Biblioteca Digital F C E N - U B A

BIBLIOTECA CENTRAL LUIS F LELOIR BIBLIOTECA CENTRAL LELOIR FACULTAD DE CTENCTAS EXACTAS Y NATURALES UBA

Tesis Doctoral

Bases genéticas y moleculares de la interacción entre las respuestas fotomorfogénicas y las de defensa frente a patógenos

Faigón Soverna, Ana

2007

Este documento forma parte de la colección de tesis doctorales y de maestría de la Biblioteca Central Dr. Luis Federico Leloir, disponible en digital.bl.fcen.uba.ar. Su utilización debe ser acompañada por la cita bibliográfica con reconocimiento de la fuente.

This document is part of the doctoral theses collection of the Central Library Dr. Luis Federico Leloir, available in digital.bl.fcen.uba.ar. It should be used accompanied by the corresponding citation acknowledging the source.

Cita tipo APA:

Faigón Soverna, Ana. (2007). Bases genéticas y moleculares de la interacción entre las respuestas fotomorfogénicas y las de defensa frente a patógenos. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires.

Cita tipo Chicago:

Faigón Soverna, Ana. "Bases genéticas y moleculares de la interacción entre las respuestas fotomorfogénicas y las de defensa frente a patógenos". Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. 2007.

EXACTAS Facultad de Ciencias Exactas y Naturales

UBA Universidad de Buenos Aires

Dirección: Biblioteca Central Dr. Luis F. Leloir, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Intendente Güiraldes 2160 - C1428EGA - Tel. (++54 +11) 4789-9293 Contacto: digital@bl.fcen.uba.ar

Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

BASES GENÉICAS Y MOLECULARES DE LA INTERACIÓN ENTRE LAS RESPUESTAS FOMORFOGÉNICAS Y LAS DE DEFENSA FRENTE A PATÓGEOS EN *Arabidopsis thaliana*

Tesis presentada para optar al título de Doctor de la Universidad de Buenos Aires en al área de Ciencias Biológicas

Autor: Lic. Ana Faigón Soverna

Director de tesis: Dr. Marcelo Javier Yanovsky

Consejero: Ing. Ramón Antonio Palacios

Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. FAUBA -CONICET

Buenos Aires, 2007

Índice

Página

PÁGINA DEL JURADO	1
RESUMEN	2
ABSTRACT	3
AGRADECIMIENTOS	4
INTRODUCCIÓN	5
Las Plantas y su entorno	5
Transducción de las señales en plantas	6
Las señales lumínicas.	7
Los fitocromos y la percepción de la luz	10
La señalización del estímulo lumínico	14
OBJETIVOS Y ESTRATEGIA EXPEIMENTAL	18
LA INTERACCIÓN PLANTA-PATÓGENO	19
La interacción entre plantas y microrganismos.	19
Respuesta inmune primaria.	19
Respuesta inmune específica	20
MATERIALES Y MÉTODOS	24
Selección de nuevos mutantes	24
Tratamientos lumínicos	24
Material vegetal	25
Caracterización fisiológica de los mutantes.	
Clonado de locus mutado y genotipeado.	
Genotipeado de los mutates provistos por el ABRC	
Recapitulación del fenotipo del mutate <i>csa1</i>	
Complementación del fenotipo mutante <i>csa1</i> a través de la expresión de <i>RPS4</i>	
Experimento para evaluar la susceptibilidad de las plantas frente a la infección con bacterias	30
Caracterización genética y molecular de los mutantes.	
Localización intracelular del fitcromo B en <i>csal</i>	32
Experimento para cuantificar los cambios de expresión de <i>PIF3</i> y <i>PIF4</i> luego de la infección con <i>Pseudomonas</i>	33
RESULTADOS	34
Capitulo I	34
Caracterización fisiológica del mutate <i>csal</i>	34
Caracterización de la alteración genética responsable del fenotino mutante	38
Calculation de la aleración generacia responsa de la renoupo intalane.	

Capitulo II	
Efecto de las proteínas TIR-NBS-LRR en la señalización de PHYB	48
Análisis global de cambios en la expresión génica	52
Efecto de la infección con <i>Pseudomonas</i> sobre la expresión de <i>PIF3</i> y <i>PIF4</i>	
Capitulo III	57
Des-eolación en rojo en mutates aisladas por presentar alteradas las respuestas frente al ataque	
de patógenos	57
Caracterización fisiológia de eds4	
Proceeda	(1
DISCUSION	61
csal y la vía de señalización del fitocromo B	61
Señalización de los dominios TIR	61
Efecto de la transducción de las señales lumínicas sobre la resistencia a patógenos	64
El síndrome de escape al sombreado en <i>csa1</i>	65
Influencia de la densidad de plantas sobre la susceptibiidad a los patógenos	67
Interacción entre las vías de señalización de las respuestas fotomorfogénicas y de defensa	
Conclusiones y perspectivas	71
REFERENCIAS	73
APÉNDICE	

Página de Jurados

Bases genéticas y moleculares de la interacción entre las respuestas fotomorfogénicas y las respuestas frente a la infección con patógenos en *Arabidopsis*.

Resumen

La luz es uno de los principales factores ambientales que regulan el crecimiento y desarrollo de las plantas. A lo largo de su ciclo de vida, desde la germinación hasta la floración, las plantas monitorean la intensidad, la longitud de onda, la dirección y la duración de la luz y utilizan la información del ambiente lumínico para optimizar su desarrollo. La percepción de las señales lumínicas está mediada por fotorreceptores específicos como los fitocromos, del rojo al rojo lejano. En *Arabidopsis thaliana*, existen 5 fitocromos diferentes (PHYA, PHYB, PHYC, PHYD y PHYE).

La percepción de los cambios en el ambiente lumínicos asociados a la presencia de plantas vecinas acelera el crecimiento de los tallos, la floración e induce la hiponastia. Conjuntamente estos cambios en el desarrollo se denominan síndrome de escape al sombreado y están mediados principalmente por el PHYB.

Este trabajo aporta nuevos elementos para comprender los mecanismos implicados en la transducción de las señales lumínicas en plantas a través de la identificación de nuevos componentes involucrados en la vía de señalización del fitocromo B.

En esta tesis se aisló y caracterizó al mutante *csa1* (del inglés *constitutive shade avoidance*) por presentar el síndrome de escape al sombreado aún creciendo en condiciones no inductivas. csa1 posee una inserción de T-DNA en el segundo exón de un gen *TIR-NBS-LRR* (del inglés *Toll/Interleukin1 receptor-nucleotide binding site-leucine-rich repeat*), generando así una proteína truncada que interfiere en la señalización de otras proteínas con dominios TIR. Hasta el momento las proteínas TIR-NBS-LRR habían sido implicadas únicamente en las respuestas de defensa en plantas; nuestros resultados indican que además estarían involucradas en la modulación de la vía de señalización del fitocromo B a través de la regulación de la expresión de *PIF3*. Además, detectamos que los niveles de expresión de los genes *PIF3* y *PIF4* (dos genes involucrados en las respuestas ftomorfogénicas) varían luego de la infección con *Pseudomonas syringae*. Finalmente, los resultados de estas tesis muestran que el mutante *eds4* aislado originalmente por ser hipersensible a la infección con bacterias, está afectado en las vías de transducción de las señales lumínicas.

En conjunto, los resultados de este trabajo constituyen el primer paso para comprender los mecanismos moleculares implicados en la interacción o *cross-talk* entre las vías de señalización que conducen a las respuestas foromorfogénicas y las que regulan las respuestas de resistencia frente al ataque de los patógenos.

Palabras claves: *Arabidopsis*, luz, fitocromo B, síndrome de escape al sombreado, patógenos, proteínas TIR-NBS-LRR.

Genetics and molecular basis of photomorphogenic and

defense response interaction.

Abstract

Light is a critical factor for plant development. Plants monitor the intensity, quality, direction and duration of light and use the information to adapt and optimize their growth and development. Perception of light signal is mediated by specific photoreceptors such as phytochromes. Phytochromes are encoded by a family of five genes in Arabidopsis thaliana (PHYA, PHYB, PHYC, PHYD y PHYE).

In plants, light signals generated by the presence of neighbors accelerate stem growth, flowering, and induce a more erect position of the leaves, a developmental strategy known as shade-avoidance syndrome. PHYB is the major contributor to shade avoidance responses.

In this work we shed light on the mechanisms of light transduction, identifying new PHYB signaling components. We describe the *constitutive shade-avoidance* 1 mutant (csa1), which shows a shade- avoidance phenotype in the absence of shade. This mutant has a T-DNA inserted within the second exon of a *Toll/Interleukin1 receptor-nucleotide binding site-leucine-rich repeat* (*TIR-NBS-LRR*) gene, which leads to the production of a truncated protein that, in turn, interferes with TIR-proteins signaling. So far, TIR-NBS-LRR proteins had been only implicated in pathogen defense responses in plants. Our results show that they are also involved in PHYB signaling modulation, regulating PIF3 gene expression. In addition, we detected that PIF3 and PIF4 (two genes implicated in photomorphogenic responses) mRNA level changes after *Pseudomonas syringae* infection. Finally, we show that the *eds4* mutant, which was originally isolated for displaying enhanced disease susceptibility to *P. syringae*, it is also defective in light signaling.

Taken together, our findings constitutes a first step towards understanding the molecular mechanisms underlying the cross talk observed between photomorphogenic and defense responses.

Key words: Arabidopsis, light, phytochrome B, shade avoidance syndrome, pathogens, TIR-NBS-LRR proteins.

Agradecimientos

A Marcelo, por enseñarme, guiarme y escucharme y por ser el mejor director que cualquier becario puede pedir.

A Jorge por su invalorable optimismo.

A mis compañeros de laboratorio, Cos, Sabrina B, Santiago, Gaby, Laura, María, Carlos, Paulita, Sil y Matías.

A Leo, que estuvo desde el principio y me ayudo en mis primeras incursiones al mundo de la biología molecular. Gracias por tantos almuerzos, vueltas por Buenos Aires y por las trunkadas

A Ely, por sus maravillosas historias que siguen sorprendiéndome y por hacer mis días en el laboratorio mucho más divertidos y por supuesto por su invalorable ayuda en los experimentos de infección.

A Pau, por las numerosas veces que me salvo de esperar al 80, por animarme para que viese mejor, por ayudarme, por estar y por supuesto por las plantulitas!!

A Ro, por absolutamente todo, por la infinidad de veces que me dio una mano con los tratamientos, por todas las figuras, imágenes y dibujos, por compartir conmigo la adicción (obsesión ?) por las TAILs, por todas las horas compartidas fuera y dentro del laboratorio....

A los integrantes del grupo de UV por abrirme siempre las puertas de su laboratorio y especialmente a Javi

A Migui, por hacer mi vida mucho más divertida y por acompañarme en las mejores tardes de escritura de esta tesis.

A mi papá y a mi mamá por haber estado siempre, por su infinito cariño y por su paciencia y ejemplo. Gracias.

A Nico, por haber estado en los buenos y malos momentos de esta tesis, por ayudarme, por escucharme tantas veces., y por compartir conmigo su vida.

4

Introducción

Las plantas y su entorno

Las plantas, debido a su carácter sésil, son incapaces de escapar hacia un sitio más favorable si las condiciones ambientales se tornan adversas para su desarrollo. En lugar de moverse, las plantas responden a las constantes fluctuaciones ambientales modificando sus patrones de desarrollo y crecimiento. La forma o arquitectura de las plantas (cantidad de ramificaciones, altura, relación entre estructuras vegetativas y reproductivas, etc.) está muy influenciada por factores ambientales y un amplio rango de morfologías pueden resultar de un mismo genotipo. La gran plasticidad fenotípica funcioaría como un mecanismo para compensar la falta de movilidad en las plantas.

A lo largo de su ciclo de vida las plantas están sometidas o expuestas a distintos estreses o estímulos abióticos y bióticos como variaciones en la temperatura, calidad de luz, salinidad del suelo, presencia de competidores, patógenos y herbívoros (Figura 1).

Figura 1: Representación esquemática de los factores biótico y abióticos que afectan el desarrollo de las plantas.

Para optimizar su crecimiento las plantas deben coordinar procesos complejos de desarrollo y al mismo tiempo percibir y responder a los factores endógenos y ambientales.

Transducción de las señales en plantas

La transducción de una señal es el conjunto de procesos o etapas que ocurren en forma concatenada por el cual una célula convierte una determinada señal o estímulo exterior, en otra señal o respuesta específica.

La percepción de distintos estímulos ambientales, por parte de receptores especializados, desencadena una serie de eventos bioquímicos y moleculares que transmiten la señal y que conducen, a través de distintos mecanismos, como la activación y/o represión de genes blanco, a cambios morfológicos y/o fisiológicos que le permiten a la planta adaptarse al nuevo ambiente (Franklin & Whitelam, 2004). La especificidad y sensitividad de estas vías de señalización están coordinados e integrados por reguladores positivos y negativos.

Durante las últimas décadas se ha avanzado notablemente en la comprensión sobre el funcionamiento y los componentes involucrados en distintas vías de transducción de señales en las plantas. Por un lado, estos estudios han revelado la existencia de complejas redes de señalización donde las vías de transducción desencadenadas por los diferentes estímulos interaccionan y se solapan permitiendo que numerosos genes puedan ser a activados y/o reprimidos por diferentes señales. Los puntos de convergencia entre dos vías de señalización se definen como *cross-talk* (Knight & Knight, 2001). Puede ocurrir que dos estímulos diferentes conduzcan a la misma respuesta a través de vías e intermediarios diferentes, que la vía de señalización activada por un determinado estímulo actúe positiva o negativamente sobre la vía de señalización activada por otro estímulo o que dos estímulos diferentes utilicen intermediarios comunes para dar dos respuestas diferentes (Figura 2).

Figura 2: Representación esquemáticas de posibles vías de señalización activadas por la percepción de dos estímulos ambientales diferentes. (A) Dos estímulos diferentes conducen a la misma respuesta a través de vía independientes. (B) Dos estímulos diferentes activan distintas vías de señalización que conducen a diferentes respuestas. (C) La vía de señalización activada por el estímulo A actúa negativamente sobre la vía de señalización activada por el estímulo B. (D) La vía de señalización activada por el estímulo A actúa positivamente sobre la vía de señalización activada por el estímulo B. (D) La vía de señalización activada por el estímulo B.

Otro aspecto importante de la transducción de señales en las plantas es su mecanismo de regulación. Mientras que en los animales la percepción del estímulo activa una vía de señalización, en las plantas, en muchas ocasiones, la percepción del estímulo induce la degradación de un regulador negativo, permitiedo de esta forma la des-represión el sistema. Este mecanismo de regulación le permite a las plantas llevar a cabo la transducción de la señal en forma rápida y precisa (Huq, 2006).

Las señales lumínicas

La luz juega un papel principal durante el crecimiento y desarrollo de las plantas, no sólo como fuente de energía para la fijación de dióxido de carbono durante la fotosíntesis sino también como fuente de información.

Los cambios morfológicos y fisiológicos que ocurren en respuesta a la información provista por el ambiente lumínico se denominan colectivamente FOTOMORFOGÉNESIS.

7

Existen al menos cuatro características del ambiente lumínico que constituyen señales informativas para las plantas: 1) la irradiancia (cantidad de luz por unidad de tiempo y superficie), que puede variar a lo largo del día y del año, con el clima, con el sombreado, con la proximidad a la superficie del suelo, etc.; 2) la composición espectral (relación entre la cantidad de luz en cada zona del espectro), que puede cambiar principalmente por la presencia de plantas vecinas, y en mucho menor grado por nubosidad, y en el amanecer y en el atardecer; 3) la dirección de incidencia, que cambia a lo largo del día y del año (excepto en zonas ecuatoriales) y en los claros de luz dentro de un canopeo vegetal; y 4) el fotoperíodo (duración diaria del período lumínico), que varía durante todo el año en zonas alejadas del ecuador (Casal et al., 2003).

Cambios en el desarrollo condicionados por el ambiente lumínico.

A lo largo de su ciclo de vida las plantas monitorean la intensidad, la longitud de onda, la dirección y la duración de la luz y utilizan la información del ambiente lumínico para optimizar su desarrollo. Dentro de los eventos en los cuales las señales lumínicas juegan un papel importante están: la germinación, la des-etiolación, la percepción y respuesta a la presencia de potenciales competidores y la inducción de la floración (Kendrick y Kronemberg, 1994).

El proceso de des-etiolación: Luego de la germinación, las plántulas que se desarrollan en oscuridad (bajo el suelo) crecen a expensas de sus reservas y presentan un fenotipo etiolado: hipocotilos o tallos largos, cotiledones cerrados y poco expandidos, gancho apical, maquinaria fotosintética rudimentaria, raíz pequeña, etc. (Figura 3). El fenotipo etiolado incrementa la posibilidad de que las futuras hojas sean elevadas por sobre la superficie del suelo y alcancen la fotoautotrofía antes que se agoten las reservas de la semilla. Una vez que la plántula se encuentra cercana a la superficie y es expuesta por primera vez a la luz, se produce un profundo cambio en el desarrollo, teniendo lugar la des-etiolación. Este proceso involucra cambios morfológicos como la inhibición de la elongación del hipocotilo, el desarrollo de los cotiledones, el desarrollo de una maquinaria fotosintética funcional, el crecimiento de la raíz, etc (Figura 3). Muchos de estos cambios están orquestados por cambios en la expresión de numerosos genes, inducidos o reprimidos por la luz. La existencia de mutantes en *Arabidopsis thaliana* que

muestran un fenotipo des-etiolado cuando son cultivados en completa oscuridad ha demostrado que la etiolación es un proceso en el cual el patrón de desarrollo fotomorfogénico está reprimido (Chory et al., 1989; Deng et al., 1991).

Figura 3: Representación esquemática de la mmorfología de plántulas del genotipo salvaje de *Arabidopsis thaliana*, cultivadas durante 3 días en oscuridad (plátula etiolada) (A), o en luz blanca continua (B).

La luz también afecta el momento de la floración. Tanto la calidad y cantidad de luz como el fotoperíodo controlan el proceso de transición floral. En Arabidopsis, la luz azul y el rojo lejano promueven la floración mientras que el rojo parece tener un efecto inhibitorio (Simpson & Dean, 2002), altas intensidades de luz y bajas relaciones R/RL (que ocurren a medida que un canopeo se hace más denso) también promueven la floración (Halliday et al., 1994). Muchas plantas responden a la duración del período diario de luz, en algunos casos la floración se acelera o sólo ocurre cuando el fotoperíodo es mayor a un determinado valor, son las plantas de día largo (PDL). Y, en otros casos la floración es inducida por fotoperíodos inferiores a cierta cantidad de horas, son las plantas de día corto (PDC). Arabidposis es una especie que se comporta como una PDL facultativa, es decir que la floración es acelerada por días largos en comparación a los días cortos. Las respuestas fotoperiódicas permiten el ajuste de la floración en determinada época del año. El control fotoperíodico de la floración se debe a interacciones entre genes involucrados en el control de la iniciación floral, la regulación por medio de ritmos circadianos y las vías de transducción de señales mediadas por los fotorreceptores (Yanovsky & Kay, 2003).

Los fitocromos y la percepción de la luz

En las plantas existen cuatro grupos de fotorreceptores capaces de percibir las señales lumínicas: los fitocromos que absorben con eficiencia máxima luz correspondiente a las longitudes de onda del rojo (600- 700 nm) y del rojo lejano (RL, 700- 800nm) (Quail, 2002) y los criptocromos y fototropinas que absorben la luz correspondiente a las longitudes de onda del azul (A) al UV- A (315- 400 nm) (Briggs, et al., 2001, Cashmore, et al., 1999). También existen evidencias acerca de la existencia de fotorreceptores de radiación UV-B (Ballaré et al., 1995), aunque su naturaleza química y genética es aún desconocida.

Los fitocromos son cromoproteínas homodiméricas conformadas por dos polipéptidos de aproximadamente 125 Kda. Cada monómero posee dos dominios estructurales: el carboxi-terminal que media la dimerización y el amino terminal que está unido covalentemente a un cromóforo tetrapirrólico que es el responsable de la absorción de la luz (Quail, 1991). El cromóforo absorbe principalmente Rojo o RL, modificando su conformación. La excitación del cromóforo altera la conformación de la apoproteína y, por ende, su capacidad de acción biológica.

Los fitocromos existen en 2 formas fotointerconvertibles: el Pr, con un máximo de absorción a 660 nm, es decir en el rojo y el Pfr con un máximo de absorción a 730 nm, es decir en el rojo lejano (Quail et al., 1995; Frankhauser & Chory, 1997). Los fitocromos son sintetizados en el citoplasma en la forma Pr, biologicamente inactiva, y al absorber rojo pasan a su conformación activa, Pfr, y migran al núcleo (Nagy et al., 2001) (Figura 4).

En las plántulas en oscuridad el fitocromo se encuentra en un 100% en su forma Pr y al ser expuestas a la luz el Pr se fotoconvierte en Pfr. Esta fototransformación involucra cambios en los enlaces del cromóforo y múltiples rearreglos conformacionales en la proteína que conducen luego de pasar por varios intermediarios a la conformación Pfr (Furuya y Song, 1994). La fotoconversión es fotorreversible y por lo tanto, al absorber RL, el Pfr se convierte nuevamente en Pr (Figura 4).

Figura 4: Diagrama de la fototransformación reversible del fitocromo y vías de control de los niveles de Pfr y Pr. La luz fotoconvierte el Pr a Pfr y viceversa. El Pfr también puede destruirse o convertirse en Pr mediante una reacción independiente de la luz (reversión).

Debido a que los espectros de absorción de las dos formas están parcialmente solapados al irradiar una planta se establece un fotoequilibrio dinámico entre el Pr y el Pfr. La proporción de Pfr respecto al fitocromo total (Pfr/P, porcentaje de Pfr) establecida por cada tratamiento lumínico dependerá de la composición espectral del mismo (Mancinelli, 1994). Luz monocromática de 660 nm (Rojo) convierte un 87% del fitocromo a la forma Pfr, mientras que luz monocromática de 730 nm (RL) establece un 3% de Pfr (Figura 5). El porcentaje de Pfr establecido por la luz policromática está determinado principalmente por la proporción de Rojo y RL de la luz incidente (Mancinelli, 1994). Cuanto mayor sea la relación R/RL de luz incidente, mayor será el Pfr/P.

Figura 5: Espectro de absorción del fitocromo e interconversión de Pr a Pfr por R y RL. La forma Pr tiene su pico de absorción en 660 nm y la Pfr en 730 nm.

Introducción

Los niveles de Pfr también son afectados por dos reacciones que no dependen de la luz: la destrucción y la reversión a Pr. La destrucción del Pfr ocurre a través de la vía proteolítica mediada por ubiquitinación (Clough & Vierstra, 1997). La reversión del Pfr a Pr es una reacción más rápida que la destrucción pero muy lenta comparada con la fotoconversión Pr a Pfr. (Figura 4). A diferencia de la destrucción que implica desaparición del fitocromo, la reversión provoca cambios en la cantidad total de fitocromo (Pr más Pfr).

La familia de los fitocromos

En todas las plantas estudiadas los fitocromos son codificados por pequeñas familias multigénicas. En *Arabidopsis thaliana*, se han aislado y secuenciado 5 fitocromos diferentes, PHYA – PHYE (Matheews & Sharrock, 1997). Estudios filogenéticos revelaron la existencia de dos subgrupos. Los fitocromos B, D y E poseen un ancestro en común y forman un subgrupo que actúa en forma redundante para el control de algunas respuestas. Por otro lado los fitocromos A y C comparten un ancestro en común y algunos roles regulatorios (Matheews & Sharrock, 1997).

Los roles fisiológicos y fotosensoriales de cada fitocromo han sido definidos a través del análisis de mutantes deficientes en los distintos fitocromos (Whitelam & Devlin, 1997; Devlin et al., 1998; Smith, 2000). Los fitocromos más estudiados y mejor caracterizados de *A. thaliana* son el A y el B. En algunos casos, diferentes miembros de la familia monitorean la misma señal lumínica pero regulan distintas respuestas fisiológicas. En otros casos, diferentes fitocromos monitorean diferentes estímulos lumínicos pero controlan la misma respuesta fisiológica. Por ejemplo el fitocromo A es el principal fotorreceptor que media la repuesta de des-etiolación a bajos y altos flujos de rojo lejano mientras que la respuesta de des-etiolación a altos flujos de luz roja es mediada por el fitocromo B.

El fitocromo B: des-etiolación en Rojo y percepción de plantas vecinas

El fitocromo B (phyB) se expresa en todos los tejidos, a diferencia del A es fotoestable y es el más abundante en las plantas verdes. (Somers & Quail, 1995)

El fitocromo B es el principal fotorreceptor involucrado en la percepción del Rojo. Las plántulas de deficientes en phyB presentan hipocotilos alargados y cotiledones poco desarrollados cuando crecen en luz roja o blanca (Nagatani et al., 1991; Reed et al., 1993; Somers et al., 1991). Bajo esas mismas condiciones de crecimiento, las sobreexpresantes de phyB desarrollan el fenotipo opuesto (plántulas con hipocotilos cortos y cotiledones expandidos) (McCormac et al., 1993; Wagner et al., 1991).

phyB, es además el principal fotorreceptor implicado en las percepción de las variaciones en las relaciones R/RL del ambiente y por lo tanto juega un rol fundamental en la detección de plantas vecinas.

A medida que aumenta la densidad de plantas o se incrementa el índice de área foliar, disminuye la radiación total y la relación R/RL por debajo del estrato superior del canopeo. Las plantas poseen dos estrategias opuestas en respuesta a la competencia por luz: la tolerancia o el escape al sombreado (Morgan & Smith, 1976). Las plantas tolerantes al sombreado (típicas de sotobosques) se caracterizan por conservar la energía y los recursos con bajas tasas de crecimiento y por el desarrollo de estructuras fotosintéticas muy eficientes en bajos niveles de luz.

En ambientes enriquecidos en rojo (alta relación R/RL) el fotoequilibrio entre las dos conformaciones del fitocromo esta desplazado hacia la forma Pfr. La forma Pfr inhibe el crecimiento de hipocotilos y tallos, la hiponastia (movimiento de las hojas hacia arriba) y la floración. La presencia de plantas vecinas, que absorben el R y que reflejan y transmiten el RL provoca una disminución en la relación R/RL y por lo tanto el desplazamiento del fotoequilibrio hacia la forma inactiva Pr. Al disminuir los niveles de la forma Pfr se libera el crecimiento de tallos y pecíolos que permite el desarrollo de plantas más altas capaces de escapar de la sombra impuesta por sus competidoras (Ballaré et al., 1999). La elongación de tallos y pecíolos la ubicación de las hojas en posición erecta y la aceleración de la floración por la presencia de plantas vecinas se denominan conjuntamente **"síndrome de escape al sombreado"**.

En canopeos en crecimiento, muchos de los cambios morfológicos y fisiológicos se anticipan a la competencia. Esto se debe a la percepción de señales relacionadas con disminuciones laterales en la relación R/RL causadas por el RL reflejado lateralmente por la vegetación vecina, aún antes de que exista sombreado mutuo entre plantas (Ballaré *et al.*, 1987; Ballaré *et al.*, 1990; Casal *et al.*, 1986). Las respuestas a bajas relaciones R/RL son potencialmente adaptativas ya que incrementan la habilidad competitiva de las plantas (Smith, 1982).

La señalización del estímulo lumínico

La percepción del estímulo lumínico por parte de los fitocromo activa redes de señalización que culminan con la alteración en la expresión de ciertos genes responsables y moduladores del proceso de fotomorfogenesis (Martínez- García et al., 2000).

Estudios bioquímicos, genéticos y moleculares han puesto de manifiesto algunos de los mecanismos y componentes involucrados en la transducción de señales de los fitocromos. La mayoría de los avances proviene de estudios sobre el proceso de desetiolación, mediado principalmente por el phyA y el phyB, y han revelado cinco aspectos principales sobre los fitocromos y sus vías de señalización:

1) La luz induce la translocación al núcleo de los fitocromos. Los fitocromos son sintetizados en el citoplasma en su conformación Pr y al absorber luz pasa a la conformación biológicamente activa Pfr y migran al núcleo (Sakamoto & Nagatani, 1996). Experimentos utilizando la proteína GFP fusionada a los fitocromos han mostrado que en el núcleo los fitocromos se agrupan formando *speckles*. Se ha especulado que estas agrupaciones podrían representar activos complejos transcripcionales (Nagatani, 2004).

2) En el núcleo los fitocromos interaccionan directamente con factores de transcripción. A través de ensayos de doble híbrido se han identificado proteínas que se unen a los fitocromos (Choi et al., 1999; Fankhauser et al., 1999; Ni et al., 1998). Dentro de este grupo de moléculas, identificadas genéricamente como PIF (del inglés *phytochrome interacting factor*), el PIF3 (del inglés *phytochrome interacting factor*), el PIF3 (del inglés *phytochrome interacting factor* 3) ha sido una de las más estudiadas. PIF3 es un factor de transcripción del tipo bHLH que se une al fitocromo sólo en su conformación activa Pfr (Ni et al., 1998). PIF3 se encuentra constitutivamente en el núcleo y se une específicamente al motivo de DNA G-Box

14

presente en los promotores de varios genes regulados por la luz. Se ha hipotetizado que PIF 3 podría funcionar como un reclutador del fotorreceptor en su forma activa hacia los motivos G-box (Martínez- García et al., 2000). Inicialmente PIF3 fue identificado como un regulador positivo de la señalización de phyB. Sin embargo, una reevaluación reciente de la función de PIF3 a través de la caracterización de mutantes de pérdida de función , así como también el uso de sobre-expresantes de este gen, mostraron que PIF3 regula negativamente la elongación del hipocotilo y la apertura de los cotiledones mediada por phyB (Monte et al., 2004).

3) Genes que codifican para factores de transcripción participan en las etapas tempranas de las vías de señalización de los fitocromos. Experimentos para cuantificar cambios globales en la expresión génica en respuesta a tratamientos lumínicos han mostrado que dentro del grupo de genes que varía su expresión rápidamente (a la hora de iniciado el tratamiento), el 44% codifica para putativos factores de transcripción (Tepperman et al., 2001).

4) Los fitocromos poseen actividad quinasa. Se ha demostrado que el phyA de avena tiene actividad de quinasa de serinas y treoninas (Yeh & Lagarias, 1998) y que es capaz de autofosforilarse y de fosforilar otras proteínas, siendo esta fosforilación dependiente de la luz. Estudios recientes mostraron que phyA es sustrato de una fosfatasa, llamada FyPP (del inglés *flower-specific phytochrome-associated protein phosphatase*). FyPP defosforila a phyA de modo dependiente de luz y modula el control de la floración ejercido por phyA (Kim et al., 2002). Por otra parte, Ryu y colaboradres (2005) encontraron una fosfatasa tipo 5 (PAPP5) que defosforila al fitocromo en su forma Pfr incrementando sus respuestas. Este trabajo puso en evidencia que el control de la fosforilación y defosforilación mediada por PAPP5 podría ser un punto de control de la estabilidad y afinidad por elementos ubicados en la cadena de transducción de los fitocromos, tales como NDPK2 (del inglés *nucleoside diphosphate kinase* 2) (Ryu et al., 2005). Estos resultados sugieren que la fosforilación y defosforilación de los fitocromos podrían jugar un papel importante en regular ciertas funciones mediadas por los mismos *in vivo*.

5) La vía de señalización de los fitocromos está regulada negativamente a través de la degradación de proteínas. La mutante *copl* (del inglés *constitutivelv* photomorphogenic 1) fue aislada por presentar fenotipo des- etiolado en oscuridad. COP1 es una proteína regulatoria que reprime la fotomorfogénesis en oscuridad, actuando río abajo de las cadenas de señalización de los fitocromos y criptocromos (Deng et al., 1991). COP1 es una proteína de ubicación núcleo-citoplasmática. En oscuridad, la importación al núcleo de COP1 es mediada por una señal de localización nuclear (NLS, del inglés Nuclear Localization Signal) (Stacey et al., 1999). A nivel molecular, COP1 actúa como ligasa de ubiquitina del tipo E3, confiriendo especificidad de sustrato por reconocimiento directo de las proteínas que serán sustrato de ubiquitinación dentro del núcleo (Saijo et al., 2003; Seo et al., 2004). El efecto represor de COP1 sobre la fotomorfogénesis en oscuridad, resulta de una interacción directa con reguladores positivos de la fotomorfogénesis como HY5, el cual, como resultado de esta interacción queda etiquetado (ubiquitinado) para degradación por el proteasoma 26S (Holm et al., 2002). Luego de la percepción lumínica, muchos fotorreceptores inducen la relocalización de COP1 hacia el citosol (Osterlund & Deng, 1998), incrementando de este modo la cantidad de factores de transcripción que promueven la fotomorfogénesis (por ej. HY5) en el núcleo. Consecuentemente en la luz, la abundancia de los factores de transcripción (por ej. HY5) que inducen la fotomorfogénesis aumentan en el núcleo, gatillando las respuestas inducidas por luz.

Elementos de la señalización de los fitocromos identificados por genética directa

Una de las estrategias más utilizadas y eficaces para identificar componentes de las distintas vías de transducción de señales es la búsqueda de mutantes o genética directa. La búsqueda de mutantes está focalizada en aislar mutantes que tengan la respuesta activadas en forma constitutivas o bien mutantes incapaces de responder al estímulo (mutantes por pérdida de función).

En *A. thaliana* se han caracterizado mutantes que tienen alteradas las respuestas a luz pero que no son mutantes alélicos de los fotorreceptores y que pueden dividirse en tres categorías. La primer categoría comprende aquellos mutantes que tienen respuestas fotomorfogénicas constitutivas como cop / det / fus que crecen en oscuridad como si

estuvieran estimulas por luz (Chory, et al., 1989, McNellis & Deng, 1995, Wei & Deng, 1992). El fenotipo de estos mutantes indica que las proteínas normales COP / DET / FUS actúan como reguladores negativos de la fotomorfogénesis. El segundo grupo tiene reducida la sensibilidad a la luz y el tercero presenta respuestas exageradas a la luz (Quail, 1998).

Dentro del segundo grupo de mutantes, algunos como el *pef1* tiene reducidas las respuestas tanto al Rojo como al RL indicando la existencia de al menos algunos componentes en común entre las vías de transducción de señales del phyA y del phyB (Ahmad & Cashmore, 1996). Otros mutantes, sin embargo, sólo tienen afectada la capacidad de respuesta a longitudes de onda específicas como por ejemplo los mutantes *ssr1, elf3, gi red1, pef2 y pef3* que presentan disminuidas las respuestas al Rojo mediadas por el phyB , pero no las respuestas al RL (Quail, 1998). Por el contrario en los mutantes *fhy1 y fhy3* (Whitelam, et al., 1993), *far1* (Hudson et al., 1999) *pat1* (Bolle et al., 2000), *laf1* (Ballesteros et al., 2001), *laf6* (Møller et al., 2001), *hfr1* (Fairchild, 2000) (Soh, 2000), *fin219* (Hsieh et al., 2000) sólo están afectadas las respuestas mediadas por el phyA al RL continuo.

Dentro del tercer grupo han sido también identificadas mutaciones que reprimen ambas vías (*psi2*) (Genoud et al., 1998) o que afectan negativamente en forma individual la señalización de phyA (*spa, eid*) (Hoecker et al., 1999; Dieterle et al., 2001) o phyB (*pif3, pif4*) (Monte et al., 2004; Huq & Quail, 2002).

Objetivos y Estrategia experimental

Objetivos

Aunque numerosos estudios genéticos y moleculares han puesto de manifiesto algunos de los mecanismos y componentes involucrados en las vías de señalización del fitocromo B; es aún poco lo que se conoce sobre los eventos e intermediarios involucrados en la transducción de las señales lumínicas y en el desarrollo del síndrome de escape al sombreado.

El objetivo general de este proyecto era incrementar el conocimiento sobre los mecanismos involucrados en la transducción de las señales lumínicas en plantas a través de la identificación de nuevos componentes de la vía de señalización del fitocromo B. En base a los resultados obtenidos fueron planteados objetivos parciales que se detallan oportunamente.

Estrategia experimental

Dado que la genética directa o búsqueda de mutantes ha sido recientemente utilizada en forma exitosa para elaborar los primeros modelos moleculares que intentan explicar los mecanismos de transducción de los distintos fotorreceptores y teniendo en cuenta que el empleo de esta estrategia aún puede arrojar resultados novedosos, decidimos utilizar esta metodología para identificar en *Arabidopsis thaliana* nuevos componentes de la vía del phyB.

La estrategia experimental utilizada en esta tesis permite potencialmente encontrar mutantes en cualquier gen presente en el genoma de *Arabidopsis thaliana*. Dado que el mutante aislado en esta tesis posee una mutación en un gen que codifica para un tipo de proteína implicada en la percepción y respuesta frente al ataque de patógenos, se agrega a continuación una breve sección sobre los que se conoce hasta el momento de la interacción planta-patógeno.

La interacción planta- patógeno

La interacción entre plantas y microorganismos

Las plantasherecen y se desarrollan estando continuamente expuestas a potenciales microorganismos patógenos como los hongos, bacterias y nematodos, que pueden interceptar los fotosintatos producidos por la planta, y los virus que utilizan la maquinaria de replicación del hospedero a expensas del mismo. Para ser patogénicos, los microorganismos deben acceder al interior de la planta, ya sea penetrando la superficie de hojas, tallos y raíces, o entrando a través de heridas o aperturas naturales como los estomas.

Respuesta inmune primaria

Una vez penetrada la pared celular, los microorganismos alcanzan la membrana plasmática donde se encuentran los receptores extracelulares que reconocen a los PAMPs (del inglés *pathogen -associated molecular patterns*) e inician una respuesta inmune que generalmente detiene la infección antes de que el microorganismo pueda invadir la planta.

Generalmente los PAMPs cumplen una función crucial en el microorganismo, están altamente conservados y no están presentes en el hospedero. Dentro de los PAMPs se encuentran componentes de la pared celular de las bacterias gram-negativas como lipopolisacáridos y el principal constituyente del flagelo , la proteína flagelina y los principales componentes de la pared de los hongos superiores, la quitina y el ergosol (Nurnberg et al , 2004).

Aunque los mecanismos moleculares involucrados en la respuesta inmune primaria o PTI (del inglés *PAMP- tiggered inmunity*) no han sido aún completamente dilucidados, se sabe que luego del reconocimiento de los PAMPs por los receptores de membrana se inicia una cascada de señalización que involucra a las proteínas del tipo MAP quinasas y que conduce a la inducción transcripcional de genes de respuesta a patógenos, a la producción de especies de reactivas de oxígeno, y a la deposición de calosa pari reforzar la pared celular. Todos estos eventos previenen el crecimiento de los microorganismos.

Respuesta inmune específica

Efectores patogénicos

Los microorganismos patogénicos han adquirido mecanismos para suprimir la respuesta inmune primaria, ya sea interfiriendo con los receptores de membrana, evitando de este modo que los PAMPs sean reconocido, o secretando proteínas efectoras al citoplasma de la célula vegetal para alterar la cascada de señalización de las MAP quinasas y las vías que conducen a la manifestación de la respuesta de resistencia. Las bacterias patogénicas gram-negativas utilizan el sistema de secreción tipo III para conducir a las proteínas efectoras dentro de las células del hospedero y suprimir la PTI. (Chisholm et al., 2006).

Pseudomonas syringae puede secretar entre 20 y 30 proteínas efectoras durante la infección (Cahng et al., 2005) que promueven la patogenicidad y alteran la fisiología de los hospederos susceptibles a través de distintos mecanismos. Algunos efectores como el AvrRpt2 poseen actividad enzimática y modifican las proteínas vegetales para aumentar la virulencia del patógeno y evadir la detección (Coaker et al, 2005). Se ha demostrado que ciertas proteínas efectoras alteran la transcripción de genes del hospedero, probablemente como mecanismo para regular negativamente las defensas de la planta. (Yang et al., 2000). Tres efectores de *P. syringae*, impiden el refuerzo de la barrera mecánica que constituye la pared celular frente al ataque de patógenos suprimiendo la formación de papilas y la deposición de calosa (DebRoy et al., 2004, Hauck et al., 2003). Por último, trabajos recientes han demostrado que algunas proteínas efectoras pueden suprimir la respuesta hipersensible (HR) o muerte celular programada que ocurre en los sitios de infección para reducir la propagación del patógeno (Jamir et al., 2004).

Resistencia gen x gen

En respuesta a las proteínas efectoras de los patógenos las plantas adquirieron proteínas de vigilancia, monitoreo o resistencia, denominadas genéricamente proteínas

R, que reconocen específicamente a los distintos efectores o factores de avirulencia (avr).

En 1971, Flor postuló el modelo de resistencia gen por gen, que propone que cada avr de los patógenos es reconocido por una proteína R del hospedero. Cuando los correspondientes R y avr están presentes en el hospedero y en el patógeno tiene lugar la **reacción incompatible** y la resistencia se activa inhibiendo el crecimiento del patógeno. En cambio si alguno de los dos no está presente o es inactivo (**reacción compatible**), el patógeno no es detectado, prolifera y se desarrolla la enfermedad.

Proteínas R

A pesar del amplio rango de patógenos y de proteínas efectoras, los genes R sólo codifican para dos grandes grupos de proteínas (Dangl & Jones, 2001).

El primer grupo esta constituido por proteínas que poseen un dominio extracelular rico en repeticiones de leucinas, LRR (del inglés *leucine rich repeat*). El segundo grupo de proteínas R se caracteriza por poseer un sitio de unión a nucleótidos, NBS (del inglés *nucleotide binding site*) y uno o varios dominios LRR en el extremo carboxi-terminal. Este grupo se divide a su vez en dos subgrupos de acuerdo a su dominio amino-terminal. Los miembros del primer subgrupo poseen en su extremo amino-terminal un dominio CC (del inglés *coiled coil*) mientras que los del segundo subgrupo se caracterizan por la presencia de un dominio TIR (del inglés *Toll interleukin* 1 *receptor*) con homología a los receptores Toll –like que gatillan las respuestas inmunes en *Drosophila*, mamíferos y *Caenorhabditis elegans* (Iwaski & Medzhitov, 2004; Ilmer & Hoffmann, 2002; Liberati et al., 2004).

Mecanismo de vigilancia e inducción de la resistencia

Hasta el momento, a pesar de que varios genes R y sus correspondientes avr han sido clonados, no ha podido ser demostrada una interacción directa entre ellos. Contrariamente a lo predicho por el modelo de resistencia 'gen por gen' el reconocimiento de los efectores ocurre a través de mecanismos indirectos. Las proteínas R no interactúan con los avr pero de alguna manera monitorean su presencia dentro de la célula del hospedero.

21

AvrPbhB es un factor de avirulencia, reconocido por la proteína R, RPS5 (del tipo CC-NBS-LRR). En este caso, ha sido demostrado que el reconocimiento no ocurre por asociación directa R-avr, sino que el efector del patógeno cliva a una proteína del hospedero y es el producto de este clivaje lo que es reconocido por RPS5 para desencadenar la respuesta de resistencia (Shao et al., 2003).

Otro ejemplo de reconocimiento indirecto involucra a la proteína de *Arabidopsis* RIN4. En presencia de los efectores AvrB o AvrRpm1 RIN4 se hiper-fosforila. La proteína R RPM1 monitorea el estado de RIN4, y sólo cuando detecta su fosforilación, activa la respuesta de resistencia (Chisholm et al., 2006).

Activación de la resistencia

Luego del reconocimiento indirecto entre el efector del patógeno y la proteína R se activan las denominadas respuestas de resistencia.

La resistencia se caracteriza por la producción de especies reactivas de oxigeno, el refuerzo de la pared celular por la deposición de lignina, la respuesta hipersensible o muerte celular programada, la síntesis de metabolitos secundarios antimicrobianos (fitoalexinas), el aumento de ácido salicílico (SA) y la acumulación de proteínas PR (del inglés *pathogen-related*). Todos estos eventos tienen como objetivo restringir el crecimiento del patógeno (McDowell & Dangl, 2000).

A través de distintas aproximaciones genéticas han sido identificados varios intermediarios implicados en las respuestas de defensa. Dentro de los componentes identificados se encuentran dos lipasa PAD4 (del inglés *PHYTOALEXIN-DEFICIENT* 4) (Jirage et al., 1999) y EDS1 (del inglés *ENHANCED DISEASE SUSCEPTIBILITY* 1) (Falket et al., 1999) necesarias para la activación de las respuestas de defensas iniciada por las proteínas TIR-NBS-LRR (Aarts et al., 1998; Feys et al., 2001). Otros elementos que participan en el desarrollo de la respuestas de defensa son NPR1 (del inglés *NONEXPRESSER OF PR GENES* 1), involucrado en la regulación de la expresión de los genes PR en respuesta al aumento de SA (Cao et al., 1994) y la proteína NDR1 (del inglés *NON RACE-SPECIFIC DISEASE RESISTANCE* 1) necesaria para la producción de especies reactivas de oxigeno, inducida por la acumulación de SA (Century et al., 1995; 1997). Varios mutantes denominados genéricamente *pad* (del inglés *phytoalexin*

deficient), y *eds* (del inglés *enhanced disease susceptibility*), han sido aislados por presentar aumentada la susceptibilidad frente al ataque de patógenos, pero aún no ha podido ser identificada la secuencia mutada. Dentro de este grupo se encuentran *pad1* (del inglés *phytoalexin deficient* 1) y *eds4* (del inglés *enhanced disease susceptibility* 4) (Glazebrook et al., 1996).

Por otro lado, se ha demostrado que durante la interacción planta- patógeno ocurren cambios significativos en la expresión de numerosos genes probablemente implicados tanto en la transducción de la señal como en la respuesta de resistencia (Tao et al., 2003; Yang et al., 2000).

Materiales y Métodos

Selección de nuevos mutantes

La búsqueda de nuevos mutantes, afectados en las vías de señalización del fitocromo B, se llevo a cabo sobre una población de semillas de *Arabidopsis thaliana* del ecotipo columbia (col) mutagenizadas al azar por la inserción de un transgén (T-DNA) Weigel et al., 2000). El T-DNA posee 4 copias en *tandem* del *enhacer* de la transcripción del 35S del virus del mosaico y un casete que confiere resistencia al herbicida basta. Las semillas fueron esterilizadas superficialmente y sembradas en cajas plásticas transparentes con medio 1% agar de Murashige and Skog sin sacarosa. Las cajas fueron mantenidas durante 4 días en oscuridad a 4°C y luego transferidas a una cámara de crecimiento con fotoperíodo de luz blanca de 8 horas mantenida a 22°C. Al cabo de una semana de crecimiento fueron seleccionadas aquellas mutantes que presentaron hipocotilos largos.

Tratamientos lumínicos

A continuación se describen las fuentes de luz utilizadas en los distintos tratamientos lumínicos. La luz blanca fue provista por tubos fluorescentes philips TLD 15W/54. El rojo lejano continuo fue provisto por una lámpara incandescente de 150 W (Philips R95) en combinación con un filtro de acetato rojo y seis filtros de acrílico azul de 2 mm de espesor (Paolini 2031, La Casa del Acetato, Buenos Aires, Argentina). El rojo continuo fue provisto por diodos, que emiten luz en el rango de 635nm a 650 nm, la luz azul provista por una lámpara fluorescente blanca filtrada a través de un filtro azul de acrílico. Las distintas intensidades de rojo, rojo lejano y azul fueron logradas agregando hojas de papel sobre las cajas plásticas que contenían las plántulas y/o modificando la distancia entre las fuentes de luz y las cajas plásticas. Para el pulso de final del día de rojo lejano fue utilizada una lámpara incandescente en combinación con un filtro RG9 y para el pulso de final del día de rojo se utilizaron los diodos.

Material vegetal

En los experimentos realizados en esta tesis se empleó como material vegetal plantas de *Arabidopsis thaliana* del ecotipo columbia de los siguientes genotipos;

- salvaje, (WT)
- mutante de fitocromo B, *phyB-9*
- mutante por inserción de T-DNA en el gen At5g17880, SALK_023219, csa1-2
- mutante por inserción de T-DNA en el gen RPS4, SALK_012799, rps4
- mutante por inserción de T-DNA en el gen At5g44870, SALK_087262
- doble *phyBcsa1*, obtenida por cruzamiento entre *csa1* y *phyB*
- mutantes *eds4*, *pad1*, *ndr1*, *npr1* y *pad4*

Caracterización fisiológica de los mutantes

1. Experimentos de des-etiolación

Para los experimentos de des-etiolación se sembraron aproximadamente 20 semillas de cada mutante junto con el genotipo WT como control en cajas transparentes de plástico con 1 % de agar-agua. Para reducir la dormición las cajas conteniendo las semillas fueron incubadas en oscuridad a 4°C durante 4 días. Para homogeneizar la germinación las cajas fueron expuestas a un pulso de 2 horas de rojo seguido de 24 horas de oscuridad a 22 ° C. Luego, durante 3 días seguidos las cajas se expusieron a los distintos tratamientos lumínicos o fueron mantenidas en oscuridad como control del crecimiento. El largo del hipocotilo se midió con regla con una precisión de 0.5 mm y se promediaron los valores de las 10 plántulas más altas Cada tratamiento de luz se hizo por triplicado, el promedio de cada caja fue tomado como una repetición (Fankhauser & Casal, 2004).

2. Caracterización fenotípica de los mutantes

Las plantas de los distintos mutantes y del genotipo salvaje fueron cultivadas en recipientes plásticos de 250 cm³ con una mezcla de vermiculita, turba y perlita en iguales proporciones y crecidas en cámaras con fotoperíodos de 8 horas de luz blanca. La

medición del largo del pecíolo se realizó sobre el segundo par de hojas verdaderas utilizando una regla y en al menos 15 individuos de cada genotipo. Sobre estos mismos individuos se midió el ángulo formado por el segundo par de hojas verdaderas (como indicador de la posición de las hojas) utilizando un transportador.

c. <u>Medición del tiempo a floración</u>

Las plantas fueron cultivadas en recipientes plásticos de 250 cm³ con una mezcla de vermiculita, turba y perlita en iguales proporciones. Las plantas fueron crecidas tanto en cámaras con 16 horas de luz /8 horas de oscuridad (día largo) como en cámaras con 8 horas de luz/ 16 horas de oscuridad (día corto). A cada planta se le contó el número total de hojas principales en la roseta, como indicador de la duración de la fase vegetativa (Poethig, 1990). Se midieron alrededor de 10 plantas de cada genotipo por experimento y cada experimento fue repetido al menos 2 veces.

4. Experimentos para evaluar las respuestas frente la reducción en la relación R/ RL

Para evaluar la capacidad de *csa1* de responder frente a las reducciones en las relaciones R/RL debido a la presencia de plantas vecinas, se crecieron plantas del mutante y del genotipo salvaje durante 14 días en una cámara de luz blanca fluorescente y en la mañana del día 15 fueron colocadas en el campo o bien en un espacio abierto libre de plantas vecinas (R/RL = 1.1), o bajo un denso canopeo constituido por el pasto *Cynodon dactylon* (R/RL = 0.2). Luego de 5 horas se midió con la ayuda de un transportador el ángulo formado por el segundo par de hojas verdaderas.

Para examinar en condiciones controladas las respuestas a las variaciones el la calidad de la luz, las plántulas de los distintos mutantes y del genotipo salvaje fueron crecidas durante 3 días en un fotoperíodo de 8 horas de luz blanca finalizado con un pulso de 5 minutos de rojo (FDD R- final del día rojo) o un pulso de 5 minutos de rojo lejano (FDD RL- final del día rojo lejano). El pulso de FDD Rojo establece niveles elevados de Pfr en el período de oscuridad subsiguiente, por el contrario, el pulso de FDD RL estable bajos niveles de Pfr (Fankhauser & Casal, 2004). Al finalizar el tratamiento, la longitud de los hipocotilos fue medida con la ayuda de una regla. Al igual que en los experimentos de des- etiolación, cada tratamiento se realizó por triplicado y el promedio

de cada caja fue tomado como una repetición (Fankhauser & Casal, 2004). Las plántulas fueron transplantadas y las plantas crecidas durante 2 semanas bajos los mismos tratamientos de final del día. Luego a cada planta se le midió la longitud del pecíolo del segundo par de hojas y el ángulo formado por el segundo par de hojas.

5. Determinación del contenido de clorofila

Para la determinación del contenido de clorofila se utilizaron plantas de los distintos genotipos crecidas en cámara de luz blanca continua a 22°C durante dos semanas. Discos de hoja de 0.15 cm^2 fueron recortados con la ayuda de un sacabocados y colocados en 1 ml de *N*, *N'*-dimetil formamida e incubados en oscuridad a -4 °C por 3 d. Luego se retiró el material vegetal y se midió la absorbancia de la solución a 647 y 664 nm con un espectrofotómetro. Los niveles de clorofila fueron calculados de acuerdo siguiendo el protocolo de Moran (1982).

f. <u>Experimento para evaluar el gravitropismo negativo modulado por la</u> <u>luz</u>

En oscuridad los hipocotilos crecen en forma vertical, pero la luz roja y RL inhibe el gravitropismo negativo, resultando en un patrón de crecimiento desordenado. Esta inhibición del gravitropismo negativo es una respuesta mediada por fitocromos, ya que mutantes de fitocromos mantienen el gravitropismo negativo en luz Roja y los mutantes de *phyA* mantienen completamente el gravitropismo en RL (Hangarter, 1997; Poppe et al., 1996). Para cuantificar esta respuesta se sembraron los distintos genotipos mutantes y el genotipo salvaje en las cajas transparentes conteniendo 1 % de agar-agua, se incubaron a 4° C por 4 días y luego se les dio un pulso de R (2 h) para inducir la germinación. Las semillas fueron sembradas formando una línea sobre el agar. Las cajas fueron llevadas a oscuridad por 24 h a 25°C y por último se las ubicó de forma vertical (agar normal a la superficie del suelo) en oscuridad o en rojo continuo durante 3 días. Se midió el ángulo formado entre el hipocotilo y la vertical de 10 plántulas. Cada genotipo se sembró en una caja diferente y por triplicado (Fankhauser & Casal, 2004).

Clonado del locus mutado y genotipeado

La secuencia flanqueante de la inserción de T-DNA en el mutante *csa1-1* fue identificada siguiendo el protocolo de TAIL – PCR (del inglés thermal asimetric interlaced- PCR) descrito por Liu y colaboradores (1995). La inserción en *csa1* fue confirmada por PCR utilizando el par de *primers* específicos TDNACSA1 (5'-TAATAACGCTGCGGACATCTAC-3') y WTA (5'-CAACATCTGGAGAGCTAGTG-3'), la ausencia de la inserción en las plantas del genotipo salvaje fue confirmada también por PCR utilizando el *primer* WTA junto con el WTB (5'-GCTGGTGAAGTCTACTGACA-3'). En una población segregante F2, producto de la cruzada entre *csa1* y el genotipo salvaje se observó la perfecta co-segregación entre la presencia del T-DNA y el fenotipo mutante.

Genotipeado de los mutantes provistos por el *Arabidopsis Biological Resource Center* (ABRC).

Para genotipear los mutantes csal-2, rps4 y el mutante del gen At5g44870 se realizaron dos reacciones de PCR por separado, una para el alelo con la inserción de T-DNA y otra para el alelo salvaje. csal- 2 tiene una inserción en el cuarto exón del gen At4g177880, para detectar el TDN-A se utilizaron los primers: LBFGH (5'-CGCTTGCTGCAACTCTCTCAGG-3') 023219RP (5'y TGTTGTTCATTGCCCCAGGAT-3') y para amplificar el alelo salvaje se utilizó el primer 023219RP junto con el 023219LP (5'-CATCGCATCGTTTAAGCGCAC-3'). rps4 posee una inserción en el segundo exón del gen RPS4, para amplificar el alelo salvaje se utilizaron los primers 012799LP (5'- TGGCAGCTTTCTAAGCACCAAT-3') y el 012799RP (5'-GAGTTGGATCGCTTGCCTCAA-3'). Para detectar la inserción se utilizó el primer LBFGH junto con el 012799RP. Por último el mutante del gen At5g44870 posee una inserción de TDN-A en el segundo exón; el alelo salvaje fue amplificado utilizando los primers 087262LP (5'-CATCCTCCACCCAACTAGGGA-3') y 087262RP (5'-GCAAGTTCCTTGGCGAATGTG-3'); la inserción de T-DNA fue detectada con el par de primers LBFGH- 887262RP.

Recapitulación del fenotipo del mutante csa1

La construcción Δ CSA1 fue generada a través de la amplificación por PCR del locus At5g17880 con los siguientes primers: ∆CSA1-BamHI (5'-GACGGATCCATGACAAGCTCCTCCTG3-') que aparea desde el codón de inicio de la transcripción ATG y que contiene el sitio de corte reconocido por la enzima de restricción BamHI $\Delta CSA1$ -Stop (5'y GTAGTCGACTTACTTAATTCGGAGCTCGATTC -3'), que aparea en la secuencia flanqueante a la inserción de T-DNA de csal y donde se agregó el codón de fin de la transcripción y el sitio de corte reconocido por la enzima de restricción SalI. El fragmento de PCR generado fue introducido en el vector binario CHF3 (Staiger et al., 2003) entre el promotor 35S y el terminador rbcs. El plásmido resultante fue introducido en la cepa de Agrobacterium GV3101 y esta utilizada par transformar plantas de Arabidopsis del genotipo salvaje, ecotipo col siguiendo el protocolo de Clough y Bent (1998). Se obtuvieron 14 líneas trangénicas, de las cuales se utilizaron las dos con el fenotipo más marcado (WT/35S: ΔCSA1-1 y WT/35S: ΔCSA1-2) para la caracterización fenotípica. Para cuantificar los niveles de expresión del Δ CSA1 en las líneas trangénicas, se realizó una RT-PCR (ver más adelante) utilizando para amplificar la secuencia correspondiente al primer exón del At5g17880 el siguiente par de primers; CSA5RV (5'-CTTCGTCCTCATCGCTTTTC -3') v CSA5FW (5'-CAAGAGTTGAGTGTTCTGCTCG -3'). Como control de expresión se determino la expresión del gen de ACTINA 2 utilizando para la RT-PCR el siguiente par de primers: ACTINRV (5'- CCGATCCAGACACTGTACTTCCTT -3') y ACTINFW (5'-AGTGGTCGTACAACCGGTATTGTG - 3').

Complementación del fenotipo mutante csal a través de la expresión de RPS4

El vector pMD1 conteniendo el la secuencia genómica de RPS4 más 0.5kb río arriba de su extremo 5'y 1.5 kb río abajo de su extremo 3', cedido por Walter Gassmann (Division of Plant Sciences, University of Missouri), fue introducido en la cepa de *Agrobacterium* GV3101 y esta a su vez utilizada para transformar plantas de *Arabidopsis* del genotipo mutante *csa1* (Clough & Bent, 1998). Se obtuvieron alrededor de 20 líneas trangénicas sobre-expresantes de *RPS4*, de las cuales dos, *csa1/35S:RPS4-1* y *csa1/35S:RPS4-2*, fueron utilizadas para los experimentos fisiológicos. Plantas del genotipo salvaje fueron también transformadas con la cepa de *Agrobacterium* con el vector para sobre-expresar *RPS4* y de las 12 líneas trangénicas obtenidas, dos (WT/35S:RPS4-1 y WT/35S:RPS4-1), fueron utilizadas para los experimentos fisiológicos. Para cuantificar los niveles de expresión de *RPS4* en las distintas líneas trangénicas, se realizó una RT-PCR (ver más adelante) utilizando el siguiente par de *primers*; RPS4RV (5'-AGGTGCAGGTCACTGACAAG-3') y RPS4FW (5'-GACAGCCATTGAAGTGATGC -3').

Experimento para evaluar la susceptibilidad de las plantas frente a la infección con bacterias

El experimento para determinar el crecimiento de las bacterias *Pseudomonas syringae* pv. tomato DC3000, con el factor de avirulencia avrRpt2, sobre plantas de los genotipos salvaje, *csa1* y *phyB* fue realizado siguiendo en protocolo descrito por Tornero y Dangl (2001).

Caracterización genética y molecular de los mutantes

1. Cuantificación de la expresión por RT-PCR

Para cuantificar los niveles de expresión de los distintos genes en los diferentes genotipos se llevo a cabo la extracción total de ARN utilizando el *RNeasy Miniprep kit* (Quiagen). Para la reacción de retro transcripción (RT) con la enzima *ImProm-II Reverse Transcriptase* (Promega) se utilizó 1ug de ARN previamente tratado con *DNasa RNasa- Free* (Promega). Los productos de PCR fueron corridos en un gel de agarosa 1.5% y transferidos a una membrana *Hybon H*+ (Amersham). La preparación de las sondas y la hibridación y los lavados de las membranas fueron realizados siguiendo los pasos descriptos en el protocolo del kit *AlkPhos Direct* (Amersham). Para la generación y la detección de la señal por quimioluminiscencia se utilizó la solución *CDP-Star*

(Amersham). Las membranas fueron expuestas a placas radiográficas *Kodak BioMax Light Film* y el revelado se realizó siguiendo el protocolo estándar.

