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Métodos Algebraicos para Problemas Discretos

Resumen

En esta tesis estudiamos tres problemas que relacionan Teoŕıa de Grafos
y Álgebra. En particular, consideramos el problema de contar el número
de conjuntos independientes en un grafo, aśı como el problema relacionado
de contar el número de anticadenas en un conjunto parcialmente ordenado,
desde la perspectiva del álgebra computacional. También describimos los
conjuntos independientes máximos de los grafos de de Bruijn B(d, 3), v́ıa el
estudio de la acción del grupo simétrico en d elementos. Además, determi-
namos todos los etiquetamientos aditivos de aristas y de vértices módulo d en
un grafo, por medio de una traducción combinatoria de los correspondientes
problemas de álgebra lineal sobre el anillo de enteros módulo d.

Palabras clave: grafo, conjunto parcialmente ordenado, conjunto independi-
ente, anticadena, serie de Hilbert, grafo de de Bruijn, etiquetamiento aditivo
de aristas, etiquetamiento aditivo de vértices, complejidad
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Algebraic Methods for Discrete Problems

Abstract

In this thesis we study three problems that link Graph Theory and Al-
gebra. In particular, we consider the problem of counting independent sets
in a graph, as well as the related problem of counting antichains in a finite
partially ordered set, from the perspective of computational algebra. We also
completely describe the maximum independent sets of the de Bruijn graphs
B(d, 3), via the study of the action of the symmetric group on d elements.
Moreover, we determine all additive edge and vertex labelings modulo d on a
graph, by combinatorially translating the corresponding linear algebra prob-
lems over the ring of integers modulo d.

Keywords: graph, poset, independent set, antichain, Hilbert series, de Bruijn
graph, additive edge labeling, additive vertex labeling, complexity.
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4 INTRODUCTION

The second one is that we can obtain the maximum independent sets of
B(d, 3) recursively from those of B(d − 1, 3) and those of B(d − 2, 3). We
give four explicit transformations (called f , f ′, g and g′) to achieve this. In
fact, all four transformations map orbits under the action of Sd−1 or Sd−2,
respectively, into orbits under the action of Sd.

These two observations combined allow us to prove Theorem 3.4.5, the
main result of the chapter. That is, every maximum independent set of
B(d, 3) can be obtained by an appropriate sequence of applications of the
four functions we define, and permutations in Sd, starting from the maxi-
mum independent sets of B(1, 3) and B(2, 3), which can be computed by an
exhaustive procedure. As a consequence of this construction, we prove that
the number ad of maximum independent sets of B(d, 3) follows the recursion











a1 = 1,

a2 = 6,

ad = 2dad−1 + d(d− 1)ad−2 for d ≥ 3.

This solves the problem completely. Furthermore, we discuss a way of
generalizing some of our results to larger primes D, provided the size conjec-
tured in [43] is correct.

The last chapter contains our study of additive graph labelings. Let
G = (V,E) be a simple graph. Let d be a positive integer, and note with Zd

the integers modulo d. We study two problems which are closely related.
Given a labeling fE : E → Zd of the edges of G, is there a labeling

fV : V → Zd such that

fE((u, v)) = fV (u) + fV (v),

for every edge (u, v) ∈ E? If so, how many are there? If there is a solution,
we say that the labeling fE is e-additive.

The second problem is dual to the first, and it starts with a vertex labeling
fV : V → Zd, and asks whether there is a labeling fE : E → Zd such that the
label that fV gives to each vertex is the sum of the labels that fE gives to
the edges incident ot it. That is,

fV (u) =
∑

(u,v)∈E

fE((u, v)),

for every vertex u ∈ V . If so, how many are there? Likewise, we say that
the labeling fV is v-additive if there is a solution.
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We give a definitive answer to both problems. A labeling fE is e-additive
if and only if the cycles of G have two properties that we state in Defini-
tion 4.1.11. On the other hand, a labeling fV is v-additive if and only if the
labels of the graph satisfy a more global property that we present in Defini-
tion 4.1.14. This theoretical characterization is presented in Theorem 4.1.16.

The theoretical results are interesting in themselves, but we also have the
following complexity statement.

Theorem. Let G be a graph.

• Given a labeling fE : E → Zd, we can decide in polynomial time whether
fE is e-additive.

• Given a labeling fV : V → Zd, we can decide in polynomial time whether
fV is v-additive.

From our study of these two problems, we also obtain a description of
the integer kernel, modulo d, of the incidence matrix AG of G, as well as of
its transpose At

G. This description allows us to compute the number of solu-
tions to our two labeling problems, which we summarize in Theorem 4.1.17.
In a way, our graphical conditions for additivity are a novel combinatorial
interpretation of a linear algebra problem.

In fact, our results can be extended to labelings which assign labels not
only in Zd, but in any arbitrary abelian group. We discuss this generalization
at the end of the chapter.

