattice ordered group), then P(G) =
(G, *,—,0) with x, = as defined above is a generalized BL-algebra. The
following result can be deduced from (3] (see also [6] and [19]).

Theorem 2.1.8 The following conditions are equivalent for a generalized
BL-algebra A :

1. A is a cancellative hoop,
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2. there is an ¢-group G such that A = P(G),

3. A isin the variety of generalized BL-algebras generated by P(Z), where
Z denotes the additive group of integers with the usual order.

Therefore we conclude:

Theorem 2.1.9 If A is an irreducible o-hoop then either A is an MV-chain
(in case A is bounded), or A is isomorphic to P(G) for some totally ordered
abelian group G (if A is unbounded).

Corollary 2.1.10 Each BL-chain is an ordinal sum of a family of MV-
chains and hoops of the form P(G) for a totally ordered abelian group G.

Let consider a BL-algebra A. We proved that there exists a unique tower
of non trivial irreducible o-hoops 7 = (C;,7 € I) such that A = W;;C;. If
0 denotes the first element in I then Cg is a bounded Wajsberg o-hoop, i.e,
Co is an MV-chain. Besides, B = W;c1\(0)Ci is an implicative filter of A.
Recall that a BL-algebra A is said to be simple provided it is non trivial
and the only proper implicative filter of A is the singleton {T}. Therefore a
BL-chain is simple iff it is a Wajsberg chain.

Since finite BL-chains are bounded, from Theorem 2.1.9 and Corollary
2.1.10 we have that finite BL-chains can be uniquely decomposed into an
ordinal sum of finite MV-chains. From [16, Corollary 3.5.4] we have that an
MV-chain is simple and finite iff it is isomorphic to an MV-chain of the form
L, for some integer n. This implies the following theorem:

Theorem 2.1.11 Fach finite BL-chain C is isomorphic to a chain of the
form
E!:‘f:OL"i

for an integer k and where each r; is an integer fori=10,1,...,k.

Remark 2.1.12 It is worth to notice that for each finite BL-chain C, the
number of idempotent elements different from T coincides with the number
of irreducible MV-chains that compose C, since they are the bottom element
of each of the non trivial irreducible parts.
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2.2 Decomposition into regular and dense el-
ements

There is another way of decomposing BL-chains that will be very useful
to our purpose. In order to use the results given in [21] about free algebras
in the following chapters, we shall decompose each BL-chain into two parts.
Given a BL-algebra A we can consider the set

DA)={ze€A:~z =1}

As indicated by [21], D(A) = (D(A),*,—, T) is a generalized BL-algebra.
The elements in D(A) will be called dense elements of A. Recall that
if MV(A) = {x € A: -~z =z}, then MV(A) = (MV(A),*,—,L,T)is
subalgebra of A which is an MV-algebra. The elements of MV (A) will be
called regular elements of A.

Theorem 2.2.1 For each BL-chain A we have that
A=MV(A)yD(A).

Proof: From Theorem 2.1.5 we now that there exists a tower 7 = (C; : i € I)
of irreducible o-hoops, such that A = W;c;C;. Let 0 be the least element of /
and let B = Wi\ (0) C;. Clearly B is a generalized BL-chain and A = CoWB.
Therefore it is enough to prove that MV (A) = Cy and that D(A) = B.

e D(A)=B.
It is clear that if x € B from the definition of ordinal sum -~z = 1,
then z € D(A). Therefore we have that B C D(A). Let suppose that
z € D(A)\ B. Obviously z # T. Since z € D(A), we have that
——z = T. On the other hand, since £ € Cy \ {T}, we obtain that
-~z = z because Cgy is an MV-chain. Hence we arrive to the contra-
diction z = T, and we conclude that B = D(A).

e MV(A)=C,
Co C MV(A), since Cy is an MV-chain. Suppose now that there exists
z € MV(A)\ Cy. Again we have that £ # T. Hence z € B, and
-~-z = T. But since z € MV (A), -~z = z. The contradiction z = T
arrives from the hypothesis MV (A) \ Cp # 0, hence we may conclude
that MV(A) = C,.

Indeed, the condition of A of being a BL-chain can be released in the
following way:
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Theorem 2.2.2 Let A be a BL-algebra such that MV (A) = L, for some
integer n. Then

A~ MV(A)wD(A) XL, yD(A).

Proof: In order to prove this result the following notation is introduced: given
z and y in a BL-algebra we define £ & y = —(—z * —~y). For each positive
integer k, the operations z* and k - z are inductively defined as follows:

e z! =1 and z¢*!' =zF x z,

el-z=z and (k+1)-z=(k-z)Dz.

Notice that ifz € L,\{T}, thenz" = 1, and ifz € L,\ {L}, thennz =T.
From Theorem 1.2.2, we can think of each non trivial BL-algebra A as a
subdirect product of a family (A;,7 € I) of non trivial BL-chains, that is,
there exists an embedding

e:A— H A;
i€l
such that m;(e(A)) = A; for each ¢ € I, where 7; denotes each projection.
We shall identify A with e(A). Then each element of A is a tuple x and
coordinate 2 is z; € A;. With this notation we have that for each x € A,
7i(x) = z;. We will proof the following items:

1. For eachi € I, MV (A,;) is isomorphic to L.

Since for each 7 € I, m; is a homomorphism and m;(MV (A)) C A;, we
have that m;(MV(A)) C MV (A;). Then m;(MV(A)) is a subalgebra
of MV(A;). On the other hand, given i € I, let z; € MV (A;). Then
--z; = x; and there exists an element x € A such that 7;(x) = z;. Tak-
ing y = ~—x € MV(A) we have that 7;(y) = z; and z; € m;(MV(A)).
Hence MV (A;) C m(MV(A)).

In conclusion MV(A;) = m;(MV(A)) = 7;(L,) and since L, is a
simple algebra and MV (A,;) is non trivial we have that MV (A;) 2 L,,.

2. Ifx€ A, thenx € MV(A)U D(A).
Let x € A and let y = n.(-x). If z; € L, \ {T}, then -z; € L, \ {1}
and y; = n.(-z;) = T. On the other hand if ~z; = L, then y; =
n.(-z;) = L. Now let z = (~—x)". If z; € L, \ {T}, then z; = L, but
if I = T, then Z; = T.
Suppose there exists x € A such that x ¢ MV(A) and x ¢ D(A). It
follows from Theorem 2.2.1 that foreach ¢ € I, A; = MV(A;)wD(A;),
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then there exist 4,5 € I, such that z; € MV (A;))\{T}=L,\{T} and
z; € D(A;)\ {T}.

Let y = n.(—x). Then y; = T, y; = L and yx € {L, T} for each
k € I'\ {i,j}. Now let z = (~—x)". We have that z; = T, z; = L and
2 € {L, T} for each k € I'\ {3, j}. It follows that y and z are elements
in the chain MV (A) = L,, which are not comparable, a contradiction.

3. Ifxe MV(A)\{T} andy € D(A), thenx < y.

The statement is clear if z; € MV (A;)\{T} foreveryi€ lorify, =T
for each ¢ € I. Otherwise, let S={i€J:2;, =T} #0. Sincex # T
we have that S is a proper subset of I. If y; = T for each ¢ € S, then
x < y.If not, let j € S be such that y; # T. Let z = x A'y. Since
operations are coordinatewise, z; € MV (A)\ {T} for each i € I\ S
and z; € D(A)\ {T}. Hence z ¢ MV (A) and z ¢ D(A) contradicting
the previous item.
4. Ifx€e MV(A)\{T} andy € D(A), theny 5> x=x and y *x = x.

Since -y = L we have that
yox=y-osx=y->3(x-ol)=x-2(y—->l)=

=ﬁx—)l=ﬁﬁx=x’

and
X=yAx=yx(y 2 X)=y=*X.

From the previous items it follows that

A2MV(A)wD(A) = L, w D(A).

Remark 2.2.3 Notice that if £ € D(A) then ~—~z = T, thus -~z = z = z,
and if z € MV(A) then -~z =z and -~z 5z =T.



Chapter 3

Characterization of varieties of
BL-algebras generated by
BL,,-chains.

3.1 Equational characterization of the sub-
varieties of BL-algebras generated by a
BL,-chain.

The purpose of the present section is to find an equational charac-
terization of certain subvarieties of BL generated by a single chain. Fol-
lowing the decomposition given in Theorem 2.2.1, the idea is to see how
the equations that characterize the subvariety of BL generated by a chain
A = MV(A)wD(A), depend on the ones that characterize the subvariety
of MYV generated by MV (A) and the ones that characterize the subvariety
of GBL generated by D(A). In order to do so we follow the ideas given by
Agliano and Montagna in [2]. It is worth to note that certain subvarieties of
BL-algebras are characterized in [29]. The main difference with the present
work is that I do not introduce new constants to the original algebraic system.

We shall denote by MYV, the subvariety of MV generated by L,. The
elements of MV, are called MV ,-algebras. The following result can be
found in [16].

Theorem 3.1.1 A finite MV-chain L,, belongs to the variety generated by
L, ¢f m—1 is a divisor of n — 1.

From Theorem 1.2.2 and the previous theorem we conclude that every
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MV -algebra is a subdirect product of a family of algebras (L, € I) where
m; — 1 divides n — 1 for each i € I.

We define a BL,-chain as a BL-chain which is an ordinal sum of the
MV ,-chain L, and a generalized BL-chain B. To continue with our work we

set a fixed BL,-chain
T, =L, wB.

We shall denote by V be the variety of BL-algebras generated by T, and by
W the subvariety of GBL generated by B.

Let MV! and W* denote the classes of totally ordered members of MV,
and W respectively. Following [2], we denote

MV, g W

the varicty generated by {A; W Ay : A € MV!, A, € W'}, From Theorem
3.1.1 we know that MV, = {L,, : m—1 divides n—1}. We shall characterize

equationally the variety
MV, gt W,

Let {e;,i € I} be the set of equations that define MYV, as a subvariety of
BL, and {d;,j € J} be the set of equations that define W as a subvariety of
GBL, i.e., an MV-algebra A, belongs to MV, iff the elements of A, satisfy
e; for each i € I, and a generalized BL-algebra A, belongs to W iff the
elements of A, satisfy equations d; for each j € J. For each i € I, let ¢;
be the equation that results from substituting -z for each variable z in
e;, and for each j € J, let d; the equation that results from substituting
-—z — z for each variable z in the equation d;. Let V' the variety of BL-
algebras characterized by the equations of BL-algebras plus the equations
{el,i e I} U{d},j € J}. From Remark 2.2.3, a BL-algebra A is in V' iff its
regular elements satisfy equations e; for each ¢ € I and its dense elements
satisfy equations d; for each j € J.

Lemma 3.1.2 V' = MV, &' W.

Proof: Let A = A; W A,, with A} € MV and A, € Wt For each 1 € A,
we have that -~z € A; and -~z — = € A,. Therefore A satisfies equations
e; for each ¢ € I and dj for each j € J, and MV, wW C V. Now let A
be a BL-chain in V', that is, a BL-chain that satisfies equations e},7 € I and
equations d’, j € J. From Theorem 2.2.1 we know that

A =MV(A)wD(A).

Since for each £ € MV (A) we have that -—z = z, and MV(A) is in
V', we obtain that for each ¢ € I, MV(A) satisfies the equation e;. Then
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MV(A) is a chain in MV,,. On the other hand, since for each z € D(A) we
have that ~—z — z = z, D(A) satisfies equation d; for each j € J. Then
D(A) is a generalized BL-chain in W. Then A € MV, w'W and by Theorem
1.2.2 we conclude that V' = MV, W' W. [

Following the arguments in the proofs of [2, Lemma 7.1 and Theorem
7.4], we shall sce that
V=MV, W.