A continuación se detallan los pares de *primers* utilizados en las RT-PCR para la detección de los distintos genes.

Primer exón de CSA1 (río abajo de la inserción de T-DNA de csa1): CSA5RV y CSA5FW.

Cuarto exón de *CSA1* (río arriba de la inserción de T-DNA de *csa1* y río arriba de la inserción de T-DNA de *csa1-2*): CSA3RV (5'- GGATGGAACTCTGTTCTCTCAGG-3') y CSA3FW (5'- GCTTAAACGATGCGATGAGAGTTG -3').

At5g17870: 17870RV (5'- CACGCGGCCGCCTAGGCAGCGCCTGAAACCAA -3') y 17870FW (5'- CACGGATCCATGTCTGTGTCAGCGATCTT-3').

At5g17890: 17890RV (5'- TTAAGGAAGGACTCTGCAGCAAGG -3') y 17890FW (5'- TTAACCAGCCACCAATCAAAGATC -3').

HAT4: HAT4RV (5'- CATGAGCCACCTGACCAGCACA -3') y HAT4FW (5'-GTTTCAGAACAGACGAGCAAGAAC -3').

 Experimento para evaluar los cambios globales en la expresión de genes en los genotipos mutantes *csa1* y *phyB* con respecto al genotipo salvaje

Semillas de los genotipos *phyB*, *csa1* y WT fueron esterilizadas superficialmente y sembradas en placas de Petri que contenían medio MS- agar 1.5%. Las cajas fueron colocadas en oscuridad a 4°C durante 4 días y luego expuestas a una fuente de luz blanca continua por 7 días. Luego las plántulas fueron cosechadas y extraído su ARN utilizando el *RNeasy Miniprep kit* (Quiagen). El ARN fue procesado según el protocolo del *Gene Chip Expression Analysis* (Affymetrix) y utilizado para hibridar los *microchips* desarrollados por la compañía affymetrix que contienen oligonucleótidos de ADN que representan aproximadamente 24000 genes diferente.

Para el analizar el efecto del genotipo sobre los niveles de expresión se realizó una ANOVA y se seleccionaron aquellos genes que presentaron un valor de p menor a 0.05. Los 359 genes seleccionados fueron agrupados en *clusters* siguiendo el procedimiento descrito por De Smet y colaboradores (2002).

Para corroborar los resultados, se cuantificó la expresión de *HFR1*, *At4g28720* y *PIF3* por medio de RT-PCR. El par de *primer* utilizado en cada caso fue el siguiente: para *HFR1*, HFR1RV (5'- CTGTTGACATCATCTGAAGT-3') y HFR1FW (5'- TCAGAGAGATCAGATCATCG-3'); para el gen *At4g28720*, 28720RV (5'- GAGCCTATGTCTTGTGCGAT -3') y 28720FW (5'- AGCCTTCCATGGTCGTGAGA -3'); para *PIF3*, PIF3RV (5'- GATGAACCACCACGGCTCAA -3') y PIF3FW (5'- AAGGAGACGGCGTGATAGGA -3') y par el gen de *ACTINA 2*, ACTINRV y ACTINFW.

3. Extracción de proteínas e Inmunoblotting

Los extractos proteicos fueron preparados siguiendo el protocolo descrito por Martínez- García y colaboradores (1999) y corridos en un gel SDS-PAGE (de 1.5 –mmde espesor, 4.5/7.5%). Las proteínas fueron transferidas por *electroblotting* desde el gel hacia los filtros de nitrocelulosa y PHYB fue detectado utilizando un anticuerpo monoclonal provisto por Peter Quail (University of California, Berkeley, and U.S. Department of Agriculture Plant Gene Expression Center, Albany, CA).

Localización intracelular del fitocromo B en csa1

Para estudiar la localización celular de PHYB en el mutante *csa1*, introdujimos por medio de cruzamientos el gen reportero *GFP* unido al gen de *PHYB* (GFP-PHYB) en el *background csa1*. Las hojas de las plantas con PHYB-GFP en los *backgrounds csa1* y WT (control positivo), así como también hojas de plantas del genotipo salvaje (control negativo), fueron teñidas con una solución 0.1uM de ioduro de propidio para poder visualizar los núcleos y las paredes celulares. La fluorescencia de la GFP y del ioduro de propidio fue examinada con el microscopio confocal láser Olympus BX61. El GFP se excitó con el laser de 488nm y la detección fue en el rango de 500 a 530 nm. La excitación del ioduro de propidio se realizó con el láser de 543 nm para la detección a 560 nm.
Experimento para cuantificar los cambios de expresión de *PIF3* y *PIF4* luego de la infección con *Pseudomonas*.

Plantas del genotipo salvaje de Arabidopsis thaliana del ecotipo col, fueron crecidas durante 17 días en cámaras con un fotoperíodo de 16 horas de luz blanca. A la mañana del día 18 las plantas fueron infectadas con una solución acuosa 2x10⁷ de bacterias P. svringae, DC3000, con el avrRPt2, una solución $2x10^7$ de bacterias P. syringae, DC3000, sin el avrRPt2, o con la solución control con agua. Luego de 9 horas las plantas fueron cosechadas. Para la cuantificación de los ARN mensajeros se siguió el protocolo descrito anteriormente. Para las RT-PCR se utilizaron los siguientes pares de PIF3, PIF3RV PIF3FW, PIF4,PIF4RV primers: y (5'-CGACTTGTTACCGATTGCATCTGA -3') PIF4FW (5'y GTTAAGCCTAAGGCCTGTCC -3').

Resultados - Capítulo I

Caracterización fisiológica del mutante csal

Descripción fenotípica

El mutante *csa1* (del inglés *constitutive shade avoidance* 1) fue aislado por desarrollar el **síndrome de escape al sombreado** aún creciendo en condiciones no inductivas, es decir en un ambiente donde la relación Rojo/Rojo Lejano (R/RL) era alta (mayor a 1). Al ser cultivadas en fotoperíodos de 8 horas de luz blanca (elevada relación R/RL) las plantas del genotipo *csa1* presentaron, al igual que el mutante *phyB*, pecíolos alargados, hojas en posición erecta y floración acelerada (Figura 1).

Figura 1. *csa1* y *phyB* desarrollan el síndrome de escape al sombreado en ambientes con elevada relación R/RL. A Plantas de 30 días. B Longitud de los pecíolos. C Angulo entre las hojas. D Número de hoja en la roseta como indicador del tiempo de floración (mayor numero de hojas indica floración más tardía). WT: genotipo salvaje.

Respuesta de csal a señales lumínicas asociadas al sombreado

Para estudiar si la capacidad de responder a la presencia de plantas vecinas se encontraba alterada en la mutante, llevamos a cabo un experimento en donde plantas del genotipo mutante y del genotipo salvaje (WT) fueron colocadas en un espacio libre de plantas vecinas (bajo la radiación solar, R/RL ~1.1), o bajo un denso canopeo (R/RL ~ 0.2). Al cabo de cinco horas, las plantas del genotipo salvaje ubicadas bajo el canopeo respondieron a la presencia de vecinas ubicando sus hojas en una posición más erecta que las de las plantas que habían sido expuestas directamente a la radiación solar. Sin embargo, en el genotipo mutante no se observó una respuesta similar; la posición de las hojas de las plantas ubicadas bajo el canopeo resultó ser igual a la de las plantas situadas en el espacio libre de vecinas (Figura 2).

Figura 2. Respuesta el sombreado impuesto por plantas vecinas. Ángulo entre las hojas de plantas ubicadas bajo un denso canopeo o en un espacio libre de vecinas. (Ángulos menores indican hojas en posición más erecta).

El sombreado impuesto por un canopeo produce cambios no sólo en la calidad de la luz (reducción de R/RL), sino que también provoca una disminución en la radiación total incidente (Franklin & Whitelam, 2005). Para analizar específicamente las respuestas a las variaciones en la calidad de la luz realizamos un experimento bajo dos condiciones controladas que simulaban presencia o ausencia de vecinas. Las plantas de los genotipos salvaje y mutante fueron crecidas en períodos de 8 horas de luz blanca finalizados con un pulso de 5 minutos de Rojo, que establece elevados porcentajes de fitocromo en su forma activa Pfr (simula ambiente libre de vecinas), o 5 minutos de RL que por el contrario establece bajos niveles de Pfr durante el período de oscuridad siguiente (simula presencia de vecinas). En las plantas del genotipo salvaje el tratamiento con RL al final del período de luz promovió considerablemente el crecimiento de hipocotilos y pecíolos mientras que en las plantas del genotipo *csa1*, estas respuestas fueron menores o nulas (Figura 3).

Figura 3. Respuesta al sombreado simulado con los pulsos de final del día de RL. A Longitud del hipocotilo en plántulas crecidas durante 3 días en fotoperíodos de 8hs de luz blanca finalizados con un pulso de 5 minutos de Rojo (FDD- R) o RL (FDD- RL). **B y C** Plantas crecidas durante 2 semanas en fotoperíodos de 8hs de luz blanca terminados con FDD- R o FDD- RL. **B** Longitud del pecíolo.

Análisis de la especificidad espectral de las alteraciones en las respuestas a la luz en csal

Los resultados de las figuras 2 y 3 indican que en *csa1* está afectada la capacidad de responder a las variaciones en las relaciones R/RL del ambiente y por lo tanto es incapaz de responder al sombreado impuesto por las plantas vecinas.

Para analizar la especificidad de las alteraciones en la percepción y/o transducción de las señales lumínicas se estudió comparativamente en plántulas del genotipo salvaje y del genotipo mutante *csa1*, la respuesta de des-etiolación bajo distintos flujo de Rojo, RL y A. *csa1*, al igual que *phyB*, resultó ser hiposensible (presentó menor inhibición de la elongación del hipocotilo que las plántulas del genotipo salvaje y por lo tanto hipocotilos más largos) a todas las intensidades de Rojo, pero se comportó de manera similar al genotipo salvaje cuando las plántulas fueron crecidas en oscuridad o bajo diferentes intensidades de RL o A durante 3 días (Figura 4).

Figura 4. A Plántulas de los genotipos WT, *phyB* y *csa1* crecidas durante 3 días en Rojo, A, RL y oscuridad. B Longitud del hipocotilo (relativa a la longitud en oscuridad) en función de la intensidad de Rojo, A y RL.

La mutación csal afecta específicamente la señalización del phyB

Dada las similitudes fenotípicas y fisiológicas entre *csa1* y *phyB* decidimos investigar la relación entre PHYB y CSA1. Para ello generamos la doble mutante *csa1phyB* y comparamos su comportamiento con los de las mutantes simples *csa1* y *phyB*. La mutación *csa1* promovió por si sola la elongación de hipocotilos y la ubicación de las hojas en una posición erecta en ambientes con relaciones R/RL elevadas; sin embargo no tuvo efectos adicionales sobre estas respuestas cuando estaba presente en el *background* mutante *phyB* (Figura 5).

Figura 5. *csa1* afecta específicamente la señalización de *phyB*. A Longitud del hipocotilo de plántulas de los genotipos WT, *phyB*, *csa1* y del doble mutante *phyBcsa1*, crecidas durante 4 días en cámara de día corto. B Ángulo formado por el segundo par de hojas en plantas de los genotipos WT, *phyB*, *csa1* y del doble mutante *phyBcsa1*, crecidas durante 2 semanas en cámara de día corto.

Estas observaciones, junto con los resultado anteriores, indican que la mutación *csa1* altera el desarrollo de *Arabidopsis* afectando específicamente la vía de señalización del fitocromo B.

Caracterización de la alteración genética responsable del fenotipo mutante

Identificación de la región flanqueante a la inserción del T-DNA en csal

La búsqueda de mutantes se realizó sobre una colección de semillas mutagenizadas (Weigel et al., 2000), provista por el *Arabidopsis Biological Resource Center*. La mutagénesis es el resultado de la introducción de un transgén (T-DNA que contiene 4 copias de la secuencia promotora de la transcripción del 35S del virus del mosaico), que al ser incorporado al genoma de la planta puede interrumpir secuencia de ADN codificante (Feldman et al., 1994). Dado que el lugar de inserción de los transgenes es aleatorio, esta estrategia es potencialmente útil para encontrar mutantes en cualquier gen presente en el genoma de las plantas de *Arabidopsis*.

Para identificar el sitio de inserción del transgén (T-DNA) seguimos el protocolo de Liu y colaboradores (1995) y encontramos que en la mutante *csa1* el T-DNA está ubicado en el segundo exón del gen 17880 del cromosoma V (AT5g17880), el cual codifica para una proteína del tipo TIR-NBS-LRR (Figura 6).

Figura 6. Representación esquemática del sitio de inserción del T-DNA en el mutante csal.

En la población F2, producto del cruzamiento entre el genotipo salvaje y *csa1*, la resistencia al herbicida basta mostró una segregación 3:1. Este resultado sugiere que la mutante *csa1* contiene una única inserción de T-DNA. La inserción en el gen At5g17880 (*CSA1*) fue corroborada mediante reacciones de PCR y la perfecta co- segregación entre el fenotipo mutante y la inserción del trangén fue observada en los 220 cromosomas analizados de la población F2.

A continuación decidimos estudiar la respuesta al rojo en el mutante *csa1-2*. Este mutante proviene de una colección de semillas mutagenizadas también por la inserción de un trangén, pero en este caso el T-DNA no posee secuencias promotoras de la transcripción. *csa1-2* posee una inserción de T-DNA en el cuarto exón del *At5g17880* (Figura 7), que provoca una disminución del ARN mensajero de *CSA1* a niveles casi indetectables (Figura 7). Las plántulas del mutante *csa1-2* desarrollaron hipocotilos sólo levemente más largo que los de las plántulas del genotipo salvaje cuando fueron crecidas en Rojo durante 3 días (Figura 7).

El fenotipo débil del mutante por pérdida de función csa1-2, sumado al hecho de que csa1 es una mutación semi-dominante (Figura 8), fueron indicadores de que el fenotipo de csa1 no podía deberse únicamente a una pérdida de función por la ausencia del At5g17880, sino probablemente a una ganancia de función .

Figura 7. El mutante *csa1-2*. A Representación esquemática de la inserción de T-DNA. B Niveles de expresión de *CSA1* en el genotipo WT y en *csa1-2* con *primers* para la RT-PCR que amplifican río arriba y río debajo de la inserción de T-DNA de *csa1-2*. C Longitud del hipocotilo (relativa a oscuridad) en plántulas crecidas durante 3 días en rojo.

Figura 8. La mutación *csa1* es semi-dominante. **A** Plantas de los genotipos CSA1CSA1 (homocigota WT), *csa1csa1* (homocigota mutante) y CSA1csa1 (heterocigota) crecidas durante 15 días en cámara de día largo. **B** Longitud del pecíolo.

Dado que T-DNA inserto en el genoma de *csa1* posee un fuerte *enhancer* de la transcripción, la ganancia de función podía se el resultado de la sobre-expresión de los genes flanqueantes del *At5g17880* (*At5g17870* y *At5g17890*), o del efecto negativo provocado por la expresión de una proteína At5g17880 truncada.

Para dilucidar a cuál de estas causas se debía la ganancia de función en la mutante *csa1* cuantificamos la expresión de los genes flanqueantes y la del *At5g17880* en plántulas del genotipo salvaje y del genotipo mutante y encontramos que:

- la expresión de los genes flanqueantes, *At5g17870* y *At5g17890*, no está alterada en la mutante *csa1* (Figura 9).
- en el genotipo salvaje pudimos detectar expresión del *At5g17880*, por RT-PCR, utilizando *primers* diseñados para amplificar tanto río arriba como río abajo del sitio de inserción del T-DNA (Figura 9). Por el contrario en el mutante *csa1* sólo detectamos la expresión cuando utilizamos los *primers* diseñados para amplificar la región río arriba del sitio de inserción del trangén (Figura 9).

Figura 9. Análisis de la expresión por RT-PCR de los genes que flanquean al *At5g17880* y del primer y cuarto exón del *At5g17880* (*CSA1*) en plántulas WT y *csa1*.

Resultados- Capítulo I

Estos resultados sugieren que el fenotipo de *csa1* es el resultado de la expresión de un ARN mensajero truncado, que probablemente podría codificar para una proteína truncada de alrededor de 200 amino ácidos.

Expresión del gen truncado. Recapitulación del fenotipo mutante.

Para corroborar la hipótesis del mensajero/ proteína truncado/a generamos plantas trangénicas que sobre-expresasen el mensajero truncado (desde el codón de inicio de la transcripción del *At5g17880* hasta el sitio de inserción del T-DNA) en un *background* WT (Figura 10).

Las plántulas de líneas trangénicas independientes, WT/35S: $\Delta CSA1-1$ y WT/35S: $\Delta CSA1-2$, resultaron ser hiposensible al Rojo pero no presentaron diferencias con el WT al ser crecidas por 3 días bajo luz azul continua (Figura 10). Además al ser crecidas en luz blanca (relación R/RL elevada), desarrollaron el síndrome de escape al sombreado, hipocotilos alargados y floración temprana, aún en condiciones no inductivas (Figura 10). Por otro lado las plántulas trangénicas, al igual que *csa1*, no mostraron una inhibición al gravitropismo negativo del hipocotilo en luz roja, como si lo hicieron las plántulas del genotipo salvaje (Figura 10).

Estos resultados indican que el fenotipo de la mutante *csa1* es causado, al menos en gran parte, por la expresión de una proteína truncada de alrededor de 210 aminoácidos donde el TIR es el único dominio completo.

Figura 10. La expresión del 35S: Δ CSA1 en el *background* WT genera plantas con un fenotipo similar al del mutante *csa1*. **A** Nivel de expresión de *CSA1* en las plantas trangénicas y en el WT, utilizando en la RT-PCR *primers* para amplificar el primer exón del *At5g17880*. **B** Longitud del hipocotilo (relativa a oscuridad) de plántulas de los genotipos WT, *csa1* y de dos líneas trangénicas, crecidas durante 3 días en Rojo o Azul. **C** Longitud del hipocotilo de plántulas crecidas durante 4 días en cámara de día corto de luz blanca. **D** Número de hoja en la roseta, de plantas crecidas en fotoperíodos de 16 horas de luz blanca, como indicador del tiempo de floración. **E** Orientación del crecimiento de los hipocotilos de plántulas crecidas durante 3 días en forma vertical

Otras proteínas TIR-NBS -LRR implicadas en las respuestas a la luz.

CSA1 es uno de los 90 genes TIR-NBS-LRR presentes en el genoma de *Arabidopsis* (Holt et al., 2003). Para analizar si otros miembros de esta familia TNL están implicados en las vías de señalización de luz estudiamos el efecto del Rojo en el

proceso de des-etiolación de plántulas mutantes *rps4* y en mutantes del gen *At5g44870*. *RPS4* y el gen *At5g44870* son los miembros de la familia TIR-NBS-LRR que poseen el mayor porcentaje de similitud de secuencia con *CSA1* (Meyers et al., 2003).

Los resultados de este experimento muestran que las plántulas de ambas mutantes nulas son levemente hiposensibles al rojo y desarrollan hipocotilos más largos que las plántulas del genotipo salvaje (Figura 11).

Figura 11. Longitud del hipocotilo (relativa a oscuridad) de plántulas de los genotipos WT, *rps4* y mutante de *At5g44870*, crecidas durante 3 días en rojo.

Rescate del fenotipo salvaje.

En los animales los dominios TIR transducen las señales a través de la formación de homodímeros o heterodímeros con dominios TIR de moléculas que funcionan como adaptadores (Yamamoto et al., 2004). Dupraz y colaboradores (2001), reportaron que proteínas truncadas que sólo poseen el dominio TIR funcionan como dominantes negativos que bloquean la señalización iniciada por los dominios TIR de los receptores de interleuquina 1 (IL-1R) de mamíferos. En base a estas evidencias especulamos que algo similar podría estar ocurriendo en el mutante *csa1*, donde el dominio TIR de la proteínas al forman heterodímeros no funcionales con sus dominios TIR. RPS4 es una de las posibles candidatas a formar heterodímeros con la proteína CSA1 truncada. Si la proteína truncada CSA1 interfiriere con el normal funcionamiento

de RPS4, esta situación podría revertirse al aumentar en el genotipo mutante los niveles de RPS4. Con el objetivo de poner a prueba esta hipótesis generamos plantas trangénicas que sobe-expresasen el gen *RPS4* en el *background csa1* (Figura 12).

Al ser crecidas en luz blanca (relación R/RL elevada) las plantas trangénicas *csa1/35S:RPS4* presentan un fenotipo similar al de las plantas del genotipo salvaje y a diferencia del mutante *csa1* tienen pecíolos cortos, hojas no erectas, una coloración verde oscuro y floración no adelantada. (Figura 12).

La sobre-expresión de *RPS4* restituyó la capacidad de responder a las variaciones de las relaciones R/RL del ambiente. En la figura 12 se observa que las plántulas trangénicas *csa1/35S:RPS4* responden a la reducción de los niveles de Pfr, impuestos por un pulso de RL al final del período de luz, elongando sus hipocotilos.

Por otro lado las sobre-expresantes perdieron la hiposensibilidad al rojo y recuperaron la respuesta de inhibición del gravitropismo negativo de los hipocotilos en luz roja (Figura 12).

Finalmente para corroborar que la sobre-expresión de *RPS4* por si sola no provocaba el desarrollo de plantas enanas (con el fenotipo contrario al del mutante *csa1*) generamos plantas trangénicas que sobre-expresaban el gen *RPS4* en el *background* WT (Figura 13). En estas nuevas líneas trangénicas (WT/35S:RPS4) la sobre-expresión del *RPS4* no tuvo ningún efecto en la des-etiolación en rojo (Figura 13) ni en la morfología de la planta adulta (datos no mostrados). Este último resultado sugiere que la restitución del fenotipo salvaje observado en las plantas trangénicas *csa1/35S:RPS4* se debe a que los elevados niveles de *RPS4* estarían atenuando el efecto negativo que tiene la proteína truncada sobre el RPS4 en *csa1* y no a un efecto no específico de RPS4 sobre la elongación celular.

Figura 12. La sobre-expresión de RPS4 en el *background csa1* restituye el fenotipo salvaje. A Niveles de expresión de RPS4 determinados por RT-PCR. **B**. Plantas de 2 semanas de los genotipos csa1, *csa1/35S:RPS4* y WT. **C** Número de hoja en la roseta, de plantas crecidas en fotoperíodos de 16 horas de luz blanca, como indicador del tiempo de floración. **D** Contenido de clorofila en hojas de plantas crecidas en fotoperíodos de 16 horas de luz blanca. **E** Longitud del hipocotilo en plántulas crecidas durante 3 días en fotoperíodos de 8hs de luz blanca finalizados con un pulso de 5 minutos de Rojo (FDD- R) o RL (FDD- RL). **F** Longitud del hipocotilo (relativa a oscuridad) de plántulas crecidas en rojo durante 3 días. **G** Orientación del crecimiento de los hipocotilos de plántulas crecidas durante 3 días en rojo, en cajas plásticas ubicadas en forma vertical.

Figura 13. La sobre-expresión de *RPS4* en el *background* WT no tiene efectos sobre el fenotipo de las plantas. A Niveles de expresión de *RPS4*, determinados por RT-PCR. B Longitud del hipocotilo (relativa a oscuridad) de plántulas crecidas en rojo durante 3 días.

Experimento para evaluar el efecto de infección con patógenos en csa1

Dado que las proteínas TIR-NBS-LRR están implicadas en el reconocimiento de patógenos y en el desencadenamiento de la respuesta de defensa, nos preguntamos si la mutante *csa1* tendría afectada la capacidad de responder frente al ataque de los patógenos. Realizamos un experimento donde infectamos plantas de los genotipos mutantes *csa1* y *phyB* y del genotipo salvaje con la cepa DC300 de *P. syringae* y cuantificamos la susceptibilidad frente al ataque del patógeno de cada genotipo. *phyB* fue el genotipo más susceptible ya que permitió el desarrollo del mayor número de bacterias luego de la infección y *csa1* resultó ser significativamente más susceptible que el genotipo salvaje (Figura 14).

Figura 14.Crecimiento de la cepa avirulenta de *P. syringae* sobre plantas de los genotipos WT, *phyb* y *csa1* a los 3 días de infección.

Resultados- Capítulo II

Efecto de las proteínas TIR-NBS-LRR en la señalización de PHYB

Los resultados expuestos en el capítulo anterior sugieren que *csa1* afecta la vía de señalización del fitocromo B al interferir con la función/acción de RPS4 y posiblemente con otras proteínas TIR-NBS-LRR.

El efecto negativo de *csa1* sobre la señalización del fitocromo puede deberse a que *csa1* afecte los niveles de phyB, *csa1* afecte la localización subcelular de phyB, *csa1* provoque una disminución en la estabilidad de la forma Pfr del phyb o a que *csa1* afecte algún componente de la vía de señalización del fitocromo.

Para poder dilucidar de qué manera *csa1* afecta la señalización de phyB llevamos a cabo diferentes experimentos. Por medio de la técnica de Western Blot cuantificamos los niveles de proteína PHYB en *csa1*, utilizando extractos protéicos de plantas WT y de plantas *phyB* como controles positivo y negativo respectivamente. La figura 15 muestra que los niveles de PHYB no están alterados en *csa1*.

Figura 15. Niveles de PHYB en plántulas crecidas en luz blanca

Para estudiar la localización celular del fitocromo B en el mutante *csa1*, introdujimos por medio de cruzamientos el gen reportero *GFP* del (inglés green fluorescense protein) unido al gen de *PHYB* (GFP-PHYB) en el *background csa1*. Al igual que en las plantas WT (datos no mostrados), en *csa1*, el PHYB se localiza en los núcleos celulares (Figura 16).

Figura 16. La localización intracelular del PHYB no está afectada en *csa1*. Imagen de microscopia confocal mostrando en **A** la fluorescencia de la GFP (verde) para indicar la localización de PHYB y en **B** la fluorescencia del ioduro de propidio (rojo) para indicar la localización de los núcleos y en

Por otro lado, si la mutación de *csa1* estuviese reduciendo la estabilidad de la forma Pfr e incrementado su reversión en oscuridad a la forma Pr, la diferencia en la longitud del hipocotilo entre el genotipo salvaje y el mutante debería reducirse al aumentar la intensidad /o flujo / de luz roja ya que en estas condiciones la forma Pfr se regeneraría a una tasa más elevada. La figura 17 muestra que las diferencias entre la longitudes de los hipocotilos de se mantienen constantes aun bajo flujo de rojo extremadamente elevados. Este resultado sugiere que el fenotipo observado en *csa1* no se debe a una reducción en la estabilidad de la forma biológicamente activa del fitocromo B.

Figura 17. Longitud del hipocotilo (relativa a oscuridad) en función de la intensidad de rojo.

Las evidencias experimentales de la sección anterior sumadas al hecho que de que no pudimos detectar la interacción directa entre CSA1 y PHYB por medio de ensayos de doble híbrido (datos no mostrados), indican que el fenotipo observado en la mutante se debe a alteraciones en la vía de señalización del fitocromo B.

Los cambios morfológicos gatillados por las variaciones en la relación R/RL del ambiente son acompañados por cambios en la expresión de numerosos genes. El aumento en los niveles de expresión del factor de transcripción *HAT4 (ATHB-2)* es uno de los primeros eventos que tiene lugar frente a la reducción de la relación R/RL y está regulado en forma directa por la acción de los fitocromos (Carabelli et al., 1996; Devlin et al., 2003).

En el mutante *csa1* cuantificamos los niveles de expresión del *HAT4*, en plantas crecidas en cámara de día corto (8 horas de luz blanca/ 16 horas de oscuridad) a las que durante 2 semanas se las sometió a un pulso de Rojo o RL al final del período de luz y los comparamos con los niveles detectados en las plantas del genotipo salvaje. En el genotipo salvaje el nivel de *HAT4* aumentó dramáticamente luego del tratamiento con RL. En *csa1* el tratamiento de RL tuvo el mismo efecto, pero en este genotipo la expresión de *HAT4* era elevada aún cuando, a través del pulso de rojo, las plantas se habían desarrollado en un ambiente con altas relaciones R/RL (Figura 18).

Figura 18. Los niveles de expresión de *HAT4*, detectados por RT-PCR, están aumentados en *csa1*, en comparación al WT, en plantas crecidas en luz blanca y expuestas a un pulso de rojo antes de ser cosechadas.

Dado que el mutante tiene afectada específicamente la vía de señalización del fitocromo B, nos preguntamos si el rojo tenía algún efecto sobre la expresión de los genes TIR-NBS-LRR. Plántulas del genotipo salvaje fueron crecidas en oscuridad durante 6 días, al comienzo del séptimo día un grupo de plántulas fue irradiado con rojo durante 24 horas, mientras que el grupo control permaneció en oscuridad. Luego las plántulas de ambos tratamientos fueron cosechadas simultáneamente. La figura 19 muestra que los niveles del mARN de *CSA1* aumentan levemente luego de un tratamiento de 24 horas de rojo comparados los niveles detectados en el control de oscuridad.

Figura 19. Los niveles de expresión de *CSA1*, detectados por RT-PCR, aumentan levemente en plántulas etioladas del genotipo WT, luego de un tratamiento de 24 horas de rojo, en comparación con las plántulas mantenidas en oscuridad.

Análisis global de cambios en la expresión génica

El análisis de los perfiles globales de expresión permite identificar genes que cambian su expresión debido a la existencia de alguna mutación. En ese contexto, los cambios en los niveles de expresión pueden ser atribuidos a que dichos genes estarían involucrados funcionalmente o actuarían como blancos de la actividad normal de los genes o proteínas alterados en los distintos mutantes.

Con el objetivo de identificar /detectar/a los genes cuya expresión se ve afectada por la mutación *csa1* y poder de este modo construir un modelo que explique cual es el papel de las proteínas con dominios TIR en las vía de transducción de las señales percibidas por el fitocromo B realizamos un análisis comparativo de los cambios de expresión global que ocurren como resultado de las mutaciones *csa1* y *phyB*. Utilizando la técnica de *microarrays* identificamos 359 genes cuya expresión varía significativamente entre al menos 2 de los 3 genotipos analizados (*phyB*, *csa1*, WT). Dentro de este grupo de genes se encuentran varios factores de transcripción del tipo MYB, WRKY y bHLH, y genes que codifican para proteínas con dominios zinc finger y F-box, sugiriendo que las mutaciones de *phyB* y *csa1* alteran distintas cascadas transcripcionales. Los 359 genes fueron agrupados 6 *clusters* de acuerdo a su nivel de expresión en los distintos genotipos (Figura 20). El apéndice 1 contiene la lista de los genes incluidos dentro de cada *cluster*.

Figura 20. Expresión normalizada a la media de los genes incluidos en los distintos clusters

El análisis por clusters revela la existencia de tres grandes categorías de genes. La primera esta representada por los *clusters* 1 y 5 y agrupa aquellos genes cuyo nivel de expresión varía significativamente en los genotipos mutantes con respecto al genotipo salvaje, la segunda categoría abarca los genes que poseen un patrón similar de expresión

en *csa1* y en el genotipo salvaje pero diferente en el mutante *phyB* (*clusters* 2 y 3). En la última categoría están los genes cuya expresión varía solamente en *csa1* (*clusters* 4 y 6).

El hecho de que un gran número de genes se comporte de manera similar en los dos mutantes y diferente en el genotipo salvaje se correlaciona con lo observado a nivel morfológico, fisiológico y molecular. En el cluster 1 se encuentran dos genes que codifican para las proteínas del tipo MAD-box FLC (del inglés *FLOWERING LOCUS C*) y MAF1 (del inglés *MADS AFFECTING FLOWERING* 1). Estos factores de transcripción funcionan como represores de la floración (Michaels & Amasino, 1999; Scortecci el al., 2003) y sus reducidos niveles de expresión en las mutantes podrían explicar en parte la floración temprana observada en *phyB* y *csa1*.

Dentro del cluster 5 está el factor de transcripción del tipo bHLH *HFR1* (del inglés *LONG HYPOCOTYL IN FAR-RED*). La expresión de este gen aumenta rápidamente cuando disminuyen las relaciones R/RL del ambiente. HFR1 actúa como regulador negativo del síndrome de escape al sombreado como mecanismo para asegurar que frente a situaciones prolongadas de bajas R/RL, cuando la planta no logra "escapar" exitosamente del sombreado impuesto por el canopeo, no ocurra una respuesta exagerada (Sessa et al., 2005). Los niveles elevados de *HFR1* en *phyB* y *csa1* en condiciones no inductivas (luz blanca) (Figura 21) indican que las mutaciones afectan no sólo la vía que regula en forma positiva las respuestas frente a las reducciones en el las relaciones R/RL del ambiente (a través del *HAT4*) sino también la vía que regula negativamente el síndrome de escape al sombreado.

La existencia del segundo grupo de genes cuya expresión varía con respecto al WT en *phyB* pero no en *csa1* indica que si bien la mutación csa1 afecta en forma temprana la vía de señalización del fitocromo B no lo hace en forma completa total, o por lo menos no tiene un efecto marcado sobre todas sus ramas.

El gen *At4g28720*, que pertenece al cluster 2, codifica para una monoxigenasa similar a las proteínas de la familia YUCCA. Los miembros de está familia están implicados en la biosíntesis de auxinas y en el desarrollo de los órganos vegetativos y reproductivos (Cheng et al., 2006; Zhao et al., 2001). El elevado nivel de expresión de

este gen en el mutante *phyB* (Figura 21) es una evidencia más de la estrecha relación que existe entre los fitocromos y las auxinas.

Dado que los resultados del capítulo I muestran que *csa1* afecta específicamente la vía de señalización del fitocromo B, el análisis del grupo de genes que varían su expresión únicamente como resultado de la mutación *csa1*, podría resultar sumamente útil para intentar comprender cual es el mecanismo por el cual *csa1* provoca un efecto negativo sobre las respuestas que involucran al PHYB.

Dentro de los genes que aumentan significativamente su expresión como resultado de la mutación *csa1* (cluster 6) se encuentra *PIF3*. Como ya se mencionó éste gen que codifica para una proteína del tipo bHLH, juega un papel fundamental como regulador negativo en la vía de señalización iniciada por la percepción del rojo.

En csa1, la sobre-expresión de *PIF3* (15 veces mayor que en el WT) (Figura 21), explicaría al menos en parte, el fenotipo observado en el mutante y el intermediario por el cual la mutación *csa1* interfiere en la correcta señalización del PHYB.

Figura 21. Nivel de expresión de *HFR1*, *At4g28720* y *PIF3*, detectado por RT-PCR, en los genotipos WT, *phyB* y *csa1*.

Efecto de la infección con Pseudomonas sobre la expresión de PIF3 y PIF4

En base a los resultados del experimento de *microarrays* nos preguntamos si las proteínas del tipo bHlH estarían implicadas de algún modo en la respuesta de defensa frente al ataque de patógenos. Las evidencias experimentales muestran que luego del reconocimiento entre los correspondientes R-avr ocurren cambios en la expresión de numerosos genes involucrados en distintos eventos que tienden a reducir el área de incidencia de los patógenos (Tao et al., 2003). Para estudiar la relación entre los factores de transcripción del tipo bHLH y las respuestas a patógenos, cuantificamos los niveles de expresión de *PIF3* y *PIF4* luego de infectar plantas con *P. syringae* con y sin el factor de avirulencia, el nivel de ARN mensajero de *PIF3* aumentan y el de *PIF4* disminuye levemente con respecto a los niveles detectados en las plantas control infectadas con agua. Por otro lado, la infección con la cepa de *Pseudomonas* que expresa el factor avrRpt2 provocó una reducción significativa en los niveles de expresión de ambos genes.

Figura 22. Nivel de expresión de *PIF3* y *PIF4* en plantas WT infectadas con P. syringae que expresan o no el factor avrRpt2.

Estos resultados sugieren la existencia de una estrecha relación entre las vías de señalización de la luz y los mecanismos de reconocimiento de los patógenos por parte de las plantas.

Resultados- Capítulo III

Des- etiolación en rojo en mutantes aisladas por presentar defectos en las respuestas frente al ataque de patógenos.

Los resultados de los capítulos anteriores indican la existencia de una estrecha relación entre las vías de señalización de la luz y las de respuesta a la infección de patógenos.

Dado que un mutante identificado inicialmente por presentar defectos en las respuestas a la luz (*csa1*) resultó estar implicado en las respuestas frente a la infección con patógenos, nos preguntamos, si en forma recíproca, alguno de los mutantes aislados por presentar defectos en la resistencia frente al ataque patógenos estaría implicado en la vía de señalación de los fitocromos.

La figura 23 muestra el largo del hipocotilo que presentaron los mutantes *ndr1* (del inglés *non race-specific disease resistance* 1), *npr1* (del inglés *nonexpresser of PR genes* 1), *pad1* (del inglés *phytoalexin-deficient* 1), *pad4* (del inglés phytoalexin-deficient 4) y *eds4* (del inglés *enhanced disease susceptibility* 4), al ser crecidos en luz roja durante 3 días.

Figura 23. Longitud del hipocotilo (relativa a oscuridad) de plántulas crecidas en rojo durante 3 días.

Caracterización fisiológica de eds4

El mutante *eds4* fue aislado por presentar síntomas más severos que las plantas de genotipo salvaje al ser infectadas con la bacteria *Pseudomonas syringae* pv. *maculicola* (Glazebrook et al., 1996). Dado que en el experimento de la figura 23 el mutante *eds4* presentó diferencias significativas con respecto al genotipo salvaje, decidimos caracterizarlo más detalladamente foto- fisiológicamente.

eds4 desarrolló hipocotilos más largos que las plántulas del genotipo salvaje en todas las intensidades de Rojo continuo, pero sólo mostró diferencias leves con el WT al ser crecida durante e días bajo distintas intensidades de A y RL continuo (Figura24).

Figura 24. Longitud del hipocotilo (relativa a la longitud en oscuridad) en función de la intensidad de Rojo, A y RL.

Dado que *eds4* es hiposensible al Rojo, posiblemente por fallas en la vía de señalización del fitocromo B, decidimos investigar si las respuestas frente a las disminuciones en las relaciones R/RL provocadas por la presencia de competidores, mediadas principalmente por phyB, estaban también afectadas en el mutante. La figura 25 muestra los resultados del experimento de pulsos de Rojo o RL al final del período de luz utilizados para establecer altos niveles de Pfr (simula ausencia de plantas vecinas) o bajos niveles de Pfr (simula presencia de plantas vecinas), respectivamente. Si bien *eds4* respondió a los pulsos de RL alargando los hipocotilos esta respuesta fue significativamente menor a la observada en las plántulas del genotipo salvaje.

Figura 25. Respuesta al sombreado simulado con los pulsos de final del día de RL. Longitud del hipocotilo en plántulas crecidas durante 3 días en fotoperíodos de 8hs de luz blanca finalizados con un pulso de 5 minutos de Rojo (FDD- R) o RL (FDD- RL).

Por otro lado las plantas adultas de *eds4* desarrollaron alguno de los cambios morfológicos que ocurren frente a la presencia de plantas vecinas, aun creciendo aisladas, y en condiciones de elevado R/RL. *eds4* ubica sus hojas en una posición más erecta que las plantas del genotipo salvaje y florece tempranamente tanto en fotoperíodos de 8 como de 16 horas (Figura 26).

Figura 26. *eds4* desarrolla el síndrome de escape al sombreado en ambientes con elevada relación R/RL. **A** Ángulo entre las hojas. **B** Número de hoja en la roseta como indicador del tiempo de floración (mayor numero de hojas indica floración más tardía) en plantas crecidas en cámara en día corto. **C** Número de hoja en la roseta como indicador del tiempo de floración en plantas crecidas en cámara de día largo.

Los resultados presentados en este capítulo confirman la existencia de una estrecha relación entre los componentes genéticos de las vías de señalización que se desencadenan frente al ataque de los patógenos y frente a cambios en el ambiente lumínico.

Discusión

csal y la vía de señalización del fitocromo B

En esta tesis se aisló y caracterizó al mutante *csa1*, afectado en las principales respuestas mediadas por el fitocromo B. El fenotipo de *csa1* es producto de una inserción de T-DNA en un gen que codifica para una proteína del tipo TIR-NBS-LRR.

Hasta el momento han sido identificados y caracterizados varios mutantes afectados en las respuestas mediadas por el fitocromo B como *red1* (Wagner et al., 1997), *gigantea* (Huq et al., 2000), *elf3* (Hicks et al., 1996), *elf4* (Khanna et al., 2003) y *srr1* (Staiger et al., 2003). Estos mutantes presentan varias semejanzas con *phyB* pero se diferencian de este en al menos algún aspecto fenotípico y/o fisiológico: *red1* presenta hipocotilos y pecíolos alargados pero no florece tan tempranamente como lo hace *phyB*, el mutante *gigantea* es hiposensible al rojo pero contrariamente a *phyB* florece en forma tardía y *elf3*, *elf4* y *srr1* florecen temprano y morfológicamente se asemejan a *phyB*, sin embargo a diferencia de lo reportado para *phyB*, los 3 mutantes presentan alterados los ritmos circadianos. Por el contrario *csa1* se comporta como *phyB* para todas las respuestas fotomorfogénicas estudiadas en este trabajo, como por ejemplo des-etiolación en R, A y RL, respuesta a las variaciones en la relación R/RL, duración de la fase vegetativa del desarrollo, etc. Por otra parte *csa1* al igual que *phyB* no presenta alteraciones en los ritmos circadianos (datos no mostrados).

El hecho de que *csa1* sea el mutante que mas se asemeja a *phyB* indica que la mutación en el gen *At5g17880* afecta en forma temprana la vía de transducción de las señales percibidas por el fitocromo B y sugiere que las proteínas TIR-NBS-LRR actúan como componentes o moduladores de la actividad de algún intermediario temprano de la cascada de señalización del PHYB.

Señalización de los dominios TIR

En *csa1* la inserción de T-DNA en un gen que codifica para una proteína del tipo TIR-NBS-LRR genera un ARN mensajero truncado que contiene únicamente las

secuencias que codifican para el dominio TIR y para una pequeña porción de dominio NBS.

Los dominios TIR en plantas son módulos proteicos conservados de alrededor de 200 aminoácidos que poseen similitud de secuencias con el receptor *Toll* de *Drosophila* y con el receptor de interleuquina 1 (IL-1R) de mamíferos. El genoma de *Arabidopsis* predice la existencia de al menos 135 proteínas con dominios TIR (Arabidopsis Genome Initiative, 2000). Los dominios TIR pueden encontrarse en proteínas que poseen un número variable de algunos otros dominios como el NBS, el LRR o el WRKY o en proteínas que no poseen ningún otro dominio identificable (Meyers et al., 2002).

Hasta el momento, dentro del reino vegetal, la presencia de los dominios TIR ha sido relacionada únicamente con la percepción y la respuesta frente al ataque de microorganismos patógenos (Holt et al., 2003), sin embargo algunos autores han propuesto que la existencia del variado arreglo de dominios que poseen las proteínas con dominios TIR podría indicar la participación de estos dominios en otras funciones dentro de las células vegetales (Jebanathirajah et al., 2002). Los resultados presentados en esta tesis constituyen la primera evidencia que apoya la teoría de la diversidad de funciones de los dominios TIR, y demuestran su participación en el proceso de fotomorfogénesis.

Originalmente, el receptor *Toll* fue descubierto por su participación en el desarrollo de eje dorsoventral durante la embriogénesis de *Drosophila* (Anderson et al., 1985) y recién más tarde involucrado en la regulación de la respuesta inmune de los individuos adultos (Lemaitre et al., 1996). En *C. elegans* las proteínas con dominios TIR están también comprometidas en los procesos de desarrollo e inmunidad (Pujol et al., 2001; Couillault et al., 2004; Liberati et al., 2004). Nuestros resultados muestran que al igual que en otros organismos, en las plantas los dominios TIR participan tanto en el desenvolvimiento de la respuesta inmune como en los procesos de desarrollo frente a la presencia de plantas vecinas.

En los mamíferos, luego de unirse a la molécula de interleuquina (IL 1), el receptor IL -1R forma homodímeros, que a su vez reclutan a la proteína adaptadora MyD88 a través de la formación de heterodímeros con su dominio TIR. El complejo IL-1R- MyD88 activa una cascada de señalización que culmina con la liberación del factor NF-κB al núcleo (Yamamoto et al., 2004). Otro ejemplo de señalización de dominios TIR a través de la formación de heterodímeros con moléculas adaptadoras es el que involucra a receptor TLR-4 (del inglés *Toll like receptor* 4) y al adaptador TIRAP (del inglés *TIR domain containing adaptor*) (Horng et al., 2001). En las plantas se cuenta con escasa información sobre cuales son los componentes y mecanismos involucrados en la señalización de los dominios TIR. Debido al gran número de proteínas que poseen únicamente dominios TIR se ha propuesto que estas podrían funcionar, al igual que lo que ocurre en mamíferos, como proteínas adaptadoras capaces de formar heterodímeros con los dominios TIR de las proteínas R del tipo TIR-NBS-LRR y de esta manera transducir la señal.

En mamíferos Dupraz y colaboradores (2001), reportaron que la presencia de una forma truncada del MyD88 que solo poseía el dominio TIR bloqueaba la señalización rió abajo del IL-1R. En el mutante *csa1* el fenotipo observado es causado al menos en gran medida por la interferencia negativa que tiene la proteína truncada con los dominios TIR de otras proteínas entre las que se encuentra RPS4. En base a nuestros resultados podemos sugerir que las proteínas del tipo TIR-NBS-LRR podrían transducir las señales a través de la formación de heterodímeros con los dominios TIR de proteínas adaptadoras; en el mutante *csa1* la existencia de la proteína truncada bloquea la correcta señalización de RPS4 y otras proteínas homologas.

En *Arabidopsis* existen alrededor de 90 genes que codifican para proteínas con los dominios TIR-NBS-LRR (Holt el al., 2003); por lo tanto el hecho de que los mutantes por pérdida de función *csa1-2*, *rps4* y el mutante del gen *At5g44870* presenten un fenotipo débil en rojo puede ser explicado por la existencia de redundancia génica entre los miembros de la familia. Por otro lado el doble mutante *csa1-2 rps4* tampoco presentó un fenotipo fuerte (datos no mostrados), indicando la necesidad de reducir conjuntamente los niveles de expresión de varios miembros para poder observar un fenotipo similar al de *csa1*.

Nuestros resultados evidencian por un lado la existencia de un mecanismo conservado entre las plantas y los mamíferos en la transducción de las señales a través de

los dominios TIR y por otro lado indican que el rol dual de los dominios TIR en las respuestas de inmunidad y desarrollo está conservado entre los reinos.

Efecto de la transducción de las señales lumínicas sobre la resistencia a los patógenos

Muchos trabajos han reportado la gran influencia que tiene el ambiente lumínico sobre las respuestas de resistencia de las plantas frente al ataque de distintos organismos patógenos. La luz es necesaria para el desarrollo de la respuesta hipersensible y para la activación de numerosos genes involucrados en las respuestas de defensa (Guo et al., 1993) y para la acumulación de ácido salicílico que a su vez regula la expresión de los genes PR (Zeier et al., 2004). Las evidencias sugieren que no sólo la cantidad de luz, sino también la calidad luz, afectan las respuestas de resistencia. Ya en 1916 Chapma documentó que la susceptibilidad de las plantas de tabaco a la infección con el virus del mosaico dependía de la longitud de onda de la luz bajo la cual se desarrollaba el cultivo. Por otro lado ha sido demostrado que ambientes pobres en rojo favorecen el ataque del hongo *Dreschslera sorokiniana* sobre *Poa pratensis* (Nilsen & Hodges, 1980), y que por el contrario tratamientos con luz roja inducen la resistencia de *Vicia faba* frente a los hongos *Alternaria tennuissima* y *Botrytis cinerea* (Islam et al., 1998; Rahman et al., 2003).

Basados en el hecho de que en *Arabidopsis* el doble mutante *phyAphyB* es más susceptible a la infección con *Pseudomonas* (Genoud et al., 2002) y que el mutante *psi2* aislado por presentar respuestas exageradas a la luz, desarrolla lesiones necróticas dependientes de la luz que mimetizan a las que ocurren luego de la infección con patógenos (Genoud et al.,1998) ,varios autores han sugerido que la estrecha relación entre la luz y la inducción de la resistencia se debe a que existe una interacción temprana y componentes en común entre las cascadas de señalización que conducen a las respuestas fotomorfogénicas y a las de defensa. Los resultados expuestos en esta tesis aportan importantes evidencias en esa dirección ya que muestran que el crecimiento de la cepa incompatible de *Pseudomonas* esta favorecido en los genotipos afectados en la transducción de las señales lumínicas y demuestran que a través de la expresión de un gen de resistencia como *RPS4* el fenotipo del mutante *csa1* puede ser revertido (*csa1*)

recupera la capacidad de responder al rojo y a las variaciones en las relaciones R/RL del ambiente). Por otro lado los resultados del capítulo III muestran que el mutante *eds4*, que fue aislado originalmente por presentar síntomas exagerados frente a la infección con *Pseudomonas syringae* pv. *maculicola*, está afectado en las vías de señalización de la luz, confirmando una estrecha relación entre los componentes genéticos de las vías de señalización que se desencadenan frente al ataque de los patógenos y frente a cambios en el ambiente lumínico.

El síndrome de escape al sombreado en csal

La reducción en la relación R/RL del ambiente provoca, a nivel molecular, cambios en los niveles de expresión de numerosos genes (Devlin et al., 2003). Algunos de estos genes están involucrados en la señalización o regulación transcripcional de las vías de transducción que se activan en respuesta a la percepción de plantas vecinas, mientras que otro grupo de genes esta implicado en los cambios morfológicos que ocurren en la planta. Dentro del primer grupo se encuentran los factores de transcripción *HAT4*, *HAT2* y *PIL-1* cuya expresión aumenta frente a la reducción en la relación R/RL y *LHY* y *HY5* cuyos niveles disminuyen en respuesta al sombreado por plantas vecinas.

El aumento en los niveles de expresión del factor de transcripción *HAT4* (*ATHB-2*) es uno de los primeros eventos que tiene lugar frente a la reducción de la relación R/RL y está regulado en forma directa por la acción de los fitocromos (Carabelli et al., 1996), por otro lado, las plantas sobre-expresantes de *HAT4* desarrollan el síndrome de escape al sombreado en forma constitutiva (Steindler et al., 1999).

Morfológicamente, *csa1* se comporta como si estuviese rodeada de plantas vecinas (elonga hipocotilos, tallos y pecíolos, florece temprano), aún creciendo aislada. A nivel molecular este fenotipo puede atribuirse a los elevados niveles de expresión del factor de transcripción *HAT4* detectados en el mutante *csa1* en condiciones no inductivas. Por otro lado el hecho de que el mutante *csa1* retenga la capacidad de responder a la reducción de la relación R/RL aumentando los niveles de expresión de *HAT4* concuerda con lo reportado para el mutante de *phyB* por Carabelli y colaboradores (1996). Los

niveles elevados de *HAT4* detectados en plantas de *csa1* que se desarrollaban en ambientes con elevada relación R/RL indican que en el mutante están afectadas las vías que regulan en forma positiva el síndrome de escape al sombreado.

La reducción en la relación R/RL del ambiente que induce la expresión de los reguladores positivos *HAT4* y *PIL1* gatilla también la inducción del regulador negativo clave *HFR1*. HFR1 regula negativamente el síndrome de escape al sombreado como mecanismo para asegurar que frente a condiciones prolongadas, frente a las cuales la planta no logra superar el sombreado impuesto por las vecinas, ésta no desarrolle una respuesta morfológica exagerada (Sessa et al., 2005). El hecho de que los niveles de *HFR1* sean elevados en *csa1* revela que en el mutante están afectados también los mecanismos que regulan en forma negativa el síndrome de escape al sombreado.

Algunas hormonas vegetales como el etileno, las auxinas y los brasinoesteroides están implicados en las respuestas de escape al sombreado. El etileno media principalmente el escape al sombreado en respuesta a la reducción de luz azul y no a la reducción en la relación R/RL (Franklin & Whitelam, 2005); por lo tanto, dado que en csal no están afectadas las respuestas al azul resulta poco probable que su fenotipo se deba a alteraciones en la señalización o los niveles de etileno. Por otro lado, el mutante red1 involucrado en el control de la homeostasis de las auxinas (Hoecker et al., 2004), presenta al igual que *csa1*, hipocotilos y pecíolos alargados pero a diferencia de este no florece temprano (Wagner et al., 1997), sugiriendo que la mutación en *csal* afecta la vía de señalización que conduce al del síndrome de escape al sombreado por encima o independientemente del paso que involucra a las auxinas. Además, nuestros resultados del análisis en los cambios globales de expresión sugieren que tampoco estrían afectados los niveles de auxinas en las plantas mutantes csal. Por último, dado que los brasinoesteroides afectan el desarrollo del síndrome de escape al sombreado mediante un mecanismo que no involucra alteraciones en la expresión de HAT4 (Roig-Villanova et al., 2006), parece improbable que el fenotipo de *csa1* este relacionado con fallas en las vías de transducción o de síntesis de esta fitohormona.

En conjunto, nuestros resultados indican que el fenotipo de síndrome de escape al sombreado de *csa1* se debe a que la mutación afecta en forma temprana las vías

regulatorias dependientes de *phyB* involucradas en la respuesta de "escape" frente a la presencia de competidores.

Influencia de la densidad de plantas sobre la susceptibilidad a los patógenos

El incremento en la densidad de los cultivos trae aparejado en mucha ocasiones un aumento en la susceptibilidad de los mismos frente al ataque de diversos patógenos. Desde un punto de vista ecológico este fenómeno es atribuido a que la mayor cercanía de las plantas facilita el contagio y crea un micro ambiente donde la elevada humedad contribuye al desarrollo de los microorganismos.

El aumento del número de plantas por unidad de área provoca una disminución en la relación R/RL percibida por las plantas y en consecuencia estas desarrollan el síndrome de escape al sombreado (Ballaré, 1999; Smith, 2000). Algunos autores afirman que el incremento de la susceptibilidad frente a los patógenos de las plantas sombreadas es producto de una redistribución de recursos que hace la planta frente a una condición de estrés; es decir que al invertir más en desarrollar una morfología que le permita acceder a la fuente de energía lumínica, reduce el porcentaje de energía que destina a las respuestas de defensa (Cipollini, 2004). Aunque indudablemente la redistribución de recursos ocurre frente a una situación de estrés, este no parece ser el único mecanismo para explicar por que una planta sombreada es menos resistente a los patógenos que una planta que crece en un espacio abierto. A nivel celular existen evidencias que relacionan la vía de señalización que conduce al desarrollo del síndrome de escape al sombreado con la capacidad de defenderse de las plantas. El ácido giberélico involucrado en la elongación de los tallos frente a una reducción en la R/RL del ambiente (Peng & Harberd, 1997), inhibe la actividad de las peroxidasas y como consecuencia las plantas sombreadas no son capaces de utilizar la vía de las peroxidasas como mecanismo de defensa (Cipollini, 2004).

El hecho de que el mutante *csa1*, donde los mecanismos que regulan el síndrome de escape al sombreado están afectados, sea más susceptible a la infección con *Pseudomonas* demuestra que al estar perjudicadas las vía que regulan tanto positiva como negativamente el síndrome de escape al sombreado, también están afectadas las respuestas de resistencia. Por otro lado en el capitulo III demostramos que el mutante *eds4*, hipersensible a la infección con bacterias patógenas, tiene disminuida la capacidad de responder a las reducciones en la relación R/RL del ambiente y además desarrolla algunas de las respuestas típicas del síndrome de escape al sombreado aun creciendo en condiciones no inductivas.

En conjunto nuestros resultados aportan evidencias que sustentan la hipótesis que sugiere que el aumento de susceptibilidad en ambientes con elevada densidad de plantas se debe, por lo menos en parte, a una interacción temprana entre las vías de señalización que conducen o regulan las repuestas frente al ataque de patógenos y las que se activan frente a la presencia de posibles competidores.

Interacción entre las vías de señalización de las respuestas fotomorfogénicas y de defensa.

Los experimentos realizados en estas tesis demostraron que los efectos negativos que tiene *csa1* sobre la vía de señalización del fitocromo B se deben a que la mutación afecta a alguno/s de lo/s componente/s que actúan en la transducción de las señales río abajo del fotorreceptor.

Los resultados del capítulo I muestran que los genes o las proteínas del tipo TIR-NBS-LRR están involucrados en todas las respuestas fotomorfogénicas mediadas por el fitocromo B analizadas en esta tesis, sugiriendo que los TIR-NBS-LRR podrían ser componentes regulatorios clave de la transducción de las señales iniciada luego de la percepción del estímulo lumínico. Sin embargo el análisis a nivel transcripcional mostró la existencia de un grupo de genes cuyo patrón de expresión difería entre el *phyB* y el mutante *csa1* revelando que los TIR-NBS-LRR no están implicados en todas las respuestas reguladas por el PHYB.

Por otro lado la ausencia dentro del grupo de las Poaceae de proteínas del tipo TIR-NBS-LRR (Young, 2000) sugiere que estás funcionan como moduladores en lugar de cómo componentes centrales de la vía transduccional del PHYB.

68
Nuestros resultados muestran que la expresión de *CSA1* aumenta levemente luego de un tratamiento de 24 horas de luz roja. En concordancia, Tepperman y colaboradores (2001; 2004) reportaron que la exposición de plántulas etioladas a tratamientos prolongados de rojo y rojo lejano promueve la expresión del gen *At5g44870*, homologo a *CSA1*.

El análisis global en los cambios de expresión de los mutantes en relación al genotipo salvaje, resultó ser una herramienta sumamente útil para delinear un modelo tentativo de como las proteínas TIR-NBS-LRR, y por lo tanto los mecanismos de defensa, participan en la transducción de las señales lumínicas.

Uno de los mecanismos propuestos para la transducción de señales percibidas por los fitocromos es la activación de cascadas transcripcionales ya sea mediante PIF3 o independientemente de ese factor de transcripción (Tepperman et al., 2001). Por otra parte, existen evidencias de que tanto PIF3 como otros factores que interaccionan con los fitocromos (PIFs) pueden funcionar como activadores o represores, dependiendo de la naturaleza de la región promotora de los distintos genes (Tepperman et al., 2001; Monte et al., 2004; Kim et al., 2003).

Dado que PIF3 está implicado en la transducción de señales del fitocromo B en forma temprana y que ha sido demostrado que los niveles bajos o nulos dan como resultado plantas hipersensibles al rojo (fenotipo opuesto al de csa1) (Monte et al., 2004), y que nuestros resultados muestran que la mutación de los genes TIR-NBS-LRR provoca un aumento considerable en la expresión de *PIF3*, postulamos el siguiente modelo (Figura 1) para explicar el fenotipo observado en *csa1* y la relación entre las respuestas de defensa y fotomorfogénesis.

Los genes *TIR-NBS-LRR* regulan negativamente la expresión de *PIF3* y este a su vez reprime la cascada de eventos que regulan el alargamiento celular y de esta manera el alargamiento del hipocotilo en respuesta al rojo, cuando la vía de señalización de los genes TIR-NBS-LRR se encuentra afectada (como ocurre en el mutante *csa1*), aumentan los niveles de *PIF3* dando como resultado plántulas hiposensibles al rojo.

Figura 1: Diagrama de la interacción entre las vías de señalización que conducen a las respuestas de defensa frente a patógenos y las que conducen a las respuestas fotomorfogénicas.

Hasta el momento es generalmente aceptado que los PIFs actúan como reguladores transcripcionales a través de la unión a los elementos G- box (GAGCTC), presentes en las regiones promotoras de algunos genes como ejemplo *CCA1* (del inglés CIRCADIAN CLOCK-ASSOCIATED) y *LHY* (del inglés LATE ELONGATED HYPOCOTYL) (Martínez- García et al., 2000; Huq & Quail, 2002; Huq et al., 2003). De acuerdo a Roig-Villanova y colaboradores (2006), las regiones promotoras de *HAT4*, *PIL1* y *ATHB4* no poseen ningún elemento G-box, sugiriendo que los PIFs no estarían involucrados en la regulación de estos genes. En este contexto el efecto de los TIR-NBS-LRR sobre la expresión de HAT4 ocurriría por una vía independiente de PIF3. Por otro lado, experimentos *in vitro* han demostrado la capacidad de PIF3 de formar heterodímeros con HFR1 y de esta forma regular su expresión (Fairchild et al., 2000; Toledo-Ortiz et al., 2003). Basándonos en esta observación podríamos atribuir, en *csa1*, los elevados niveles de *HFR1* a la sobre-expresión de *HFR1* sin que exista una

marcada sobre-expresión de *PIF3*, indica la existencia de al menos algún mecanismo independiente de PIF3 involucrado en la regulación de *HFR1*, mediada por los fitocromos.