Finally, we include two appendices. As some of them are not part of the
standard CS curriculum, we summarize all the algebraic tools and techniques
that we use in Appendix A. The exposition should be accessible to anyone
with a modest background in Abstract Algebra. Appendix B contains a brief
summary of the syntax for computing a Hilbert Series in a few widely used
free Computer Algebra Systems.
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Chapter 1

Known Methods for Counting
and Enumerating Independent
Sets in Graphs

1.1 Introduction

Counting independent sets in an arbitrary graph, or antichains in an arbitrary
finite partially ordered set, is a #P-complete problem [49] with manifold
applications. For example, the authors of [4] define a partially ordered set
of gene mutations and work with the lattice of its antichains to predict the
development of drug resistance in HIV.

In this chapter, we review some results concerning independent sets in
graphs. Unless otherwise noted, we work with simple undirected graphs.

Let G = (V,E) be a graph, an independent set of G is a set S ⊆ V such
that S × S ∩ E = ∅. Figure 1.1a shows the independent set {1, 3, 5} high-
lighted. Independent sets are also called stable sets. The size of a maximum
independent set of a graph G is called the stability or independence number
of G, and is noted α(G).

There are two other objects intimately related to independent sets. Given
a graphG, a clique is a maximal complete induced subgraph. An independent
set in G is a clique in the complement of G. Figure 1.1b shows the set {1, 3, 5}
as a clique in the complement of the graph of Figure 1.1a. The size of a largest
clique of G is its clique number ω(G). The other object is a vertex cover . A
set of nodes C is a vertex cover of a graph G if every edge of G has at least
one endpoint in C. A vertex cover is the complement of an independent set.

We are usually concerned with maximal (i.e. not included in another
one) and maximum (i.e. of maximum cardinality) independent sets and

7
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1
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(c)

Figure 1.1: (a) An independent set in a graph. (b) The same set as a clique
in its complement. (c) A cover of the original graph.

cliques, and with minimal and minimum vertex covers. The examples of
Figure 1.1 are maximum (independent set and clique) and minimum (vertex
cover). There are decision problems attached to these. Given a graph G
and a positive integer k, one can ask whether there is a independent set
of cardinality greater than k. This, and the equivalent clique and vertex
cover versions, are NP-complete [26]. All three problems have their weighted
versions.

These three objects arise in several applications. For example, a clique-
detection algorithm is applied to a chemical problem in [22]. Independent
sets play a relevant role in coding theory ([54]).

Even though the three decision problems stated above are NP-Complete,
there are polynomial algorithms that solve them for several classes of graphs.
For example, a polynomial algorithm for the maximum independent set prob-
lem (i.e. computing the size of a maximum independent set) in perfect graphs
is presented in [28] (though it is not combinatorial in nature). Recall that a
graph G is perfect if and only if the chromatic number χ(G′) equal the clique
number ω(G′) for every induced subgraph G′ of G. Perfect graphs include
bipartite graphs, comparability graphs and interval graphs, among others.

1.2 Some methods for counting independent

sets in a graph

In this work, we are interested in counting independent sets in a graph, which,
as we said, is a #P-complete problem.

A useful object in this study is the independence polynomial of the graph.
Given a graph G, its independence polynomial I(G;x) has degree α(G), and
the coefficient of xi is the number of independent sets of size i in G. The sur-
vey [42] summarizes several known results about independence polynomials.
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Clearly, evaluating the independence polynomial at 1 gives the total number
of independent sets of G. In Chapter 2, we study some properties of an
algebraic algorithm for computing the indepence polynomial of a graph. In
Chapter 3, we find a closed formula for the number of maximum independent
sets of a subfamily of de Bruijn graphs.

We start with a divide and conquer algorithm for computing the inde-
pendence polynomial of a graph. The algorithm applies the following result.

Proposition 1.2.1 (see [29]). Let G = (V,E) be a graph, and let v ∈ V be a
node. Let N [v] be the closed neighborhood of v (i.e. v and all of its adjacent
nodes). Then

I(G;x) = I(G\v;x) + xI(G\N [v];x).

There is a simple way to derive an algorithm from this result: Choose
a node v of G, call the algorithm recursively with G\v and with G\N [v],
and then combine the two results. This is a rather crude algorithm, but
we present it because it will resurface in Chapter 2. This algorithm can be
modified to enumerate the independent sets.

Reverse Search is a method for combinatorial enumeration introduced
in [1]. This method was applied to the enumeration of all maximal indepen-
dent sets in a graph in [20].

There are other approaches to the counting problem. For example, the
Belief Propagation heuristic was used in [10]. Binary Decision Diagrams
([38]) are applied to this problem in [63].

We close this chapter with an exposition of quantum algorithms for our
problems.

1.3 Quantum Counting

In this section, we show a quantum algorithm to enumerate all independent
sets in a graph, and an algorithm to count the independent sets of a graph.
We recommend [11] as a general reference on quantum algorithms.