To accomplish such aim, for each class of algebras K, let H(K), I(K), S(K),
P(K) and P,(K) denote the classes of homomorphic images, of isomorphic
images, of subalgebras, of direct products and of ultraproducts of algebras
from K respectively. If O; and O3 denote two operators we write O;0-
for their composition and O,(K,) W O2(K;) will denote the algebras in the
class {B,WB, : B; € O;(K;)}. From [2, Proposition 3.1, Proposition 3.2 and
Proposition 3.4] we obtain the following three results:

Lemma 3.1.3 Given two hoops A, and A,, the subalgebras of A, W A, are
of the form C; W C,y, where C, is a subalgebra (possibly trivial) of A, and
C, is a subalgebra (possibly trivial) of A,.

Lemma 3.1.4 Let Ay and Az be hoops. Then the set of homomorphic im-
ages of AW Ay is HA))U{A; b C:C e H(A,)}.

Lemma 3.1.5 The ultraproducts P, (L, wB) consist of algebras of the form
A, WA, where A, € IP,(L,) and A, € IP,(B).

Lemma 3.1.6 ISP,(L, w B) = I(SP,(L,) & SP,(B)).
Proof: From the previous lemmas we have that
ISP,(L, w B) C I(SP,(L,) w SP,(B)).

Let A € SP,(L,) and let C € SP,(B). Then there exists an embedding of
A into a power L] /U, and then A & C embeds into (L, & C)’/U. Now let
B’/V be the ultrapower of B in which C embeds. Then L, & C embeds into
(L, w B)’/V. Therefore we obtain that

A W C € ISP,(SP,(L, ¥ B)) C ISP, (L, ¥ B).

a

We recall that Jénsson’s Lemma (see [10]) asserts that, since V is a con-

gruence distributive variety, if C is a subdirectly irreducible algebra in V,
then C € HSP,(L, ¥ B) and HSP,(L, wB) C V.
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Theorem 3.1.7 V = MV, W W.

Proof: Clearly ¥V C MV, w!W. Let A be a subdirectly irreducible BL-algebra
in MV,, &t W. From Theorem 1.2.2, A is a BL-chain and from the proof of
Lemma 3.1.2, A = L, & C with s — 1 dividing n — 1 and some chain C € W.
Clearly C is subdirectly irreducible. Since GBL is a congruence distributive
variety by Jénsson’s Lemma, C € HSP,(B). Then, from Lemma 3.1.4 and
Lemma 3.1.6,

A € ISP,(L,) w HSP,(B) C HSP, (L, wB) C V.

Corollary 3.1.8 V=V

In conclusion we have that the variety V of BL-algebras generated by the
BL,-chain T, = L, w B is equationally characterized by the equations of
BL-algebras plus the equations that result from substituting ——z for each
variable z in the equations that characterize MV, and the equations that
result from substituting -—z — z for each variable z in the equations that
characterize W as subvariety of GBL.

3.2 [Equational characterization of subalgebras
of regular elements

Following the notation established in the previous chapter, for £ and y
in a BL-algebra we define z @ y = ~(—z * —y), and for each positive integer
k, the operations z* and k - = are inductively defined as follows:

e r' =z and zf*'=zFx 2z,

el-z=z and (k+1)-z=(k-2)®D=z.
The following three results can be found in [16, Chapters 3 and 8].

Theorem 3.2.1 Let A be an MV-algebra and n > 2 an integer. Then A

satisfies the equation
n-1

" =", (3.1)
if and only if A is a subdirect product of algebras Ly, with 2 < k < n.
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Theorem 3.2.2 An MV-algebra A belongs to MV, iff A satisfies the equa-
tion:

2=z (3.2)
An MV-algebra belongs to MV5 iff it satisfies the equation:
= 71? (3.3)

Theorem 3.2.3 For every integer n > 4 and every MV-algebra A, the fol-
lowing conditions are equivalent:

1. A satisfies the equations:

and
(p-zP Yt =n-2”, (3.5)

for every integer p = 2,...,n — 2 that does not divide n — 1;
2. Ae MV,

The following lemmas follow from the previous theorems and Corollary
3.1.8

Lemma 3.2.4 LetV be a variety generated by a BL,-chain. If C € V, every
z € C satisfies the following equations:

(—2)" Y = (=-z), (3.6)
and if n > 4, for every integer p = 2,...,n — 2 that does not divide n — 1:
(p- (2P )" =n - (~-z)” (3.7)

Lemma 3.2.5 Let n > 2 be an integer and let C be a BL-chain. Then
MV(C) belongs to the variety generated by L, iff C satisfies the following
equations:

(=)D = ()", (38
and if n > 4, for every integer p = 2,...,n — 2 that does not divide n — 1:
(P (mmz)P )" =n - (--z). (3.9)

Proof: Suppose the chain C satisfies equations (3.8) and (3.9). From the
fact that if € MV(C), then -~z = z, we deduce that the elements of the
MV-algebra MV (C) satisfy equations in Theorem 3.2.3 in case n > 4 or,
otherwise, the corresponding equation in Theorem 3.2.2.

Now let C be a BL-chain such that MV(C) is an MV,-algebra. From
Remark 2.2.3 we know that -—z € MV (C), thus equations (3.8) and (3.9)
are satisfied. [
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3.3 Counting dense elements

In the following lemma we characterize with an equation BL-chains that
have at most m dense elements.

Lemma 3.3.1 A BL-chain C satisfies the equation
(mZm = Tm) V (0 Zm = Tm) 2 (0T D T-1)) V- (3.10)

V(2 2 z2) o (o m)) =T,
iff D(C) has at most m elements.

Proof: Let C be a BL-chain such that D(C) has r < m elements. Let
Ti,...,Tm bein C. If z; € MV(C) , for some i = 1,2,...,m, (3.10) is
satisfied because =—z; — z; = T. Otherwise, necessarily z; € D(C) \ {T}
for every ¢ = 1, ..., m. This implies ~—x; = z; = x;. There are r—1 different
elements in D(C)\ {T}, and since r — 1 < m, there exist %, j such that j <,
z; < zj and (--z; = ;) = (0z; = z5) = 2; = z; = T, thus (3.10) is
satisfied.

Suppose conversely that C is a chain such that D(C) has 7 > m elements.
Let thembea; < ... < apm < @my1 < ... <@,y <a, =T. Fori <m, we
know that -—a; — a; = a; < T, then if j < i < m we have that

(m-a; = a;) & (e 2 aj) =a;, 2 a; <T.
Taking z; = a; in equation (3.10) we obtain that
(am V(am = @m-1) V... V(aa 2 a1)) < T,

because D(C) is totally ordered. Hence equation (3.10) is not satisfied by
all the elements of C. [

The next lemma is given in [2, Lemma 4.2] to characterize BL-chains that
have at most (k + 1) non trivial irreducible parts.

Lemma 3.3.2 Let A = Wl A; be a BL-chain, where every A; is a totally
ordered non trivial Wajsberg hoop, and consider for any k the equation:

k k+1

N@in =) 5 z) o \z=T (3.11)
1=0 i=0

Then the equation is satisfied in A if and only if n < k.
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3.4 Examples

As it has been proved, the variety generated by one BL,-chain can be
equationally characterized in terms of the equations that define MV, and
the equations that define W as a subvariety of GBL. Notice that the equa-
tions that characterize MYV, as a subvariety of MYV are explicitly shown in
theorems 3.2.2 and 3.2.3. But in order to apply the method presented in the
first section for a given BL,-chain L, wB, we should also know the equations
that characterize the subvariety of generalized BL-algebras generated by B.
These equations are often unknown. For finite BL-chains, we know that B
is a finite ordinal sum of finite MV-chains (see Theorem 2.1.11). But when a
finite MV-chain L,,, with m > 4 is considered as a generalized BL-algebra,
1 is no longer a constant, and equation (3.5) in Theorem 3.2.3 can not be
expressed in the language of basic hoops. Then, even in this simple case the
equations that characterize the variety of generalized BL-algebras generated
by the dense part of the BL,-chain are unknown.

Indeed the given method of characterizing subvarieties of BL was intro-
duced because of its theoretical interest in the description of free algebras in
the following chapter. For some cases we can explicitly show the equations
that characterize the subvariety of BL generated by one finite BL,-chain in
an alternative way.

To achieve such aim, we will firstly describe varieties of BL-algebras
generated by finite BL,-chains that satisfy some special conditions. Let
n,m,r and k be integers such that n > 2, m > 2, k+1 < r and
k.m —1)+1 > r. Let Vinmrr) be the variety of BL-algebras generated
by the BL-chains that are of the form

tﬂ:c=0]-""i ’

where 1y = n, (Zk ri)—(k—1)<rand2<r;,<mforeachi=1,...k.

i=1
Then the generating chains of Vinmr) can be decomposed into (k + 1) non
trivial irreducible parts, they have at most r dense elements and at least
(k + 1) dense elements, and each of the irreducible hoops that compose their

generalized BL-algebra of dense elements has at most m elements.

Proposition 3.4.1 A BL-algebra C is in V(n mr k) if and only if the following
tdentities hold for every z,z,,...,z, in C:

(~—z)" ! = (2", (3.12)
If n > 4, for every integer p=2,...,n — 2 that does not divide n — 1:

(P (22l ) =n (--z)?, (3.13)
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k k+1

N@m—2z)oz) o> \/z=T (3.14)
i=0 i=0
(-—z 2 z)™" ! = (--z = )™, (3.15)
(=2 = 2,) V ((m2r = 2,) = (07Tro1 2 1)) Voo (3.16)

.V ((ﬁ‘l.’lig — .’Bg) — (ﬂﬂ.’l?l a4 .’Bl)) = T,

Proof: Firstly, we see that each of the chains that generates the variety
satisfies equations (3.12), (3.13), (3.14), (3.15) and (3.16). Notice that if
A is one of such chains, then A is a BL,-chain and from Lemma 3.2.4, A
satisfies equations (3.12) and (3.13).

Let consider D(A). This generalized BL-chain is an ordinal sum of k
chains each one of the form L., with 2 < r; < m. Thus, from Theorem
3.2.1, for each £ € D(A), we have that (-—~z — )™ = z™ = ™! =
(-—z = z)™"!, and equation (3.15) is satisfied by all the elements in D(A).
Of course equation (3.15) is also satisfied by elements in MV (A), hence ,
from Theorem 2.2.1, the equation is satisfied by all the elements in A. Since
(ELI ri)— (k—=1) < r, Lemma 3.3.1 asserts that A satisfies equation (3.16).
Finally, by Lemma 3.3.2 equation (3.14) is satisfied.

Let A be a BL-chain satisfying (3.12), (3.13), (3.14), (3.15) and (3.16).
By Lemma 3.2.5 and Theorem 3.1.1 we know that equations (3.12) and (3.13)
imply that MV (A) = Ly, for d dividing n — 1. From equation (3.16) we
obtain that D(A) has at most r elements; from Theorem 2.2.1, the previous
results indicate that the chain A is finite. Equation (3.14) asserts that A
can be decomposed in at most k + 1 non trivial irreducible hoops. Since they
are finite, they must be all reducts of MV-chains, and from Theorem 3.2.1
and equation (3.15) we know that D(A) = w!_ L, where r; < m for every
1=1,...,p, forsome p < k

Using once more Theorem 2.2.1, we have

A=MV(A)uD(A) 2w’ L,

where ro — 1 dividesn—-1,r, <m foreach i =1,...,p, p<k and
(3P, 7)) —(p—1) < . It is easy to corroborate that A is a subalgebra of
one of the chains that generate the variety V(; k). From Theorem 1.2.2,
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each BL-algebra C satisfying (3.12), (3.13), (3.14), (3.15) and (3.16) is in
v(n,m,r,k)- [

The variety V(s 36,2) is the variety generated by LswLs& L3, Ls WLy W L3,
LswL3;wLy and LswL,; WLy, The variety V(s 35,2) is generated by the chains
L5 ] L2 ) L3, L5 W L3 ] L2 and L5 ) L2 ] L2. Since L5 ) L2 ) L2 is a subalgebra
of Ls w Ly, W L3 and of Ls W Ly W Lo, we can say that Vs 352) is the variety
generated by these two algebras.