Finalmente nuestros experimentos demostraron que cuando luego de la infección con *Pseudomonas* tiene lugar la reacción incompatible (reconocimiento R-Avr) los niveles de *PIF3* y *PIF4* disminuyen. Los cambios a nivel transcripcional que ocurren luego del reconocimiento R-Avr tienen como objetivo restringir el crecimiento y propagación de los patógenos (Tao et al., 2003). La disminución de los niveles de los dos bHLH provoca una disminución en la elongación celular y por lo tanto paredes celulares más gruesas y rígidas que podrían impedir la dispersión de los patógenos y le dificultarles la obtención de nutrientes fotosintatos desde el interior de la célula. Por el contrario el aumento en los niveles de expresión de *PIF3*, que ocurre luego de la reacción compatible (no hay reconocimiento R-Avr) daría lugar, a plantas con una morfología más favorable para el crecimiento y multiplicación de los patógenos.

Conclusiones y Perspectivas

El trabajo realizado en esta tesis ha permitido identificar nuevos componentes implicados en la transducción de señales del fitocromo B. Además, los resultados aquí presentados demuestran que, al igual que en otros organismos, en las plantas los dominios TIR están involucrados tanto en procesos de inmunidad y como en procesos de desarrollo. Por otro lado, si bien la estrecha relación entre las características del ambiente lumínico en el que se desarrollan y la capacidad de defenderse de las plantas frente al ataque de patógenos había sido reportada numerosas veces, nuestro trabajo constituye el primer paso para comprender los mecanismos moleculares implicados en la interacción o *cross-talk* entre las vías de señalización que conducen a las respuestas fotomorfogénicas y las que regulan las respuestas de resistencia frente al ataque de los patógenos. La individualización de las proteínas que interaccionan con CSA1 y RPS4 y la determinación de los mecanismos e intermediarios involucrados en las vías de señalización de las proteínas TIR-NBS-LRR, permitirán interpretar con más precisión como estas proteínas participan en la transducción de las señales lumínicas. En un futuro,

la identificación de la secuencia mutada en *eds4*, sirva probablemente para comprender más claramente las bases moleculares del *cross-talk* entre las respuestas a la luz y las respuestas de defensa frente a patógenos.

Finalmente, los conocimientos generados en este trabajo podrían ser aplicados para el mejoramiento biotecnológico de los cultivos. Se podría aumentar la resistencia a los patógenos de las plantas cultivadas a altas densidades incrementando la sensibilidad a la luz ya sea sobre- expresando phyB o reduciendo los niveles de reguladores negativos como *PIF3* y *PIF4*.

Referencias

Aarts, N., Metz, M., Holub, E., Staskawicz, B.J., Daniels, M.J. & Parker, J.E. (1998). Different requirements for EDS1 and NDR1 by disease resistance genes define at least two R gene-mediated signaling pathways in Arabidopsis. Proc Natl Acad Sci USA **95**, 10306-11.

Ahmad, M. & Cashmore, A.R. (1996). The pef mutants of Arabidopsis thaliana define lesions early in the phytochrome signaling pathway. Plant Journal **10**, 1103-10.

Anderson, K.V., Bokla, L. & Nüsslein-Volhard, C. (1985). Establishment of dorsalventral polarity in the Drosophila embryo: the induction of polarity by the Toll gene product. Cell 42, 791-8.

Arabidopsis genome Initiative. (2000). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature **408**, 796-815.

Ballaré, C. L. (1999). Keeping up with the neighbours: phytochrome sensing and other signalling mechanisms. Trends Plant Science **4**, 97-102.

Ballaré, C. L., Sánchez, R.A., Scopel, A.L, Casal, J.J & Ghersa, C.M. (1987). Early detection of neighbour plants by phytochrome perception of spectral changes in reflected sunlight. Plant, Cell and Environment **10**, 551-7.

Ballaré, C.L. (1999). Keeping up with the neighbors: phytochrome sensing and other signaling mechanisms. Trends Plant Sci. **4**, 97-102.

Ballaré, C.L., Barnes, P.W. & Flint, S.D. (1995). Inhibition of hypocotyl elongation by ultraviolet-B radiation in de-etiolating tomato seedlings. I. The photoreceptor. Plant Physiol. **93**, 584-92.

Ballaré, C.L., Scopel, A.L. & Sánchez, R.A. (1990). Far –red radiation reflected from adjacent leaves: an early signal of competition in plant canopies. Science **247**, 329-32.

Ballesteros, M., Bolle, C., Lois, L., Moore, J., Vielle-Calzada, J.P., Grossniklaus,
U.& Chua, N-H. (2001). LAF1, a MYB transcription activator for phytochrome A signaling. Genes & Dev. 15, 2613-25.

Bolle, C., Konkz, C. & Chua, N-H. (2000). PAT1, a new member of the GRAS family, is involved in phytochrome A signal transduction. Genes & Dev. **14**, 1269-78.

Briggs, W. R., Beck, C.F., Cashmore, A.R., Christie, J.M., Hughes, J., Jarillo, J.A., Kagawa, T., Kanegae, H., Liscum, E., Nagatani, A., Okada, K., Salomon, M., Rüdiger, W., Sakai, T., Takano, M., Wada, M. & Watson, J.C. (2001). The phototropin family of photoreceptors. Plant Cell **13**, 993-7.

Cao, H., Bowling, S.A., Gordon, A.S., Dong, X.(1994). Characterization of an Arabidopsis Mutant That Is Nonresponsive to Inducers of Systemic Acquired Resistance. Plant Cell 6, 1583-92.

Carabelli, M., Morelli, G., Whitelam, G.C. & Ruberti, I. (1996). Twilight-zone and canopy shade induction of the ATHB2 homeobox gene in green plants. Proc.Natl. Acad. Sci. USA 93, 3530-5.

Casal, J. J., Sánchez, R.A.& Deregibus, V.A. (1986.). The effect of plant density on tillering: The involvement of R/FR and the proportion of radiation intercepted per plant. Environmental and Experimental Botany **26**, 365-71.

Casal, J. J., Luccioni, L.G., Oliverio, K.A. & Boccalandro, H.E. (2003). Light, phytochrome signalling and photomorphogenesis in *Arabidopsis*. Photochemestry and Photobiology Sciences **2**: 625-98.

Cashmore, A. R., Jarillo, J.A., Wu, Y.-J. & Liu, D. (1999). Cryptochromes: blue light receptors for plants and animals. Science 284, 760-5.

Century, K.S., Holub, E.B. & Staskawicz, B.J. (1995). NDR1, a locus of Arabidopsis thaliana that is required for disease resistance to both a bacterial and a fungal pathogen.Proc Natl Acad Sci USA **92**, 6597-601.

Century, K.S., Shapiro, A.D., Repetti, P.P., Dahlbeck, D., Holub, E. & Staskawicz B.J. (1997). NDR1, a pathogen-induced component required for Arabidopsis disease resistance. Science 278, 1963-5.

Chang, J.H., Urbach, J.M., Law, T.F. Arnold, L.W., Hu, A., Gombar, S., Grant, S.R., Ausbel, F.M., & Dangl, J.L. (2005). A high-throughput, near- saturating screen

for type III effectors genes from Pseudomonas syringae. Proc. Natl. Acad. Sci. USA 102, 2549-54.

Chapma, G.H. (1916). Effect of colored light on the mosaic disease of tobacco. Science, N. S, 44, 537-8.

Cheng, Y., Dai, X. & Zhao, Y. (2006). Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes & Dev. 20, 1790-9.

Chisholm, S.T., Coaker, G., Day, B. & Staskawicz, B.J. (2006). Host- microbe interactions: shaping the evolution of the plant immune response. Cell **124**, 803-14.

Choi, G., Yi, H., Lee, J., Kwon, Y-K., Soh, M.S., Shin, B., Luka, Z., Hahn, T-R. & Song, P-S. (1999). Phytochrome signalling is mediated thrugh nucleoside diphosphate kinase 2. Nature 401, 610-3.

Chory, J., Peto, C., Feinbaum, R., Pratt, L. & Ausubel, F. (1989). *Arabidopsis thaliana* mutant that develops as a light-grown plant in the absence of light. Cell **58**, 991-9

Chory, J., Peto,C., Feinbaum, R., Pratt, L. & Ausubel, F. (1989). *Arabidopsis thaliana* mutant that develops as a light-grown plant in the absence of light. Cell **58**, 991-9.

Cipollini, D. (2004). Stretching the limits of plasticity : can a plant defend against both competitor and herbivores? Ecology **85**, 28-37.

Clough, R. C. & Vierstra, R.D. (1997). Phytochrome degradation. Plant, Cell and Environ. 20, 713-21.

Clough, S.J. & Bent, A.F. (1998). Floral dip: a simplified method for Agrobacteriummediated transformation of Arabidopsis thaliana Plant J. **16**, 735-43.

Coaker, G., Falick, A. & Staskawicz, B. (2005). Activation of phytopathogenic bacterial effector protein by a eukaryotic cyclophilin. Science **308**, 548-50.

Couillault, C., Pujol, N., Reboul, J., Sabatier, L., Guichou, J.F., Kohara, Y. & Ewbank, J.J. (2004). TLR-independent control of innate immunity in Caenorhabditis

elegans by the TIR domain adaptor protein TIR-1, an ortholog of human SARM. Nat. Immunol. 5, 488-94.

Dangl, J.L. & Jones, J.D. (2001). Plant pathogens and integrated defence responses to infection. Nature **411**, 826-33.

De Smet, F., Mathys, J., Marchal, K., Thijs, G., De Moor, B. & Moreau, Y. (2002) Adaptive Quality-based clustering of gene expression profiles. Bioinformatics **18**, 735-46.

DebRoy, S., Thilmony, R., Kwack, Y.B., Nomura, K. & He S.Y. (2004). A family of conserved bacterial effectors inhibits salicylic acid-mediated basal immunity and promotes disease necrosis in plants. Proc Natl Acad Sci USA **101**, 9927-32.

Deng, X. W., Caspar, T. & Quail, P.H. (1991). *cop1*: a regulatory locus involved in light-controlled development and gene expression in *Arabidopsis*. Genes & Dev. **5**, 1172-82.

Devlin, P.F., Patel, S.R. & Whitelam, G.C. (1998). Phytochrome E influences internode elongation and flowering time in Arabidopsis. Plant Cell **10**, 1479-87.

Devlin, P.F., Yanovsky, M.J. & Kay, S.A. (2003). A Genomic Analysis of the Shade Avoidance Response in Arabidopsis. Plant Physiol. **133**, 1617-29.

Devlin, P.F., Yanovsky, M.J. & Kay, S.A. (2003). A Genomic Analysis of the Shade Avoidance Response in Arabidopsis. Plant Physiol. **133**, 1617-29.

Dieterle, M., Zhou, Y.C., Schafer, E., Funk, M. & Kretsch, T. (2001) EID1, an F-box protein involved in phytochrome A- specific light signalling. Genes & Dev. 15, 939-44.

Dupraz, P., Cottet, S., Hamburger, F., Dolci, W., Felley-Bosco, E. & Thorens, B. (2000). Dominant Negative MyD88 Proteins Inhibit Interleukin-1b/Interferon-g-mediated Induction of Nuclear Factor kB-dependentNitrite Production and Apoptosis in b Cells. J. Biol. Chem. **275**, 37672-8.

Fairchild, C. D., Schumaker, M.A., & Quail, P.H. (2000). *HFR1* encodes an atypical bHLH protein that acts in phytochrome A signal transduction. Genes & Dev. 14, 2377-91.

76

Fairchild, C.D., Schumaker, M.A. & Quail, P.H. (2000) HFR1 encodes an atypical bHLH protein that acts in phytochrome A signal transduction. Genes & Dev. 14, 2377-91.

Falk, A., Feys, B.J., Frost, L.N., Jones, J.D., Daniels, M.J. & Parker, J.E. (1999).EDS1, an essential component of R gene-mediated disease resistance in Arabidopsis has homology to eukaryotic lipases. Proc Natl Acad Sci USA 96,3292-7.

Fankhauser, C. & Casal, J.J. (2004). Phenotypic characterization of a photomorphogenic mutant. Plant J. **39**, 747-60.

Fankhauser, C. & Chory, J. (1997). Light control of plant development. Annu Rev Cell Dev Biol. 13, 203-29.

Fankhauser, C., Yeh, K.C., Lagarias, J.C., Zhang, H., Elich, T.D. & Chory, J. (1999). PKS1, a substrate phosphorylated by phytochrome that modulates light signaling in Arabidopsis. Science **284**, 1539-41.

Feldman, K. A., Malmberg, R. & Dean, C. (1994) Mutagenesis in *Arabidopsis*. *Arabidopsis* (Meyerowitz E. And Somerville C., eds) Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 137-72.

Feys, B.J., Moisan, L.J., Newman, M.A. & Parker JE. (2001). Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4.EMBO J. 20,5400-11.

Flor, H.H. (1971). Current status of the gene- for- gene concept. Annu. Rev. Phytopathol. 9, 275-96.

Franklin, K. A. & Whitelam, G.C. (2005). Phytochromes and shade avoidance responses in plants. Ann. Bot. 96, 169-175.

Franklin, K.A. & Whitelam, G.C. (2004). Light signals, phytochromes and cross-talk with other environmental cues. Journal of Experimental Botany **55**, 271-6.

Franklin, K.A. & Whitelam, G.C. (2005). Phytochromes and shade avoidance responses in plants. Ann. Bot. 96, 169-75.

Furuya, M. & Song, P-S. (1994). Assembly and properties of holophytochrome. Photomorphogenesis in plants. 2nd (Dordrecht, The Netherlands Kluwer Academic Publishers). pp: 105-40.

Genoud, T., Buchala, A., Chua, N.-H. & Métraux, J.-P. (2002). Phytochrome signaling modulates the SA-perceptive pathway in Arabidopsis. Plant J. **31**, 87-95.

Genoud, T., Millar, A.J., Nishizawa, N., Kay, S.A., Schäfer, E., Nagatani, A. & Chua, N.H. (1998). An Arabidopsis mutant hypersensitive to red and far-red light signals. Plant Cell 10, 889-904.

Glazebrook, J., Rogers, E.E & Ausubel, F.M. (1996). Isolation of Arabidopsis mutants with enhanced disease susceptibility by direct screening. Genetics 143, 973-82.

<u>Glazebrook, J., Rogers, E.E. & Ausubel F.M.</u> (1996) Isolation of Arabidopsis mutants with enhanced disease susceptibility by direct screening. Genetics **143**, 973-82

Guo, A., Rimers, P.J. & Leach, J.E. (1993). Effect of light on incompatible interactions between *Xanthomonas oryzae* pv. *oryzae* and rice. Physiological and Molecular Pathology **42**, 413-25.

Hangarter, R.P. (1997). Gravity, light and plant form. Plant Cell Environ. 20, 796-800.

Hauck, P., Thilmony, R. & He, S,Y. (2003) A Pseudomonas syringae type III effector suppresses cell wall-based extracellular defense in susceptible Arabidopsis plants. Proc Natl Acad Sci USA 100, 8577-82.

Hicks, K.A., Millar, A.J., Carre, I.A., Somers, D.E., Straume, M., Meeks-Wagner, D.
R. & Kay, S.A. (1996). Conditional circadian dysfunction of the Arabidopsis earlyflowering 3 mutant. Science 274, 790-2.

Hoecker, U., Tepperman, J.M. & Quail, P.H. (1999) SPA1: a WD-repeat protein specificto phytochrome A signal transduction. Science 284, 496-9.

Hoecker, U., Toledo-Ortiz, G., Bender, J. & Quail, P. (2004). The photomorphogenesis-related mutant red1 is defective in CYP83B1, a red light-induced

gene encoding a cytochrome P450 required for normal auxin homeostasis. Planta **219**, 195-200.

Holm, M., Ma, L.G., Qu, L.J. & Deng, X-W. (2002). Two interacting bZIP proteins are direct targets of COP1-mediated control of light-dependent gene expression in Arabidopsis. Genes & Dev. 16, 1247-59.

Holt, B.R., Hubert, D. & Dangl, J. (2003). Resistance gene signaling in plants-complex similarities to animal innate immunity. Curr.Op.Immunol. 15, 20-5.

Horng, T., Barton, G.M. & Medzhitov, R. (2001).TIRAP: an adapter molecule in the Toll signaling pathway. Nat Immunol, 2, 835-41.

Hsieh, H.-L., Okamoto, H., Wang, M., Ang, L-H., Matsui, M., Goodman, H. & Deng, X-W. (2000). *FIN219*, an auxin-regulated gene, defines a link between phytochrome A and the downstream regulator COP1 in light control of *Arabidopsis* development. Genes & Dev. 14, 1958-70.

Hudson, M., Ringli, C., Boylan, M.T. & Quail, P.H. (1999). The FAR1 locus encodes a novel nuclear protein specific to phytochrome A signaling. Genes & Dev. 13, 2017-27.

Huq, E. & Quail, P.H. (2002) PIF4, a phytochrome-interacting bHLH factor, functions as a negative regulator of phytochrome B signaling in Arabidopsis. EMBO J .21, 2441-50.

Huq, E. (2006). Degradation of negative regulators: a common theme in hormone and light signaling network. Trends Plant Science **11**, 4-7.

Huq, E., Al-Sady, B. & Quail, P.H. (2003) Nuclear translocation of the photoreceptor phytochrome B is necessary for its biological function in seedling photomorphogenesis. Plant J. **35,** 660-4.

Huq, E., Tepperman, J.M. & Quail, P.H. (2000). GIGANTEA is a nuclear protein invoved in phytochrome signaling in Arabidopsis. Proc. Natl Acad. Sci. USA 97, 9789-94.

Imler, J. & Hoffmann, J. (2002). Toll receptors in Drosophila: a family of molecules regulating development and immunity. Curr. Top. Microbiol. Immunol. **270**, 63-79.

Islam, S.Z., Honda, Y. & Arase, S. (1998). Light- induced resistance of borad bean against *Botrytis cinerea*, Journal of Phytopathology **146**, 479-85.

Iwasaki, A. & Medzhitov, R. (2004). Toll-like receptor control of the adaptive immune responses. Nature Immunol. **5**, 987-95.

Jamir, Y., Guo, M., Oh, H.S., Petnicki-Ocwieja, T., Chen, S., Tang, X., Dickman, M.B., Collmer, A. & Alfano, J.R. (2004). Identification of Pseudomonas syringae type III effectors that can suppress programmed cell death in plants and yeast. Plant J. **37**, 554-65.

Jebanathirajah, J.A., Peri, S. & Pandey, A. (2002). Toll and interleukin-1 receptor (TIR) domain-containing proteins in plants: a genomic perspective. Trends Plant Science 7, 388-91.

Jirage, D., Tootle, T.L., Reuber, T.L., Frost, L.N., Feys, B.J., Parker, J.E., Ausubel, F.M. & Glazebrook, J. (1999). Arabidopsis thaliana PAD4 encodes a lipase-like gene that is important for salicylic acid signaling. Proc Natl Acad Sci USA 96, 13583-8.

Kendrick, R. E. & Kronemberg, G. H. M. (1994). Photomorfogenesis in plants, 2 Edition (Dordrecht, The Netherlands, Kluwer Academic Publishers).

Khanna, R., Kikis, E. & Quail, P. (2003). EARLY FLOWERING 4 functions in phytochrome B-regulated seedling de-etiolation. Plant Physiol. 133, 1530-8.

Kim, J., Yi, H., Choi, G., Shin, B., Song, P.-S., and Choi, G. (2003). Functional characterization of PIF3 in phytochrome-mediated light signal transduction. Plant Cell 15:, 2399–407.

Kim, Y.M., Woo, J.C., Song. P-S. & Soh, M.S. (2002). HFR1, a phytochrome Asignalling component, acts in a separate pathway from HY5, downstream of COP1 in Arabidopsis thaliana. Plant J. **30**, 711-9.

Knight, H. & Knight M.R.(2001). Abiotic stress signalling pathways: specificity and cross-talk. Trends Plant Science 6, 262-7.

Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J.M. & Hoffmann, J.A. (1996) The Dorsoventral Regulatory Gene Cassette *spatzle/Toll/cactus* Controls the Potent Antifungal Response in Drosophila Adults. Cell **86**, 973–3.

Liberati, N.T., Fitzgerald, K.A., Kin, D.H., Feinbaum, R., Golenbock, D.T. & Ausubel, F.M. (2004). Requirement for a conserved Toll/interleukin-1 resistance domain protein in the Caenorhabditis elegans immune response. Proc. Natl. Acad. Sci. USA 101, 6593-8.

Liberati, N.T., Fitzgerald, K.A., Kin, D.H., Feinbaum, R., Golenbock, D.T. & Ausubel, F.M. (2004). Requirement for a conserved Toll/interleukin-1 resistance domain protein in the Caenorhabditis elegans immune response. Proc. Natl. Acad. Sci. USA 101, 6593-8.

Liu, Y.G., Mitsukawa, N., Oosumi, T. & Whittier, R.F. (1995). Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J. 8, 457-63.

Mancinelli, A. L. (1994). The physiology of phytochrome action. Photomorphogenesis in plants. 2 (Dordrecht, The Netherlands Kluwer Academic Publishers). pp: 211-69.

Martínez-García J.F., Huq, E. & Quqil, P.H. (2000). Direct targeting of light signals to a promoter element-bound transcription factor. Science **288**, 859-63.

Martinez-García, J.F., Monte, E. & Quail, P.H. (1999). A simple, rapid and quantitative method for preparing Arabidopsis protein extracts for immunoblot analysis. Plant J. 20, 251-7.

Mathews, S. & Sharrock, R.A. (1997). Phytochrome gene diversity. Plant Cell Environ. 20, 666-71.

McCormac, A. C., Wagner, D., Boylan, M.T., Quail, P.H., Smith, H. & Whitelam, G.C. (1993). Photoresponses of transgenic *Arabidopsis* seedlings expressing introduced phytochrome B- encoding cDNAs: evidence that phytochrome A and phytochrome B have distinct photoregulatory functions. Plant Journal **4**, 19-27.

McDowell, J.M. & Dangl, J.L. (2000). Signal transduction in the plant immune response. Trends Biochem Sci. 25, 79-82.

McNellis, T. W. & Deng, X-W. (1995). Light control of seedling morphogenetic pattern. Plant Cell 7, 1749-61.

Meyers, B., Morgante, M. & Michelmore, R. (2002). TIR-X and TIR-NBS proteins: two new families related to disease resistance TIR-NBS-LRR proteins encoded in Arabidopsis and other plant genomes. Plant J. **32**, 77-92.

Meyers, B.C., Kozik, A., Griego, A., Kuang, H. & Michelmore, R.W. (2003). Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 15, 809-34.

Michaels, S. D. & Amasino, R. M. (1999). FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering . Plant Cell 11, 949-60.

Møller, S., Kunkel, T & Chua, N-H. (2001). A plastidic ABC protein involved in intercompartmental communication of light signaling. Genes & Dev.**15**, 90-103.

Monte, E., Tepperman, J.M., Al-Sady, B., Kaczorowski, K.A., Alonso, J.M., Ecker, J.R., Li, X., Zhang, Y. & Quail, P.H. (2004). The phytochrome-interacting transcription factor, PIF3, acts early, selectively, and positively in light-induced chloroplast development. Proc. Natl. Acad. Sci., USA 101, 16091-8.

Moran, R. (1982). Formulae for Determination of Chlorophyllous Pigments Extracted with N,N-Dimethylformamide. Plant Physiol. **69**, 1376-81.

Morgan, D. C. & Smith, H. (1976). Linear relationship between phytochrome photoequilibrium and growht in plants under natural radiation. Nature 26, 210-2.

Nagatani, A. (2004). Light-regulated nuclear localization of phytochromes. Curr. Opin. Plant Biol. 7, 708-11.

Nagatani, A., Chory, J.& Furuya, M. (1991). Phytochrome B is not detectable in the hy3 mutant of Arabidopsis, which is deficient in responding to end-of-day far- red light treatments. Plant Cell Physiology **32**, 1119-22.

Nagy, F., Kircher, S. & Schafer, E. (2001). Intracellular trafficking of photoreceptors during light-induced signal transduction in plants. J Cell Sci. 114, 475-80.

Ni, M., Tepperman, J. M. & Quail, P. H. (1998). PIF3, a phytochrome-interacting factor necessay for normal photoinduced signal transduction, is a novel basic helix-loop-helix protein. Cell **95**, 657-67.

Nilsen, K.N. & Hodges, C.F.(1980) Photomorphogenically defined light and resistance of *Poa pratensis* to *Drechslera sorokiniana*. Plant Physiol. **65**, 569-73.

Nurnberg, T., Brunner, F., Kemmerling, B. & Piater, L. (2004) Innate immunity in plants and animals: striking similarities and obvious differences. Immuol. Rev 198, 249-66.

Osterlund, M.T. & Deng, X-W. (1998). Multiple photoreceptors mediate the lightinduced reduction of GUS-COP1 from Arabidopsis hypocotyl nuclei. Plant J **16**,201-8.

Peng, J. & Harberd, N.P. (1997). Gibberellin deficiency and response mutations suppress the stem elongation phenotype of phytochrome-deficient mutant of Arabidopsis. Plant Physiol. **113**, 1051-8.

Poppe, C., Hangarter, R.P., Sharrock, R.A., Nagy, F. & Schafer, E. (1996). The lightinduced reduction of the gravitropic growth-orientation of seedlings of Arabidopsis thaliana (L.) Heynh. is a photomorphogenic response mediated synergistically by the farred-absorbing forms of phytochromes A and B. Planta **199**, 511-4.

Pujol, N., Link, E.M., Liu, L.X., Kurz, C.L., Alloing, G., Tan, M.W., Ray, K.P., Solari, R., Johnson, C.D. & Ewbank, J.J. (2001). A reverse genetic analysis of components of the Toll signaling pathway in Caenorhabditis elegans. Current Biol. 11, 809-21.

Quail, P. H. (1991). Phytochrome: a light-activated molecular switch that regulates plant gene expression. Annual Reviews Genetics **25**, 389-409.

Quail, P. H. (2002). Phytochrome photosensory signalling networks. *Nature Reviews* Molecular and Cell Biology **3**, 85-93.

Quail, P. H., Boylan, M.T., Parks, B.M., Short, T.W., Xu, Y. & Wagner, D. (1995). Phytochromes: photosensory perception and signal transduction. Science **268**, 675-80.

Quail, P.H. (1998). The phytochrome family: dissection of functional roles and signalling pathways among family members. Philosophical Transactions of the Royal Society of London. B. **333**, 1399-403.

Rahman, M.Z., Honda, Y. & Arase, S. (2003). Red- light- induced resistance in borad bean (*Vicia faba* L.) to leaf spot disease caused by *Alternaria tenuissima*. Journal of Phytopathology 151, 86-91.

Reed, J. W., Nagpal, P., Poole, D.S., Furuya, M. & Chory, J. (1993). Mutations in the gene for the Red/Far-Red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell **5**, 147-57.

Roig-Villanova, I., Bou, J., Sorin, C., Devlin, P.F. & Martínez-García, J.F. (2006). Identification of primary target genes of phytochrome signaling. Early transcription control during shade avoidance responses in Arabidopsis. Plant Physiol. **141**, 85-96.

Ryu, J.S., Kim, J.I., Kunkel, T., Kim, B.C., Cho, D.S., Hong, S.H., Kim, S.H., Fernandez, A.P., Kim, Y., Alonso, J.M., Ecker, J.R., Nagy, F., Lim, P.O., Song, P-S., Schafer, E.& Nam, H.G. (2005). Phytochrome-specific type 5 phosphatase controls light signal flux by enhancing phytochrome stability and affinity for a signal transducer. Cell **120**, 395-406.

Saijo, Y., Sullivan, J.A., Wang, H., Yang, J., Shen, Y., Rubio, V., Ma, L., Hoecker,
U. & Deng, X-W. (2003). The COP1-SPA1 interaction defines a critical step in phytochrome A-mediated regulation of HY5 activity. Genes & Dev. 17, 2642-7.

Sakamoto, K. & Nagatani, A. (1996). Nuclear localization activity of phytochrome B. Plant J. 10, 859-68.

Scortecci, K., Michaels, S. D. & Amasino, R. M. (2003). Genetic interactions between FLM and other flowering-time genes in Arabidopsis thaliana. Plant Molecular Biology **52**, 915-23.

Seo, H.S., Watanabe, E., Tokutomi, S., Nagatani, A. & Chua, N- H. (2004).
Photoreceptor ubiquitination by COP1 E3 ligase desensitizes phytochrome A signaling.
Genes & Dev. 18, 617-22.

Sessa, G., <u>Carabelli, M.</u>, <u>Sassi, M.</u>, <u>Ciolfi, A.</u>, <u>Possenti, M.</u>, <u>Mittempergher, F.</u>, <u>Becker, J.</u>, <u>Morelli, G. & Ruberti, I.</u> (2005) A dynamic balance between gene activation and repression regulates the shade avoidance response in Arabidopsis. Genes & Dev. **19**, 2811-5.

Sessa, G., <u>Carabelli, M.</u>, <u>Sassi, M.</u>, <u>Ciolfi, A.</u>, <u>Possenti, M.</u>, <u>Mittempergher, F.</u>, <u>Becker, J.</u>, <u>Morelli, G. & Ruberti, I.</u> (2005) A dynamic balance between gene activation and repression regulates the shade avoidance response in Arabidopsis. Genes & Dev. **19**, 2811-5.

Shao, F., Golstein, C., Ade, J., Stoutemyer, M., Dixon, J.E. & Innes RW. (2003) Cleavage of Arabidopsis PBS1 by a bacterial type III effector. Science **301**, 1230-3.

Simpson, G.G. & Dean, C. (2002). Arabidopsis, the rosetta stone of flowering time? Science 296: 285-9.

Smith, H (1982). "Light quality, photoperception and plant strategy." Annual Review of Plant Physiology **33**, 481-518.

Smith, H. (2000). Phytochromes and light signal perception by plants-an emerging synthesis. Nature 407, 585-90.

Smith, H. (2000). Phytochromes and light signal perception by plants- an emerging synthesis. Nature 407, 585-91.

Soh, M.-S., Kim, Y.-M., Ham, S.-J. & Song, P.-S. (2000). REP1, a basic helix-loophelix protein, is required for a branch pathway of phytochrome A signalling in Arabidopsis. Plant Cell **12**, 2061-73.

Somers, D. E., Sharrock, R.A., Tepperman, J.M. & Quail, P.H. (1991). The *hy3* long hypocotyl mutant of *Arabidopsis* is deficient in phytochrome B. Plant Cell **3**, 1263-74.

Somers, D.E. & Quail, P.H. (1995). Phytochrome-mediated light regulation of PHYAand PHYB- GUS transgenes in Arabidopsis thaliana seedlings. Plant Physiol. **107**, 523-34.

Stacey, M.G., Hicks, S.N. & von Arnim, A.G. (1999). Discrete domains mediate the light-responsive nuclear and cytoplasmic localization of Arabidopsis COP1.Plant Cell **11**, 349-64.

Staiger, D., Allenbach, L., Salathia, N., Fiechter, V., Davis, S.J., Millar, A.J., Chory,
J. & Fankhauser, C. (2003). The Arabidopsis SRR1 gene mediates phyB signaling and is required for normal circadian clock function. Genes & Dev. 17, 256-268.

Steindler, C., Matteucci, A., Sessa, G., Weimar, T., Ohgishi, M., Aoyama, T., Morelli, G. & Ruberti, I. (1999). Shade avoidance response are mediated by the ATHB-2 HD-zip protein, a negative regulator of gene expression. Development 126, 4235-45.

Tao, Y., Xie, Z., Chen, W., Glazebrook, J., Chang, H. S., Han, B., Zhu, T., Zou, G. & Katagiri, F. (2003). Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen *Pseudomonas syringae*. Plant Cell **15**, 317-30.

Tepperman, J.M. Hudson, M.E., Khanna, R.Zhu, T., Chang, S.H., Wang, X. & Quail, P.H. (2004). Expression profiling of phyB mutant demonstrates substantial contribution of other phytochromes to red-light-regulated gene expression during seedling de-etiolation. Plant J. **38**, 725-39.

Tepperman, J.M., Zhu, T., Chang, H.-S., Wang, X. & Quail, P.H. (2001). Multiple transcription-factor genes are early targets of phytochrome A signaling. Proc. Natl. Acad. Sci., USA **98**, 9437-42.

Toledo- Ortiz, G., Huq,E. & Quail, P.H. (2003)The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell **15,** 1749-70

Tornero, P. & Dangl, J.L. (2001). A high-throughput method for quantifying growth of phytopathogenic bacteria in Arabidopsis thaliana. Plant J. **28**, 475-81.

Wagner, D., Hoecker, U., & Quail, P.H. (1997). RED1 is necessary for phytochrome B-mediated red light-specific signal transduction in Arabidopsis. Plant Cell. 9, 731-43.

Wagner, D., Tepperman, J.M. & Quail, P.H. (1991). Overexpression of phytochrome B induces a short hypocotyl phenotype in transgenic *Arabidopsis*. Plant Cell **3**, 1275-88.

Wei, N. & Deng, X-W. (1992). COP9: A new genetic locus involved in light-regulated development and gene expression in Arabidopsis. Plant Cell 4, 1507-18.

Weigel, D. et al. (2000). Activation tagging in Arabidopsis. Plant Physiol. 122, 1003-13.

Whitelam, G.C. & Devlin, P.F. (1997). Roles of different phytochromes in Arabidopsis photomorphogenesis. Plant Cell Environ. 20, 752-8.

Yamamoto, M., Takeda, K. & Akira, S. (2004). TIR domain-containing adaptors define the specificity of TLR signaling. Mol Immunol. 40, 861-8.

Yang, B., Zhu, W., Johnson, L.B. & White, F.F. (2000). The virulence factor AvrXa7 of Xanthomonas oryzae pv. oryzae is a type III secretion pathway-dependent nuclear-localized double-stranded DNA-binding protein. Proc. Natl. Acad. Sci. USA 97, 9807-12.

Yanovsky, M.J. & Kay, S.A. (2003). Living by the calendar: how plants know when to flower. Nature Reviews Molecular and Cell Biology **4**, 265-75.

Yeh, K.-C. & Lagarias, C. (1998). Eukariotic phytochromes: Light-regulated serine / threonine protein kinases with histidine kinase ancestry. Proc.Nat. Acad. Sci. USA 95: 13976-81.

Young, N.D. (2000). The genetic architecture of resistance. Curr. Opin. Plant Biol. 3, 285-90.

Zeir, J., Pink, B., Muller, M.J. & Berger, S. (2004) Light conditions influence specific defence responses in incompatible plant- pathogen interactions: uncoupling systemic resistance from salicylic acid and PR-1 accumulation. Planta **219**, 673-83.

Zhao, Y., Christensen, S. K., Fankhauser, C., Cashman, J. R., Cohen, J. D., Weigel, & Chory, J.(2001). A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291, 306-10.

Referencias

—

	at	at	atg	desc	col a	col b
Cluster 1	245042_at	245042_at	AT2G26540	uroporphyrinogen-III	114,9	132,3
	245347_at	245347_at	AT4G14890	ferredoxin family pro	776,1	782,7
	245642_at	245642_at	AT1G25275	expressed protein	1219,4	1230,7
	245830_at	245830_at	AT1G57790	F-box family protein,	96,7	100,9
	246055_at	246055_at	AT5G08380	alpha-galactosidase	146,8	154,6
	246234_at	246234_at	AT4G37280	MRG family protein,	117	118
	246238_at	246238_at	AT4G36670	mannitol transporter	211,2	208,4
	246850_at	246850_at	AT5G26860	similar to Lon protea	44,2	56,9
	246888_at	246888_at	AT5G26270	expressed protein,	204,4	210,7
	247223_at	247223_at	no_match	no_match	14,2	14,1
	247889_at	247889_at	AT5G57930	expressed protein	439,9	516,1
	248010_at	248010_at	AT5G56290	peroxisomal targetin	405	418,8
	248401_at	248401_at	AT5G52110	expressed protein, s	62,7	70,4
	248551_at	248551_at	AT5G50200	expressed protein, s	101,3	114,1
	248739_at	248739_at	AT5G48030	DNAJ heat shock pr	193,1	215,8
	249346_at	249346_at	AT5G40780	lysine and histidine	107,6	106,9
	249504_at	249504_at	AT5G38850	disease resistance p	33,2	32,3
	249606_at	249606_at	AT5G37260	myb family transcrip	258,2	285,3
	249790_at	249790_at	AT5G24290	integral membrane f	32,4	40,4
	249900_at	249900_at	AT5G22640	MORN (Membrane (288	320,8
	249996_at	249996_at	AT5G18600	glutaredoxin family p	466	429,3
	250468_at	250468_at	AT5G10120	ethylene insensitive	18,4	14,6
	250740_at		AT5G05760	syntaxin 31 (SYP31)	37,1	38,4
	250825_at		AT5G05210	nucleolar matrix prot	85,8	74,3
	251000_at	251000_at	AT5G02650	expressed protein	12,1	12,3
	251427_at	251427_at	AT3G60130	glycosyl hydrolase fa	171,9	157,5
	252265_at	252265_at	AT3G49620	2-oxoacid-depender	48,1	33,7
	252511_at	252511_at	AT3G46280	protein kinase-relate	39,3	42,6
	253048_at	253048_at	AT4G37560	formamidase, putati	163,2	166,7
	253097_at	253097_at	AT4G37320	cytochrome P450 fa	71,5	83,8
	253184_at	253184_at	AT4G35230	protein kinase family	278,6	285,3
	253585_at	253585_at	AT4G30720	expressed protein, h	70,1	78,8
	253885_at	253885_at	AT4G27690	vacuolar protein sort	111,5	120,7
	254137_at	254137_at	AT4G24930	thylakoid lumenal 17	362,2	366,4
	254163_s_a	<mark>t</mark> 254163_s_at	t AT4G24370;	/[AT4G24370, expres	184,1	231,8
	254545_at	254545_at	AT4G19830	immunophilin / FKBI	121,6	120,3
	254805_at	254805_at	AT4G12480	protease inhibitor/se	425,5	515,5
	255016_at	255016_at	AT4G10120	sucrose-phosphate :	925,1	913,5
	255421_at	255421_at	AT4G03260	leucine-rich repeat fa	383,5	432,1
	255469_at	255469_at	AT4G03030	kelch repeat-contain	293,2	298
	256874_at	256874_at	AT3G26320	cytochrome P450 71	23,4	29,1
	256891_at	256891_at	AT3G19030	expressed protein, c	779	838,8
	257641_s_a	<mark>t</mark> 257641_s_at	t AT3G25760;	/[AT3G25760, early-ı	1455,1	1498,7
	257772_at	257772_at	AT3G23080	expressed protein, v	191,4	202,7
	257775_at	257775_at	AT3G29260	short-chain dehydro	13,8	13,3
	258034_at	258034_at	AT3G21300	RNA methyltransfera	61,6	49,6
	258250_at	258250_at	AT3G15850	fatty acid desaturase	1938,6	1800,5
	258413_at	258413_at	AT3G17300	expressed protein	81,3	93,1
	258554_at	258554_at	AT3G06980	DEAD/DEAH box he	422,1	443,9
	258949_at	258949_at	AT3G01370	expressed protein, c	213,3	230,8
	259173_at	259173_at	AT3G03640	glycosyl hydrolase fa	93,2	99,4

	260771_at	260771_at	AT1G49160	protein kinase family	24,5	25,4
	260815 at		AT1G06950	Encodes a protein th	374,2	400,7
	260890 at	260890 at	AT1G29090	peptidase C1A papa	47,4	42,6
	261629 at		AT1G49980	similar to UMUC-like	52,4	43,2
	261861 at	261861 at	AT1G50450	expressed protein	209,5	203,4
			AT1G50280	phototropic-responsi	22,5	31,1
	262680 at	262680 at	AT1G75880	family II extracellular	42,2	39,8
	263488 at		AT2G31840	expressed protein	109,4	124,8
	263550 at	263550 at	AT2G17033	pentatricopeptide (P	206.3	259
	263805 at	263805 at	AT2G40400	expressed protein, s	182.5	192.4
	263864 at	263864 at	AT2G04530	RNase Z. 97% ident	102.1	103.1
	264299 s at	264299 s at	AT1G78850:4	IAT1G78850. curcul	587.7	749.2
	266058 at	266058 at	AT2G40690	NAD-dependent alvo	31.3	29.6
	266267 at	266267 at	AT2G29460	dutathione S-transfe	34	32.2
	266648 at	266648 at	AT2G25840	tRNA synthetase cla	153.4	156.8
	266795 at	266795 at	AT2G03070	expressed protein	64 3	83.8
	266951 at	266951 at	AT2G18940	pentatricopentide (P	115	122.8
	267134 at	267134 at	AT2G23450	protein kinase family	139	148.5
	201104_01	207 104_ut	112020400		100	140,0
	at	at	atg	desc	col a	col b
Cluster 2	267627_at	267627_at	AT2G42270	U5 small nuclear rib	53,4	51,6
	248640_at	254621_at	AT4G18600	expressed protein, s	90,5	91,1
	263669_at	256229_at	AT1G58200	mechanosensitive ic	220,8	211,2
	262066_at	248640_at	AT5G48910	pentatricopeptide (P	94,9	100,3
	255895_at	266525_at	AT2G16970	expressed protein,	14,2	16,3
	264949_at	248425_at	AT5G51690	1-aminocyclopropan	29,3	32,7
	266433_at	263669_at	AT1G04400	cryptochrome 2 apo	696,4	717,1
	254682_at	262309_at	AT1G70820	phosphoglucomutas	342,1	322
	251552_at	248306_at	AT5G52830	WRKY family transc	23	22,9
	260106_at	262066_at	AT1G79950	helicase-related, sim	72,6	77,4
	255742_at	245359_at	AT4G14430	enoyl-CoA hydratase	172,3	169,8
	248299_at	251080_at	AT5G02010	member of KPP-like	48,1	49,8
	266437_at	255895_at	AT1G18020;A	[AT1G18020, 12-ox	216,5	180,7
	262550_at	250115_at	AT5G16420	pentatricopeptide (P	21,1	19,3
	255116_at	267392_at	AT2G44490	glycosyl hydrolase fa	817,6	895,4
	254621_at	264949_at	AT1G77080	MADS-box protein A	32,3	28
	266525_at	250476_at	AT5G10140	MADS-box protein fl	179,6	155,8
	262309_at	266433_at	AT2G07110	hypothetical protein	10,7	8,5
	245359_at	259181_at	AT3G01690	expressed protein	505,7	599,9
	250115_at	254682_at	AT4G13640	myb family transcrip	110,5	114,7
	250476_at	248984_at	AT5G45140	similar to DNA-direc	53,3	63,4
	259181_at	251552_at	AT3G58700	60S ribosomal prote	395,3	393,2
	248984_at	255836_at	AT2G33440	splicing factor family	62,2	73,8
				dianalastana hydrak	420 7	437.2
	255836_at	260106_at	AT1G35420		420,7	·•· ,=
	255836_at 261075_at	260106_at 261075_at	AT1G35420 AT1G07280	expressed protein	437,2	435,9
	255836_at 261075_at 264485_at	260106_at 261075_at 255742_at	AT1G35420 AT1G07280 AT1G25560	expressed protein AP2 domain-contain	437,2 151,3	435,9 160,2
	255836_at 261075_at 264485_at 264223_s_at	260106_at 261075_at 255742_at 264485_at	AT1G35420 AT1G07280 AT1G25560 AT1G77220	expressed protein AP2 domain-contain expressed protein, c	420,7 437,2 151,3 43,9	435,9 160,2 49,1
	255836_at 261075_at 264485_at 264223_s_at 254073_at	260106_at 261075_at 255742_at 264485_at 248299_at	AT1G35420 AT1G07280 AT1G25560 AT1G77220 AT5G53080	expressed protein AP2 domain-contain expressed protein, c kinesin light chain-re	420,7 437,2 151,3 43,9 28,7	435,9 6 160,2 9 49,1 7 28,3

	251500_at	266437_at	AT2G43160	epsin N-terminal hor	517,4	526,6
	256229_at	254073_at	AT4G25500	arginine/serine-rich :	185	184,3
	248425_at	262550_at	AT1G31310	hydroxyproline-rich (19,3	19,8
	248306_at	253322_at	AT4G33980	expressed protein	81	88,6
	251080_at	255116_at	AT4G08850	leucine-rich repeat fa	231,7	223,1
	267392_at	251500_at	AT3G59110	protein kinase family	130,1	141,5
	at	at	ato	desc		h
Cluster 3	262226 at	262226 at	ΔT1G53885	senescence-associa	11 5	11 5
	257650 at	253332 at	AT4G33420	nerovidase nutative	97.6	92.3
	249065 at	250662_at	AT5G07010	sulfotransferase fam	11 Q	11 3
	248010 at	257650 at	AT3G16800	nrotein nhosnhata	36.6	35.3
	245064 at	251560_at	AT3G57020	squamosa promoter	53	5.8
	243004_at	253704 at	AT4C28720	flavin containing mo	3,3 8 2	11.6
	207032_at	2337.94_at	AT4G20720	zinc finger (CCCH ty	17.5	21.8
	261023 at	249005_at	AT5C02540	short chain dobydro	30.4	21,0 44.2
	201023_at	250/17 at	AT1C02340	long hypocotyl in far	30,4	77,2 22.8
	257604_at	239417_at	ATIG02340	CPL interacting prot	165	167.6
	230094_at	240910_at	AT2C21045	similar to sonosconc	105	42.0
	240952_at	200409_at	AT2G21043		43,0	42,9 51 /
	247903_at	2002200_at	AT2C20725	giycosyi nyurolase ic	40,0	01,4 10.6
	257096_at	245004_at	AT2G39723	transprintion factor 6	10,7	19,0
	252419_at	256079_at	AT3G25940		00,2	13,1
	253224_at	200782_al	AT2G29120		24,2	20,9
	253332_at	207032_al	AT2G42160	Zinc inger (ubiquitin	27,3	30,Z
	251560_at	245734_at	AT1G73480	nydrolase, alpha/bet	81,7	82,5
	251013_at	253066_al	AT4G37770	I-aminocyclopropan	10,1	8,0
	265439_at	248793_at	AT5G47240	wut i /nudix family pr	81,9	68,1
	258079_at	264729_at	AT1G22990	neavy-metal-associa	10,9	14,2
	245734_at	260179_at	AT1G70690	Kinase-related, conta	17,4	16,3
	264729_at	261023_at	AT1G12200	tiavin-containing mo	98,3	109,5
	267238_at	267238_at	AT2G44130;	/[A12G44130, keich	70,1	61,7
	253812_at	251650_at	AT3G57360	expressed protein	15,8	18,8
	253246_at	253812_at	AT4G28240;	/[A14G28240, wound	352,5	426,1
	263276_at	258694_at	A13G08660	phototropic-respons	9,2	9,8
	251026_at	253246_at	A14G34600	expressed protein	18	22,4
	265276_at	246932_at	A15G25190	encodes a member	45,5	54,2
	245546_at	263276_at	AT2G14100	cytochrome P450 fa	13,9	12,1
	265476_at	247903_at	AT5G57340	expressed protein	44,7	47,4
	250662_at	251026_at	A15G02200	phytochrome A spec	7,5	4,6
	253794_at	257698_at	AT3G12730	myb family transcrip	21,9	23,8
	259417_at	265276_at	AT2G28400	expressed protein, c	13,6	15,5
	253238_at	252419_at	AT3G47510	expressed protein	65,1	83,8
	266782_at	245546_at	AT4G15290	cellulose synthase fa	13,5	15,5
	253066_at	253224_at	AT4G34860	beta-fructofuranosid	49,7	58,5
	260179_at	265476_at	AT2G15570	thioredoxin M-type 3	120,8	110,8

	at	at	atg	desc	col a	col b
Cluster 4	250090_at	250090_at	AT5G17330	glutamate decarboxy	141,3	145,5
	248395_at	248060_at	AT5G55560	protein kinase family	15,4	19,9
	259428_at	248395_at	AT5G52120	F-box family protein	39,3	41,6
	261013_at	259826_at	AT1G29340	armadillo/beta-cater	400,6	448,5
	252068_at	259428_at	AT1G01560	mitogen-activated pr	14,1	14,1
	259751_at	258351_at	AT3G17700	cyclic nucleotide-bin	26,7	29,5
	249855_at	261013_at	AT1G26440	expressed protein, s	33,7	39,3
	263159_at	251942_at	AT3G53480	ABC transporter farr	36,9	39,6
	245449_at	252068_at	AT3G51440	strictosidine synthas	17,1	17,4
	252086_at	261654_at	AT1G01920	SET domain-contair	15,5	14,4
	253629_at	259751_at	AT1G71030	Encodes a putative I	432,1	305,1
	252931_at	263565_at	AT2G15390	xyloglucan fucosyltra	15,1	14,7
	266278_at	249855_at	AT5G22970	expressed protein	9,1	8,8
	256178_s_at	258957_at	AT3G01420	pathogen-responsive	94,1	78,4
	260196_at	263159_at	AT1G54130	RelA/SpoT protein, j	368,5	373,6
	248060_at	250988_at	AT5G02880	HECT-domain-conta	99,6	110
2598 2583	259826_at	245449_at	AT4G16870	copia-like retrotrans	50	47,5
	258351_at	262354_at	AT1G64200	vacuolar ATP syntha	124,3	131,3
	251942_at	252086_at	AT3G52030	F-box family protein	69,4	84,8
	261654_at	264492_at	AT1G27430	GYF domain-contair	32,2	42,6
	263565_at	253629_at	AT4G30450	glycine-rich protein	66,6	80,9
	258957_at	263699_at	AT1G31120	potassium transporte	45	53
	250988_at	252931_at	AT4G38930	ubiquitin fusion degr	63,7	67,3
	262354_at	265733_at	AT2G01190	octicosapeptide/Pho	93,7	106,2
	264492_at	266278_at	AT2G29300	tropinone reductase	29,6	30,4
	263699_at	255381_at	AT4G03510	zinc finger (C3HC4-1	117,5	99,4
	265733_at	256178_s_at	AT1G51760;	4[AT1G51760, IAA-aı	60,1	63
	255381_at	256734_at	AT3G29390	hydroxyproline-rich (44,2	60,1
	256734_at	260196_at	AT1G67570	expressed protein	25,7	29
	at	at	atg	desc	col a	col b
Cluster 5	263122_at	263122_at	AT1G78510	solanesyl diphospha	189,9	182,3
	259968_at	256997_at	AT3G14067	subtilase family prot	432,5	448
	262963 at	262719 at	AT1G43590	expressed protein, c	43	71
	2/0808 of	264774 of	AT1C22800	ovprossed protoin	160.6	169.3

Cluster 5	263122_at	263122_at	AT1G78510	solanesyl diphospha	189,9	182,3
	259968_at	256997_at	AT3G14067	subtilase family prot	432,5	448
	262963_at	262719_at	AT1G43590	expressed protein, c	43	71
	249808_at	264774_at	AT1G22890	expressed protein	160,6	168,3
	262736_at	259968_at	AT1G76530	auxin efflux carrier fa	23,7	22,8
	266285_at	249162_at	AT5G42765	expressed protein	152,9	138,6
	259305_at	266065_at	AT2G18790	phytochrome B (PH`	198,3	262,8
	264279_s_at	262963_at	AT1G54220	dihydrolipoamide S-	87,6	98,1
	250049_at	248037_at	AT5G55930	oligopeptide transpo	43,2	55,6
	257982_at	251935_at	AT3G54090	pfkB-type carbohydr	210,5	197,9
	245299_at	249808_at	AT5G23890	expressed protein, v	111,6	131,2
	245358_at	258108_at	AT3G23570	dienelactone hydrola	287,1	362,1
	259707_at	250111_at	AT5G16290	acetolactate synthas	222,4	227,2
	247916_at	262736_at	AT1G28570	GDSL-motif lipase, r	55,7	57,6
	260569_at	252480_at	AT3G46580	methyl-CpG-binding	36	40,3
	262719_at	261401_at	AT1G79640	protein kinase family	31,1	30,5
	266065_at	266285_at	AT2G29180	expressed protein	274,5	296,1

	251935_at	253054_at	AT4G37580	N-acetyltransferase,	34,5	45,2
	250111_at	249942_at	AT5G22300	nitrilase 4 (NIT4), ide	190,6	136,7
	261401_at	259305_at	AT3G05070	expressed protein	108,6	99
	249942 at	260391 at	AT1G74020	strictosidine synthas	388,9	394,7
		252989_at	AT4G38420	multi-copper oxidase	104,2	112,6
	248357 at	264279 s at	t AT1G78820;	AT1G78820, curcul	696,8	750,1
	252365 at	259675 at	AT1G77710	expressed protein, s	454,3	448,9
	 262086_at		AT5G52380	zinc knuckle (CCHC	42,6	49,5
			AT5G17780	hydrolase, alpha/bet	57,9	65,9
	259537 at	265539 at	AT2G15830	expressed protein	44,5	42,8
			AT3G48350	cysteine proteinase,	76,7	87,1
		257982 at	AT3G20780	topoisomerase 6 sul	21,6	23,7
	256997 at	266015 at	AT2G24190	short-chain dehydro	65	66,6
		262086 at	AT1G56050	GTP-binding protein	116	128,1
			AT4G17530	Ras-related GTP-bir	496	520,7
	258108 at		AT1G79790	haloacid dehalogena	144,4	167.6
			AT5G59750	riboflavin biosynthes	394.5	388
	253054 at	245358 at	AT4G15900	PP1/PP2A phospha	181,9	179,8
			AT1G73655	immunophilin / FKBI	410.8	462
	259675 at	259537 at	AT1G12370	type II CPD photolya	31,9	37,7
			AT1G77490	L-ascorbate peroxid	509.8	568.2
	266015 at	259207 at	AT3G09050	expressed protein	73.5	64.5
	261351 at	247028 at	AT5G67100	DNA-directed DNA r	22.8	25.5
	260044 at	247916 at	AT5G57590	aminotransferase cla	46	50.7
	259207 at	267088 at	AT2G38140	chloroplast 30S ribo	770.8	806.1
	267088 at	247952 at	AT5G57260	cvtochrome P450 71	36.7	32.9
	245716 at	260569 at	AT2G43640	signal recognition pa	128.1	144.2
	264774 at	245716 at	AT5G08740	pyridine nucleotide-	157.9	155.7
	_	-			,	,
	at	at	atg	desc co	ola colb	
Cluster 6	266280_at	266280_at	A12G29260	tropinone reductase	16,2	16,8
	263856_at	253294_at	A14G33750	expressed protein	133,3	123,1
	258381_at	267512_at	A12G45690	shrunken seed prote	46,1	47,9
	257580_at	263856_at	AT2G04410	expressed protein	376,4	408,5
	254548_at	256430_at	AT3G11020	encodes a member	31,2	27,1
	249870_at	258381_at	A13G16630	kinesin motor family	299	302,9
	247219_at	258833_at	no_match	no_match	37,3	39,2
	258461_at	257580_at	AI3G06210	similar to expressed	26,4	36,1
	266238_at	250766_at	A15G05550	expressed protein, s	33,8	27,7
	259672_at	254548_at	AT4G19865	kelch repeat-contain	35,5	35,6
	264819_at	255446_at	AT4G02750	pentatricopeptide (P	20	22,3
	252786_at	249870_at	A15G23080	SWAP (Suppressor-	91,6	90
	260089_at	246385_at	AT1G/7390	cyclin, putative, simi	15,4	13,3
	251998_at	24/219_at	A15G64920	COP1-interacting pr	153,9	156,8
	251380_at	251422_at	A13G60540	sec61beta family pro	25,3	30,8
	253294_at	258461_at	A13G17340	importin-related, cor	21,6	23,4
	256430_at	260279_at	AT1G80420	UNA repair protein,	50,8	52,3
	258833_at	266238_at	A12G29400	serine/threonine pro	492,7	441,7
	250766_at	251279_at	AT3G61800	expressed protein	49,5	57,7

	255446 at	259672 at	AT1G68990	DNA-directed RNA	59,1	66,3
			AT1G06400	Ras-related GTP-bir	263.8	272,2
	251422 at	264819 at	AT1G03510	pentatricopeptide (P	14,1	13,2
	260279 at		AT1G65510	expressed protein	24,1	26,2
	251279 at	252786 at	AT3G42670	SNF2 domain-conta	28,9	38,2
	259395 at	266050 at	AT2G40770	SNF2 domain-conta	34.8	37.4
	264680 at	260089 at	AT1G73170	expressed protein	300.2	317.6
	266050 at	250402 at	AT5G10940	transducin family pro	110	111.4
	250402 at	251998 at	AT3G53090	HECT-domain-conta	65	71.5
	251578 at	251578 at	AT3G58180	PBS lvase HEAT-lik	104.7	112
	259334 at	251380 at	AT3G60700	expressed protein	16.8	18.7
	267512_at	259334_at	AT3G03790	ankyrin repeat family	111,9	114,7
	at	at	atg	desc co	ola colb	
Cluster 7	255802_s_at	t 255802_s_at	t AT4G10150;	/[AT4G10150, zinc fi	31,8	31,7
	266474 at	246310 at	AT3G51895	sulfate transporter (67,4	78,1
		266474_at	AT2G31110	expressed protein	41,5	33
	251869 at	261109 at	AT1G75450	FAD-binding domair	16,7	17,5
	259930 at	247597 at	AT5G60860	Ras-related GTP-bir	33,5	40
		247672 at	AT5G60220	senescence-associa	6,7	7,3
	249383 at	251869 at	AT3G54500	expressed protein	204,1	206,6
			AT2G25140	heat shock protein 1	29.3	27,6
		259930 at	AT1G34355	forkhead-associated	8	5.8
	255129 at	249645 at	AT5G36910	thionin (THI2.2), ide	698.8	578.5
	260361 at	259346 at	AT3G03910	alutamate dehvdroa	10.9	11.6
	263120 at	251634 at	AT3G57480	zinc finger (C2H2 tv)	37.9	34.4
	247398 at	249383 at	AT5G39860	bHLH protein, putati	22	23.6
	263164 at	250657 at	AT5G07000	sulfotransferase far	25.4	37.5
	249486 at	250327 at	AT5G12050	expressed protein	118.5	193.4
	246310 at	255129 at	AT4G08290	nodulin MtN21 famil	29.4	18.9
	261109 at	260361_at	AT1G69360	expressed protein	44 2	41 1
	247672 at	263120 at	AT1G78490	cvtochrome P450 fa	83.9	98
	264402_at	247398 at	AT5G62950	expressed protein	29	35.1
	249645 at	263164 at	AT1G03070	expressed protein la	13	9.3
	251634 at	249486 at	AT5G39030	protein kinase family	14,2	13
	_	_			·	
Oluster 0			atg	uesc C	Ja COID	40 7
Cluster 8	248586_at	248586_at	AT5G49610	F-box family protein,	48,8	48,7
	264510_at	264510_at	AT1G09530	phytochrome interac	59,1	90,4
	267497_at	267497_at	A12G30540	glutaredoxin family r	23,7	26,5
	263665_at	263665_at	AI1G04480	60S ribosomal prote	791,7	842
	250306_at	250306_at	A15G12160	expressed protein, s	34,5	33,1
	246228_at	246228_at	A14G36430	peroxidase, putative	17,7	21,4
	262286_at	262286_at	AI1G68585	expressed protein	38,7	45,8
	266102_at	266102_at	A12G40720	pentatricopeptide (P	14,3	15,2
	265611_at	265611_at	AT2G25510	expressed protein	1371,3	1600,7

