
Di r ecci ó n:Di r ecci ó n:  Biblioteca Central Dr. Luis F. Leloir, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. 
Intendente Güiraldes 2160 - C1428EGA - Tel. (++54 +11) 4789-9293

Co nta cto :Co nta cto :  digital@bl.fcen.uba.ar

Tesis Doctoral

Manipulación diestra en ambientesManipulación diestra en ambientes
desconocidos : un modelo bio-desconocidos : un modelo bio-

inspiradoinspirado

Matuk Herrera, Rosana Isabel

2008

Este documento forma parte de la colección de tesis doctorales y de maestría de la Biblioteca
Central Dr. Luis Federico Leloir, disponible en digital.bl.fcen.uba.ar. Su utilización debe ser
acompañada por la cita bibliográfica con reconocimiento de la fuente.

This document is part of the doctoral theses collection of the Central Library Dr. Luis Federico
Leloir, available in digital.bl.fcen.uba.ar. It should be used accompanied by the corresponding
citation acknowledging the source.

Cita tipo APA:

Matuk Herrera, Rosana Isabel. (2008). Manipulación diestra en ambientes desconocidos : un
modelo bio-inspirado. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires.

Cita tipo Chicago:

Matuk Herrera, Rosana Isabel. "Manipulación diestra en ambientes desconocidos : un modelo
bio-inspirado". Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. 2008.

http://digital.bl.fcen.uba.ar
http://digital.bl.fcen.uba.ar
mailto:digital@bl.fcen.uba.ar


UNIVERSIDAD DE BUENOS AIRES

Facultad de Ciencias Exactas y Naturales

Departamento de Computación

MANIPULACION DIESTRA EN AMBIENTES
DESCONOCIDOS

UN MODELO BIO-INSPIRADO

Tesis presentada para optar al t́ıtulo de Doctor de la Universidad de Buenos Aires en
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Manipulación Diestra en Ambientes Desconocidos
Un Modelo Bio-inspirado

En la actualidad, la manipulación robótica diestra y autónoma en ambien-
tes desconocidos aún nos eluye. Niños de pocos años pueden levantar
y manipular objetos no familiares con mayor destreza que los robots ac-
tuales. En consecuencia, los investigadores en robótica coinciden cada vez
más que ideas de la biología pueden resultar beneficiosas en el diseño de
mejores modelos para los robots.

En este trabajo de tesis se presentan un modelo de control y algoritmos
para cada una de las fases de manipulación, que están fuertemente inspira-
dos en estudios neurofisiológicos sobre manipulación diestra humana. El
control de las fuerzas de presa y carga en cada fase es dirigido por señales
que simulan las respuestas aferentes humanas durante un proceso de ma-
nipulación. El objetivo del modelo es manipular objetos desconocidos con
estabilidad de la presa y comportamiento similar al humano.

Se utilizaron elementos finitos para simular computacionalmente dos de-
dos opuestos que toman objetos desconocidos, y un dedo presionando ob-
jetos. Los dos componentes esenciales del modelo de control propuesto
fueron simulados y testeados exitosamente: la estimación del coeficiente
de fricción entre el objeto y los dedos, y la detección del deslizamiento
incipiente.

Palabras Claves: Manipulación Diestra, Redes Neuronales, Robótica en
Ambientes Desconocidos, Modelos Bio-inspirados, Estimación de la Fric-
ción, Detección del Deslizamiento Incipiente



Dexterous Manipulation in Unknown Environments
A Bio-inspired Model

At present, autonomous, robotic dexterous manipulation in unknown en-
vironments still eludes us. Few years old children lift and manipulate
unfamiliar objects more dexterously than today’s robots. Thus, robotics
researchers increasingly agree that ideas from biology can strongly benefit
the design of autonomous robots.

Inspired by neurophysiological studies about human dexterous manipu-
lation, a control model and algorithms for each one of the manipulation
phases are presented. The control of the grip and load forces at each phase
is driven by signals that simulate the human afferent responses during a
manipulation. The control model goal is to manipulate unfamiliar objects
with grasp stability and human-like behavior.

Finite element analysis was used to simulate computationally two op-
posed fingers taking unknown objects, and a finger pressing objects. The
two crucial components of the control model were simulated and tested
successfully: the estimation of the coefficient of friction between the object
and the fingers, and the detection of the incipient slipping.

Keywords: Dexterous Manipulation, Neural Networks, Robotics in Un-
known Environments, Bio-inspired Models, Friction Estimation, Incipient
Slipping Detection
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Áναξαγóρας µǫν oυ̃ν φησι δια τo χǫιρας ǫχǫιν φρoνιµωτατoν
ǫιναι τoν ζωων ανθρoπoν : ǫυλoγoν δǫ δια τo φρoνιµωτατoν
ǫιναι χǫιρας λαµβανǫιν 1

ARISTOTLE, De partibus animalium

1"Anaxagoras says that because of having hands, man grew the most intelligent
among animals. [I think] it is correct to say that because of his intelligence he has hands"
(as cited by Bicchi (2000)).
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CHAPTER 1

INTRODUCTION

Within a year of birth, a human infant is clearly more dexterous than to-
day’s robots. Robotics researchers increasingly agree that ideas from biol-
ogy can strongly benefit the design of autonomous robots. Biological or-
ganisms have evolved to perform and survive in a world characterized by
rapid changes, high uncertainty, indefinite richness, and limited availabil-
ity of information. Industrial robots, in contrast, operate in highly con-
trolled environments with no or very little uncertainty. Although many
challenges remain, concepts from biologically inspired (bio-inspired) ro-
botics will eventually enable researchers to engineer machines for the real
world that possess at least some of the desirable properties of biological
organisms, such as adaptivity, robustness, versatility, and agility (Pfeifer
et al., 2007).

1.1 Motivation

Although industrial robots have been used for years to manipulate objects
in highly constrained domains, the problem of manipulating unknown ob-
jects in a realistic environment is still largely unsolved. Industrial robots
can achieve their task robustly because they exist in a rigidly controlled en-
vironment. In unknown environments, humans manipulate objects more
dexterously than today’s robots. The control system of the human hand
created by nature is the product of uncountable genetic mutations and
natural selection processes happened in thousands of years. Therefore,
the encounter between roboticists and neurophysiologists may give fruit-
ful results to both communities. Neurophysiological researchers can prove

1



INTRODUCTION

hypothesis of models of human behavior in robots. Robotics researchers
can take inspiration on neurophysiological studies to improve the design
of robots and control systems.

1.2 Objectives

The aim of this thesis is to take inspiration in neurophysiological stud-
ies about the human dexterous manipulation, to design a computational
control system for the dexterous manipulation in unknown environments.
Thus, the control of the grip and load forces at each phase must be driven
by signals that simulate the responses of the human tactile afferent. Typ-
ically, when robots manipulate objects, they must do so with a predeter-
mined grasp force. By contrast, humans are skilled at manipulating objects
with grasp forces maintained only slightly above the minimum required
to prevent slipping. The term grasp stability entails both the prevention
of accidental slips and the prevention of excessive fingertip forces. The
control model goal is to manipulate unfamiliar objects with grasp stability
and human-like behavior. To achieve this goal, a control model and algo-
rithms, emulating each one of the human manipulation phases need to be
designed.

The friction estimation and the incipient slip detection occupy a central
place in the human dexterous manipulation. To maintain grasp stability,
the normal:tangential force ratio must exceed a critical value, called the
slip ratio, which corresponds to the inverse coefficient of friction between
the object and the hand. Human tactile afferents provide the central ner-
vous system with signals related to the frictional conditions already at the
initial touch. The initial adjustment to the new friction often is insuffi-
cient and further "secondary" adjustments will occur later in the lift. Re-
sponses originated from small slips localized to only a part of the skin
area in contact with the object and in the absence of detectable vibrations
events, are often followed by small force ratio changes (Westling and Jo-
hansson, 1987). Such incipient slips, also trigger appropriate grip force
adjustments for grasp stability when an object is held in the air. Thus, a
particular emphasis has been put in this thesis, on the initial friction esti-
mation and the incipient slip detection.

2



INTRODUCTION

1.3 Context

In the 1970s, tactile sensing for robotic applications emerged as its own
field of research. Research kept increasing during the next decade, and in
controlled environments there has been great progress. Lee in 2000 (Lee,
2000) pointed out that in structured environments, we are able to come
very far without tactile information. Hence, he foresees that tactile sensing
will be most useful in unstructured environments where object properties
and/or the environment is not fully known (Tegin and Wikander, 2005).

The human tactile system has not been so extensively studied as the hu-
man visual and auditive systems. Further neurophysiological research is
needed to reveal more deeply how tactile sensors in the fingertips encode
direction of fingertip forces, the shape of surfaces contacted by the finger-
tips, the friction coefficient, the slips during manipulation, the torque load.
The model proposed in this work is strongly based on neurophysiological
studies of the human dexterous manipulation. A main contribution of this
work, is that the proposed model summarizes these neurophysiological
studies from a computer science and algorithmic perspective.

As humans grasp and lift objects, they make use of dynamic receptors in
the skin that respond to small, localized slips that are precursors to gross
sliding of the object (Johansson and Westling, 1990). These dynamic tac-
tile sensors enable them to gain a better estimate of the friction conditions
at the contacts. It is therefore desirable to provide robots with a counter-
part to the human ability to obtain continuous and accurate updates of
the friction coefficient. Although it is evident that humans benefit from
the ability to continually adjust their grasp forces based on incipient slip
sensing, comparatively little has been done to provide such capabilities for
robots.

Simulations were used to validate the proposed model. The finite-element
model used in the simulations are a 3-D extension of the plane (2-D) finger
model of Maeno et al. (Maeno et al., 2004). However, instead of estimat-
ing the friction coefficient based on the shear strain as in Maeno’s work,
it is estimated based on simulated human afferent signals. Israelsson Is-
raelsson (2002) designed a computational simulator of the responses of
the afferents from the glabrous skin during human manipulation. Thus, to
simulate the afferent responses, software code provided by Anna Theorin
(f. Israelsson), Lars Rådman, Benoni Edin and Roland Johansson of Umeå
University was adapted.

3



INTRODUCTION

1.4 Impact

For a versatile robot in an uncertain environment, tactile sensing will open
up new possibilities. Recently we have seen some impressive humanoids,
but if they cannot be made to interact with their surrounding, they will
be of little use. Combining these humanoids with advanced grasping and
manipulation capabilities, has for long been a dream that opens up pos-
sibilities limited only by imagination. Such robots could be used pretty
much anywhere in which it can be cumbersome or dangerous to use hu-
mans (Tegin and Wikander, 2005). Also, the computational modeling of
the dexterous manipulation process, could give new insights on the un-
derstanding of the human manipulation process, and could help to design
better prothesis for handicapped people.

1.5 Thesis organization

This thesis is organized as it follows:

Chapter 2 surveys some neurophysiological studies about the human dex-
terous manipulation.

Chapter 3 explores the state of the art about the simulation of the human
afferent signals, the friction coefficient and incipient slip detection, and the
slip correction.

Chapter 4 presents the control model. It presents the general design of the
control model and algorithms for each one of the manipulation phases.

Chapter 5 shows simulated experiments using the finite element method.
The two crucial components of the control model were simulated and
tested successfully: the estimation of the friction coefficient and the de-
tection of the incipient slipping.

Chapter 6 draws the conclusions.

4



CHAPTER 2

HUMAN DEXTEROUS MANIPULATION

Human dexterous manipulation is the product of the human sensory, me-
chanical, and control systems. There are about 17000 mechanoreceptors
in each hand. The regulation of the grip and load forces is driven by the
responses of these mechanoreceptors. In this chapter, we present a survey
of the neurophysiological studies about human dexterous manipulation.

2.1 Precision grip

When reaching for an object, the selected pattern of grasp is determined
not only by the shape and the size of the object but also by the intended
activity (Jeannerod, 1997). For example, a rod can be held with a precision
grip, if the desired action is to write; or a power grip, if it is going to be used
as a tool. In every day activities, precision grip is more frequently used
as it offers the possibility of fine manipulative actions, i.e. movement of
the object relative to the fingers within the hand (Elliott and Junge, 1984).
In this grasp configuration the thumb is abducted and rotated so that its
pulpar surface is diametrically opposed to the pulpar surface of the other
fingers.

2.2 Grasp stability

Lifting small objects with the fingers is something we do daily without
much mental effort. Still it is difficult to program a robot to do the same
thing (Cutkosky, 1985; Murray et al., 1994; Spong et al., 1993).

5



HUMAN DEXTEROUS MANIPULATION

The difficulty arises from the mechanical demands of the task (Fagergren,
2003). Though the vertical force (load force) required to lift an object is
completely determined by the weight of the object, the grip force is more
tricky since it depends on the force of friction (Johansson and Westling,
1984c) as well as the shape (Jenmalm and Johansson, 1997) of the finger-
object contact area. Grasp stability, i.e., the prevention of accidental slips
as well as of excessive fingertip forces, requires tuned grip force. In order
to avoid a slip between the fingers and the object, the grip force (GF) has
to be greater than the slip limit, i.e., the load force (LF) divided by the
coefficient of friction (µ): GF ≥ LF/µ. Ideally, the grip force could be tuned
in parallel with the load force, so whatever the load force is, the grip force
changes accordingly. But even a small external perturbation to the load
could then cause a slip. Therefore, the grasp stability would increase if the
grip force had a small force offset (Fo), thus creating a safety margin to the
slip limit: GF ≥ Fo + LF/µ. This grasp stability strategy is similar to what
human grip experiments reveal (Johansson and Westling, 1984a,c).

The friction coefficient determines the ratio between the grip and the lift
force required to prevent slips. Unfortunately, the friction is a difficult pa-
rameter to estimate since it depends on several factors, such as the amount
of sweat from the fingertips and the relative motion between the fingertips
and the contact area, and therefore changes over time. Hence, the ability to
adequately tune the grip force relies on the tactile information from local
micro-slips creeps at the periphery of the finger-object contact area (Smith,
1993). These micro-slips are a precursor to the unwanted gross slip, and
make it possible to sense the slip limit before it is reached. This sensory
mechanism is an important key to the efficient grasp stability in humans,
and has so far no counterpart in robotics (Fagergren, 2003).

Many manipulatory tasks require application of torques tangential to the
grasp surfaces. Tangential torques typically develop when we tilt or oth-
erwise rotate grasped objects whose center of mass does not lie on the grip
axis, e.g., the axis between the centers of the grip surfaces of the tips of the
thumb and a finger during a precision grip. These destabilizing torques
tend to rotate the object around the grip axis and may thus cause rotational
slips. The grip forces required to prevent rotational slips approximately
increase linearly with the torque load with a slope that depends on the
friction of the grasp (Kinoshita et al., 1997). Furthermore, the minimum
grip forces required to prevent slips depend strongly on the curvatures of
the grasped surfaces (Goodwin et al., 1998).