Now we shall characterize equationally varieties of BL-algebras generated
by one specific BL,,-chain.

3.4.1 The ordinal sum of two finite MV-chains

We define the BL,-algebra L as the ordinal sum of L, and L,,, that is,
L? =L,wL, form > 2 and n > 2. Notice that the elements in L,, are
dense in L. To describe equationally the variety V generated by the chain
L7, we define the following operations:

oxr=1 o ™},

and inductively,

loz=zand (k+1)ox = ((kox) = 2™ ' xox) - z™ L.
Proposition 3.4.2 Let V be the variety of BL-algebras generated by L. A
BL-algebra C is in V if and only if the following identities hold for every

T,Ty,...,T;m inC:
(—mz)* ! = (-, (3.17)

if n > 4, for every integer p=2,...,n — 2 that does not divide n — 1:

(P (—z)P )" =n-(--z)”, (3.18)
1 2
/\((ZL’,‘.H - Ii) — .’Ei) - VI,' =T. (319)
=0 1=0
(=—z = )™ ! = (- o )™, (3.20)
if n > 4, for every integer p=2,...,m — 2 that does not divide m — 1:
(po(——z = z)" Y =mo (-—z — z)°. (3.21)
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(= Zm = 2m) V(T = Zm) = (0T 2 Toy)) Ve (3.22)

S V((zg o 10) o (0 o 1)) =T,

Proof: Firstly we see that L satisfies equations (3.17), (3.18), (3.19), (3.20),
(3.21) and (3.22). Since L} is a generator of the variety Vinmm,1), we
know that equations (3.17), (3.18), (3.19), (3.20) and (3.22) are satisfied.
Ifz e MV(LD) = L,, then ~—z — z = T and equation (3.21) is satisfied.
Otherwise, z € D(L™)\ {T} = L, \ {T} and -——z — z = z. This being
the case, (-—z — z)™ ! is the lower bound of L,,, and equation (3.21) is
equivalent to equation (3.5) in Theorem 3.2.3, therefore, it is also satisfied
by the clements of D(LT).

From equations (3.17), (3.18), (3.19), (3.20) and (3.22), we know that V
is a subvariety of Vi, m m,1). Remind from Proposition 3.4.1 that a chain A
is in this last variety, then it is of the form

Ld+l ¥ Ls

where d divides n — 1 and s < m, or A is a subalgebra of L,,. Now let A be
one of these BL-chains that also satisfies equation (3.21). If A is a subalgebra
of L, then A is a subalgebra of L. Otherwise, D(A)\ {T} # 0. Notice that
for every z € D(A)\{T},z™ ! = (-z o z)™ ! =(-~z > z)" =z™isan
idempotent element different from T and different from L. Since there is at
most one non-extreme idempotent element, then for every z,y € D(A)\{T}
we obtain that z™~! = y™~!. We shall denote by c to this element. From
its definition we have that ¢ < z for every £ € D(A). Consider the structure
D'(A) = (D(A), *, —,¢, T). If we consider c as a constant, D’(A) is a finite
MV-chain. From Theorem 3.2.3 we have that the MV-chain D’(A) is in the
variety generated by L,, iff every z € D’(A) satisfies the following equations:

m=1) = g™, (3.23)
For m > 4 and every integer p = 2,...,m — 2 that does not divide m — 1:
(pOzP )" =mo1”, (3.24)

where the operation ® is inductively defined by

l10z=zand (k+1)0z=-(-"(kOz)*-'1),
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and —' denotes the negation in D’(A). From the fact that for z € D(A),
-~z — T = z, equation (3.20) asserts that equation (3.23) is satisfied in
D(A). Now we will check equation (3.24). It is easy to see that k@ T =T
for every integer k and that T satisfies equation (3.24). If z € D'(A) \ {T},
since -’z =z = ¢ =z — ™! = oz, from equation (3.21) we have

POz )™ = (poz” N =mozP =m O zP.

Therefore, D’(A) is an MV-chain in the variety generated by L,, and
D(A) = L,,, as generalized BL-chain for some s that divides m — 1. In
conclusion, the BL-chains in V are of the form

Ly Whoy

and where d divides n — 1 and s must divide m — 1. It is easy to corroborate
that these are all subalgebras of L7, thus V is the variety of BL-algebras
generated by L. [ ]

3.4.2 The ordinal sum of a finite number of finite MV-
chains of the same length

In a similar manner as in Proposition 3.4.2 we can characterize equation-
ally varieties generated by chains whose dense part is an ordinal sum of &k
chains of the form L,,.

Let

lem,k) = tH?:O:I-""i
where 7o = nand r; = mforeach:=1,...,k,and let r = k(m - 1) + 1.
Once more we set

or =z — ™},

and inductively,

loz=zand (k+1)oz=((koz) > z™ ' *xo0z) - z™ .

Proposition 3.4.3 Let V be the variety of BL-algebras generated by L™,

A BL-algebra C is in V if and only if the following identities hold for every
z,Ty,...,%s in C:

(ﬂﬂx)n_l = (ﬂﬂI)n, (325)
if n > 4, for every integer p=2,...,n — 2 that does not divide n — 1:
(p- (~z)P" )" =n- (--z), (3.26)
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N(@in = z) 2 2) > \ 2 =T. (3.27)
(-—z = z2)™ ! = (-2 = )™, (3.28)

if n > 4, for every integer p=2,...,m — 2 that does not divide m — 1:

(po (-~z = )" )™ = mo (-1 = z)P. (3.29)

(~~z, = z,;) V ((~z, = 2,) 2 (0Tro) 2 Zro)) V- (3.30)

..V ((ﬁﬂ.’rg - :L‘Q) — (ﬁﬁxl — xl)) =T,

Proof: Verifying that L{™") satisfies equations (3.25), (3.26), (3.27), (3.28),
(3.29) and (3.30) is analogous to the proof of Proposition 3.4.2.

Again cquations (3.25), (3.26), (3.27), (3.28) and (3.30), asserts that V
is a subvariety of Vs mrk). So let A be one of the chains in Vi mrx), that
also satisfies equation (3.29). We know that MV (A) = L4, for some d that
divides n—1 and that D(A) = w?_,L,, where p < k and r; < m. We also know
that D(A) has at most r elements and that the number of dense idempotent
elements is p + 1, p of which correspond to the bottom element of each chain
L,,. We shall call these dense idempotents 0; for i = 1,...,p. Then, for each
z € D(A) there exists i = 1,...,p such that (--~z = 7)™ ! = z™"! = 0;.
Now if —; represents negation in L,, then for each z € L,, \ {T} we have that

=z 0 =1 1" =or.
Reminding once more that, if £ € D(A), then ~—~z — = = z, from Theorem
3.2.3, equations (3.28) and (3.29) asserts that L,, is in the variety generated
by L,., and Theorem 3.1.1 asserts that r; — 1 is a divisor of m — 1. Then the
chains that in V are of the form

tH?:O:L"i
where 79 = d + 1 for some d that divides n— 1, p < k and r; — 1 divides
m — 1 for each ¢ = 1,...,p, that means they are subalgebras of LS;m'k) and
the theorem follows. ]
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3.4.3 The ordinal sum of a finite MV-chain and a finite
Heyting chain

Recall that a linear Heyting algebra H = (H,*,—, L, T) is a BL-
algebra in which A = %, i.e., it satisfies the equation z * y = z A y. Clearly,
each element r of H,, is an idempotent element, since

P=z+xz=zANz =1

This chain can be decomposed to obtain : H,,,, = W7 L,. Hence Hypy1\{L}
is the universe of a generalized BL-chain isomorphic to D(H,,,,). Notice
from Remark 2.1.12 that if A is a finite BL-chain such that for each z € A,
z is idempotent, then A = W, L, for some integer m. Hence A is a finite
Heyting chain.

Given m > 2 and n > 2, we define the BL-algebra T as the ordinal sum
of the MV-chain L, and the Heyting chain Hy,, that is , T = L, & Hp,.
The subalgebras of T} are of the form T}, , if d divides n — 1 and j < m.

Proposition 3.4.4 Let V be the variety of BL-algebras generated by T7'. A
BL-algebra C is in V if and only if it satisfies the following identities for
every T,Ty, Ta, ..., T, n C:

(~—z)*D = (~-z)™. (3.31)

If n > 4, for every integer p = 2,...,n — 2 that does not divide n — 1:
(p- (—mz) ) =n- (--2)”, (3.32)
(v Zm = Zm) V(T = Tpn) = (0 Tme] = Tnog)) V- - (3.33)

.V ((_‘ﬂIQ e d 1.'2) — (ﬁ_‘xl — Il)) = T7

(~z > 1) =z o1 (3.34)

Proof: As in the proof of Proposition 3.4.1, it is easy to verify that T satisfy
these equations. Let now A be a chain that satisfy equations (3.31), (3.32),
(3.33) and (3.34). Lemma 3.2.5 asserts that MV (A) = Lgy, for some d that
divides n — 1 and Lemma 3.3.1 indicates that D(A) has at most m elements.
By equation (3.34) dense elements are all idempotents, thus D(A) = H; for
some j < m. Clearly, A is a subalgebra of the generator T7' and the result
follows from Theorem 1.2.2. [

Remark 3.4.5 In [2] the equations that characterize certain subvarieties of
BL generated by a BL-chain which is a finite ordinal sum of Wajsberg hoops
are given. But such equations also depend on the equations that characterize
certain subvarieties of Wajsberg hoops that aren’t explicitly shown.
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Chapter 4

Free algebras in varieties of
BL-algebras generated by a
BL,,-chain.

4.1 Introduction

Since the propositions under logical equivalence form a free BL-algebra,
descriptions of free algebras are important from the point of view of algebra
as well as from the point of view of logic. In [21], it is shown that frce algebras
in varieties of BL-algebras can be described in terms of free MV-algebras and
free algebras in certain varieties of hoops. The aim of this chapter is to apply
the methods of [21] to obtain a description of the free algebras in varieties
of BL-algebras generated by one BL,-chain L,, & B. These free algebras are
going to be described in terms of weak boolean products of BL-algebras
that are ordinal sums of subalgebras of L, and free algebras in the variety
of basic hoops generated by B. The boolean products are taken over the
Stone spaces of the boolean algebras of idempotent elements of free algebras
in MV,,, which are described in Appendix A. An important role is played
by the axiomatization of the variety generated by L, W B in terms of the
equations defining the variety generated by L, and the variety generated by
B (Corollary 3.1.8).
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4.2 Characterization of the free algebra as a
weak boolean product

Recall that an algebra A in a variety K is said to be free over a set YV
if and only if for every algebra C in K and every function f: Y — C, f can
be uniquely extended to a homomorphism of A into C. Given a variety K
of algebras, we denote by Freex(X) the free algebra in K over X.

Let T, = L,,wB be a BL,-chain and let again V be the variety generated
by T,. We shall describe Freey(X), the frce BL-algebra in V over a set X

of generators.

Recall that a weak boolean product of a family (A4,,y € Y') of algebras
over a boolean space Y is a subdirect product A of the given family such
that the following conditions hold:

o ifa,be€ A, then [a=bl={y €Y :a, =b,} is open,
e ifa,b € A and Z is a clopen in X, then a|z Ub|x\z € A.