	256784_at	256784_at	AT3G13674	expressed protein	13,7	17,3
	245854_at	245854_at	AT5G13490	ADP, ATP carrier pr	135,5	154,6
	253800_at	253800_at	AT4G28160	hydroxyproline-rich	í 13,7	['] 9,1
	261071_at	261071_at	AT1G07380	ceramidase family p	40,6	45,9
	249126_at	249126_at	AT5G43380	serine/threonine pro	17,7	22,3
		_				
	at	at	atg	desc	col a	col b
Cluster 9	245543_at	245543_at	AT4G15260	UDP-glucoronosyl/L	J 77,2	55
	248048_at	248048_at	AT5G56080	nicotianamine synth	26	21,8
	248800_at	248800_at	AT5G47320	30S ribosomal prote	e 166,4	154,8
	247100_at	247100_at	AT5G66520	pentatricopeptide (F	2 56,3	46,4
	245504_at	245504_at	AT4G15660	glutaredoxin family	60,5	48,1
	251771_at	251771_at	AT3G56000	glycosyl transferase	21	12,9
	256503_at	256503_at	AT1G75250	myb family transcrip	23,6	16,9
	251189_at	251189_at	AT3G62650	expressed protein, p	734	638,8
	261443_at	261443_at	AT1G28480	glutaredoxin family	: 28,1	19
	245936_at	245936_at	AT5G19850	hydrolase, alpha/be	t 258,7	221
	at	at	atg	desc	col a	col b
Cluster 10	267337_at	267337_at	AT2G39980	transferase family p	ı 66	68,8
	266108_at	266108_at	AT2G37900	proton-dependent o	I 0,6	0,4
	250485_at	250485_at	AT5G09990	expressed protein	14,1	15,4
	259507_at	259507_at	AT1G43910	AAA-type ATPase fa	e 12,9	14,3
	251700_at	251700_at	AT3G56640	exocyst complex su	t 31,6	39,8
	245081_at	245081_at	no_match	no_match	9,1	10,6
	252096_at	252096_at	AT3G51180	zinc finger (CCCH-t	, 17	20,9
	253232_at	253232_at	AT4G34340	expressed protein	28,1	33,2
	266944_at	266944_at	no_match	no_match	12,6	10,4
	265843_at	265843_at	AT2G35690	acyl-CoA oxidase, p	50,8	59,9
	255865_at	255865_at	AT2G30330	GCN5L1 family prot	. 53,2	61,5
	261945_at	261945_at	AT1G64530	RWP-RK domain-co	56,1	60,8
	258702_at	258702_at	AT3G09730	expressed protein	10	12,7

	phyb a	phyb b	(csa a	csa b	
123,6	85,3	93,2	89,25	107,2	114,7	110,95
779,4	501	493,4	497,2	605,5	691,6	648,55
1225,05	699,4	639,6	669,5	823,6	1102	962,8
98,8	77,3	71,7	74,5	89,4	88,3	88,85
150,7	83,1	90,8	86,95	94,1	121	107,55
117,5	92,2	97,6	94,9	105,8	101,1	103,45
209,8	105,9	124	114,95	124	112,7	118,35
50,55	32,1	30	31,05	32,3	31,4	31,85
207,55	62,2	55.2	58,7	48,7	72,6	60,65
14,15	1,6	3,8	2,7	6,8	5,5	6,15
478	285,6	313,3	299,45	383,2	379,5	381,35
411,9	338,3	323,5	330,9	352,2	389,4	370,8
66.55	42.3	45.2	43.75	47.9	56.9	52.4
107.7	52.5	45	48.75	56.5	71.9	64.2
204.45	145.6	143.9	144,75	137	161.7	149.35
107.25	54.9	69.4	62.15	65.6	76.4	71
32.75	20.2	24	22.1	26.7	29.2	27.95
271 75	107 1	134	120 55	152 1	175.5	163.8
36.4	16.3	20.8	18.55	24.5	24.4	24 45
304.4	171	175.8	173.4	213.4	191.6	202.5
447 65	124.5	206.5	165.5	260.4	291	275.7
16.5	7.6	6.2	6.9	9.1	10.7	9.9
37 75	27.9	31.3	29.6	29.9		30.45
80.05	56.2	51.3	53 75	52 5	61 7	57 1
12.2	7 1	62	6 65	9.2	10.3	9 75
164.7	103.5	95.3	99.4	98.8	120.2	109.5
40 9	8	83	8 15	17.8	21.7	105,5
40,5	12 7	17.3	0,15	18.2	16.8	17.5
164 05	117 A	17,5 127 A	122 /	10,2	117	113.05
77 65	42.6	127,4 17 3	122,4	/100,1 /13	лт л л 1 л	113,05
281.05	42,0 210	21/,5	216.6	107.2		210.6
201,95	52.5	2 1 4 ,2 56 3	210,0 54.4	197,2	52.2	210,0 54.6
116 1	J2,J	94 Q	04,4 00 0	70.2	02,2	95 1
364.3	92,7 216 7	231 1	223.0	75,2 257.6	316.5	287.05
207.05	210,7	201,1	223,9	257,0	166.6	169 15
120.05	105,5	109,7	107,5	109,7	100,0	112 75
470.5	104,0	86.0	107,75	248.2	238.6	243.4
470,3 010 3	352.6	411 7	382 15	584.3	230,0 797.6	600.05
407 8	205.0	278.5	287.2	287	331.0	300.1
205.6	295,9	270,5	207,2	180.2	220.6	204 0
295,0	203,3	203,7	203,5	109,2	220,0	204,9
20,25	10,9 526.4	10,4 504 5	515.05	19,J	20,5	692.25
1476.0	649.0	012 F	720 7	037,2	1070.0	002,25
1470,9	040,9 155 0	162.0	150,7	017,3	1079,9	940,0 156.25
197,05	155,9	103,2	109,00	154,4	100,0	100,30
13,35	0,8	1,7	1,20	1,2	2,1	
0,0 1000 FF	20	20,4	20,7	33,2	29,9	31,00
1009,55	1198,4	1252,5	1225,45	1492,2	1539,8	1516
×1,2	35,7	50,5	43,1	57,5	65,2	01,35
433	287,1	304,1	295,6	293,7	353,4	323,55
222,05	136,8	150,2	143,5	170,1	163,1	166,6
96,3	47,8	53,6	50, <i>1</i>	62,5	78,7	70,6

24,95	14,2	14,1	14,15	21,1	15,9	18,5
387,45	315,3	287,7	301,5	332,7	341,4	337,05
45	7,3	5,9	6,6	15,8	30	22,9
47,8	21,4	26,9	24,15	26,8	27,7	27,25
206,45	110	117,2	113,6	122,4	166,4	144,4
26,8	14,6	12,3	13,45	11,5	14,2	12,85
41	26,4	27,5	26,95	29,8	36,8	33,3
117,1	78,5	81,7	80,1	97,4	95,4	96,4
232.65	148.5	154.4	151.45	187.3	194	190.65
187.45	154.7	164.7	159.7	158.6	167.3	162.95
102.6	45.7	51.4	48 55	81.9	64 1	73
668 45	334.7	361.8	348 25	450.4	572.6	511.5
30.45	18.4	21.0	20.15	26.2	24.2	25.2
33.1	10,4	21,5 8.1	20,10	10.2	16.2	17.7
155 1	11,5	111.0	105.4	112.2	122.2	122 75
74.05	40.9	111,0	105,4	F0 /	1JZ,J 51 0	122,73 55 1
14,00	40,0	43,1	41,95	50,4 70,6	51,0	55, I 72, 15
110,9	00,2 100 5	74,9	00,00	70,0	10,1	73,15
143,75	102,5	105,8	104,15	115,1	120,9	121
250,29			147,41			185,82
341,04			200,88			203,42
41,00			24,18			31,71
r	hyba n	hyb b			rea h	
۱ 52 5	34 5	35.1	34.8	30.9	31	30.95
90 8	69	68.8	68.9	57.3	60.3	58.8
216	158 1	152 1	155 1	138.8	140 5	130 65
97.6	63.8	70 1	66 95	51 1	53.1	52 1
15 25	11.6	7 7	9.65	1 9	2	1 95
31	22.3	23.0	23.1	1,0	13.8	1,00
706 75	620.7	501.6	606 15	501 4	462.2	12,0 /81.8
332.05	262	265.5	263 75	231 7	250.2	240.95
22,05	12.6	205,5	11 15	5.8	200,2	240,00
22,95	12,0	9,7 62,0	61 45	57.6	7,0 58,5	58.05
171.05	121.2	125	120 1	100 5	111 1	105 9
171,05	24.2	155	120,1	100,5	217	105,6
40,90	34,Z	35,0	34,9 120.15	27,3	31,7	29,0
190,0	135,0	142,7	139,15	107,5	107,7	107,0
20,2 050 5	14,0		13,9	11,4 570 5	12,2	11,0 E47
800,0	039,0	000,5	623,05	576,5	517,5	547
30,15	10,7	18,2	17,45	13,8	10,4	15,1
167,7	73,4	58,5	65,95	34,0	51,2	42,9
9,6	3,8	6	4,9	1,1	1,7	1,4
552,8	449,6	420,2	434,9	320,7	297,6	309,15
112,6	91,6	86,1	88,85	75,1	83,4	79,25
58,35	46,5	44,1	45,3	34,9	35,3	35,1
394,25	337,1	325	331,05	292,6	321,5	307,05
68	53	50,2	51,6	44,2	40,8	42,5
428,95	329,2	368,6	348,9	334,5	335,8	335,15
436,55	325,7	366,6	346,15	250,9	298,8	274,85
155,75	138,6	146,1	142,35	117,4	127,2	122,3
46,5	32	38,8	35,4	28,9	28,6	28,75
28,5	18	16,8	17,4	12,3	17,1	14,7
21,8	16,9	18,1	17,5	13,7	16,1	14,9

522	439,4	422,3	430,85	373,6	426,8	400,2
184,65	160,4	159,7	160,05	116,3	140,6	128,45
19,55	13,7	16,7	15,2	11,3	13,1	12,2
84,8	58,6	39,1	48,85	29,4	39,1	34,25
227,4	164,8	150,7	157,75	100,3	141,9	121,1
135,8	91,2	95,8	93,5	66,8	90,4	78,6
189,17			145,54			122,38
212,43			170,4			145,86
35,91			28,8			24,66
p	hvb a phv	b b	csa	a csa	b	
11.5	22.6	21.7	22.15	14	14.8	14.4
94.95	180.8	181.6	181.2	82.2	91.8	
11.6	71.9	55.5	63.7	19.8	18.6	19.2
35,95	118,5	127,4	122,95	74,5	89,7	82,1
5,55	13,4	11,8	12,6	6,7	6,8	6,75
9,9	66,1	60,8	63,45	22,1	24,7	23,4
19,65	90,6	75,4	83	41,4	37,3	39,35
37,3	176,2	174,4	175,3	48,1	44	46,05
31,2	440,8	368,5	404,65	158	229,7	193,85
166,3	310,7	374,5	342,6	242,4	250,4	246,4
43,35	63,6	73,7	68,65	44,5	45,1	44,8
50	71,4	80,5	75,95	62,3	61,1	61,7
18.15	30.3	28.3	29.3	18.1	18.6	18.35
70.95	91.1	94.8	92.95	80.4	79.6	80
25.55	59.4	59.9	59.65	29.7	38.8	34.25
28.75	41.6	41.8	41.7	33.5	30.8	32.15
82.1	154.9	191.4	173.15	104.1	121.3	112.7
9.35	25.5	37.5	31.5	15.8	16.8	16.3
75	127.6	126.4	127	64.9	75	69.95
12.55	32.5	32	32.25	13.2	16.9	15.05
16.85	33.7	28.2	30.95	19.7	22.4	21.05
103.9	155.5	177.2	166.35	115.6	125.3	120.45
65.9	113.5	128	120.75	60.2	74.8	67.5
17.3	25.3	26	25.65	18.3	18.4	18.35
389.3	858.7	807.3	833	489.7	367.1	428.4
9,5	16,9	20,4	18,65	11,9	14,6	13,25
20.2	43.3	35.1	39.2	23.5	24	23.75
49.85	78.5	85	81.75	62.5	69.9	66.2
13	19	18,1	18,55	13,2	14,4	13,8
46.05	90.9	132.8	111.85	62.4	67.7	65.05
6.05	17.3	19.1	18.2	9.3	11.6	10.45
22.85	33.1	38.7	35.9	21.6	25.8	23.7
14.55	31	27.9	29.45	15.6	21.7	18.65
74.45	133.7	130.4	132.05	68.9	86.3	77.6
14.5	19.6	18.7	19.15	15.5	16.1	15.8
54.1	87.6	93.7	90.65	47.5	61.8	54.65
115.8	156.8	157.2	157	116.8	135.6	126.2
50.64	,.	· - · , -	111.7	,.	,.	65.1
67.79			149.03			80.38
11,15			24,5			13,21

	phyb a	phyb b		csa a	csa b	
143,4	205	5 204,2	204,6	117,1	122,2	119,65
17,65	27,8	3 27	27,4	5,1	5,8	5,45
40,45	59	56,7	57,85	36,3	33,6	34,95
424,55	581,3	578,6	579,95	325,9	309,5	317,7
14.1	23.3	3 20.2	21.75	11.4	10.1	10.75
28.1	33.9	33.1	33.5	17.8	20.1	18,95
36.5	53 5	5 44.5	49	24.1	25.4	24 75
38 25	50) 43.9	46 95	30.8	28.6	29.7
17 25	21.8	3 23	22.4	15.5	13.2	14.35
14 95	22 6	21 7	22 15	10,2	13	11.6
368.6	643 8	611.3	627.55	268	255.5	261 75
14.9	19.2	2 19.3	19 25	12 7	10.3	11.5
8 95	10, <u>-</u> 14 F	10,0 11.6	13.05	,,	4.3	5 15
86 25	150 0) 144 Q	10,00	51 9	30.5	41 2
371.05	436.8	× 406.1	147,5	203.1	328.3	310.7
104.8	430,0 116 e	3 400,1 3 118.6	117.6	293,1	80 A	91 55
10-7,0	110,0 66 F	5 66	66.25	33,7	45.6	41 3
107 0	163 1	1129	152.05	107	40,0	100.45
127,0	103,1	0.57	152,95	107 59.1	61	109,43 50 55
274	92,0	5 90,7 1 50,1	94,23	JO, I 10 7	24.0	09,00
37,4 72.75	01,4	+ 30,1 > 107.7	100.75	10,7	24,9	21,0
13,15	93,0	b 107,7	100,75	01,5	57,7	59,6
49			00,85	37,1	41,5	39,3
00,0	80,6) /9 7 100 0	79,8	50,0	64,Z	60,4 00.05
99,95	152,7	128,2	140,45	84,8	93,3	89,05
30	47,8	3 39,5	43,65	18,8	25,5	22,15
108,45	179,8	3 140,1	159,95	86,9	68,7	77,8
61,55	79,9	0 70,8	75,35	60,2	56	58,1
52,15	63,3	3 60,2	61,75	36,4	33,3	34,85
27,35	33,1	29,7	31,4	19,8	22,9	21,35
89,26			121,74			69,12
109,61			156,36			84,84
20,35			29,03			15,75
	nhvh a	phyb b		csa a	csa b	
186.1	99.2	2 95.4	97.3	151.3	173.3	162.3
440 25	344 9	3525	348.7	424 7	441.6	433 15
57	9,9	10^{-10}	9.95	76.2	83	79.6
164 45	79.6	5 716	75.6	130.2	152.6	141.4
23 25	10,2	2 12 1	11 15	18.8	20.6	19.7
145 75	98.9	106.5	102 7	162.9	155.3	159.1
230 55	51 7	7 65 5	58.6	184 1	233.3	208.7
92.85	68 2	200,0 200,0	65 45	107,7	103.9	105.8
10 A	00,2	2 - 02,7	11 45	135	51.2	47 35
204.2	3,2 1/1 6	- 10,7 - 1113	1/2 05	101.8	215.2	203 5
101 /	69.6	5 72 /	71	103.4	109.1	105 75
224.6	172 /	102	192.2	271.2	308.6	394.0
324,0 224.0	172,4	H 192	102,2	37 T,Z	390,0 216 2	304,9 214 0
224,0 56.65	102,2	- 193,5 Z 20	107,00	∠ I J, J	210,3	214,9 62.75
20,00	34,7	39	30,85 22 7	58,4 26.2	09,1	03,15
30,15	21,8		23,7	30,Z	30,1	30,15
3U,8	18, <i>1</i>	21,7	20,2	27,2	29,1	28,15
∠୪୨,3	212,1	212,7	212,4	279,8	316,3	298,05

39,85	20	21,5	20,75	36,3	36,8	36,55
163,65	71	73,5	72,25	148,2	172,9	160,55
103,8	76	82,6	79,3	101,1	103,9	102,5
391,8	306,5	284,1	295,3	405	472,2	438,6
108,4	64	53	58,5	91,9	113,1	102,5
723,45	507,5	451,8	479,65	603,3	679,7	641,5
451,6	418,1	389,1	403,6	471,8	479,9	475,85
46,05	35,2	33,8	34,5	50,6	47,2	48,9
61,9	41,2	32,2	36,7	65,5	79,4	72,45
43,65	33,1	27,7	30,4	44,5	51,5	48
81,9	57,6	58	57,8	86,7	108,4	97,55
22,65	12	14,9	13,45	23,8	31,8	27,8
65,8	55	57,9	56,45	68,5	76,9	72,7
122,05	70	89,3	79,65	124,6	135,2	129,9
508,35	400,2	413,6	406,9	492,4	561,8	527,1
156	118,5	127,2	122,85	166,6	165,9	166,25
391,25	249,6	279,2	264,4	325,5	391,6	358,55
180,85	144,4	126,1	135,25	163,4	179	171,2
436,4	241,7	277,7	259,7	376,4	486,7	431,55
34,8	18,8	25,6	22,2	41,4	49,6	45,5
539	396,9	389,6	393,25	480,7	558,5	519,6
69	40,3	49,2	44,75	71,9	91,1	81,5
24,15	14,8	16,8	15,8	24,7	33	28,85
48,35	26,9	33,7	30,3	43,8	51,6	47,7
788,45	608,2	570,3	589,25	823,2	1050,1	936,65
34,8	17,3	20,3	18,8	28,9	40,6	34,75
136,15	117,7	112,5	115,1	142,1	146,1	144,1
156,8	85	107,8	96,4	150	193,3	171,65
191,25			130,92			195,83
190,01			143,2			197,72
28,32			21,35			29,47
	csa b					
16,5	16,3	16,2	16,25	9,7	10,5	10,1
128,2	133,6	119,4	126,5	77,4	76,6	77
47	42,1	45	43,55	33,1	31	32,05
392,45	377,9	406,7	392,3	240,5	258,6	249,55
29,15	29,9	24,7	27,3	10,6	8,4	9,5
300,95	287,4	289,5	288,45	212,2	231,4	221,8
38,25	40,1	43,8	41,95	23,5	26,3	24,9
31,25	25,9	27	26,45	11,9	12,2	12,05
30,75	31,8	28,9	30,35	15,9	16,9	16,4
35,55	39,7	38,3	39	26,1	22,2	24,15
21,15	24,9	19,9	22,4	11	11,6	11,3
90,8	90,6	83,5	87,05	65,2	70,7	67,95
14,35	15,6	15	15,3	6,8	4,6	5,7
155,35	151,4	125,5	138,45	94	98,6	96,3
28,05	28,4	26,1	27,25	16,5	14	15,25
22,5	21,6	18	19,8	13,2	14,1	13,65
51,55	48,2	44,8	46,5	29,8	35,9	32,85
467,2	469,7	413,6	441,65	304,2	328,2	316,2
53,6	55,4	58,8	57,1	37,4	40,9	39,15

62,7	69,6	64,5	67,05	43,3	49,3	46,3
268	266,2	244,1	255,15	222,3	210,3	216,3
13,65	16,5	14	15,25	6	3,1	4,55
25,15	28,8	21,9	25,35	15,2	12,8	14
33,55	30,9	30,1	30,5	20,1	18,7	19,4
36,1	35,8	32,4	34,1	28,9	28,6	28,75
308,9	290,1	303,3	296,7	258,9	270,4	264,65
110,7	120,1	108	114,05	86,9	94,1	90,5
68,25	62,9	63,3	63,1	45,1	52,9	49
108,35	111	110,6	110,8	96,2	88,2	92,2
17,75	17,2	12,6	14,9	10	9,7	9,85
113,3	110	120,8	115,4	73,7	89,8	81,75
100,68			97,74			70,75
119,6			115,07			87,26
21,48			20,67			15,67
р	hyb a pł	ıyb b	cs	aa c	sa b	
31,75	51,6	54,1	52,85	51,1	48,7	49,9
72,75	210	199,6	204,8	169,8	193,8	181,8
37,25	88,3	84,6	86,45	75,1	73,5	74,3
17,1	44,5	54,2	49,35	33,3	41,3	37,3
36,75	76,5	84,9	80,7	64,7	59,9	62,3
7	20,3	17,4	18,85	15,7	20,7	18,2
205,35	289,4	291,9	290,65	281,4	247,7	264,55
28,45	54,3	45,4	49,85	45,5	41,4	43,45
6,9	17,8	15,6	16,7	13,4	13,3	13,35
638,65	1847,7	1729	1788,35	1063	1515,8	1289,4
11,25	15,7	18,6	17,15	16,6	15,9	16,25
36,15	48,3	45,4	46,85	43,7	45	44,35
22,8	44,4	61,2	52,8	43,1	54,9	49
31,45	94,5	76,2	85,35	58,5	68,8	63,65
155,95	377,9	381,3	379,6	348,1	438,5	393,3
24,15	61,9	71,6	66,75	41,1	53,1	47,1
42,65	52,4	50,6	51,5	46,2	48,7	47,45
90,95	121,6	124,5	123,05	115,6	124,7	120,15
32,05	53,3	47,2	50,25	43,3	48	45,65
11,15	32,6	36,4	34,5	19,1	31,7	25,4
13,6	29,3	26,5	27,9	19,2	28,5	23,85
74			170,2			138,6
138,66			382,23			279,59
30,26			83,41			61,01
p	hyba ph	iyb b	CS	aa o	sa b	ED 4E
40,70 74 75	40,9	47,4	47,15	52, I 010 2	0,2C 1079 0	52,45 1004 G
14,15	δZ,4	85,4	83,9 10.05	910,3	1278,9	1094,6
20,1	705.0	17,7	10,00	37	39,3	30, IS
20,010	(U5,8 25.4	004,0	005,2	949	961,2	955,1
33,8 10 55	∠⊃,4 10 7	∠0, I 10 1	20,70 47 A	41	40,3	44,05
19,00	10,1 22.0	10,1	17,4	31,0 50.0	33,3 E1 0	32,45 51 05
42,20 11 75	33,0 11 7	<u></u> ఎఎ, అ	33,00 10.05	50,9 20 7	01,Z	01,00 20.05
14,10	11,7	0,0 1021 1	10,20 1127.05	20,1	19,0	20,20 2251 2
1400	1243	1031,1	1137,05	2442,9	2009,7	2201,3

15,5	14,7	17,2	15,95	29,8	26,6	28,2	
145,05	108,7	118	113,35	168,8	195,3	182,05	
11,4	2	5,5	3,75	34,6	35,4	35	
43,25	36,1	43,1	39,6	60,3	59,3	59,8	
20	20,6	18	19,3	31,1	29,2	30,15	
199,79			160,67			348,23	
425,39			331,41			652,27	
113,69			88,57			174,33	
#DIV/0! pł	nybia phyl	b b	#DIV/0! csa a	a csa	b	#DIV/0!	
66,1	17,2	13,4	15,3	41,3	47,5	44,4	
23,9	14,7	13,1	13,9	19,8	18,7	19,25	
160,6	128,8	117,5	123,15	148,2	154,5	151,35	
51,35	23,6	25,7	24,65	35,8	47,4	41,6	
54,3	25,5	31,2	28,35	44,2	49,1	46,65	
16,95	6,6	5,2	5,9	15,9	13,1	14,5	
20,25	8,6	4,9	6,75	18,1	19,8	18,95	
686,4	528,9	500,3	514,6	595,4	605,1	600,25	
23,55	11	8,7	9,85	16,3	15,5	15,9	
239,85	148,1	166,5	157,3	189,1	212,8	200,95	
#DIV/0! pł	nybia phyl	b b	#DIV/0! csa a	a csa	b	#DIV/0!	
67,4	80,4	83,7	82,05	99,9	106,8	103,35	
0,5	1,9	5,2	3,55	18,6	16,6	17,6	
14,75	24,4	22,9	23,65	27,7	35,8	31,75	
13,6	17,7	16	16,85	24,7	32,3	28,5	
35,7	48,7	51,8	50,25	57,7	59,4	58,55	
9,85	11,5	13,3	12,4	15,8	18,7	17,25	
18,95	25,7	20,8	23,25	34,2	39,4	36,8	
30,65	33,5	34,2	33,85	46,3	57,7	52	
11,5	18,5	14,6	16,55	20,7	24,2	22,45	
55,35	57,8	58,7	58,25	77,7	73,8	75,75	
57,35	64,1	64,3	64,2	74,8	78,5	76,65	
58,45	64,3	58,7	61,5	72	73,8	72,9	
11,35	15,5	15,2	15,35	18	21,5	19,75	

	at	at	atg	desc	col a	col b
Cluster 1	245042_at	245042_at	AT2G26540	uroporphyrinogen-III	114,9	132,3
	245347_at	245347_at	AT4G14890	ferredoxin family pro	776,1	782,7
	245642_at	245642_at	AT1G25275	expressed protein	1219,4	1230,7
	245830_at	245830_at	AT1G57790	F-box family protein,	96,7	100,9
	246055_at	246055_at	AT5G08380	alpha-galactosidase	146,8	154,6
	246234_at	246234_at	AT4G37280	MRG family protein,	117	118
	246238_at	246238_at	AT4G36670	mannitol transporter	211,2	208,4
	246850_at	246850_at	AT5G26860	similar to Lon protea	44,2	56,9
	246888_at	246888_at	AT5G26270	expressed protein,	204,4	210,7
	247223_at	247223_at	no_match	no_match	14,2	14,1
	247889_at	247889_at	AT5G57930	expressed protein	439,9	516,1
	248010_at	248010_at	AT5G56290	peroxisomal targetin	405	418,8
	248401_at	248401_at	AT5G52110	expressed protein, s	62,7	70,4
	248551_at		AT5G50200	expressed protein, s	101,3	114,1
	248739 at	248739 at	AT5G48030	DNAJ heat shock pr	193,1	215,8
	249346 at		AT5G40780	lysine and histidine s	107,6	106,9
	249504 at	249504 at	AT5G38850	disease resistance p	33,2	32,3
	249606 at	249606 at	AT5G37260	myb family transcrip	258,2	285,3
	249790 at		AT5G24290	integral membrane f	32,4	40,4
	249900 at		AT5G22640	MORN (Membrane (288	320.8
	249996 at	249996 at	AT5G18600	alutaredoxin family r	466	429.3
	250468_at	250468 at	AT5G10120	ethylene insensitive	18.4	14.6
	250740 at	250740 at	AT5G05760	svntaxin 31 (SYP31)	37.1	38.4
	250825 at	250825 at	AT5G05210	nucleolar matrix prot	85.8	74.3
	251000 at	251000 at	AT5G02650	expressed protein	12.1	12.3
	251427 at	251427 at	AT3G60130	glycosyl hydrolase fa	171.9	157.5
	252265 at	252265 at	AT3G49620	2-oxoacid-depender	48.1	33.7
	252511 at	252511 at	AT3G46280	protein kinase-relate	39.3	42.6
	253048 at	253048 at	AT4G37560	formamidase putati	163.2	166 7
	253097 at	253097 at	AT4G37320	cvtochrome P450 fa	71 5	83.8
	253184 at	253184 at	AT4G35230	protein kinase family	278.6	285.3
	253585 at	253585 at	AT4G30720	expressed protein h	70.1	78.8
	253885 at	253885 at	AT4G27690	vacuolar protein sort	111 5	120.7
	254137 at	254137 at	AT4G24930	thylakoid lumenal 17	362.2	366.4
	25/163 s a	254167_at	+ AT4G24370		18/ 1	231.8
	254545 at	254545 at	ΔT4G10830	immunonhilin / FKB	104,1	120.3
	25/805 at	254805 at	AT4G12480	nrotease inhibitor/se	121,0	515 5
	255016 at	255016 at	AT4G10120	sucrose-nhosnhate	925 1	913.5
	255421 at	255421 at	AT4G03260	leucine-rich reneat f:	383 5	432.1
	255469 at	255469 at	AT4G03030	kelch reneat-contain	203.2	208
	256874 at	256874 at	AT3G26320	cytochrome P450 71	230,2	200
	256801 at	256801 at	AT3G10030	evpressed protein c	20,4	838.8
	257641 s a	257641 s a	+ AT3C25760	/IAT3G25760 early r	1455 1	1/08 7
	257772 of	257772 of	AT3G23080	overessed protoin w	1455,1	202 7
	257775 of	257775 at	AT3G23080	short shain dobydro	131,4	202,7
	257775_at	258034 of	AT3G29200	DNA methyltronefor	13,0	10,0
	258250 of	258250 of	AT3G21300	fatty acid docaturace	01,0 1029 6	49,0 1900 5
	258412 of	250250_at	AT2C17200	any actu utsaluidst	190,0	0,0001 • CO
	258554 of	258554 of	AT3C06000	DEAD/DEAU hay ha	01,3 4004	90, I 142 0
	250004_at	250004_al	AT2004270	OVPROPOSED PROTOCOL	4ZZ, I	440,9 220 0
	250949_al	200949_al	AT2002640	expressed protein, c	∠13,3 02.0	∠3U,ð
	209173_at	∠ວອ⊺/ວ_at	A13G03040	giycosyi nyurolase ta	93,Z	99,4

	260771 at	260771 at	AT1G49160	protein kinase family	24,5	j 25,4
	260815 at		AT1G06950	Encodes a protein th	374.2	2 400.7
	260890 at	260890 at	AT1G29090	peptidase C1A papa	47,4	42,6
	261629 at		AT1G49980	similar to UMUC-like	52,4	43,2
	261861 at		AT1G50450	expressed protein	209,5	203,4
			AT1G50280	phototropic-responsi	22,5	i 31,1
	262680 at		AT1G75880	family II extracellular	42,2	39,8
	263488 at		AT2G31840	expressed protein	109,4	124,8
	263550 at		AT2G17033	pentatricopeptide (P	206,3	259
	263805_at		AT2G40400	expressed protein, s	182,5	i 192,4
	263864_at		AT2G04530	RNase Z, 97% ident	102,1	103,1
	264299_s_at	264299_s_at	AT1G78850;	[AT1G78850, curcul	587,7	749,2
	266058_at	266058_at	AT2G40690	NAD-dependent glyd	31,3	3 29,6
	266267_at	266267_at	AT2G29460	glutathione S-transfe	34	32,2
	266648_at	266648_at	AT2G25840	tRNA synthetase cla	153,4	156,8
	266795_at	266795_at	AT2G03070	expressed protein	64,3	83,8
	266951_at	266951_at	AT2G18940	pentatricopeptide (P	115	i 122,8
	267134_at	267134_at	AT2G23450	protein kinase family	139) 148,5
	at	at	atg	desc	col a	col b
Cluster 2	267627_at	267627_at	AT2G42270	U5 small nuclear rib	53,4	51,6
	248640_at	254621_at	AT4G18600	expressed protein, s	90,5	91,1
	263669_at	256229_at	AT1G58200	mechanosensitive ic	220,8	3 211,2
	262066_at	248640_at	AT5G48910	pentatricopeptide (P	94,9) 100,3
	255895_at	266525_at	AT2G16970	expressed protein,	14,2	<u> </u>
	264949_at	248425_at	AT5G51690	1-aminocyclopropan	29,3	32,7
	266433_at	263669_at	AT1G04400	cryptochrome 2 apo	696,4	, 717,1
	254682_at	262309_at	AT1G70820	phosphoglucomutas	342,1	322
	251552_at	248306_at	AT5G52830	WRKY family transc	23	22,9
	260106_at	262066_at	AT1G79950	helicase-related, sim	72,6	5 77,4
	255742_at	245359_at	AT4G14430	enoyl-CoA hydratase	172,3	169,8
	248299_at	251080_at	AT5G02010	member of KPP-like	48,1	49,8
	266437_at	255895_at	AT1G18020;/	4[AT1G18020, 12-oxo	216,5	180,7
	262550_at	250115_at	AI5G16420	pentatricopeptide (P	21,1	19,3
	255116_at	267392_at	A12G44490	glycosyl hydrolase fa	817,6	895,4
	254621_at	264949_at	AI1G77080	MADS-box protein A	32,3	28
	266525_at	250476_at	A15G10140	MADS-box protein fl	1/9,6	155,8
	262309_at	266433_at	AT2G07110	hypothetical protein	10,7	8,5
	245359_at	259181_at	AT3G01690	expressed protein	505,7	599,9
	250115_at	254682_at	AT4G13640	myb family transcrip	110,5	, 114,7
	250476_at	248984_at	AT5G45140	similar to DINA-direc	53,3	63,4
	259181_at	251552_at	AT3G58700	605 ribosomal prote	395,3	i 393,2
	240904_at	20000_al	AT1025420	dianalactors budrels	0Z,Z	. (3,8 / 427.0
	200000_at	200100_al	AT1C07290	ovprosped protein	420,7	437,Z
	201075_at	2010/3_at	AT100/200	AD2 domain contain	401,2	. 400,9 160.0
	204405_at	200742_at	AT1G2000	Arz uumam-cuntam	נ,וכו מג	
	204223_5_al	2/8200 of	AT5052000	kinesin light shain ra	40,5 20 7	, 4୫,୮ , ୨୦୨
	253322 at	264223 e at	AT3G16030	lectin protein kingse	20,7 01	20,3
	200022_at	LUTLLU_3_al		ISSUIT PROTEILI MILASE	L ک	22,0
	251500_at	266437_at	AT2G43160	epsin N-terminal hor	517,4	526,6
-----------	-----------	-----------	-----------	------------------------	--------------	---------------
	256229_at	254073_at	AT4G25500	arginine/serine-rich :	185	184,3
	248425_at	262550_at	AT1G31310	hydroxyproline-rich (19,3	19,8
	248306_at	253322_at	AT4G33980	expressed protein	81	88,6
	251080_at	255116_at	AT4G08850	leucine-rich repeat fa	231,7	223,1
	267392_at	251500_at	AT3G59110	protein kinase family	130,1	141,5
	at	at	ato	desc		l b
Cluster 3	262226 at	262226 at	AT1G53885	senescence-associa	11 5	11.5
	257650 at	253332 at	AT4G33420	nerovidase nutative	97.6	92.3
	249065 at	250662 at	AT5G07010	sulfotransferase far	97,0 11 Q	11 3
	249005_at	250002_at	AT3C16800	nrotoin nhosnhatar	36.6	35.3
	240910_at	251560 at	AT3C57020	squamosa promoter	53	58
	243004_at	253704 at	AT4C28720	flavin containing mo	9,0 8,2	11.6
	207032_at	233794_at	AT5C44260	zinc finger (CCCH ty	17.5	21.8
	261023 at	251013 at	AT5C02540	short chain dehydro	30.4	21,0
	251650 at	250/17_at	AT1C02340	long hypocotyl in far	30,4	22.8
	258604 at	2/8010_at	AT5C45820	CBL interacting prot	165	167.6
	230094_at	240910_at	AT2G21045	similar to senescenc	105	107,0
	247903 at	253238 at	AT2021040	alvoosvi hydrolase f	43,0	42,3 51 /
	257608 at	235250_at	AT2C30725	complex 1 family pro	40,0	10.6
	257410 at	243004_at	AT2G39723	transcription factor S	68.2	73,0
	252419_at	256079_at	AT3G25940		24.2	73,7
	253224_al	200702_at	AT2G29120		24,2	20,9
	255552_at	207032_at	AT2G42100	bydrologo alpha/hot	27,3	30,2 92.5
	25100_at	243734_al	AT1G73480	1 aminocyclopropan	10.1	02,5
	265420 of	233000_at	AT4G37770		10,1	0,0 69.1
	200439_at	240793_al	AT1C22000	how motol accord	01,9 10.0	00, I 14 2
	20079_at	204729_at	AT1G22990	kinggo related cont	10,9	14,2
	245734_al	200179_at	AT1G70090	flowin containing mo	17,4	10,3
	204729_at	201023_at	ATIG12200		90,3	109,5
	207230_al	207230_al	AT2C57260	ALA IZG44 ISU, Kelcii	70,1 15.9	01,7
	255012_at	251050_at	AT3G57300		10,0	10,0
	200240_al	253612_al	AT2C09660	r[A14G2o240, Would	352,5	420,1
	203270_al	250094_al	AT3G06660	phototropic-responsi	9,2	9,0
	251026_at	253246_al	A14G34600	expressed protein	18	22,4
	265276_at	246932_at	AT5G25190	encodes a member	45,5	54,2
	245546_at	263276_at	AT2G14100	cytochrome P450 ta	13,9	12,1
	265476_at	247903_at	A15G5/340	expressed protein	44,/	47,4
	250662_at	251026_at	AT5G02200	phytochrome A spec	7,5	4,6
	253794_at	257698_at	AT3G12/30	myb tamily transcrip	21,9	23,8
	259417_at	265276_at	AT2G28400	expressed protein, c	13,6	15,5
	253238_at	252419_at	AT3G4/510	expressed protein	65,1	83,8
	266782_at	245546_at	A14G15290	cellulose synthase fa	13,5	15,5
	253066_at	253224_at	A14G34860	beta-tructoturanosid	49,7	58,5
	260179_at	265476_at	AT2G15570	thioredoxin M-type 3	120,8	110,8

	at	at	atg	desc	col a	col b
Cluster 4	250090_at	250090_at	AT5G17330	glutamate decarboxy	141,3	145,5
	248395_at	248060_at	AT5G55560	protein kinase family	15,4	19,9
	259428_at	248395_at	AT5G52120	F-box family protein	39,3	41,6
	261013_at	259826_at	AT1G29340	armadillo/beta-cater	400,6	448,5
	252068_at	259428_at	AT1G01560	mitogen-activated pr	14,1	14,1
	259751_at	258351_at	AT3G17700	cyclic nucleotide-bin	26,7	29,5
	249855_at	261013_at	AT1G26440	expressed protein, s	33,7	39,3
	263159_at	251942_at	AT3G53480	ABC transporter farr	36,9	39,6
	245449_at	252068_at	AT3G51440	strictosidine synthas	17,1	17,4
	252086_at	261654_at	AT1G01920	SET domain-contair	15,5	14,4
	253629_at	259751_at	AT1G71030	Encodes a putative I	432,1	305,1
	252931_at	263565_at	AT2G15390	xyloglucan fucosyltra	15,1	14,7
	266278_at	249855_at	AT5G22970	expressed protein	9,1	8,8
	256178_s_at	258957_at	AT3G01420	pathogen-responsive	94,1	78,4
	260196_at	263159_at	AT1G54130	RelA/SpoT protein, j	368,5	373,6
	248060_at	250988_at	AT5G02880	HECT-domain-conta	99,6	110
	259826_at	245449_at	AT4G16870	copia-like retrotrans	50	47,5
258351_at	258351_at	262354_at	AT1G64200	vacuolar ATP syntha	124,3	131,3
	251942_at	252086_at	AT3G52030	F-box family protein	69,4	84,8
	261654_at	264492_at	AT1G27430	GYF domain-contair	32,2	42,6
	263565_at	253629_at	AT4G30450	glycine-rich protein	66,6	80,9
	258957_at	263699_at	AT1G31120	potassium transporte	45	53
	250988_at	252931_at	AT4G38930	ubiquitin fusion degr	63,7	67,3
	262354_at	265733_at	AT2G01190	octicosapeptide/Pho	93,7	106,2
	264492_at	266278_at	AT2G29300	tropinone reductase	29,6	30,4
	263699_at	255381_at	AT4G03510	zinc finger (C3HC4-1	117,5	99,4
	265733_at	256178_s_at	AT1G51760;	4[AT1G51760, IAA-aı	60,1	63
	255381_at	256734_at	AT3G29390	hydroxyproline-rich (44,2	60,1
	256734_at	260196_at	AT1G67570	expressed protein	25,7	29
	at	at	atg	desc	col a	col b
Cluster 5	263122_at	263122_at	AT1G78510	solanesyl diphospha	189,9	182,3
	259968_at	256997_at	AT3G14067	subtilase family prot	432,5	448
	262963 at	262719 at	AT1G43590	expressed protein, c	43	71
	2/0808 of	264774 of	AT1C22800	ovprossed protoin	160.6	169.3

Cluster 5	263122_at	263122_at	AT1G78510	solanesyl diphospha	189,9	182,3
	259968_at	256997_at	AT3G14067	subtilase family prot	432,5	448
	262963_at	262719_at	AT1G43590	expressed protein, c	43	71
	249808_at	264774_at	AT1G22890	expressed protein	160,6	168,3
	262736_at	259968_at	AT1G76530	auxin efflux carrier fa	23,7	22,8
	266285_at	249162_at	AT5G42765	expressed protein	152,9	138,6
	259305_at	266065_at	AT2G18790	phytochrome B (PH`	198,3	262,8
	264279_s_at	262963_at	AT1G54220	dihydrolipoamide S-	87,6	98,1
	250049_at	248037_at	AT5G55930	oligopeptide transpo	43,2	55,6
	257982_at	251935_at	AT3G54090	pfkB-type carbohydr	210,5	197,9
	245299_at	249808_at	AT5G23890	expressed protein, v	111,6	131,2
	245358_at	258108_at	AT3G23570	dienelactone hydrola	287,1	362,1
	259707_at	250111_at	AT5G16290	acetolactate synthas	222,4	227,2
	247916_at	262736_at	AT1G28570	GDSL-motif lipase, r	55,7	57,6
	260569_at	252480_at	AT3G46580	methyl-CpG-binding	36	40,3
	262719_at	261401_at	AT1G79640	protein kinase family	31,1	30,5
	266065_at	266285_at	AT2G29180	expressed protein	274,5	296,1

	251935_at	253054_at	AT4G37580	N-acetyltransferase,	34,5	45,2
	250111_at	249942_at	AT5G22300	nitrilase 4 (NIT4), ide	190,6	136,7
	261401_at	259305_at	AT3G05070	expressed protein	108,6	99
	249942_at	260391_at	AT1G74020	strictosidine synthas	388,9	394,7
	252989_at	252989_at	AT4G38420	multi-copper oxidase	104,2	112,6
	248357_at	264279_s_at	AT1G78820;	[AT1G78820, curcul	696,8	750,1
	252365_at	259675_at	AT1G77710	expressed protein, s	454,3	448,9
	262086_at	248357_at	AT5G52380	zinc knuckle (CCHC	42,6	49,5
	247694_at	250049_at	AT5G17780	hydrolase, alpha/bet	57,9	65,9
	259537_at	265539_at	AT2G15830	expressed protein	44,5	42,8
	247028_at	252365_at	AT3G48350	cysteine proteinase,	76,7	87,1
	247952_at	257982_at	AT3G20780	topoisomerase 6 sul	21,6	23,7
	256997_at	266015_at	AT2G24190	short-chain dehydro	65	66,6
	249162_at	262086_at	AT1G56050	GTP-binding protein	116	128,1
	248037_at	245299_at	AT4G17530	Ras-related GTP-bir	496	520,7
	258108_at	261351_at	AT1G79790	haloacid dehalogena	144,4	167,6
	252480_at	247694_at	AT5G59750	riboflavin biosynthes	394,5	388
	253054_at	245358_at	AT4G15900	PP1/PP2A phospha	181,9	179,8
	260391_at	260044_at	AT1G73655	immunophilin / FKBI	410,8	462
	259675_at	259537_at	AT1G12370	type II CPD photolya	31,9	37,7
	265539_at	259707_at	AT1G77490	L-ascorbate peroxid	509,8	568,2
	266015_at	259207_at	AT3G09050	expressed protein	73,5	64,5
	261351_at	247028_at	AT5G67100	DNA-directed DNA F	22,8	25,5
	260044_at	247916_at	AT5G57590	aminotransferase cla	46	50,7
	259207_at	267088_at	AT2G38140	chloroplast 30S ribo	770,8	806,1
	267088_at	247952_at	AT5G57260	cytochrome P450 71	36,7	32,9
	245716_at	260569_at	AT2G43640	signal recognition pa	128,1	144,2
	264774_at	245716_at	AT5G08740	pyridine nucleotide-c	157,9	155,7
	-1	- 1	-		ala aalb	
Chuster 6	at	at	atg	desc co		10.0
Cluster 6	200280_al	200280_al	AT2G29260	tropinone reductase	10,2	10,0
	203000_al	255294_al	AT2C 45600	expressed protein	100,0	123,1
	250501_al	207512_al	AT2C04400	shrunken seed prote	40,1	47,9
	257500_at	203030_at	AT2G04410	expressed protein	310,4	400,5
	204040_at	250430_at	AT3G11020	kinopin motor family	31,2	2/,1
	249070_at	250301_al	ATSG10030	no match	299	302,9
	247219_at	250055_at		similar to expressed	37,3	39,2
	250401_at	257500_at	AT5G05550	expressed protein s	20,4	27.7
	200230_at	250700_at	ATJG000000	koleh ropost contain	35,0	21,1
	264810 at	254040_at	AT4G19003	nentatriconentide (P	20	22,0
	252786 at	233440_at	AT5C23080	SWAP (Suppressor	01.6	22,5
	260080 at	246385 at	AT1G77300	cvclin nutative eimi	15 <u>/</u>	30 12 2
	251008_at	240000_at	AT5G64020	COP1-interacting pr	153.0	156.2
	251380_at	251422 at	AT3G60540	sec61beta family pr	25.3	30.8
	253294 at	258461 at	AT3G17340	importin-related cor	21.6	23.4
	256430 at	260279 at	AT1G80420	DNA repair protein	50.8	52.3
	258833_at	266238 at	AT2G29400	serine/threonine pro	492 7	441 7
	250766 at	251279 at	AT3G61800	expressed protein	49.5	57 7
						J.,,

	255446_at	259672_at	AT1G68990	DNA-directed RNA p	59,1	66,3
	246385_at	259395_at	AT1G06400	Ras-related GTP-bir	263,8	272,2
	251422_at	264819_at	AT1G03510	pentatricopeptide (P	14,1	13,2
	260279 at	264680 at	AT1G65510	expressed protein	24,1	26,2
	251279_at	252786_at	AT3G42670	SNF2 domain-conta	28,9	38,2
	259395 at	266050 at	AT2G40770	SNF2 domain-conta	34,8	37,4
	264680 at	260089 at	AT1G73170	expressed protein	300,2	317,6
	266050 at		AT5G10940	transducin family pro	110	111,4
		251998 at	AT3G53090	HECT-domain-conta	65	71,5
	251578 at	251578 at	AT3G58180	PBS lyase HEAT-lik	104,7	112
	259334 at	251380 at	AT3G60700	expressed protein	16,8	18,7
	267512_at	259334_at	AT3G03790	ankyrin repeat family	111,9	114,7
	at	at	atg	desc col	a col b	
Cluster 7	255802_s_a	t 255802_s_at	t AT4G10150;	/[AT4G10150, zinc fi	31,8	31,7
	266474_at	246310_at	AT3G51895	sulfate transporter (67,4	78,1
	247597_at	266474_at	AT2G31110	expressed protein	41,5	33
	251869_at	261109_at	AT1G75450	FAD-binding domair	16,7	17,5
	259930_at	247597_at	AT5G60860	Ras-related GTP-bir	33,5	40
	259346_at	247672_at	AT5G60220	senescence-associa	6,7	7,3
	249383_at	251869_at	AT3G54500	expressed protein	204,1	206,6
	250657_at	264402_at	AT2G25140	heat shock protein 1	29,3	27,6
	250327_at	259930_at	AT1G34355	forkhead-associated	8	5,8
	255129_at	249645_at	AT5G36910	thionin (THI2.2), ide	698,8	578,5
	260361_at	259346_at	AT3G03910	glutamate dehydrog	10,9	11,6
	263120_at	251634_at	AT3G57480	zinc finger (C2H2 ty	37,9	34,4
	247398_at	249383_at	AT5G39860	bHLH protein, putati	22	23,6
	263164_at	250657_at	AT5G07000	sulfotransferase farr	25,4	37,5
	249486_at	250327_at	AT5G12050	expressed protein	118,5	193,4
	246310_at	255129_at	AT4G08290	nodulin MtN21 famil	29,4	18,9
	261109_at	260361_at	AT1G69360	expressed protein	44,2	41,1
	247672_at	263120_at	AT1G78490	cytochrome P450 fa	83,9	98
	264402 at	247398 at	AT5G62950	expressed protein	29	35,1
	249645_at	263164_at	AT1G03070	expressed protein, k	13	9,3
		249486_at	AT5G39030	protein kinase family	14,2	13
Olympian			atg	COl	a col b	40 7
Cluster 8	248586_at	248586_at	AT1000500	r-box lamily protein,	48,8 50.4	48,7
	264510_at	204510_at	AT1G09530	phytochrome interac	59,1	90,4
	207497_at	20/49/_at	AT4004400		23,1	20,5
	203005_at	203005_at	ATEC404480	evorosodi evorosodi evo	191,1	842
	250506_at		ATAC26420	expressed protein, s	04,0 47 7	33,1 24 4
	240228_at	240228_at	A14G3043U	peroxidase, putative	11,1	21,4 45 0
	202280_at	202280_at	AT1008585	expressed protein	JÖ,/	45,8
	200102_at	200102_at	ATZG40720	pentatricopeptide (P	14,3	15,2

	265611_at	265611_at	AT2G25510	expressed protein	1371,	3 1600,7
	256784_at	256784_at	AT5013674	expressed protein	13,	7 17,3 F 4F4.0
	245854_at	245854_at	AT5G13490	ADP, ATP carrier pr	135,	5 154,6
	253800_at	253800_at	A14G28160	hydroxyproline-rich (13,	7 9,1
	261071_at	261071_at	AT1G07380	ceramidase family p	40,	6 45,9
	249126_at	249126_at	A15G43380	serine/threonine pro	17,	7 22,3
	at	at	atg	desc	col a	col b
Cluster 9	245543_at	245543_at	AT4G15260	UDP-glucoronosyl/U	I 77,	2 55
	248048 at	248048 at	AT5G56080	nicotianamine synth	2	6 21,8
			AT5G47320	30S ribosomal prote	166,	4 154,8
	247100_at		AT5G66520	pentatricopeptide (P	56,	3 46,4
	245504_at	245504_at	AT4G15660	glutaredoxin family p	60,	5 48,1
	251771_at	251771_at	AT3G56000	glycosyl transferase	2	1 12,9
	256503_at	256503_at	AT1G75250	myb family transcrip	23,	6 16,9
	251189_at	251189_at	AT3G62650	expressed protein, p	73	4 638,8
	261443_at	261443_at	AT1G28480	glutaredoxin family p	28,	1 19
	245936_at	245936_at	AT5G19850	hydrolase, alpha/bet	258,	7 221
	at	at	atg	desc	col a	COI D
Cluster 10	267337_at	267337_at	AT2G39980	transferase family pi	6	6 68,8
	266108_at	266108_at	AT2G37900	proton-dependent of	۱ U,	6 0,4
	250485_at	250485_at	AT5G09990		14,	1 15,4
	259507_at	259507_at	AT1G43910	AAA-lype ATPase is	: I∠, 	9 14,3 6 20,9
	251700_at	251700_at	AI3G30040		່ ວ1, ດ	0 39,0 1 10,6
	243061_at	243061_at		Tipe finger (CCCH t	9,	T 10,0
	252090_at	252090_at	AT3G51160		ן ו סס	7 20,9 1 22.2
	200202_at	200202_al	no match	no match	20, 10	1 33,2 6 10 <i>1</i>
	265843 at	265843 at	ΔΤ2G35600	acyl_CoA ovidase in	12, 50	8 50.0
	255865 at	205045_al	AT2G35090	GCN5I 1 family prot	. 53	0 09,9 2 61 5
	2610/5 at	261045 at	ΔT1G64530	RWP_RK domain or	50,	1 60.8
	258702 at	258702 at	AT3G09730	expressed protein	, 50, 1	0 127
	u	_00.02_ut				

phyb a	phyb b) C	sa a 🛛 🔾	csa b	(cola (col b
	85,3	93,2	107,2	114,7	110,95	1,04	1,19
	501	493,4	605,5	691,6	648,55	1,2	1,21
(699,4	639,6	823,6	1102	962,8	1,27	1,28
	77.3	71.7	89.4	88.3	88.85	1.09	1.14
	83.1	90.8	94.1	121	107.55	1.36	1.44
	92.2	97.6	105.8	101 1	103 45	1 13	1 14
	105.9	124	124	112 7	124	1 7	1.68
	32.1	30	32 3	31.4	32.2	1 37	1,00
	62.2	55.2	<u> </u>	72.6	67.4	3.03	3 13
	1.6	20	40,7	72,0	6 15	3,03	2,13
		0,0 010 0	0,0	5,5 270 F	0,10	2,31	2,29
	285,0	313,3	383,2	379,5	381,35	1,15	1,35
•	338,3	323,5	352,2	389,4	370,8	1,09	1,13
	42,3	45,2	47,9	56,9	52,4	1,2	1,34
	52,5	45	56,5	71,9	64,2	1,58	1,78
	145,6	143,9	137	161,7	153,65	1,26	1,4
	54,9	69,4	65,6	76,4	72,9	1,48	1,47
	20,2	24	26,7	29,2	27,95	1,19	1,16
	107,1	134	152,1	175,5	163,8	1,58	1,74
	16,3	20,8	24,5	24,4	24,45	1,33	1,65
	171	175,8	213,4	191,6	202,5	1,42	1,58
	124,5	206,5	260,4	291	275,7	1,69	1,56
	7.6	6.2	9,1	10,7	9,9	1,86	1,47
	27.9	31.3	29.9	31	31.15	1.19	1.23
	56.2	51.3	52.5	61.7	58,95	1.46	1.26
	7 1	6.2	9.2	10.3	9 75	1 24	1 26
	103.5	95.3	98.8	120.2	111.85	1 54	1 41
	8	99,9 8 3	17.8	20,2	10.75	2.44	1,41
	12.7	17.2	10.0	16 9	13,75	2,77	1,7 1 2 4
	12,1	1074	10,2	10,0	17,73	2,21	2,4
	117,4	127,4	109,1	117	122,4	1,33	1,30
	42,6	47,3	41,3	41,4	44,95	1,59	1,86
	219	214,2	197,2	224	221,5	1,26	1,29
	52,5	56,3	57	52,2	56,65	1,24	1,39
	92,7	84,9	79,2	91	91,85	1,21	1,31
:	216,7	231,1	257,6	316,5	287,05	1,26	1,28
	105,3	109,7	169,7	166,6	168,15	1,09	1,38
	104,6	110,9	113,3	112,2	112,75	1,08	1,07
	153,1	86,9	248,2	238,6	243,4	1,75	2,12
;	352,6	411,7	584,3	797,6	690,95	1,34	1,32
:	295,9	278,5	287	331,2	313,55	1,22	1,38
	203,3	203,7	189,2	220,6	212,15	1,38	1,4
	15,9	15,4	19,3	20,5	19,9	1,18	1,46
-	526.4	504.5	637.2	727.3	682.25	1.14	1.23
	648.9	812.5	817.3	1079.9	948.6	1.53	1.58
	155 0	163.2	154 A	158.3	160 75	1,00	1,00
	0.8	1 7	1 0 1 0	- 1- 0,0 - 0 - 1	1 00,7 5	7.06	7
	0,0	26.4	22.0	2,1	21 55	1,20	1 57
4	109 /	20,4 1252 5	ے,دن 1402 م	29,9 1520 0	31,00	1,90	1,07
I	130,4	1202,0	1492,2	1039,8	01.01	1,28	1,19
	35,1 007.1	50,5	57,5	65,2	61,35	1,33	1,52
2	207,1	304,1	293,7	353,4	328,75	1,28	1,35
	136,8	150,2	170,1	163,1	166,6	1,28	1,39
	47,8	53,6	62,5	78,7	70,6	1,32	1,41

14,1	21,1	15,9	18,5	1,32	1,37
287,7	332,7	341,4	337,05	1,11	1,19
5,9	15,8	30	22,9	2,07	1,86
26,9	26,8	27,7	27,3	1,92	1,58
117,2	122,4	166,4	144,4	1,45	1,41
12,3	11,5	14,2	14,4	1,56	2,16
27,5	29,8	36,8	33,3	1,27	1,2
81,7	97,4	95,4	96,4	1,13	1,29
154,4	187,3	194	190,65	1,08	1,36
164,7	158,6	167,3	166	1,1	1,16
51,4	81,9	64,1	73	1,4	1,41
361,8	450,4	572,6	511,5	1,15	1,46
21,9	26,2	24,2	25,2	1,24	1,17
8,1	19,2	16,2	17,7	1,92	1,82
111,8	113,2	132,3	122,75	1,25	1,28
43,1	58,4	51,8	55,1	1,17	1,52
74,9	70,6	75,7	75,3	1,53	1,63
105,8	115,1	126,9	121	1,15	1,23
	$\begin{array}{c} 14,1\\ 287,7\\ 5,9\\ 26,9\\ 117,2\\ 12,3\\ 27,5\\ 81,7\\ 154,4\\ 164,7\\ 51,4\\ 361,8\\ 21,9\\ 8,1\\ 111,8\\ 43,1\\ 74,9\\ 105,8\\ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

phyb a	phyb b	csa a	csa b			
34,	5 35,1	30,9	31	34,8	1,53	1,48
6	9 68,8	57,3	60,3	68,9	1,31	1,32
158,	1 152,1	138,8	140,5	155,1	1,42	1,36
63,	8 70,1	51,1	53,1	66,95	1,42	1,5
11,	6 7,7	1,9	2	9,65	1,47	1,69
22,5	3 23,9	11,4	13,8	23,1	1,27	1,42
620,	7 591,6	501,4	462,2	606,15	1,15	1,18
26	2 265,5	231,7	250,2	263,75	1,3	1,22
12,	6 9,7	5,8	7,6	11,15	2,06	2,05
6	0 62,9	57,6	58,5	61,45	1,18	1,26
121,	2 135	100,5	111,1	128,1	1,35	1,33
34,2	2 35,6	27,3	31,7	34,9	1,38	1,43
135,	6 142,7	107,5	107,7	139,15	1,56	1,3
14,	8 13	11,4	12,2	13,9	1,52	1,39
639,	6 606,5	576,5	517,5	623,05	1,31	1,44
16,	7 18,2	13,8	16,4	17,45	1,85	1,6
73,4	4 58,5	34,6	51,2	65,95	2,72	2,36
3,	8 6	1,1	1,7	4,9	2,18	1,73
449,0	6 420,2	320,7	297,6	434,9	1,16	1,38
91,	6 86,1	75,1	83,4	88,85	1,24	1,29
46,	5 44,1	34,9	35,3	45,3	1,18	1,4
337,	1 325	292,6	321,5	331,05	1,19	1,19
5	3 50,2	44,2	40,8	51,6	1,21	1,43
329,2	2 368,6	334,5	335,8	352,2	1,19	1,24
325,	7 366,6	250,9	298,8	346,15	1,26	1,26
138,	6 146,1	117,4	127,2	142,35	1,06	1,13
33	2 38,8	28,9	28,6	35,4	1,24	1,39
1	8 16,8	12,3	17,1	17,55	1,64	1,61
16,	9 18,1	13,7	16,1	17,5	1,2	1,29