Thus, to manipulate an object with grasp stability, human subjects tune

6



HUMAN DEXTEROUS MANIPULATION

the fingertip forces and torques to the requirements imposed by the ob-
jects’ shape, friction coefficient, weight and distribution of mass (Good-
win et al., 1998; Jenmalm and Johansson, 1997; Johansson and Westling,
1984a,c, 1988a; Johansson et al., 1999).

2.3 Receptors in the glabrous skin of the human

hand

The human tactile system is dependent of several kinds of somatosensory
receptors. To drastically simplify, all of the human specialized sensory re-
ceptors forms three groups based on their different functions: (1) nocicep-
tors, (2) thermoreceptors and (3) mechanoreceptors. The nociceptors are
specific for potential tissue damaging stimuli, thermoreceptors for tem-
perature and mechanoreceptors are specifically tuned to mechanical stim-
uli. These three groups differ not only in their morphology but also, and
more importantly, in their sensitivity to different kinds of physical stimuli
(Purves et al., 1997).

The most common type of afferent in the glabrous skin of the human hand
is the FA I type (43% of the tactile sensors), followed by the SA I (25%), the
SA II (19%) and the FA II (13%) types (Johansson and Vallbo, 1979). All to-
gether, there are approximately 17,000 mechanoreceptors in the glabrous
skin of each hand. The type II afferents are uniformly distributed from
the wrist to the tips of the fingers, except regions close to the nails, which
are densely innervated by SA II afferents. The type I afferents show pro-
nounced distribution gradient and are most frequent on the tips of the
fingers.

The mechanoreceptors have low thresholds to mechanical stimuli, their af-
ferents (i.e., nerve axons who send signals to the central nervous system)
have high conduction velocities. The SA I and SA II units are referred to
as slowly adapting afferents, which means that they show a sustained dis-
charge in the presence of ongoing stimuli (see Fig. 2.1). In contrast, the fast
adapting afferents (FA I and FA II) fire rapidly when a stimulus is presented
(or removed) and then fall silent when the stimulation cease to change
(Johansson, 1978). FA units thus primarily signal the change in a skin de-
formation whereas SA units in addition respond to the amplitude of the
deformation. Each type of afferent is associated with a particular type of
corpuscular ending that can be identified by their microanatomy.

The Meissner corpuscle (FA I units) is located at the interface between the

7



HUMAN DEXTEROUS MANIPULATION

epidermis and the dermis, directly at the top of the epidermal ridges (Jo-
hansson, 1996a; Johnson, 2001). This receptor is the most common of the
mechanoreceptors in the human hand with about 150 receptors per cm2 at
the fingertip. Located at the same ridges lie the Merkel’s disks (SA I units),
which also are particularly dense in the fingertip, with about 100 receptors
per cm2. Deep down in the dermis, but also in ligaments and tendons,
there is a third kind of mechanoreceptor, the Ruffini ending (SA II units).
The last receptor type, the Pacinian corpuscle (FA II units), is located fur-
thest down; deep in the subcutaneous fat tissue and is the least frequently
found receptor in the human hand.

The skin area where responses can be evoked from a receptor is called its
receptive field (RF). The RFs of FA I and SA I units typically have sharply
delineated borders and show several small zones of maximal sensitivity
(Johansson, 1978, 1996a; Johnson, 2001). In contrast, the SA II and FA II
have large RFs but only one zone of maximal sensitivity and a gentle in-
crease of threshold further and further away from this zone (Israelsson,
2002).

The differences in RF properties between type I and type II units can partly
be explained by the location of their receptors within the skin: type I units
are close to the skin surface whereas type II units are found deeper in the
skin (Johansson, 1978, 1996a; Johnson, 2001). Moreover, whereas each type
II afferents innervates a single corpuscular ending, type I afferents divide
in several branches to innervate several corpuscles (Israelsson, 2002).

8



HUMAN DEXTEROUS MANIPULATION

FIG. 2.1: Tactile afferents in the human glabrous skin. FA I and SA I show RFs
with small sharp borders whereas the RFs of FA II and SA II show large obscure
borders. SA afferents adapt slowly to mechanical stimuli whereas FA adapts fast
(Johansson, 1996a).

9



HUMAN DEXTEROUS MANIPULATION

The FA I units’ zones of maximal sensitivity are located within a circle
or an oval covering five to ten papillary ridges (Johansson, 1978, 1996a;
Johnson, 2001). Their axons terminate at sites that are highly correlated to
the maximum sensitivity zones. FA I units have the smallest RFs, about
3-5 mm2. Since FA I units respond uniformly across the RF they cannot
show a good spatial resolution, i.e., their branches contribute equally to
each stimulus and there is no branch that dominate (Israelsson, 2002).

The SA I contains fewer highly sensitive zones than the FA I unit. Their
axons branch over an area of about 5 mm2 and innervate a large but un-
known number of Merkel cells (>100). When a smaller area than the
RF becomes activated by some spatial detail, the branch that terminates
within that area becomes dominant (Johansson, 1978). Since these areas
overlap, a population of SA I units have high spatial resolution. Accord-
ingly, humans can discriminate details of 0.5 mm (Israelsson, 2002).

FA II units have the largest RFs of the four units. Their RFs may include
the whole hand and their threshold becomes lower when the vibrations
are parallel to the skin surface. The FA II unit is a perfect illustration of
the importance of the microanatomy of the mechanoreceptors. The lamel-
lae of the onion shaped FA II structure have the effect of a band-pass fil-
ter, which explains their high sensitivity to specific frequencies (Israelsson,
2002; Johnson, 2001).

The response properties of SA II units are also well correlated with their
microanatomy. They can be divided into three groups (Johansson, 1978;
Johnson, 2001): those that are found in the palm increase their discharge
rate in response to stretches along a preferred axis, which is determined by
the location of the cell. A second group responds in one direction of stretch
only and is mostly found in the phalanges. Units of the third type are
located close to nails and show the highest discharge rates when pressure
is applied to the free edge of the nail (Israelsson, 2002).

2.4 Phases of a manipulation task

All humans lift objects in a similar manner. They transport and shape
their hand to achieve the best possible structure and the appropriate clo-
sure of the fingers around an object. This first step is largely determined
by the initial view of the object and its properties before the movement
onset. In contrast, visual signals have less importance during the subse-
quent phases of object manipulation (Johansson, 1996a). Once the finger-
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HUMAN DEXTEROUS MANIPULATION

tips have reached the object, an episode of lifting and lowering an object
from and to a table top involves (Johansson, 1996b; Johansson and West-
ling, 1984c, 1987; Wing, 1996):

1. Preload phase: using the fingers to apply force perpendicular to the
object’s surface at the points of contact of the fingers with the object.
At this phase the grip force is increased but not the load force. This
period lasts 80 ± 40 ms.

2. Load phase: is characterized by a parallel increase in the grip and load
forces.

3. Transitional phase: it begins when the load force has overcome the
weight of the object and therefore the object starts to move. This
phase ends when the object arrives into the desired vertical position.
In this period, grip force reaches its maximum value during a tran-
sient overshoot of its steady state.

4. Static (hold) phase: where the object is held in the air by fairly constant
grip and load forces.

5. Controlled lowering phase: by reducing load forces below the value
needed to counteract gravity. This reduction of load force allows the
object’s position to slowly approach the tabletop.

6. Release phase: after the contact with the table there is a short delay
before a rapid parallel decrease of grip and load forces due to the
release of the object.

As seen in fig. 2.2, short-lasting, specific patterns of sensory activity seem
to trigger the transition between the different phases of a task (Johansson,
1996a; Johansson and Edin, 1992).
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FIG. 2.2: Schematic illustration of the lifting task. After contact with the object
the grip force increases by a short period while the grip is established (a–preload
phase) before the command is released for a parallel increase in grip and load
force during isometric conditions (b–load phase). This parallel increase continues
until the start of movement when the load force overcomes the force of gravity.
The object is lifted to the intended position (c) by wrist and/or elbow flexion, and
a static (-hold-) phase is reached (d). After the replacement of the object (e) and
table contact occurs there is a short delay (f) before the two forces decline in
parallel (g–unload phase) until the object is released (Johansson, 1996a).
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2.5 Parallel coordination of the forces

Grasp stability is primarily obtained by the parallel change (increase and
decrease) in the grip and load forces applied to each contact surface (Edin
et al., 1992; Johansson and Westling, 1984b). This parallel change in grip
and load forces represents a control strategy, i.e., by linking these forces
together it offers a considerable flexibility when lifting objects of differ-
ent weights. With a heavy object, the load forces reaches high values be-
fore the weight is counterbalanced and the object is lifted, while the corre-
sponding increase in grip force ensures appropriate grip forces. The force
ratio is higher than the slip ratio by a certain safety margin (Fig. 2.3). The
safety margin for rough materials required to prevent slips is 40% of the
slip ratio in adults (Forssberg et al., 1995).

FIG. 2.3: Parallel coordination of the forces during manipulation. Dashed line
indicates the minimum grip:load force ratio to prevent slips. (Johansson, 1996a)
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2.6 Models of human force control

One way to use digital sensors to adjust the force output to object prop-
erties would be to engage them in closed feedback loops. But such loops
imply large time delays. These time delays arise from, e.g. impulse con-
duction in peripheral nerves, conduction and processing time in the CNS,
and, not least, the inherent sluggishness of muscles. In humans, these
factors add up to at least 100 ms for the generation of a significant force
response. Despite these control issues, subjects rely on feedback control in
certain types of manipulative tasks. This occurs in reactive tasks when we
restrain ‘active’ objects that impose unpredictable loads tangential to the
grip surfaces, e.g. when we hold a dog’s leash (Johansson, 1998).

Because of long time delays with feedback control, the systems involved
in human object-manipulation seem to be controlled by a feed-forward
sensory control system that is called anticipatory parameter control (APC)
(Johansson, 1996b; Johansson and Edin, 1993; Johansson and Cole, 1992).
Anticipatory parameter control refers to the use of visual and somatosen-
sory inputs for object identification, in conjunction with internal models,
to tailor fingertip forces for the properties of the object manipulated prior
to the execution of the motor commands. This control strategy implies that
the system uses previous experience with an object or with similar objects
to adjust the motor commands parametrically in advance. As such, APC
can be viewed as a system that operates on fairly long time scales. In
contrast, by using the discrete mechanical events in the afferent signal, the
sensory discrete-event drive control (DSC) results in changes of the motor out-
put whenever a mismatch between the expected and the actual outcome
of the sensory inflow occurs (Johansson and Edin, 1993). Hence, DSC can
be considered to operate on a shorter time scale.

Johansson (Johansson, 1996b) proposed a conceptual model for the appli-
cation of grip forces and load forces in a lifting task. Briefly, vision pro-
vides information on object position, object size, and object shape. This
information is used to activate controllers for transporting the hand to-
wards the object while the fingers are being preshaped. Based on visual
estimates of weight and friction, a set of tactile responses is predicted to
guide planning for the application of initial grip force to the object. Tactile
perceptions of weight and texture are fed back and compared to the pre-
dicted weight and texture. The mismatch is used to update memory rep-
resentations of weight and texture for a specific object appearance. This
memory is assumed to be retrieved on later occasions to guide anticipa-
tory application of forces (Gordon et al., 1993). If a declining grip force

14



HUMAN DEXTEROUS MANIPULATION

results in slip, a resulting slip alert signal in hand mechanoreceptors trig-
gers a reactive increase in grip force.

2.7 Previous lift memory

The initial forces applied to an object reflect the requirements of the previ-
ous lifts. The frictional conditions in the preceding lift with an object are
reflected in the development of the grip forces immediately after the object
is touched (Edin et al., 1992; Forssberg et al., 1995; Johansson and West-
ling, 1984b). Likewise, the adaptation of force development to an object’s
weight during the load phase must rely on memory representations of the
object’s weight acquired during previous lifts because explicit informa-
tion about object’s weight is not available until lift-off (Gordon et al., 1991,
1993; Johansson and Westling, 1988b). Thus, one must hypothesize that
there exist sensorimotor memories that represent both important physical
properties of the objects to be manipulated and the appropriate magnitude
parameters of the motor commands (Johansson, 1996b).

2.8 Weight and friction adaptation

The weight of the object principally modifies the duration of the loading
and unloading phases and the force rates during these phases. The heavier
the object, the more extended the phases of parallel force increase and the
higher the force rates. However, the ratio between the two forces is not
influenced (Johansson and Westling, 1990). 1

When grasping and lifting familiar objects that we can identify either visu-
ally or haptically, the force development is via APC tailored to the weight
of the object before sensory information related to weight becomes avail-
able at lift-off (Johansson and Westling, 1988a). As we have all experi-
enced, however, our predictions of objects’ weight may sometimes be er-
roneous. In such cases, the lifting movement may be either jerky or slow.
If the object is lighter than anticipated, the force drive will be too strong
when the lift-off takes place. Although burst responses in FA II afferents
evoked by the unexpectedly early lift- off, trigger an abrupt termination
of the force drive, this occurs too late (due to control loop delays) to avoid

1Note the difference between force ratio (i.e., the ratio between the grip and load
forces), and force rate (i.e., the amount of applied force reached).
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an excessively high lift. Conversely, if the object is heavier than expected,
people will initially increase load force to a level that is not sufficient to
produce lift-off and no sensory event will be evoked to confirm lift- off.
Importantly, this absence of a sensory event at the expected lift-off now
causes the release of a ‘new’ set of motor commands. These generate
a slow discontinuous force increase, until terminated by a neural event
at the true lift-off. Thus, corroborating the DESC policy, control actions
are taken as soon there is a mismatch between an expected sensory event
and the actual sensory input. Moreover, once an error occurs, the internal
model of the object is updated to capture the new weight for use in sub-
sequent interactions with the object, i.e., single trial learning (Birznieks,
2003).

The friction between an object and a digit determines the relationship be-
tween the normal (grip) and tangential (load) forces that can be applied
without slip. Thus, the proportional relationship between the employed
grip and load forces during self- paced manipulative tasks is functional
only if the normal-to-tangential force ratio is appropriately set for the fric-
tion between the skin and object. To prevent slip, this ratio must exceed a
minimum normal-to-tangential force ratio determined by the friction. We
know that the friction between objects and the fingers may vary widely
in everyday situations. For example, objects have different surface struc-
tures, they may be wet, and the sweating rates of the fingers vary over
time (Cadoret and AM, 1996; Johansson and Westling, 1984b). Neverthe-
less, people automatically adjust the balance between the grip and load
forces to the frictional conditions such that a relatively small but adequate
safety margin at each engaged digit is obtained, i.e., the more slippery the
object the higher the employed grip force at any given load force (Burst-
edt et al., 1997; Cole and Johansson, 1993; Edin et al., 1992; Johansson and
Westling, 1984a,c). Furthermore, it is clear that this adaptation is made
to the friction per se, rather than on the basis of different texture proper-
ties of the surface materials (Cadoret and AM, 1996; Jenmalm, 1998, 2000;
Johansson and Westling, 1984b).