Quantum computing promised to be a groundbreaking platform for com-
putations. The best-known, and most spectacular, result is perhaps Peter
Shor’s polynomial time algorithm for the factorization of an integer [52]. The
unstructured nature of our problem, however, prevents us from obtaining an
efficient algorithm, as was shown in [5].

A classical circuit Given a set V of n elements, we can represent its
subsets by strings of n 0s and 1s. Given a graphG = (V,E), |V | = n, |E| = m
we are going to build a quantum circuit to recognize its independent sets. It
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will take as input an n-qubit register |x1 . . . xn〉 = |x〉, which will represent a
subset of V . If |x〉 represents an independent set of G, it will be transformed
into −|x〉. Otherwise, it will remain untouched.

First, we discuss a classical circuit to decide whether a subset x ⊆ V is
an independent set of G. For every edge (i, j) of G, we can NAND the values
of xi and xj. That will give us m boolean values, which will be 1 if and only
if the corresponding edge is absent from x. We now have to AND all those
values. The result will be 1 if and only if x is independent.

A quantum circuit Now we discuss the quantum circuit. Since all the
operations have to be reversible, we will resort to the Toffoli gate (see Fig-
ure 1.2a).

|a〉 • |a〉

|b〉 • |b〉

|c〉 ⊕ |c⊕ ab〉
(a) Toffoli gate

|a〉 • |a〉

|b〉 • |b〉

|1〉 ⊕ |¬(a ∧ b)〉
(b) Logical NAND

|a〉 • |a〉

|b〉 • |b〉

|0〉 ⊕ |a ∧ b〉
(c) Logical AND

Figure 1.2: Reversible logical gates

To build the quantum circuit, we will use n qubits corresponding to |x〉,
m qubits corresponding to the edges, m qubits to summarize information,
and one target qubit. The NAND operations of the classical circuit are
translated into Toffoli gates (see Figure 1.2b) using nodes as control qubits
and an ancillary |1〉. As pointed out above, that will leave us with the m
ancillary qubits reflecting whether a certain edge is present in |x〉 or not.
Let us call them |e1〉, . . . , |em〉. The following step is to perform an AND
operation between these |ei〉. That will leave us with one qubit which will
be |1〉 if and only if |x〉 is an independent set of G. We then use this qubit
to control a NOT operation on the target qubit.

For example, given the graph P4 = ({1, 2, 3, 4}, {(1, 2), (2, 3), (3, 4)}), a
simple path of four nodes, the corresponding quantum circuit is illustrated
in Figure 1.3. In this instance, |q1〉 through |q4〉 represent the nodes of P4.
After the first three gates have been applied, the state of |q5〉, |q6〉 and |q7〉
will reflect the presence in |x〉 of the edges (1, 2), (2, 3) and (3, 4), respectively.
This information will be summarized in the state of |q9〉, which will control
the CNOT on the target qubit.

We will call this quantum circuit O. It uses m Toffoli gates to perform
NAND operations, m− 1 to perform AND operations, two Hadamard gates
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|q1〉 •

|q2〉 • •

|q3〉 • •

|q4〉 •

|q5〉 = |1〉 ⊕ •

|q6〉 = |1〉 ⊕ •

|q7〉 = |1〉 ⊕ •

|q8〉 = |0〉 ⊕ •

|q9〉 = |0〉 ⊕ •

|q10〉 = |1〉 H ⊕ H

Figure 1.3: Oracle for P4

and one CNOT gate, for a total of 2m+ 1 basic quantum gates.

The Grover iteration If we consider the circuit O as an oracle, we can
build the box Gr for the Grover iteration

H⊗n(I − 2|0〉〈0|)H⊗nO

This box (see Figure 1.4) has one call to our oracle, two n-bit Hadamard

|q0〉

O
H⊗n |0〉 7→ |0〉; |x〉 7→ −|x〉 H⊗n

|q1〉

|q2〉

|q3〉

|qn〉

Figure 1.4: Grover iteration

transforms and one conditional phase shift. The latter operation can be
realized with O(n) gates. Therefore, Gr can be realized with O(n+m) basic
gates.
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Finding an Independent Set Let the number of independent sets of G
be M , and let us assume that we know this number. Suppose that we want
to find one of those M independent sets. Let |ψ〉 = H⊗n|0〉 be the uniform

superposition of all the base states. Applying the Grover iteration O(
√

2n

M
)

times we will obtain an independent set of G with high probability. To see
why, let us point out that

|ψ〉 =

√

2n −M
2n

|α〉+
√

M

2n
|β〉

where

|α〉 =
1√

2n −M
∑

x not independent

|x〉

and

|β〉 =
1√
M

∑

x independent

|x〉

If we let θ/2 be the initial angle between |ψ〉 and |α〉, then each Grover itera-
tion brings it an angle θ closer to |β〉. This can be proved using trigonometric

identities. It follows that O(
√

2n

M
) iterations bring it closest to |β〉. Taking

into account the complexity of evaluating Gr, the complexity of finding 1

independent set amounts to O(
√

2n

M
(n+m)).