422,3	373,6	426,8	433,1	1,19	1,22
159,7	116,3	140,6	160,05	1,16	1,15
16,7	11,3	13,1	15,2	1,27	1,3
39,1	29,4	39,1	48,85	1,66	1,81
150,7	100,3	141,9	157,75	1,47	1,41
95,8	66,8	90,4	93,5	1,39	1,51
	422,3 159,7 16,7 39,1 150,7 95,8	422,3373,6159,7116,316,711,339,129,4150,7100,395,866,8	422,3373,6426,8159,7116,3140,616,711,313,139,129,439,1150,7100,3141,995,866,890,4	422,3373,6426,8433,1159,7116,3140,6160,0516,711,313,115,239,129,439,148,85150,7100,3141,9157,7595,866,890,493,5	422,3373,6426,8433,11,19159,7116,3140,6160,051,1616,711,313,115,21,2739,129,439,148,851,66150,7100,3141,9157,751,4795,866,890,493,51,39

phyb a	phyb b	CS	aa cs	sa b				
2	22,6	21,7	14	14,8	14,4	0,8	0,8	
18	80,8	181,6	82,2	91,8	94,95	1,03	0,97	
7	1,9	55,5	19,8	18,6	19,2	0,62	0,59	
11	8,5	127,4	74,5	89,7	82,1	0,45	0,43	
1	3,4	11,8	6,7	6,8	6,75	0,79	0,86	
6	6,1	60,8	22,1	24,7	23,4	0,35	0,5	
ç	90,6	75,4	41,4	37,3	39,35	0,44	0,55	
17	6,2	174,4	48,1	44	46,15	0,66	0,96	
44	0,8	368,5	158	229,7	193,85	0,2	0,12	
31	0,7	374,5	242,4	250,4	246,4	0,67	0,68	
6	63,6	73,7	44,5	45,1	44,8	0,98	0,96	
7	'1,4	80,5	62,3	61,1	61,7	0,79	0,83	
3	80,3	28,3	18,1	18,6	19,1	0,87	1,03	
ç	91,1	94,8	80,4	79,6	80	0,85	0,92	
5	59,4	59,9	29,7	38,8	34,25	0,71	0,79	
4	1,6	41,8	33,5	30,8	32,15	0,85	0,94	
15	54,9	191,4	104,1	121,3	112,7	0,72	0,73	
2	25,5	37,5	15,8	16,8	16,3	0,62	0,53	
12	27,6	126,4	64,9	75	78,45	1,04	0,87	
3	32,5	32	13,2	16,9	15,55	0,7	0,91	
3	3,7	28,2	19,7	22,4	21,05	0,83	0,77	
15	55,5	177,2	115,6	125,3	120,45	0,82	0,91	
11	3,5	128	60,2	74,8	72,45	0,97	0,85	
2	25,3	26	18,3	18,4	18,6	0,85	1,01	
85	58,7	807,3	489,7	367,1	457,9	0,77	0,93	
1	6,9	20,4	11,9	14,6	13,25	0,69	0,74	
4	3,3	35,1	23,5	24	23,75	0,76	0,94	
7	8,5	85	62,5	69,9	66,2	0,69	0,82	
	19	18,1	13,2	14,4	14,15	0,98	0,86	
g	90,9	132,8	62,4	67,7	65,05	0,69	0,73	
1	7,3	19,1	9,3	11,6	10,45	0,72	0,44	
3	3,1	38,7	21,6	25,8	24,8	0,88	0,96	
	31	27,9	15,6	21,7	18,65	0,73	0,83	
13	3,7	130,4	68,9	86,3	85,05	0,77	0,99	
1	9,6	18,7	15,5	16,1	15,8	0,85	0,98	
8	87,6	93,7	47,5	61,8	60,15	0,83	0,97	
15	6,8	157,2	116,8	135,6	128,2	0,94	0,86	

phyb a	phyb b	C	sa a	csa b			
	205	204,2	117,1	122,2	143,4	0,99	1,01
	27,8	27	5,1	5,8	17,65	0,87	1,13
	59	56,7	36,3	33,6	40,45	0,97	1,03
Ę	581,3	578,6	325,9	309,5	424,55	0,94	1,06
	23,3	20,2	11,4	10,1	14,1	1	1
	33,9	33,1	17,8	20,1	28,1	0,95	1,05
	53,5	44,5	24,1	25,4	36,5	0,92	1,08
	50	43,9	30,8	28,6	38,25	0,96	1,04
	21,8	23	15,5	13,2	17,25	0,99	1,01
	22,6	21,7	10,2	13	14,95	1,04	0,96
6	643,8	611,3	268	255,5	368,6	1,17	0,83
	19,2	19,3	12,7	10,3	14,9	1,01	0,99
	14,5	11,6	6	4,3	8,95	1,02	0,98
	150,9	144,9	51,9	30,5	86,25	1,09	0,91
2	136,8	406,1	293,1	328,3	371,05	0,99	1,01
	116,6	118,6	93,7	89,4	104,8	0,95	1,05
	66,5	66	37	45,6	48,75	1,03	0,97
	163,1	142,8	107	111,9	127,8	0,97	1,03
	92,8	95,7	58,1	61	77,1	0,9	1,1
	51,4	50,1	18,7	24,9	37,4	0,86	1,14
	93,8	107,7	61,5	57,7	73,75	0,9	1,1
	63	58,7	37,1	41,5	49	0,92	1,08
	80,6	79	56,6	64,2	65,75	0,97	1,02
	152,7	128,2	84,8	93,3	99,95	0,94	1,06
	47,8	39,5	18,8	25,5	30	0,99	1,01
	179,8	140,1	86,9	68,7	108,45	1,08	0,92
	79,9	70,8	60,2	56	61,6	0,98	1,02
	63,3	60,2	36,4	33,3	52,15	0,85	1,15
	33,1	29,7	19,8	22,9	27,35	0,94	1,06

phyb a	phyb b	csa a	csa b			
99,2	95,4	151,3	173,3	162,3	1,17	1,12
344,9	9 352,5	424,7	441,6	428,6	1,01	1,05
9,9) 10	76,2	83	57	0,75	1,25
79,6	6 71,6	130,2	152,6	141,4	1,14	1,19
10,2	2 12,1	18,8	20,6	19,7	1,2	1,16
98,9	9 106,5	162,9	155,3	145,75	1,05	0,95
51,7	7 65,5	184,1	233,3	191,2	1,04	1,37
68,2	2 62,7	107,7	103,9	92,85	0,94	1,06
9,2	2 13,7	43,5	51,2	43,35	1	1,28
141,6	6 144,3	191,8	215,2	194,85	1,08	1,02
68,6	6 73,4	103,4	108,1	105,75	1,06	1,24
172,4	l 192	371,2	398,6	324,6	0,88	1,12
182,2	2 193,5	213,5	216,3	214,9	1,03	1,06
34,7	7 39	58,4	69,1	56,65	0,98	1,02
21,9	9 25,5	36,2	36,1	36,05	1	1,12
18,7	21,7	27,2	29,1	28,15	1,1	1,08
212,1	l 212,7	279,8	316,3	277,15	0,99	1,07

20	21,5	36,3	36,8	35,4	0,97	1,28
71	73,5	148,2	172,9	142,45	1,34	0,96
76	82,6	101,1	103,9	100,05	1,09	0,99
306,5	284,1	405	472,2	391,8	0,99	1,01
64	53	91,9	113,1	98,05	1,06	1,15
507,5	451,8	603,3	679,7	641,5	1,09	1,17
418,1	389,1	471,8	479,9	451,6	1,01	0,99
35,2	33,8	50,6	47,2	44,9	0,95	1,1
41,2	32,2	65,5	79,4	61,7	0,94	1,07
33,1	27,7	44,5	51,5	43,65	1,02	0,98
57,6	58	86,7	108,4	81,7	0,94	1,07
12	14,9	23,8	31,8	22,65	0,95	1,05
55	57,9	68,5	76,9	65,8	0,99	1,01
70	89,3	124,6	135,2	120,3	0,96	1,06
400,2	413,6	492,4	561,8	494,2	1	1,05
118,5	127,2	166,6	165,9	155,15	0,93	1,08
249,6	279,2	325,5	391,6	356,75	1,11	1,09
144,4	126,1	163,4	179	171,2	1,06	1,05
241,7	277,7	376,4	486,7	393,6	1,04	1,17
18,8	25,6	41,4	49,6	34,8	0,92	1,08
396,9	389,6	480,7	558,5	495,25	1,03	1,15
40,3	49,2	71,9	91,1	68,2	1,08	0,95
14,8	16,8	24,7	33	23,75	0,96	1,07
26,9	33,7	43,8	51,6	44,9	1,02	1,13
608,2	570,3	823,2	1050,1	788,45	0,98	1,02
17,3	20,3	28,9	40,6	30,9	1,19	1,06
117,7	112,5	142,1	146,1	135,1	0,95	1,07
85	107,8	150	193,3	152,85	1,03	1,02

phyb a	phyb b	csa a	csa b			
16,3	3 16,2	9,7	10,5	16,2	1	1,04
133,6	6 119,4	77,4	76,6	121,25	1,1	1,02
42,1	l 45	33,1	31	43,55	1,06	1,1
377,9	9 406,7	240,5	258,6	377,15	1	1,08
29,9	9 24,7	10,6	8,4	25,9	1,2	1,05
287,4	4 289,5	212,2	231,4	288,45	1,04	1,05
40,1	l 43,8	23,5	26,3	38,25	0,98	1,02
25,9) 27	11,9	12,2	26,15	1,01	1,38
31,8	3 28,9	15,9	16,9	28,3	1,19	0,98
39,7	7 38,3	26,1	22,2	35,55	1	1
24,9	9 19,9	11	11,6	19,95	1	1,12
90,6	83,5	65,2	70,7	86,75	1,06	1,04
15,6	6 15	6,8	4,6	14,15	1,09	0,94
151,4	l 125,5	94	98,6	138,45	1,11	1,13
28,4	4 26,1	16,5	14	25,7	0,98	1,2
21,6	6 18	13,2	14,1	19,8	1,09	1,18
48,2	2 44,8	29,8	35,9	46,5	1,09	1,12
469,7	7 413,6	304,2	328,2	427,65	1,15	1,03
55,4	4 58,8	37,4	40,9	52,45	0,94	1,1

69,6	64,5	43,3	49,3	61,8	0,96	1,07
266,2	244,1	222,3	210,3	253,95	1,04	1,07
16,5	14	6	3,1	13,6	1,04	0,97
28,8	21,9	15,2	12,8	23	1,05	1,14
30,9	30,1	20,1	18,7	29,5	0,98	1,29
35,8	32,4	28,9	28,6	33,6	1,04	1,11
290,1	303,3	258,9	270,4	295,15	1,02	1,08
120,1	108	86,9	94,1	109	1,01	1,02
62,9	63,3	45,1	52,9	63,1	1,03	1,13
111	110,6	96,2	88,2	107,65	0,97	1,04
17,2	12,6	10	9,7	14,7	1,14	1,27
110	120,8	73,7	89,8	110,95	1,01	1,03

phyb a	phyb b	csa a	csa b				
	51,6	54,1	51,1	48,7	49,9	0,64	0,64
	210	199,6	169,8	193,8	181,8	0,37	0,43
	88,3	84,6	75,1	73,5	74,3	0,56	0,44
	44,5	54,2	33,3	41,3	37,3	0,45	0,47
	76,5	84,9	64,7	59,9	62,3	0,54	0,64
	20,3	17,4	15,7	20,7	16,55	0,4	0,44
2	89,4	291,9	281,4	247,7	264,55	0,77	0,78
	54,3	45,4	45,5	41,4	43,4	0,68	0,64
	17,8	15,6	13,4	13,3	13,35	0,6	0,43
18	47,7	1729	1063	1515,8	1289,4	0,54	0,45
	15,7	18,6	16,6	15,9	15,8	0,69	0,73
	48,3	45,4	43,7	45	44,35	0,85	0,78
	44,4	61,2	43,1	54,9	43,75	0,5	0,54
	94,5	76,2	58,5	68,8	63,65	0,4	0,59
3	77,9	381,3	348,1	438,5	363	0,33	0,53
	61,9	71,6	41,1	53,1	47,1	0,62	0,4
	52,4	50,6	46,2	48,7	47,45	0,93	0,87
1	21,6	124,5	115,6	124,7	118,6	0,71	0,83
	53,3	47,2	43,3	48	45,25	0,64	0,78
	32,6	36,4	19,1	31,7	25,4	0,51	0,37
	29,3	26,5	19,2	28,5	22,85	0,62	0,57

phyb a	phyb b	csa a	csa b				
46	6,9 ∠	47,4	52,1	52,8	48,75	1	1
82	2,4 8	35,4 9	910,3	1278,9	87,9	0,67	1,03
	16 ⁻	17,7	37	39,3	25,1	0,94	1,06
70	5,8 66	64,6	949	961,2	816,85	0,97	1,03
2	5,4 2	26,1	41	48,3	33,8	1,02	0,98
18	3,7 [·]	16,1	31,6	33,3	20,05	0,88	1,07
33	3,8 3	33,9	50,9	51,2	42,25	0,92	1,08
1 [.]	1,7	8,8	20,7	19,8	14,75	0,97	1,03

1243	1031,1	2442,9	2059,7	1486	0,92	1,08
14,7	17,2	29,8	26,6	17,25	0,79	1
108,7	118	168,8	195,3	145,05	0,93	1,07
2	5,5	34,6	35,4	11,4	1,2	0,8
36,1	43,1	60,3	59,3	44,5	0,91	1,03
20,6	18	31,1	29,2	21,45	0,83	1,04

phyb a	р	hyb b	csa a	csa b			
	17,2	13,4	41,3	47,5	44,4	1,74	1,24
	14,7	13,1	19,8	18,7	19,25	1,35	1,13
1	28,8	117,5	148,2	154,5	151,35	1,1	1,02
	23,6	25,7	35,8	47,4	41,1	1,37	1,13
	25,5	31,2	44,2	49,1	46,15	1,31	1,04
	6,6	5,2	15,9	13,1	13	1,62	0,99
	8,6	4,9	18,1	19,8	17,5	1,35	0,97
5	528,9	500,3	595,4	605,1	600,25	1,22	1,06
	11	8,7	16,3	15,5	15,9	1,77	1,19
1	48,1	166,5	189,1	212,8	200,95	1,29	1,1

phyb a	phyb b	csa a	csa b			
80	,4 83	,7 99,9	9 106,8	82,05	0,8	0,84
1	,9 5	,2 18,0	6 16,6	3,55	0,17	0,11
24	,4 22	.,9 27,	7 35,8	23,65	0,6	0,65
17	,7 [·]	16 24,	7 32,3	16,85	0,77	0,85
48	,7 51	,8 57,	7 59,4	50,25	0,63	0,79
11	,5 13	,3 15,3	3 18,7	12,4	0,73	0,85
25	,7 20	,8 34,2	2 39,4	23,3	0,73	0,9
33	,5 34	,2 46,3	3 57,7	33,85	0,83	0,98
18	,5 14	,6 20,	7 24,2	16,55	0,76	0,63
57	,8 58	,7	7 73,8	59,3	0,86	1,01
64	,1 64	,3 74,8	3 78,5	64,2	0,83	0,96
64	,3 58	,7 72	2 73,8	62,55	0,9	0,97
15	,5 15	j,2 18	3 21,5	15,35	0,65	0,83

phyb a	phyb b	csa a	csa b	prom col	prom phy	/ prom csa
	0,77	0,84	0,97	1,03	1,11	0,8 1
	0,77	0,76	0,93	1,07	1,2	0,77 1
	0,73	0,66	0,86	1,14	1,27	0,7 1
	0,87	0,81	1,01	0,99	1,11	0,84 1
	0.77	0.84	0.87	1.13	1.4	0.81 1
	0.89	0.94	1 02	0.98	1 14	0.92 1
	0.85	1	1	0.91	1,00	0.93 0.95
	1	0.93	1	0.98	1,55	0.96 0.99
	0.92	0.82	0.72	1.08	3.08	0.87 0.9
	0.26	0.62	1.11	0.89	2.3	0.44 1
	0,75	0.82	1	1	1 25	0.79 1
	0.91	0.87	0.95	1 05	1,20	0.89 1
	0.81	0,86	0,00	1,00	1,11	0.83 1
	0,01	0,00	0,91	1,09	1,27	0,05 1
	0,02	0,7	0,00	1,12	1,00	
	0,95	0,94	0,89	1,05	1,33	0,94 0,97
	0,75	0,95	0,9	1,05	1,47	0,85 0,97
	0,72	0,00	0,90	1,04	1,17	0,79
	0,05	0,02	0,93	1,07	1,00	0,74 1
	0,07	0,05	1		1,49	
	0,84	0,87	1,05	0,95	1,5	0,86
	0,45	0,75	0,94	1,06	1,62	0,6 1
	0,77	0,63	0,92	1,08	1,67	0,7 1
	0,9	1	0,96	1	1,21	0,95 0,98
	0,95	0,87	0,89	1,05	1,36	0,91 0,97
	0,73	0,64	0,94	1,06	1,25	0,68 1
	0,93	0,85	0,88	1,07	1,47	0,89 0,98
	0,41	0,42	0,9	1,1	2,07	0,41 1
	0,72	0,97	1,03	0,95	2,31	0,85 0,99
	0,96	1,04	0,89	0,96	1,35	1 0,92
	0,95	1,05	0,92	0,92	1,73	1 0,92
	0,99	0,97	0,89	1,01	1,27	0,98 0,95
	0,93	0,99	1,01	0,92	1,31	0,96 0,96
	1.01	0.92	0.86	0.99	1.26	0.97 0.93
	0.75	0.81	0.9	1.1	1.27	0.78 1
	0.63	0.65	1.01	0.99	1.24	0.64 1
	0.93	0.98	1	1	1.07	0.96 1
	0.63	0.36	1 02	0.98	1,93	0 49 1
	0.51	0.6	0.85	1 15	1,33	0.55 1
	0.94	0.89	0.92	1,06	1.3	0.92 0.99
	0.96	0,96	0.89	1,00	1.39	0.96 0.97
	0.8	0,77	0,00	1,01	1,32	0,00 0,01
	0.77	0.74	0.93	1,00	1,02	0,76 1
	0.68	0,74	0,86	1 14	1,10	0,70 1
	0,00	1.02	0,00	0.08	1,00	
	0,37	0.80	0,50	1 11	1,20 7 13	
	0,42	0,09	1.05	0.05	1,13	0,00 0,07
	0,79	0,04		0,90	1,70	
	0,79	0,03	0,98	1,02	1,23	
	U,58	∪,ŏ∠	0,94	1,00	1,42	U, 1
	υ,87	0,93	0,89	1,07	1,32	0,9 0,98
	0,82	0,9	1,02	0,98	1,33	0,86 1
	0,68	0,76	0,89	1,11	1,36	0,72 1

0,77	0,76	1,14	0,86	1,35	0,76	1
0,94	0,85	0,99	1,01	1,15	0,89	1
0,32	0,26	0,69	1,31	1,97	0,29	1
0,78	0,99	0,98	1,01	1,75	0,88	1
0,76	0,81	0,85	1,15	1,43	0,79	1
1,01	0,85	0,8	0,99	1,86	0,93	0,89
0,79	0,83	0,89	1,11	1,23	0,81	1
0,81	0,85	1,01	0,99	1,21	0,83	1
0,78	0,81	0,98	1,02	1,22	0,79	1
0,93	0,99	0,96	1,01	1,13	0,96	0,98
0,63	0,7	1,12	0,88	1,41	0,67	1
0,65	0,71	0,88	1,12	1,31	0,68	1
0,73	0,87	1,04	0,96	1,21	0,8	1
0,65	0,46	1,08	0,92	1,87	0,55	1
0,81	0,91	0,92	1,08	1,26	0,86	1
0,74	0,78	1,06	0,94	1,34	0,76	1
0,77	0,99	0,94	1,01	1,58	0,88	0,97
0,85	0,87	0,95	1,05	1,19	0,86	1
		pron	n	1,53	0,8	0,99
		erro	r	0,76	0,15	0,03
		desv	/	0,09	0,02	0
0,99	1,01	0,89	0,89	1,51	1	0,89
1	1	0,83	0,88	1,32	1	0,85
1,02	0,98	0,89	0,91	1,39	1	0,9
0,95	1,05	0,76	0,79	1,46	1	0,78
1,2	0,8	0,2	0,21	1,58	1	0,2
0,97	1,03	0,49	0,6	1,34	1	0,55
1,02	0,98	0,83	0,76	1,17	1	0,79
0,99	1,01	0,88	0,95	1,26	1	0,91
1,13	0,87	0,52	0,68	2,06	1	0,6
0,98	1,02	0,94	0,95	1,22	1	0,94
0,95	1,05	0,78	0,87	1,34	1	0,83
0,98	1,02	0,78	0,91	1,4	1	0,85
0,97	1,03	0,77	0,77	1,43	1	0,77
1,06	0,94	0,82	0,88	1,45	1	0,85
1,03	0,97	0,93	0,83	1,37	1	0,88
0,96	1,04	0,79	0,94	1,73	1	0,87
1,11	0,89	0,52	0,78	2,54	1	0,65
0,78	1,22	0,22	0,35	1,96	1	0,29
1,03	0,97	0,74	0,68	1,27	1	0,71
1,03	0,97	0,85	0,94	1,27	1	0,89
1,03	0,97	0,77	0,78	1,29	1	0,77
1,02	0,98	0,88	0,97	1,19	1	0,93
1,03	0,97	0,86	0,79	1,32	1	0,82
0,93	1,05	0,95	0,95	1,22	0,99	0,95
0,94	1,06	0,72	0,86	1,26	1	0,79
0,97	1,03	0,82	0,89	1,09	1	0,86
0,9	1,1	0,82	0,81	1,31	1	0,81
1,03	0,96	0,7	0,97	1,62	0,99	0,84
0,97	1,03	0,78	0,92	1,25	1	0,85

4.04	0.00	0.00	0.00	4.04	0.00	0.00
1,01	0,98	0,86	0,99	1,21	0,99	0,92
1	1	0,73	0,88	1,15	1	0,8
0,9	1,1	0,74	0,86	1,29	1	0,8
1,2	0,8	0,6	0,8	1,74	1	0,7
1,04	0,96	0,64	0,9	1,44	1	0,77
0,98	1,02	0,71	0,97	1,45	1	0,84
		pron	n	1,43	1	0,78
		erro	r	0,29	0	0,16
		desv	/	0,05	0	0,03
1,57	1,51	0,97	1,03	0,8	1,54	1
1,9	1,91	0,87	0,97	1	1,91	0,92
3,74	2,89	1,03	0,97	0,6	3,32	1
1,44	1,55	0,91	1,09	0,44	1,5	1
1,99	1,75	0,99	1,01	0,82	1,87	1
2,82	2,6	0,94	1,06	0,42	2,71	1
2,3	1,92	1,05	0,95	0,5	2,11	1
3,82	3,78	1,04	0,95	0,81	3,8	1
2,27	1,9	0,82	1,18	0,16	2,09	1
1,26	1,52	0,98	1,02	0,67	1,39	1
1,42	1,65	0,99	1,01	0,97	1,53	1
1,16	1,3	1,01	0,99	0,81	1,23	1
1,59	1,48	0,95	0,97	0,95	1,53	0,96
1,14	1,19	1,01	1	0,89	1,16	1
1,73	1,75	0,87	1,13	0,75	1,74	1
1,29	1,3	1,04	0,96	0,89	1,3	1
1,37	1,7	0,92	1,08	0,73	1,54	1
1,56	2,3	0,97	1,03	0,57	1,93	1
1,63	1,61	0,83	0,96	0,96	1,62	0,89
2,09	2,06	0,85	1,09	0,81	2,07	0,97
1,6	1,34	0,94	1,06	0,8	1,47	1
1,29	1,47	0,96	1,04	0,86	1,38	1
1,57	1,77	0,83	1,03	0,91	1,67	0,93
1.36	1.4	0.98	0.99	0.93	1.38	0.99
1.88	1.76	1.07	0.8	0.85	1.82	0.94
1.28	1.54	0.9	1.1	0.72	1.41	1
1.82	1.48	0.99	1.01	0.85	1.65	1
1,19	1.28	0.94	1.06	0.75	1.23	1
1 34	1,28	0.93	1,00	0.92	1 31	0.98
1 4	2 04	0,96	1.04	0.71	1 72	0,00
1 66	1.83	0.89	1 11	0.58	1 74	1
1 33	1,56	0.87	1.04	0.92	1 45	0.96
1,66	1.5	0.84	1,01	0.78	1,10	0,00
1,57	1 53	0.81	1,10	0.88	1,55	0.91
1 24	1 18	0.98	1 02	0.92	1 21	0,01
1 46	1 56	0.70	1 03	0,02	1 51	۱ ۵ ۱
1 22	1 23	0.01	1,00	0,9 N Q	1 22	0,91 0 08
1,22	1,20	o,o i nron	n,00	0.78	1 71	0,00 <u>0 08</u>
		erro	r	0.18	0.55	0,00
		des	/	0.03	0.09	0,00
		400	•	0,00	0,00	0,01

1,43	1,42	0,82	0,85	1	1,43	0,83
1,58	1,53	0,29	0,33	1	1,55	0,31
1,46	1,4	0,9	0,83	1	1,43	0,86
1,37	1,36	0,77	0,73	1	1,37	0,75
1,65	1,43	0,81	0,72	1	1,54	0,76
1,21	1,18	0,63	0,72	1	1,19	0,67
1.47	1.22	0.66	0.7	1	1.34	0.68
1.31	1.15	0.81	0.75	1	1.23	0.78
1.26	1.33	0.9	0.77	1	1.3	0.83
1.51	1.45	0.68	0.87	1	1.48	0.78
1.75	1.66	0.73	0.69	1	1.7	0.71
1.29	1.3	0.85	0.69	1	1.29	0.77
1 62	1.3	0.67	0.48	1	1 46	0.58
1 75	1 68	0.6	0.35	1	1 71	0.48
1 18	1 09	0 79	0.88	1	1 14	0.84
1 11	1,00	0.89	0.85	1	1,11	0.87
1 36	1,10	0,00	0,00	1	1 36	0.85
1,00	1,00	0.84	0,04	1	1.2	0,00
1.20	1,12	0,04	0,00	1	1.2	0,00
1 37	1,24	0,75	0,73	1	1,22	0,77
1,37	1,34	0,5	0,07	1	1,30	0,50
1,27	1,40	0,03	0,78	1	1,37	0,01
1,29	1,2	0,70	0,65	1	1,24	0,0
1,20	1.2	0,00	0,90	1	1,21	0,92
1,55	1,20	0,00	0,93	1	1,41	0,09
1,59	1,32	0,63	0,65	1	1,40	0,74
1,00	1,29	0,8	0,63	1	1,47	0,72
1,3	1,10	0,96	0,91	1	1,22	0,94
1, ∠ 1	1,15	0,7	0,64	1	1,18	0,67
1,21	1,09	0,72	0,04	1	1,15	0,70
		pror	n r	1	1,30	0,75
		eno	, ,	0	0,10	0,14
		ues	v	U	0,03	0,03
0,61	0,59	0,93	1,07	1,15	0,6	1
0,8	0,82	0,99	1,03	1,03	0,81	1,01
0,17	0,18	1,34	1,46	1	0,17	1,4
0,56	0,51	0,92	1,08	1,16	0,53	1
0,52	0,61	0,95	1,05	1,18	0,57	1
0,68	0,73	1,12	1,07	1	0,7	1,09
0,27	0,34	0,96	1,22	1,21	0,31	1,09
0,73	0,68	1,16	1,12	1	0,7	1,14
0,21	0,32	1	1,18	1,14	0,26	1,09
0,73	0,74	0,98	1,1	1,05	0,73	1,04
0,65	0,69	0,98	1,02	1,15	0,67	1
0,53	0,59	1,14	1,23	1	0,56	1,19
0,85	0,9	0,99	1,01	1,05	0,87	1
0,61	0,69	1,03	1,22	1	0,65	1,13
0,61	0,71	1	1	1,06	0,66	1
0,66	0,77	0,97	1,03	1,09	0,72	1
0,77	0,77	1,01	1,14	1,03	0,77	1,08

0,56	0,61	1,03	1,04	1,13	0,59	1,03
0,5	0,52	1,04	1,21	1,15	0,51	1,13
0,76	0,83	1,01	1,04	1,04	0,79	1,02
0,78	0,73	1,03	1,21	1	0,75	1,12
0,65	0,54	0,94	1,15	1,11	0,6	1,05
0,79	0,7	0,94	1,06	1,13	0,75	1
0,93	0,86	1,04	1,06	1	0,89	1,05
0,78	0,75	1,13	1,05	1,03	0,77	1,09
0,67	0,52	1,06	1,29	1	0,59	1,17
0,76	0,63	1,02	1,18	1	0,7	1,1
0,71	0,71	1,06	1,33	1	0,71	1,19
0,53	0,66	1,05	1,4	1	0,59	1,23
0,84	0,88	1,04	1,17	1	0,86	1,1
0,58	0,74	1,04	1,12	1,01	0,66	1,08
0,81	0,84	1	1,14	1,03	0,82	1,07
0,76	0,82	1,07	1,07	1,01	0,79	1,07
0.7	0.78	0.91	1.1	1.1	0.74	1.01
0,84	0,74	0,95	1,05	1.06	0,79	, - 1
0.61	0.71	0.96	1.24	1.11	0.66	1.1
0.54	0.74	1.19	1.43	1	0.64	1.31
0.8	0.79	0.97	1.13	1.09	0.79	1.05
0.59	0.72	1.05	1.34	1.01	0.66	1.2
0.62	0.71	1.04	1.39	1.02	0.67	1.21
0.6	0.75	0.98	1,15	1.08	0.67	1.06
0.77	0.72	1.04	1,33	1	0.75	1,00
0.56	0.66	0.94	1,31	1 13	0,61	1,10
0.87	0.83	1 05	1,01	1 01	0.85	1 07
0.56	0 71	0.98	1,00	1.03	0.63	1 12
0,00	0,71	pror	n 1,20	1.06	0.67	1.09
		erro	r	0.06	0.15	0.09
		des	V	0,01	0,02	0,01
1,01	1	0,6	0,65	1,02	1	0,62
1,1	0,98	0,64	0,63	1,06	1,04	0,64
0,97	1,03	0,76	0,71	1,08	1	0,74
1	1,08	0,64	0,69	1,04	1,04	0,66
1,15	0,95	0,41	0,32	1,13	1,05	0,37
1	1	0,74	0,8	1,04	1	0,77
1,05	1,15	0,61	0,69	1	1,1	0,65
0,99	1,03	0,46	0,47	1,2	1,01	0,46
1,12	1,02	0,56	0,6	1,09	1,07	0,58
1,12	1,08	0,73	0,62	1	1,1	0,68
1,25	1	0,55	0,58	1,06	1,12	0,57
1,04	0,96	0,75	0,81	1,05	1	0,78
1,1	1,06	0,48	0,33	1,01	1,08	0,4
1,09	0,91	0,68	0,71	1,12	1	0,7
1,11	1,02	0,64	0,54	1,09	1,06	0,59
1,09	0,91	0,67	0,71	1,14	1	0,69
1,04	0,96	0,64	0,77	1,11	1	0,71
1,1	0,97	0,71	0,77	1,09	1,03	0,74
1,06	1,12	0,71	0,78	1,02	1,09	0,75

1,13	1,04	0,7	0,8	1.01	1,08	0,75
1.05	0.96	0.88	0.83	1.06	1	0.85
1.21	1.03	0.44	0.23	1	1.12	0.33
1,25	0.95	0.66	0.56	1.09	1.1	0.61
1.05	1.02	0.68	0.63	1,14	1.03	0.66
1 07	0.96	0.86	0.85	1 07	1 01	0.86
0.98	1.03	0.88	0.92	1.05	1.01	0.9
1 1	0,99	0.8	0.86	1 02	1.05	0.83
.,.	0,00	0 71	0.84	1.08	1	0.78
1 03	1 03	0.89	0.82	1 01	1 03	0.86
1 17	0.86	0.68	0,66	1 21	1 01	0.67
0,99	1.09	0.66	0.81	1.02	1.04	0.74
0,00	.,	pror	n	1.07	1.04	0.67
		erro	r	0.05	0.04	0.14
		des	v	0,01	0,01	0,03
4.00	1.00	4.00	0.00	0.04	1.00	4
1,03	1,08	1,02	0,98	0,64	1,00	1
1,10	1,1	0,93	1,07	0,4	1,13	1
1,19	1,14	1,01	0,99	0,5	1,10	1
1,19	1,45	0,89	1,11	0,46	1,32	1
1,23	1,30	1,04	0,96	0,59	1,3	1
1,23	1,05	0,95	1,25	0,42	1,14	1,1
1,09	1,1	1,06	0,94	0,76	1,1	1
1,20	1,05	1,05	0,95	0,66	1,15	1
1,33	1,17	1	1	0,52	1,25	1
1,43	1,34	0,82	1,18	0,5	1,39	1
0,99	1,18	1,05	1,01	0,71	1,09	1,03
1,09	1,02	0,99	1,01	0,82	1,00	1 1 2
1,01	1,4	0,99	1,25	0,52	1,21	1,12
1,40	1,2	0,92	1,00	0,49	1,34	1 09
1,04	1,05	0,90	1,21	0,43	1,05	1,00
1,51	1,52	0,07	1,13	0,51	1,42	1
1,1	1,07	0,97	1,05	0,9	1,09	1 01
1,05	1,03	0,97	1,05	0,77	1,04	1,01
1,10	1,04	0,90	1,00	0,71	1,11	1,01
1,20	1,43	0,75	1,25	0,44	1,30	1 0/
1,20	1,10	0,04	1,25	0,0	1,22	1,04
		pror	n	0,59	1,19	1,02
		erro	r	0,14	0,12	0,04
		des	V	0,03	0,03	0,01
0,96	0,97	1,07	1,08	1	0,97	1,08
0,94	0,97	10,36	14,55	0,85	0,95	12,45
0,64	0,71	1,47	1,57	1	0,67	1,52
0,86	0,81	1,16	1,18	1	0,84	1,17
0,75	0,77	1,21	1,43	1	0,76	1,32
0,93	0,8	1,58	1,66	0,98	0,87	1,62
0,8	0,8	1,2	1,21	1	0,8	1,21
0,79	0,6	1,4	1,34	1	0,69	1,37

0,84	0,69	1,64	1,39	1	0,77	1,52
0,85	1	1,73	1,54	0,9	0,92	1,63
0,75	0,81	1,16	1,35	1	0,78	1,26
0,18	0,48	3,04	3,11	1	0,33	3,07
0,81	0,97	1,36	1,33	0,97	0,89	1,34
0,96	0,84	1,45	1,36	0,93	0,9	1,41
		pron	n	0,97	0,8	2,28
		erro	r	0,05	0,16	2,97
		desv	/	0,01	0,04	0,79
0,39	0,3	0,93	1,07	1,49	0,34	1
0,76	0,68	1,03	0,97	1,24	0,72	1
0,85	0,78	0,98	1,02	1,06	0,81	1
0,57	0,63	0,87	1,15	1,25	0,6	1,01
0,55	0,68	0,96	1,06	1,18	0,61	1,01
0,51	0,4	1,22	1,01	1,3	0,45	1,12
0,49	0,28	1,03	1,13	1,16	0,39	1,08
0,88	0,83	0,99	1,01	1,14	0,86	1
0,69	0,55	1,03	0,97	1,48	0,62	1
0,74	0,83	0,94	1,06	1,19	0,78	1
		pron	n	1,25	0,62	1,02
		erro	r	0,14	0,18	0,04
		desv	/	0,04	0,06	0,01
0.98	1,02	1,22	1,3	0.82	1	1,26
0,54	1,46	5,24	4,68	0,14	1	4,96
1,03	0,97	1,17	1,51	0,62	1	1,34
1,05	0,95	1,47	1,92	0,81	1	1,69
0,97	1,03	1,15	1,18	0,71	1	1,17
0,93	1,07	1,27	1,51	0,79	1	1,39
1,1	0,89	1,47	1,69	0,81	1	1,58
0,99	1,01	1,37	1,7	0,91	1	1,54
1,12	0,88	1,25	1,46	0,69	1	1,36
0,97	0,99	1,31	1,24	0,93	0,98	1,28
1	1	1,17	1,22	0,89	1	1,19
1,03	0,94	1,15	1,18	0,93	0,98	1,17
1,01	0,99	1,17	1,4	0,74	1	1,29
		pron	n	0,75	1	1,63
		erro	r	0,21	0,01	1,01
		desv	/	0,06	0	0,28

1,53	0,09	0,8	0,02	0,99	0
0,76		0,15		0,03	

Cluster 1		Exp	oresión	
Atg	Descripción	WT	phyB	csa1
AT2G26540	uroporphyrinogen-III synthase family protein	123,6	89,25	110,95
AT4G14890	ferredoxin family protein	779,4	497,2	648,55
AT4G14430	enoyl-CoA hydratase/isomerase family protein	171,05	128,1	105,8
AT4G15660	glutaredoxin family protein (thioltransferase)	54,3	28,35	46,65
AT4G15260	UDP-glucoronosyl/UDP-glucosyl transferase family protein	66,1	15,3	44,4
AT1G25275	expressed protein	###	669,5	962,8
AT1G57790	F-box family protein	98,8	74,5	88,85
AT5G19850	hydrolase, alpha/beta fold family protein	239,85	157,3	200,95
AT5G08380	alpha-galactosidase, putative /melibiase, putative /alpha-D-galactoside galactohydrolase	150,7	86,95	107,55
AT4G37280	MRG family protein	117,5	94,9	103,45
AT4G36670	mannitol transporter, putative	209,8	114,95	118,35
AT5G29000	myb family transcription factor	56,3	35,55	50,25
AT5G26860	similar to Lon protease	50,55	31,05	31,85
AT5G26270	expressed protein, ; expression supported by MPSS	207,55	58,7	60,65
AT5G66520	pentatricopeptide (PPR) repeat-containing protein	51,35	24,65	41,6
AT5G59750	riboflavin biosynthesis protein, putative	391,25	264,4	358,55
AT5G57930	expressed protein	478	299,45	381,35
AT5G56290	peroxisomal targeting signal type 1 receptor (PEX5)	411,9	330,9	370,8
AT5G56080	nicotianamine synthase, putative	23,9	13,9	19,25
AT5G53080	kinesin light chain-related	28,5	17,4	14,7
AT5G52830	WRKY family transcription factor	22,95	11,15	6,7
AT5G52110	expressed protein	66,55	43,75	52,4
AT5G50200	expressed protein	107,7	48,75	64,2
AT5G48910	pentatricopeptide (PPR) repeat-containing protein	97,6	66,95	52,1
AT5G48030	DNAJ heat shock protein, mitochondrially targeted (GFA2)	204,45	144,75	149,35
AT5G42900	expressed protein	167,5	88,7	84,05
AT5G40780	lysine and histidine specific transporter, putative Transmem. aa transporter protein	107,25	62,15	71
AT5G38850	disease resistance protein (TIR-NBS-LRR class), putative	32,75	22,1	27,95
AT5G37260	myb family transcription factor	271,75	120,55	163,8
AT5G24290	integral membrane family protein	36,4	18,55	24,45
AT5G23890	expressed protein	121,4	71	105,75
AT5G22640	MORN (Membrane Occupation and Recognition Nexus) repeat-containing protein	304,4	173,4	202,5
AT5G18600	glutaredoxin family protein, contains glutaredoxin domain	447,65	165,5	275,7
AT5G16290	acetolactate synthase small subunit, putative	224,8	187,85	214,9

AT5G16420	pentatricopeptide (PPR) repeat-containing protein	20,2	13,9	11,8
AT5G10120	ethylene insensitive 3 family protein	16,5	6,9	9,9
AT5G10140	MADS-box protein flowering locus F, FLOWERING LOCUS C protein	167,7	65,95	42,9
AT5G05760	syntaxin 31 (SYP31) / SED5	37,75	29,6	30,45
AT5G05210	nucleolar matrix protein-related	80,05	53,75	57,1
AT5G02650	expressed protein	12,2	6,65	9,75
AT5G02010	member of KPP-like gene family, homolog of KPP (kinase partner protein)gene in tomato	48,95	34,9	29,5
AT3G62650	expressed protein, putative mitochondrial carrier protein At2g47490	686,4	514,6	600,25
AT3G60130	glycosyl hydrolase family 1 protein / beta-glucosidase, putative (YLS1)	164,7	99,4	109,5
AT3G59110	protein kinase family protein	135,8	93,5	78,6
AT3G58700	60S ribosomal protein L11 (RPL11B)	394,25	331,05	307,05
AT3G49620	2-oxoacid-dependent oxidase, putative (DIN11)	40,9	8,15	19,75
AT3G46280	protein kinase-related, contains similarity to light repressible receptor protein kinase	40,95	15	17,5
AT4G37560	formamidase, putative / formamide amidohydrolase, putative, s	164,95	122,4	113,05
AT4G37320	cytochrome P450 family protein	77,65	44,95	41,35
AT4G35230	protein kinase family protein	281,95	216,6	210,6
AT4G33980	expressed protein	84,8	48,85	34,25
AT4G30720	expressed protein	74,45	54,4	54,6
AT4G27690	vacuolar protein sorting-associated protein 26, putative / VPS26, putative	116,1	88,8	85,1
AT4G25780	pathogenesis-related protein, putative, similar to gene PR-1 protein -Medicago truncatula	199,35	137,8	127
AT4G24930	thylakoid lumenal 17.9 kDa protein, chloroplast	364,3	223,9	287,05
AT4G24370;/	expressed protein, phosphorylase family protein	207,95	107,5	168,15
AT4G19830	immunophilin / FKBP-type peptidyl-prolyl cis-trans isomerase family protein	120,95	107,75	112,75
AT4G18600	expressed protein	90,8	68,9	58,8
AT4G13640	myb family transcription factor	112,6	88,85	79,25
AT4G12480	protease inhibitor/seed storage/lipid transfer protein (LTP) family protein	470,5	120	243,4
AT4G10120	sucrose-phosphate synthase, putative	919,3	382,15	690,95
AT4G04350	leucyl-tRNA synthetase, putative / leucinetRNA ligase, putative	96,65	67,9	82,7
AT4G03260	leucine-rich repeat family protein, contains leucine rich repeat (LRR) domain	407,8	287,2	309,1
AT4G02920	expressed protein	872,05	683,95	659,3
AT4G03030	kelch repeat-containing F-box family protein	295,6	203,5	204,9
AT1G20350	mitochondrial import inner membrane translocase subunit Tim17, putative	20,55	3	9,85
AT1G58200	mechanosensitive ion channel domain-containing protein	216	155,1	139,65
AT3G26320	cytochrome P450 71B36, putative	26,25	15,65	19,9
AT3G19030	expressed protein, contains similarity to phosphoserine aminotransferase	808,9	515,45	682,25
AT3G25760	early-responsive to dehydration stress protein (ERD12)	1476,9	730,7	948,6

AT3G23080	expressed protein	197,05	159,55	156,35
AT3G29260	short-chain dehydrogenase/reductase (SDR) family protein	13,55	1,25	1,65
AT3G21300	RNA methyltransferase family protein	55,6	25,7	31,55
AT3G15850	fatty acid desaturase family protein, similar to delta 9 acyl-lipid desaturase (ADS1)	###	###	1516
AT3G17300	expressed protein	87,2	43,1	61,35
AT3G06980	DEAD/DEAH box helicase, putative	433	295,6	323,55
AT3G01370	expressed protein	222,05	143,5	166,6
AT3G03640	glycosyl hydrolase family 1 protein	96,3	50,7	70,6
AT1G76530	auxin efflux carrier family protein, contains auxin efflux carrier domain	23,25	11,15	19,7
AT1G35420	dienelactone hydrolase family protein	428,95	348,9	335,15
AT1G69310	WRKY family transcription factor	47	33,85	41,9
AT1G49160	protein kinase family protein	24,95	14,15	18,5
AT1G06950	Encodes a protein involved in protein import into the chloroplast and chlorop. biogenesis	387,45	301,5	337,05
AT1G29090	peptidase C1A papain family protein, contains similarity to cysteine protease	45	6,6	22,9
AT1G79640	protein kinase family protein	30,8	20,2	28,15
AT1G28480	glutaredoxin family protein	23,55	9,85	15,9
AT1G21060	expressed protein	82,1	46,1	41,2
AT1G49980	similar to UMUC-like DNA repair family protein	47,8	24,15	27,25
AT1G50450	expressed protein	206,45	113,6	144,4
AT1G79950	helicase-related, similar to BRCA1-binding helicase-like protein BACH1	75	61,45	58,05
AT1G74960	3-ketoacyl-ACP synthase, putative	495,25	357,9	446,1
AT1G70820	phosphoglucomutase, putative / glucose phosphomutase, putative	332,05	263,75	240,95
AT1G50280	phototropic-responsive NPH3 family protein, contains NPH3 family domain	26,8	13,45	12,85
AT1G75880	family II extracellular lipase 1 (EXL1) similar to anter-specific proline-rich protein	41	26,95	33,3
AT1G78510	solanesyl diphosphate synthase (SPS)	186,1	97,3	162,3
AT2G31840	expressed protein	117,1	80,1	96,4
AT2G17033	pentatricopeptide (PPR) repeat-containing protein	232,65	151,45	190,65
AT2G40400	expressed protein	187,45	159,7	162,95
AT2G04530	RNase Z, 97% identical to RNase Z	102,6	48,55	73
AT1G78820	curculin-like (mannose-binding) lectin family protein / PAN domain-containing protein	723,45	479,65	641,5
AT1G78850	curculin-like (mannose-binding) lectin family protein	668,45	348,25	511,5
AT1G22890	expressed protein	164,45	75,6	141,4
AT1G77080	MADS-box protein / MADS affecting flowering 1 (MAF1)	30,15	17,45	15,1
AT2G14050	minichromosome maintenance family protein / MCM family protein	30,9	21,05	20
AT2G37500	arginine biosynthesis protein ArgJ family	113,4	68,65	94,65
AT2G40690	NAD-dependent glycerol-3-phosphate dehydrogenase family protein	30,45	20,15	25,2

AT2G29460	glutathione S-transferase, putative	33,1	9,8	17,7
AT2G43160	epsin N-terminal homology (ENTH) domain-containing protein	522	430,85	400,2
AT2G25840	tRNA synthetase class I (W and Y) family protein	155,1	105,4	122,75
AT2G03070	expressed protein	74,05	41,95	55,1
AT2G18940	pentatricopeptide (PPR) repeat-containing protein	118,9	66,55	73,15
AT2G23450	protein kinase family protein	143,75	104,15	121
AT2G44490	glycosyl hydrolase family 1 protein	856,5	623,05	547
AT2G42270	U5 small nuclear ribonucleoprotein helicase, putative	52,5	34,8	30,95

Cluster 2		Ex	presión	
Atg	Descripción	WT	phyB	csa1
AT2G39725	complex 1 family protein / LVR family protein	18,15	29,3	18,35
AT4G14130	xyloglucan:xyloglucosyl transferase, putative /xyloglucan endotransglycosylase, putative	25,25	129,7	24,8
AT4G16870	copia-like retrotransposon family	48,75	66,25	41,3
AT4G15290	cellulose synthase family protein	14,5	19,15	15,8
AT1G56610	syntaxin-related family protein contains a novel domain similar to F-box	58,7	66,85	45,05
AT5G16100	expressed protein	8,9	11	4,45
AT5G55560	protein kinase family protein	17,65	27,4	5,45
AT5G52120	F-box family protein / SKP1 interacting partner 3-related	40,45	57,85	34,95
AT5G47240	MutT/nudix family protein	75	127	69,95
AT5G44260	zinc finger (CCCH-type) family protein	19,65	83	39,35
AT5G22970	expressed protein	8,95	13,05	5,15
AT5G17330	glutamate decarboxylase 1 (GAD 1)	143,4	204,6	119,65
AT5G07010	sulfotransferase family protein	11,6	63,7	19,2
AT5G02880	HECT-domain-containing protein / ubiquitin-transferase family protein	104,8	117,6	91,55
AT5G02540	short-chain dehydrogenase/reductase (SDR) family protein	37,3	175,3	46,05
AT5G02200	phytochrome A specific signal transduction component-related	6,05	18,2	10,45
AT3G57920	squamosa promoter-binding protein, putative	5,55	12,6	6,75
AT3G57360	expressed protein	17,3	25,65	18,35
AT3G53480	ABC transporter family protein	38,25	46,95	29,7
AT3G51440	strictosidine synthase family protein	17,25	22,4	14,35
AT3G52030	F-box family protein / WD-40 repeat family protein	77,1	94,25	59,55
AT3G47510	expressed protein	74,45	132,05	77,6
AT3G47160	expressed protein	185,3	218,5	130,2
AT4G38930	ubiquitin fusion degradation UFD1 family protein	65,5	79,8	60,4

-				
AT4G34860	beta-fructofuranosidase, putative /invertase, putative	54,1	90,65	54,65
AT4G34600	expressed protein	20,2	39,2	23,75
AT4G33420	peroxidase, putative, identical to class III peroxidase ATP32	94,95	181,2	87
AT4G31730	expressed protein	39	62,1	32,9
AT4G30450	glycine-rich protein	73,75	100,75	59,6
AT4G28720	flavin-containing monooxygenase family protein/ similar YUCCA	9,9	63,45	23,4
AT4G28240	wound-responsive protein-related	389,3	833	428,4
AT4G03510	zinc finger (C3HC4-type RING finger) family protein (RMA1)	108,45	159,95	77,8
AT1G51760	IAA-amino acid hydrolase 3 / IAA-Ala hydrolase 3 (IAR3)	61,55	75,35	58,1
AT3G29390	hydroxyproline-rich glycoprotein family protein	52,15	61,75	34,85
AT3G12730	myb family transcription factor	22,85	35,9	23,7
AT3G17700	cyclic nucleotide-binding transporter 1 / CNBT1 (CNGC20)	28,1	33,5	18,95
AT3G01420	pathogen-responsive alpha-dioxygenase, putative	86,25	147,9	41,2
AT1G01560	mitogen-activated protein kinase, putative	14,1	21,75	10,75
AT1G71030	Encodes a putative myb family transcription factor	368,6	627,55	261,75
AT1G29340	armadillo/beta-catenin repeat family protein / U-box domain-containing protein	424,55	579,95	317,7
AT1G70690	kinase-related	16,85	30,95	21,05
AT1G67570	expressed protein	27,35	31,4	21,35
AT1G21360	expressed protein	14,4	20,4	5,1
AT1G26440	expressed protein	36,5	49	24,75
AT1G12200	flavin-containing monooxygenase family protein	103,9	166,35	120,45
AT1G01920	SET domain-containing protein	14,95	22,15	11,6
AT1G53885	senescence-associated protein-related	11,5	22,15	14,4
AT1G64200	vacuolar ATP synthase subunit E, putative	127,8	152,95	109,45
AT1G15400	expressed protein+B202	383,1	464,45	376,2
AT1G54130	ReIA/SpoT protein, putative (RSH3)	371,05	421,45	310,7
AT2G14100	cytochrome P450 family protein	13	18,55	13,8
AT2G15390	xyloglucan fucosyltransferase, putative (FUT4)	14,9	19,25	11,5
AT1G31120	potassium transporter family protein	49	60,85	39,3
AT1G27430	GYF domain-containing protein	37,4	50,75	21,8
AT1G22990	heavy-metal-associated domain-containing protein / copper chaperone (CCH)-related	12,55	32,25	15,05
AT2G28400	expressed protein	14,55	29,45	18,65
AT2G21045	similar to senescence-associated family protein	43,35	68,65	44,8
AT2G15570	thioredoxin M-type 3, chloroplast (TRX-M3)	115,8	157	126,2
AT2G01190	octicosapeptide/Phox/Bem1p (PB1) domain-containing protein	99,95	140,45	89,05
AT2G29300	tropinone reductase, putative / tropine dehydrogenase, putative	30	43,65	22,15

AT2G29120	similar to glutamate receptor family protein (GLR2.8)	25,55	59,65	34,25
AT2G44130	kelch repeat-containing F-box family protein	65,9	120,75	67,5
AT2G42160	zinc finger (ubiquitin-hydrolase) domain-containing protein	28,75	41,7	32,15

Cluster 3		Exp	resión	
Atg	Descripción	WT	phyB	csa1
AT4G17530	Ras-related GTP-binding protein	508,35	406,9	527,1
AT4G15900	PP1/PP2A phosphatases pleiotropic regulator 1 (PRL1)	180,85	135,25	171,2
AT5G08740	pyridine nucleotide-disulphide oxidoreductase family protein	156,8	96,4	171,65
AT5G13490	ADP, ATP carrier protein 2, mitochondrial / ADP/ATP translocase 2	145,05	113,35	182,05
AT5G67100	DNA-directed DNA polymerase alpha catalytic subunit, putative,	24,15	15,8	28,85
AT5G57590	aminotransferase class III family protein	48,35	30,3	47,7
AT5G57260	cytochrome P450 71B10	34,8	18,8	34,75
AT5G55930	oligopeptide transporter OPT family protein	49,4	11,45	47,35
AT5G52380	zinc knuckle (CCHC-type) family protein	46,05	34,5	48,9
AT5G42765	expressed protein	145,75	102,7	159,1
AT5G22300	nitrilase 4 (NIT4)	163,65	72,25	160,55
AT5G17780	hydrolase, alpha/beta fold family protein	61,9	36,7	72,45
AT5G12160	expressed protein	33,8	25,75	44,65
AT3G54090	pfkB-type carbohydrate kinase family protein	204,2	142,95	203,5
AT3G52960	peroxiredoxin type 2, putative	1187,1	912	1316,5
AT3G48350	cysteine proteinase, putative	81,9	57,8	97,55
AT3G46580	methyl-CpG-binding domain-containing protein	38,15	23,7	36,15
AT4G38420	multi-copper oxidase type I family protein	108,4	58,5	102,5
AT4G37580	N-acetyltransferase, putative / hookless1 (HLS1)	39,85	20,75	36,55
AT3G14067	subtilase family protein	440,25	348,7	433,15
AT3G20780	topoisomerase 6 subunit B (TOP6B)	22,65	13,45	27,8
AT3G23570	dienelactone hydrolase family protein	324,6	182,2	384,9
AT3G09050	expressed protein	69	44,75	81,5
AT3G05070	expressed protein	103,8	79,3	102,5
AT1G12370	type II CPD photolyase PHR1 (PHR1)	34,8	22,2	45,5
AT1G77710	expressed protein	451,6	403,6	475,85
AT1G77490	L-ascorbate peroxidase, thylakoid-bound (tAPX)	539	393,25	519,6
AT1G73655	immunophilin / FKBP-type peptidyl-prolyl cis-trans isomerase family protein	436,4	259,7	431,55
AT1G74020	strictosidine synthase family protein	391,8	295,3	438,6

AT2G43640	signal recognition particle 14 kDa family protein / SRP14 family protein	136,15	115,1	144,1
AT1G79790	haloacid dehalogenase-like hydrolase family protein	156	122,85	166,25
AT1G56050	GTP-binding protein-related	122,05	79,65	129,9
AT1G68585	expressed protein	42,25	33,85	51,05
AT1G43590	expressed protein	57	9,95	79,6
AT1G28570	GDSL-motif lipase, putative	56,65	36,85	63,75
AT1G54220	dihydrolipoamide S-acetyltransferase, putative	92,85	65,45	105,8
AT1G04480	60S ribosomal protein L23 (RPL23A)	816,85	685,2	955,1
AT2G15830	expressed protein	43,65	30,4	48
AT2G24190	short-chain dehydrogenase/reductase (SDR) family protein	65,8	56,45	72,7
AT2G18790	phytochrome B (PHYB)	230,55	58,6	208,7
AT2G40720	pentatricopeptide (PPR) repeat-containing protein	14,75	10,25	20,25
AT2G29180	expressed protein	285,3	212,4	298,05
AT2G38140	chloroplast 30S ribosomal protein	788,45	589,25	936,65
AT2G30540	glutaredoxin family protein	25,1	16,85	38,15

Cluster 4		Exp	presión	
Atg	Descripción	WT	phyB	csa1
AT1G77390	cyclin, putative	14,35	15,3	5,7
AT5G35080	expressed protein	97,9	91,05	70,3
AT5G64920	COP1-interacting protein (CIP8) / zinc finger (C3HC4-type RING finger) family protein	155,35	138,45	96,3
AT5G63600	flavonol synthase, putative	102,55	91,9	48,55
AT5G51690	1-aminocyclopropane-1-carboxylate synthase, putative	31	23,1	12,6
AT5G45140	similar to DNA-directed RNA polymerase II 135 kDa polypeptide	58,35	45,3	35,1
AT5G23680	sterile alpha motif (SAM) domain-containing protein	28,6	24,7	20
AT5G23080	SWAP (Suppressor-of-White-APricot)/surp domain-containing protein	90,8	87,05	67,95
AT5G10940	transducin family protein / WD-40 repeat family protein	110,7	114,05	90,5
AT5G05550	expressed protein	30,75	30,35	16,4
AT3G61800	expressed protein	53,6	57,1	39,15
AT3G60700	expressed protein	17,75	14,9	9,85
AT3G60540	sec61beta family protein, similar to SP:P52870 Protein transport protein SEC61 beta 1 sub	28,05	27,25	15,25
AT3G58180	PBS lyase HEAT-like repeat-containing protein, contains Pfam profile: PF03130: PBS lyas	108,35	110,8	92,2
AT3G53090	HECT-domain-containing protein / ubiquitin-transferase family protein	68,25	63,1	49
AT3G42670	SNF2 domain-containing protein / helicase domain-containing protein	33,55	30,5	19,4
AT4G33750	expressed protein	128,2	126,5	77

AT4G25500	arginine/serine-rich splicing factor RSP40 (RSP40)	184,65	160,05	128,45
AT4G19865	kelch repeat-containing F-box family protein	35,55	39	24,15
AT4G17960	expressed protein	31,95	34,5	22,6
AT4G08850	leucine-rich repeat family protein / protein kinase family protein, contains Pfam domains Pf	227,4	157,75	121,1
AT4G02750	pentatricopeptide (PPR) repeat-containing protein	21,15	22,4	11,3
AT1G25560	AP2 domain-containing transcription factor, putative	155,75	142,35	122,3
AT2G33440	splicing factor family protein	68	51,6	42,5
AT1G18020	12-oxophytodienoate reductase, putative	198,6	139,15	107,6
AT3G11020	encodes a member of the DREB subfamily A-2 of ERF/AP2 transcription factor family	29,15	27,3	9,5
ATMG00513;	Mitochondrial NADH dehydrogenase subunit 5	43,85	36,1	32,6
AT3G06210	similar to expressed protein	31,25	26,45	12,05
AT3G16630	kinesin motor family protein	300,95	288,45	221,8
AT3G17340	importin-related	22,5	19,8	13,65
AT3G01690	expressed protein	552,8	434,9	309,15
AT3G03790	ankyrin repeat family protein/regulator of chromosome condensation(RCC1)family protein	113,3	115,4	81,75
AT1G06400	Ras-related GTP-binding protein (ARA-2)	268	255,15	216,3
AT1G68990	DNA-directed RNA polymerase, mitochondrial (RPOMT)	62,7	67,05	46,3
AT1G75130	cytochrome P450 family protein	116,8	112,35	78,05
AT1G73170	expressed protein	308,9	296,7	264,65
AT1G80420	DNA repair protein, putative (XRCC1)	51,55	46,5	32,85
AT1G07280	expressed protein	436,55	346,15	274,85
AT1G75340	zinc finger (CCCH-type) family protein	87,5	65,3	42
AT1G32700	zinc-binding family protein	391,1	363,65	223,6
AT1G31310	hydroxyproline-rich glycoprotein family protein	19,55	15,2	12,2
AT1G30720;/	FAD-binding domain-containing protein	58,55	32,35	16,55
AT1G04400	cryptochrome 2 apoprotein (CRY2) / blue light photoreceptor (PHH1)	706,75	606,15	481,8
AT2G04410	expressed protein	392,45	392,3	249,55
AT3G16030	lectin protein kinase family protein	21,8	17,5	14,9
AT1G10270	pentatricopeptide (PPR) repeat-containing protein	78,15	68,35	57,25
AT1G77220	expressed protein	46,5	35,4	28,75
AT1G65510	expressed protein	25,15	25,35	14
AT1G22930	T-complex protein 11	250,6	215,5	154,55
AT1G03510	pentatricopeptide (PPR) repeat-containing protein	13,65	15,25	4,55
AT2G40770	SNF2 domain-containing protein / helicase domain-containing protein	36,1	34,1	28,75
AT2G29400	serine/threonine protein phosphatase PP1 isozyme 1(TOPP1)	467,2	441,65	316,2
AT2G29260	tropinone reductase, putative	16,5	16,25	10,1

AT2G07110	hypothetical protein	9,6	4,9	1,4
AT2G16970	expressed protein	15,25	9,65	1,95
AT2G39200	seven transmembrane MLO family protein / MLO-like protein 12 (MLO12)	33	25	13,8
AT2G45690	shrunken seed protein (SSE1)	47	43,55	32,05

Cluster 5		E	xpresiór	n
Atg	Descripción	WT	phyB	csa1
AT2G41510	FAD-binding domain-containing protein / cytokinin oxidase family protein	7,1	26,15	25,85
AT1G73480	hydrolase, alpha/beta fold family protein	82,1	173,15	112,7
AT3G51895	sulfate transporter (ST1)	72,75	204,8	181,8
AT5G25190	encodes a member of the ERF (ethylene response factor) subfamily	49,85	81,75	66,2
AT5G62950	expressed protein	32,05	50,25	45,65
AT5G60860	Ras-related GTP-binding protein, putative	36,75	80,7	62,3
AT5G60220	senescence-associated family protein	7	18,85	18,2
AT <u>5G57340</u>	expressed protein	46,05	111,85	65,05
AT5G45820	CBL-interacting protein kinase 20 (CIPK20)	166,3	342,6	246,4
AT5G39860	bHLH protein, putative DNA-binding protein	22,8	52,8	49
AT5G39030	protein kinase family protein	13,6	27,9	23,85
AT5G36910	thionin (THI2.2)	638,65	###	1289,4
AT5G12050	expressed protein	155,95	379,6	393,3
AT5G07000	sulfotransferase family protein	31,45	85,35	63,65
AT5G02760	protein phosphatase 2C family protein / PP2C family protein	245,8	426,75	438,25
AT3G58090	pseudogene, disease resistance response protein-related	8,85	16,2	16,65
AT3G57480	zinc finger (C2H2 type, AN1-like) family protein	36,15	46,85	44,35
AT3G54500	expressed protein	205,35	290,65	264,55
AT4G37770	1-aminocyclopropane-1-carboxylate synthase, putative / ACC synthase, putative	9,35	31,5	16,3
AT4G34480	glycosyl hydrolase family 17 protein	50	75,95	61,7
AT4G32280	auxin-responsive AUX/IAA family protein	15,1	86,55	45,45
AT4G25800	calmodulin-binding protein	5,4	17,8	11,95
AT4G08290	nodulin MtN21 family protein	24,15	66,75	47,1
AT4G10150	zinc finger (C3HC4-type RING finger) family protein	31,75	52,85	49,9
AT3G16800	protein phosphatase 2C, putative / PP2C, putative,	35,95	122,95	82,1
AT3G25940	transcription factor S-II (TFIIS) domain-containing protein	70,95	92,95	80

AT3G08660	phototropic-responsive protein, putative	9,5	18,65	13,25
AT3G03910	glutamate dehydrogenase, putative	11,25	17,15	16,25
AT1G02340	long hypocotyl in far-red 1 (HFR1)	31,2	404,65	193,85
AT1G34355	forkhead-associated domain-containing protein	6,9	16,7	13,35
AT1G69360	expressed protein	42,65	51,5	47,45
AT1G75450	FAD-binding domain-containing protein / cytokinin oxidase family protein	17,1	49,35	37,3
AT1G80760	major intrinsic family protein / MIP family protein	66,35	163,2	180,1
AT1G78490	cytochrome P450 family protein	90,95	123,05	120,15
AT1G03070	expressed protein	11,15	34,5	25,4
AT2G25140	heat shock protein 100, putative	28,45	49,85	43,45
AT2G31110	expressed protein	37,25	86,45	74,3