Thus, with weight variations, the parallel change in grip and load forces
ensures grasp stability when lifting objects regardless of weight, i.e., with
a heavier object both the grip and load forces reach higher values before
the weight is counterbalanced than with a lighter one. With frictional vari-
ations, the balance between the grip and load force is a motor output pa-
rameter that is set to the current frictional limits (fig. 2.4).
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FIG. 2.4: Principles for parametric adjustments of motor output to object weight
(A) and friction in relation to the skin (B). Subject lifts an instrumented test ob-
ject from a table, holds it in the air and then replaces it, using the precision grip.
Upper graphs show the horizontally orientated grip force (‘GF’), the vertically ori-
entated load force (’LF’) and the object’s vertical position as a function of time.
The lower graphs show the grip force as a function of the load force in a phase-
plane plot for the same trials. Thin lines indicate the minimum grip-to-load force
ratio to prevent slips (’slip force’) and the safety margin against slips is indicated
by shading. Note that with weight variations, the parallel change in grip and load
forces ensures grasp stability when lifting objects regardless of weight, i.e., with a
heavier object both the grip and load forces reach higher values before the weight
is counterbalanced than they do with a lighter one (A). With frictional variations,
the balance between the grip and load force is a motor output parameter that is
set to the frictional limit (B). Adapted from Johansson and Westling (1988a) (A),
and Johansson and Westling (1984c) (B) (Jenmalm, 2000).
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Adjustment to friction and independent control of fingertip forces

With equal frictional conditions at the two grip surfaces in precision grip
lifting, the fingertip forces are about equal at the two digits, i.e., similar
vertical lifting forces and grip forces are used (Fig. 2.5A). With different
friction at the two digits, the digit contacting the most slippery surface ex-
erts less vertical lifting force than the digit in contact with the less slippery
surface (Fig. 2.5B-C). When gripping an object, a new frictional condition
influences the development of the tangential forces about 0.1s after con-
tact, i.e., well before the start of the vertical movement (Fig. 2.5B). Like-
wise, after about 0.1 s after contact the rate of increase of the grip force is
influenced by the average friction of the grasped surfaces. Thus, an up-
dating of the force coordination to the changes in frictional condition took
place. As illustrated in Fig. 2.5C, this ‘new’ coordination is used already
when the forces initially develop in the subsequent trial with the same ob-
ject, indicating that the relationship between the two forces is controlled
on the basis of a memory trace. Importantly, the safety margin employed
at a particular digit is largely determined by the frictional conditions en-
countered by that digit and barely influenced by the surface condition at
the other digit (Johansson and Westling, 1987).

In case of insufficient initial adjustments to the frictional condition, slips
may occur when the object has been lifted, primarily at one digit (Fig.
2.5D). The tangential force at that digit suddenly decreases while it in-
creased at the other digit. Such transient redistribution of the tangential
force caused by slips is always followed by a grip force increase triggered
by slip event. The net outcome is an increased safety margin at the slip-
ping digit but a virtually unaffected safety margin at the other digit (see
Fig. 2.5D). That is, the overall safety margin is restored preventing fur-
ther slips. The resultant new force co-ordination following slips is in each
instance maintained throughout the lifting trial and is used as a default co-
ordination for subsequent trials with the same object, again indicating that
the force coordination is controlled on the basis of a memory trace (APC).
In this situation, the slip updated the relevant memory mechanisms (Jo-
hansson and Westling, 1987).
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FIG. 2.5: Adjustments of fingertip forces to the local frictional condition in a lifting
task performed with a precision grip (Johansson and Westling, 1987).

19



HUMAN DEXTEROUS MANIPULATION

When the digits contacted different surface materials the requirement for
stable contact at each finger is that

N1 ≥ T1/µ1 and N2 ≥ T2/µ2 (1)

where N, T and stands for normal force, tangential force and coefficient of
friction (inverse of slip ratio) at digit "1" and digit "2" respectively. That
the load (L) is the sum of the two tangential forces (L = T1 + T2) implies
that for stable contact

L ≤ N1 ∗ µ1 + N2 ∗ µ2 (2)

In case of identical normal forces (N1 = N2 = N ),

L ≤ N ∗ (µ1 + µ2) (3)

Rearranging this equation we get that grasp stability requires

N ≥ L/(µ1 + µ2) (4)

Thus, if the normal forces are constrained to be similar at the two digits,
only information about the total load force and average friction at the two
contact sites is required to specify the minimum normal force to prevent
loss of the object (Birznieks, 2003).

Afferent responses at initial contact

When gripping an object, there are initial contact responses present in the
SA-I and FA-II afferents, and most distinct in the FA-I afferents (see in-
set in Fig. 2.5) (Westling and Johansson, 1987). The CNS apparently uti-
lizes such contact responses to confirm that adequate contact has been es-
tablished between the fingertips and an object before releasing the mus-
cle commands, leading to further manipulation (Johansson and Westling,
1984c).

The initial responses in the FA-I afferents are also considered responsible
for the initial adjustment to a new frictional condition because they are
influenced by the surface material (see inset in Fig. 2.5) (Westling and Jo-
hansson, 1987). The more slippery the material, the higher the discharge
rate, of the initial response of the FA I unit. Usually the impulse rates in-
creased but the durations of the impulse bursts decreased. The initial ad-
justment to the new friction often is insufficient and further "secondary"
adjustments will occur later in the lift. The estimation of the friction be-
tween the skin and the object most likely depends on afferent signals re-
lated to small localized slip events within the contact area when an object
is initially contacted. Such localized slips are explained by the unequal
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distribution of normal and tangential forces over the areas of contact that
occur due to the elastic properties and curvature of the fingertip (Westling
and Johansson, 1987). Thus, tactile afferents provide the central nervous
system with signals related to the frictional conditions already at the initial
touch.

If an object surface changes between lifts but the friction visually appears
to be the same, subjects use grip forces appropriate for the last lift (Johans-
son, 1996a; Johansson and Westling, 1987; Westling and Johansson, 1987).
Adjustments to a new frictional condition can be observed as early as 100
ms after the initial contact with the object, but also later during the lift.
Tactile afferents show differential responses to, for instance, friction, prior
to any force adjustment, and this suggests that they provide the informa-
tion necessary to change the force output (Johansson and Westling, 1987;
Westling and Johansson, 1987).

2.9 Slips during manipulation

To prevent slips the human system uses a pretty small safety margin, i.e.,
the ratio between grip and load forces (grip:load force ratio), which have
to exceed a certain value. There have been experiments where subjects
have been asked to slowly separate their fingers while holding an object,
and it was found that it is very difficult to voluntarily reduce the grip:load
force ratio when the system is able to detect small slips (Johansson and
Westling, 1987).

The contact area between the finger and an object may be divided into
two subareas: one stick area, where the ratio between the normal and the
tangential forces are above a certain numerical value (the slip ratio), and
one slip area, where the ratio is lower. Slips are most likely to occur at the
edges of the contact area because this is where the normal forces are lowest
(Maeno et al., 2000).

When subjects lift an object with two parallel vertical surfaces and a slip
occurs during the load phase, there is a stepwise decrease of the load force
on the slipping digit. Conversely, on the non-slipping digit, there is an
increase in the load force, i.e., the total load force is not changed but is
redistributed between the engaged digits. About 74 ± 9 ms after the on-
set of the slip there is a change in the force ratio; the upward movement
stops (tangential forces become constant) and the normal forces increase
(Johansson, 1996a; Johansson and Westling, 1987; Westling and Johansson,
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1987). This helps the subject to fasten the grip so that he or she will not
drop the manipulated object. Most slips during the object manipulations
occur without the subjects or anyone else for that matter, even noticing
them. Contrary to what one might expect, such unnoticeable slips actually
occur within no more than 10 to 30% of the total contact area (Johansson
and Westling, 1987; Westling and Johansson, 1987). Once 75% or more of
the contact area slips, a total slip is bound to occur.

Thus, slip events during the load phase trigger changes in both the load
(change in load force distribution) and grip (increase) force rates. During
the static phase, however, the correction is a fast increase in the grip force.
This phase dependence is functional, since gravity restrains the response
alternatives preventing efficient load force adjustments during the static
phase (Johansson, 1996b). These control signals clearly demonstrated a
phase dependent control, where similar tactile input signals trigger differ-
ent grip and load force responses in different phases of the lift.

Afferent responses to slips

The intensity of the afferent slip responses ranged from a single impulse
to brief bursts with peak frequencies up to ca. 300 imp/s. Slip responses
occurred in every kind of mechanoreceptor except for SA II units (Johans-
son and Westling, 1987; Westling and Johansson, 1987). Responses to slips
are evoked in FA-I, FA-II and SA-I afferents (see inset in Fig. 2.5); each of
the three types thus appears capable to signal the occurrence of such slips.
In contrast, responses originated from small slips localized to only a part
of the skin area in contact with the object and in the absence of detectable
vibrations events, are only observed in the FA-I and SA-I units and are of-
ten followed by small force ratio changes (Westling and Johansson, 1987).
Such slips, called localized frictional slips, also trigger appropriate grip force
adjustments for grasp stability when an object is held in the air. While
recording from FA I and SA I units, sometimes there was a pronounced
increase in the firing rate just before the slip responses occurred. This kind
of "incipient slip response" was associated with 7% and 15 % of the slip
events observed from the accelerometer signal while recording from these
two unit types, respectively.

The afferent slip responses in the highly vibration sensitive FA II units,
might have been evoked by the high frequency vibration in the ob-
ject/hand caused by the overall slips. This would be consistent with the
finding that the FA II units rarely exhibited localized slip responses.
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Strong burst responses in the FA II units caused by transients other than
those evoked by slips did not trigger upgradings of the force ratio. Thus,
by exclusion, signals in the type I units would be indispensable to the
adjustment of the grip to the friction.

Briefly, there are the "afferent slip responses" in the FA I, SA I and FA II
units, the "localized slip responses" principally in the FA I and SA I units,
and the "initial responses" most pronounced in the FA I units.

2.10 Answers of the mechanoreceptors during

manipulation

When lifting an object using the precision grip, the control system is
guided by sensory signals at specific events during the lift. While some
mechanoreceptive units are active for static pressure, when the tactile state
does not change, the fast adapting units are active when the tactile pres-
sure is changing, e.g., at small vibrations. The four types of skin afferents
in the glabrous show different types of responses during manipulative ac-
tions. This results in a very functional feedback channel conveying impor-
tant bits of information about the transitions between the different phases
of the lift (table 2.1).

Type I units

The FA I units become highly active during the initial period of grip force
increase. This is also true for most SA I units. Accordingly, most of the
skin deformation changes take place at low grip forces (below ca. 1 N).
The intensive responses in the FA I units and most of the SA I units dur-
ing the preload phases and early loading phases suggested that the skin
deformation changes caused by the increasing grip force are greatest at
low grip forces. Later, while the load and grip forces increase in parallel
during isometric conditions, the FA I and SA I units continue firing but
generally at declining impulsive rates. As long as the object is held in air,
the SA I units generally maintained firing with a tendency to adaptation.
A minority of the FA I units also discharge, especially during periods of
pronounced physiological muscle tremor. The SA I units usually become
silent when the grip and load forces in parallel declined to zero during
isometric conditions after the object had contacted the table. However,
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during the very release of the grip the FA I units and some SA I units
show brief burst discharges.

Type II units

The FA II units respond distinctly to the mechanical transients associated
with the start of the vertical movement and especially with the sudden
cessation of movement at the terminal table contact. Most FA II units also
discharge at the initial touch and at the release of the object, albeit less re-
liably than the type I units. Most FA II units respond at the following four
events: the initial touch, the start of the movement, the sudden cessation
of movement terminating the replacement phase (contact table), and the
release of the object (Westling and Johansson, 1987).

The SA II units are preferentially distributed along the stretch lines of the
human hand. Their activations are clearly scaled by the load amplitude
(because they need stretching to response). They respond late in the load-
ing phase and reach a maximum of firing rates late in the lifting phase
which is sustained throughout the static part of the object manipulation
(Johansson, 1978; Johansson and Westling, 1987; Johansson and Edin, 1992;
Johnson, 2001; Macefield et al., 1996; Westling and Johansson, 1987). These
units show a weak discharge rate during the loading phase and a decline
of firing during the phase of unloading. During the last part of the manip-
ulation the SA II units cease firing.
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Events Activated afferent
units

Role of the afferent
signal

First contact and loss of
contact with an object

SA I & FA I Triggers the following
sequence of a multi-
phase action

Start of the vertical
movement of an object

FA II Informs CNS of erro-
neous programming of
the anticipatory GF re-
sponse. May trigger re-
active GF response.

Initiation of unloading
and loading phases

SA II Codes an estimate of
objects weight. Codes
the balance between
normal and tangential
forces

Frictional slips i.e.
local redistribution of
strain/stress patterns
in the skin contact area

FA I & SA I Informs CNS of rel-
ative orientation of
object and contact area.
Helps decrease the
amount of excess GF
used

Localized finger slip FA I, SA I & FA II Codes the duration
and magnitude of a
finger slip. May trigger
reactive GF response.

Object’s contact table FA II Informs CNS that the
object has contacted
the table during the
unloading phase

Table 2.1: Summary of the specific role played by each of the four mechanore-
ceptors in the control of grip force (GF) during the simple act of lifting an object
between index and thumb (Johansson, 1996b; Westling and Johansson, 1987).
This table was adapted from Turrell (2000)

2.11 Torque load

Torque loads often develop in natural tasks together with linear load forces
due to gravitational and inertial forces. For example, in a precision grip
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task tangential torques occur whenever we tilt an object around a grip axis
(line joining the fingertips) that does not pass through the object’s center
of mass and when we lift an object whose center of mass lies off the grip
axis while keeping it level (see fig. 2.6 B). These torque loads tend to ro-
tate the object around the grip axis (rotational slip) and in certain circum-
stances, this may be used to advantage. For example, when we pick up a
pencil, rotation during lifting may help to align the pencil appropriately
for subsequent writing. However, if instead the intention is to preserve
particular geometric relations between hand and object, increases in grip
force will be needed to compensate for the torque load as well as for the
linear load force when the object’s center of mass does not lie on the grip
axis. This would occur when we hold a book with its back in a vertical
orientation between the fingers and thumb and put it in a slot in a book-
shelf. Because we rarely take a book such that the grip axis passes through
its center of mass, a torque load is present in relation to the grasp. Torque
loads depend on rotational (torsional) friction between the fingertips and
the object which arises because the normal force is distributed across the
skin-object contact area, rather than focused at a point (Buss et al., 1996;
Howe and Cutkosky, 1996). It was originally demonstrated by Kinoshita
et al. (Kinoshita et al., 1997) that the minimum grip force required by a fin-
gertip to stabilize a disk subjected to torque load increases approximately
linearly with both torque and tangential force, with slopes that depend on
the friction within the contact surface. Furthermore, the grip force used by
subjects to hold the object was regulated to the tangential torque. Thus, to
avoid slips under combined linear force and torque loads, subjects need to
apply a grip force that is higher than that required to prevent slips due to
the linear load force only (Jenmalm, 2000).
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FIG. 2.6: Schematic illustration of two principally different destabilizing fingertip
loads, tangential to the grasp surfaces. In A, subjects generate primarily linear
load forces (LF) that develop due to gravitational and inertial forces when the ob-
ject is lifted from its support. The center of mass (CM) is located below the grasp
surfaces. In B, subjects hold a lightweight test object whose center of mass (CM)
is located in front of the grip axis. They therefore generate tangential torques (Tq)
at each grasp surface, i.e., torque loads. The arrows in A-B indicate directions of
positive tangential torque and linear load force to counteract object moment and
object mass (Jenmalm, 2000).
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2.12 Shape adaptation

In this section a survey of the force adaptation to the angle and curvature
of the surface (fig. 2.7) is presented.