Finding all the Independent Sets If we know M , and we want to enu-
merate all the independent sets, we can find one, say |x〉, and then change the
oracle O so that neither |x〉 nor any of its subsets are solutions. This change
involves |x| = O(n) new gates. We then have to find one of the M − 2|x|

solutions of a new function. Repeating this procedure, we can obtain all the
independent sets.

Counting Quantumly If we want to estimate the number M of inde-
pendent sets of the graph G, we can now use quantum counting ([7]) (see
Figure 1.5). The procedure estimates an eigenvalue of the Grover iteration
we have just described. Actually, the eigenvalue is of the form eiθ and the

algorithm approximates θ = 2 arcsin
√

M
2n . If we want to approximate it with

l bits of accuracy, and we want the algorithm to succeed with probability at
least 1− ǫ, we have to use t = l+ ⌈log(2 + 1/2ǫ)⌉ qubits, plus the qubits for
G. In this circuit, the complexity is dominated by the 2l − 1 applications of
the G iteration, resulting in an O(2l(m+ n)) algorithm.
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|q1〉 = |0〉 H •

FT †|q2〉 = |0〉 H •

|ql〉 = |0〉 H •

|w0〉 = |0〉 H

Gr20

Gr21

Gr2l−1

|wn〉 = |0〉 H

Figure 1.5: Quantum Counting via Phase Estimation
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Chapter 2

Independent Sets from an
Algebraic Perspective

2.1 Introduction

In this chapter, we study the problem of counting independent sets in a graph,
as well as the related problem of counting antichains in a finite partially
ordered set, both from an algebraic perspective. The connection between
independent sets and Algebra is spearheaded by the following construction.

Definition 2.1.1. Let G = (V,E) be an arbitrary graph, with V = {v1, . . . ,
vn}. The edge ideal ([53, 62]) I ′G ⊆ C[x1, . . . , xn] of G is defined as

I ′G = 〈xixj, for all (vi, vj) ∈ E〉. (2.1.1)

Here, C can be any field.
This ideal links independent sets in G and polynomials: If xα is a mono-

mial not in I ′G, then it encodes an independent set S of G, with the encoding
given by

vi ∈ S ⇔ xi |xα. (2.1.2)

This encoding is not one-to-one, though. For example, the monomials x1

and x2
1 represent the same independent set: {v1}. In order to obtain a better

encoding, we introduce a slightly modified version of I ′G.

Definition 2.1.2. Let G = (V,E) be a graph. We define the modified edge
ideal IG of G as

IG = I ′G + 〈x2
i , for all i〉. (2.1.3)

Some results from this chapter appear in [18].

15
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Notice that IG is zero-dimensional (in fact, it has only one root: 0), and
that the monomials not in IG are square-free. The latter property turns
the encoding in (2.1.2) into a bijection. The degree of a monomial now
corresponds to the size of the independent set it represents. These monomials
are relevant enough to have a special name.

Definition 2.1.3. Given a zero-dimensional polynomial ideal I, the mono-
mials not in I are the standard monomials of I.

As an example of their usefulness, consider this: The quotient C[x]/I is
a finite-dimensional C-vector space, and the standard monomials of I are a
basis of this vector space ([14, Chapter 2, Section 2]).

If a zero-dimensional ideal I is generated by monomials, then we can
define an object that gives us detailed information about the structure of its
standard monomials.

Definition 2.1.4. Let I be a zero-dimensional ideal I. Let i be a non-
negative integer. The Hilbert Function (HF I) maps i into the number of
standard monomials of I that have degree i.

As is often the case in combinatorics, we are also interested in the gener-
ating function of HF .

Definition 2.1.5. Let I be a zero-dimensional ideal I. We define the Hilbert
Series (HS I(z)) of I as the generating function

HS I(z) =
∑

0≤i

HF I(i)z
i.

Now, let G be any graph, and let IG be its modified edge ideal. In light of
the encoding in expression (2.1.2), the coefficient of zi in HS IG

is the number
of independent sets of G that have i elements. Then, by definition, HS IG

(z)
is precisely the independence polynomial of G (see [42] for a survey on the
subject). Therefore, the Hilbert Series of the modified edge ideal of a graph
G gives us a lot of information about the independent sets of G.

There is a standard algorithm for computing the Hilbert Series of IG, and
we explain it in detail in Section 2.2. One of our main results in this chapter
concerns the running time of this algorithm when applied to ideals IG with
special algebraic properties. We now introduce these ideals.

A partially ordered set is a set P , together with a relation ≤ satisfying

• a ≤ a, for all a ∈ P .