Cluster 6		Ex	presión	
Atg	Descripción	WT	phyB	csa1
AT4G36430	peroxidase, putative	19,55	17,4	32,45
AT5G62230	leucine-rich repeat family protein / protein kinase family protein	31,55	39	43,8
AT5G59845	gibberellin-regulated family protein	4,35	12,95	15,75
AT5G53980	homeobox-leucine zipper family protein	10,3	32,95	42,8
AT5G49610	F-box family protein	48,75	47,15	52,45
AT5G43380	serine/threonine protein phosphatase PP1 isozyme 7 (TOPP7)	20	19,3	30,15
AT5G09990	expressed protein	14,75	23,65	31,75
AT3G56640	exocyst complex subunit Sec15-like family protein	35,7	50,25	58,55
AT3G51180	zinc finger (CCCH-type) family protein	18,95	23,25	36,8
AT4G34340	expressed protein	30,65	33,85	52
AT4G28160	hydroxyproline-rich glycoprotein family protein	11,4	3,75	35
AT2G30330	GCN5L1 family protein	57,35	64,2	76,65
AT3G13674	expressed protein	15,5	15,95	28,2
AT3G09730	expressed protein	11,35	15,35	19,75
AT1G43910	AAA-type ATPase family protein	13,6	16,85	28,5
AT1G07380	ceramidase family protein	43,25	39,6	59,8
AT1G64530	RWP-RK domain-containing protein	58,45	61,5	, 72,9
AT1G09530	phytochrome interacting factor 3 (PIF3)	74,75	83,9	1094,6
AT1G65490	expressed protein	309,45	441,95	501,2
AT1G76960	expressed protein	20,15	42,5	50
AT2G25510	expressed protein	1486	###	2251,3
AT2G35690	acyl-CoA oxidase, putative	55,35	58,25	75,75
-----------	--	-------	-------	--------
AT2G37900	proton-dependent oligopeptide transport (POT) family protein	0,5	3,55	17,6
AT2G39980	transferase family protein	67,4	82,05	103,35

Cluster 1	1 Nivel de expresión							
Atg	Descripción	WT 1	W	WT	phyb a	phyb b	phyB	csa a
AT2G26540	uroporphyrinogen-III synthase family protein	114,9	132,3	123,6	85,3	93,2	89,25	107,2
AT4G14890	ferredoxin family protein	776,1	782,7	779,4	501	493,4	497,2	605,5
AT4G14430	enoyl-CoA hydratase/isomerase family protein	172,3	169,8	171,05	121,2	135	128,1	100,5
AT4G15660	glutaredoxin family protein (thioltransferase)	60,5	48,1	54,3	25,5	31,2	28,35	44,2
AT4G15260	UDP-glucoronosyl/UDP-glucosyl transferase family protein	77,2	55	66,1	17,2	13,4	15,3	41,3
AT1G25275	expressed protein	1219,4	1230,7	###	699,4	639,6	669,5	823,6
AT1G57790	F-box family protein	96,7	100,9	98,8	77,3	71,7	74,5	89,4
AT5G19850	hydrolase, alpha/beta fold family protein	258,7	221	239,85	148,1	166,5	157,3	189,1
AT5G08380	alpha-galactosidase, putative /melibiase, putative /alpha-D-galactoside galactohydrolase	146,8	154,6	150,7	83,1	90,8	86,95	94,1
AT4G37280	MRG family protein	117	118	117,5	92,2	97,6	94,9	105,8
AT4G36670	mannitol transporter, putative	211,2	208,4	209,8	105,9	124	114,95	124
AT5G29000	myb family transcription factor	55,8	56,8	56,3	38,6	32,5	35,55	51,3
AT5G26860	similar to Lon protease	44,2	56,9	50,55	32,1	30	31,05	32,3
AT5G26270	expressed protein, ; expression supported by MPSS	204,4	210,7	207,55	62,2	55,2	58,7	48,7
AT5G66520	pentatricopeptide (PPR) repeat-containing protein	56,3	46,4	51,35	23,6	25,7	24,65	35,8
AT5G59750	riboflavin biosynthesis protein, putative	394,5	388	391,25	249,6	279,2	264,4	325,5
AT5G57930	expressed protein	439,9	516,1	478	285,6	313,3	299,45	383,2
AT5G56290	peroxisomal targeting signal type 1 receptor (PEX5)	405	418,8	411,9	338,3	323,5	330,9	352,2
AT5G56080	nicotianamine synthase, putative	26	21,8	23,9	14,7	13,1	13,9	19,8
AT5G53080	kinesin light chain-related	28,7	28,3	28,5	18	16,8	17,4	12,3
AT5G52830	WRKY family transcription factor	23	22,9	22,95	12,6	9,7	11,15	5,8
AT5G52110	expressed protein	62,7	70,4	66,55	42,3	45,2	43,75	47,9
AT5G50200	expressed protein	101,3	114,1	107,7	52,5	45	48,75	56,5
AT5G48910	pentatricopeptide (PPR) repeat-containing protein	94,9	100,3	97,6	63,8	70,1	66,95	51,1
AT5G48030	DNAJ heat shock protein, mitochondrially targeted (GFA2)	193,1	215,8	204,45	145,6	143,9	144,75	137
AT5G42900	expressed protein	184	151	167,5	99,9	77,5	88,7	75,5
AT5G40780	lysine and histidine specific transporter, putative Transmem. aa transporter protein	107,6	106,9	107,25	54,9	69,4	62,15	65,6
AT5G38850	disease resistance protein (TIR-NBS-LRR class), putative	33,2	32,3	32,75	20,2	24	22,1	26,7
AT5G37260	myb family transcription factor	258,2	285,3	271,75	107,1	134	120,55	152,1
AT5G24290	integral membrane family protein	32,4	40,4	36,4	16,3	20,8	18,55	24,5
AT5G23890	expressed protein	111,6	131,2	121,4	68,6	73,4	71	103,4
AT5G22640	MORN (Membrane Occupation and Recognition Nexus) repeat-containing protein	288	320,8	304,4	171	175,8	173,4	213,4
AT5G18600	glutaredoxin family protein, contains glutaredoxin domain	466	429,3	447,65	124,5	206,5	165,5	260,4

AT5G16290	acetolactate synthase small subunit, putative	222,4	227,2	224,8	182,2	193,5	187,85	213,5
AT5G16420	pentatricopeptide (PPR) repeat-containing protein	21,1	19,3	20,2	14,8	13	13,9	11,4
AT5G10120	ethylene insensitive 3 family protein	18,4	14,6	16,5	7,6	6,2	6,9	9,1
AT5G10140	MADS-box protein flowering locus F, FLOWERING LOCUS C protein	179,6	155,8	167,7	73,4	58,5	65,95	34,6
AT5G05760	syntaxin 31 (SYP31) / SED5	37,1	38,4	37,75	27,9	31,3	29,6	29,9
AT5G05210	nucleolar matrix protein-related	85,8	74,3	80,05	56,2	51,3	53,75	52,5
AT5G02650	expressed protein	12,1	12,3	12,2	7,1	6,2	6,65	9,2
AT5G02010	member of KPP-like gene family, homolog of KPP (kinase partner protein)gene in tomato	48,1	49,8	48,95	34,2	35,6	34,9	27,3
AT3G62650	expressed protein, putative mitochondrial carrier protein At2g47490	734	638,8	686,4	528,9	500,3	514,6	595,4
AT3G60130	glycosyl hydrolase family 1 protein / beta-glucosidase, putative (YLS1)	171,9	157,5	164,7	103,5	95,3	99,4	98,8
AT3G59110	protein kinase family protein	130,1	141,5	135,8	91,2	95,8	93,5	66,8
AT3G58700	60S ribosomal protein L11 (RPL11B)	395,3	393,2	394,25	337,1	325	331,05	292,6
AT3G49620	2-oxoacid-dependent oxidase, putative (DIN11)	48,1	33,7	40,9	8	8,3	8,15	17,8
AT3G46280	protein kinase-related, contains similarity to light repressible receptor protein kinase	39,3	42,6	40,95	12,7	17,3	15	18,2
AT4G37560	formamidase, putative / formamide amidohydrolase, putative, s	163,2	166,7	164,95	117,4	127,4	122,4	109,1
AT4G37320	cytochrome P450 family protein	71,5	83,8	77,65	42,6	47,3	44,95	41,3
AT4G35230	protein kinase family protein	278,6	285,3	281,95	219	214,2	216,6	197,2
AT4G33980	expressed protein	81	88,6	84,8	58,6	39,1	48,85	29,4
AT4G30720	expressed protein	70,1	78,8	74,45	52,5	56,3	54,4	57
AT4G27690	vacuolar protein sorting-associated protein 26, putative / VPS26, putative	111,5	120,7	116,1	92,7	84,9	88,8	79,2
AT4G25780	pathogenesis-related protein, putative, similar to gene PR-1 protein -Medicago truncatula	216,9	181,8	199,35	138,6	137	137,8	115,8
AT4G24930	thylakoid lumenal 17.9 kDa protein, chloroplast	362,2	366,4	364,3	216,7	231,1	223,9	257,6
AT4G24370;/	expressed protein, phosphorylase family protein	184,1	231,8	207,95	105,3	109,7	107,5	169,7
AT4G19830	immunophilin / FKBP-type peptidyl-prolyl cis-trans isomerase family protein	121,6	120,3	120,95	104,6	110,9	107,75	113,3
AT4G18600	expressed protein	90,5	91,1	90,8	69	68,8	68,9	57,3
AT4G13640	myb family transcription factor	110,5	114,7	112,6	91,6	86,1	88,85	75,1
AT4G12480	protease inhibitor/seed storage/lipid transfer protein (LTP) family protein	425,5	515,5	470,5	153,1	86,9	120	248,2
AT4G10120	sucrose-phosphate synthase, putative	925,1	913,5	919,3	352,6	411,7	382,15	584,3
AT4G04350	leucyl-tRNA synthetase, putative / leucinetRNA ligase, putative	96,3	97	96,65	63,9	71,9	67,9	88,9
AT4G03260	leucine-rich repeat family protein, contains leucine rich repeat (LRR) domain	383,5	432,1	407,8	295,9	278,5	287,2	287
AT4G02920	expressed protein	908,1	836	872,05	650,8	717,1	683,95	644,5
AT4G03030	kelch repeat-containing F-box family protein	293,2	298	295,6	203,3	203,7	203,5	189,2
AT1G20350	mitochondrial import inner membrane translocase subunit Tim17, putative	26,2	14,9	20,55	3,5	2,5	3	12,9
AT1G58200	mechanosensitive ion channel domain-containing protein	220,8	211,2	216	158,1	152,1	155,1	138,8
AT3G26320	cytochrome P450 71B36, putative	23,4	29,1	26,25	15,9	15,4	15,65	19,3

AT3G19030	expressed protein, contains similarity to phosphoserine aminotransferase	779	838,8	808,9	526,4	504,5	515,45	637,2
AT3G25760	early-responsive to dehydration stress protein (ERD12)	1455,1	1498,7	1476,9	648,9	812,5	730,7	817,3
AT3G23080	expressed protein	191,4	202,7	197,05	155,9	163,2	159,55	154,4
AT3G29260	short-chain dehydrogenase/reductase (SDR) family protein	13,8	13,3	13,55	0,8	1,7	1,25	1,2
AT3G21300	RNA methyltransferase family protein	61,6	49,6	55,6	25	26,4	25,7	33,2
AT3G15850	fatty acid desaturase family protein, similar to delta 9 acyl-lipid desaturase (ADS1)	1938,6	1800,5	###	1198,4	1252,5	###	1492,2
AT3G17300	expressed protein	81,3	93,1	87,2	35,7	50,5	43,1	57,5
AT3G06980	DEAD/DEAH box helicase, putative	422,1	443,9	433	287,1	304,1	295,6	293,7
AT3G01370	expressed protein	213,3	230,8	222,05	136,8	150,2	143,5	170,1
AT3G03640	glycosyl hydrolase family 1 protein	93,2	99,4	96,3	47,8	53,6	50,7	62,5
AT1G76530	auxin efflux carrier family protein, contains auxin efflux carrier domain	23,7	22,8	23,25	10,2	12,1	11,15	18,8
AT1G35420	dienelactone hydrolase family protein	420,7	437,2	428,95	329,2	368,6	348,9	334,5
AT1G69310	WRKY family transcription factor	43,2	50,8	47	35,2	32,5	33,85	41,9
AT1G49160	protein kinase family protein	24,5	25,4	24,95	14,2	14,1	14,15	21,1
AT1G06950	Encodes a protein involved in protein import into the chloroplast and chlorop. biogenesis	374,2	400,7	387,45	315,3	287,7	301,5	332,7
AT1G29090	peptidase C1A papain family protein, contains similarity to cysteine protease	47,4	42,6	45	7,3	5,9	6,6	15,8
AT1G79640	protein kinase family protein	31,1	30,5	30,8	18,7	21,7	20,2	27,2
AT1G28480	glutaredoxin family protein	28,1	19	23,55	11	8,7	9,85	16,3
AT1G21060	expressed protein	69,6	94,6	82,1	43	49,2	46,1	38
AT1G49980	similar to UMUC-like DNA repair family protein	52,4	43,2	47,8	21,4	26,9	24,15	26,8
AT1G50450	expressed protein	209,5	203,4	206,45	110	117,2	113,6	122,4
AT1G79950	helicase-related, similar to BRCA1-binding helicase-like protein BACH1	72,6	77,4	75	60	62,9	61,45	57,6
AT1G74960	3-ketoacyl-ACP synthase, putative	455,6	534,9	495,25	355,4	360,4	357,9	438,3
AT1G70820	phosphoglucomutase, putative / glucose phosphomutase, putative	342,1	322	332,05	262	265,5	263,75	231,7
AT1G50280	phototropic-responsive NPH3 family protein, contains NPH3 family domain	22,5	31,1	26,8	14,6	12,3	13,45	11,5
AT1G75880	family II extracellular lipase 1 (EXL1) similar to anter-specific proline-rich protein	42,2	39,8	41	26,4	27,5	26,95	29,8
AT1G78510	solanesyl diphosphate synthase (SPS)	189,9	182,3	186,1	99,2	95,4	97,3	151,3
AT2G31840	expressed protein	109,4	124,8	117,1	78,5	81,7	80,1	97,4
AT2G17033	pentatricopeptide (PPR) repeat-containing protein	206,3	259	232,65	148,5	154,4	151,45	187,3
AT2G40400	expressed protein	182,5	192,4	187,45	154,7	164,7	159,7	158,6
AT2G04530	RNase Z, 97% identical to RNase Z	102,1	103,1	102,6	45,7	51,4	48,55	81,9
AT1G78820	curculin-like (mannose-binding) lectin family protein / PAN domain-containing protein	696,8	750,1	723,45	507,5	451,8	479,65	603,3
AT1G78850	curculin-like (mannose-binding) lectin family protein	587,7	749,2	668,45	334,7	361,8	348,25	450,4
AT1G22890	expressed protein	160,6	168,3	164,45	79,6	71,6	75,6	130,2
AT1G77080	MADS-box protein / MADS affecting flowering 1 (MAF1)	32,3	28	30,15	16,7	18,2	17,45	13,8

AT2G14050	minichromosome maintenance family protein / MCM family protein	28,6	33,2	30,9	23,1	19	21,05	19,5
AT2G37500	arginine biosynthesis protein ArgJ family	104,5	122,3	113,4	71,3	66	68,65	100,8
AT2G40690	NAD-dependent glycerol-3-phosphate dehydrogenase family protein	31,3	29,6	30,45	18,4	21,9	20,15	26,2
AT2G29460	glutathione S-transferase, putative	34	32,2	33,1	11,5	8,1	9,8	19,2
AT2G43160	epsin N-terminal homology (ENTH) domain-containing protein	517,4	526,6	522	439,4	422,3	430,85	373,6
AT2G25840	tRNA synthetase class I (W and Y) family protein	153,4	156,8	155,1	99	111,8	105,4	113,2
AT2G03070	expressed protein	64,3	83,8	74,05	40,8	43,1	41,95	58,4
AT2G18940	pentatricopeptide (PPR) repeat-containing protein	115	122,8	118,9	58,2	74,9	66,55	70,6
AT2G23450	protein kinase family protein	139	148,5	143,75	102,5	105,8	104,15	115,1
AT2G44490	glycosyl hydrolase family 1 protein	817,6	895,4	856,5	639,6	606,5	623,05	576,5
AT2G42270	U5 small nuclear ribonucleoprotein helicase, putative	53,4	51,6	52,5	34,5	35,1	34,8	30,9

Cluster 2								
atg	desc	col a	col b	WT	phyb a	phyb b	phyB	csa a
AT2G39725	complex 1 family protein / LVR family protein	16,7	19,6	18,15	30,3	28,3	29,3	18,1
AT4G14130	xyloglucan:xyloglucosyl transferase, putative /xyloglucan endotransglycosylase, putative	25,8	24,7	25,25	173,6	85,8	129,7	22,7
AT4G16870	copia-like retrotransposon family	50	47,5	48,75	66,5	66	66,25	37
AT4G15290	cellulose synthase family protein	13,5	15,5	14,5	19,6	18,7	19,15	15,5
AT1G56610	syntaxin-related family protein contains a novel domain similar to F-box	52,5	64,9	58,7	65,1	68,6	66,85	44,3
AT5G16100	expressed protein	9,8	8	8,9	11,8	10,2	11	4,9
AT5G55560	protein kinase family protein	15,4	19,9	17,65	27,8	27	27,4	5,1
AT5G52120	F-box family protein / SKP1 interacting partner 3-related	39,3	41,6	40,45	59	56,7	57,85	36,3
AT5G47240	MutT/nudix family protein	81,9	68,1	75	127,6	126,4	127	64,9
AT5G44260	zinc finger (CCCH-type) family protein	17,5	21,8	19,65	90,6	75,4	83	41,4
AT5G22970	expressed protein	9,1	8,8	8,95	14,5	11,6	13,05	6
AT5G17330	glutamate decarboxylase 1 (GAD 1)	141,3	145,5	143,4	205	204,2	204,6	117,1
AT5G07010	sulfotransferase family protein	11,9	11,3	11,6	71,9	55,5	63,7	19,8
AT5G02880	HECT-domain-containing protein / ubiquitin-transferase family protein	99,6	110	104,8	116,6	118,6	117,6	93,7
AT5G02540	short-chain dehydrogenase/reductase (SDR) family protein	30,4	44,2	37,3	176,2	174,4	175,3	48,1
AT5G02200	phytochrome A specific signal transduction component-related	7,5	4,6	6,05	17,3	19,1	18,2	9,3
AT3G57920	squamosa promoter-binding protein, putative	5,3	5,8	5,55	13,4	11,8	12,6	6,7
AT3G57360	expressed protein	15,8	18,8	17,3	25,3	26	25,65	18,3
AT3G53480	ABC transporter family protein	36,9	39,6	38,25	50	43,9	46,95	30,8
AT3G51440	strictosidine synthase family protein	17,1	17,4	17,25	21,8	23	22,4	15,5

AT3G52030	F-box family protein / WD-40 repeat family protein	69,4	84,8	77,1	92,8	95,7	94,25	58,1
AT3G47510	expressed protein	65,1	83,8	74,45	133,7	130,4	132,05	68,9
AT3G47160	expressed protein	200,3	170,3	185,3	237,8	199,2	218,5	121,9
AT4G38930	ubiquitin fusion degradation UFD1 family protein	63,7	67,3	65,5	80,6	79	79,8	56,6
AT4G34860	beta-fructofuranosidase, putative /invertase, putative	49,7	58,5	54,1	87,6	93,7	90,65	47,5
AT4G34600	expressed protein	18	22,4	20,2	43,3	35,1	39,2	23,5
AT4G33420	peroxidase, putative, identical to class III peroxidase ATP32	97,6	92,3	94,95	180,8	181,6	181,2	82,2
AT4G31730	expressed protein	42,9	35,1	39	56,5	67,7	62,1	31,2
AT4G30450	glycine-rich protein	66,6	80,9	73,75	93,8	107,7	100,75	61,5
AT4G28720	flavin-containing monooxygenase family protein/ similar YUCCA	8,2	11,6	9,9	66,1	60,8	63,45	22,1
AT4G28240	wound-responsive protein-related	352,5	426,1	389,3	858,7	807,3	833	489,7
AT4G03510	zinc finger (C3HC4-type RING finger) family protein (RMA1)	117,5	99,4	108,45	179,8	140,1	159,95	86,9
AT1G51760	IAA-amino acid hydrolase 3 / IAA-Ala hydrolase 3 (IAR3)	60,1	63	61,55	79,9	70,8	75,35	60,2
AT3G29390	hydroxyproline-rich glycoprotein family protein	44,2	60,1	52,15	63,3	60,2	61,75	36,4
AT3G12730	myb family transcription factor	21,9	23,8	22,85	33,1	38,7	35,9	21,6
AT3G17700	cyclic nucleotide-binding transporter 1 / CNBT1 (CNGC20)	26,7	29,5	28,1	33,9	33,1	33,5	17,8
AT3G01420	pathogen-responsive alpha-dioxygenase, putative	94,1	78,4	86,25	150,9	144,9	147,9	51,9
AT1G01560	mitogen-activated protein kinase, putative	14,1	14,1	14,1	23,3	20,2	21,75	11,4
AT1G71030	Encodes a putative myb family transcription factor	432,1	305,1	368,6	643,8	611,3	627,55	268
AT1G29340	armadillo/beta-catenin repeat family protein / U-box domain-containing protein	400,6	448,5	424,55	581,3	578,6	579,95	325,9
AT1G70690	kinase-related	17,4	16,3	16,85	33,7	28,2	30,95	19,7
AT1G67570	expressed protein	25,7	29	27,35	33,1	29,7	31,4	19,8
AT1G21360	expressed protein	17,4	11,4	14,4	23,9	16,9	20,4	6,6
AT1G26440	expressed protein	33,7	39,3	36,5	53,5	44,5	49	24,1
AT1G12200	flavin-containing monooxygenase family protein	98,3	109,5	103,9	155,5	177,2	166,35	115,6
AT1G01920	SET domain-containing protein	15,5	14,4	14,95	22,6	21,7	22,15	10,2
AT1G53885	senescence-associated protein-related	11,5	11,5	11,5	22,6	21,7	22,15	14
AT1G64200	vacuolar ATP synthase subunit E, putative	124,3	131,3	127,8	163,1	142,8	152,95	107
AT1G15400	expressed protein+B202	372,2	394	383,1	485,1	443,8	464,45	387,1
AT1G54130	ReIA/SpoT protein, putative (RSH3)	368,5	373,6	371,05	436,8	406,1	421,45	293,1
AT2G14100	cytochrome P450 family protein	13,9	12,1	13	19	18,1	18,55	13,2
AT2G15390	xyloglucan fucosyltransferase, putative (FUT4)	15,1	14,7	14,9	19,2	19,3	19,25	12,7
AT1G31120	potassium transporter family protein	45	53	49	63	58,7	60,85	37,1
AT1G27430	GYF domain-containing protein	32,2	42,6	37,4	51,4	50,1	50,75	18,7
AT1G22990	heavy-metal-associated domain-containing protein / copper chaperone (CCH)-related	10,9	14,2	12,55	32,5	32	32,25	13,2

AT2G28400	expressed protein	13,6	15,5	14,55	31	27,9	29,45	15,6
AT2G21045	similar to senescence-associated family protein	43,8	42,9	43,35	63,6	73,7	68,65	44,5
AT2G15570	thioredoxin M-type 3, chloroplast (TRX-M3)	120,8	110,8	115,8	156,8	157,2	157	116,8
AT2G01190	octicosapeptide/Phox/Bem1p (PB1) domain-containing protein	93,7	106,2	99,95	152,7	128,2	140,45	84,8
AT2G29300	tropinone reductase, putative / tropine dehydrogenase, putative	29,6	30,4	30	47,8	39,5	43,65	18,8
AT2G29120	similar to glutamate receptor family protein (GLR2.8)	24,2	26,9	25,55	59,4	59,9	59,65	29,7
AT2G44130	kelch repeat-containing F-box family protein	70,1	61,7	65,9	113,5	128	120,75	60,2
AT2G42160	zinc finger (ubiquitin-hydrolase) domain-containing protein	27,3	30,2	28,75	41,6	41,8	41,7	33,5

Cluster 3

atg	desc	col a	col b	WT	phyb a	phyb b	phyB	csa a
AT4G17530	Ras-related GTP-binding protein	496	520,7	508,35	400,2	413,6	406,9	492,4
AT4G15900	PP1/PP2A phosphatases pleiotropic regulator 1 (PRL1)	181,9	179,8	180,85	144,4	126,1	135,25	163,4
AT5G08740	pyridine nucleotide-disulphide oxidoreductase family protein	157,9	155,7	156,8	85	107,8	96,4	150
AT5G13490	ADP, ATP carrier protein 2, mitochondrial / ADP/ATP translocase 2	135,5	154,6	145,05	108,7	118	113,35	168,8
AT5G67100	DNA-directed DNA polymerase alpha catalytic subunit, putative,	22,8	25,5	24,15	14,8	16,8	15,8	24,7
AT5G57590	aminotransferase class III family protein	46	50,7	48,35	26,9	33,7	30,3	43,8
AT5G57260	cytochrome P450 71B10	36,7	32,9	34,8	17,3	20,3	18,8	28,9
AT5G55930	oligopeptide transporter OPT family protein	43,2	55,6	49,4	9,2	13,7	11,45	43,5
AT5G52380	zinc knuckle (CCHC-type) family protein	42,6	49,5	46,05	35,2	33,8	34,5	50,6
AT5G42765	expressed protein	152,9	138,6	145,75	98,9	106,5	102,7	162,9
AT5G22300	nitrilase 4 (NIT4)	190,6	136,7	163,65	71	73,5	72,25	148,2
AT5G17780	hydrolase, alpha/beta fold family protein	57,9	65,9	61,9	41,2	32,2	36,7	65,5
AT5G12160	expressed protein	34,5	33,1	33,8	25,4	26,1	25,75	41
AT3G54090	pfkB-type carbohydrate kinase family protein	210,5	197,9	204,2	141,6	144,3	142,95	191,8
AT3G52960	peroxiredoxin type 2, putative	1110,3	1263,9	1187,1	943,8	880,2	912	1365,3
AT3G48350	cysteine proteinase, putative	76,7	87,1	81,9	57,6	58	57,8	86,7
AT3G46580	methyl-CpG-binding domain-containing protein	36	40,3	38,15	21,9	25,5	23,7	36,2
AT4G38420	multi-copper oxidase type I family protein	104,2	112,6	108,4	64	53	58,5	91,9
AT4G37580	N-acetyltransferase, putative / hookless1 (HLS1)	34,5	45,2	39,85	20	21,5	20,75	36,3
AT3G14067	subtilase family protein	432,5	448	440,25	344,9	352,5	348,7	424,7
AT3G20780	topoisomerase 6 subunit B (TOP6B)	21,6	23,7	22,65	12	14,9	13,45	23,8
AT3G23570	dienelactone hydrolase family protein	287,1	362,1	324,6	172,4	192	182,2	371,2
AT3G09050	expressed protein	73,5	64,5	69	40,3	49,2	44,75	71,9

AT3G05070	expressed protein	108,6	99	103,8	76	82,6	79,3	101,1
AT1G12370	type II CPD photolyase PHR1 (PHR1)	31,9	37,7	34,8	18,8	25,6	22,2	41,4
AT1G77710	expressed protein	454,3	448,9	451,6	418,1	389,1	403,6	471,8
AT1G77490	L-ascorbate peroxidase, thylakoid-bound (tAPX)	509,8	568,2	539	396,9	389,6	393,25	480,7
AT1G73655	immunophilin / FKBP-type peptidyl-prolyl cis-trans isomerase family protein	410,8	462	436,4	241,7	277,7	259,7	376,4
AT1G74020	strictosidine synthase family protein	388,9	394,7	391,8	306,5	284,1	295,3	405
AT2G43640	signal recognition particle 14 kDa family protein / SRP14 family protein	128,1	144,2	136,15	117,7	112,5	115,1	142,1
AT1G79790	haloacid dehalogenase-like hydrolase family protein	144,4	167,6	156	118,5	127,2	122,85	166,6
AT1G56050	GTP-binding protein-related	116	128,1	122,05	70	89,3	79,65	124,6
AT1G68585	expressed protein	38,7	45,8	42,25	33,8	33,9	33,85	50,9
AT1G43590	expressed protein	43	71	57	9,9	10	9,95	76,2
AT1G28570	GDSL-motif lipase, putative	55,7	57,6	56,65	34,7	39	36,85	58,4
AT1G54220	dihydrolipoamide S-acetyltransferase, putative	87,6	98,1	92,85	68,2	62,7	65,45	107,7
AT1G04480	60S ribosomal protein L23 (RPL23A)	791,7	842	816,85	705,8	664,6	685,2	949
AT2G15830	expressed protein	44,5	42,8	43,65	33,1	27,7	30,4	44,5
AT2G24190	short-chain dehydrogenase/reductase (SDR) family protein	65	66,6	65,8	55	57,9	56,45	68,5
AT2G18790	phytochrome B (PHYB)	198,3	262,8	230,55	51,7	65,5	58,6	184,1
AT2G40720	pentatricopeptide (PPR) repeat-containing protein	14,3	15,2	14,75	11,7	8,8	10,25	20,7
AT2G29180	expressed protein	274,5	296,1	285,3	212,1	212,7	212,4	279,8
AT2G38140	chloroplast 30S ribosomal protein	770,8	806,1	788,45	608,2	570,3	589,25	823,2
AT2G30540	glutaredoxin family protein	23,7	26,5	25,1	16	17,7	16,85	37

CI	uster	4
----	-------	---

atg	desc	col a	col b	WT	phyb a	phyb b	phyB	csa a
AT1G77390	cyclin, putative	15,4	13,3	14,35	15,6	15	15,3	6,8
AT5G35080	expressed protein	92,4	103,4	97,9	84,2	97,9	91,05	71,8
AT5G64920	COP1-interacting protein (CIP8) / zinc finger (C3HC4-type RING finger) family protein	153,9	156,8	155,35	151,4	125,5	138,45	94
AT5G63600	flavonol synthase, putative	121,5	83,6	102,55	84,5	99,3	91,9	49,6
AT5G51690	1-aminocyclopropane-1-carboxylate synthase, putative	29,3	32,7	31	22,3	23,9	23,1	11,4
AT5G45140	similar to DNA-directed RNA polymerase II 135 kDa polypeptide	53,3	63,4	58,35	46,5	44,1	45,3	34,9
AT5G23680	sterile alpha motif (SAM) domain-containing protein	26,2	31	28,6	24,1	25,3	24,7	20,2
AT5G23080	SWAP (Suppressor-of-White-APricot)/surp domain-containing protein	91,6	90	90,8	90,6	83,5	87,05	65,2
AT5G10940	transducin family protein / WD-40 repeat family protein	110	111,4	110,7	120,1	108	114,05	86,9
AT5G05550	expressed protein	33,8	27,7	30,75	31,8	28,9	30,35	15,9

AT3G61800	expressed protein	49,5	57,7	53,6	55,4	58,8	57,1	37,4
AT3G60700	expressed protein	16,8	18,7	17,75	17,2	12,6	14,9	10
AT3G60540	sec61beta family protein, similar to SP:P52870 Protein transport protein SEC61 beta 1 sub	25,3	30,8	28,05	28,4	26,1	27,25	16,5
AT3G58180	PBS lyase HEAT-like repeat-containing protein, contains Pfam profile: PF03130: PBS lyas	104,7	112	108,35	111	110,6	110,8	96,2
AT3G53090	HECT-domain-containing protein / ubiquitin-transferase family protein	65	71,5	68,25	62,9	63,3	63,1	45,1
AT3G42670	SNF2 domain-containing protein / helicase domain-containing protein	28,9	38,2	33,55	30,9	30,1	30,5	20,1
AT4G33750	expressed protein	133,3	123,1	128,2	133,6	119,4	126,5	77,4
AT4G25500	arginine/serine-rich splicing factor RSP40 (RSP40)	185	184,3	184,65	160,4	159,7	160,05	116,3
AT4G19865	kelch repeat-containing F-box family protein	35,5	35,6	35,55	39,7	38,3	39	26,1
AT4G17960	expressed protein	30,5	33,4	31,95	31,4	37,6	34,5	21,2
AT4G08850	leucine-rich repeat family protein / protein kinase family protein, contains Pfam domains Pf	231,7	223,1	227,4	164,8	150,7	157,75	100,3
AT4G02750	pentatricopeptide (PPR) repeat-containing protein	20	22,3	21,15	24,9	19,9	22,4	11
AT1G25560	AP2 domain-containing transcription factor, putative	151,3	160,2	155,75	138,6	146,1	142,35	117,4
AT2G33440	splicing factor family protein	62,2	73,8	68	53	50,2	51,6	44,2
AT1G18020	12-oxophytodienoate reductase, putative	216,5	180,7	198,6	135,6	142,7	139,15	107,5
AT3G11020	encodes a member of the DREB subfamily A-2 of ERF/AP2 transcription factor family	31,2	27,1	29,15	29,9	24,7	27,3	10,6
ATMG00513;	Mitochondrial NADH dehydrogenase subunit 5	45,8	41,9	43,85	38,3	33,9	36,1	33,1
AT3G06210	similar to expressed protein	26,4	36,1	31,25	25,9	27	26,45	11,9
AT3G16630	kinesin motor family protein	299	302,9	300,95	287,4	289,5	288,45	212,2
AT3G17340	importin-related	21,6	23,4	22,5	21,6	18	19,8	13,2
AT3G01690	expressed protein	505,7	599,9	552,8	449,6	420,2	434,9	320,7
AT3G03790	ankyrin repeat family protein/regulator of chromosome condensation(RCC1)family protein	111,9	114,7	113,3	110	120,8	115,4	73,7
AT1G06400	Ras-related GTP-binding protein (ARA-2)	263,8	272,2	268	266,2	244,1	255,15	222,3
AT1G68990	DNA-directed RNA polymerase, mitochondrial (RPOMT)	59,1	66,3	62,7	69,6	64,5	67,05	43,3
AT1G75130	cytochrome P450 family protein	130	103,6	116,8	113,6	111,1	112,35	77,3
AT1G73170	expressed protein	300,2	317,6	308,9	290,1	303,3	296,7	258,9
AT1G80420	DNA repair protein, putative (XRCC1)	50,8	52,3	51,55	48,2	44,8	46,5	29,8
AT1G07280	expressed protein	437,2	435,9	436,55	325,7	366,6	346,15	250,9
AT1G75340	zinc finger (CCCH-type) family protein	95,2	79,8	87,5	66,3	64,3	65,3	49,1
AT1G32700	zinc-binding family protein	410,4	371,8	391,1	325,1	402,2	363,65	213,5
AT1G31310	hydroxyproline-rich glycoprotein family protein	19,3	19,8	19,55	13,7	16,7	15,2	11,3
AT1G30720;/	FAD-binding domain-containing protein	70,1	47	58,55	38,3	26,4	32,35	13
AT1G04400	cryptochrome 2 apoprotein (CRY2) / blue light photoreceptor (PHH1)	696,4	717,1	706,75	620,7	591,6	606,15	501,4
AT2G04410	expressed protein	376,4	408,5	392,45	377,9	406,7	392,3	240,5
AT3G16030	lectin protein kinase family protein	21	22,6	21,8	16,9	18,1	17,5	13,7

AT1G10270	pentatricopeptide (PPR) repeat-containing protein	72,6	83,7	78,15	69,5	67,2	68,35	56,2
AT1G77220	expressed protein	43,9	49,1	46,5	32	38,8	35,4	28,9
AT1G65510	expressed protein	24,1	26,2	25,15	28,8	21,9	25,35	15,2
AT1G22930	T-complex protein 11	280,1	221,1	250,6	216	215	215,5	159,9
AT1G03510	pentatricopeptide (PPR) repeat-containing protein	14,1	13,2	13,65	16,5	14	15,25	6
AT2G40770	SNF2 domain-containing protein / helicase domain-containing protein	34,8	37,4	36,1	35,8	32,4	34,1	28,9
AT2G29400	serine/threonine protein phosphatase PP1 isozyme 1(TOPP1)	492,7	441,7	467,2	469,7	413,6	441,65	304,2
AT2G29260	tropinone reductase, putative	16,2	16,8	16,5	16,3	16,2	16,25	9,7
AT2G07110	hypothetical protein	10,7	8,5	9,6	3,8	6	4,9	1,1
AT2G16970	expressed protein	14,2	16,3	15,25	11,6	7,7	9,65	1,9
AT2G39200	seven transmembrane MLO family protein / MLO-like protein 12 (MLO12)	36,1	29,9	33	23,3	26,7	25	14,3
AT2G45690	shrunken seed protein (SSE1)	46,1	47,9	47	42,1	45	43,55	33,1

Cluster 5

atg	desc	col a	col b	WT	phyb a	phyb b	phyB	csa a
AT2G41510	FAD-binding domain-containing protein / cytokinin oxidase family protein	5,6	8,6	7,1	22,8	29,5	26,15	30
AT1G73480	hydrolase, alpha/beta fold family protein	81,7	82,5	82,1	154,9	191,4	173,15	104,1
AT3G51895	sulfate transporter (ST1)	67,4	78,1	72,75	210	199,6	204,8	169,8
AT5G25190	encodes a member of the ERF (ethylene response factor) subfamily	45,5	54,2	49,85	78,5	85	81,75	62,5
AT5G62950	expressed protein	29	35,1	32,05	53,3	47,2	50,25	43,3
AT5G60860	Ras-related GTP-binding protein, putative	33,5	40	36,75	76,5	84,9	80,7	64,7
AT5G60220	senescence-associated family protein	6,7	7,3	7	20,3	17,4	18,85	15,7
AT5G57340	expressed protein	44,7	47,4	46,05	90,9	132,8	111,85	62,4
AT5G45820	CBL-interacting protein kinase 20 (CIPK20)	165	167,6	166,3	310,7	374,5	342,6	242,4
AT5G39860	bHLH protein, putative DNA-binding protein	22	23,6	22,8	44,4	61,2	52,8	43,1
AT5G39030	protein kinase family protein	14,2	13	13,6	29,3	26,5	27,9	19,2
AT5G36910	thionin (THI2.2)	698,8	578,5	638,65	1847,7	1729	###	1063
AT5G12050	expressed protein	118,5	193,4	155,95	377,9	381,3	379,6	348,1
AT5G07000	sulfotransferase family protein	25,4	37,5	31,45	94,5	76,2	85,35	58,5
AT5G02760	protein phosphatase 2C family protein / PP2C family protein	217,8	273,8	245,8	376,3	477,2	426,75	441,4
AT3G58090	pseudogene, disease resistance response protein-related	8,9	8,8	8,85	16	16,4	16,2	19,2
AT3G57480	zinc finger (C2H2 type, AN1-like) family protein	37,9	34,4	36,15	48,3	45,4	46,85	43,7

AT3G54500	expressed protein	204,1	206,6	205,35	289,4	291,9	290,65	281,4
AT4G37770	1-aminocyclopropane-1-carboxylate synthase, putative / ACC synthase, putative	10,1	8,6	9,35	25,5	37,5	31,5	15,8
AT4G34480	glycosyl hydrolase family 17 protein	48,6	51,4	50	71,4	80,5	75,95	62,3
AT4G32280	auxin-responsive AUX/IAA family protein	10,2	20	15,1	59,4	113,7	86,55	48,9
AT4G25800	calmodulin-binding protein	5,1	5,7	5,4	14,5	21,1	17,8	9,5
AT4G08290	nodulin MtN21 family protein	29,4	18,9	24,15	61,9	71,6	66,75	41,1
AT4G10150	zinc finger (C3HC4-type RING finger) family protein	31,8	31,7	31,75	51,6	54,1	52,85	51,1
AT3G16800	protein phosphatase 2C, putative / PP2C, putative,	36,6	35,3	35,95	118,5	127,4	122,95	74,5
AT3G25940	transcription factor S-II (TFIIS) domain-containing protein	68,2	73,7	70,95	91,1	94,8	92,95	80,4
AT3G08660	phototropic-responsive protein, putative	9,2	9,8	9,5	16,9	20,4	18,65	11,9
AT3G03910	glutamate dehydrogenase, putative	10,9	11,6	11,25	15,7	18,6	17,15	16,6
AT1G02340	long hypocotyl in far-red 1 (HFR1)	39,6	22,8	31,2	440,8	368,5	404,65	158
AT1G34355	forkhead-associated domain-containing protein	8	5,8	6,9	17,8	15,6	16,7	13,4
AT1G69360	expressed protein	44,2	41,1	42,65	52,4	50,6	51,5	46,2
AT1G75450	FAD-binding domain-containing protein / cytokinin oxidase family protein	16,7	17,5	17,1	44,5	54,2	49,35	33,3
AT1G80760	major intrinsic family protein / MIP family protein	50,5	82,2	66,35	144,2	182,2	163,2	185,3
AT1G78490	cytochrome P450 family protein	83,9	98	90,95	121,6	124,5	123,05	115,6
AT1G03070	expressed protein	13	9,3	11,15	32,6	36,4	34,5	19,1
AT2G25140	heat shock protein 100, putative	29,3	27,6	28,45	54,3	45,4	49,85	45,5
AT2G31110	expressed protein	41,5	33	37,25	88,3	84,6	86,45	75,1

CI	uster	6
----	-------	---

ato	desc	col a	col h	W/T	nhvh a	nhvh h	nhvB	rsa a
AT4C36430	nerovidase, putative	17 7	21 /	10.55	18 7	16 1	17 A	31.6
AT4030430	peroxidase, pulative	22.0	21,4	19,00	10,7	10,1	17,4	31,0
AT5G62230	ieucine-rich repeat family protein / protein kinase family protein	32,8	30,3	31,55	41,1	36,9	39	41
A15G59845	gibberellin-regulated family protein	4,5	4,2	4,35	11,6	14,3	12,95	11,1
AT5G53980	homeobox-leucine zipper family protein	7,5	13,1	10,3	42,1	23,8	32,95	47
AT5G49610	F-box family protein	48,8	48,7	48,75	46,9	47,4	47,15	52,1
AT5G43380	serine/threonine protein phosphatase PP1 isozyme 7 (TOPP7)	17,7	22,3	20	20,6	18	19,3	31,1
AT5G09990	expressed protein	14,1	15,4	14,75	24,4	22,9	23,65	27,7
AT3G56640	exocyst complex subunit Sec15-like family protein	31,6	39,8	35,7	48,7	51,8	50,25	57,7
AT3G51180	zinc finger (CCCH-type) family protein	17	20,9	18,95	25,7	20,8	23,25	34,2
AT4G34340	expressed protein	28,1	33,2	30,65	33,5	34,2	33,85	46,3
AT4G28160	hydroxyproline-rich glycoprotein family protein	13,7	9,1	11,4	2	5,5	3,75	34,6

AT2G30330	GCN5L1 family protein	53,2	61,5	57,35	64,1	64,3	64,2	74,8
AT3G13674	expressed protein	13,7	17,3	15,5	14,7	17,2	15,95	29,8
AT3G09730	expressed protein	10	12,7	11,35	15,5	15,2	15,35	18
AT1G43910	AAA-type ATPase family protein	12,9	14,3	13,6	17,7	16	16,85	24,7
AT1G07380	ceramidase family protein	40,6	45,9	43,25	36,1	43,1	39,6	60,3
AT1G64530	RWP-RK domain-containing protein	56,1	60,8	58,45	64,3	58,7	61,5	72
AT1G09530	phytochrome interacting factor 3 (PIF3)	59,1	90,4	74,75	82,4	85,4	83,9	910,3
AT1G65490	expressed protein	314,8	304,1	309,45	492,2	391,7	441,95	462,9
AT1G76960	expressed protein	18,1	22,2	20,15	47,3	37,7	42,5	57,1
AT2G25510	expressed protein	1371,3	1600,7	1486	1243	1031,1	###	2442,9
AT2G35690	acyl-CoA oxidase, putative	50,8	59,9	55,35	57,8	58,7	58,25	77,7
AT2G37900	proton-dependent oligopeptide transport (POT) family protein	0,6	0,4	0,5	1,9	5,2	3,55	18,6
AT2G39980	transferase family protein	66	68,8	67,4	80,4	83,7	82,05	99,9

eeo h	0001	
	csai	440.05
114,7		110,95
691,6		648,55
111,1		105,8
49,1		46,65
47,5		44,4
1102		962,8
88,3		88,85
212,8		200,95
121		107,55
101,1		103,45
112,7		118,35
49,2		50,25
31,4		31,85
72,6		60,65
47,4		41,6
391,6		358,55
379,5		381,35
389,4		370,8
18,7		19,25
17,1		14,7
7,6		6,7
56,9		52,4
71,9		64,2
53,1		52,1
161,7		149,35
92,6		84,05
76,4		71
29,2		27,95
175,5		163,8
24,4		24,45
108,1		105,75
191,6		202,5
291		275,7

216,3	214,9	
12,2	11,8	
10,7	9,9	
51,2	42,9	
31	30,45	
61,7	57,1	
10,3	9,75	
31,7	29,5	
605,1	600,25	
120,2	109,5	
90,4	78,6	
321,5	307,05	
21,7	19,75	
16,8	17,5	
117	113,05	
41,4	41,35	
224	210,6	
39,1	34,25	
52,2	54,6	
91	85,1	
138,2	127	
316,5	287,05	
166,6	168,15	
112,2	112,75	
60,3	58,8	
83,4	79,25	
238,6	243,4	
797,6	690,95	
76,5	82,7	
331,2	309,1	
6/4,1	659,3	
220,6	204,9	
6,8 140 5	9,85	
140,5	139,65	
20,5	19,9	

727,3	682,25
1079,9	948,6
158,3	156,35
2,1	1,65
29,9	31,55
1539,8	1516
65,2	61,35
353,4	323,55
163,1	166,6
78,7	70,6
20,6	19,7
335,8	335,15
41,9	41,9
15,9	18,5
341,4	337,05
30	22,9
29,1	28,15
15,5	15,9
44,4	41,2
27,7	27,25
166,4	144,4
58,5	58,05
453,9	446,1
250,2	240,95
14,2	12,85
36,8	33,3
173,3	162,3
95,4	96,4
194	190,65
167,3	162,95
64,1	73
679,7	641,5
572,6	511,5
152,6	141,4
16,4	15,1

csa b	csa1
18,6	18,35
26,9	24,8
45,6	41,3
16,1	15,8
45,8	45,05
4	4,45
5,8	5,45
33,6	34,95
75	69,95
37,3	39,35
4,3	5,15
122,2	119,65
18,6	19,2
89,4	91,55
44	46,05
11,6	10,45
6,8	6,75
18,4	18,35
28,6	29,7
13,2	14,35

61	59,55
86,3	77,6
138,5	130,2
64,2	60,4
61,8	54,65
24	23,75
91,8	87
34,6	32,9
57,7	59,6
24,7	23,4
367,1	428,4
68,7	77,8
56	58,1
33,3	34,85
25,8	23,7
20,1	18,95
30,5	41,2
10,1	10,75
255,5	261,75
309,5	317,7
22,4	21,05
22,9	21,35
3,6	5,1
25,4	24,75
125,3	120,45
13	11,6
14,8	14,4
111,9	109,45
365,3	376,2
328,3	310,7
14,4	13,8
10,3	11,5
41,5	39,3
24,9	21,8
16,9	15,05

21,7	18,65
45,1	44,8
135,6	126,2
93,3	89,05
25,5	22,15
38,8	34,25
74,8	67,5
30,8	32,15

	I .	
csa b	csa1	
561,8		527,1
179		171,2
193,3		171,65
195,3		182,05
33		28,85
51,6		47,7
40,6		34,75
51,2		47,35
47,2		48,9
155,3		159,1
172,9		160,55
79,4		72,45
48,3		44,65
215,2		203,5
1267,7		1316,5
108,4		97,55
36,1		36,15
113,1		102,5
36,8		36,55
441,6		433,15
31,8		27,8
398,6		384,9
91,1		81,5

103,9	102,5
49,6	45,5
479,9	475,85
558,5	519,6
486,7	431,55
472,2	438,6
146,1	144,1
165,9	166,25
135,2	129,9
51,2	51,05
83	79,6
69,1	63,75
103,9	105,8
961,2	955,1
51,5	48
76,9	72,7
233,3	208,7
19,8	20,25
316,3	298,05
1050,1	936,65
39,3	38,15

	-	
csa b	csa1	
4,6		5,7
68,8		70,3
98,6		96,3
47,5		48,55
13,8		12,6
35,3		35,1
19,8		20
70,7		67,95
94,1		90,5
16,9		16,4

40,9	39,15
9,7	9,85
14	15,25
88,2	92,2
52,9	49
18,7	19,4
76,6	77
140,6	128,45
22,2	24,15
24	22,6
141,9	121,1
11,6	11,3
127,2	122,3
40,8	42,5
107,7	107,6
8,4	9,5
32,1	32,6
12,2	12,05
231,4	221,8
14,1	13,65
297,6	309,15
89,8	81,75
210,3	216,3
49,3	46,3
78,8	78,05
270,4	264,65
35,9	32,85
298,8	274,85
34,9	42
233,7	223,6
13,1	12,2
20,1	16,55
462,2	481,8
258,6	249,55
16,1	14,9

58,3	57,25
28,6	28,75
12,8	14
149,2	154,55
3,1	4,55
28,6	28,75
328,2	316,2
10,5	10,1
1,7	1,4
2	1,95
13,3	13,8
31	32,05

10,1 1,4 1,95 13,8 32,05

csa b	csa1
21,7	25,85
121,3	112,7
193,8	181,8
69,9	66,2
48	45,65
59,9	62,3
20,7	18,2
67,7	65,05
250,4	246,4
54,9	49
28,5	23,85
1515,8	1289,4
438,5	393,3
68,8	63,65
435,1	438,25
14,1	16,65
45	44,35

247,7	264,55
16,8	16,3
61,1	61,7
42	45,45
14,4	11,95
53,1	47,1
48,7	49,9
89,7	82,1
79,6	80
14,6	13,25
15,9	16,25
229,7	193,85
13,3	13,35
48,7	47,45
41,3	37,3
174,9	180,1
124,7	120,15
31,7	25,4
41,4	43,45
73,5	74,3

csa b	csa1
33,3	32,45
46,6	43,8
20,4	15,75
38,6	42,8
52,8	52,45
29,2	30,15
35,8	31,75
59,4	58,55
39,4	36,8
57,7	52
35,4	35

78,5	76,65
26,6	28,2
21,5	19,75
32,3	28,5
59,3	59,8
73,8	72,9
1278,9	1094,6
539,5	501,2
42,9	50
2059,7	2251,3
73,8	75,75
16,6	17,6
106,8	103,35

	at	at	atg	desc	col a	(col b		phyb a	phyb b	csa a	csa b	
Cluster 1	245042_at	245042_at	AT2G26540	uroporphyrinoge	Э	114,9		132,3	85,3	93	,2	107,2	114,7
	245347_at	245347_at	AT4G14890	ferredoxin family	у	776,1		782,7	501	493	,4	605,5	691,6
	245359_at	245359_at	AT4G14430	enoyl-CoA hydra	8	172,3		169,8	121,2	2 1	35	100,5	111,1
	245504_at	245504_at	AT4G15660	glutaredoxin fan	r	60,5		48,1	25,5	5 31	,2	44,2	49,1
	245543_at	245543_at	AT4G15260	UDP-glucoronos	S	77,2		55	17,2	2 13	,4	41,3	47,5
	245642_at	245642_at	AT1G25275	expressed prote	;	1219,4		1230,7	699,4	639	,6	823,6	1102
	245830_at	245830_at	AT1G57790	F-box family pro)	96,7		100,9	77,3	8 71	,7	89,4	88,3
	245936_at	245936_at	AT5G19850	hydrolase, alpha	9	258,7		221	148,1	166	,5	189,1	212,8
	246055_at	246055_at	AT5G08380	alpha-galactosic	b	146,8		154,6	83, 2	90	,8	94,1	121
	246234_at	246234_at	AT4G37280	MRG family pro	t	117		118	92,2	2 97	,6	105,8	101,1
	246238_at	246238_at	AT4G36670	mannitol transpo	c	211,2		208,4	105,9) 1:	24	124	112,7
	246724_at	246724_at	AT5G29000	myb family trans	S	55,8		56,8	38,6	6 32	,5	51,3	49,2
	246850_at	246850_at	AT5G26860	similar to Lon pr	n	44,2		56,9	32,2		30	32,3	31,4
	246888_at	246888_at	AT5G26270	expressed prote	;	204,4		210,7	62,2	2 55	,2	48,7	72,6
	247100_at	247100_at	AT5G66520	pentatricopeptid	1	56,3		46,4	23,6	5 25	,7	35,8	47,4
	247223_at	247223_at	no_match	no_match		14,2		14,1	1,6	6 3	,8	6,8	5,5
	247694_at	247694_at	AT5G59750	riboflavin biosyr	ľ	394,5		388	249,6	5 279	,2	325,5	391,6
	247889_at	247889_at	AT5G57930	expressed prote	;	439,9		516,1	285,6	313	,3	383,2	379,5
	248010_at	248010_at	AT5G56290	peroxisomal targ	Ç	405		418,8	338,3	323	,5	352,2	389,4
	248048_at	248048_at	AT5G56080	nicotianamine s)	26		21,8	14,7	' 13	,1	19,8	18,7
	248299_at	248299_at	AT5G53080	kinesin light cha	li	28,7		28,3	18	3 16	,8	12,3	17,1
	248306_at	248306_at	AT5G52830	WRKY family tra	8	23		22,9	12,6	; 9	,7	5,8	7,6
	248401_at	248401_at	AT5G52110	expressed prote	;	62,7		70,4	42,3	3 45	,2	47,9	56,9
	248551_at	248551_at	AT5G50200	expressed prote	;	101,3		114,1	52,5	5 .	15	56,5	71,9
	248640_at	248640_at	AT5G48910	pentatricopeptid	1	94,9		100,3	63,8	3 70	,1	51,1	53,1
	248739_at	248739_at	AT5G48030	DNAJ heat show	2	193,1		215,8	145,6	6 143	,9	137	161,7
	249174_at	249174_at	AT5G42900	expressed prote	;	184		151	99,9) 77	,5	75,5	92,6
	249346_at	249346_at	AT5G40780	lysine and histid	li	107,6		106,9	54,9) 69	,4	65,6	76,4
	249504_at	249504_at	AT5G38850	disease resistar	า	33,2		32,3	20,2	2	24	26,7	29,2
	249606_at	249606_at	AT5G37260	myb family trans	S	258,2		285,3	107,1	1	34	152,1	175,5
	249790_at	249790_at	AT5G24290	integral membra	a	32,4		40,4	16,3	3 20	,8	24,5	24,4
	249808_at	249808_at	AT5G23890	expressed prote	;	111,6		131,2	68,6	6 73	,4	103,4	108,1

249900_at	249900_at	AT5G22640	MORN (Membra	288	320,8	171	175,8	213,4	191,6
249996_at	249996_at	AT5G18600	glutaredoxin farr	466	429,3	124,5	206,5	260,4	291
250111_at	250111_at	AT5G16290	acetolactate syn	222,4	227,2	182,2	193,5	213,5	216,3
250115_at	250115_at	AT5G16420	pentatricopeptid	21,1	19,3	14,8	13	11,4	12,2
250468_at	250468_at	AT5G10120	ethylene insensi	18,4	14,6	7,6	6,2	9,1	10,7
250476_at	250476_at	AT5G10140	MADS-box prote	179,6	155,8	73,4	58,5	34,6	51,2
250740_at	250740_at	AT5G05760	syntaxin 31 (SYI	37,1	38,4	27,9	31,3	29,9	31
250825_at	250825_at	AT5G05210	nucleolar matrix	85,8	74,3	56,2	51,3	52,5	61,7
251000_at	251000_at	AT5G02650	expressed prote	12,1	12,3	7,1	6,2	9,2	10,3
251080_at	251080_at	AT5G02010	member of KPP	48,1	49,8	34,2	35,6	27,3	31,7
251189_at	251189_at	AT3G62650	expressed prote	734	638,8	528,9	500,3	595,4	605,1
251427_at	251427_at	AT3G60130	glycosyl hydrola:	171,9	157,5	103,5	95,3	98,8	120,2
251500_at	251500_at	AT3G59110	protein kinase fa	130,1	141,5	91,2	95,8	66,8	90,4
251552_at	251552_at	AT3G58700	60S ribosomal p	395,3	393,2	337,1	325	292,6	321,5
252265_at	252265_at	AT3G49620	2-oxoacid-deper	48,1	33,7	8	8,3	17,8	21,7
252511_at	252511_at	AT3G46280	protein kinase-re	39,3	42,6	12,7	17,3	18,2	16,8
253048_at	253048_at	AT4G37560	formamidase, pι	163,2	166,7	117,4	127,4	109,1	117
253097_at	253097_at	AT4G37320	cytochrome P45	71,5	83,8	42,6	47,3	41,3	41,4
253184_at	253184_at	AT4G35230	protein kinase fa	278,6	285,3	219	214,2	197,2	224
253322_at	253322_at	AT4G33980	expressed prote	81	88,6	58,6	39,1	29,4	39,1
253585_at	253585_at	AT4G30720	expressed prote	70,1	78,8	52,5	56,3	57	52,2
253885_at	253885_at	AT4G27690	vacuolar protein	111,5	120,7	92,7	84,9	79,2	91
254024_at	254024_at	AT4G25780	pathogenesis-re	216,9	181,8	138,6	137	115,8	138,2
254137_at	254137_at	AT4G24930	thylakoid lumena	362,2	366,4	216,7	231,1	257,6	316,5
254163_s_a	<mark>t</mark> 254163_s_a	at AT4G24370;	/[AT4G24370, ex	184,1	231,8	105,3	109,7	169,7	166,6
254545_at	254545_at	AT4G19830	immunophilin / F	121,6	120,3	104,6	110,9	113,3	112,2
254621_at	254621_at	AT4G18600	expressed prote	90,5	91,1	69	68,8	57,3	60,3
254682_at	254682_at	AT4G13640	myb family trans	110,5	114,7	91,6	86,1	75,1	83,4
254805_at	254805_at	AT4G12480	protease inhibitc	425,5	515,5	153,1	86,9	248,2	238,6
255016_at	255016_at	AT4G10120	sucrose-phosph	925,1	913,5	352,6	411,7	584,3	797,6
255328_at	255328_at	AT4G04350	leucyl-tRNA synt	96,3	97	63,9	71,9	88,9	76,5
255421_at	255421_at	AT4G03260	leucine-rich repe	383,5	432,1	295,9	278,5	287	331,2
255456_at	255456_at	AT4G02920	expressed prote	908,1	836	650,8	717,1	644,5	674,1

255469_at	255469_at	AT4G03030	kelch repeat-cor	293,2	298	203,3	203,7	189,2	220,6
255941_at	255941_at	AT1G20350	mitochondrial im	26,2	14,9	3,5	2,5	12,9	6,8
256229_at	256229_at	AT1G58200	mechanosensitiv	220,8	211,2	158,1	152,1	138,8	140,5
256874_at	256874_at	AT3G26320	cytochrome P45	23,4	29,1	15,9	15,4	19,3	20,5
256891_at	256891_at	AT3G19030	expressed prote	779	838,8	526,4	504,5	637,2	727,3
257641_s_at	<mark>t</mark> 257641_s_a	t AT3G25760;	4[AT3G25760, ea	1455,1	1498,7	648,9	812,5	817,3	1079,9
257772_at	257772_at	AT3G23080	expressed prote	191,4	202,7	155,9	163,2	154,4	158,3
257775_at	257775_at	AT3G29260	short-chain dehy	13,8	13,3	0,8	1,7	1,2	2,1
258034_at	258034_at	AT3G21300	RNA methyltran:	61,6	49,6	25	26,4	33,2	29,9
258250_at	258250_at	AT3G15850	fatty acid desatu	1938,6	1800,5	1198,4	1252,5	1492,2	1539,8
258413_at	258413_at	AT3G17300	expressed prote	81,3	93,1	35,7	50,5	57,5	65,2
258554_at	258554_at	AT3G06980	DEAD/DEAH bo	422,1	443,9	287,1	304,1	293,7	353,4
258949_at	258949_at	AT3G01370	expressed prote	213,3	230,8	136,8	150,2	170,1	163,1
259173_at	259173_at	AT3G03640	glycosyl hydrola:	93,2	99,4	47,8	53,6	62,5	78,7
259968_at	259968_at	AT1G76530	auxin efflux carri	23,7	22,8	10,2	12,1	18,8	20,6
260106_at	260106_at	AT1G35420	dienelactone hyd	420,7	437,2	329,2	368,6	334,5	335,8
260337_at	260337_at	AT1G69310	WRKY family tra	43,2	50,8	35,2	32,5	41,9	41,9
260771_at	260771_at	AT1G49160	protein kinase fa	24,5	25,4	14,2	14,1	21,1	15,9
260815_at	260815_at	AT1G06950	Encodes a prote	374,2	400,7	315,3	287,7	332,7	341,4
260890_at	260890_at	AT1G29090	peptidase C1A r	47,4	42,6	7,3	5,9	15,8	30
261401_at	261401_at	AT1G79640	protein kinase fa	31,1	30,5	18,7	21,7	27,2	29,1
261443_at	261443_at	AT1G28480	glutaredoxin farr	28,1	19	11	8,7	16,3	15,5
261451_at	261451_at	AT1G21060	expressed prote	69,6	94,6	43	49,2	38	44,4
261629_at	261629_at	AT1G49980	similar to UMUC	52,4	43,2	21,4	26,9	26,8	27,7
261861_at	261861_at	AT1G50450	expressed prote	209,5	203,4	110	117,2	122,4	166,4
262066_at	262066_at	AT1G79950	helicase-related,	72,6	77,4	60	62,9	57,6	58,5
262176_at	262176_at	AT1G74960	3-ketoacyl-ACP	455,6	534,9	355,4	360,4	438,3	453,9
262309_at	262309_at	AT1G70820	phosphoglucom	342,1	322	262	265,5	231,7	250,2
262464_at	262464_at	AT1G50280	phototropic-resp	22,5	31,1	14,6	12,3	11,5	14,2
262680_at	262680_at	AT1G75880	family II extracel	42,2	39,8	26,4	27,5	29,8	36,8
263122_at	263122_at	AT1G78510	solanesyl diphos	189,9	182,3	99,2	95,4	151,3	173,3
263488_at	263488_at	AT2G31840	expressed prote	109,4	124,8	78,5	81,7	97,4	95,4
263550_at	263550_at	AT2G17033	pentatricopeptid	206,3	259	148,5	154,4	187,3	194