FIG. 2.7: Two different aspects of objects’ shape. A: The surface angle be-
tween the flat grip surface and the vertical of the object. At zero degrees the
grip surfaces are flat and parallel (middle), whereas at positive angles the grip
surfaces taper upwards (left; 30◦ illustrated) and at negative downwards (right;
-30◦ illustrated). B: Spherically curved surfaces, with their curvature expressed
as inverse radius ranged from -50 to 200 m−1. Concave curvature(left), flat (mid-
dle) and convex (right) are illustrated in the figure. C - D: Schematic illustration
of forces measured with the tapered object and the object whose grasp surfaces
were spherically curved, respectively. LF - vertical load force; GF - horizontal
grip force; NF - force applied normal to the grasp surface; and TF - force applied
tangential to the grasp surface (Jenmalm, 1998).

2.12.1 Adjustments to surface angle

Forces normal (NF) and tangential (TF) to the grip surface (fig. 2.8) can
be computed for each digit from the measured vertical forces (VFs) and

28



HUMAN DEXTEROUS MANIPULATION

horizontal forces (HFs) and the known surface angle (α) between the grip
surface and the vertical of the object using the following equations: NF =
HF × cos(α) - VF × sin(α), and TF = HF × sin (α) + VF × cos(α) (Jenmalm
and Johansson, 1997).

FIG. 2.8: Normal and tangential forces for objects with different surface angles
(Jenmalm and Johansson, 1997).

Changes in object tapering give rise to a marked and graded variation of
the employed fingertip forces although the object’s weight and the surface
friction between object and digits is the same. The horizontal grip force
increases progressively with surface angle (Figs. 2.9A and C). This effect
is present because the angle principally influences the grip force rate; the
more positive the angle the higher the rate of force change. The genera-
tion of vertical load force and the vertical movement is less influenced by
the surface angle; the static vertical force is not influenced at all, since the
weight of the object is constant. Consequently, the horizontal grip force at
any given vertical load force increases with the surface angle (Fig. 2.9A).
As a consequence of the manner in which the subjects change the balance
between the horizontal and vertical forces with the geometry of the object,
both the normal force and that tangential to the grip surfaces increase pro-
gressively as a function of the surface angle (Fig. 2.9B and C). Importantly,
the two forces increase in parallel, keeping an approximately constant rela-
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tionship regardless of surface angle (Fig. 2.9B, right panel). Thus, despite
the extensive variation in force requirements, the safety margin expressed
as the difference between the employed static normal force and the cor-
responding minimum normal force to prevent slip (‘slip force’) is nearly
constant across the different surface angles (Fig. 2.9C, dotted lines in bot-
tom row) (Jenmalm, 1998).

When the subjects can see the object and have normal digital sensibility,
the surface angle reliably influences the development of the horizontal
grip force already from the initial contact with the object, i.e. before so-
matosensory information related to the object’s surface angle could have
influenced the force output. Therefore, subjects use vision to compute the
force requirements (Jenmalm, 1998).

2.12.2 Adjustments to surface curvature

The grip force measured along an axis through the centers of the grip sur-
faces increases in parallel with increasing linear load force, but the rela-
tionship between the two forces is hardly affected by the surface curva-
ture(Jenmalm et al., 1998). However, the curvature becomes critical in
tasks that involve torques tangential to the grasp surfaces, such as when
we tilt objects whose center of mass does not lie on the grip axis. That
is, the curvature markedly affects the grip force required to prevent rota-
tional slips under tangential torque loads; the grip force required increases
for larger curvatures (Goodwin et al., 1998; Jenmalm and Johansson, 1997;
Kinoshita et al., 1997). Accordingly, at any given torque load, subject use
a higher grip force with more curved surfaces in a manner matching the
effect of the curvature on the rotation friction. This parametric scaling of
the grip force results in an adequate safety margin against rotational slips
over a wide range of curvatures.
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FIG. 2.9: Force development during the initial part of the lifting task in which the
subjects lifted tapered objects with different surface angles. A - left panel: Vertical
load force, horizontal grip force and grip force rate as a function of time for data
averaged across trials; shaded areas give ± 1 SEM and all trials are synchro-
nized on touch. B: Forces applied normal and tangential to the grasp surfaces
for data corresponding to those in A. Right panels in A and B: Coordination be-
tween horizontal grip force and vertical load force and between normal force and
tangential force. C: Static horizontal grip force and vertical load force (upper ro )
w and static normal force, tangential force and safety margin (lower row) shown
as function of surface angle for individual subjects. Vertical bars indicate ± 1 SD
(Jenmalm, 1998).
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2.13 Grasp development

Precision grip appears at about 10 months of age but the mature patterns
do not occur until between ages of six to eight (Forssberg et al., 1991).
Young children regularly tend to increase the grip force well before the
load force. This behavior might be an expression of feedback strategy
since there is an absence of anticipatory weight-related parameter control.
At about two years of age there is a coupling between grip and load forces
(Werremeyer and Cole, 1997). Children under the age of three do not use
visual cues about the size of the object to estimate the weight of the object
(Forssberg et al., 1991). They continue to increase the load force in small
increments until liftoff occurs. This feedback strategy is similar to that ob-
served when adults underestimate the weight of an object and then have
to increase the load force again until liftoff occurs.

Cole et al made a study of the relation between age and fingertip forces
(Cole et al., 1999). As a summary, they suggested that older adults tend
to use higher forces than younger adults but the skin slipperiness explains
this increase between the ages of 50 and 60. Only after age 70 there is
also an increase in the safety margin for the rough (non-slippery) surfaces.
On an average the grip forces and the safety margins were twice as high
for older than for younger adults. Older subjects also showed a longer
delay between grasping an object and lifting the same. Even when the
experimenters had accounted for skin slipperiness, older adults showed
a grip force that was between 33% and 57% higher than for younger sub-
jects. Since the population of FA I units decline the older we get may
explain the higher safety margins since it is difficult to observe and adapt
the forces due to friction without them. Cole et al found that older sub-
jects used safety margins that were between 41% and 104% higher than
younger subjects.
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STATE OF THE ART

In this section, we survey the different techniques that have been proposed
for the estimation of the friction coefficient, the detection of the incipient
slip, the correction of the slip, and the simulation of the human afferent
signals.

3.1 Friction coefficient and incipient slip detec-

tion

In the field of fine grasp, consistent efforts have been devoted to design
sensors able to detect an incipient slip condition. The development of such
sensor is very useful in the estimation of the friction coefficient of an un-
known object during manipulation. To achieve the above goal, one can
outline two main approaches.

The first consists in calculating the friction coefficient by measuring the
normal and the tangential forces when the object starts to slide. The main
advantage of this approach is that it can be implemented without using
dedicated sensors, although the measure is obtained in consequence of a
relative movement of the object and the grasping device. This method has
been used, for example, in Bicchi et al. (1993); Cicchetti et al. (1995).

The second approach consists in the development of special sensors. These
are mainly dedicated devices, designed and realized with the only goal
of detecting a slip condition. Mostly, they are based on accelerometers
properly placed in elastic materials which start vibrating when slip begins
(Howe and Cutkosky, 1989; Tremblay and Cutkosky, 1993). The main ad-
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vantage of these sensors is that they provide a robust and a reliable mea-
surement. On the other hand, they are dedicated devices and therefore
increase the overall complexity of the sensorial system.

Holweg et al. (1996) presented two techniques for detecting a slip condi-
tion with rubber-based tactile sensors. The first technique employs the
elasticity of the rubber. Before the object starts to slip, the rubber is
stretched. This deformation can be interpreted as a signal of an incipi-
ent slip. In fact, it is shown how a slip can be detected by implementing
a frequency analysis of the center of the force distribution an by testing
the low frequency components. Note that this approach proposes a tech-
nique based on the detection of a spatial variation. The second approach
is more closely related to the human sensation of slip. It is based on the
idea that the normal forces measured by the tactile sensor fluctuate with a
certain frequency during slip. This fluctuation is due to vibrations of the
rubber during slip of the object. The vibrations can be regarded as a "catch
and snap back" effect (Howe and Cutkosky, 1989). During the catch phase
the rubber moves along with the object due to the friction between the
rubber and the object. Due to this stretching the measured force decreases
while, after the rubber snaps back, it increases again. During slip two main
contributions of the frequency spectrum have been individuated. A low
frequency component, approximately at 10 Hz, is due to the stress of the
rubber. It starts immediately when slip occurs, and successively is present
only for a short period of time. The second component can be found at
about 65 Hz and starts and stops directly with the slip. This seems to be
the actual vibration of the rubber, the so called "catch and snap" effect.

Canepa et al. (1998) designed and realized a tactile sensor selectively sen-
sitive to shear and normal stress components generated during frictional
contact. A backpropagating neural network is then used to make a com-
parison of the normal and shear stress, and detect an incipient slip condi-
tion. The accuracy reached in the detection is rather high, considering the
low resolution of the sensor and the high noise level on the data. Another
important feature of the method is the high speed of the network (in par-
ticular if it is implemented via-hardware), and the implicit robustness of
the design to vibration noise.

Maeno et al. (1998) showed that changes in the stick/slip condition at the
surface of an elastic finger when lifting an object can be estimated by the
shear strain distribution pattern. When the stick/slip condition is known,
the grasping and lifting force can be controlled without producing a com-
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plete slip. Furthermore, detection of the friction coefficient between the
finger and object is not necessary.

Shinoda et al. (2000) showed that tangential stress/strain at the center of
the elastic finger indicates the difference in friction coefficient when the
elastic finger is pressed against a planar object.

Hosoda et al. (2002) proposed an internal representation of slip for a soft
finger with vision and tactile sensors. They used uncalibrated vision and
tactile sensors, and detected the slip by a hebbian neural network connect-
ing the vision and tactile system. At the beginning of learning, only the
vision can sense the slip as the movement of the target, but after a while
the tactile sensors can sense the slip even if it is so small that the vision
sensor cannot sense it. The originality of this proposal is the use of uncal-
ibrated sensors, and the representation of slip inside the agent. However,
they cannot distinguish slip from just pressured.

3.2 Simulation of the afferent responses

Israelsson (2002) made a computational simulator of the responses of the
afferents from the glabrous skin during human manipulation. The out-
put of the simulation program are spike-trains from each of the simulated
afferents (fig. 3.1).

FIG. 3.1: Scheme of the program simulating human afferents (Israelsson, 2002).
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To develop the simulation program experimental data were used from a
from a not yet published at that time study by Roland Johansson and co-
workers at Umeå University. In this study, subjects had their nail of their
index finger glued to a support structure. A flat circular contact plate was
moved against the fingertip, to a center point located near the center of
the approximately flat portion of the fingertip surface, which serves as the
primary point when manipulating objects. This point was used as the zero
point in a coordinate system of the subjects’ fingertip. The movement of
the plate towards the fingertip was controlled through position servo con-
trol and then pressed against the fingertip under force servo control once
the normal force had reached 0.2N up to a total of 4N. Forces were deliv-
ered in one of five directions: normal to the surface, in the distal, prox-
imal, radial, and ulnar directions (in addition to the normal force of 4N,
there were, in the four tangential directions, force direction components of
1.1N). The contact plate was covered with a 25 µ latex rubber glued to its
surface, which would give the objects a surface of rubber i.e. a high fric-
tional value, during the simulated manipulations. In the center of the con-
tact plate there was a hole (diameter 1.2 mm) with a force probe (diameter
1 mm). The flat tip of the force probe was at level with the contact surface
and measured the local force in a small skin area (i.e., within about 1 mm2)
in three orthogonal directions, X, Y and Z, representing the local tangential
forces and the normal force, respectively. The plate was moved in 1 mm
steps across the fingertip in six different subjects and at each site the same
total force profile was applied while the local forces were measured. This
way, a complete data set for each stimulus direction represented the local
forces across the fingertip surface in touch with a contact plate. In parallel
experiments, afferent responses to the same type of stimuli were recorded.

Thus, data of two types were used during the simulations: (1) local forces
in the plane of the skin and normal to the surface and (2) microneuro-
graphical recordings of afferent activity in humans.

Each fingertip profile was translated into a 29 × 29 large matrix (each cell
corresponds to 1 mm2). To represent the force development at the finger-
tip, with a resolution close to the one available from the recording equip-
ment, the force distribution across the fingertip (i.e. the 29×29 matrix) was
represented at 0.1N steps of total normal force. Because the normal force
ranged from 0.0 to 4.0N (41 steps not counting the moment before con-
tact), a complete description of the force development could be obtained
by means of a 41 × 29 × 29 matrix. As for the subjects’ profiles, the two
tangential forces and the normal force were locally distributed across the
surface of the model fingertip, i.e. in each cell there were three forces (X,
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Y and Z). These three force components were dissimilar in all tangential
directions and therefore, in order to get a matrix that holds all of this, i.e.
three forces (X, Y, Z) and five stimulus directions (normal, distal, proximal,
radial and ulnar), the final matrix became 41 × 29 × 29 × 3 × 5. The force
at intermediate values was calculated by interpolation.

The same force profile was used during all of the simulations, and was
the same as in the empirical data, i.e., a half sinusoidal wave, 125 ms
for the loading ramp, 250 ms for the hold phase and 125 ms for the un-
loading ramp. The afferent responses correspond to different stages in the
force profile which means that in order to correctly imitate the afferent re-
sponses, all the parts of the force that are deforming the fingertip must
be taken into account. Therefore, the afferent responses to the changing
forces on the finger were simulated by using the forces applicable to their
receptive fields (RF’s) projected onto the digit surface. The RF’s of type I
afferents are located correspondingly to the cells in a matrix model of the
surface of the model fingertip i.e. they correspond to 1 mm2. For the FA
II, the RF corresponds to the whole hand and the SA II’s RF is calculated
in a separate function in the program. This function uses the contact point
(cp) in which the center of the SA II is located and from there calculates
the total force in related cp’s, i.e. each SA II has a field covering 21 cp’s.

Generating spike trains similar to those observed in actual neuro- physio-
logical experiments require several steps:

1. For all receptor classes, except the FA II afferent, the response in-
tensity was calculated, at specified time intervals (∆t = 1 ms), as a
weighted sum of the forces (X, Y, Z) and first time derivates of the
same three orthogonal force directions:

f(t) = k1 × Fz(t) + k2 ×
dFz(t)

dt

+ k3 × Fy(t) + k4 ×
dFy(t)

dt

+ k5 × Fx(t) + k6 ×
dFx(t)

dt

where k1−6 represent the weights that differed between the differ-
ent afferents. Fz represents the force in the normal plane, Fy and Fx

correspond to the tangential forces in the Y and X directions, respec-
tively.