An algebra A is representable as a weak boolean product when it is iso-
morphic to a weak boolean product. Since the variety BL is congruence dis-
tributive, it has the boolean Factor Congruence property. Therefore each non
trivial BL-algebra can be represented as a weak boolean product of directly
indecomposable BL-algebras (see [5] and [24]). The explicit representation
of each BL-algebra as a weak boolean product of directly indecomposable
algebras is given in [20] by the following lemma:

Lemma 4.2.1 Let A be a BL-algebra and let Sp B(A) be the boolean space
of ultrafilters of the boolean algebra B(A). The correspondence:

a > (a/{U))vesp B(A)
gives a representation of A as a weak boolean product of the family
(A/(U)): U € Sp B(A)

over the boolean space Sp B(A). This representation is called the Pierce
representation. Any other representation of A as a weak boolean product
of a family of directly indecomposable algebras is equivalent to the Pierce
representation.

Therefore, to describe Freey,(X) we need to describe B(Freey (X)) and
the quotients Freey(X)/(U) for each U € Sp B(Freey(X)). In the next
section we will obtain a characterization of the boolean algebra B(Freey,(X)).
Once this aim is achieved, we shall consider the quotients Freey(X)/(U).
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4.3 The boolean subalgebra of the free BL-
algebra

The next two results can be found in [21].

Theorem 4.3.1 For each BL-algebra A, B(A) = B(MV(A)).

Theorem 4.3.2 For each variety K of BL-algebras and each set X one has
that:
MYV (Freex(X)) = Freepynx(——X).

Theorem 4.3.3 VN MYV is the variety MV,,.

Proof: Since MV (T,) = L, is in VN MYV, we have that MV, C VN MV.
On the other hand, let A be an MV-algebra in ¥V N MV. Suppose A is not
in MV,,. Then there exists an equation e(z,,...,z,) = T that is satisfied by

L, and it is not satisfied by A, that is, there exist elements a,,...,ap in A
such that e(ay, ..., ap) # T. Since (——by,...,~=b,) isin (L,)?, for each tuple
(b1, ...,by) in (T,,)?, the equation €'(z,,...,z,) = e(~zy,...,mz,) =T is

satisfied in V. Since A € V N MYV, it follows that
T=¢é(ay,...,ap) =e(-may,..., may) =e(ar,...,a) # T,
a contradiction. Hence MV, = VN MV. ]
From these results we obtain:

Theorem 4.3.4

B(Freey (X)) = B(Freepy, (—X)).

Boolean elements of Freeqy, (—-—X) depend on some operators
0'? : FreeMv,, (—'—'X) - B(FreeMvn(—-—-X)), t=1,...,n—1,

that can be defined on each MV, -algebra. Such operators provide each MV -
algebra with an n-valued Moisil algebra structure. Notions concerning these
algebras are study in Appendix A. In Theorem A.0.11, it is proved that for
a set Z of generators, B(Freexqy, (Z)) is the free boolean algebra generated
by the poset Y = {oP(z) : z € Z,i=1,...,n — 1}. From Theorem 4.3.4 we
obtain:
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Corollary 4.3.5 B(Freey (X)) is the free boolean algebra generated by the
poset Y = {oP(-—z):z€ X,i=1,...,n-1}.

Remark 4.3.6 Notice that if n = 2, i.e, the variety considered V is gener-
ated by a BL,-chain, then ¢?(z) = z for each z € X. Therefore, in this case,
Y = {--z :z € X}, and the cardinality of ¥ equals the cardinality of X. It
follows that B(Freey (X)) is the free boolean algebra over the set Y.

Our next aim is to describe Freey(X)/(U) for each ultrafilter U in the free
boolean algebra generated by ¥ = {oF(-~z) : z € X,i =1,...,n — 1},
where (U) is the implicative filter generated by the boolean filter U. The
plan is to prove that MV (Freey(X)/(U)) is a subalgebra of L, and then,
using Theorem 2.2.2, decompose each quotient Freey(X)/(U) into an ordinal
sum.

4.4 Regular elements of the indecomposable
factors

Theorem 4.4.1 Let A be a BL-algebra and U € Sp B(A). Then
MV (A/(U)) 2 MV (A)/((U)NnMV(A)).

Proof: Let V = (U)yNMV(A) and let f : MV(A)/V — MV(A/(U)) be
given by

f(a/V) = a/(U),
for each a € MV(A). It is easy to see that f is a homomorphism into
MV(A/(U)). Besides, we have that:

1. fis tnjective
Let a/(U) = b/{U), with a,b € MV(A). From Lemma 1.4.2 we know
that there exists u € U such that a Au = b A u. Since U C MV (A),
then u € V. From the fact that u is boolean (see [20, Lemma 2.2]), we
have that: a*xu =aAu=bAu <}, thus u < a - b and similarly
#© <b— a. Then a —» band b — a are in V and this means that
a/V =b/V.

2. fis surjective
Let a/(U) € MV (A/(U)). Then

a/(U) = ~~(a/{U)) = ~—a/(V),
and since ~—a € MV (A) we obtain that f(-—a/V) = a/(U). (]
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By Theorem 4.34, if U € Sp B(Freey(X)), then U is an ultrafilter in
B(Freenq, (m—X)). Moreover,

(U) N MV (Freey(X)) = (U) N Freepy, (—-—X)

is the Stone ultrafilter of Freepqy, (——X) generated by U. From [16, Chapter
6.3, we have that (U)NFreexqy, (-—X) is a maximal filter of Freeqy, (== X).
Since the only simple algebras in MYV),, are the subalgebras of the chain L,
(see [16, Corollary 3.5.4]), from Theorem 4.4.1 it follows that:

Theorem 4.4.2

14

MYV (Freey(X)/(U))
with s — 1 dividing n — 1.

L,

From Theorems 2.2.2 and 4.4.2 we obtain:

Theorem 4.4.3 For each U € Sp B(Freey (X)) we have that
Freey(X)/(U) = L, w D(Freey(X)/(U))

for some s — 1 diwviding n — 1.

4.5 Dense elements of the indecomposable fac-
tors

In order to obtain a complete description of Freey(X) there is only left
to find a description of D(Freey(X)/(U)) for each U € Sp B(Freey(X)).
This last description will depend on the characterization of the variety W of
generalized BL-algebras generated by the generalized BL-chain B. We recall
from Corollary 3.1.8 that V can be characterized in terms of the equations
that define MV, and W.

Theorem 4.5.1 The variety W of generalized BL-algebras generated by B
consist of the generalized BL-algebras C such that L, w C belongs to V.

Proof: Given C € W, for each z € L, W C, we have that ——z satisfies the
equations that defines MYV),, as a subvariety of MV and —-—z — z satisfies
the equations that define W as a subvariety of GBL. From Corollary 3.1.8, we
deduce that L, W C € V. On the other hand, if C is a generalized BL-algebra
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such that L, w C € V, since -~z — z = z for each z € C, again Corollary
3.1.8 asserts that the elements of C satisfy the equations that define W.
Hence C is in W. [ |

Every upwards closed subset of the poset
Y={o}M-z):z€X,i=1,...,n-1}

is in correspondence with an increasing function from Y onto 2, the two el-
ements boolean algebra. From the definition of free algebra over a poset we
know that every increasing function from Y can be extended to a homomor-
phism from B(Freey (X)) into 2. We know that the homomorphisms from a
boolean algebra into the two elements boolean algebra are in bijective corre-
spondence with the ultrafilters of the boolean algebra. Then we can conclude
that the ultrafilters of B(Freey (X)) are in bijective correspondence with the
upwards closed subsets of Y. This is summarized in the following lemma:

Lemma 4.5.2 Consider the poset Y = {oF(-—z):z€ X,i=1,...,n— 1}.
The correspondence that assigns to each upwards closed subset S C Y the
boolean filter Us generated by the set

{0} (==2) : 0} (=—z) € S}U {=0}(~-2) : 0} (-—2) ¢ S},

defines a bijection from the set of upwards closed subsets of Y onto the ul-
trafilters of B(Freey (X)).

Taking this fact into account, we shall refer to each member of B(Freey (X))
by Us making explicit reference to the upwards closed subset S that corre-
spond to it.

Lemma 4.5.3 Let Us € Sp B(Freey(X)) and let Fgs be the subalge-
bra of the generalized BL-algebra D(Freey(X)/(Us)) generated by the set
Xs= {z/(Us):z € X,z € (Us)}. Then

Fs = D(Freey(X)/(Us)).

Proof: Freey(X)/(Us) is the BL-algebra generated by the set Zs = {z/(Us) :
z € X}. From Theorem 4.4.3 there exists an integer m such that

Fl‘eev(X)/(Us) =L,W¥ D(Fl‘eev(X)/(Us))

Hence each element of Zs is either in L, \ {T} or it is in D(Freey(X)/(Us)).

If Xg¢ =0, then Fs = D(Freey(X)/(Us)) = {T}. So let suppose Xs # 0.
Let y € D(Freey(X)/(Us)). Recalling that Fg is the generalized BL-algebra
generated by X, we will check that y is in Fs. Since y € Freey(X)/(Us), y
is given by a term on the elements z/(Us) € Zs. Making induction on the
complexity of y we have:
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o If y is a generator, ie, y = z/(Us) for some z/(Us) € Zs, since
y € D(Freey(X)/(Us)), we have that T = -y = —-~(z/(Us)) =
(——z)/(Us). This happens only if --z € X5.

e Suppose that for each element z € D(Freey(X)/(Us)) of complexity
less than k, z can be written as a term in the variables z/(Us) in
Xs. Let y € D(Freey(X)/(Us)) be an element of complexity k. The
possible cases are the following:

1. y = a — b for some elements a, b of complexity < k. In this case
the possibilities are:

(a) @ < b in which case a - b = T and y can be written as
z/{Us) = z/{Us) for any z/(Us) € Xs, thus y € Fgs,

(b) @ > b. Since y = a — b is in D(Freey(X)/(Us)), the only
possibility is that a,b € D(Freey(X)/(Us)) and by inductive
hypothesis y is in F.

2. y = a x b for some clements a, b of complexity < k. In this case
necessarily a,b € D(Freey(X)/(Us)) and by inductive hypothesis

Yy is in Fs.

Then for each y € D(Freey(X)/(Us)), y can be written as a term on the
elements of X, therefore y € Fs and we conclude that

Fs = D(Freey(X)/(Us)).

With the notation of the previous lemma, we have:

Theorem 4.5.4 For each Us in Sp B(Freey (X)),
D(Freey(X)/(Us)) = Freew(Xs).

Proof: As a consequence of Theorem A.0.4 and Lemma 4.5.2 we have that
-z € (Us) iff o} (——-z) € Siff oP(—-—z) € Sfori=1,...,n— 1. Hence if
-z ¢ (Us) there is a j such that o} (-—z) ¢ S. We define for each z € X,

. 1 if -z € (Us),
J2 = U max{i € {1,...,n— 1} : 6™(~—z) € S} otherwise.

Let C € W and let C' = L, W C. From Theorem 4.5.1, C’ is in V. Given
a function f: Xs — C, define f : X — C' by the prescriptions:

{f(ﬂ_ﬂ/(Us)) if ~—z e (Us),

n—je-l otherwise.

n-1

f(z) =
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There is a unique homomorphism
h : Freey(X) —» C'

such that h(z) = f(z) for each z € X. We have that Us C R=Y({T}). Indeed,
if -~z € (Us), then h(o}(~~1)) = o (-~(h(z)) = of(-—f(2/(Us))) =
o™(T)=T. If ~—z ¢ (Us), then

1
_n—J-1 M—_l)={l if i < Js,

h(o}'(=—z)) = o} (- n—1 T otherwise.