	263805_at	263805_at	AT2G40400	expressed prote	182,5	192,4	154,7	164,7	158,6	167,3
	263864_at	263864_at	AT2G04530	RNase Z, 97% i	102,1	103,1	45,7	51,4	81,9	64,1
	264279_s_at	<mark>t</mark> 264279_s_a	t AT1G78820;	/[AT1G78820, cu	696,8	750,1	507,5	451,8	603,3	679,7
	264299_s_at	<mark>t</mark> 264299_s_a	t AT1G78850;	/[AT1G78850, cu	587,7	749,2	334,7	361,8	450,4	572,6
	264774_at	264774_at	AT1G22890	expressed prote	160,6	168,3	79,6	71,6	130,2	152,6
	264949_at	264949_at	AT1G77080	MADS-box prote	32,3	28	16,7	18,2	13,8	16,4
	265295_at	265295_at	AT2G14050	minichromosom	28,6	33,2	23,1	19	19,5	20,5
	265965_at	265965_at	AT2G37500	arginine biosyntł	104,5	122,3	71,3	66	100,8	88,5
	266058_at	266058_at	AT2G40690	NAD-dependent	31,3	29,6	18,4	21,9	26,2	24,2
	266267_at	266267_at	AT2G29460	glutathione S-tra	34	32,2	11,5	8,1	19,2	16,2
	266437_at	266437_at	AT2G43160	epsin N-terminal	517,4	526,6	439,4	422,3	373,6	426,8
	266648_at	266648_at	AT2G25840	tRNA synthetase	153,4	156,8	99	111,8	113,2	132,3
	266795_at	266795_at	AT2G03070	expressed prote	64,3	83,8	40,8	43,1	58,4	51,8
	266951_at	266951_at	AT2G18940	pentatricopeptid	115	122,8	58,2	74,9	70,6	75,7
	267134_at	267134_at	AT2G23450	protein kinase fa	139	148,5	102,5	105,8	115,1	126,9
			A TO O 4 4 400	مايره ميرا الميرط مارم	0176	805 /	639.6	606 5	576 5	517.5
	267392_at	267392_at	AT2G44490	giycosyl nydrola:	017,0	035,4	000,0	000,0	010,0	, -
	267392_at 267627_at	267392_at 267627_at	AT2G44490 AT2G42270	U5 small nuclea	53,4	51,6	34,5	35,1	30,9	31
	267392_at 267627_at	267392_at 267627_at	AT2G44490 AT2G42270	U5 small nuclea	53,4	51,6	34,5	35,1	30,9	31
lustor 2	267392_at 267627_at at	267392_at 267627_at at	AT2G44490 AT2G42270 atg	desc col a	53,4 col b	51,6 phy 19.6	34,5 /b a phy	35,1 b b csa	30,9 30 csa	31 b
Juster 2	267392_at 267627_at at 245064_at 245325_at	267392_at 267627_at at 245064_at 245325_at	AT2G44490 AT2G42270 atg AT2G39725 AT4G14130	desc col a complex 1 family	53,4 col b 16,7 25.8	51,6 51,6 19,6 24 7	34,5 /b a phy 30,3 173.6	35,1 b b csa 28,3 85.8	30,9 30,9 1 a csa 18,1 22 7	31 b 18,6 26 9
Juster 2	267392_at 267627_at at 245064_at 245325_at 245449_at	267392_at 267627_at at 245064_at 245325_at 245449_at	AT2G44490 AT2G42270 atg AT2G39725 AT4G14130 AT4G16870	desc col a complex 1 family xyloglucan:xylog	col b 16,7 25,8 50	51,6 51,6 19,6 24,7 47 5	34,5 /b a phy 30,3 173,6 66 5	35,1 b b csa 28,3 85,8 66	30,9 30,9 1 a csa 18,1 22,7 37	31 b 18,6 26,9 45,6
Juster 2	267392_at 267627_at at 245064_at 245325_at 245449_at 245546_at	267392_at 267627_at at 245064_at 245325_at 245449_at 245546_at	AT2G44490 AT2G42270 atg AT2G39725 AT4G14130 AT4G16870 AT4G15290	desc col a complex 1 family xyloglucan:xylog copia-like retrotr cellulose syntha	col b 16,7 25,8 50 13,5	51,6 51,6 19,6 24,7 47,5 15 5	/b a phy 30,3 173,6 66,5 19 6	35,1 b b csa 28,3 85,8 66 18 7	30,9 30,9 1 a csa 18,1 22,7 37 15 5	31 b 18,6 26,9 45,6 16 1
Juster 2	267392_at 267627_at at 245064_at 245325_at 245449_at 245546_at 245678_at	267392_at 267627_at at 245064_at 245325_at 245449_at 245546_at 245678_at	AT2G44490 AT2G42270 atg AT2G39725 AT4G14130 AT4G16870 AT4G15290 AT1G56610	desc col a complex 1 family xyloglucan:xylog copia-like retrotr cellulose syntha: syntaxin-related	col b 16,7 25,8 50 13,5 52 5	51,6 51,6 19,6 24,7 47,5 15,5 64 9	34,5 /b a phy 30,3 173,6 66,5 19,6 65 1	35,1 b b csa 28,3 85,8 66 18,7 68 6	30,9 30,9 1 a csa 18,1 22,7 37 15,5 44 3	31 b 18,6 26,9 45,6 16,1 45,8
Juster 2	267392_at 267627_at at 245064_at 245325_at 245449_at 245546_at 245678_at 246491_at	267392_at 267627_at 245064_at 245325_at 245449_at 245546_at 245678_at 246491_at	AT2G44490 AT2G42270 atg AT2G39725 AT4G14130 AT4G16870 AT4G15290 AT1G56610 AT5G16100	desc col a complex 1 family xyloglucan:xylog copia-like retrotr cellulose syntha: syntaxin-related expressed prote	col b 16,7 25,8 50 13,5 52,5 9 8	51,6 51,6 19,6 24,7 47,5 15,5 64,9 8	/b a phy 34,5 334,5 173,6 66,5 19,6 65,1 11 8	35,1 b b csa 28,3 85,8 66 18,7 68,6 10,2	30,9 30,9 18,1 22,7 37 15,5 44,3 4 9	31 b 18,6 26,9 45,6 16,1 45,8 4
Juster 2	267392_at 267627_at at 245064_at 245325_at 245546_at 245546_at 245678_at 246491_at 248060_at	267392_at 267627_at 245064_at 245325_at 245449_at 245546_at 245678_at 246491_at 248060_at	AT2G44490 AT2G42270 atg AT2G39725 AT4G14130 AT4G16870 AT4G15290 AT1G56610 AT5G16100 AT5G55560	desc col a complex 1 family xyloglucan:xylog copia-like retrotr cellulose syntha syntaxin-related expressed prote protein kinase fa	col b 16,7 25,8 50 13,5 52,5 9,8 15 4	51,6 51,6 19,6 24,7 47,5 15,5 64,9 8 19,9	/b a phy 30,3 173,6 66,5 19,6 65,1 11,8 27 8	35,1 b b csa 28,3 85,8 66 18,7 68,6 10,2 27	30,9 30,9 18,1 22,7 37 15,5 44,3 4,9 5 1	31 b 18,6 26,9 45,6 16,1 45,8 4 5,8
Juster 2	267392_at 267627_at 267627_at 245064_at 245325_at 245449_at 245546_at 245678_at 246491_at 248060_at 248395_at	267392_at 267627_at 245064_at 245325_at 245349_at 245546_at 245678_at 246691_at 248060_at 248395_at	AT2G44490 AT2G42270 atg AT2G39725 AT4G14130 AT4G16870 AT4G15290 AT1G56610 AT5G55560 AT5G55560 AT5G52120	desc col a complex 1 family xyloglucan:xylog copia-like retrotr cellulose syntha: syntaxin-related expressed prote protein kinase fa F-box family pro	col b 16,7 25,8 50 13,5 52,5 9,8 15,4 39,3	51,6 51,6 19,6 24,7 47,5 15,5 64,9 8 19,9 41,6	34,5 /b a phy 30,3 173,6 66,5 19,6 65,1 11,8 27,8 59	35,1 b b csa 28,3 85,8 66 18,7 68,6 10,2 27 56,7	30,9 30,9 1 a csa 18,1 22,7 37 15,5 44,3 4,9 5,1 36,3	31 b 18,6 26,9 45,6 16,1 45,8 4 5,8 33,6
Cluster 2	267392_at 267627_at 267627_at 245064_at 245325_at 245546_at 245546_at 245678_at 246491_at 248060_at 248395_at 248793_at	267392_at 267627_at 245064_at 245325_at 245349_at 245546_at 245678_at 246491_at 248060_at 248395_at 248793_at	AT2G44490 AT2G42270 AT2G39725 AT4G14130 AT4G16870 AT4G15290 AT1G56610 AT5G16100 AT5G55560 AT5G52120 AT5G47240	desc col a complex 1 family xyloglucan:xylog copia-like retrotr cellulose syntha: syntaxin-related expressed prote protein kinase fa F-box family pro MutT/nudix fami	col b 16,7 25,8 50 13,5 52,5 9,8 15,4 39,3 81,9	51,6 51,6 19,6 24,7 47,5 15,5 64,9 8 19,9 41,6 68,1	34,5 /b a phy 30,3 173,6 66,5 19,6 65,1 11,8 27,8 59 127,6	35,1 b b csa 28,3 85,8 66 18,7 68,6 10,2 27 56,7 126,4	30,9 30,9 1 a csa 18,1 22,7 37 15,5 44,3 4,9 5,1 36,3 64,9	31 b 18,6 26,9 45,6 16,1 45,8 4 5,8 33,6 75
Cluster 2	267392_at 267627_at 267627_at 245064_at 245325_at 245546_at 245546_at 245678_at 246491_at 248060_at 248395_at 248793_at 249065_at	267392_at 267627_at 245064_at 245325_at 245449_at 245546_at 245678_at 246491_at 248060_at 248395_at 248793_at 249065_at	AT2G44490 AT2G42270 AT2G39725 AT4G14130 AT4G16870 AT4G15290 AT1G56610 AT5G55560 AT5G55560 AT5G52120 AT5G47240 AT5G44260	desc col a complex 1 family xyloglucan:xylog copia-like retrotr cellulose syntha syntaxin-related expressed prote protein kinase fa F-box family pro MutT/nudix famil zinc finger (CCC	col b 16,7 25,8 50 13,5 52,5 9,8 15,4 39,3 81,9 17,5	51,6 51,6 19,6 24,7 47,5 15,5 64,9 8 19,9 41,6 68,1 21,8	/b a phy 30,3 173,6 66,5 19,6 65,1 11,8 27,8 59 127,6 90.6	35,1 b b csa 28,3 85,8 66 18,7 68,6 10,2 27 56,7 126,4 75,4	30,9 30,9 1 a csa 18,1 22,7 37 15,5 44,3 4,9 5,1 36,3 64,9 41,4	31 b 18,6 26,9 45,6 16,1 45,8 33,6 75 37,3
Duster 2	267392_at 267627_at 267627_at 245064_at 245325_at 245449_at 245546_at 245678_at 246491_at 248060_at 248395_at 248793_at 249065_at 249855_at	267392_at 267627_at 267627_at 245064_at 245325_at 245546_at 245546_at 245678_at 246491_at 248060_at 248395_at 248793_at 249065_at 249855_at	AT2G44490 AT2G42270 AT2G39725 AT4G14130 AT4G16870 AT4G15290 AT1G56610 AT5G16100 AT5G55560 AT5G55560 AT5G52120 AT5G47240 AT5G47240 AT5G44260 AT5G22970	desc col a complex 1 family xyloglucan:xylog copia-like retrotr cellulose syntha: syntaxin-related expressed prote protein kinase fa F-box family pro MutT/nudix famil zinc finger (CCC expressed prote	col b 16,7 25,8 50 13,5 52,5 9,8 15,4 39,3 81,9 17,5 9,1	phy 51,6 19,6 24,7 47,5 15,5 64,9 8 19,9 41,6 68,1 21,8 8,8	34,5 34,5 /b a phy 30,3 173,6 66,5 19,6 65,1 11,8 27,8 59 127,6 90,6 14,5	35,1 b b csa 28,3 85,8 66 18,7 68,6 10,2 27 56,7 126,4 75,4 11,6	30,9 30,9 1 a csa 18,1 22,7 37 15,5 44,3 4,9 5,1 36,3 64,9 41,4 6	31 b 18,6 26,9 45,6 16,1 45,8 33,6 75 37,3 4,3

250662_at	250662_at	AT5G07010	sulfotransferase	11,9	11,3	71,9	55,5	19,8	18,6
250988_at	250988_at	AT5G02880	HECT-domain-c	99,6	110	116,6	118,6	93,7	89,4
251013_at	251013_at	AT5G02540	short-chain dehy	30,4	44,2	176,2	174,4	48,1	44
251026_at	251026_at	AT5G02200	phytochrome A :	7,5	4,6	17,3	19,1	9,3	11,6
251560_at	251560_at	AT3G57920	squamosa prom	5,3	5,8	13,4	11,8	6,7	6,8
251650_at	251650_at	AT3G57360	expressed prote	15,8	18,8	25,3	26	18,3	18,4
251942_at	251942_at	AT3G53480	ABC transporter	36,9	39,6	50	43,9	30,8	28,6
252068_at	252068_at	AT3G51440	strictosidine synt	17,1	17,4	21,8	23	15,5	13,2
252086_at	252086_at	AT3G52030	F-box family pro	69,4	84,8	92,8	95,7	58,1	61
252419_at	252419_at	AT3G47510	expressed prote	65,1	83,8	133,7	130,4	68,9	86,3
252464_at	252464_at	AT3G47160	expressed prote	200,3	170,3	237,8	199,2	121,9	138,5
252931_at	252931_at	AT4G38930	ubiquitin fusion (63,7	67,3	80,6	79	56,6	64,2
253224_at	253224_at	AT4G34860	beta-fructofuran	49,7	58,5	87,6	93,7	47,5	61,8
253246_at	253246_at	AT4G34600	expressed prote	18	22,4	43,3	35,1	23,5	24
253332_at	253332_at	AT4G33420	peroxidase, puta	97,6	92,3	180,8	181,6	82,2	91,8
253510_at	253510_at	AT4G31730	expressed prote	42,9	35,1	56,5	67,7	31,2	34,6
253629_at	253629_at	AT4G30450	glycine-rich prote	66,6	80,9	93,8	107,7	61,5	57,7
253794_at	253794_at	AT4G28720	flavin-containing	8,2	11,6	66,1	60,8	22,1	24,7
253812_at	253812_at	AT4G28240;	/[AT4G28240, wc	352,5	426,1	858,7	807,3	489,7	367,1
255381_at	255381_at	AT4G03510	zinc finger (C3H	117,5	99,4	179,8	140,1	86,9	68,7
256178_s_at	256178_s_a	t AT1G51760;	4[AT1G51760, IA	60,1	63	79,9	70,8	60,2	56
256734_at	256734_at	AT3G29390	hydroxyproline-r	44,2	60,1	63,3	60,2	36,4	33,3
257698_at	257698_at	AT3G12730	myb family trans	21,9	23,8	33,1	38,7	21,6	25,8
258351_at	258351_at	AT3G17700	cyclic nucleotide	26,7	29,5	33,9	33,1	17,8	20,1
258957_at	258957_at	AT3G01420	pathogen-respor	94,1	78,4	150,9	144,9	51,9	30,5
259428_at	259428_at	AT1G01560	mitogen-activate	14,1	14,1	23,3	20,2	11,4	10,1
259751_at	259751_at	AT1G71030	Encodes a putat	432,1	305,1	643,8	611,3	268	255,5
259826_at	259826_at	AT1G29340	armadillo/beta-c	400,6	448,5	581,3	578,6	325,9	309,5
260179_at	260179_at	AT1G70690	kinase-related, c	17,4	16,3	33,7	28,2	19,7	22,4
260196_at	260196_at	AT1G67570	expressed prote	25,7	29	33,1	29,7	19,8	22,9
260926_at	260926_at	AT1G21360	expressed prote	17,4	11,4	23,9	16,9	6,6	3,6
261013_at	261013_at	AT1G26440	expressed prote	33,7	39,3	53,5	44,5	24,1	25,4
261023_at	261023_at	AT1G12200	flavin-containing	98,3	109,5	155,5	177,2	115,6	125,3

	261654_at	261654_at	AT1G01920	SET domain-cor	15,5	14,4	22,6	21,7	10,2	13
	262226_at	262226_at	AT1G53885	senescence-ass	11,5	11,5	22,6	21,7	14	14,8
	262354_at	262354_at	AT1G64200	vacuolar ATP sy	124,3	131,3	163,1	142,8	107	111,9
	262592_at	262592_at	AT1G15400	expressed prote	372,2	394	485,1	443,8	387,1	365,3
	263159_at	263159_at	AT1G54130	RelA/SpoT prote	368,5	373,6	436,8	406,1	293,1	328,3
	263276_at	263276_at	AT2G14100	cytochrome P45	13,9	12,1	19	18,1	13,2	14,4
	263565_at	263565_at	AT2G15390	xyloglucan fucos	15,1	14,7	19,2	19,3	12,7	10,3
	263699_at	263699_at	AT1G31120	potassium trans	45	53	63	58,7	37,1	41,5
	264492_at	264492_at	AT1G27430	GYF domain-cor	32,2	42,6	51,4	50,1	18,7	24,9
	264729_at	264729_at	AT1G22990	heavy-metal-ass	10,9	14,2	32,5	32	13,2	16,9
	265276_at	265276_at	AT2G28400	expressed prote	13,6	15,5	31	27,9	15,6	21,7
	265439_at	265439_at	AT2G21045	similar to senesc	43,8	42,9	63,6	73,7	44,5	45,1
	265476_at	265476_at	AT2G15570	thioredoxin M-ty	120,8	110,8	156,8	157,2	116,8	135,6
	265733_at	265733_at	AT2G01190	octicosapeptide/	93,7	106,2	152,7	128,2	84,8	93,3
	266278_at	266278_at	AT2G29300	tropinone reduct	29,6	30,4	47,8	39,5	18,8	25,5
	266782_at	266782_at	AT2G29120	similar to glutam	24,2	26,9	59,4	59,9	29,7	38,8
	267238_at	267238_at	AT2G44130;	/[AT2G44130, ke	70,1	61,7	113,5	128	60,2	74,8
	267632_at	267632_at	AT2G42160	zinc finger (ubiqı	27,3	30,2	41,6	41,8	33,5	30,8
	at				e eelb		huha mhui	h an a		a b
Cluster 2	at	at		desc col		pi ج م ح	nyo a pnyo	D CSa a	CS	a D
Cluster 3	245299_at	245299_al	AT4G17530		490	520,7 170,0	400,2	413,0	492,4	0,100
	245358_al	245358_al	A14G15900	PP I/PPZA phos	181,9	179,8	144,4	120,1	103,4	179
	245716_at	245716_at	AT5G08740		157,9	155,7	85 400 7	107,8	150	193,3
	245854_al	245854_al	A15G13490	ADP, ATP came	135,5	154,0	108,7	118	108,8	195,3
	247028_at	247028_at	A15G67100	DNA-directed Di	22,8	25,5	14,8	16,8	24,7	33
	247916_at	247916_at	A15G57590	aminotransferas	46	50,7	26,9	33,7	43,8	51,6
	247952_at	247952_at	A15G5/260	cytochrome P45	36,7	32,9	17,3	20,3	28,9	40,6
	248037_at	248037_at	A15G55930	oligopeptide trar	43,2	55,6	9,2	13,7	43,5	51,2
	248357_at	248357_at	A15G52380	zinc knuckle (CC	42,6	49,5	35,2	33,8	50,6	47,2
	249162_at	249162_at	A15G42765	expressed prote	152,9	138,6	98,9	106,5	162,9	155,3

249942_at	249942_at	AT5G22300	nitrilase 4 (NIT4)	190,6	136,7	71	73,5	148,2	172,9
250049_at	250049_at	AT5G17780	hydrolase, alpha	57,9	65,9	41,2	32,2	65,5	79,4
250306_at	250306_at	AT5G12160	expressed prote	34,5	33,1	25,4	26,1	41	48,3
251935_at	251935_at	AT3G54090	pfkB-type carbol	210,5	197,9	141,6	144,3	191,8	215,2
251993_at	251993_at	AT3G52960	peroxiredoxin ty	1110,3	1263,9	943,8	880,2	1365,3	1267,7
252365_at	252365_at	AT3G48350	cysteine proteina	76,7	87,1	57,6	58	86,7	108,4
252480_at	252480_at	AT3G46580	methyl-CpG-binc	36	40,3	21,9	25,5	36,2	36,1
252989_at	252989_at	AT4G38420	multi-copper oxic	104,2	112,6	64	53	91,9	113,1
253054_at	253054_at	AT4G37580	N-acetyltransfera	34,5	45,2	20	21,5	36,3	36,8
256997_at	256997_at	AT3G14067	subtilase family	432,5	448	344,9	352,5	424,7	441,6
257982_at	257982_at	AT3G20780	topoisomerase 6	21,6	23,7	12	14,9	23,8	31,8
258108_at	258108_at	AT3G23570	dienelactone hyc	287,1	362,1	172,4	192	371,2	398,6
259207_at	259207_at	AT3G09050	expressed prote	73,5	64,5	40,3	49,2	71,9	91,1
259305_at	259305_at	AT3G05070	expressed prote	108,6	99	76	82,6	101,1	103,9
259537_at	259537_at	AT1G12370	type II CPD phot	31,9	37,7	18,8	25,6	41,4	49,6
259675_at	259675_at	AT1G77710	expressed prote	454,3	448,9	418,1	389,1	471,8	479,9
259707_at	259707_at	AT1G77490	L-ascorbate perc	509,8	568,2	396,9	389,6	480,7	558,5
260044_at	260044_at	AT1G73655	immunophilin / F	410,8	462	241,7	277,7	376,4	486,7
260391_at	260391_at	AT1G74020	strictosidine synt	388,9	394,7	306,5	284,1	405	472,2
260569_at	260569_at	AT2G43640	signal recognitio	128,1	144,2	117,7	112,5	142,1	146,1
261351_at	261351_at	AT1G79790	haloacid dehalog	144,4	167,6	118,5	127,2	166,6	165,9
262086_at	262086_at	AT1G56050	GTP-binding prc	116	128,1	70	89,3	124,6	135,2
262286_at	262286_at	AT1G68585	expressed prote	38,7	45,8	33,8	33,9	50,9	51,2
262719_at	262719_at	AT1G43590	expressed prote	43	71	9,9	10	76,2	83
262736_at	262736_at	AT1G28570	GDSL-motif lipa:	55,7	57,6	34,7	39	58,4	69,1
262963_at	262963_at	AT1G54220	dihydrolipoamide	87,6	98,1	68,2	62,7	107,7	103,9
263665_at	263665_at	AT1G04480	60S ribosomal p	791,7	842	705,8	664,6	949	961,2
265539_at	265539_at	AT2G15830	expressed prote	44,5	42,8	33,1	27,7	44,5	51,5
266015_at	266015_at	AT2G24190	short-chain dehy	65	66,6	55	57,9	68,5	76,9
266065_at	266065_at	AT2G18790	phytochrome B (198,3	262,8	51,7	65,5	184,1	233,3
266102_at	266102_at	AT2G40720	pentatricopeptid	14,3	15,2	11,7	8,8	20,7	19,8
266285_at	266285_at	AT2G29180	expressed prote	274,5	296,1	212,1	212,7	279,8	316,3
267088_at	267088_at	AT2G38140	chloroplast 30S	770,8	806,1	608,2	570,3	823,2	1050,1

	267497_at	267497_at	AT2G30540	glutaredoxin farr	23,7	26,5	16	17,7	37	39,3
	at	at	ato	desc co	ola colh	o ohv	ha nhvi	nh csaa	csa	h
Cluster 4	245464 at	245464 at	no match	no match	29.1	22.6	23.8	25.1	14.2	15.5
	246385 at	246385 at	AT1G77390	cvclin, putative,	15.4	13.3	15.6	15	6.8	4.6
	246645 at	246645 at	AT5G35080	expressed prote	92.4	103.4	84.2	97.9	71.8	68.8
	247219 at	247219 at	AT5G64920	COP1-interacting	153,9	156,8	151,4	125,5	94	98,6
			AT5G63600	flavonol synthas	121,5	83,6	84,5	99,3	49,6	47,5
		248425_at	AT5G51690	1-aminocyclopro	29,3	32,7	22,3	23,9	11,4	13,8
	248984_at	248984_at	AT5G45140	similar to DNA-d	53,3	63,4	46,5	44,1	34,9	35,3
	249793_at	249793_at	AT5G23680	sterile alpha mot	26,2	31	24,1	25,3	20,2	19,8
	249870_at	249870_at	AT5G23080	SWAP (Suppres	91,6	90	90,6	83,5	65,2	70,7
	250402_at	250402_at	AT5G10940	transducin family	110	111,4	120,1	108	86,9	94,1
	250766_at	250766_at	AT5G05550	expressed prote	33,8	27,7	31,8	28,9	15,9	16,9
	251279_at	251279_at	AT3G61800	expressed prote	49,5	57,7	55,4	58,8	37,4	40,9
	251380_at	251380_at	AT3G60700	expressed prote	16,8	18,7	17,2	12,6	10	9,7
	251422_at	251422_at	AT3G60540	sec61beta family	25,3	30,8	28,4	26,1	16,5	14
	251578_at	251578_at	AT3G58180	PBS lyase HEA	104,7	112	111	110,6	96,2	88,2
	251998_at	251998_at	AT3G53090	HECT-domain-c	65	71,5	62,9	63,3	45,1	52,9
	252786_at	252786_at	AT3G42670	SNF2 domain-co	28,9	38,2	30,9	30,1	20,1	18,7
	253294_at	253294_at	AT4G33750	expressed prote	133,3	123,1	133,6	119,4	77,4	76,6
	254073_at	254073_at	AT4G25500	arginine/serine-r	185	184,3	160,4	159,7	116,3	140,6
	254548_at	254548_at	AT4G19865	kelch repeat-cor	35,5	35,6	39,7	38,3	26,1	22,2
	254703_at	254703_at	AT4G17960	expressed prote	30,5	33,4	31,4	37,6	21,2	24
	255116_at	255116_at	AT4G08850	leucine-rich repe	231,7	223,1	164,8	150,7	100,3	141,9
	255446_at	255446_at	AT4G02750	pentatricopeptid	20	22,3	24,9	19,9	11	11,6
	255742_at	255742_at	AT1G25560	AP2 domain-cor	151,3	160,2	138,6	146,1	117,4	127,2
	255836_at	255836_at	AT2G33440	splicing factor fa	62,2	73,8	53	50,2	44,2	40,8
	255895_at	255895_at	AT1G18020;	/[AT1G18020, 12	216,5	180,7	135,6	142,7	107,5	107,7
	256430_at	256430_at	AT3G11020	encodes a mem	31,2	27,1	29,9	24,7	10,6	8,4

257338_s	at 257338_s_a	at ATMG00513	;[ATMG00513, M	45,8	41,9	38,3	33,9	33,1	32,1
257580_a	257580_at	AT3G06210	similar to expres	26,4	36,1	25,9	27	11,9	12,2
258381_a	258381_at	AT3G16630	kinesin motor fai	299	302,9	287,4	289,5	212,2	231,4
258461_a	258461_at	AT3G17340	importin-related,	21,6	23,4	21,6	18	13,2	14,1
258833_a	258833_at	no_match	no_match	37,3	39,2	40,1	43,8	23,5	26,3
259181_a	259181_at	AT3G01690	expressed prote	505,7	599,9	449,6	420,2	320,7	297,6
259334_a	259334_at	AT3G03790	ankyrin repeat fa	111,9	114,7	110	120,8	73,7	89,8
259395_a	259395_at	AT1G06400	Ras-related GTF	263,8	272,2	266,2	244,1	222,3	210,3
259672_a	259672_at	AT1G68990	DNA-directed RI	59,1	66,3	69,6	64,5	43,3	49,3
259954_a	259954_at	AT1G75130	cytochrome P45	130	103,6	113,6	111,1	77,3	78,8
260089_a	260089_at	AT1G73170	expressed prote	300,2	317,6	290,1	303,3	258,9	270,4
260279_a	260279_at	AT1G80420	DNA repair prote	50,8	52,3	48,2	44,8	29,8	35,9
261075_a	261075_at	AT1G07280	expressed prote	437,2	435,9	325,7	366,6	250,9	298,8
261121_a	261121_at	AT1G75340	zinc finger (CCC	95,2	79,8	66,3	64,3	49,1	34,9
261711_a	261711_at	AT1G32700	zinc-binding fam	410,4	371,8	325,1	402,2	213,5	233,7
262550_a	262550_at	AT1G31310	hydroxyproline-r	19,3	19,8	13,7	16,7	11,3	13,1
263216_s	_at 263216_s_a	at AT1G30720;	/[AT1G30720, F/	70,1	47	38,3	26,4	13	20,1
263669_a	263669_at	AT1G04400	cryptochrome 2	696,4	717,1	620,7	591,6	501,4	462,2
263856_a	263856_at	AT2G04410	expressed prote	376,4	408,5	377,9	406,7	240,5	258,6
264223_s	_at 264223_s_a	at AT3G16030	lectin protein kin	21	22,6	16,9	18,1	13,7	16,1
264452_a	264452_at	AT1G10270	pentatricopeptid	72,6	83,7	69,5	67,2	56,2	58,3
264485_a	264485_at	AT1G77220	expressed prote	43,9	49,1	32	38,8	28,9	28,6
264680_a	264680_at	AT1G65510	expressed prote	24,1	26,2	28,8	21,9	15,2	12,8
264772_a	264772_at	AT1G22930	T-complex prote	280,1	221,1	216	215	159,9	149,2
264819_a	264819_at	AT1G03510	pentatricopeptid	14,1	13,2	16,5	14	6	3,1
266050_a	266050_at	AT2G40770	SNF2 domain-co	34,8	37,4	35,8	32,4	28,9	28,6
266238_a	266238_at	AT2G29400	serine/threonine	492,7	441,7	469,7	413,6	304,2	328,2
266280_a	266280_at	AT2G29260	tropinone reduct	16,2	16,8	16,3	16,2	9,7	10,5
266433_a	266433_at	AT2G07110	hypothetical prot	10,7	8,5	3,8	6	1,1	1,7
266525_a	266525_at	AT2G16970	expressed prote	14,2	16,3	11,6	7,7	1,9	2
266992_a	266992_at	AT2G39200	seven transmerr	36,1	29,9	23,3	26,7	14,3	13,3
267512_a	267512_at	AT2G45690	shrunken seed r	46,1	47,9	42,1	45	33,1	31

	at	at	atg	desc d	col a	col b	phyb a	phyb b	csa a	csa b
Cluster 5	245108_at	245108_at	AT2G41510	FAD-binding dor	5,0	6 8,	6 22,8	29,5	30	21,7
	245734_at	245734_at	AT1G73480	hydrolase, alpha	81,	7 82,	5 154,9	191,4	104,1	121,3
	246310_at	246310_at	AT3G51895	sulfate transport	67,4	4 78,	1 210	199,6	169,8	193,8
	246932_at	246932_at	AT5G25190	encodes a mem	45,	5 54,	2 78,5	85	62,5	69,9
	247398_at	247398_at	AT5G62950	expressed prote	29	9 35,	1 53,3	47,2	43,3	48
	247597_at	247597_at	AT5G60860	Ras-related GTF	33,	5 4	0 76,5	84,9	64,7	59,9
	247672_at	247672_at	AT5G60220	senescence-ass	6,	77,	3 20,3	17,4	15,7	20,7
	247903_at	247903_at	AT5G57340	expressed prote	44,	7 47,	4 90,9	132,8	62,4	67,7
	248910_at	248910_at	AT5G45820	CBL-interacting	16	5 167,	6 310,7	374,5	242,4	250,4
	249383_at	249383_at	AT5G39860	bHLH protein, pı	22	2 23,	6 44,4	61,2	43,1	54,9
	249486_at	249486_at	AT5G39030	protein kinase fa	14,2	2 1	3 29,3	26,5	19,2	28,5
	249645_at	249645_at	AT5G36910	thionin (THI2.2),	698,	3 578,	5 1847,7	1729	1063	1515,8
	250327_at	250327_at	AT5G12050	expressed prote	118,	5 193,	4 377,9	381,3	348,1	438,5
	250657_at	250657_at	AT5G07000	sulfotransferase	25,4	4 37,	5 94,5	76,2	58,5	68,8
	251017_at	251017_at	AT5G02760	protein phospha	217,	3 273,	8 376,3	477,2	441,4	435,1
	251588_at	251588_at	AT3G58090	pseudogene, dis	8,9	9 8,	8 16	16,4	19,2	14,1
	251634_at	251634_at	AT3G57480	zinc finger (C2H	37,9	9 34,	4 48,3	45,4	43,7	45
	251869_at	251869_at	AT3G54500	expressed prote	204,	1 206,	6 289,4	291,9	281,4	247,7
	253066_at	253066_at	AT4G37770	1-aminocyclopro	10,	1 8,	6 25,5	37,5	15,8	16,8
	253238_at	253238_at	AT4G34480	glycosyl hydrola:	48,0	6 51,	4 71,4	80,5	62,3	61,1
	253423_at	253423_at	AT4G32280	auxin-responsive	10,2	2 2	0 59,4	113,7	48,9	42
	254026_at	254026_at	AT4G25800	calmodulin-bindi	5,	1 5,	7 14,5	21,1	9,5	14,4
	255129_at	255129_at	AT4G08290	nodulin MtN21 fa	29,4	4 18,	9 61,9	71,6	41,1	53,1
	255802_s_at	255802_s_at	t AT4G10150;	/[AT4G10150, zir	31,8	3 31,	7 51,6	54,1	51,1	48,7
	257650_at	257650_at	AT3G16800	protein phosph	36,	6 35,	3 118,5	127,4	74,5	89,7
	258079_at	258079_at	AT3G25940	transcription fact	68,2	2 73,	7 91,1	94,8	80,4	79,6
	258694_at	258694_at	AT3G08660	phototropic-resp	9,2	29,	8 16,9	20,4	11,9	14,6
	259346_at	259346_at	AT3G03910	glutamate dehyc	10,9	9 11,	6 15,7	18,6	16,6	15,9
	259417_at	259417_at	AT1G02340	long hypocotyl ir	39,0	5 22,	8 440,8	368,5	158	229,7

	259930_at	259930_at	AT1G34355	forkhead-associa	8	5,8	17,8	15,6	13,4	13,3
	260361_at	260361_at	AT1G69360	expressed prote	44,2	41,1	52,4	50,6	46,2	48,7
	261109_at	261109_at	AT1G75450	FAD-binding dor	16,7	17,5	44,5	54,2	33,3	41,3
	261881_at	261881_at	AT1G80760	major intrinsic fa	50,5	82,2	144,2	182,2	185,3	174,9
	263120_at	263120_at	AT1G78490	cytochrome P45	83,9	98	121,6	124,5	115,6	124,7
	263164_at	263164_at	AT1G03070	expressed prote	13	9,3	32,6	36,4	19,1	31,7
	264402_at	264402_at	AT2G25140	heat shock prote	29,3	27,6	54,3	45,4	45,5	41,4
	266474_at	266474_at	AT2G31110	expressed prote	41,5	33	88,3	84,6	75,1	73,5
	at	at	atg	desc col a	col b	phyb a	a phyb b	csa a	csa b	
Cluster 6	245081_at	245081_at	no_match	no_match	9,1	10,6	11,5	13,3	15,8	18,7
	246228_at	246228_at	AT4G36430	peroxidase, puta	17,7	21,4	18,7	16,1	31,6	33,3
	247471_at	247471_at	AT5G62230	leucine-rich repe	32,8	30,3	41,1	36,9	41	46,6
	247657_at	247657_at	AT5G59845	gibberellin-regul;	4,5	4,2	11,6	14,3	11,1	20,4
	248208_at	248208_at	AT5G53980	homeobox-leucii	7,5	13,1	42,1	23,8	47	38,6
	248586_at	248586_at	AT5G49610	F-box family pro	48,8	48,7	46,9	47,4	52,1	52,8
	249126_at	249126_at	AT5G43380	serine/threonine	17,7	22,3	20,6	18	31,1	29,2
	250485_at	250485_at	AT5G09990	expressed prote	14,1	15,4	24,4	22,9	27,7	35,8
	251700_at	251700_at	AT3G56640	exocyst complex	31,6	39,8	48,7	51,8	57,7	59,4
	252096_at	252096_at	AT3G51180	zinc finger (CCC	17	20,9	25,7	20,8	34,2	39,4
	253232_at	253232_at	AT4G34340	expressed prote	28,1	33,2	33,5	34,2	46,3	57,7
	253800_at	253800_at	AT4G28160	hydroxyproline-r	13,7	9,1	2	5,5	34,6	35,4
	255865_at	255865_at	AT2G30330	GCN5L1 family	53,2	61,5	64,1	64,3	74,8	78,5
	256784_at	256784_at	AT3G13674	expressed prote	13,7	17,3	14,7	17,2	29,8	26,6
	258702_at	258702_at	AT3G09730	expressed prote	10	12,7	15,5	15,2	18	21,5
	259507_at	259507_at	AT1G43910	AAA-type ATPa:	12,9	14,3	17,7	16	24,7	32,3
	261071_at	261071_at	AT1G07380	ceramidase fam	40,6	45,9	36,1	43,1	60,3	59,3
	261945_at	261945_at	AT1G64530	RWP-RK domai	56,1	60,8	64,3	58,7	72	73,8
	264510_at	264510_at	AT1G09530	phytochrome inte	59,1	90,4	82,4	85,4	910,3	1278,9
	264636_at	264636_at	AT1G65490	expressed prote	314,8	304,1	492,2	391,7	462,9	539,5

264958_at	264958_at	AT1G76960	expressed prote	18,1	22,2	47,3	37,7	57,1	42,9
265611_at	265611_at	AT2G25510	expressed prote	1371,3	1600,7	1243	1031,1	2442,9	2059,7
265843_at	265843_at	AT2G35690	acyl-CoA oxidas	50,8	59,9	57,8	58,7	77,7	73,8
266108_at	266108_at	AT2G37900	proton-depende	0,6	0,4	1,9	5,2	18,6	16,6
266944_at	266944_at	no_match r	no_match	12,6	10,4	18,5	14,6	20,7	24,2
267337_at	267337_at	AT2G39980	transferase fami	66	68,8	80,4	83,7	99,9	106,8

col a	col b	phyb a	phyb b	csa a	csa b	r	orom col	prom phy	prom csa
110,95	1,04	1,19	0,77	0,84	0,97	1,03	1,11	0,8	1
648,55	1,2	1,21	0,77	0,76	0,93	1,07	1,2	0,77	1
128,1	1,35	1,33	0,95	1,05	0,78	0,87	1,34	1	0,83
46,15	1,31	1,04	0,55	0,68	0,96	1,06	1,18	0,61	1,01
44,4	1,74	1,24	0,39	0,3	0,93	1,07	1,49	0,34	1
962,8	1,27	1,28	0,73	0,66	0,86	1,14	1,27	0,7	1
88,85	1,09	1,14	0,87	0,81	1,01	0,99	1,11	0,84	1
200,95	1,29	1,1	0,74	0,83	0,94	1,06	1,19	0,78	1
107,55	1,36	1,44	0,77	0,84	0,87	1,13	1,4	0,81	1
103,45	1,13	1,14	0,89	0,94	1,02	0,98	1,14	0,92	1
124	1,7	1,68	0,85	1	1	0,91	1,69	0,93	0,95
50,25	1,11	1,13	0,77	0,65	1,02	0,98	1,12	0,71	1
32,2	1,37	1,77	1	0,93	1	0,98	1,57	0,96	0,99
67,4	3,03	3,13	0,92	0,82	0,72	1,08	3,08	0,87	0,9
41,1	1,37	1,13	0,57	0,63	0,87	1,15	1,25	0,6	1,01
6,15	2,31	2,29	0,26	0,62	1,11	0,89	2,3	0,44	1
356,75	1,11	1,09	0,7	0,78	0,91	1,1	1,1	0,74	1,01
381,35	1,15	1,35	0,75	0,82	1	1	1,25	0,79	1
370,8	1,09	1,13	0,91	0,87	0,95	1,05	1,11	0,89	1
19,25	1,35	1,13	0,76	0,68	1,03	0,97	1,24	0,72	1
17,55	1,64	1,61	1,03	0,96	0,7	0,97	1,62	0,99	0,84
11,15	2,06	2,05	1,13	0,87	0,52	0,68	2,06	1	0,6
52,4	1,2	1,34	0,81	0,86	0,91	1,09	1,27	0,83	1
64,2	1,58	1,78	0,82	0,7	0,88	1,12	1,68	0,76	1
66,95	1,42	1,5	0,95	1,05	0,76	0,79	1,46	1	0,78
153,65	1,26	1,4	0,95	0,94	0,89	1,05	1,33	0,94	0,97
96,25	1,91	1,57	1,04	0,81	0,78	0,96	1,74	0,92	0,87
72,9	1,48	1,47	0,75	0,95	0,9	1,05	1,47	0,85	0,97
27,95	1,19	1,16	0,72	0,86	0,96	1,04	1,17	0,79	1
163,8	1,58	1,74	0,65	0,82	0,93	1,07	1,66	0,74	1
24,45	1,33	1,65	0,67	0,85	1	1	1,49	0,76	1
105,75	1,06	1,24	0,65	0,69	0,98	1,02	1,15	0,67	1
202,5	1,42	1,58	0,84	0,87	1,05	0,95	1,5	0,86	1
--------	------	------	------	------	------	------	------	------	------
275,7	1,69	1,56	0,45	0,75	0,94	1,06	1,62	0,6	1
214,9	1,03	1,06	0,85	0,9	0,99	1,01	1,05	0,87	1
13,9	1,52	1,39	1,06	0,94	0,82	0,88	1,45	1	0,85
9,9	1,86	1,47	0,77	0,63	0,92	1,08	1,67	0,7	1
65,95	2,72	2,36	1,11	0,89	0,52	0,78	2,54	1	0,65
31,15	1,19	1,23	0,9	1	0,96	1	1,21	0,95	0,98
58,95	1,46	1,26	0,95	0,87	0,89	1,05	1,36	0,91	0,97
9,75	1,24	1,26	0,73	0,64	0,94	1,06	1,25	0,68	1
34,9	1,38	1,43	0,98	1,02	0,78	0,91	1,4	1	0,85
600,25	1,22	1,06	0,88	0,83	0,99	1,01	1,14	0,86	1
111,85	1,54	1,41	0,93	0,85	0,88	1,07	1,47	0,89	0,98
93,5	1,39	1,51	0,98	1,02	0,71	0,97	1,45	1	0,84
331,05	1,19	1,19	1,02	0,98	0,88	0,97	1,19	1	0,93
19,75	2,44	1,71	0,41	0,42	0,9	1,1	2,07	0,41	1
17,75	2,21	2,4	0,72	0,97	1,03	0,95	2,31	0,85	0,99
122,4	1,33	1,36	0,96	1,04	0,89	0,96	1,35	1	0,92
44,95	1,59	1,86	0,95	1,05	0,92	0,92	1,73	1	0,92
221,5	1,26	1,29	0,99	0,97	0,89	1,01	1,27	0,98	0,95
48,85	1,66	1,81	1,2	0,8	0,6	0,8	1,74	1	0,7
56,65	1,24	1,39	0,93	0,99	1,01	0,92	1,31	0,96	0,96
91,85	1,21	1,31	1,01	0,92	0,86	0,99	1,26	0,97	0,93
138,4	1,57	1,31	1	0,99	0,84	1	1,44	1	0,92
287,05	1,26	1,28	0,75	0,81	0,9	1,1	1,27	0,78	1
168,15	1,09	1,38	0,63	0,65	1,01	0,99	1,24	0,64	1
112,75	1,08	1,07	0,93	0,98	1	1	1,07	0,96	1
68,9	1,31	1,32	1	1	0,83	0,88	1,32	1	0,85
88,85	1,24	1,29	1,03	0,97	0,85	0,94	1,27	1	0,89
243,4	1,75	2,12	0,63	0,36	1,02	0,98	1,93	0,49	1
690,95	1,34	1,32	0,51	0,6	0,85	1,15	1,33	0,55	1
82,7	1,16	1,17	0,77	0,87	1,07	0,93	1,17	0,82	1
313,55	1,22	1,38	0,94	0,89	0,92	1,06	1,3	0,92	0,99
695,6	1,31	1,2	0,94	1,03	0,93	0,97	1,25	0,98	0,95

212,15	1,38	1,4	0,96	0,96	0,89	1,04	1,39	0,96	0,97
9,85	2,66	1,51	0,36	0,25	1,31	0,69	2,09	0,3	1
155,1	1,42	1,36	1,02	0,98	0,89	0,91	1,39	1	0,9
19,9	1,18	1,46	0,8	0,77	0,97	1,03	1,32	0,79	1
682,25	1,14	1,23	0,77	0,74	0,93	1,07	1,19	0,76	1
948,6	1,53	1,58	0,68	0,86	0,86	1,14	1,56	0,77	1
160,75	1,19	1,26	0,97	1,02	0,96	0,98	1,23	0,99	0,97
1,9	7,26	7	0,42	0,89	0,63	1,11	7,13	0,66	0,87
31,55	1,95	1,57	0,79	0,84	1,05	0,95	1,76	0,81	1
1516	1,28	1,19	0,79	0,83	0,98	1,02	1,23	0,81	1
61,35	1,33	1,52	0,58	0,82	0,94	1,06	1,42	0,7	1
328,75	1,28	1,35	0,87	0,93	0,89	1,07	1,32	0,9	0,98
166,6	1,28	1,39	0,82	0,9	1,02	0,98	1,33	0,86	1
70,6	1,32	1,41	0,68	0,76	0,89	1,11	1,36	0,72	1
19,7	1,2	1,16	0,52	0,61	0,95	1,05	1,18	0,57	1
352,2	1,19	1,24	0,93	1,05	0,95	0,95	1,22	0,99	0,95
41,9	1,03	1,21	0,84	0,78	1	1	1,12	0,81	1
18,5	1,32	1,37	0,77	0,76	1,14	0,86	1,35	0,76	1
337,05	1,11	1,19	0,94	0,85	0,99	1,01	1,15	0,89	1
22,9	2,07	1,86	0,32	0,26	0,69	1,31	1,97	0,29	1
28,15	1,1	1,08	0,66	0,77	0,97	1,03	1,09	0,72	1
15,9	1,77	1,19	0,69	0,55	1,03	0,97	1,48	0,62	1
46,8	1,49	2,02	0,92	1,05	0,81	0,95	1,75	0,99	0,88
27,3	1,92	1,58	0,78	0,99	0,98	1,01	1,75	0,88	1
144,4	1,45	1,41	0,76	0,81	0,85	1,15	1,43	0,79	1
61,45	1,18	1,26	0,98	1,02	0,94	0,95	1,22	1	0,94
446,1	1,02	1,2	0,8	0,81	0,98	1,02	1,11	0,8	1
263,75	1,3	1,22	0,99	1,01	0,88	0,95	1,26	1	0,91
14,4	1,56	2,16	1,01	0,85	0,8	0,99	1,86	0,93	0,89
33,3	1,27	1,2	0,79	0,83	0,89	1,11	1,23	0,81	1
162,3	1,17	1,12	0,61	0,59	0,93	1,07	1,15	0,6	1
96,4	1,13	1,29	0,81	0,85	1,01	0,99	1,21	0,83	1
190,65	1,08	1,36	0,78	0,81	0,98	1,02	1,22	0,79	1

166	1,1	1,16	0,93	0,99	0,96	1,01	1,13	0,96	0,98
73	1,4	1,41	0,63	0,7	1,12	0,88	1,41	0,67	1
641,5	1,09	1,17	0,79	0,7	0,94	1,06	1,13	0,75	1
511,5	1,15	1,46	0,65	0,71	0,88	1,12	1,31	0,68	1
141,4	1,14	1,19	0,56	0,51	0,92	1,08	1,16	0,53	1
17,45	1,85	1,6	0,96	1,04	0,79	0,94	1,73	1	0,87
21,8	1,31	1,52	1,06	0,87	0,89	0,94	1,42	0,97	0,92
94,65	1,1	1,29	0,75	0,7	1,06	0,94	1,2	0,73	1
25,2	1,24	1,17	0,73	0,87	1,04	0,96	1,21	0,8	1
17,7	1,92	1,82	0,65	0,46	1,08	0,92	1,87	0,55	1
433,1	1,19	1,22	1,01	0,98	0,86	0,99	1,21	0,99	0,92
122,75	1,25	1,28	0,81	0,91	0,92	1,08	1,26	0,86	1
55,1	1,17	1,52	0,74	0,78	1,06	0,94	1,34	0,76	1
75,3	1,53	1,63	0,77	0,99	0,94	1,01	1,58	0,88	0,97
121	1,15	1,23	0,85	0,87	0,95	1,05	1,19	0,86	1
623,05	1,31	1,44	1,03	0,97	0,93	0,83	1,37	1	0,88
34,8	1,53	1,48	0,99	1,01	0,89	0,89	1,51	1	0,89
					pror	n	1,47	0,82	0,96
					erro	r	0,62	0,17	0,07
					desv	V	0,06	0,02	0,01
19,1	0,87	1,03	1,59	1,48	0,95	0,97	0,95	1,53	0,96
26,35	0,98	0,94	6,59	3,26	0,86	1,02	0,96	4,92	0,94
48,75	1,03	0,97	1,36	1,35	0,76	0,94	1	1,36	0,85
15,8	0,85	0,98	1,24	1,18	0,98	1,02	0,92	1,21	1
58,7	0,89	1,11	1,11	1,17	0,75	0,78	1	1,14	0,77
8,9	1,1	0,9	1,33	1,15	0,55	0,45	1	1,24	0,5
17,65	0,87	1,13	1,58	1,53	0,29	0,33	1	1,55	0,31
40,45	0,97	1,03	1,46	1,4	0,9	0,83	1	1,43	0,86
78,45	1,04	0,87	1,63	1,61	0,83	0,96	0,96	1,62	0,89
39,35	0,44	0,55	2,3	1,92	1,05	0,95	0,5	2,11	1
8,95	1,02	0,98	1,62	1,3	0,67	0,48	1	1,46	0,58
143,4	0,99	1,01	1,43	1,42	0,82	0,85	1	1,43	0,83

19,2	0,62	0,59	3,74	2,89	1,03	0,97	0,6	3,32	1
104,8	0,95	1,05	1,11	1,13	0,89	0,85	1	1,12	0,87
46,15	0,66	0,96	3,82	3,78	1,04	0,95	0,81	3,8	1
10,45	0,72	0,44	1,66	1,83	0,89	1,11	0,58	1,74	1
6,75	0,79	0,86	1,99	1,75	0,99	1,01	0,82	1,87	1
18,6	0,85	1,01	1,36	1,4	0,98	0,99	0,93	1,38	0,99
38,25	0,96	1,04	1,31	1,15	0,81	0,75	1	1,23	0,78
17,25	0,99	1,01	1,26	1,33	0,9	0,77	1	1,3	0,83
77,1	0,9	1,1	1,2	1,24	0,75	0,79	1	1,22	0,77
85,05	0,77	0,99	1,57	1,53	0,81	1,01	0,88	1,55	0,91
184,75	1,08	0,92	1,29	1,08	0,66	0,75	1	1,18	0,7
65,75	0,97	1,02	1,23	1,2	0,86	0,98	1	1,21	0,92
60,15	0,83	0,97	1,46	1,56	0,79	1,03	0,9	1,51	0,91
23,75	0,76	0,94	1,82	1,48	0,99	1,01	0,85	1,65	1
94,95	1,03	0,97	1,9	1,91	0,87	0,97	1	1,91	0,92
39	1,1	0,9	1,45	1,74	0,8	0,89	1	1,59	0,84
73,75	0,9	1,1	1,27	1,46	0,83	0,78	1	1,37	0,81
23,4	0,35	0,5	2,82	2,6	0,94	1,06	0,42	2,71	1
457,9	0,77	0,93	1,88	1,76	1,07	0,8	0,85	1,82	0,94
108,45	1,08	0,92	1,66	1,29	0,8	0,63	1	1,47	0,72
61,6	0,98	1,02	1,3	1,15	0,98	0,91	1	1,22	0,94
52,15	0,85	1,15	1,21	1,15	0,7	0,64	1	1,18	0,67
24,8	0,88	0,96	1,33	1,56	0,87	1,04	0,92	1,45	0,96
28,1	0,95	1,05	1,21	1,18	0,63	0,72	1	1,19	0,67
86,25	1,09	0,91	1,75	1,68	0,6	0,35	1	1,71	0,48
14,1	1	1	1,65	1,43	0,81	0,72	1	1,54	0,76
368,6	1,17	0,83	1,75	1,66	0,73	0,69	1	1,7	0,71
424,55	0,94	1,06	1,37	1,36	0,77	0,73	1	1,37	0,75
21,05	0,83	0,77	1,6	1,34	0,94	1,06	0,8	1,47	1
27,35	0,94	1,06	1,21	1,09	0,72	0,84	1	1,15	0,78
14,15	1,23	0,81	1,69	1,19	0,47	0,25	1,02	1,44	0,36
36,5	0,92	1,08	1,47	1,22	0,66	0,7	1	1,34	0,68
120,45	0,82	0,91	1,29	1,47	0,96	1,04	0,86	1,38	1

14,95	1,04	0,96	1,51	1,45	0,68	0,87	1	1,48	0,78
14,4	0,8	0,8	1,57	1,51	0,97	1,03	0,8	1,54	1
127,8	0,97	1,03	1,28	1,12	0,84	0,88	1	1,2	0,86
390,55	0,95	1,01	1,24	1,14	0,99	0,94	0,98	1,19	0,96
371,05	0,99	1,01	1,18	1,09	0,79	0,88	1	1,14	0,84
14,15	0,98	0,86	1,34	1,28	0,93	1,02	0,92	1,31	0,98
14,9	1,01	0,99	1,29	1,3	0,85	0,69	1	1,29	0,77
49	0,92	1,08	1,29	1,2	0,76	0,85	1	1,24	0,8
37,4	0,86	1,14	1,37	1,34	0,5	0,67	1	1,36	0,58
15,55	0,7	0,91	2,09	2,06	0,85	1,09	0,81	2,07	0,97
18,65	0,73	0,83	1,66	1,5	0,84	1,16	0,78	1,58	1
44,8	0,98	0,96	1,42	1,65	0,99	1,01	0,97	1,53	1
128,2	0,94	0,86	1,22	1,23	0,91	1,06	0,9	1,22	0,98
99,95	0,94	1,06	1,53	1,28	0,85	0,93	1	1,41	0,89
30	0,99	1,01	1,59	1,32	0,63	0,85	1	1,46	0,74
34,25	0,71	0,79	1,73	1,75	0,87	1,13	0,75	1,74	1
72,45	0,97	0,85	1,57	1,77	0,83	1,03	0,91	1,67	0,93
32,15	0,85	0,94	1,29	1,3	1,04	0,96	0,89	1,3	1
					pror	n	0,92	1,58	0,84
					erro	r	0,13	0,63	0,16
					desv	V	0,02	0,08	0,02
494,2	1	1,05	0,81	0,84	1	1,14	1,03	0,82	1,07
171,2	1,06	1,05	0,84	0,74	0,95	1,05	1,06	0,79	1
152,85	1,03	1,02	0,56	0,71	0,98	1,26	1,03	0,63	1,12
145,05	0,93	1,07	0,75	0,81	1,16	1,35	1	0,78	1,26
23,75	0,96	1,07	0,62	0,71	1,04	1,39	1,02	0,67	1,21
44,9	1,02	1,13	0,6	0,75	0,98	1,15	1,08	0,67	1,06
30,9	1,19	1,06	0,56	0,66	0,94	1,31	1,13	0,61	1,12
43,35	1	1,28	0,21	0,32	1	1,18	1,14	0,26	1,09
44,9	0,95	1,1	0,78	0,75	1,13	1,05	1,03	0,77	1,09
145,75	1,05	0,95	0,68	0,73	1,12	1,07	1	0,7	1,09

142,45	1,34	0,96	0,5	0,52	1,04	1,21	1,15	0,51	1,13
61,7	0,94	1,07	0,67	0,52	1,06	1,29	1	0,59	1,17
33,8	1,02	0,98	0,75	0,77	1,21	1,43	1	0,76	1,32
194,85	1,08	1,02	0,73	0,74	0,98	1,1	1,05	0,73	1,04
1187,1	0,94	1,06	0,8	0,74	1,15	1,07	1	0,77	1,11
81,7	0,94	1,07	0,71	0,71	1,06	1,33	1	0,71	1,19
36,05	1	1,12	0,61	0,71	1	1	1,06	0,66	1
98,05	1,06	1,15	0,65	0,54	0,94	1,15	1,11	0,6	1,05
35,4	0,97	1,28	0,56	0,61	1,03	1,04	1,13	0,59	1,03
428,6	1,01	1,05	0,8	0,82	0,99	1,03	1,03	0,81	1,01
22,65	0,95	1,05	0,53	0,66	1,05	1,4	1	0,59	1,23
324,6	0,88	1,12	0,53	0,59	1,14	1,23	1	0,56	1,19
68,2	1,08	0,95	0,59	0,72	1,05	1,34	1,01	0,66	1,2
100,05	1,09	0,99	0,76	0,83	1,01	1,04	1,04	0,79	1,02
34,8	0,92	1,08	0,54	0,74	1,19	1,43	1	0,64	1,31
451,6	1,01	0,99	0,93	0,86	1,04	1,06	1	0,89	1,05
495,25	1,03	1,15	0,8	0,79	0,97	1,13	1,09	0,79	1,05
393,6	1,04	1,17	0,61	0,71	0,96	1,24	1,11	0,66	1,1
391,8	0,99	1,01	0,78	0,73	1,03	1,21	1	0,75	1,12
135,1	0,95	1,07	0,87	0,83	1,05	1,08	1,01	0,85	1,07
155,15	0,93	1,08	0,76	0,82	1,07	1,07	1,01	0,79	1,07
120,3	0,96	1,06	0,58	0,74	1,04	1,12	1,01	0,66	1,08
42,25	0,92	1,08	0,8	0,8	1,2	1,21	1	0,8	1,21
57	0,75	1,25	0,17	0,18	1,34	1,46	1	0,17	1,4
56,65	0,98	1,02	0,61	0,69	1,03	1,22	1	0,65	1,13
92,85	0,94	1,06	0,73	0,68	1,16	1,12	1	0,7	1,14
816,85	0,97	1,03	0,86	0,81	1,16	1,18	1	0,84	1,17
43,65	1,02	0,98	0,76	0,63	1,02	1,18	1	0,7	1,1
65,8	0,99	1,01	0,84	0,88	1,04	1,17	1	0,86	1,1
191,2	1,04	1,37	0,27	0,34	0,96	1,22	1,21	0,31	1,09
14,75	0,97	1,03	0,79	0,6	1,4	1,34	1	0,69	1,37
277,15	0,99	1,07	0,77	0,77	1,01	1,14	1,03	0,77	1,08
788,45	0,98	1,02	0,77	0,72	1,04	1,33	1	0,75	1,19