• a ≤ b and b ≤ a implies a = b, for all a and b in P .
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• a ≤ b and b ≤ c implies a ≤ c for all a, b and c in P .

We say that two elements a and b of P are comparable if a ≤ b or if b ≤ a.
Otherwise, we say they are incomparable. A subset A of P is called an
antichain if all the elements of A are pairwise incomparable in P . We write
A(P ) for the set of antichains of P .

Let (P,≤) be a finite partially ordered set. For simplicity, we just write
P when ≤ is understood from the context. Let v1, . . . , vr be the elements of
P . We define an ideal JP in C[x1, . . . , xr]:

JP = 〈xi − xi

∏

vj≤vi

xj, for all vi ∈ P 〉.

The sets A(P ) and V (JP ) are very closely related:

Theorem (2.3.1). Let P be a finite partially ordered set. Then JP is a
radical zero-dimensional ideal. That is, it has a finite number of (simple)
zeros. Furthermore,

|V (JP )| = |A(P )|,
where | · | denotes cardinality.

We can think of a finite partially ordered set P as a directed acyclic

transitive graph
−→
GP . The undirected graph underlying

−→
GP , minus the loops

a→ a, is called the comparability graph of P (GP ). In Section 2.3, we prove
that the initial ideal LT<(JP ) is precisely the modified edge ideal of GP .

The ideal JP is a complete intersection, it is radical and it is zero-
dimensional. This is probably the best kind of ideal, from an algebraic point
of view. One of our main results is that even in this optimal algebraic setting,
computing a Hilbert Series is a difficult task.

Theorem (2.3.8). No algorithm can compute a Hilbert Series in polynomial
time when applied to initial ideals of radical zero-dimensional complete in-
tersections, unless #P = P .

The other main result of this chapter concerns the computation of the
independence polynomial of Cohen-Macaulay graphs. A graph G is Cohen-
Macaulay if and only if the quotient C[x]/IG is a Cohen-Macaulay ring. A
Cohen-Macaulay ring is a particular type of commutative ring, possessing
some of the algebraic-geometric properties of a nonsingular variety, such as
local equidimensionality. In particular, complete intersection rings and quo-
tients of the polynomial ring by a zero dimensional ideal are Cohen-Macaulay.
Cohen-Macaulay rings have good homological (and duality) properties. By
exploiting the link between bipartite Cohen-Macaulay graphs and finite par-
tially ordered sets, we are able to derive the following result.
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Theorem (2.4.2). There can be no polynomial algorithm to compute the
independence polynomial of bipartite Cohen-Macaulay graphs unless #P =
P .

The rest of this Chapter is organized as follows. In Section 2.2, we analyze
the standard algorithm for computing a Hilbert Series. We present it in
a more general setting, and study the meaning of each of its steps when
applied to a modified edge ideal. In Section 2.3, we turn our attention to
finite partially ordered sets and their antichains, in order to derive our first
main result. In Section 2.4, we present some properties of bipartite Cohen-
Macaulay graphs and prove our second main result. We close with some
experimental observations in Section 2.5.

2.2 Counting independent sets via the com-

putation of Hilbert Series

Let M be a positively graded finitely generated C[x]-module (e.g. the quo-
tient C[x]/IG for some graph G). We can write

M =
⊕

0≤i

Mi,

where Mi is the subspace of M of degree i. The Hilbert Function (HFM) of
M maps i onto dimC(Mi). The Hilbert Series (HSM) of M is the generating
function

HSM(z) =
∑

0≤i

HFM(i) zi. (2.2.1)

If M = C[x]/I for some monomial ideal I, then HFM(i) is the number of
monomials of degree i which are not in I. If we take I = IG for some graph G,
as we saw in the previous section, HFM(i) is then the number of independent
sets of size i in G. In this case, the Hilbert Series of C[x]/IG is called the
independence polynomial of G.

We can see in [39, Theorem 5.2.20] that in the case of the modified edge
ideal IG, the Hilbert Series of M = C[x1, . . . , xn]/IG has the form

HSM =
HN M(z)

(1− z)n
, (2.2.2)

where HN M(z) is called the Hilbert Numerator.
The problem of computing a Hilbert Series is NP-Complete ([2]). There

is a standard algorithm (first proposed in [46]) for computing the Hilbert
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Series of a quotient C[x]/I, where I is a homogeneous ideal in C[x]. Sev-
eral computer algebra systems (CoCoA [12], Singular [25], Macaulay2 [24])
implement it in subtly different ways. There are some classes of ideals for
which this algorithm finishes in time polynomial in the input, e.g. Borel ([2])
and Borel-type ideals ([31]). We refer to [39, Ch. 5] for a general reference
on Hilbert Series.