1

) = ol

n-—1
Hence there is a unique homomorphism
h, : Freey(X)/(Us) = C'

such that hy(a/(Us)) = h(a) for all a € Freey(X). By Lemma 4.5.3,
D(Freey(X)/(Us)) is the algebra generated by Xgs. Then the restriction
h of hy to D(Freey,(X)/(Us)) is a homomorphism

h : D(Freey(X)/(Us)) = C,
and for each z such that =~z € (Us), we have that
h(z/(Us)) = hi(z/(Us)) = k() = f(&) = f(a/(Us)).
Therefore we conclude that D(Freey(X)/(Us)) = Freew(Xs). .

As a conclusion of all the results developed in the present chapter we
have:

Theorem 4.5.5 The free BL-algebra Freey (X ) can be represented as a weak
boolean product of the family

(Freey(X)/(Us)) : Us € Sp B(Freey(X))

where B(Freey (X)) is the free boolean algebra over the poset Y = {o}(——z) :
z € X,i=1,...,n— 1}. Moreover, for each Us € Sp B(Freey (X)) there
erists m > 2 such that m — 1 divides n — 1 and

Freey(X)/(Us) = L, & Freepw(Xs)

where Xg = {x/(Us) : -~z € (Us)} and W is the variety of generalized
BL-algebras generated by B.
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4.6 Free PL-algebras

We have already noticed in chapter 2, that if G is a lattice-ordered
abelian group (¢-group) and G~ = {z € G : £ < 0} is its negative cone, then
P(G) = (G~, *,—,0) is a generalized BL-algebra, where

zxy=z+y and z—oy=0A(y—z).

From Theorem 2.1.8 we know that, if Z denotes the group of integers, then
P(Z) generates variety of cancellative hoops. So let consider W, the vari-
ety of generalized BL-algebras generated by P(Z). In [18] a description of
Freey(X) is given for any set X of free generators. Therefore we can have
a complete description of free algebras in varieties of BL-algebras generated

by the ordinal sum
PL,=L,wP(Z).

Indeed, if we denote by PL, the variety of BL-algebras generated by PL,,
from Theorem 4.5.5 we obtain that Freep., (X) is a weak boolean product

of algebras of the form
L; W Freep(X’)

with s — 1 dividing n — 1 and some set X' of cardinality less or equal than X.
Therefore, in the present case, the BL-algebra Freep., (X) can be completely
described as a weak boolean product of ordinal sums of two known algebras.

From [19, Theorem 2.8] PL, is the variety of PL-algebras PL and by
Remark 4.3.6, Sp B(Freep.(X)) is the Cantor space 2!X!. Therefore Theorem
4.5.5 asserts that the free PL-algebra over a set X can be described as a weak
boolean product over the Cantor space 2!X! of algebras of the form

Lz W Freew (X’)

for some set X' of cardinality less or equal than X.

Given a BL-algebra A, the radical R(A) of A is the intersection of all
maximal implicative filters of A. We have that r(A) = (R(A),x,—,T)isa
generalized BL-algebra. Let

PL ={R:R=r(A) for some A € PL}.

PL" is a variety of generalized BL-algebras. In [20] a description of Freep.(X)
is given. From Example 4.7 and Theorem 5.7 in the mentioned paper we ob-
tained that Freep.(X) is the weak boolean product of the family

(L, W Freep.-(S): S C 2IX|)
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over the Cantor space 2!*|. In order to check that our description and the
one given in [20] coincide there is only left to check that PL™ = W. Recalling
that PL = MV, w' W, from Theorem 4.5.1 we have that W consist of the
generalized BL-algebras C such that L,w C € PL.

Theorem 4.6.1 PL" = W.

Proof: Let C € PL". Then there exists a BL-algebra A € PL such that
r(A) = C. It is not hard to check that L, w C is a subalgebra of A& C, thus
L, w C is in PL. It follows that C € W. On the other hand, let C € W.
Then L, w Cisin PL, and C € PL". [}

4.7 Free MV ,-algebras

We know that MYV, the variety of MV ,-algebras is the subvariety of BL-
algebras generated by the finite MV-chain L,,. Of course L,, is a BL,-chain,
because L,, = L, W T, where T denotes the trivial generalized BL-algebra
of one element. Then Theorem 4.5.5 asserts that Freepy, (X) is a weak
boolean product of subalgebras of L, over the boolean space of the free
boolean algebra generated by the poset Y = {¢7(z) :z € X,i=1,...,n—1}.



Chapter 5

Finitely generated free algebras
in varieties of BL-algebras
generated by a BL,-chain.

5.1 Comparison with the general case

In the previous chapter we described free algebras in varieties of BL-
algebras generated by a BL,-chain. These algebras were taken over an ar-
bitrary set of generators X. Notice that when the set X of generators is
finite, of cardinality k, then Y = {o7*(——z) : 2 € X,i=1,...,n ~ 1} is the
cardinal sum of k chains of length n — 1. Therefore the number of upwards
closed subsets of Y is n*. Since weak boolean products over discrete finite
spaces coincide with direct products, Theorem 4.5.5 asserts that Freey(X)
is a direct product of n* BL-algebras of the form L, & Freey (X'), with s — 1
dividing n — 1 and X' a set of cardinality less or equal than k.

When the set X is finite, the boolean elements of Freey(X) form a finite
boolean algebra. Then it is possible to apply Theorem 1.5.3 to describe
the free algebras in terms of directly indecomposable algebras. Indeed, this
Theorem also asserts that the free algebra over a set of cardinality k£ it is
a direct product of n* algebras obtained by taking the quotients by the
implicative filters generated by the atoms of B(Freey(.X)). In this chapter,
we shall characterize the atoms of the finitely generated free algebra in terms
of functions and then, based on the knowledge of the atoms, we shall describe
the initial segments of the decomposition. Of course the description we shall
present coincide with the one given in the previous chapter, but it will provide
more information about the indecomposable factors Freey(X)/(U).
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5.2 Alternative description of the finitely gen-
erated free algebras

Let T, and V be as in the previous chapter. For every integer k, we will
denote by Freey (k) the free algebra with k generators in V.

Theorem 5.2.1 ([22, Chapter IV, Theorem 3.13]) If a variety K of algebras
is generated by an algebra A, then Freex (k) is isomorphic to the subalgebra
of AA generated by the projection functions ma : A¥F - A, a € k.

Then Freey (k) is the subalgebra of T, generated by the projection
functions. We shall refer to each element of Freey (k) with a function

f: (Ta)* = T,

and we will denote by x = (z,,...,zx) each k-tuple in the domain of f.

Recall from Theorem 4.3.4 that B(Freey(k)) = B(Freemy, (k)). From
Theorem 5.2.1 we know that Freeaqy, (k) is a subalgebra of LU, thus
B(Freeq, (k)) is a finite algebra. Then Theorem 1.5.3 can be applied to
describe Freey (k) as a direct product of indecomposable algebras. To obtain
a complete description of each indecomposable factor we will study the atoms
of B(Freey(k)). For the sake of readability we shall denote T by 1 and L
by 0.

Remark 5.2.2 As it is well known, f € Freey(k) iff f is the interpretation
of a BL-term. Then, if D is a subalgebra of T, and f € Freey(k), we have
that f(x) € D for every x € D*.

Lemma 5.2.3 Let f € Freey(k) and x = (11, Z3,..., 1) in (T,)*. Suppose
that there exists i such that z; = ¢ € D(T,). Let p € D(T,) and let x' =

(x),75,...,z}) be a k-tuple such that
1:/_ — Ij Zf] '_)é i:
J p ifj=1.

For each y € L, \ {1} one has that: f(x) =y iff f(x') =y.
Proof: According to Theorem 5.2.1 it is enough to prove that the set
P={feTl :Wye L\ {1}, f(x) =y iff /(') =y}

k
is a subalgebra of Ta" that contains the projection functions. Indeed, we
have:
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1. Projections functions are trivially in P.

2. If f,ge P, then fxge€ P.
Suppose that (f *g)(x) = y, for some y € L,\{1}. This is only possible
if one of the following cases happens:

(a) f(x) =y and g(x) € D(T,). In view of the fact that f and g are
in P, f(x') =y and g(x') € D(T,). Consequently (f * g)(x') =y
as we wanted.

(b) g(x) =y and f(x) € D(T,), is analogous to the case before.

(c) f(x) = z and g(x) = 2’ for 2,2’ € L, \ {1} such that z* 2’ =y.
Then £(x) = z, g(x') = 2’ and (f ¥ g)(x) = v.

Therefore (f * g)(x) = y implies (f * g)(x’) = y. By symmetry,
(f * g)(x') = y implies (f x g)(x) = y, so we conclude that
(f xg)(x) =y iff (fxg)(x) = y.

3. If f,ge P, then f » g€ P.

Suppose that (f — g)(x) =y, for y € L, \ {1}. This is only possible if
f(x) > g(x) and if one of the following conditions is satisfied:
(a) f(x) € D(T,) and g(x) =y. Then g(x') =y, f(x') € D(T,) and
(f = 9)(x) =y.
(b) f(x)and g(x) € L,\ {1} and y = 1— f(x) + g(x). If this happens

we have f(x') = f(x), g(x') = g(x) and y =1 - f(x') + g(x'). It
follows that (f — g)(x') = .

Interchanging x by x’ in the above proof, the other implication is ob-
tained. Therefore

(f=9)x)=yiff (f 2 9)(x) =y

which concludes the proof of the theorem.

Remark 5.2.4 Since Freey(k) is a subalgebra of Tzﬁ, an element f in
Freey(k) is boolean iff f(z) € {0, 1} for each z € (T,)*.
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Corollary 5.2.5 Let f € B(Freey(k)) and x = (),Z2,...,zx) in (Tn)*.
Suppose that there exists i such that t; = ¢ € D(T,). Let p € D(T,) and let
x' = (z},%5,...,1)) be a k-tuple such that

"”i‘{pJ if j=1i.
Then f(x) =1 iff f(x') =

Proof: Since f € B(Freey(k)), from Remark 5.2.4 we know that for every
z € (T,)* either f(z) = 0 or f(z) = 1. It is straightforward from Lemma

5.2.3 that f(x) = 0iff f(x') = 0. Then f(x) =1iff f(x') = L. (]

Our next aim is to characterize the atoms of B(Freey(k)). For that
purpose, for each y € L,, we will define a function

hy: Ty — T,

and we shall show that every atom in B(Freey(k)) is given by

k
9(x) = [ ] hyi(=:)
i=1
where y; € L, foreach i =1,2,...,k and ]_[:;l hy, (z;) is inductively defined
as follows:

1 k+1 k
H yl ‘Tl and th, 1:1 = (H h’yi(xi)) * h’yk+l($k+l)'
=1 i=1 i=1
Foreachi=1,2,...,n—2and =0,1,...n—1,let J; : L, = {0,1} be
as in Definition A.0.7, that is,
[0 A
W) = {1 if i = j.
From A.0.7 we know that J; is the interpretation of an MV-term. Since
MV-terms are BL-terms, J; can be extended to T,, and its extension J; :

T, — T, is the interpretation of a BL-term on one variable.
We define h, for each y in L, in the following way:

(—z)"! ify= 0
hy(z) = { ~((z V)" x Ji(z) ify=25for0<i<n-1,
- (z""!) ify = 1

Then we have
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o for0<i<n-—-1,

1 1f$—n41,
hos (I)—{O if z # L.

1 ifz € D(T,)
h — n/
1(z) { 0 otherwise.

Theorem 5.2.6 Every atom g in B(Freey(k)) has the form

yl 1:1

u'za-

where y; € L, for eachi=1,2,...,k.