The weights allow to define the simulated afferents with different
sensitivity to the dynamic and static components of the force devel-
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opment, as well as different sensitivity to forces normal and tangen-
tial to the surface. The weights of the table 3.1 were used.

Z(k1) dZ(k2) Y(k3) dY(k4) X(k5) dX(k6)
FA I 0.0 2.5 0.0 1.5 0.0 1.5
SA I 8.0 1.0 5.0 0.5 2.0 0.25
FA II 1.1 0.0 0.0 0.0 0.0 0.0
SA II 6.5 0.2 2.5 0.2 2.5 0.2

Table 3.1: Coefficients used by Israelsson in the simulation of the afferents (Is-
raelsson, 2002)

Accordingly, for FA units the weights of the force derivatives were
comparatively large whereas the weights for the static forces were
zero. Conversely, adopting non-zero weight for the static compo-
nents and more modest weights for the force derivatives could sim-
ulate the response intensity of SA afferents. Moreover, FA I units
are known to be particular sensitive to changes in the tangential
forces and accordingly the corresponding weights were larger for
FA I units than for, i.e., SA II units. Given that there is no way of
figuring out the value of the weights of the table 3.1 from experi-
mental data, they were determined by trial-and-error and qualita-
tive comparisons. When comparing the responses that resulted from
‘reasonable’ settings with published afferent responses the simulated
responses were qualitatively similar with those recorded in neuro-
physiological experiments.

2. To specifically capture the dynamic responses of FA II units, whose
responses are highest between 250-300 Hz (Johansson and Westling,
1987; Westling and Johansson, 1987), a digital recursive band pass
filter (245-375 Hz, 12 dB) was applied to the input force (FZ), at each
time step (∆t = 1 ms). As a consequence of this, the simulated FA
II unit shows similar responses to ‘vibration’ as a human FA II and
responded strongest for signals at 300 Hz and then showed smaller
response intensities at higher and lower frequencies.

3. To simulate the irregularity in discharges of natural spike trains,
noise was added to the calculated response intensity. All units, ex-
cept SA I, was assumed to show a normal distribution of their inter-
spike intervals and therefore a simple Gaussian noise (normal distri-
bution) was added to their responses (Edin, 1992). Gaussian noise
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could be added using standard randomizing routines. In contrast,
SA I units show a distribution of their interspike intervals that re-
sembles a Poisson distribution (Edin, 1992).

Since the force ramp throughout all the simulations is the same, the
only thing that changes the afferents responses between simulations
is the above strategy to apply noise. This means that the afferents
respond differently (although small differences) each time they are
stimulated, as do a human afferent, since no indentation i.e. defor-
mation of the fingertip, during human manipulations is exactly the
same.

4. Finally, spike trains were generated from the response intensity sig-
nals by integration; every time the integration of the signal reached
above a specified threshold a spike was ‘generated’ (similar to the ac-
tion potential of the human receptors), the integrator was reset and
the process repeated for the whole simulation. This model does not
have an explicit way to simulate the refractory period, i.e. right after
the action potential, the cell is not capable to generate a new action
potential in a short period of time. However, since the model inte-
grates in order to generate a ‘spike’, there is a short delay until the
area beneath the analog signal reaches the threshold again, this could
in some indirect way count as the receptors refractory period.

3.3 Slip correction

Fagergren et al. identified three factors influencing the efficiency of the
slip correction (Fagergren et al., 2003):

1. The time development of the motor command (correction profile).

2. The delay between the onset of the grip and load forces (GF-LF-
delay). This delay builds up a safety margin before the onset of the
LF and makes the grip less sensitive to changes in frictional condi-
tion and to external perturbations in the LF.

3. How fast the lift is performed. If an object is picked up slowly, i.e.,
the load phase duration is long, the fingers will slip less than in a fast
lift. This is because the LF rate is lower for a slow lift and, hence, will
cause a slower and shorter movement of the fingers at slip.
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FIG. 3.2: The four correction profiles. Neural grip force (NGF) is the output of
the control component of the model, corresponding to the motor commands to
the motoneuron pool in the spinal cord. The unit is the Newton (Fagergren et al.,
2003).

They tested four correction profiles (fig. 3.2).

It was measured how each parameter affected the ability to stop and pre-
vent a slip. The ability to stop an ongoing slip was indicated by the slip
distance when the correction profile was applied. The ability to prevent
a slip from occurring was measured by finding the latest time at which
the correction profile could be introduced and still preventing slip from
occurring. This time defined the neural correction window (NCW) as the
time window spanning from the first possible moment that the slippery
surface could be detected, i.e., at finger contact, to the latest possible time
to activate the correction profile and still preventing slip to occur.

Slip stopping

The ability to stop a slip was performed by measuring the slip distance.
All three parameters affected the slip distance. The sharper the Correction
Profile, i.e., the higher frequencies it contained, the earlier it stopped the
slip. Correction Profile 4 was the most efficient because it produced the
fastest increase in the GF. It was concluded that the ability to stop an on-
going slip improved with the presence of higher frequency components in
the Correction Profile because sharp increase in the input signal resulted
in a steeper increase in the output GF. The GF-LF-delay affected the slip
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distance. An increase in the GF-LF-delay from 20 to 80 ms increased the
slip distance from 3.4 to 6.4 mm. This is because the slip margin is greater
for a longer GF-LF-delay. Consequently, for a long GF-LF-delay, the LF
and the LF rate were higher when the slip started than for a short GF-LF-
delay, which resulted in a greater acceleration of the finger at slip. The
Load Phase Duration influenced the slip distance. A slow lift with a Load
Phase Duration of 500 ms slipped only 2.0 mm, whereas a fast lift with a
Load Phase Duration of 200 ms slipped 8.7 mm.

Slip prevention

The three control parameters influenced the NCW in different ways. As
the Correction Profile became sharper, it could be introduced later and
still prevent a slip, see Fig. 3.3 A. Profiles 2-4 had a NCW of 46-48 ms,
whereas profile 1 only had a 26 ms window, requiring a fast reaction to
completely prevent slip. Hence by using Correction Profile 2, 3, or 4, more
time for sensory information processing is made available before the cor-
rection profile must be introduced. The GF-LF-delay had the strongest in-
fluence of all three parameters on the efficiency of slip prevention, see Fig.
3.3 B. A 60 ms increase in the GF-LF-delay (from 20 to 80 ms) increased the
NCW by 115 ms (from 7 to 122 ms). Therefore, the longer the GF-LF-delay
the greater the probability for preventing a slip. The Load Phase Duration
had almost no effect on the NCW as shown in Fig. 3.3 C.

FIG. 3.3: Sensitivity analysis when slip was prevented. The three control parame-
ters’ effect on the neural correction window (NCW), indicated by horizontal lines
A: Correction Profile is varied. B: GF-LF-delay is varied. C: Load Phase Duration
is varied. If a Correction Profile was released within this time window, the slip was
prevented. If it was released later, a slip occurred (Fagergren et al., 2003).

The longer the initial slide distance, the greater the probability for pre-

41



STATE OF THE ART

venting a slip. This suggests that the longer the initial slide distance the
more evidence is received by the CNS indicating a new friction, and that to
delay the LF onset is a strategy that is used to prevent slipping, as proven
efficient in the sensitivity analysis. Indeed, the GF-LF-delay decreases dur-
ing development and is the last parameter (of 8 investigated) to reach the
level in adults (Forssberg et al., 1991). For children at 2 years of age, the
GF-LF-delay is ∼ 120 ms, at 7 years, it is ∼ 60 ms, and for adults, it is ∼ 40
ms.

In the sensitivity analysis, profile 4 was the most efficient because the slip
distance was 30% shorter than the second best profile and it had one of
the longest NCWs. In addition, the variance analysis suggested profile 4
as the precision was regained earlier than for profiles 2 and 3. Indeed, the
human data confirmed the use of a sharp burst as in profile 4.
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CHAPTER 4

THE CONTROL MODEL

We propose a control model and algorithms for each one of the phases of
a manipulation process, that emulate the way humans take objects.

4.1 Relevant object’s features

The world of possible objects is uncountable. Human beings discriminate
objects based on visual and tactile stimuli. Therefore, in order to afford the
problem of dexterous manipulation in unknown environments the first
step is to identify the features that are useful to discriminate objects. Two
relevant features are the friction and the shape of the object. The friction
and the shape of the object at the contact points, influence the slip ratio,
which determines the force ratio. Another relevant feature is the weight.
The weight determines the necessary load force rate to lift the object. An-
other important feature is the density. The density of the object’s material
is essential to estimate the weight of the object.

4.2 Weight adaptation

The parallel increase in the grip and load forces during the load phase ter-
minates shortly after the object starts to move. Memory information based
on previous experiences with the weight of the current object is used to
parameterize the force output in anticipation of the weight of the object.
Consequently, with an unexpected change to a lighter weight, the load and
grip force rates are excessively high when the load force suddenly over-
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comes the force of gravity. However, an abruptly triggered termination
of the muscle commands driving the load phase takes place some 80-110
ms after lift-off (Johansson and Westling, 1988b). Burst responses in FA
II afferents, which effectively indicate that the object has started to move,
are most likely used to trigger this. But the delays in the control loop (due
to receptor and effector delays, axonal conductances, and CNS processing
delays) are still long enough to cause a pronounced position overshoot (a
common experience when lifting an unexpectedly light object) (Johansson,
1996b).

If the object is heavier than expected and the lift-off does not occur at the
predicted load force, the absence of motion is indicated through the lack
of a transient sensory response at the expected moment of lift-off. In this
case, the CNS uses the absence of the expected sensory signal to quickly
initiate a new control mode. This is characterized by slow, discontinu-
ous increases in force that, in effect, probe for the lift-off. This control
mode continues until somatosensory information confirming movement
is eventually obtained (Johansson, 1996b).

Hence, whether the object’s weight is correctly anticipated or not, so-
matosensory signals apparently trigger the termination of the load phase
and presumably simultaneously update the memory system representa-
tion of the weight of the object. Indeed, with erroneous weight anticipa-
tion, only one lift is typically required to efficiently update the weight-
related memory system (Johansson, 1996b).

Therefore, the human weight adaptation mechanism seems to behave like
the following algorithm:

while (Load Force ≤ Estimated weight and FA II = False) do
Do in Parallel(Fast increase of Load Force and Test FAII);

end

if (FA II = False and Load Force > Estimated weight) then
while FA II = False do

Do in Parallel(Little increase of Load Force and Test
FAII);

end

end

Algorithm 1: Human weight adaptation

With respect to the lifting speed, to get a predictable, smooth and critically
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damped vertical lifting movement, the lifting drive must be decreased and
appropriately adjusted to match the weight of the object before the mo-
ment of lift-off. In fact, with an adequately programmed lift, the first time
derivative of the grip and load forces have their maximum when the load
force matches about half the weight of the object; the force rates are re-
duced prior to lift-off to harmonize with the expected weight (Johansson,
1996b). In addition, the desired speed (acceleration) and height of the lift-
ing movement play a significant role in the parametrization of the force
output during the isometric load phase (Kinoshita et al., 1993).

The estimation of the object’s weight in humans is used to predict the nec-
essary load force rate to lift the object. This estimation increases the ve-
locity of the lifting task. The objective is to place the hand-object system
at some reasonable height respect to the subject. In robots there is an im-
portant delay in the mechanical execution of a motor command because
the mechanical motors are slow. For this limitation, our strategy will be
to estimate the weight of the object and apply a load force rate lesser than
this estimation, because if the object’s weight was underestimated there
would be a great overshoot that couldn’t be avoided.

4.3 Friction modeling

The first studies on friction can be attributed to Leonardo da Vinci, al-
though it was only with Coulomb in 1785 that a useful formulation of the
friction laws was introduced, defining a relationship between the overall
friction force ff opposing the motion of two rigid bodies in contact and
the normal force acting between them. The most common and simple de-
scription of the friction phenomenon considers two cases, i.e., static and
dynamic (or kinetic) friction. Let us suppose that an external force ft par-
allel to the contact plane is applied to one of the contacting bodies, and
that a force fn perpendicular to the contact plane is present, keeping the
bodies in contact. A reaction force ff due to the friction effect is generated
and, in the static case, the following relationship holds between ff and the
normal force fn:

ff ≤ µsfn

where the static friction coefficient µs depends on the nature and the
smoothness of the surfaces, and with good approximation can be consid-
ered independent of the size of the contact area. While the ratio ft/fn is
less than or equal to the value of µs, the force ff generated by friction is
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sufficient to balance any external force ft and the body does not move. If
the external load ft is increased, the body will eventually start sliding and
the friction force ff , opposing the motion, assumes a new value given by

ff = µdfn (4.1)

where µd is the dynamic friction coefficient. In general, µs > µd (Melchiorri,
2000).

Therefore, we assume that the maximum force of friction is µsGF, where
µs is the coefficient of static friction when the relative motion between the
hand and the object is zero. When a fingertip slides, the force of friction
is µdGF in the opposite direction to the velocity. A slip occurs when the
force of friction is greater than µsGF or when the relative velocity between
the hand and object is non-identical. This double condition accounts for
the case when the GF is zero (Fagergren et al., 2003). The transition from
slip to no slip would occur when the force of friction is less than µdGF
and the relative velocity is zero, but when the object is moving there is
an acceleration, and then although the friction coefficient decreases, more
grip force is necessary to counteract the acceleration effect.

The case of rotational friction is more complex than the linear one. In
fact, in general, a nonlinear relationship exists between the applied normal
force fn and the torque τf . This relationship may be expressed as (Jameson,
1985)

τf = 0.59µsα
1/3f 4/3

n = βsf
4/3
n (4.2)

where α is a parameter depending on both the geometry and the elastic
properties of the contacting bodies, such as the curvatures and the Young
and Poisson moduli. Note that the friction coefficient βs depends on the
size of the contact area.

4.4 Shape adaptation

In our model, the force ratio stored in memory, is the force ratio corre-
sponding to an object with parallel flat grip surfaces. When the object is a
tapered one, the angle modifies the force ratio.

In section §2.12 it was seen that

NF = HF × cos(α) - VF × sin(α)

TF = HF × sin (α) + VF × cos(α)

NF = SR × TF
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where SR is the inverse of the friction coefficient (i.e., the slip rate when
the object has flat parallel grip surfaces), NF is the normal force, TF the
tangential force, HF the horizontal force (grip force), VF the vertical force
(load force), and α is the surface angle.