The algorithm mentioned above hinges on the following property. If we
have a homogeneous exact sequence of finitely generated gradedC[x]-modules

0 −→M ′ −→M −→M ′′ −→ 0, (2.2.3)

then
HSM(z) = HSM ′(z) + HSM ′′(z). (2.2.4)

We can use this additivity property for computations. Let M be a finitely
generated graded C[x]-module and f 6= 0 a homogeneous polynomial of de-
gree d. We have the following multiplication sequence

0 −→ [M/(0 :M (f))](−d) ϕ−→M −→M/fM −→ 0, (2.2.5)

where ϕ is induced by multiplication by f . Here, (0 :M (f)) = {g ∈
M, such that gf = 0}, and (−d) induces a degree shift, so that ϕ is a homo-
geneous map of degree 0. Rewriting equation (2.2.4) we obtain

HSM(z) = HSM/fM (z) + zd HS (0:M (f)). (2.2.6)

The polynomial f above is called a pivot.
Actually, only the Hilbert Numerator is computed by the algorithm, since

the Series is obtained by dividing the Numerator by (1− z)n. We reproduce
the algorithm for computing the Hilbert Numerator of monomial ideal (see
[39, Theorem 5.3.7]).

Algorithm 2.2.1. Algorithm to compute the Hilbert Numerator of
a monomial ideal I (called HN).

Input: A set of minimal monomial generators for the ideal I.
Output: The Hilbert Numerator of C[x]/I.
1: if the minimal generators of I are pairwise coprime then
2: return

∏s
i=1(1− zdi), where di is the degree of the i-th generator of

I.
3: else
4: Choose a monomial p as pivot.
5: f1 ← HN(I : p).
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6: f2 ← HN(I + p).
7: return zdeg(p)f1(z) + f2(z).
8: end if

The choice of pivot must satisfy one condition. Namely,

∑

deg(I : p) <
∑

deg(I) and
∑

deg(I + p) <
∑

deg(I). (2.2.7)

Here,
∑

deg(I) denotes the sum of the degrees of all the minimal monomial
generators of I. Intuitively, this condition says that the recursive calls are
made on “smaller” ideals, and shows that the algorithm terminates.

The program CoCoA implements this algorithm, and uses a certain strat-
egy for the choice of pivot in step 4. First, it chooses any variable xi appearing
in the most number of generators of IG. Then it picks two random generators
containing that variable. The pivot is the highest power of xi that divides
both random generators.

We present a specialized version of Algorithm 2.2.1, suited for the com-
putation of the Hilbert Series of C[x]/IG for any graph G.

Theorem 2.2.2. Let IG be the modified edge ideal of a graph G. The gen-
eral algorithm for computing the Hilbert Series of C[x]/IG has the specialized
version presented in Algorithm 2.2.3.

This algorithm has an obvious graphical interpretation. The choice of
step 4 corresponds to choosing a node v of the graph. The recursive calls
of step 7 correspond to counting the independent sets of G that contain v
(HSColon) and those that do not contain v (HSPlus).

Algorithm 2.2.3. Specialized algorithm to compute the HS of C[x]/IG.

Input: The list L of minimal monomial generators of IG described in (2.1.3).
Output: The Hilbert Series of C[x]/IG.
1: if L consists only of variables and squares of variables then
2: return (1 + z)k, where k is the number of variables which appear

squared in L.
3: else
4: Choose a variable xi that appears squared in L.
5: Colon ← a minimal set of monomial generators of (〈L〉 : xi).
6: Plus ← a minimal set of monomial generators of 〈L, xi〉.
7: return zHSColon(z) + HSPlus(z)
8: end if
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Proof. Algorithm 2.2.3 differs from Algorithm 2.2.1 in two key steps. In
step 1, the special version does not check coprimality, as is done in Algo-
rithm 2.2.1. The other difference is in step 4: The specialized version chooses
a variable, instead of an arbitrary monomial.

We make a claim that helps us understand why this specialized version
is correct. In every call to the algorithm, each of the n variables appears
in L raised to the first or to the second power. Furthermore, in each call,
L contains only the powers just mentioned and the “edge monomials” xixj

such that xi and xj appear squared in L. This leads to an obvious graphical
interpretation: The list L represents the subgraph of G induced by those
variables that appear squared in L.

We prove the correctness of the algorithm by showing that the choice of
a pivot in Algorithm 2.2.1 must always yield a variable when applied to a
modified edge ideal, and that the previous claim is true.

When the algorithm is originally invoked, every variable appears squared
in L. Besides the squares of variables, L contains the “edge monomials” xixj

for every edge (i, j) of G. This proves that the claim above holds in the first
call.

Assuming that the elements of L have the structure we claim, let us
show that the any choice of pivot yields a variable. Suppose that we employ
any conceivable strategy for the choice of pivot, always subject to condi-
tion (2.2.7). The pivot p cannot be a multiple of any monomial in L. If it is,
then Plus = L, and the decreasing total degree condition (2.2.7) is not satis-
fied. The pivot p must then be a product of variables that appear squared in
L, but it must not be divisible by any “edge monomial.” Suppose that the
pivot is the product of at least two variables. That is, xixj | p, where x2

i and
x2

j are in L, and xixj is not in L. Then Plus violates the decreasing total
degree condition (2.2.7), because it has the same generators that L has, plus
p. If p = 1, then Colon = L, and this violates the decreasing total degree
condition. The only valid choice is then p = xi, for some xi that appears
squared in L.