Proof: Let g(x ]_[1 y by, (z;) with y; € L,. We will verify that g is an atom
of B(Freey(k )) Observe that each hy is an interpretation of a BL-term on
T,, thus g € Freey(k) and, by Remark 5.2.4, g is a boolean element. Clearly
g > 0. Let f € B(Freey(k)) and f < g. It remains to see that f =0 (i.e., f
is the zero function). Considering the form of g, the possibilities are:

l.y; #1forall i =1,2,...,k. Lettingy = (y1,y2,.-.,¥x) we have that

_J1 ifx=y,

9(x) {0 otherwise.

Therefore f(x) =0 if x # y and f(y) < 1. By Remark 5.2.4, necessar-
ily f(y) = 0 that implies f = 0.

2.y, = 1 for some ¢ = 1,2,...,k. This being the case, let p be the
cardinality of the set P = {i: y; = 1} and a the cardinality of D(T,).
We may infer that there are a” k-tuples x, (1 < s < aP) such that

o )2{1 if z = x, for some 1 < s < o?,
0 otherwise.

Indeed, if y; = 1, then hy(a;) = 1 for each a; € D(T,), 1 <j <.
Thus for each 7 such that y; = 1, there are « different values z; where
hy(z;) = 1. Since there are p of these cases, the number of k-tuples
where the atom g takes the value 1 is o”. Notice that two k-tuples x,
and x; differ in coordinate ¢ only if ¢ € P.

The only possibility for f < g is that f(z) = 0 for each z # x,,
1 < s < o” and that f(xs) = 0 for some 1 < s < aP. In this case, by
Lemma 5.2.3, f(xs) = 0 for every 1 < s < @”, thus f = 0.
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Thus we have proved that for each k-tuple y = (y1,...,Yx) € Ln there exists
an atom gy such that gy = Hle hy,. We shall see that these are the only
atoms of B(Freey(k)). Suppose g € B(Freey(k)) and g is an atom. From
Remark 5.2.4 we know that g(z) € {0,1} for each z € (T,)* and that g > 0.
Hence there must exists y = (y1,...,¥) € (T)* such that g(y) =1 and one
of the following cases happens:

e Every coordinate of y is in L, \ {1}. In this case g > gy. Since g, and
g are atoms the only possibility is that g = gy.

e There are 0 < p < k coordinates ji,...J, such that y; ¢ L, \ {1}
for each 7 = jy,...Jp. Then y; € D(T,) for each i = j),...jp. From
Corollary 5.2.5 we know that g(x) = 1 for each x = (z,,...,zx) such
that

_Ju fi#Fjforalr=1,...,p,
Ti=1gq ifi=j, forsomer=1,...,p, ¢- € D(T,) and q # Yj.-

Then g > g, where z is the k-tuple given by

_Juy fiFEgforallr=1,...,k,
=11 if i =4, forsomer=1,...,k.

Once more we must have that g = g,.
Therefore we can conclude that all the atoms of B(Freey (k)) are of the form

gy = [12, hy, for some y € (Ly)*. "

Remark 5.2.7 We recall that Theorem 4.3.4 asserts that B(Freey(k)) is
B(Freepqy, (k)). It is easy to check in [16, Theorem 8.6.1] that the number
of atoms of B(Freeay, (k)) is n¥, hence this could be an alternative way to
prove that the functions g = ]_[:;l hy, with y; € L, are the only atoms of
B(Freev(k))

Thus we have defined a bijection between (L,)* and the set of atoms of
B(Freey(k)) such that

k
Y= (ylay2)'--7yk) "')gy = Hh’yi'
=1

If g1, g2, . .. gnx is an enumeration of the atoms of B(Freey(k)), Theorem 1.5.3
asserts that
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Freey(k) = Fy x Fy, x --- x Fg ,

where F, = Freey(k), = ([0,9],* =,4,0,9). We will apply the previous
results to describe F for every atom g € Freey(k).

We know from Theorem 4.5.5 that for each atom gy, the initial segment
F,, is a BL-algebra of the form L, & Freey(p) for some s — 1 that divides
n—1, some p < k and where W denotes the variety of generalized BL-algebras
generated by D(T,) = B. In the next Theorem we shall give an alternative
proof of this result that will specify for each atom g, the constants p and s.

To accomplish this, let g, be a fixed atom and

by bs b
n—-1n-1"""Tn-1

)

its corresponding associated k-tuple in (L,)*. We shall denote by F, the
algebra F,, to make explicit reference to the k-tuple y that characterizes
the atom. Associated with the k-tuple y we define a pair of integers (p, d)
where p is the cardinality of the set P = {i : ; = 1}, and d = 221 with
g = gcd{by, by, ... bx,n — 1}. We shall call this pair of integers the g,-pair.

y=(ny2. ., y) =(

Proposition 5.2.8 Let gy be an atom of B(Freey(k)) and (p, d) the gy-pair.
Then

Fy = Ly @ Freew(p)
where W is the variety of generalized BL-algebras generated by D(T,) and
Freew (0) = {T}.

Proof: By Theorem 1.5.2 we know that the correspondence

fe fAgy

defines a homomorphism from Freey (k) onto Fy. Since Theorem 5.2.1 asserts
that Freey (k) is the subalgebra of Tfﬁ generated by the projection functions
My, T2, ..., Mg, it follows that Fy is the BL-algebra generated by the images
under this homomorphism of the projections, that is the functions

Di =T N\ gy

fori=1,2,...,k.
Recall that y = (y1,%2,.--Yn_1) = (2, 22 ... %) Let consider the

n—-1"n-1 ' n-1
set G = {x € (T,)*: gy(x) = 1}. If x € G, then
_ Jaforsomea€ D(T,) ifbi=n-1
TE Y if0<b<n-1
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Then

(wy_ JO ifx¢G
p'(x)_{:c,- if x € G.

Let consider the sets

and

A={i:y#1}={i: b #n—-1}

B={i:yy=1}={i:bj=n-1}.

We are going to consider two algebras:

e Let A’ be the BL-algebra generated by all p; such that ¢ € Aand f =0

(i.e., the zero function). For each 7 € 4,

0 ifx ¢ G,
pi(x) = { —b-—l withb; <n—-1 ifxedq. (5.1)

Recall that d = "T“ with ¢ = gcd{b),bs,...bx,n — 1}. Clearly ¢ =
ged{{b; : i € A}u{n—1}}. Notice that L4y, is the smallest subalgebra
of L, that contains n—"_'—l for each i = 1,2,...,k. Indeed, there exists
an integer ¢; such that b, = ¢;.q. This implies that d = %:1) and
b = %, thus n—b_'—l € Lgy1. On the other hand, if there exists ¢t < d

n-1
such that ¢ divides n — 1 and n—"’_—l € L,y foreachi=1,2,...,k, then

n—":—l = %Il for each i = 1,2,...,k. Therefore ¢’ = "T'l divides b; for each

i=1,2,...,k and ¢’ > ¢ contradicting the definition of q.
Consequently, n—"_'—l € Lg4y for each : = 1,2,...,k and the BL-algebra
generated by the coordinates of the k-tuple y is Lyy;. From the defi-
nition of d it is easy to see that, unless n—"_'—l =1foreveryi=1,...,k,
L4+ is indeed generated by the coordinates n—"_'—l such that & # 1.

From this we can conclude that the images of the functions p; with
1 € A, generate Ly, ;. Therefore the functions p; generate Lgy;, that
is, for each z in L4y, there is an interpretation of a BL-term g, such
that z = ¢.(¥) = ¢:(p1(¥),---,pe(y)). For each z € Lgy1 \ {1} let
l; = gy A q, and let [; be the atom g,. Then, for each z € Lgy, the
function I, belongs to Fy and because of Lemma 5.2.3

L(x) = {0 ifxd G,

z ifxeq,
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The correspondence z — [, gives an embedding from L4, into A’. Now
let f € A'. Since A’ is generated by the functions p; with i € A and
f =0, from equation (5.1) we can deduce that the images of f are in
Lg+1 and if f # gy, then there exists z € Lg41 \ {1} such that f(x) =z
for some x € G. Once more Lemma, 5.2.3 asserts that f = [,, and we
conclude that A’ = L,,,. Hence Fy has a subalgebra A’ isomorphic to
L1

Notice that if A = @, then A’ = L,, since it is the subalgebra of Fy
generated by the zero function. On the other hand, if A # @, the BL-
algebra generated by p; such that ¢ € A necessarily contains the zero
function. If B = @ it is clear that F, = A'.

e If B # 0, let B’ be the generalized BL-algebra generated by p; with
1 € B. In this case,

0 ifx¢ G,

pi(x) = {a € D(T,) ifx€G. (52)

and we deduce that if f € B’, then f(x) € D(T,) for each x € G.
We set i, = min{i : 25 = 1} and 4, = min{i : i # i, Vs < t and
i =1}. Then B = {4),42,...,1p}.

By Theorem 5.2.1 we know that Freey (p) is the subalgebra of functions
from (D(T,))? in D(T,) generated by the projection functions 7}, 3,
..., Ty Letting ¢t : (D(T,))? = G be given by x — x’ where

' z; ifi=14,forsomes=1,2,...,p.

we obtain a bijection from (D(T,))? onto G and for each x € (D(T,))?
we have that 7.(x) = p;, (¢(x)), for i; € B.

Defining ¢ : Free(p) — B’ by

o(my) = pi,,

for each i, € B we have an isomorphism from Freew(p) onto B'.
Hence F, has as subalgebra the generalized BL-algebra B’ isomorphic
to Freepw(p).

Clearly A’ is a subalgebra of MV (F,). On the other hand, notice that if
f# gy and f € MV(Fy), then f(x) = z for some x € G and z € Lgy; \ {1}.

61



From Lemma 5.2.3 we know that for any other x’ € G we have that f(x') = z.
Then f =1, isin A’. From this we obtain that

MV(F,) = A’ =Ly,
Then Theorem 2.2.2 asserts that
Fy = L4y W D(Fy).

To obtain the desired result there is only left to prove that D(Fy) = B'.
In order to achieve such aim, it will be checked that, in fact, if f € Fy, then
either f € A"\ {gy} or f € B'. Notice that the only element in A’ N B’
is the atom g,. For the reason that Fy is the BL-algebra generated by the
functions p; with ¢ = 1,...,k , the result will be proved by induction on the

complexity of f.

o If f =p;forsomei=1,...,k,sincei € AUB we have that f € A"\{gy}
or f € B'.

o If f = fi * f, we have the following possibilities:

1. fiand f, € A"\ {gy} or f) and f, € B'. Because A’ and B’ are
closed by x, we have that f € A"\ {gy} or f € B'.

2. fi € A\ {gy} and f, € B'. In this case there exists z € L, \ {1}
such that f, = I, and fo(x) € D(T,) for each x € G. Since
operations between these two functions are coordinatewise, we
have that f = f, € A"\ {gy}.

3. f- € A\ {gy} and f, € B'. Commutativity of * lead us to the
previous case.

o If f = fi = fo we have the following possibilities:

1. fiand f, € A'\ {gy} or fi and f, € B’. Recalling once more the
fact that A’ and B’ are closed by —, we conclude that f € A'\{g,}
or f€ B

2. fr € A\ {gy} and f, € B’. Again there exists z € L, \ {1} such
that fi = [; and f(x) € D(T,) for each x € G. Thus f is the
atom gy, so is in B'.

3. f€ A’\ {gy} and f; € B'. In this case we have that f = f, is in
A"\ {gy}-
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Then
D(F,) = B' = Freen(p),
and F, is isomorphic to the ordinal sum Lgy; & Freew(p), that we denote
FY,,.
Notice that B = @ iff p = 0. Then, if B = @, we obtain

F, = A' = A’ ¥ Freey(0).