It follows that,

NF = SR × TF

HF × cos(α) - VF × sin(α) = SR × (HF × sin (α) + VF × cos(α))

HF × cos(α) - VF × sin(α) = SR × HF × sin (α) + SR × VF × cos(α)

HF × cos(α) - SR × HF × sin (α) = SR × VF × cos(α) + VF × sin(α)

HF × (cos(α) - SR × sin (α)) = VF × (SR × cos(α) + sin(α))

⇓

HF
V F

= (SR × cos(α) + sin(α))/(cos(α) - SR × sin (α))

4.5 Initial force ratio

When a human touches an object, he/she increments the grip force during
a short time. Depending on the friction coefficient, a different pattern of
FA I signals is received (see section §2.8). If the object’s material has a
great friction coefficient, the FA I signals will have a great frequency. On
the contrary, if the object’s material has a low friction coefficient, the FA I
signals will have a low frequency. At the transitional phase, the required
force ratio to lift the object with grasp stability is known. Then, we want
to create an association between this force ratio, and the initial pattern of
the FA I signals received. To create this association a supervised artificial
neural network is used.

To create the initial examples to train the neural network, it is convenient
that the objects have parallel plain surfaces, and to take the object by its
center of mass. In this way, it is not necessary to care about the curvature
effect on the force ratio, or the rotational slips.

At the initial state, the control system has no knowledge about the re-
quired force ratio associated to any pattern. After some experiments, the
system knows the association between the seen patterns and the corre-
sponding force ratios. When a new pattern is received the system maps
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the new pattern into the neural network and gets an initial force ratio. If
this force ratio produces slips, then the system will train the neural net-
work to introduce the new pattern and required force ratio association.

4.6 Slip measure

At the loading phase, localized slips are detected by responses in the FA
I and SA I units. When the slip is gross there are also answers in the FA
II units, because these units respond to vibrations. At the static phase,
the presence of a slip is detected by bursts in the FA I and SA I answers.
Based on the intensity of these signals, humans graduate the force ratio
adjustment. To emulate this mechanism a multilayer perceptron is used,
that receives as input simulated afferent signals, and gives as output the
percentage of contact nodes that are slipping. The force ratio adjustment is
calculated based on the estimation of the percentage of contact nodes that
are slipping.

4.7 Vision module

The recognition of materials by computer vision is still a complex and un-
solved task. We assume that there is a vision module that can recognize
different materials. The vision module must have the following function-
alities:
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FIG. 4.1: Required functionalities of the Vision Module.
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4.8 Memory model

The human memory remembers the force ratio and weight of the last ob-
ject that has been manipulated (Johansson and Edin, 1993). Thus, in our
system, there is a Short Term Memory, that stores the information about
the force ratio and weight of the last manipulated object. In our system,
we include also a Long Term Memory whose function is to store a rough
estimation of the slip ratio for each known material. The necessary fine
adjustments are made during the manipulation process. The whole mem-
ory model is seen in fig. 4.2.

LONG TERM

MEMORY

NEW
OBJECT

OBJECT
LAST

Module

Vision

Active
Images

Object

Environment

SHORT TERM

MEMORY

FIG. 4.2: The two memories model.
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4.8.1 Short term memory module

The Short Term Memory module keeps the information about the last ob-
ject that has been manipulated. It is modeled as the following data struc-
ture:

• Visual image of the object (for the visual recognition of the object)

• Force ratio

• Object’s weight

It is assumed that there is a vision module, that can discriminate if the
object to be manipulated, is the same as the last object that has been ma-
nipulated.

4.8.2 Long term memory module

The Long Term Memory module is modeled as a growing array of units
indexed by the material field. Each unit has 3 fields:

• Material

• Density

• Force ratio

In the presence of an unknown material, a new unit is added to the array
memory. The following procedure updates the system to add the new
material:

1. Update the Vision Module with the visual features of the new mate-
rial.

2. Call the control system with a low initial force ratio.

3. Update the Long Term Memory Module with the density and force
ratio of the new material.

When the materials are visually undistinguishable, the physical properties
stored in memory correspond mainly to the most frequent type of material
with those visual characteristics. To achieve this objective, the physical
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properties of the materials are updated with a weight factor. For example,
to update the friction coefficient of a material m, the following rule is used,

frictionm
new = k ∗ frictionm

old + (1 − k) ∗ frictionm
last

with 0.9 < k < 1.

4.9 Control system design

The general design of the control system is shown in fig. 4.3. The object is
immersed in an environment. The active vision module takes multiple im-
ages of the environment. Then it provides the object’s properties needed
by the force control module. If the object to be taken is the last object that
has been manipulated, the force control module asks for information to
the short term memory, else it asks to the long term memory. Note that
the proposed control system does not pretend to emulate exactly the hu-
man manipulation system. Instead, it is a simplified model of the human
manipulation system designed for engineering applications to robotics.
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FIG. 4.3: General design of the control system.
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The system is a state-dependent control system. In a state-dependent
control system the same sensory events, here mechanoreceptor activation
caused by small slips, can be used to elicit different actions appropriate
for the accomplishment of each phase. The phenomena of state depen-
dent corrections in precision grip tasks was first described by Johansson
and Westling (Johansson and Westling, 1984c). When subjects lifted an ob-
ject with a precision grip, the grip and lift force corrections, in response to
a slip between the object and the fingertips, differed between the different
phases of the lift. For example, during the load phase the slip correction
was a combination of increasing the grip force rate and decreasing the load
force rate, but when holding the object in the air the correction was only
seen as a fast increase in the grip force.

4.10 The force control module

The module is divided in sections that correspond to the different phases
observed in human dexterous manipulation (section §2.4).

Force Control Module:

Input: Force ratio on the thumb’s side ρmemory
t , force ratio on the oppos-

ing fingers’ side ρmemory
o , material density on the thumb’s side densityt,

material density on the opposing fingers’ side densityo, estimated size of
the object Size, acceleration of gravity g, surface angle SurfaceAngle, initial
deformation of the finger Significant deformation.

1. Initialization

GF ← 0; LF ← 0;

if densityt = NULL or densityo = NULL then
Weight ← Size * LowDensityV alue * g;

else
Weight ← Size * densityt+densityo

2
* g;

end

Algorithm 2: Initialization

First, the grip and load forces are initialized to zero. Then, the weight
of the object is estimated based on the size and the density returned
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by the vision module. If the object has an unknown material a low
value is used as the density of the material.

2. Preload phase

while Finger deformation ≤ Significant deformation do
Do in Parallel(Increase GF, Record FA I signals)

end

if ρmemory
t = NULL or ρmemory

o = NULL then
k ← 1;

end
ρt ← k * ANN(FA I history)t + (1 − k) * ρmemory

t ;
ρo ← k * ANN(FA I history)o + (1 − k) * ρmemory

o ;

Shape adaptation(ρt, Surface angle);
Shape adaptation(ρo, Surface angle);

Algorithm 3: Preload phase

First, in order to get a representative set of FA I signals, the grip force
is increased until a significant deformation of the finger is reached.

Next, the force ratio ρ is estimated as a function of the FA I signals
history and the recorded force ratio of the object’s material. As seen
in section §2.8, the initial responses in the FA-I afferents are consid-
ered responsible for the initial adjustment to a new frictional condi-
tion because they are influenced by the surface material. The more
slippery the material, the higher the FA I discharge rate is at the pre-
load phase (Johansson and Westling, 1987). Thus, based on the in-
tensity of the responses in the FA I afferents, the value of the force
ratio can be estimated. This estimation will be improved with the
slip events in the next phase. To estimate the force ratio an artificial
neural network (ANN) is used that receives as input the FA I signals
history (see section §4.5). A weight 0 < k < 1 is assigned to the ANN
force ratio estimation, and the complement weight (1−k) to the force
ratio recovered from memory. The current force ratio is estimated as
the addition of the former values. If there is no record in the memory
for that material, the force ratio estimation is based only on the initial
responses of the FA I afferents.
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Finally, the Shape Adaptation function adapts the force ratio ρ to the
shape of the grip surface. The Shape Adaptation function uses the
equation described in section §4.4.

3. Loading phase

while LF t ≤
GF
2

/ρt and LF o ≤
GF
2

/ρo and Lift Off = False do
Do in Parallel(Test Lift-off, Test Slip, Increase LF t, Increase
LF o)

end
while (LF t+LF o) ≤ kmec*Weight and Lift Off = False do

if (LF t+LF o) ≤ (kmec*Weight)/2 then
Do in Parallel(Test Lift-off, Test Slip, Parallel increase of
GF and LF at increasing velocity)

else
Do in Parallel(Test Lift-off, Test Slip, Parallel increase of
GF and LF at decreasing velocity)

end

end
while Lift Off = False do

Do in Parallel(Test Lift-off, Test Slip, Burst increase of GF
and LF)

end

Algorithm 4: Loading Phase Algorithm

At this phase, the forces are increased in parallel preserving the force
ratio estimated at the preload phase (i.e., LF t ≤

GF
2

/ρt and LF o ≤
GF
2

/ρo), until the object lifts off. First, the load force is increased to
make it proportional with the grip force. Next, the grip and load
forces are increased in parallel, until the load force reaches the esti-
mated weight of the object, or the object lifts off. The constant kmec

< 1 is a factor introduced to lower the value of the weight, in order
to avoid a force overshoot, due to the delay of the robot’s mechani-
cal motors to stop the arm. Finally, if the estimated weight is lesser
than the actual object’s weight, the third loop is entered. At this loop,
burst parallel increases of the grip and load forces are made until the
object lifts off, as seen in humans.
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To detect the lift-off and slip events, we follow closely the methodol-
ogy observed in the human tactile system. In our model, the lift-off
and slip events are signalled by simulated afferent responses, that
correspond with the afferent responses that signal these events in
humans.

The lift-off is detected by the presence of FA II responses and the
absence of FA I and SA I responses. Thus, the lift off event is detected
in the following way:

Test FA II, SA I, FA I Signals;

if Strong FA II signals and FA I and SA I signals near null then
Lift Off ← True

end

Algorithm 5: Test Lift-off

In humans, the slips are signalled by sudden changes in the load
force between the thumb and the opposing fingers, and by dis-
charges of FA I, SA I, and eventually FA II mechanoreceptors. The
slip events fire force ratio corrections. If there are responses of the FA
I, SA I and FA II afferents, then the force ratio upgrade will be larger
than if there were only responses of the FA I and SA I afferents (i.e.,
a localized slip). If there are only responses of the FA II units, then
the vibration will not be recognized as slip, and therefore it will not
trigger upgrades of the force ratio (Johansson and Westling, 1987). In
our model, an artificial neural network is used to estimate the inten-
sity of the slip. The neural network receives as input the FA I, SA I,
and FA II signals, and gives as output the intensity of the slip. The
intensity of the slip indicates the percentage of contact nodes that
are slipping, and it is measured as a number in the interval [0...1].
The test slip function checks if there are slip events. If there were
significant slip events it calls the slip correction function:

Slip Intensity ← ANN (FA I, SA I, FA II);

if Slip Intensity > Threshold then
Call Slip Correction (GF , LF t, LF o, ρt, ρo, Slip Intensity);

end

Function: Test Slip
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The function Slip Correction adjusts the force ratio based on the in-
tensity of the slips. Slips are stopped with a burst increase of the
grip force as in Fagergren, Ekeberg, and Forssberg (2003). A factor
0.75 ≤ kSlipIntensity ≤ 1 that depends on the slip intensity multiplies
the grip force adjustment. After the burst increase of the grip force,
the grip force is decreased to an appropriate value. When grasping
objects, humans readily identify the minimum force required to pre-
vent slipping and maintain a safety margin of 10% - 30% (Johansson
and Westling, 1984a). In our model, a safety margin is added to the
force ratio also. The safety margin will depend on the sensor system
(i.e., if it is a good sensor system, a margin of 20% could be enough,
but if it is a poor sensor system, a larger safety margin should be
used).

GF ← 2.0 * kSlipIntensity * GF;

GF = GF * (1 + Slip Intensity + Safety Margin);

ρt ←
GF
2

/LFt;

ρo ←
GF
2

/LFo;

Function: Slip Correction(GF , LF t, LF o, ρt, ρo, Slip Intensity)

4. Transitional phase

while Height of Hand < Desired Height do
Do in Parallel(Test Slip under Gravity, Parallel increase of the
GF and LF at low velocity)

end
GF old ← GF ;
GF ← k ∗ GF ;
Stop upward movement of the arm;
GF ← GF old;

Algorithm 6: Transitional phase

At the transitional phase, the hand moves vertically until it reaches
the desired height. First, the grip and load forces are increased in
parallel until the desired height is reached. In humans there is a grip
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force increase at the end of the parallel coordination of the forces
during manipulation (see section §2.5, Fig. 2.3). Thus, just before
stopping the upward movement, the grip force is increased by a fac-
tor k > 1, to prevent that the object slips out by the sudden stop of
the upward movement. Then, the arm is stopped. Finally, the origi-
nal value of the grip force is restored.

At the transitional phase the hand is in an upward movement to-
wards the desired height. As the object is no more on the table,
if there is a slip, only the grip force should be modified (see sec-
tion §2.9). To estimate the slip intensity an artificial neural network
(ANN) is used, that receives as input the FA I and SA I signals, and
gives as output the slip intensity.

Slip Intensity ← ANN (FA I, SA I);
if Slip Intensity > Threshold then

Call Slip Correction (GF , LF t, LF o, ρt, ρo, Slip Intensity);

end

Function: Test Slip under Gravity(GF ,LF ,ρt,ρo, FA I, SA I)

5. Static phase

In the static phase the object is held in the air and it is moved hori-
zontally towards the new position.

while Goal position arrival = False do
Do in Parallel(Test Slip under Gravity, Translate object)

end

Algorithm 7: Static phase

6. Replacement and Unloading phase

At this phase the object is moved downward until it contacts the
table top. Then it is released. First, the load force value is saved into
the Weight variable. The weight is saved at this moment, and not
at the moment of lift-off, because at this phase the object is held in
the air and there is a stable load force (at the moment of lift-off there
is an increasing load force value caused by the acceleration). Next,
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the arm goes down until the object contacts the table. The contact
table event is detected by a burst signal of the FA II afferents. Then,
there is a sudden reduction of the load force, to set the object on the
tabletop. In human manipulation, this reduction of the load force is
about 80%. In humans, there is a short delay between the contact
table event and the parallel decrease of the forces. We incorporate
a short delay too, whose goal is to stabilize the object on the table.
After this wait follows a parallel decrease of the forces, that causes
the release of the object. Finally, the memory is updated. The slip
condition parameter is a measure of the number and intensity of the
slips.

Weight ← LF ;
repeat Go down the arm at slow velocity until Contact Table = True;
LF ← k*LF;
Wait a time t;
repeat Parallel decrease of GF and LF at great velocity until Object
Release;
if Materialt = Materialo then

Density ← Weight
g

/ Size;

else
Density ← Null;

end
Update memory (Materialt, Materialo, Density, ρt, ρo, Slip
condition, Fragility);

Algorithm 8: Replacement and Unloading phase

4.11 Discussion

The control algorithms presented in section §4.10 are strongly inspired
in neurophysiological studies of the human dexterous manipulation pre-
sented in chapter 2. Algorithms for each one of the human manipulation
phases are given. These algorithms are sufficient algorithms, designed to
follow as nearly and simply as possible the human way to manipulate ob-
jects.