Once we know that the pivot is always a variable, we can show that the
claim above holds for Plus and for Colon. In doing so, we also explain the
second part of the theorem.

The list of minimal monomial generators for Plus must contain all the
variables that were raised to the first power in L. Furthermore, it must also
contain the pivot xi. The square of xi is not in Plus, because Plus is minimal,
and the “edge monomials” that contained xi, are not present in Plus. The
rest of the generators in L are unaffected. Therefore, we have that every
variable appears in Plus either squared or raised to the first power, as we
wanted to show. Plus corresponds to the graph obtained by removing the



22 CHAPTER 2. INDEPENDENT SETS FROM AN ALGEBRAIC . . .

node that corresponds to xi and all the edges incident with it.
The analysis of Colon is somewhat similar. To obtain a minimal set of

monomial generators, we just cross out the pivot xi from every generator
in L that contains it, and then eliminate multiples. If we had an “edge
monomial” xixj, then xj is in Colon. Therefore, the square of xj is no longer
a generator, and all the “edge monomials” containing xj are also missing
from Colon. Again, every variable appears either squared or raised to the
first variable. In this case, we remove the node corresponding to xi, all its
adjacent nodes and all the edges incident with xi or with any node adjacent
to xi.

Let v be the node of G associated with the pivot xi. The combination step
of the algorithm reflects the meaning of Colon and Plus: The independent
sets of G are those of Plus (i.e. those do not that contain v) and those of
Colon (i.e. those that contain v).

The algorithm terminates when there are no more “edge monomials”.
Since all the generators are variables, or squares of variables, then they are
pairwise coprime and satisfy the stopping criterion of Algorithm 2.2.1.

A note is in order about the value returned in the base case. Algo-
rithm 2.2.1 returns

n
∏

i=1

(1− zdi), (2.2.8)

where di is the degree of the i-th generator. Since in the specialized case the
generators are of the form xi or x2

i , expression (2.2.8) has the form

(1− z)n(1 + z)k, (2.2.9)

where k is the number of variables that appear squared in L. According to
the formula (2.2.2), the value return by Algorithm 2.2.3 is the Hilbert Series
of C[x1, . . . , xn]/IG.

All these observations show that the graphical interpretation is accurate
and that the specialized version is indeed correct.

The execution time of this algorithm is determined by the choice of vari-
able in step 4, and the CoCoA strategy appears to be a good heuristic. We
show some experimental observations in Section 2.5.

2.3 Partially ordered sets and Gröbner Bases

In this section, we study a family of zero-dimensional radical complete inter-
section polynomial ideals first proposed in [9].
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A partially ordered set is a set P , together with a relation ≤ satisfying

• a ≤ a, for all a ∈ P .

• a ≤ b and b ≤ a implies a = b, for all a and b in P .

• a ≤ b and b ≤ c implies a ≤ c for all a, b and c in P .

We say that two elements a and b of P are comparable if a ≤ b or if b ≤ a.
Otherwise, we say they are incomparable. A subset A of P is called an
antichain if all the elements of A are pairwise incomparable in P . We write
A(P ) for the set of antichains of P .

Let (P,≤) be a finite partially ordered set. We recall the definition of the
ideal JP ⊂ C[x1, . . . , xn]:

JP = 〈xi − xi

∏

vj≤vi

xj, for all vi ∈ P 〉. (2.3.1)

We mentioned the following result in the Introduction of this chapter:

Theorem 2.3.1 ([9]). Let P be a finite partially ordered set. Then JP is
a radical zero-dimensional ideal. That is, it has a finite number of (simple)
zeros. Furthermore,

|V (JP )| = |A(P )|, (2.3.2)

where | · | denotes cardinality.

We take the above theorem one step further, and give an explicit bijection
between A(P ) and V (JP ). We first need some results about the structure of
V (JP ).

Lemma 2.3.2. Let P be a finite partially ordered set. Then the elements of
V (JP ) are strings of 0’s and 1’s.

Proof. Suppose that an element vi ∈ P is minimal. Then pi = xi − x2
i ∈ JP ,

hence xi is 0 or 1. Now, take any xi, and assume that for every vj ≤ vi we
have shown that xj is 0 or 1. Then if all the xj are 1, xi must also be 1. If
any xj is 0, then xi must be 0 too.

Similarly, we have the following remark.

Remark 2.3.3. Let P be a finite partially ordered set, and let x be an
element of V (JP ). If xi = 1, then xj = 1 for all j such that vj ≤ vi, since the
polynomial xi − xi

∏

vj≤vi
xj must be zero when evaluated at x.