When A = 0, F, is the BL-algebra generated by the functions p; with i € B.
It is not hard to corroborate that this BL-algebra is the BL-algebra that
arises from adjoining a bottom element to the generalized BL-algebra B’ =
Freey (k). Thus Fy = L, wFreew(k). Recall that in this case A’ = L,, then
Fy is well defined. ]

Thus we may conclude:

Theorem 5.2.9 Let g),...,g.«, be the atoms of B(Freey(k)) and for each
i=1,...,n* let (d;, p;) the g;-pair. The free algebra Freey (k) with k gener-
ators in V is given by

n"
Freey(k) = [ [ F&.-
i=1

where F§ ,, = Lq, 1 & Freey(p;).

5.3 Remarks on the atoms

As it was mentioned in Lemma 4.5.2, the ultrafilters of B(Freey(k))
are in bijective correspondence with the upwards closed subsets of the poset
Y = {o}(-zp) : 7, € X,i = 1,...,n — 1}, where ¢} denotes the Moisil
operators defined on the Appendix A. On the other hand, we have proved that
the atoms of B(Freey(k)) are in bijective correspondence with the elements
of Lk.

The aim of the present section is to settle a bijective correspondence be-
tween atoms of B(Freey(k)) and upwards closed subsets of Y = {0} (~~z,) :
z, € X,i=1,...,n—1}. To accomplish such aim, we must think of the free
generators 1y, ..., 1, of Freey(k) as a functions

z,: TE 5 T,.
Therefore we have the functions

I, Tfl — L,
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and

ol (-—z,) : T = {0,1}.
For each atom y € L* and for each p=1,...,k, let s(p,y) be the numerator
of ~—z,(y). Foreach i =1,...,n — 1, we have that

n _J0 ifs(p,y)<n-—i;
g; (ﬁﬁl‘P)(y) - { 1 if S(p,}’) >n-— i

For each atom y € B(Freey(k)) and for each p = 1,...,k, let i, =
n — s(p,y). Then we have that

i = { min {i: 07 (-z,)(y) =1} if {i: 07 (~z,)(y) = 1} # 6;
P n otherwise.
Let

Sy = U§=1 UiZip O'?(ﬁﬂmp).
Since for each atom y € B(Freey(k)), the set Sy is an upwards closed subset
of Y = {o}(-—z,) : 7, € X}, from Lemma 4.5.2 Us, would be the ultrafilter

of B(Freey(k)) generated by the sets
{07 (~zp) : 07 (=zp) € Sy} and {~0] (——ap) : 07 (—7p) € Sy}

In order to establish a bijection between the upwards closed subset of ¥ =
{of(-—z,) : T, € X} and the elements of L¥ it is enough to prove that the
atom gy is in Us, .
Setting of (-—z,) = 0 and o} (—~z,) = 1 for all p, for each p=1,...,k,
we define
In-i,(07Tp) = 07, (mzp) A —o} 1 (70Tp).

Let g : TX — {0,1} be given by

k
9(%) = N\ Jaiy (-mz)(%).

p=1

Clearly g € Us,. We are going to prove that this function g is the atom
gy- It is clear that g(y) = 1. Besides, if x € Lk and x # y, then there exists
p € {1,...,k} such that ~—z,(x) # ——z,(y). Indeed, since x € Lk, then
—z,(x) = —x,(y) for each p = 1,...,k, would imply that z,(x) = z,(y)
for each p. Since the atoms are generated by these functions z,, p=1,...,k,
then gx(x) = gy (x), contradicting Theorem 5.2.6. Therefore, for each x € L,
such that x # y, we have that g(x) = 0. Let consider x € T*. Let x’ be given

by
, _ Jzx; ifz;el,\{1};
TiT\1 ifz; € D(T,).
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Then x' € L¥ and from Theorem 5.2.5 we know that g(x) = g(x’'). Conse-
quently we have that, if x’ = y, then g(x) = 1, otherwise g(x) = 0. From
this we can conclude that g = gy.

5.4 Examples
L.wB

Consider T = L, & B for any generalized BL-chain B, and let V be
the variety of BL-algebras generated by T. Following Proposition 5.2.8 we
obtain that for any integer k

k

Freey(k) = [[(F5)(5).

p=0

L;wB

Now let T = L3 & B for any generalized BL-chain B, and let V be the
variety of BL-algebras generated by T. By Proposition 5.2.8 we have

k k-1
Freey(k) = Ly x Ls® ) x JJ(F5)() x JJ(F5) G E:= (537)
r=1 p=1

k k-1
= TTF)6) x H(Fg)(';) TP

L; ¥ B
Let
o o= ()2 -1,
o ap = (¥)(3F 2.2k + 1),
o oy = (¥)(45-F — 3.3 4 3.2k — 1),
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If T = Ls w B for any generalized BL-chain B, and V is the variety of
BL-algebras generated by T, we obtain

k k-1

k-1

k-2 k-3
x([J®§))* x [TEy> x [ (Fh)=

i=1

L, 4B (when n—1> 2 is prime).
Let T, =L, wB for any n — 1 > 2 and V the variety generated by T,.
For any integer k > 0, let denote ¢t = min(k,n — 2). We define

forr=2,3,...,¢

S\ A (k- (k-1 i
-1 ) S
r=X () (L) (7 )
i1=1 i2=1 ir=1 T
where k; =k — (r — 1) and for j =2,3,...,7,
kj=k—i1—i2—...—ij_|—(7‘—j).

Fori=1,2,...,kand r; =1,2,...,(t—1) we define t; = min(k—1i,n—2)
and

ki k.‘ k.',..
, ~ (k-1 (k-1 ~ k=t — . =
P 3 () B o) G I
i1=1 iz=1 ir;=1 Ti
where k;, =k -7 —(r; — 1) and for j = 2,3,...
ki,- =k—i—i1—ig—...—ij.._l—(f‘,'—j).
Then
t . k ti e
Freey (k) = Ly x [ [(L2) (7)) x [J((F5)*)) x H [T (@) Orry 0y,
r=1 r=1 i=1 r;=1
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L,w{T}

In this case we have that T, = L,, thus ¥ = MYV, Since the variety W
of generalized BL-algebras generated by {T} has as only element this trivial
algebra, Freey(p) = {T} for each integer p. Thus Freeuqy, (k) is a direct
product of algebras of the form L, with s that divides n — 1. A description of
Free,,y, (k) is done in {16, Theorem 8.6.1]. The reader can verify that such
description coincides with the one obtained by applying Proposition 5.2.8.

L,wHpn,

Given m > 2 and n > 2, we define the BL-algebra T} as the ordinal sum
of the MV-chain L, and the Heyting chain Hy,. The free algebra Freey (k)
for finite k, is described in Proposition 5.2.8. We have that if g, is an atom
in B(Freey(k)), then Fy = Ly, W Freew(p) = F§,, for d dividing n — 1,
p < k and W the variety of generalized BL-algebras generated by D(T™). A
description of Freeyy(p) is given in (23, Theorem 5.3] in terms of the gener-
alized BL-chains Hj, j < m. Therefore Freey (k) is completely characterized
in terms of Lukasiewicz finite chains and the generalized BL-chains of the
form H;.

L,y L,

We define the BL-algebra LT as the ordinal sum of L, and L,,, that
is, L' = L,wWL,, for m > 2 and n > 2. In this case, since we want to
distinguish between the BL-algebra and the generalized BL-algebra, we shall
denote L,, the BL-algebra and L, its corresponding generalized BL-algebra.
Therefore D(LT) = L.

From Proposition 5.2.8, we know that for each atom gy in B(Freey(k)),
the algebra F, is isomorphic to Lqy; & Freey (p) for d dividingn—1,p <k
and W the variety of generalized BL-algebras generated by L, .

For each ¢ > 2 let Div(c) be the set of divisors of ¢ and MaxDiv(c) the
set of proper and maximal divisors of ¢, i.e., d € Div(c) such that d # ¢ and
if d divides b and b € Div(c), then b = ¢. If ¢ = 1 let MaxDiv(c) = 0. For
X € MaxDiv(d), if X # @ we call ged(X) the greatest common divisor of
the elements of X, and we stipulate that gcd(@) = d.

Lemma 5.4.1 For any two integers m > 2 and p > 1, we have that

Freew(p) = [ (L)%

s€Div(m-1)

67



where a(m, p, s) = 3 ycMaxpiv(s)(—1)** (9¢d(X) + 1)? for s > 1 and
a(m,p,1) =27 — 1.

Proof: From the development done in [16, Chapter 8.6], we have that
Freepy,,(p) = S1 X Sz X -+ X Sye,

where each S; is the subalgebra of L, gencrated by the elements e;(y;) =

(7"‘;"1—) € L, for j =1,2,...,p. Therefore

Freew(p) =S; xSy x --- x S._,

and now each S; is the generalized BL-algebra generated by the elements
ei(y;) = (m gy for j = 1,2,...,p. Notice that if a;; # 1 for some j =
1,2,...,p , the generalized BL algebra S; is the BL-algebra S; whithout
considering 0 as a constant. But if a;; = 1 for each j = 1,2,...,p, then

S; = L, and S{ = {1}. Thus the theorem follows from [16, Theorem 8.6.1).
=

Consequently, Freey (k) can be completely described in terms of subalge-
bras of L,, and L.

Example 5.4.2 Let V be the variety of BL-algebras generated by L3 and
W the variety of generalized BL-algebras generated by Ls'. Then for any
integer k > 1 we have that

k-1

k k
Freey(k) = L3 x HL;,(I:) X H(Lz W ﬁ'eew(i))(?) X H(L3 ¢ Freew ()™,

i=1

where ; = (¥) Zf;; (";i).Using the previous lemma we have that

I @)

seDiv(m-1)

7
o
o
=
|
5
X
—
5'
u:a-
3
&

k-1

X H(LS W H (L;+l)°(m.P,s))a.'

i=1 seDiv(m-1)

68



PL-algebras

We recall from the last section of the previous chapter that the variety
of PL-algebras PL is generated by L, W P(Z), where P(Z) is the generalized
BL-chain defined in chapter two. In this case, from Proposition 5.2.8, we
obtain:

k k
Freep. (k) = [ [ (L2 & Freew(p)) () = Ly x [[(Lz & Freew(p))(»),

p=0 p=1

where W is the variety of generalized BL-algebras generated by P(Z) (i.e,
the variety of cancellative hoops, see Proposition 2.1.8).

Since a description of Freep. (k) is given in [19] we can compare our result
with the one in that paper. Let G be an ¢-group, and G~ = {z € G : 2 < 0}
its negative cone. Let L be an element not belonging to G. In [19), the authors
define on the set G~ U {L} the binary operations * and — as follows:

x*y={1+y ifz,ye G-,

1 otherwise.
OA(y—z) ifz,ye G,
r—=y=<0 ifz=1,
1 ifreG  andy= L.

and they obtain a PL-algebra (G~ U {l},*,—,L,0), that they denote by
B(G). Then they describe the free PL-algebra with k generators by

k
Freepc(k) = [[(B(G,p)®),

p=0

where Gy = {0} and for any p > 0, G, is an ¢-group such that G, = S, and
Sp is the smallest set of functions f : (P(Z))? — P(Z) that contains the pro-
jections functions m,ms,...,m, and is closed under addition and truncated
subtraction:

(f © 9)(x) = min(0, g(x) — f(x)).