However, a future work is to implement the algorithms on a real robot
with strong real time constraints. Therefore, it would be a critical and
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very important future analysis to study what are the most sensitive para-
meters of the proposed algorithms, if there were simplest algorithms for
a robotic implementation, and to see how the algorithms would perform
under partial failure or ambiguous information.

The general design of the control system of fig. 4.3 summarizes neuro-
physiological studies of the human dexterous manipulation from a com-
puter science perspective. The proposed control system does not emulate
exactly the highly complex human manipulation system. Instead, it is a
simplified model of the human manipulation system designed for engi-
neering applications. However, it has a very strong biological inspiration,
and it’s designed to achieve a dexterous manipulation in unknown en-
vironments, very closely as humans do. Recall from section §2.6 that in
humans vision provides information on object position, object size, object
shape, and object material, and based on visual estimates of weight and
friction, a set of tactile responses is predicted to guide planning for the
application of initial grip force to the object. Tactile perceptions of weight
and texture are fed back and compared to the predicted weight and tex-
ture. The mismatch is used to update memory representations of weight
and texture for a specific object appearance. This memory is assumed to
be retrieved on later occasions to guide anticipatory application of forces
(Gordon et al., 1993). Thus, the proposed computational model of fig. 4.3,
is very similar to a human dexterous manipulation model. Also, it has a
memory of the previous lift, as humans, and a long-term memory.

The recognition of objects by computer vision is a well-developed field,
but the recognition of materials has been studied rather little. The proper
recognition of the material by the vision module of section §4.7, is an es-
sential information to estimate visually the weight and friction of an ob-
ject. However, the proposed model would work the same in the absence
of vision. Let’s suppose that the weight and the friction of the object can’t
be estimated visually. The force control module of section §4.10 is robust
in the absence of vision, because in the face of an unknown material, the
algorithm starts with a null force ratio in memory, and uses only the FA I
signals to set the force ratio. The slip signals will adjust later the force ra-
tio. And in the absence of weight information, the algorithm starts with a
low weight value, and increases the forces until it receives the FA II signal
of lift-off.
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CHAPTER 5

SIMULATION

T
He estimation of the friction coefficient and the detection of the incip-
ient slipping were simulated. These are the two crucial events behind
the dexterous manipulation in unknown environments.

5.1 Finite element modelling

The part of the finger to be modeled is shown in fig. 5.1. Contact between
an elastic finger with a curved surface and an object with a flat surface
was analyzed using the finite element method (FEM). Finite element code
MSC.Marc 2005 release 2 was used to create a 3-D model of the finger.
First, a finite element plane model of the finger of radius 100 and lateral
edge height of 36.6 as in Maeno et al. (2004) was generated (fig. 5.2). Then,
the model was expanded in the Z-axis direction, and a 3-D model of a
generic fingertip was obtained (fig. 5.3).
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FIG. 5.1: Part of the finger to be modeled by the finite element method (picture
extracted from Israelsson (2002)).

FIG. 5.2: Planar model of the fingertip.
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FIG. 5.3: 3-D model of a generic fingertip.
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The skin was modeled as a linear isotropic elastic material, for which two
constants (elastic modulus and Poisson’s ratio) need to be specified. Since
soft tissues are generally considered incompressible owing to their pre-
dominant fluid content, the Poisson’s ratio was assumed to be 0.48, close
to the theoretical limit of 0.5 (North and Gibson, 1978; Srinivasan et al.,
1992; Vossoughi and Vaishnav, 1979). The elastic modulus was assumed
to be 0.18 MPa (Dandekar et al., 2003).

5.2 Friction coefficient estimation

The afferent responses were obtained adapting software code of the Is-
raelsson’s human afferent simulator program. Matlab 7 modules were pro-
grammed to process the output of the MSC.Marc, and artificial neural net-
works were programmed to process the output of the Israelsson’s afferents
simulator. Thus, our software contribution consists of designing the FEM
model, programming the simulated experiments using the FEM model,
formatting the output of the FEM model to be feeded to the Israelsson’s
afferent simulator program, and processing the output of the Israelsson’s
afferent simulator program with artificial neural networks to obtain the
friction coefficient (Fig. 5.4).

FIG. 5.4: Block diagram of the software modules.

As seen in Sect. §2.8, the initial responses in the FA I afferents are consid-
ered responsible for the initial adjustment to a new frictional condition. As
humans estimate the friction coefficient pressing their fingers against the
object of interest (Johansson and Westling, 1987; Westling and Johansson,
1987), in this work the friction coefficient was estimated pressing the sim-
ulated finger against the surface of the object. The grip force is increased
until a representative proportion of the finger is deformed. In this way,
there will be a sufficient amount of afferent signals to infer the friction co-
efficient. This experiment was repeated for various friction coefficients.
The force sensors of the finger return the values of the normal and tangen-
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tial forces. These force values are used to simulate the afferent responses
as seen in section §3.2. Thus, as the grip force of the finger against the
object is raised incrementally, simulated FA I responses are obtained. A
supervised artificial neural network is then used to estimate the friction
coefficient, analyzing the simulated FA I responses for the different fric-
tion coefficients.

The input pattern for the neural network was built joining the simulated
FA I afferent answers obtained for all the normal force increments. The
input pattern is built only with the afferent answers of the sensors situ-
ated along one half of the central longitudinal line of the fingertip, because
when the object is flat similar outputs are generated on the other rows, and
the same values in modulus are obtained on the other half (fig. 5.12 and
5.13). The friction coefficient was used as target of the neural network. To
improve the learning capacity of the neural network the patterns of the
spike answers of the FA I afferents were compressed. The compression
step consisted of choosing a compression factor c, dividing each one of the
afferent answer patterns of size s obtained for each node of interest, where
s is the number of grip force increments, in ⌈ s

c
⌉ consecutive intervals, and

adding the spike responses at each interval.

A multilayer perceptron with 1 hidden layer was trained, which received
as input the compressed pattern of FA I spike signals, and gave as output
the estimated friction coefficient. It must be remarked that the input sig-
nal is a compressed spike train, and the output, the friction coefficient, is a
continuous value. The activation function in the hidden layer was chosen
to be a sigmoidal function in the form of a hyperbolic tangent for its con-
venient antisymmetric property. The output layer activation function was
chosen to be linear, because the friction coefficient could be in principle
any positive value.

For its fast convergence, the Levenberg-Marquardt algorithm was chosen
as the minimization method to train the network. The training parame-
ters for the Levenberg-Marquardt algorithm in the Neural Networks pack-
age of Matlab 7.0 are epochs, show, goal, time, min_grad, max_fail,
mu, mu_dec, mu_inc, mu_max, and mem_reduc (Demuth et al., 2007).
The training status is displayed for every show iterations of the algo-
rithm. The other parameters determine when the training stops. The
training stops if the number of iterations exceeds epochs, if the perfor-
mance function drops below goal, if the magnitude of the gradient is
less than mingrad, or if the training time is longer than time seconds.
The max_fail parameter, which is associated with the early stopping
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technique, was not used. The parameter mu is the initial value for the
learning rate. This value is multiplied by mu_dec whenever the per-
formance function is reduced by a step. It is multiplied by mu_inc
whenever a step would increase the performance function. If mu be-
comes larger than mu_max, the algorithm is stopped. The parameter
mem_reduc is used to control the amount of memory used by the al-
gorithm . The following parameters were used: epochs=100, show=5,
goal=1e-5, time=Inf, min_grad=1e-10, mu=0.001, mu_dec=0.7,
mu_inc=1.05, mu_max=1.04, and mem_reduc=1.

Maeno et al. (Maeno et al., 2004) used finite element analysis to calculate
the deformation of an elastic finger, contact forces, and strain distribution
inside the elastic finger for various friction coefficients between the fin-
ger and the surface. Their results show that the shear strain differs when
the friction coefficient differs. Then they used strain sensors to estimate
the friction coefficient. In this work, we use finite element analysis as in
Maeno’s work to simulate a finger and an object, but we don’t estimate
the friction coefficient based on the shear strain. Instead, we estimate the
friction coefficient based on simulated human afferent signals because we
intend to follow a bio-inspired approach.

The width of the finger was only of 2 elements (fig. 5.5) because when the
object is flat transversal planes of the finger generate similar signals. The
FEM model consisted of 288 elements and 513 nodes.
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FIG. 5.5: 3-D finite element model of the finger.
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FIG. 5.6: Boundary conditions and initial state.
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The experiment to estimate the friction coefficient consisted of moving
down the object 10 units along the y-axis, while recording the nodal stress
tensors at the surface of the fingertip. The nodes of the finger at y=0 (i.e.,
the nodes situated at the finger’s base) were constrained in the x−, y− and
z−directions, to avoid the displacement of the finger. The nodes of the
object were constrained in the x− and z−directions (fig. 5.6). Thus, nor-
mal load was increased moving the object towards the finger. The object
was displaced 0.1 units along the y-direction until the total displacement
reached 10 units (Figs. 5.8, 5.9, 5.10, and 5.11). In this way, data for 100
increments was obtained. The stress tensor has 9 components (fig. 5.7). In
the designed experiment, the normal force is Fy (σy - 2nd. component of
stress) and the tangential forces are Fx (τyx - 4th. component of stress) and
Fz (τyz - 5th. component of stress). The normal and tangential forces were
then obtained from the stress tensors.

FIG. 5.7: Components of the stress.

In the fingertip there are 3 rows of 19 nodes (fig. 5.5). As shown by fig. 5.8,
5.9, 5.10, 5.11, 5.12, 5.13 and 5.14 the signals are symmetrical. Therefore,
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only the signals of the 10 nodes that are on the right half of the central line
of the finger in contact with the object were recorded.
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FIG. 5.8: Contour bands of the displacements at the final state. The image shows
the original and final shapes of the finger and the object.

FIG. 5.9: X-Displacements at the final state.
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FIG. 5.10: Y-Displacements at the final state.

FIG. 5.11: Z-Displacements at the final state.
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The whole experiment was repeated increasing the friction coefficient µ of
the object’s material in the FEM model from 0.01 to 1.00 (with a step size
of 0.005). The Fx, Fy and Fz values were measured for each friction coef-
ficient at each increment step. The obtained force values at the final state
for different friction coefficients are shown in Figs. 5.12, 5.13 and 5.14. The
normal force distribution Fy is always semi-circular because the finger is
curved. The obtained curves for the normal force are similar (Fig. 5.12).
The tangential reaction forces, i.e. the friction forces, have a local mini-
mum and a local maximum. The sum of the tangential force Fx is always
zero because no movement of the surface in the x-direction is applied (Fig.
5.13). However, the shapes of the curves change as the friction coefficient
is increased. These results are in accordance with the results obtained by
Maeno et al. (Maeno et al., 2004) for their 2-D FEM model of the finger.
Finally, the sum of the tangential force Fz is always zero because no move-
ment of the surface in the z-direction is applied. The slope of the curves of
the tangential force Fz decreases as the friction coefficient increases (Fig.
5.14).
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FIG. 5.12: Normal force Fy (2nd. stress component) in the final state along the
central longitudinal line of the fingertip’s surface.
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FIG. 5.13: Tangential force Fx (4th. stress component) in the final state along the
central longitudinal line of the fingertip’s surface.
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FIG. 5.14: Tangential force Fz (5th. stress component) in the final state along the
central transversal line of the fingertip’s surface.
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Therefore, for each simulated friction coefficient, measures of the Fx, Fy

and Fz force values at each increment were obtained. The values of the FA
I signals at each node and at each increment were then simulated using the
method explained in section §3.2. For each simulated friction coefficient,
a vector of dimension 100 (because there were 100 grip force increments)
with 0 and 1 values (0 if there was not spike and 1 if there was a spike)
corresponding to the FA I answers was obtained for each node of interest.
The obtained spike patterns were compressed with a 10:1 compression ra-
tio. The patterns were then preprocessed to normalize their mean and
standard deviation in order to improve the training’s performance of the
neural network. The friction coefficient was used as target of the neural
network.

As the experiment was repeated changing the friction coefficient from 0.01
to 1.00, with a step size of 0.005, 200 input patterns were generated. A
random partition of this set was done, in which the 90 percent of the pat-
terns was chosen as training set and the remaining 10 percent as testing
set. Multilayer perceptrons with different numbers of units in the hidden
layer were trained and tested, and a multilayer perceptron with 1 hidden
layer of 3 neurons obtained the best performance (Fig. 5.15). At the final
state, the mean squared error of the training set was 0.0025 and its mean
absolute error was 0.0373. The mean squared error of the testing set was
0.0118 and its mean absolute error was 0.0853. The obtained performance
of the neural network for the training and testing sets is shown in Fig.
5.15. The regression analysis between the network response and the cor-
responding targets is shown in Fig. 5.16. The m and b correspond to the
slope and the y-intercept of the best linear regression relating targets to
network outputs.
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FIG. 5.15: Performance of the multilayer perceptron (the shown results are the
values obtained from the second epoch).
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FIG. 5.16: Regression analysis corresponding to the friction coefficient estimation
between the network response (A) and the corresponding targets (T). The best
linear fit is indicated by a dashed line. The perfect fit (output equal to targets) is
indicated by the solid line. In this figure is difficult to distinguish the best linear fit
line from the perfect fit line because the fit is so good.
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5.3 Incipient slip detection

Contact between an elastic finger with a curved surface and an object with
a plane surface was analyzed using the finite element method (FEM). Fi-
nite element code MSC.Marc release 2 was used to create a 3-D model of
two fingers and an object. To simulate the FA-I afferent responses, we
adapted software code provided by Anna Theorin (f. Israelsson), Lars
Rådman, Benoni Edin and Roland Johansson of Umeå University. Israels-
son Israelsson (2002) designed a computational simulator of the responses
of the afferents from the glabrous skin during human manipulation. Thus,
the afferent responses were obtained adapting software code of the Is-
raelsson’s human afferent simulator program. Matlab 7 modules were pro-
grammed to process the output of the MSC.Marc, and artificial neural net-
works were programmed to process the output of the Israelsson’s afferents
simulator. Thus, our software contribution consists of designing the FEM
model, programming the simulated experiments using the FEM model,
formatting the output of the FEM model to be feeded to the Israelsson’s
afferent simulator program, and processing the output of the Israelsson’s
afferent simulator program with artificial neural networks (Fig. 5.4).

FIG. 5.17: Block diagram of the software modules.