25,1	0,94	1,06	0,64	0,71	1,47	1,57	1	0,67	1,52
					pror	n	1,03	0,68	1,14
					erro	r	0,05	0,15	0,11
					des	V	0,01	0,02	0,02
23,2	1,25	0,97	1,03	1,08	0,61	0,67	1,11	1,05	0,64
14,15	1,09	0,94	1,1	1,06	0,48	0,33	1,01	1,08	0,4
88,3	1,05	1,17	0,95	1,11	0,81	0,78	1,11	1,03	0,8
138,45	1,11	1,13	1,09	0,91	0,68	0,71	1,12	1	0,7
84,05	1,45	0,99	1,01	1,18	0,59	0,57	1,22	1,09	0,58
23,1	1,27	1,42	0,97	1,03	0,49	0,6	1,34	1	0,55
45,3	1,18	1,4	1,03	0,97	0,77	0,78	1,29	1	0,77
24,7	1,06	1,26	0,98	1,02	0,82	0,8	1,16	1	0,81
86,75	1,06	1,04	1,04	0,96	0,75	0,81	1,05	1	0,78
109	1,01	1,02	1,1	0,99	0,8	0,86	1,02	1,05	0,83
28,3	1,19	0,98	1,12	1,02	0,56	0,6	1,09	1,07	0,58
52,45	0,94	1,1	1,06	1,12	0,71	0,78	1,02	1,09	0,75
14,7	1,14	1,27	1,17	0,86	0,68	0,66	1,21	1,01	0,67
25,7	0,98	1,2	1,11	1,02	0,64	0,54	1,09	1,06	0,59
107,65	0,97	1,04	1,03	1,03	0,89	0,82	1,01	1,03	0,86
63,1	1,03	1,13	1	1	0,71	0,84	1,08	1	0,78
29,5	0,98	1,29	1,05	1,02	0,68	0,63	1,14	1,03	0,66
121,25	1,1	1,02	1,1	0,98	0,64	0,63	1,06	1,04	0,64
160,05	1,16	1,15	1	1	0,73	0,88	1,15	1	0,8
35,55	1	1	1,12	1,08	0,73	0,62	1	1,1	0,68
30,95	0,99	1,08	1,01	1,21	0,68	0,78	1,03	1,11	0,73
157,75	1,47	1,41	1,04	0,96	0,64	0,9	1,44	1	0,77
19,95	1	1,12	1,25	1	0,55	0,58	1,06	1,12	0,57
142,35	1,06	1,13	0,97	1,03	0,82	0,89	1,09	1	0,86
51,6	1,21	1,43	1,03	0,97	0,86	0,79	1,32	1	0,82
139,15	1,56	1,3	0,97	1,03	0,77	0,77	1,43	1	0,77
25,9	1,2	1,05	1,15	0,95	0,41	0,32	1,13	1,05	0,37

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36,1	1,27	1,16	1,06	0,94	0,92	0,89	1,21	1	0,9	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26,15	1,01	1,38	0,99	1,03	0,46	0,47	1,2	1,01	0,46	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	288,45	1,04	1,05	1	1	0,74	0,8	1,04	1	0,77	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	19,8	1,09	1,18	1,09	0,91	0,67	0,71	1,14	1	0,69	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38,25	0,98	1,02	1,05	1,15	0,61	0,69	1	1,1	0,65	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	434,9	1,16	1,38	1,03	0,97	0,74	0,68	1,27	1	0,71	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	110,95	1,01	1,03	0,99	1,09	0,66	0,81	1,02	1,04	0,74	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	253,95	1,04	1,07	1,05	0,96	0,88	0,83	1,06	1	0,85	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	61,8	0,96	1,07	1,13	1,04	0,7	0,8	1,01	1,08	0,75	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	107,35	1,21	0,97	1,06	1,03	0,72	0,73	1,09	1,05	0,73	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	295,15	1,02	1,08	0,98	1,03	0,88	0,92	1,05	1,01	0,9	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	46,5	1,09	1,12	1,04	0,96	0,64	0,77	1,11	1	0,71	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	346,15	1,26	1,26	0,94	1,06	0,72	0,86	1,26	1	0,79	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	65,3	1,46	1,22	1,02	0,98	0,75	0,53	1,34	1	0,64	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	348,45	1,18	1,07	0,93	1,15	0,61	0,67	1,12	1,04	0,64	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15,2	1,27	1,3	0,9	1,1	0,74	0,86	1,29	1	0,8	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32,35	2,17	1,45	1,18	0,82	0,4	0,62	1,81	1	0,51	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	606,15	1,15	1,18	1,02	0,98	0,83	0,76	1,17	1	0,79	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	377,15	1	1,08	1	1,08	0,64	0,69	1,04	1,04	0,66	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17,5	1,2	1,29	0,97	1,03	0,78	0,92	1,25	1	0,85	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	68,35	1,06	1,22	1,02	0,98	0,82	0,85	1,14	1	0,84	
23 1,05 1,14 1,25 0,95 0,66 0,56 1,09 1,1 0,61 215,5 1,3 1,03 1 1 0,74 0,69 1,16 1 0,72 13,6 1,04 0,97 1,21 1,03 0,44 0,23 1 1,12 0,33 33,6 1,04 1,11 1,07 0,96 0,86 0,85 1,07 1,01 0,86 427,65 1,15 1,03 1,1 0,97 0,71 0,77 1,09 1,03 0,74 16,2 1 1,04 1,01 1 0,66 0,65 1,02 1 0,62 4,9 2,18 1,73 0,78 1,22 0,22 0,35 1,96 1 0,29 9,65 1,47 1,69 1,2 0,8 0,2 0,21 1,58 1 0,2 25 1,44 1,2 0,93 1,07 0,57 0,53 1,32 1 0,55 43,55 1,06 1,1 0,97 1,03	35,4	1,24	1,39	0,9	1,1	0,82	0,81	1,31	1	0,81	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	1,05	1,14	1,25	0,95	0,66	0,56	1,09	1,1	0,61	
13,61,040,971,211,030,440,2311,120,3333,61,041,111,070,960,860,851,071,010,86427,651,151,031,10,970,710,771,091,030,7416,211,041,0110,660,651,0210,624,92,181,730,781,220,220,351,9610,299,651,471,691,20,80,20,211,5810,2251,441,20,931,070,570,531,3210,5543,551,061,10,971,030,760,711,0810,74prom1,171,030,69	215,5	1,3	1,03	1	1	0,74	0,69	1,16	1	0,72	
33,6 1,04 1,11 1,07 0,96 0,86 0,85 1,07 1,01 0,86 427,65 1,15 1,03 1,1 0,97 0,71 0,77 1,09 1,03 0,74 16,2 1 1,04 1,01 1 0,6 0,65 1,02 1 0,62 4,9 2,18 1,73 0,78 1,22 0,22 0,35 1,96 1 0,29 9,65 1,47 1,69 1,2 0,8 0,2 0,21 1,58 1 0,2 25 1,44 1,2 0,93 1,07 0,57 0,53 1,32 1 0,55 43,55 1,06 1,1 0,97 1,03 0,76 0,71 1,08 1 0,74 prom 1,17 1,03 0,69	13,6	1,04	0,97	1,21	1,03	0,44	0,23	1	1,12	0,33	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33,6	1,04	1,11	1,07	0,96	0,86	0,85	1,07	1,01	0,86	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	427,65	1,15	1,03	1,1	0,97	0,71	0,77	1,09	1,03	0,74	
4,92,181,730,781,220,220,351,9610,299,651,471,691,20,80,20,211,5810,2251,441,20,931,070,570,531,3210,5543,551,061,10,971,030,760,711,0810,74prom1,171,030,69	16,2	1	1,04	1,01	1	0,6	0,65	1,02	1	0,62	
9,65 1,47 1,69 1,2 0,8 0,2 0,21 1,58 1 0,2 25 1,44 1,2 0,93 1,07 0,57 0,53 1,32 1 0,55 43,55 1,06 1,1 0,97 1,03 0,76 0,71 1,08 1 0,74 prom 1,17 1,03 0,69	4,9	2,18	1,73	0,78	1,22	0,22	0,35	1,96	1	0,29	
251,441,20,931,070,570,531,3210,5543,551,061,10,971,030,760,711,0810,74prom1,171,030,69	9,65	1,47	1,69	1,2	0,8	0,2	0,21	1,58	1	0,2	
43,55 1,06 1,1 0,97 1,03 0,76 0,71 1,08 1 0,74 prom 1,17 1,03 0,69	25	1,44	1,2	0,93	1,07	0,57	0,53	1,32	1	0,55	
prom 1,17 1,03 0,69	43,55	1,06	1,1	0,97	1,03	0,76	0,71	1,08	1	0,74	
						pror	n	1,17	1,03	0,69	

					erro	r	0,18	0,04	0,15
					des	v	0,02	0	0,02
22,25	0,25	0,39	1,02	1,33	1,35	0,98	0,32	1,18	1,16
112,7	0,72	0,73	1,37	1,7	0,92	1,08	0,73	1,54	1
181,8	0,37	0,43	1,16	1,1	0,93	1,07	0,4	1,13	1
66,2	0,69	0,82	1,19	1,28	0,94	1,06	0,75	1,23	1
45,25	0,64	0,78	1,18	1,04	0,96	1,06	0,71	1,11	1,01
62,3	0,54	0,64	1,23	1,36	1,04	0,96	0,59	1,3	1
16,55	0,4	0,44	1,23	1,05	0,95	1,25	0,42	1,14	1,1
65,05	0,69	0,73	1,4	2,04	0,96	1,04	0,71	1,72	1
246,4	0,67	0,68	1,26	1,52	0,98	1,02	0,67	1,39	1
43,75	0,5	0,54	1,01	1,4	0,99	1,25	0,52	1,21	1,12
22,85	0,62	0,57	1,28	1,16	0,84	1,25	0,6	1,22	1,04
1289,4	0,54	0,45	1,43	1,34	0,82	1,18	0,5	1,39	1
363	0,33	0,53	1,04	1,05	0,96	1,21	0,43	1,05	1,08
63,65	0,4	0,59	1,48	1,2	0,92	1,08	0,49	1,34	1
405,7	0,54	0,67	0,93	1,18	1,09	1,07	0,61	1,05	1,08
15,05	0,59	0,58	1,06	1,09	1,28	0,94	0,59	1,08	1,11
44,35	0,85	0,78	1,09	1,02	0,99	1,01	0,82	1,06	1
264,55	0,77	0,78	1,09	1,1	1,06	0,94	0,78	1,1	1
16,3	0,62	0,53	1,56	2,3	0,97	1,03	0,57	1,93	1
61,7	0,79	0,83	1,16	1,3	1,01	0,99	0,81	1,23	1
45,45	0,22	0,44	1,31	2,5	1,08	0,92	0,33	1,9	1
11,95	0,43	0,48	1,21	1,77	0,79	1,21	0,45	1,49	1
47,1	0,62	0,4	1,31	1,52	0,87	1,13	0,51	1,42	1
49,9	0,64	0,64	1,03	1,08	1,02	0,98	0,64	1,06	1
82,1	0,45	0,43	1,44	1,55	0,91	1,09	0,44	1,5	1
80	0,85	0,92	1,14	1,19	1,01	1	0,89	1,16	1
13,25	0,69	0,74	1,28	1,54	0,9	1,1	0,72	1,41	1
15,8	0,69	0,73	0,99	1,18	1,05	1,01	0,71	1,09	1,03
193,85	0,2	0,12	2,27	1,9	0,82	1,18	0,16	2,09	1

13,35	0,6	0,43	1,33	1,17	1	1	0,52	1,25	1
47,45	0,93	0,87	1,1	1,07	0,97	1,03	0,9	1,09	1
37,3	0,45	0,47	1,19	1,45	0,89	1,11	0,46	1,32	1
159,55	0,32	0,52	0,9	1,14	1,16	1,1	0,42	1,02	1,13
118,6	0,71	0,83	1,03	1,05	0,97	1,05	0,77	1,04	1,01
25,4	0,51	0,37	1,28	1,43	0,75	1,25	0,44	1,36	1
43,4	0,68	0,64	1,25	1,05	1,05	0,95	0,66	1,15	1
74,3	0,56	0,44	1,19	1,14	1,01	0,99	0,5	1,16	1
					pro	m	0,58	1,29	1,02
					erro	or	0,17	0,26	0,05
					des	SV.	0,03	0,04	0,01
12,4	0,73	0,85	0,93	1,07	1,27	1,51	0,79	1	1,39
20,05	0,88	1,07	0,93	0,8	1,58	1,66	0,98	0,87	1,62
38,95	0,84	0,78	1,06	0,95	1,05	1,2	0,81	1	1,12
11,35	0,4	0,37	1,02	1,26	0,98	1,8	0,38	1,14	1,39
31,2	0,24	0,42	1,35	0,76	1,51	1,24	0,33	1,06	1,37
48,75	1	1	0,96	0,97	1,07	1,08	1	0,97	1,08
21,45	0,83	1,04	0,96	0,84	1,45	1,36	0,93	0,9	1,41
23,65	0,6	0,65	1,03	0,97	1,17	1,51	0,62	1	1,34
50,25	0,63	0,79	0,97	1,03	1,15	1,18	0,71	1	1,17
23,3	0,73	0,9	1,1	0,89	1,47	1,69	0,81	1	1,58
33,85	0,83	0,98	0,99	1,01	1,37	1,7	0,91	1	1,54
11,4	1,2	0,8	0,18	0,48	3,04	3,11	1	0,33	3,07
64,2	0,83	0,96	1	1	1,17	1,22	0,89	1	1,19
17,25	0,79	1	0,85	1	1,73	1,54	0,9	0,92	1,63
15,35	0,65	0,83	1,01	0,99	1,17	1,4	0,74	1	1,29
16,85	0,77	0,85	1,05	0,95	1,47	1,92	0,81	1	1,69
44,5	0,91	1,03	0,81	0,97	1,36	1,33	0,97	0,89	1,34
62,55	0,9	0,97	1,03	0,94	1,15	1,18	0,93	0,98	1,17
87,9	0,67	1,03	0,94	0,97	10,36	14,55	0,85	0,95	12,45
427,3	0,74	0,71	1,15	0,92	1,08	1,26	0,72	1,03	1,17

40,3	0,45	0,55	1,17	0,94	1,42	1,06	0,5	1,05	1,24
1486	0,92	1,08	0,84	0,69	1,64	1,39	1	0,77	1,52
59,3	0,86	1,01	0,97	0,99	1,31	1,24	0,93	0,98	1,28
3,55	0,17	0,11	0,54	1,46	5,24	4,68	0,14	1	4,96
16,55	0,76	0,63	1,12	0,88	1,25	1,46	0,69	1	1,36
82,05	0,8	0,84	0,98	1,02	1,22	1,3	0,82	1	1,26
					pror	n	0,78	0,96	1,99
					erro	r	0,22	0,15	2,28
					desv	V	0,04	0,03	0,45

at	atg	desc	col a	col b	phyb a	phyb b
267627_at	AT2G42270	U5 small nuclear ribonucle	53,4	51,6	34,5	35,1
250090_at	AT5G17330	glutamate decarboxylase 1	141,3	145,5	205	204,2
262226_at	AT1G53885	senescence-associated pro	: 11,5	11,5	22,6	21,7
254621_at	AT4G18600	expressed protein, similar	90,5	91,1	69	68,8
255802_s_at	AT4G10150;	/[AT4G10150, zinc finger (0	31,8	31,7	51,6	54,1
256229_at	AT1G58200	mechanosensitive ion char	n 220,8	211,2	158,1	152,1
253332_at	AT4G33420	peroxidase, putative, identi	97,6	92,3	180,8	181,6
250662_at	AT5G07010	sulfotransferase family pro	t 11,9	11,3	71,9	55,5
266280_at	AT2G29260	tropinone reductase, putati	16,2	16,8	16,3	16,2
248586_at	AT5G49610	F-box family protein, conta	i 48,8	48,7	46,9	47,4
257650_at	AT3G16800	protein phosphatase 2C,	36,6	35,3	118,5	127,4
248060_at	AT5G55560	protein kinase family protein	15,4	19,9	27,8	27
264510_at	AT1G09530	phytochrome interacting fa	c 59,1	90,4	82,4	85,4
246310_at	AT3G51895	sulfate transporter (ST1), id	: 67,4	78,1	210	199,6
251560_at	AT3G57920	squamosa promoter-bindin	5,3	5,8	13,4	11,8
248640_at	AT5G48910	pentatricopeptide (PPR) re	J 94,9	100,3	63,8	70,1
267497_at	AT2G30540	glutaredoxin family protein	23,7	26,5	16	17,7
253794_at	AT4G28720	flavin-containing monooxy	, 8,2	11,6	66,1	60,8
248395_at	AT5G52120	F-box family protein / SKP	1 39,3	41,6	59	56,7
266525_at	AT2G16970	expressed protein, ; expre	s 14,2	16,3	11,6	7,7
259826_at	AT1G29340	armadillo/beta-catenin repe	400,6	448,5	581,3	578,6
267337_at	AT2G39980	transferase family protein,	66	68,8	80,4	83,7
249065_at	AT5G44260	zinc finger (CCCH-type) fa	[.] 17,5	21,8	90,6	75,4
263122_at	AT1G78510	solanesyl diphosphate syn	189,9	182,3	99,2	95,4
258250_at	AT3G15850	fatty acid desaturase family	1938,6	1800,5	1198,4	1252,5
256997_at	AT3G14067	subtilase family protein, co	432,5	448	344,9	352,5
251013_at	AT5G02540	short-chain dehydrogenase	e 30,4	44,2	176,2	174,4
262719_at	AT1G43590	expressed protein, contain	43	71	9,9	10
253294_at	AT4G33750	expressed protein	133,3	123,1	133,6	119,4
264774_at	AT1G22890	expressed protein	160,6	168,3	79,6	71,6
267512_at	AT2G45690	shrunken seed protein (SS	46,1	47,9	42,1	45
248425_at	AT5G51690	1-aminocyclopropane-1-ca	ı 29,3	32,7	22,3	23,9
263856_at	AT2G04410	expressed protein	376,4	408,5	377,9	406,7
259968_at	AT1G76530	auxin efflux carrier family p	23,7	22,8	10,2	12,1
252265_at	AT3G49620	2-oxoacid-dependent oxida	u 48,1	33,7	8	8,3
263669_at	AT1G04400	cryptochrome 2 apoprotein	696,4	717,1	620,7	591,6
259417_at	AT1G02340	long hypocotyl in far-red 1	(39,6	22,8	440,8	368,5
266474_at	AT2G31110	expressed protein	41,5	33	88,3	84,6
263665_at	AT1G04480	60S ribosomal protein L23	791,7	842	705,8	664,6
256430_at	AT3G11020	encodes a member of the	31,2	27,1	29,9	24,7
259428_at	AT1G01560	mitogen-activated protein k	. 14,1	14,1	23,3	20,2
248910_at	AT5G45820	CBL-interacting protein kin	165	167,6	310,7	374,5
258381_at	AT3G16630	kinesin motor family protein	299	302,9	287,4	289,5
249900_at	AT5G22640	MORN (Membrane Occupa	288	320,8	171	175,8
261109_at	AT1G75450	FAD-binding domain-conta	i 16,7	17,5	44,5	54,2
258833_at	no_match	no_match	37,3	39,2	40,1	43,8
246238_at	AT4G36670	mannitol transporter, putat	211,2	208,4	105,9	124
258351_at	AT3G17700	cyclic nucleotide-binding tra	26,7	29,5	33,9	33,1
247597_at	AT5G60860	Ras-related GTP-binding p	33,5	40	76,5	84,9
266992_at	AT2G39200	seven transmembrane ML	36,1	29,9	23,3	26,7
253048_at	AT4G37560	formamidase, putative / for	ı 163,2	166,7	117,4	127,4
253097_at	AT4G37320	cytochrome P450 family pr	, 71,5	83,8	42,6	47,3
249162_at	AT5G42765	expressed protein	152,9	138,6	98,9	106,5

266065 at	AT2G18790	phytochrome B (PHYB). Ide	198.3	262.8	51.7	65.5
251000 at	AT5G02650	expressed protein	12,1	12,3	7,1	6,2
246888 at	AT5G26270	expressed protein. : expres	204.4	210.7	62.2	55.2
258949 at	AT3G01370	expressed protein, contains	213.3	230.8	136.8	150.2
262963 at	AT1G54220	dihvdrolipoamide S-acetvltr	87.6	98.1	68.2	62.7
265439 at	AT2G21045	similar to senescence-asso	43.8	42.9	63.6	73.7
247672 at	AT5G60220	senescence-associated fan	6.7	7.3	20.3	17.4
245543 at	AT4G15260	UDP-alucoronosvl/UDP-alu	77.2	55	17.2	13.4
245347 at	AT4G14890	ferredoxin family protein si	776 1	782 7	501	493.4
248037 at	AT5G55930	oligopeptide transporter OF	43.2	55.6	92	13 7
262309 at	AT1G70820	phosphoglucomutase puta	342.1	322	262	265.5
248306 at	AT5G52830	WRKY family transcription	23	22.9	12.6	200,0 9 7
262066 at	AT1G79950	helicase-related similar to	72.6	22,0 77 4	60	62.9
252511 at	AT3G46280	nrotein kinase-related cont	30 3	42.6	12 7	17 3
257772 at	AT3C23080	expressed protein weak si	101 <i>/</i>	202 7	155.0	163.2
266108 at	AT2G37000	proton-dependent oligonen	0.6	202,7	100,9	5.2
200100_at	AT4G14430	enovil CoA bydratase/isome	172.3	160.8	121.2	135
245559_at	AT4G14430	E box family protoin contai	06.7	109,0	77.2	71 7
24000_al	AT 1G57790	r-box family protein, contain	90,7 40 1	100,9	0,11 21 0	25.6
251060_at	AT1002010		40, I 216 5	49,0	04,2 125 6	142.7
255695_al	ATIG10020,	PLA mothyltranoforoad for	210,5	100,7	100,0	142,7
256034_al	AT5G21300	RINA Metricenentide (DDD) rec	01,0	49,0	20	20,4
250115_at	AT5G16420	pentatricopeptide (PPR) rej	21,1	19,3	14,8	13
250306_at	AT5G12160	expressed protein, similar t	34,5	33,1	25,4	26,1
257580_at	AT3G06210	similar to expressed protein	26,4	30,1	25,9	21
266267_at	AT2G29460	giutathione S-transferase, (34	32,2	11,5	8,1
250766_at	A15G05550	expressed protein, similar t	33,8	27,7	31,8	28,9
253238_at	A14G34480	glycosyl hydrolase family 1	48,6	51,4	/1,4	80,5
245064_at	AT2G39725	complex 1 family protein / L	16,7	19,6	30,3	28,3
251935_at	A13G54090	pfkB-type carbohydrate kin	210,5	197,9	141,6	144,3
258079_at	AT3G25940	transcription factor S-II (TF	68,2	73,7	91,1	94,8
254548_at	AT4G19865	kelch repeat-containing F-b	35,5	35,6	39,7	38,3
249808_at	AT5G23890	expressed protein, weak sii	111,6	131,2	68,6	73,4
267392_at	AT2G44490	glycosyl hydrolase family 1	817,6	895,4	639,6	606,5
264949_at	AT1G77080	MADS-box protein AGL27-	32,3	28	16,7	18,2
266782_at	AT2G29120	similar to glutamate recepto	24,2	26,9	59,4	59,9
250476_at	AT5G10140	MADS-box protein flowering	179,6	155,8	73,4	58,5
255446_at	AT4G02750	pentatricopeptide (PPR) rej	20	22,3	24,9	19,9
258108_at	AT3G23570	dienelactone hydrolase farr	287,1	362,1	172,4	192
246491_at	AT5G16100	expressed protein	9,8	8	11,8	10,2
246234_at	AT4G37280	MRG family protein, contair	117	118	92,2	97,6
266433_at	AT2G07110	hypothetical protein	10,7	8,5	3,8	6
259181_at	AT3G01690	expressed protein	505,7	599,9	449,6	420,2
267632_at	AT2G42160	zinc finger (ubiquitin-hydrol	27,3	30,2	41,6	41,8
249606_at	AT5G37260	myb family transcription fac	258,2	285,3	107,1	134
256891_at	AT3G19030	expressed protein, contains	779	838,8	526,4	504,5
250111 at	AT5G16290	acetolactate synthase smal	222,4	227,2	182,2	193,5
254163_s_at	AT4G24370;	(AT4G24370, expressed pr	184,1	231,8	105,3	109,7
245734 at	AT1G73480	hydrolase, alpha/beta fold f	81,7	82,5	154,9	191,4
257775 at	AT3G29260	short-chain dehydrogenase	13,8	13,3	0,8	1,7
253066 [_] at	AT4G37770	1-aminocyclopropane-1-cai	10,1	8,6	25,5	37,5
260890 at	AT1G29090	peptidase C1A papain fami	47,4	42,6	7,3	5,9
254682 at	AT4G13640	myb family transcription fac	110.5	114.7	91.6	86.1
258813 at	AT3G04060	no apical meristem (NAM)	24,2	22,8	25,2	32,1
	AT5G47240	MutT/nudix family protein, s	81,9	68,1	127,6	126,4

251869 at	AT3G54500	expressed protein	204,1	206,6	289,4	291,9
264729 at	AT1G22990	heavy-metal-associated do	10,9	14,2	32,5	32
255469 at	AT4G03030	kelch repeat-containing F-b	293,2	298	203,3	203,7
262736 at	AT1G28570	GDSL-motif lipase, putative	55,7	57,6	34,7	39
248984 at	AT5G45140	similar to DNA-directed RN	53,3	63,4	46,5	44,1
261013 at	AT1G26440	expressed protein, similar t	33,7	39,3	53,5	44,5
252480 at	AT3G46580	methyl-CpG-binding domai	36	40.3	21.9	25.5
251942 at	AT3G53480	ABC transporter family prot	36.9	39.6	50	43.9
263864 at	AT2G04530	RNase Z. 97% identical to	102.1	103.1	45.7	51.4
264402 at	AT2G25140	heat shock protein 100, put	29.3	27.6	54.3	45.4
250485 at	AT5G09990	expressed protein	14 1	15.4	24.4	22.9
261401 at	AT1G79640	protein kinase family protei	31.1	30.5	18.7	21 7
246724 at	AT5G29000	myb family transcription fac	55.8	56.8	38.6	32.5
263488 at	AT2G31840	expressed protein	109.4	124.8	78 5	81 7
249870 at	AT5G23080	SWAP (Suppressor-of-Whi	01 A	۹ <u>،</u> ۵	90.6	83.5
246228 at	AT4G36430	neroxidase nutative identi	17 7	21.4	18.7	16 1
246385 at	ΔT1G77300	cyclin putative similar to r	15 /	13 3	15.6	10,1
250030 at	AT1077390	forkhood associated domai	۰. م	5.9	17.0	15 6
259950_at	AT1G34333	kinase related contains Df	17 /	16.3	33.7	28.2
200179_at	AT1G70090	strictosidino synthese famil	17,4	10,3	23,7 21 Q	20,2
252000_at	AT3G31440	protoin kinaso family protoi	120	1/,4	21,0 102 5	105.9
207134_al	AT2G23450	expressed protein similar t	101 2	140,0	102,5 52.5	105,6
240551_al	AT5G50200	thispin (THI2.2), identical to	101,3	4, 570 5	52,5 1047 7	40
249045_al	AT5G36910		090,0	010,0 012 E	1047,7	1729
20010_al	AT4G10120	Sucrose-priosphale synthat	920, I 15 5	913,5	302,0 22,6	411,7
201004_at	AT 1G0 1920	SET domain-containing pro	15,5	14,4	22,0 155 5	21,7 177.0
261023_at	AT1G12200	flavin-containing monooxyg	98,3	109,5	155,5	177,2
247219_at	AT5G64920	COP1-Interacting protein (C	153,9	156,8	151,4	125,5
251422_at	AT3G60540	seco i beta family protein, s	25,3	30,8	28,4	26,1
266285_at	AT2G29180	expressed protein	274,5	296,1	212,1	212,7
251552_at	AT3G58700	60S ribosomal protein L11	395,3	393,2	337,1	325
245108_at	AT2G41510	FAD-binding domain-contai	5,6	8,6	22,8	29,5
256799_at	AT3G18560	expressed protein	48,2	40	49,6	52,3
245325_at	AI4G14130	xyloglucan:xyloglucosyl trar	25,8	24,7	173,6	85,8
247889_at	AT5G57930	expressed protein	439,9	516,1	285,6	313,3
253054_at	AT4G37580	N-acetyltransferase, putativ	34,5	45,2	20	21,5
250468_at	AT5G10120	ethylene insensitive 3 famil	18,4	14,6	7,6	6,2
249942_at	AT5G22300	nitrilase 4 (NIT4), identical	190,6	136,7	71	73,5
248048_at	AT5G56080	nicotianamine synthase, pu	26	21,8	14,7	13,1
259751_at	AT1G71030	Encodes a putative myb fai	432,1	305,1	643,8	611,3
259507_at	AT1G43910	AAA-type ATPase family pr	12,9	14,3	17,7	16
258461_at	AT3G17340	importin-related, contains F	21,6	23,4	21,6	18
267238_at	AT2G44130;/	[AT2G44130, kelch repeat-	70,1	61,7	113,5	128
263565_at	AT2G15390	xyloglucan fucosyltransfera	15,1	14,7	19,2	19,3
259346_at	AT3G03910	glutamate dehydrogenase,	10,9	11,6	15,7	18,6
253184_at	AT4G35230	protein kinase family protei	278,6	285,3	219	214,2
262286_at	AT1G68585	expressed protein	38,7	45,8	33,8	33,9
251650_at	AT3G57360	expressed protein	15,8	18,8	25,3	26
259173_at	AT3G03640	glycosyl hydrolase family 1	93,2	99,4	47,8	53,6
261629_at	AT1G49980	similar to UMUC-like DNA r	52,4	43,2	21,4	26,9
261711_at	AT1G32700	zinc-binding family protein,	410,4	371,8	325,1	402,2
255836_at	AT2G33440	splicing factor family proteir	62,2	73,8	53	50,2
259305_at	AT3G05070	expressed protein	108,6	99	76	82,6
253812_at	AT4G28240;/	[AT4G28240, wound-respo	352,5	426,1	858,7	807,3
255291_at	no_match	no_match	16,7	11,8	6,3	7,4

-2000 -4 -71 -01 -72 -01 -000 -000 -000	5 284,1
260279_at AT1G80420 DNA repair protein, putative 50,8 52,3 48,2	. 44,8
258694_at AT3G08660 phototropic-responsive prol 9,2 9,8 16,9	20,4
252989_at AT4G38420 multi-copper oxidase type I 104,2 112,6 64	53
266102_at AT2G40720 pentatricopeptide (PPR) rej 14,3 15,2 11,7	' 8,8
249855_at AT5G22970 expressed protein 9,1 8,8 14,5	5 11,6
258957 at AT3G01420 pathogen-responsive alpha 94,1 78,4 150,9	144,9
254805 at AT4G12480 protease inhibitor/seed stor 425,5 515,5 153,7	86,9
251427 at AT3G60130 glycosyl hydrolase family 1 171,9 157,5 103,5	95,3
266951 at AT2G18940 pentatricopeptide (PPR) rej 115 122,8 58,2	2 74,9
264279 s at AT1G78820;//AT1G78820, curculin-like (696,8 750,1 507,5	<u>451,8</u>
265611 at AT2G25510 expressed protein 1371,3 1600,7 1243	1031,1
265965 at AT2G37500 arginine biosynthesis protei 104,5 122,3 71,3	66
251634 at AT3G57480 zinc finger (C2H2 type, AN 37,9 34,4 48,3	45,4
264958 at AT1G76960 expressed protein 18,1 22,2 47,3	37,7
251993 at AT3G52960 peroxiredoxin type 2, putati 1110,3 1263,9 943,8	880,2
266238 at AT2G29400 serine/threonine protein ph 492,7 441,7 469,7	413,6
251588 at AT3G58090 pseudogene disease resist 8.9 8.8 16	6 16.4
253246 at AT4G34600 expressed protein 18 22.4 43.3	35.1
263159 at AT1G54130 RelA/SpoT protein. putativ€ 368.5 373.6 436.8	406.1
253510 at AT4G31730 expressed protein 42.9 35.1 56.5	67.7
259675 at AT1G77710 expressed protein, similar t 454.3 448.9 418.1	389.1
250988 at AT5G02880 HECT-domain-containing p 99.6 110 116.6	118.6
254137 at AT4G24930 thylakoid lumenal 17.9 kDa 362.2 366.4 216.7	231.1
248800 at AT5G47320 30S ribosomal protein S19. 166.4 154.8 128.8	117.5
249383 at AT5G39860 bHLH protein, putative DN/ 22 23.6 44.4	61.2
245449 at AT4G16870 copia-like retrotransposon f 50 47.5 66.5	66
255456 at AT4G02920 expressed protein 908.1 836 650.8	717.1
246932 at AT5G25190 encodes a member of the F 45.5 54.2 78.5	6 85
263276 at AT2G14100 cvtochrome P450 family pr(13.9 12.1 19	18.1
256874 at AT3G26320 cvtochrome P450 71B36 n 23.4 29.1 15.9	15.4
256784 at AT3G13674 expressed protein 13.7 17.3 14.7	17.2
247903 at AT5G57340 expressed protein 44.7 47.4 90.9	132.8
245464 at no match no match 29.1 22.6 23.8	25.1
260106 at AT1G35420 dienelactone hydrolase fair 420.7 437.2 329.2	368.6
245854 at AT5G13490 ADP. ATP carrier protein 2. 135.5 154.6 108.7	' 118
253585 at AT4G30720 expressed protein, hypothe 70.1 78.8 52.5	56.3
262354 at AT1G64200 vacuolar ATP synthase sub 124.3 131.3 163.1	142.8
261075 at AT1G07280 expressed protein 437.2 435.9 325.7	366.6
257665 at AT3G20430 expressed protein 60.6 66.5 42.6	6 47.1
252086 at AT3G52030 F-box family protein / WD-4 69.4 84.8 92.8	95.7
250657 at AT5G07000 sulfotransferase family prot 25.4 37.5 94.5	5 76.2
255742 at AT1G25560 AP2 domain-containing trai 151.3 160.2 138.6	146.1
265050 at AT1G52070 jacalin lectin family protein. 8.3 4.3 10.6	23.2
248357 at AT5G52380 zinc knuckle (CCHC-type) f 42.6 49.5 35.2	33.8
259339 at AT3G03900 adenvlvlsulfate kinase, put: 42.2 36.6 30.3	30.1
253800 at AT4G28160 hydroxyproline-rich glycopr 13.7 9.1 2	2.5.5
251279 at AT3G61800 expressed protein 49.5 57.7 55.4	58.8
264485 at AT1G77220 expressed protein, contains 43.9 49.1 32	38.8
264492 at AT1G27430 GYF domain-containing prc 32.2 42.6 51.4	50.1
260815 at AT1G06950 Encodes a protein thought 374.2 400.7 315.3	287.7
251700 at AT3G56640 exocvst complex subunit St 31.6 39.8 48.7	′ <u>51.8</u>
247100 at AT5G66520 pentatricopeptide (PPR) rei 56.3 46.4 23.6	25.7
253629_at AT4G30450 glycine-rich protein 66,6 80,9 93,8	107,7

250740 at	AT5G05760	syntaxin 31 (SYP31) / SED	37,1	38,4	27,9	31,3
254418 at	AT4G21480	glucose transporter, putativ	22	14,6	17,7	25,6
250049 at	AT5G17780	hydrolase, alpha/beta fold f	57,9	65,9	41,2	32,2
262166 at	AT1G74840	myb family transcription fac	247,4	204,7	244,9	247,7
245504 at	AT4G15660	glutaredoxin family protein,	60,5	48,1	25,5	31,2
254026 at	AT4G25800	calmodulin-binding protein,	5,1	5,7	14,5	21,1
266058 at	AT2G40690	NAD-dependent alvcerol-3-	31.3	29.6	18.4	21.9
259672 at	AT1G68990	DNA-directed RNA polyme	59.1	66.3	69.6	64.5
247657 at	AT5G59845	gibberellin-regulated family	4.5	4 2	11.6	14.3
259395 at	AT1G06400	Ras-related GTP-binding p	263.8	272.2	266.2	244.1
255941 at	AT1G20350	mitochondrial import inner i	26.2	14.9	3.5	2.5
245081 at	no match	no match	9.1	10.6	11 5	13.3
252096 at	ΔT3G51180	zinc finger (CCCH-type) far	17	20.9	25.7	20.8
263699 at	AT1G31120	notassium transporter famil	45	20,0 53	63	20,0 58.7
261881 at	AT1G80760	major intrinsic family protei	50.5	82.2	144 2	182.2
201001_at	AT5G53080	kinesin light chain-related	28.7	28.3	18	16.8
252031 at	AT4G38030	ubiquitin fusion degradation	63.7	67.3	80.6	70
265530 at	AT2C15830	ovprossed protein	44.5	42 Q	22.1	27 7
200009_at	ATEC02200	expressed protein	44,5	42,0	17.2	27,7 10.1
201020_at	AT5G02200	intogral mombrane family n	20,1	4,0	17,3	20.0
249790_at	AT5G24290	linegral membrane ranning p	32,4 107.6	40,4	10,3 54.0	20,0
249340_al	AT1040760	nontetriconontido (DDD) rei	107,0	100,9	04,9 60 5	67.0
204452_al	ATIG10270		12,0	03,7 50.0	09,5	07,2
24000U_at	AT3G20000	similar to Lon protease, put	44,Z	07.4	52,1	50
252365_al	AT5000000		10,1	87,1 154 C	0, /C	8C
246055_at	AT5G08380	alpha-galactosidase, putati	146,8	154,6	83,1	90,8
264819_at	AT1G03510	pentatricopeptide (PPR) rej	14,1	13,2	16,5	14
249504_at	A15G38850	disease resistance protein	33,2	32,3	20,2	24
264680_at	AT1G65510	expressed protein	24,1	26,2	28,8	21,9
245619_at	AT4G13990	exostosin family protein, co	(7,2	14,3	23,6
261071_at	AT1G0/380	ceramidase family protein,	40,6	45,9	36,1	43,1
264223_s_a	it AI3G16030	lectin protein kinase family	21	22,6	16,9	18,1
249793_at	A15G23680	sterile alpha motif (SAM) de	26,2	31	24,1	25,3
249174_at	AT5G42900	expressed protein, similar t	184	151	99,9	77,5
253232_at	AT4G34340	expressed protein	28,1	33,2	33,5	34,2
249245_at	AT5G42280	DC1 domain-containing prc	10,3	22,1	3,6	2,8
265733_at	AT2G01190	octicosapeptide/Phox/Bem	93,7	106,2	152,7	128,2
257641_s_a	it AT3G25760;	/[AT3G25760, early-respon:	1455,1	1498,7	648,9	812,5
252786_at	AT3G42670	SNF2 domain-containing pi	28,9	38,2	30,9	30,1
258554_at	AT3G06980	DEAD/DEAH box helicase,	422,1	443,9	287,1	304,1
257982_at	AT3G20780	topoisomerase 6 subunit B	21,6	23,7	12	14,9
257698_at	AT3G12730	myb family transcription fac	21,9	23,8	33,1	38,7
245642_at	AT1G25275	expressed protein	1219,4	1230,7	699,4	639,6
262176_at	AT1G74960	3-ketoacyl-ACP synthase, r	455,6	534,9	355,4	360,4
250327_at	AT5G12050	expressed protein	118,5	193,4	377,9	381,3
260771_at	AT1G49160	protein kinase family protei	24,5	25,4	14,2	14,1
251017_at	AT5G02760	protein phosphatase 2C far	217,8	273,8	376,3	477,2
255129_at	AT4G08290	nodulin MtN21 family protei	29,4	18,9	61,9	71,6
264772_at	AT1G22930	T-complex protein 11, conta	280,1	221,1	216	215
261451_at	AT1G21060	expressed protein, contains	69,6	94,6	43	49,2
258227_at	AT3G15620	6-4 photolyase (UVR3), ide	120,5	87,7	70,6	60,2
266437_at	AT2G43160	epsin N-terminal homology	517,4	526,6	439,4	422,3
266015_at	AT2G24190	short-chain dehydrogenase	65	66,6	55	57,9
260361_at	AT1G69360	expressed protein	44,2	41,1	52,4	50,6
266648 at	AT2G25840	tRNA synthetase class I (W	153,4	156,8	99	111,8
_		-				

247223 at	no match	no match	14,2	14,1	1,6	3,8
262086_at	AT1G56050	GTP-binding protein-related	116	128,1	70	89,3
266944_at	no_match	no_match	12,6	10,4	18,5	14,6
249996_at	AT5G18600	glutaredoxin family protein,	466	429,3	124,5	206,5
265843_at	AT2G35690	acyl-CoA oxidase, putative,	50,8	59,9	57,8	58,7
251771_at	AT3G56000	glycosyl transferase family	21	12,9	6,6	5,2
254073 at	AT4G25500	arginine/serine-rich splicing	185	184,3	160,4	159,7
257338 s at	ATMG00513	"[ATMG00513, Mitochondria	45,8	41,9	38,3	33,9
261121 at	AT1G75340	zinc finger (CCCH-type) far	95,2	79,8	66,3	64,3
263120 at	AT1G78490	cytochrome P450 family pro	83,9	98	121,6	124,5
265276 at	AT2G28400	expressed protein, contains	13,6	15,5	31	27,9
247333 ⁻ at	AT5G63600	flavonol synthase, putative,	121,5	83,6	84,5	99,3
254545_at	AT4G19830	immunophilin / FKBP-type	121,6	120,3	104,6	110,9
252464 at	AT3G47160	expressed protein, similar t	200,3	170,3	237,8	199,2
262592 at	AT1G15400	expressed protein, ESTs gl	372,2	394	485,1	443,8
245299 at	AT4G17530	Ras-related GTP-binding p	496	520,7	400,2	413,6
261351 at	AT1G79790	haloacid dehalogenase-like	144,4	167,6	118,5	127,2
	AT5G52110	expressed protein, similar t	62,7	70,4	42,3	45,2
255865 at	AT2G30330	GCN5L1 family protein, sin	53,2	61,5	64,1	64,3
262464 at	AT1G50280	phototropic-responsive NPI	22,5	31,1	14,6	12,3
259954 at	AT1G75130	cytochrome P450 family pro	130	103,6	113,6	111,1
256503 at	AT1G75250	myb family transcription fac	23,6	16,9	8,6	4,9
247398 at	AT5G62950	expressed protein	29	35,1	53,3	47,2
261861 at	AT1G50450	expressed protein	209,5	203,4	110	117,2
254024 at	AT4G25780	pathogenesis-related protei	216,9	181,8	138,6	137
262550 at	AT1G31310	hydroxyproline-rich glycopr	19,3	19,8	13,7	16,7
266050 at	AT2G40770	SNF2 domain-containing pi	34,8	37,4	35,8	32,4
248739 at	AT5G48030	DNAJ heat shock protein, r	193,1	215,8	145,6	143,9
260089 at	AT1G73170	expressed protein	300,2	317,6	290,1	303,3
252419 at	AT3G47510	expressed protein	65,1	83,8	133,7	130,4
248010 at	AT5G56290	peroxisomal targeting signa	405	418,8	338,3	323,5
266278 at	AT2G29300	tropinone reductase, putati	29,6	30,4	47,8	39,5
251189 at	AT3G62650	expressed protein, putative	734	638,8	528,9	500,3
263164 at	AT1G03070	expressed protein, low simi	13	9,3	32,6	36,4
245546 at	AT4G15290	cellulose synthase family p	13,5	15,5	19,6	18,7
247694 at	AT5G59750	riboflavin biosynthesis prote	394,5	388	249,6	279,2
245358 at	AT4G15900	PP1/PP2A phosphatases p	181,9	179,8	144,4	126,1
	AT5G58310	hydrolase, alpha/beta fold f	9,9	21,6	2,6	4,8
254703 at	AT4G17960	expressed protein	30,5	33,4	31,4	37,6
265295 at	AT2G14050	minichromosome maintena	28,6	33,2	23,1	19
266795 at	AT2G03070	expressed protein	64,3	83,8	40,8	43,1
255381 at	AT4G03510	zinc finger (C3HC4-type RI	117,5	99,4	179,8	140,1
250402 at	AT5G10940	transducin family protein / \	110	111,4	120,1	108
262680 [_] at	AT1G75880	family II extracellular lipase	42,2	39,8	26,4	27,5
255421 at	AT4G03260	leucine-rich repeat family p	383,5	432,1	295,9	278,5
	AT4G34860	beta-fructofuranosidase, pu	49,7	58,5	87,6	93,7
261443 at	AT1G28480	glutaredoxin family protein,	28,1	19	11	8,7
253423 at	AT4G32280	auxin-responsive AUX/IAA	10,2	20	59,4	113,7
251998 at	AT3G53090	HECT-domain-containing p	65	71,5	62,9	63,3
248208_at	AT5G53980	homeobox-leucine zipper fa	7,5	13,1	42,1	23,8
260044_at	AT1G73655	immunophilin / FKBP-type ı	410,8	462	241,7	277,7
261945_at	AT1G64530	RWP-RK domain-containin	56,1	60,8	64,3	58,7
	AT3G09730	expressed protein	10	12,7	15,5	15,2
255328_at	AT4G04350	leucyl-tRNA synthetase, pu	96,3	97	63,9	71,9

259537_at	AT1G12370	type II CPD photolyase PH	31,9	37,7	18,8	25,6
253885_at	AT4G27690	vacuolar protein sorting-ass	111,5	120,7	92,7	84,9
264299_s_at	AT1G78850;/	[AT1G78850, curculin-like (587,7	749,2	334,7	361,8
245936_at	AT5G19850	hydrolase, alpha/beta fold f	258,7	221	148,1	166,5
259707_at	AT1G77490	L-ascorbate peroxidase, the	509,8	568,2	396,9	389,6
259207_at	AT3G09050	expressed protein	73,5	64,5	40,3	49,2
245042_at	AT2G26540	uroporphyrinogen-III syntha	114,9	132,3	85,3	93,2
253322_at	AT4G33980	expressed protein	81	88,6	58,6	39,1
260337_at	AT1G69310	WRKY family transcription	43,2	50,8	35,2	32,5
251578_at	AT3G58180	PBS lyase HEAT-like repea	104,7	112	111	110,6
265476_at	AT2G15570	thioredoxin M-type 3, chlord	120,8	110,8	156,8	157,2
256178_s_at	AT1G51760;	(AT1G51760, IAA-amino ac	60,1	63	79,9	70,8
258413_at	AT3G17300	expressed protein	81,3	93,1	35,7	50,5
250825_at	AT5G05210	nucleolar matrix protein-rela	85,8	74,3	56,2	51,3
247028_at	AT5G67100	DNA-directed DNA polyme	22,8	25,5	14,8	16,8
249126_at	AT5G43380	serine/threonine protein phy	17,7	22,3	20,6	18
247916_at	AT5G57590	aminotransferase class III f	46	50,7	26,9	33,7
251380_at	AT3G60700	expressed protein	16,8	18,7	17,2	12,6
263216_s_at	AT1G30720;/	[AT1G30720, FAD-binding	70,1	47	38,3	26,4
245678_at	AT1G56610	syntaxin-related family prot	52,5	64,9	65,1	68,6
263550_at	AT2G17033	pentatricopeptide (PPR) rej	206,3	259	148,5	154,4
256734_at	AT3G29390	hydroxyproline-rich glycopr	44,2	60,1	63,3	60,2
267088_at	AT2G38140	chloroplast 30S ribosomal	770,8	806,1	608,2	570,3
260926_at	AT1G21360	expressed protein	17,4	11,4	23,9	16,9
247952_at	AT5G57260	cytochrome P450 71B10, ic	36,7	32,9	17,3	20,3
260196_at	AT1G67570	expressed protein	25,7	29	33,1	29,7
260569_at	AT2G43640	signal recognition particle 1	128,1	144,2	117,7	112,5
249486_at	AT5G39030	protein kinase family protei	14,2	13	29,3	26,5
255116_at	AT4G08850	leucine-rich repeat family p	231,7	223,1	164,8	150,7
246645_at	AT5G35080	expressed protein	92,4	103,4	84,2	97,9
245716_at	AT5G08740	pyridine nucleotide-disulphi	157,9	155,7	85	107,8
264636_at	AT1G65490	expressed protein	314,8	304,1	492,2	391,7
247471_at	AT5G62230	leucine-rich repeat family p	32,8	30,3	41,1	36,9
251500_at	AT3G59110	protein kinase family protei	130,1	141,5	91,2	95,8
263805_at	AT2G40400	expressed protein, similar t	182,5	192,4	154,7	164,7
259334_at	AT3G03790	ankyrin repeat family protei	111,9	114,7	110	120,8

csa a	csa b
30,9) 31
117,1	122,2
14	14,8
57,3	60,3
51,1	48,7
138,8	140,5
82,2	91,8
19,8	8 18,6
9,7	10,5
52,1	52,8
/4,5	89 ,7
010 C	0,0 0,070 0
910,3	103.8
6 7	7 195,0 7 6.8
51 1	53 1
37	39.3
22.1	24.7
36,3	33,6
1,9	2
325,9	309,5
99,9	106,8
41,4	37,3
151,3	3 173,3
1492,2	1539,8
424,7	′ 441,6
48,1	44
76,2	2 83
120.2	+ 70,0 152.6
33.1	. 152,0
11 4	13.8
240 5	5 258 6
18.8	20.6
17,8	21,7
501,4	462,2
158	229,7
75,1	73,5
949	961,2
10,6	6 8,4
11,4	10,1
242,4	250,4
212,2	2 231,4
213,4	
33,3 22 5	6 41,3 5 26.2
∠3,0 124	20,3 1127
יבי 17 פ	20 1
64 7	59.9
14.3	13.3
109.1	117
41,3	41,4
162,9	155,3

184,1	233,3
9,2	10,3
48,7	72,6
170,1	163,1
107.7	103,9
44.5	45.1
15.7	20.7
41 3	47.5
605 5	601 6
13.5	51.2
-0,0 221 7	250.2
201,7 E 0	200,2
5,0	7,0 59 5
10 2	16 0
10,2	10,0
154,4	158,3
18,6	16,6
100,5	111,1
89,4	88,3
27,3	31,7
107,5	107,7
33,2	29,9
11,4	12,2
41	48,3
11,9	12,2
19,2	16,2
15.9	16,9
62.3	61.1
18.1	18.6
191.8	215.2
80.4	79.6
26.1	22.2
102 /	100 1
576 5	517 F
12.0	16.4
13,8	10,4
29,7	38,8
34,6	51,2
11	11,6
371,2	398,6
4,9	4
105,8	101,1
1,1	1,7
320,7	297,6
33,5	30,8
152,1	175,5
637,2	727,3
213,5	216,3
169,7	166,6
104,1	121,3
1,2	2,1
15,8	16.8
15.8	30
75.1	83.4
13.2	10.7
64.9	75
, -	

281,4	247,7	
13,2	16,9	
189,2	220,6	
58,4	69,1	
34,9	35,3	
24.1	25.4	
36.2	36.1	
30.8	28.6	
81 Q	20,0 64 1	
45.5	0 4 ,1 41.4	
40,0	41,4	
21,1	35,6	
27,2	29,1	
51,3	49,2	
97,4	95,4	
65,2	70,7	
31,6	33,3	
6,8	4,6	
13,4	13,3	
19,7	22,4	
15,5	13,2	
115.1	126.9	
56.5	71.9	
1063	1515.8	
584.3	797.6	
10.2	13	
115.6	125.3	
115,0	125,5	
94 10 E	98,0	
10,5	14	
279,8	316,3	
292,6	321,5	
30	21,7	
31,6	31,4	
22,7	26,9	
383,2	379,5	
36,3	36,8	
9,1	10,7	
148,2	172,9	
19,8	18,7	
268	255.5	
24.7	32.3	
13.2	14 1	
60 2	74.8	
12 7	10.3	
16.6	15.0	
10,0	224	
50.0	51 Q	
10.2	01,2 10.4	
10,3	10,4	
02,5 00 0	/ ð, /	
∠b,8	21,1	
213,5	233,7	
44,2	40,8	
101,1	103,9	
489,7	367,1	
20,2	16,6	

405	472,2	
29,8	35,9	
11,9	14,6	
91,9	113,1	
20,7	19,8	
6	4.3	
51 9	30.5	
248.2	238.6	
240,2	120.2	
90,0	120,2	
70,6	75,7	
603,3	679,7	
2442,9	2059,7	
100,8	88,5	
43,7	45	
57,1	42,9	
1365,3	1267,7	
304,2	328,2	
19,2	14,1	
23,5	24	
293,1	328,3	
31,2	34.6	
471.8	479.9	
93.7	89.4	
257.6	316.5	
148.2	154 5	
140,2	54.0	
+J, I 27	J 4 ,9 45.6	
57 644 E	43,0	
644,5	674,1	
62,5	69,9	
13,2	14,4	
19,3	20,5	
29,8	26,6	
62,4	67,7	
14,2	15,5	
334,5	335,8	
168,8	195,3	
57	52,2	
107	111,9	
250,9	298.8	
62.8	56.9	
58.1	61	
58.5	68.8	
117.4	127.2	
03	1 1	
0,5 50.6	47.2	
50,0	47,2	
01,0 04.0	44,Z	
34,0	35,4	
37,4	40,9	
28,9	28,6	
18,7	24,9	
332,7	341,4	
57,7	59,4	
35,8	47,4	
61,5	57,7	

29,9	31	
7,2	7,1	
65,5	79,4	
163,7	169,8	
44,2	49,1	
9,5	14,4	
26,2	24,2	
43,3	49,3	
11.1	20.4	
222.3	210.3	
12.9	6.8	
15.8	18.7	
34.2	39.4	
37 1	41.5	
185.3	174.9	
12.3	17 1	
56.6	64.2	
11 5	51 5	
44,5	11.6	
9,5	24.4	
24,5	24,4	
00,0 56.0	70,4 50.2	
50,Z	00,0 01 4	
32,3	31,4	
86,7	108,4	
94,1	121	
6	3,1	
26,7	29,2	
15,2	12,8	
23,8	17,9	
60,3	59,3	
13,7	16,1	
20,2	19,8	
75,5	92,6	
46,3	57,7	
11	14,5	
84,8	93,3	
817,3	1079,9	
20,1	18,7	
293,7	353,4	
23,8	31,8	
21,6	25,8	
823,6	1102	
438,3	453,9	
348,1	438,5	
21,1	15,9	
441,4	435,1	
41,1	53,1	
159,9	149,2	
38	44,4	
49.3	52,6	
373.6	426.8	
68.5	76.9	
46.2	48.7	
113.2	132.3	
110,2	102,0	

6,8	5,5	
124,6	135,2	
20,7	24,2	
260,4	291	
77,7	73,8	
15,9	13,1	
116,3	140,6	
33,1	32,1	
49,1	34,9	
115,6	124,7	
15,6	21,7	
49,6	47,5	
113,3	112,2	
121,9	138,5	
387,1	365,3	
492,4	561,8	
166,6	165,9	
47,9	56,9	
74,8	78,5	
11,5	14,2	
11,3	78,8	
10,1	19,8	
43,3 122 4	40 166 /	
122,4	138.2	
113,0	130,2	
28.0	28.6	
137	161 7	
258.9	270.4	
68.9	86.3	
352.2	389.4	
18,8	25,5	
595,4	605,1	
19,1	31,7	
15,5	16,1	
325,5	391,6	
163,4	179	
43,8	23,3	
21,2	24	
19,5	20,5	
58,4	51,8	
86,9	68,7	
86,9	94,1	
29,8	36,8	
287	331,2	
47,5	61,8	
16,3	15,5	
48,9 15 1	42	
45,1 17	52,9 39 G	
+ <i>1</i> 376 /	30,0 486 7	
72	73.8	
18	21.5	
88.9	76.5	
20,0	,.	

41,4	49,6
79,2	91
450,4	572,6
189,1	212,8
480,7	558,5
71,9	91,1
107,2	114,7
29,4	39,1
41,9	41,9
96,2	88,2
116,8	135,6
60,2	56
57,5	65,2
52,5	61,7
24,7	33
31,1	29,2
43,8	51,6
10	9,7
13	20,1
44,3	45,8
187,3	194
36,4	33,3
823,2	1050,1
6,6	3,6
28,9	40,6
19,8	22,9
142,1	146,1
19,2	28,5
100,3	141,9
71,8	68,8
150	193,3
462,9	539,5
41	46,6
66,8	90,4
158,6	167,3
73,7	89,8

INFORME DE LAS ACTIVIDADES REALIZADAS PERÍODO ENERO 2006-FEBRERO 2007

A-MATERIAS Y SEMINARIOS CORRESPONDIENTES AL PLAN DE CURSOS ESPECIALES CURSADOS Y/O APROBADOS POR EL DOCTORANDO

Curso: Organización y Función del Cromosoma Eucariote

Lugar y Fecha: EGE, FCEyN, UBA, Agosto de 2006 Modalidad: Teórico – Práctico. Calificación: Aprobado.

B- ADELANTOS REALIZADOS EN EL TRABAJO DE INVESTIGACIÓN DESARROLLADO Y DIFICULTADES ENCONTRADAS.

A continuación se detalla el avance y las modificaciones introducidas en las actividades propuestas en el plan de trabajo.

Durante el período informado realicé las actividades correspondientes a la parte B del plan de trabajo y experimentos no incluidos originalmente en el plan de trabajo, diseñados en base a los resultados obtenidos en la etapa anterior.

Parte B: Genómica-Genética Reversa.

Para identificar nuevo elementos involucrados en las vías de transducción de señales percibidas por el fitocromo B llevamos a cabo un experimento en el que se analizaron cambios globales en la expresión de genes en plantas deficientes en phyB, y en la nueva mutante *csa1*, aislada en la etapa anterior de este proyecto.

Utilizando la técnica de *microarrays* identificamos 359 genes cuya expresión varía significativamente entre al menos 2 de los 3 genotipos analizados (*phyB*, *csa1*, WT). Dentro de este grupo de genes se encuentran varios factores de transcripción del tipo MYB, WRKY y bHLH y genes que codifican para proteínas con dominios zinc finger y F-box, sugiriendo que las mutaciones de *phyB* y *csa1* alteran distintas cascadas

transcripcionales. Los 359 genes fueron agrupados 6 *clusters* de acuerdo a su nivel de expresión en los distintos genotipos.

El análisis por clusters revela la existencia de tres grandes categorías de genes. La primera agrupa a aquellos genes cuyo nivel de expresión varía significativamente en los genotipos mutantes con respecto al genotipo salvaje, la segunda categoría abarca los genes que poseen un patrón similar de expresión en *csa1* y en el genotipo salvaje pero diferente en el mutante *phyB* y en la última categoría están los genes cuya expresión varía solamente en *csa1*.

Los resultados obtenidos hasta el momento y presentados en el anterior informe, muestran que *csa1* afecta específicamente la vía de señalización del fitocromo B. El análisis del grupo de genes que varían su expresión únicamente como resultado de la mutación *csa1*, podría ser sumamente útil para intentar comprender cual es el mecanismo inicial por el cual *csa1* provoca un efecto negativo sobre las respuestas que involucran al PHYB. Dentro de los genes que aumentan significativamente su expresión como resultado de la mutación *csa1* se encuentra *PIF3*. Este gen que codifica para una proteína del tipo bHLH que juega un papel fundamental como regulador negativo en la vía de señalización iniciada por la percepción del rojo.

El patrón de expresión de genes representativos de distintos clusters fue corroborado por RT-PCR.

Caracterización fisiológica de eds4

Dado que una mutante identificada inicialmente por presentar defectos en las respuestas a la luz (*csa1*) resultó estar implicada en las respuestas frente a la infección con patógenos, nos preguntamos, si en forma recíproca, alguna de las mutantes aisladas por presentar defectos en la resistencia frente al ataque patógenos estaría implicada en la vía de señalación de los fitocromos.

El mutante eds4 fue aislado por presentar síntomas más severos que las plantas de genotipo salvaje al ser infectadas con *Pseudomonas syringae* pv. *maculicola*. Nuestros resultados muestran que *eds4* es hiposensible al rojo pero no muestra diferencias significativas con el genotipo salvaje al ser crecida bajo distintas intensidades de azul y rojo lejano continuo. *eds4* tiene disminuida la capacidad de responder a las disminuciones en las relaciones Rojo/Rojo Lejano del ambiente provocadas por la presencia de competidores. Finalmente, las plantas adultas de *eds4* desarrollaron alguno de los cambios morfológicos que ocurren frente a la presencia de plantas vecinas, aun creciendo aisladas, y en condiciones de elevado Rojo/Rojo Lejano . *eds4* ubica sus hojas en una posición más erecta que las plantas del genotipo salvaje y florece tempranamente tanto en fotoperiodos de 8 como de 16 horas.

Estos resultados, conjuntamente con los informados anteriormente, sugieren la existencia de una estrecha relación entre las vías de señalización que se desencadenan frente al ataque de los patógenos y las de señalización frente a cambios en el ambiente lumínico.

C-PUBLICACIONES ORIGINADAS Y PARTICIPACIÓN EN CONGRESOS

A Constitutive Shade-Avoidance Mutant Implicates TIR-NBS-LRR Proteins in Arabidopsis Photomorphogenic Development. **Ana Faigón-Soverna**, Franklin G. Harmon, Leonardo Storani, Elizabeth Karayekov, Roberto J. Staneloni, Walter Gassmann, Paloma Mas, Jorge J. Casal, Steve A. Kay, and Marcelo J. Yanovsky. (2006) The Plant Cell 18, 2919-2928.