With the definitions of chapter two in the present thesis, it is clear that
B(G) = L, ¥ P(G). From the definition of G, we conclude that

k
Freep.(k) = Lz x [[(B(Gy))(®).
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By Theorem 5.2.1, Freey (p) is the generalized subalgebra of functions from
(P(Z))? into P(Z) generated by the projection functions. It is easy to see
that S, = (Sp, +, ©,0) is a generalized BL-algebra and that Freey, (p) = S,,.
Moreover, Ly & Freew(p) = B(G,;). Therefore both descriptions coincide.



Appendix A

Moisil algebras and boolean
elements in free MV, -algebras

Definition A.0.3 For each integer n > 2, an n-valued Moisil algebra
([8] and [12]) or n-valued Lukasiewicz algebra ([4], [13] and [14]) is
an algebra A = (A,A\,V,~,0F,...,00_,,0,1) of type (2,2,1,...,1,0,0) such
that (A,A,V,0,1) is a distributive lattice with unit 1 and zero 0, and -,
ot,...,0n_, are unary operators defined on A that satisfy the following con-
ditions:

1. -~z =1z,

—~(zVy) =~z Ay,

oi(zVy) =olzValy,

olzV ol =1,

olojz =ojz, fori,j=1,2,...n-1,

o} (-z) = ~(05_:2),

otrVol,x =0z, fori=12...,n-2,

rVol

I )
n-1T = 0'"_12:,

® X NS ™ W e

(xA-olr Aol y)Vy=y, fori=12,...,n—2.
Properties and examples of n-valued Moisil algebras can be found in [4]

and in (8]. The variety of n-valued Moisil algebras will be denoted M,,. An
important property of n-valued Moisil algebras is the following:
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Moisil’s determination principle: Let A € M, and let z,y € A. Then
z <yifand only if o7’z < ol'y foreachi=1,...,n — L.

We also have that:

Theorem A.0.4 (see [12]) Let A be in M,. Then z € B(A) if and only if

on_,(z) = z. Furthermore,

on_y(z) = min{b € B(A) : £ < b} and o7(z) = max{a € B(A) : a < z}.

n-1

Definition A.0.5 For each integer n > 2, Post algebra of order n is a
system

A= (ANV,m0r,...,00_1,€1,...,€4-1,0,1)
such that (A,A,V,-,00,...,008_,,0,1) is an n-valued Moisil algebra and
e, ...,en_1 are constants that satisfy the following equations:

ngoy_ )0 fit+j<m
0“%)‘{1 ifi+j>n.

For every n > 2 we can define one-variable terms o} (z),...,0n_,(z) in
the language (-, —, T) such that evaluated on the algebras L, give:

n( J ) = 1 ifi+j>n,
-1’10 ifi+j<n,

fori=1,...,n—1 (see [14] or [35]) . It is easy to check that
M(L,) = (Ln,A,V, 0,00, ..., 0n_1,0,1)

is a n-valued Moisil algebra. Since these algebras are defined by equations
and L, generates the variety MV,,, we have that each A € MV,, admits a
structure of an n-valued Moisil algebra, denoted by M(A). The chain M(L,,)
plays a very important role in the structure of n-valued Moisil algebras, since
each n-valued Moisil algebra is a subdirect product of subalgebras of M(L,)
(see [4] or [13]). If we add to the structure M(L,) the constants

fori=1,...,n-1,then PT(L,) = (Ln,A,V,>,0},...,00_,€1,...,€n-1,0,1)
is a Post algebra.
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Not every n-valued Moisil algebra has a structure of MV,-algebra (see
[32]). For example, a subalgebra of M(L,) may not be a subalgebra of L,
as MV, -algebra. That is the case of the algebra whose universe is the set

0134
“=Grr?
which is a subalgebra of M(Ls), but not a subalgebra of Ls. On the other

hand, every Post algebra has a structure of MV ,-algebra (see (35, Theorem
10)).

The next example will play an important role in what follows:

Example A.0.6 Let C = (C,A,V,~,0,1) be a boolean algebra. We define

clrl = {z=(21,--,201) EC*" 1 i 2y < 20 < ... < 24}
For each z = (zy,...,2,_;) € C!™ we define:
2z = ("zp-1,-..021),
0=1(0,...,0),
1=(1,...,1),
o (z) = (zi,2iy...,2z) fori=1,...,n—1.

With A and V defined coordinatewise, CI*l = (CIM A, v, —,, ot,...,00_1,0,1)
is an n-valued Moisil algebra (see [8, Chapter 3, Example 1.10]). If we define
€ = (ej,l, ceey ej,,,_l) by

o = {0 if i < j,

T ifi >,
then Cl"l = (C(Pl A, v, =, 0%, ...,0"_,,€1,...,€4-1,0,1) is a Post algebra.
Consequently, C!* has a structure of MV ,-algebra.

It is easy to sec that for each MV ,-algebra A, the boolean subalgebras
B(A) and B(M(A)) are the same. We need to show that the boolean ele-
ments of the MV, -algebra generated by a set G coincide with the boolean
elements of the n-valued Moisil algebra generated by the same set. In order
to prove this result it is convenient to consider the following operators on
each n-valued Moisil algebra A:

Definition A.0.7 For eachi=0,...,n-1
Ji(z) = on_i(z) A —op_i (),

where 03 (z) =0 and o}(z) = 1.
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Notice that in M(L,) we have:

g1 ifi=j,
J'((n—l)) - {0 if i # 7.
Lemma A.0.8 Let A be an MV,-algebra, and let G C A. If < G >pmy, 1S

the subalgebra of A generated by the set G and < G >4, is the subalgebra
of M(A) generated by G, then

B(< G >mv,) =B(< G >u,).

Proof: Since < G >, is always a subalgebra of M(< G >4y, ), We have
that B(< G >,4,,) is a subalgebra of B(< G >uqy,).

We will see that B(< G >umy,) € B(< G >u,). The case G = 0 is
clear. Suppose that G is a finite set of cardinality p > 1. Since MV,-
algebras are locally finite (see [10, Chapter II, Theorem 10.16]), we obtain
that < G > gy, is a finite MV ,-algebra. Since finite MV ,,-algebras are direct
product of simple algebras, there exists a finite k£ > 1 such that

k
<G >mv,= [[ Lmi»
i=1
where each m; — 1 divides n — 1, for each ¢« = 1,...,k. If kK = 1, then
< G >pm, and < G > pmy, are finite chains whose only boolean elements are
their extremes. Otherwise, we can think of the elements of < G >y, as
k-tuples, i.e., if x €< G >y, then x = (x4, ..., 7). We shall denote by 17

the k-tuple given by
; 1 ifi=j
7). = ’
(¥); {o if i # j.

It is clear that for each j = 1,...,k, 1V is in < G >4y, . From this fact
follows that for every pair i # j, 1,5 € {1,...,k}, there exists an element
x € G such that z; # z;. Indeed, suppose on the contrary that there exist
i,J < k such that z; = z;, for every x € G. Since these elements generate
< G > pmy,, for every z €< G >y, we would have z; = z; contradicting the
fact that 17 is in < G > pqy,.

It is obvious that in order to see that every boolean element in < G >4y,
is in < G >, it is enough to prove that 17 is in < G >4, for every
j=1,... k. For a fixed j, for each i # j, i = 1, ...k, we choose x* € G such
that z # z}. Let j; be the numerator of z} € L,. It is not hard to verify that

k
].j = /\ in(xi).

i=1,i#j
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From the definition of the operators J;, we conclude that 1 must be in
<G > M, - Hence B(< G >Mvn) - B(< G >Mn)'

If G is not finite, let y be a boolean element in < G >4y, . Hence,
there exists a finite subset Gy of G such that y belongs to the subalgebra of
< G >mvy, generated by G. Therefore, since y is boolean, y belongs to the
subalgebra of < G >4, generated by Gy, and we conclude that

B(< G >pmv,) € B(< G >pm,)
for all sets G. .

Given an algebra A in a variety K, a subalgebra S of A, and an element
z € A, we shall denote by < S,z > the subalgebra of A generated by the
set SU{z} in K.

Lemma A.0.9 Let C bein M,, and x € C. Let S be a subalgebra of C such
that o*(z) belongs to B(S) for eachi=1,...,n— 1. Then

B(< S,z >u,) = B(S).

Proof: Clearly B(S) is a subalgebra of B(< S,z >4,), then it is left to
check that B(< S,z >, ) € B(S). To achieve such aim, we shall study the
form of the elements in < S,z >, . We define for each s € S
a(s) =sAz,
B(s) = s A -z,
o vi(s) =sAol(z), fori=1,...n-1,
di(s) =sA—-ol(z), fort=1,...n— 1.

Notice that for all s € S we have that +;(s) and §;(s) are in S for i =
1,...,n—1. Let

ky p;

M={y= V /\fi(Si) : fi € {a,8,71,61,...Yn-1,6n1} and s; € S}.

j=li=1

We shall see that < S,z >, =M = (M,A,V,—,0},...,00_,,0,1). Indeed,
for all s € S, s = v,(s) V d(s), then S C M. Besides, z € M because
z = a(l). Lastly, it is easy to see that M is closed under the operations of
n-valued Moisil algebra, thus < S,z >4, is a subalgebra of M. From the
definition of M, it is obvious that M C< S,z >, and the equality follows.
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Now let z € B(< S,z >az,)- Then
pj

with f; € {&,8,7,61,..-Yn-1,0n-1} and s; € S. By Theorem A.0.4, we have
that o7_,(z) = z then

||
||'<,?"

k: Pj

/\ \//\Un 1(fi(si))

j=li=1

N
Il
Q
o
'_
||' <.?"

is in B(S) because o7_ (fi(s:)) = v(oq_(si)) or o_ (fi(s:)) = 8k(o7_ 1(81))
forsome k=1,...,n— 1.

Theorem A.0.10 Let C be an MV, -algebra and x € C. Let S be a subalge-
bra of C such that o7*(z) belongs to B(S) for eachi=1,...,n— 1. Then

B(< S,z >my,) = B(S).
Proof: By Lemmas A.0.8 and A.0.9 we obtain:
B(< S,z >my,) =B(< S,z >um,) = B(S).

[

Recall that a boolean algebra B is said to be free over a poset Y if for

each boolean algebra C and for each non-decreasing function f : Y — C, f

can be uniquely extended to a homomorphism from B into C. As before, we
shall denote by Freex,y, (Z) the free algebra in MV, over a set Z.

Theorem A.0.11 B(Freey,(Z)) is the free boolean algebra over the poset
={otz2):2€ Z,i=1,...,n—1}.

Proof: Let S be the subalgebra of B(Freex, (Z)) generated by Z’. Let C
be a boolean algebra and let f : Z' — C be a non-decreasing function. The
monotonicity of f implies that the prescription

f'(z) = (f(a1(2)s- -+, flon_1(2)))

defines a function f’': Z — C[ where CI? is defined as in Example A.0.6.
Since C[® € MV, there is a unique homomorphism

h' : Freepyy, (Z) — Ci"
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such that h'(z) = f'(z) for every z € Z. Let # : C®) — C be the pro-
jection over the first coordinate. The composition moh’ restricted to S is a
homomorphism h : S — C, and for y = 07 (z) € Z' we have:

h(y) = m(K'(07(2))) = (o7 (K'(2))) = m(07(f'(2))) =
= (07 (f(o7(2)), ..., flon_1(2)))) =
= n(f(07(2)), ..., f(07(2))) = f(o7(2)) = f(y).
Hence S is the free boolean algebra over the poset Z’. But since 0} (z) is in
Sforallz€ Zand j=1,...n—1, Theorem A.0.10 asserts that
S=B(S)=B(< S,z >umy,)

for every z € Z. From the fact that S is a subalgebra of B(Freey, (Z)) we

obtain:
S =B(< S,Z >mv,) = B(Freemy,(Z))

that is, B(Freepy,(Z)) is the free boolean algebra over the poset Z'. =
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