Three deformable contact bodies were modeled: left finger, right finger
and object (fig. 5.18, 5.19 and 5.20). The table was modeled as a rigid body
at the bottom. The object was modeled as a unique block element. The
Poisson’s ratio of the object was set at 0.48 and the Young modulus at 0.72
MPa. Therefore the object was almost incompressible and harder than the
finger.
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FIG. 5.18: Fingers without object.
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FIG. 5.19: Fingers with object at the initial state.
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FIG. 5.20: Fingers with object at the initial state.
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Nodes at the surface of the elastic finger should satisfy the following equa-
tions (adapted from Maeno et al. (2004)):

1. non contact nodes: wn 6= wnobject, fn = 0

2. contact nodes: wn = wnobject, fn > 0

3. sticking nodes: wt = w′

t + (wtobject − w′

tobject), |ft| < µ|fn|

4. slipping nodes: |ft| = µ|fn|

where, wn and wt are the nodal locations in the normal and tangential
directions, fn and ft are the nodal forces in the normal and tangential di-
rections, wnobject is the normal location of the object, wtobject is the tangen-
tial location of the object, and µ is the friction coefficient. Although the
static friction coefficient is usually larger than the kinetic friction coeffi-
cient, these values are assumed the same in the fundamental calculations
to simplify the argument. The prime represents values in the previous
time frame.

When an incipient slip occurs at the preload phase, there are signals of
the SA I and FA I mechanoreceptors (see section §2.8). The experiment
to detect the incipient slip consisted of applying a normal force to grip
the object, and then applying a load force to lift the object. The grip and
load force were raised incrementally. The preceding equations were used
to know if the nodes were sticking or slipping, and to know if the nodes
were in contact with the object or not. The goal was to create an associa-
tion between the state of the nodes at each force increment (i.e., number
of sticking/slipping nodes, number of contact/non contact nodes) and the
FA I and SA I responses. The FA II responses were not considered to calcu-
late the incipient slip intensity, because the lift was done at a slow velocity
and therefore FA II responses were not expected at the slip events.

The boundary conditions are shown in fig. 5.21. The object was restricted
to move on the z-axis. The table was fixed in all axis. The initial position of
the fingers and the object is shown in fig. 5.22. First, the displacement of
the fingers was fixed on the x-axis and a grip force was applied (fig. 5.23).
Afterwards, a vertical load force was applied. Depending on the friction
coefficient of the object’s material, when the same amount of grip and load
force was applied on an object of the same weight, the object may lift off
or not (fig. 5.24 and 5.25).
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FIG. 5.21: Boundary conditions.
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FIG. 5.22: Fingers with object at the initial state.
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FIG. 5.23: Normal force contour bands of the fingers and the object after applying
the grip force.
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FIG. 5.24: Fingers with object at the final state after applying the grip and load
forces. The friction coefficient is µ = 0.5. The contour bands correspond to the
total displacement on the Z-axis. The fingers have slipped and the object has not
been lifted.

87



SIMULATION

FIG. 5.25: Fingers with object at the final state after applying the grip and load
forces. The friction coefficient is µ = 0.7. The contour bands correspond to the
total displacement on the Z-axis. The object has lifted off.
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Due to the symmetry of the afferent responses, only the afferent responses
of the 19 nodes situated along the central line at the front of the finger
were recorded. The input patterns were built joining the FA I and SA
I signals (i.e., a pattern of dimension 38 was obtained for each force in-
crement). To build the target the number of contact nodes cn and slip
nodes sn were counted, and the value sn

cn
was used as target (i.e., the

proportion of contact nodes that were slipping). The patterns were pre-
processed to normalize their mean and standard deviation in order to im-
prove the performance of the training of the neural network. A multi-
layer perceptron was designed to associate the SA I and FA I patterns
at each force increment, with the percentage of contact nodes that were
slipping. It must be remarked that the input signal is a spike train, and
the output, the percentage of contact nodes that were slipping, is rep-
resented as a continuous value into the interval [0..1]. The activation
function in the hidden layer was chosen to be a sigmoidal function in
the form of a hyperbolic tangent for its convenient antisymmetric prop-
erty. The output layer activation function was chosen to be logsig, be-
cause the proportion of contact nodes that were slipping could only be
a value into the interval [0..1]. For its fast convergence, the Levenberg-
Marquardt algorithm was chosen as the minimization method to train the
network. The following parameters were used: epochs=100, show=5,
goal=1e-5, time=Inf, min_grad=1e-10, mu=0.001, mu_dec=0.7,
mu_inc=1.05, mu_max=1.04, and mem_reduc=1.

Experiments with an object of weight 200 were made. Several simulated
experiments were done changing the friction coefficient of the object from
0.50 to 0.90, and a total of 2100 input patterns were generated. A random
partition of the input patterns set was done, in which the 90 percent of
the patterns was chosen as training set and the remaining 10 percent as
testing set. Multilayer perceptrons with different numbers of units in the
hidden layer were trained and tested, and a multilayer perceptron with 1
hidden layer of 3 neurons obtained the best performance. Thus, the final
architecture of the neural network consisted of an input layer of 38 units,
a hidden layer of 3 units, and an output layer of 1 unit. The neural net-
work was trained, and at the final state (46th. epoch), the mean squared
error of the training set was 5.5617e-004 and its mean absolute error was
0.0135. The mean squared error of the testing set was 0.0016 and its mean
absolute error was 0.0178. The performance for the training and testing
sets is shown in Fig. 5.26. The regression analysis between the network
response and the corresponding targets is shown in Fig. 5.27. The m and
b correspond to the slope and the y-intercept of the best linear regression
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relating targets to network outputs. In this picture the targets are discrete
because they represent the percentage of contact nodes that were slipping.
As only the afferent responses of 19 nodes were considered, the percentage
of contact nodes that were slipping can only take 20 values as maximum.
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FIG. 5.26: Performance of the neural network.
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FIG. 5.27: Regression analysis corresponding to the incipient slip detection be-
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ear fit is indicated by a dashed line. The perfect fit (output equal to targets) is
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Fig. 5.28 shows a histogram of the percentage of slipping contact nodes.
It is seen that the percentages are distributed mainly in the [0%, ..., 40%]
range, and the 100%. In the [50%, ..., 90%] range there are only a few values.
This result shows that 40% seems to be the maximum allowed value before
the object starts to slide.
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FIG. 5.28: Histogram of the percentage of slipping contact nodes for all the 2100
input patterns.
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In order to analyze the relation between the proportion of slipping contact
nodes and the grasp stability, the same grip:load force ratio was applied
on an object of weight 200 changing the friction coefficient (fig. 5.29, 5.30
and 5.31). When µ = 0.5 the object slid and did not lift off; when µ = 0.7
or µ = 0.9 the object lifted off (fig. 5.29).
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FIG. 5.29: Vertical displacement of an object of weight 200 for different µ when
the same grip:load force ratio was applied.
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FIG. 5.30: Slipping nodes:contact nodes for different µ when the same grip:load
force ratio was applied on an object of weight 200.
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5.4 Discussion

As changing the friction coefficient produces different shapes for the
curves of the tangential forces (fig. 5.13 and 5.14), and the afferent an-
swers are estimated based on values of these forces, it is expected to ob-
tain different afferent answers for different friction coefficients. Therefore,
it seems consistent a method that estimates the friction coefficient based
on the afferent answers. At the friction estimation experiment, the neural
network was trained with 180 patterns and tested with 20 patterns. At
the final state, the mean squared error of the training set was 0.0025 and
its mean absolute error was 0.0373. The mean squared error of the testing
set was 0.0118 and its mean absolute error was 0.0853. As the maximum
value of the target test set was 1.0, this result gives a relative error for the
testing set of only 8.53%. The regression analysis between the network
response and the corresponding targets is shown in fig. 5.16. The m and
b correspond to the slope and the y-intercept of the best linear regression
relating targets to network outputs. If there was a perfect fit (outputs ex-
actly equal to targets), the slope would be 1, and the y-intercept would be
0. In fig. 5.16 it is seen that m = 0.973 and b = 0.0145 that are very close to
1 and 0 respectively. The R-value is the correlation coefficient between the
outputs and targets. It is a measure of how well the variation in the out-
put is explained by the targets. If this number is equal to 1, then there is a
perfect correlation between targets and outputs. In fig. 5.16 it is seen that
the R-value is 0.981, which is very close to 1 and indicates a good fit. As
the input patterns were generated adding noise to the simulated afferent
answer, this result shows a good performance for the friction coefficient
estimation. We believe that this performance can be improved enlarging
the set of input patterns used to train the neural network.

At the incipient slipping experiment, the final mean squared error of the
test set was 0.0016 (Fig. 5.26). The mean absolute error of the test set
was 0.0178. As the maximum value of the target test set was 1.0, this re-
sult gives a relative error for the testing set of only 1.78%. The regression
analysis between the network response and the corresponding targets is
shown in Fig. 5.27. In Fig. 5.27, it is seen that m = 0.995 and b = 0.00234
are very close to 1 and 0 respectively, and then the regression is very near
to a perfect fit. The R-value is 0.998 that is very close to 1 and indicates a
good fit.

To analyze the relation between the proportion of slipping contact nodes
and the grasp stability, in Figs. 5.29, 5.31 and 5.30 we compare the effect
of applying the same grip:load force ratio on an object of weight 200 for
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different friction coefficients. When the material had a friction coefficient
of value µ = 0.5, the object slipped and it did not lift off. When the friction
coefficient was enlarged (i.e., the object’s material was less slippery) the
object lifted off (Fig. 5.29). Analyzing the percentage of contact nodes that
were slipping it is observed that when the friction coefficient was enlarged
the percentage of slipping nodes decreased (Fig. 5.30). Comparing the
grip:load force ratio with the slip ratio (slip ratio = 1

µ
), it was seen that

when the object did not lift off (µ = 0.5), the force ratio was lesser than the
slip ratio, and when the object lifted off (µ = 0.7 and µ = 0.9) the force ratio
was greater than the slip ratio (fig. 5.31). These results are in accordance
with the mechanical law that establishes that must be |LF | < µ|GF | for
the object to lift off (see Sect. §2.2). Comparing Fig. 5.29 and Fig. 5.30 it
is seen that when the percentage of slipping contact nodes is less or equal
to 40% the object lifts off. On the other side, in Fig. 5.27 and 5.28 it is
observed that the percentage of slipping nodes goes abruptly from 40% to
100%. These results show that 40% is the limit before the gross slip. Then,
still an estimation of the percentage of slipping nodes without a perfect
precision can be useful as the support of a grasp stability mechanism (i.e.,
if a 30% of slipping can be detected with a 10% of precision, a gross slip can
be avoided). Therefore, as the proposed method estimates the incipient
slipping with a relative error of only 1.78%, this result shows an excellent
performance for the incipient slipping detection.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

Few years old children lift and manipulate unfamiliar objects more dexter-
ously than today’s robots. The aim of this thesis was to take inspiration in
neurophysiological studies about the human dexterous manipulation, to
design a computational control system for the dexterous manipulation in
unknown environments. The architecture of the proposed control model
is described in chapter four, and it is outlined in fig. 4.3. In section §4.10
algorithms were proposed for each one of the manipulation phases. The
force ratio adjustments are driven by simulated human afferent signals.
The proposed control model and algorithms were designed based on neu-
rophysiological observations of the human dexterous manipulation.

Methods were proposed for the estimation of the friction coefficient and
the percentage of contact nodes that are slipping. These methods follow
closely the human way to detect the friction coefficient and to detect the
incipient slip. Finite element analysis was used to simulate two 3-D fin-
gers and planar objects of different friction coefficients. Artificial neural
networks were used to estimate the friction coefficient and to detect the
incipient slip, using as input simulated human afferent signals. The fric-
tion coefficient and the percentage of slipping nodes were estimated with
very high precision. To the best of our knowledge, this is the first time that
simulated human afferent signals are combined with finite element analy-
sis and artificial neural networks, to estimate the friction coefficient and to
detect the incipient slipping.
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Figure 6.1 shows a global view of the force control in our model. First,
the object is pressed following the algorithms of section §4.10. Next, sim-
ulated human afferent signals are generated. The friction coefficient is es-
timated with the method of section §5.2. It must be remarked, that the
estimation of the friction coefficient is absolutely necessary. On one hand,
humans estimate the friction coefficient with the initial responses of the
FA-I afferents as seen in section §2.8, and we want to emulate the human
way of manipulating objects very closely. On the other hand, this initial
friction estimation is necessary to set an initial force ratio, and begin the
parallel increase of the forces (see section §2.5). The parallel increase of the
forces is done following the algorithms of section §4.10. Next, the incipi-
ent slipping is detected with the method of section §5.3. The force ratio is
adjusted with the algorithms of section §4.10. As seen in fig. 6.1, the esti-
mation of the friction coefficient and the detection of the incipient slipping
are two crucial events that support our dexterous manipulation control
model. Grasp stability, i.e., the prevention of accidental slips as well as
of excessive fingertip forces, is a fundamental requirement in a dexterous
manipulation process. Grasp stability is derived by tuned grip force and
in humans is based on the detection of the incipient slips. In figure 6.1,
it is clear that our model implies grasp stability. In figure 6.1, it is clear
too that our model follows closely the neurophysiological studies of the
human dexterous manipulation surveyed in chapter 2.
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FIG. 6.1: A global view of the force control.

100



CONCLUSIONS AND FUTURE WORK

The conjunction between robotics and human neurophysiology can give
fruitful and interesting results. The obtained results show that simulations
of human afferent signals, can be used by artificial intelligence techniques
to estimate the friction coefficient and to detect the incipient slipping with
high precision. As shown by neurophysiological studies, these are crucial
events for a dexterous manipulation process with grasp stability. There-
fore, a control model architecture driven by simulated afferent signals like
the one proposed in this work, seems to be a promising way to afford the
dexterous manipulation problem in unknown environments.

6.2 Further work

The research that has been undertaken for this thesis has highlighted a
number of topics on which further research would be beneficial.

The simulated experiments in chapter 5 have been made using objects
with parallel flat sides. As seen in sections §2.12 and §4.4, the force ratio
is influenced by the shape of the object. Thus, experiments with tapered
objects of different angles would be illuminating.

Another important point is the torque with which the object has been
taken. The simulated experiments in chapter 5 have been made taking
the objects by its center of mass. As seen in section §2.11 a great amount of
complexity is involved in the dexterous manipulation of objects with dif-
ferent torque loads. Adapting the proposed model, algorithms and meth-
ods to take objects with different torque loads is required to reach more
flexibility.

An implementation of the proposed model and algorithms in a real ro-
botic hand with miniaturized tactile sensors, will give insights about the
robustness of the model under strong real time constraints. In particular, a
future critical analysis is to study what are the most sensitive parameters
of the proposed control algorithms presented in section §4.10, if there were
simplest algorithms, and to see how the algorithms would perform under
partial failure or ambiguous information.

The model and experiments have been designed for ’passive objects’, i.e.,
mechanically predictable objects with a certain mass and mass distribu-
tions, and with stable viscous and elastic properties. However in every-
day life, we may also interact with ’active abject’, i.e., objects that are sub-
jected to unpredictable external forces. This occurs when we, for example
restrain a lively kid by holding her hand when taking a walk. Depend-
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ing on whether object is ’active’ or ’passive’, the control of grasp stability
is achieved by partly different mechanisms. Thus, an interesting future
work is to extend the proposed model and algorithms to manipulate ac-
tive objects.
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