We can now present the bijection between A(P ) and V (JP ).
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Theorem 2.3.4. Let P be a finite partially ordered set. We define f :
V (JP )→ A(P ) by

(x1, . . . , xr) 7→ {vi ∈ P, such that xi = 1 and xj = 0 for all vj > vi}.
We define g : A(P )→ V (JP ) by

A 7→ (x1, . . . , xr), where xi = 1 if and only if ∃ vj ∈ A such that vi ≤ vj.

We then have
f ◦ g = g ◦ f = id . (2.3.3)

Proof. Let x = (x1, . . . , xr) be a point in V (JP ). Let A = f(x) and x′ =
(x′1, . . . , x

′
r) = g(A). We want to show that x = x′. We know that x′i = 1 if

and only if ∃ vj ∈ A such that vi ≤ vj. By definition, vj is in A if and only if
xj = 1 and xk = 0 for all vk > vj. By Lemma 2.3.3, this happens if and only
if xi = 1. The other equality is proved similarly.

We are going to relate the Hilbert Series algorithm of the previous section
with the number of antichains of a finite partially ordered set P , but we need
to state a few results concerning JP before doing so.

Proposition 2.3.5. The universal, reduced Gröbner Basis of JP is the set
GbP of polynomials

gbi = x2
i − xi ∀ vi ∈ P,

gb(j,i) = xixj − xi ∀ vj ≤ vi.

Proof. We show that the ideal generated by GbP is radical, and that its
variety coincides with that of JP . By Hilbert’s Nullstellensatz, this is enough
to conclude that the ideals are equal. We then prove that GbP is in fact a
Gröbner basis with the stated properties.

Lemma 2.3.2 shows that the elements of V (JP ) are strings of 0’s and 1’s.
The polynomials x2

i − xi are in Gb, and therefore the elements of V (GbP)
are also strings of 0’s and 1’s. Let x = (xi)vi∈P be a string of 0’s and 1’s.
x ∈ V (JP ) if and only if ∀ vi ∈ P, (xi = 0 ⇔ (∃ vj ≤ vi such that xj = 0)).
But this is equivalent to x ∈ V (GbP).

The ideal JP is radical (see [9]). GbP is zero-dimensional, and contains
a reduced univariate polynomial in each variable (gbi). Therefore it is also
radical. This concludes the proof of equality.

We now prove that GbP is a Gröbner Basis. Given any two polynomials
in the set GbP , we show that their S-polynomial is divisible by GbP . If we
let p = xixj − xi and q = xkxℓ − xk be two polynomials in GbP , all possible
combinations of the indices i, j, k and ℓ boil down to the following non-trivial
possibilities for (p, q) (with i, j, k, ℓ all different):
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1. (x2
i − xi, xkxi − xk) or (xixj − xi, xkxj − xk) ⇒ S(p, q) = 0.

2. (x2
i − xi, xixℓ − xi)⇒ S(p, q) = gbi − gb(ℓ,i).

3. (xixj − xi, xixℓ − xi)⇒ S(p, q) = gb(j,i) − gb(ℓ,i).

4. (xixj − xi, xkxi − xk)⇒ S(p, q) = gb(j,k) − gb(i,k).

5. (xixj − xi, xjxℓ − xj)⇒ S(p, q) = gb(ℓ,i) − gb(j,i).

6. (x2
i − xi, x

2
k− xk) or (x2

i − xi, xkxℓ− xk) or (xixj − xi, xkxℓ− xk). In all
three cases, since the leading monomials of p and q are coprime, S(p, q)
is divisible by (p, q).

7. (xixj − xi, xjxi − xj). This can only hold if vi ≤ vj and vj ≤ vi, that
is, vi = vj.

In cases 4 and 5 above, we know that gb(j,k) and gb(ℓ,i), respectively, are
in GbP , because a partial order relation is transitive. Therefore, GbP is a
Gröbner Basis.

All the polynomials in GbP are of the form xixα − xi. The first term
is greater than the second one for any monomial order, and thus GbP is
universal.

Finally, none of the polynomials are redundant, all of the leading coef-
ficients are one, and the “other” monomial in each polynomial of GbP has
degree 1, so it cannot be divisible by any leading monomial of GbP . There-
fore, GbP is also a reduced Gröbner Basis.

We can count the antichains of P by studying JP . We have seen that
|A(P )| = |V (JP )|. The following well-known result is helpful.

Theorem 2.3.6 ([14, Theorem 2.2.10]). Let I be a radical zero-dimensional
ideal (e.g. JP ). Then

|V (I)| = dimC(C[x]/I).

The Hilbert Series algorithm could help us to compute dimC(C[x]/JP ),
but it requires that the ideal JP be homogeneous, which it clearly is not.
Fortunately, we can use another result.

Theorem 2.3.7 ([13, Chapter 5, Section 3]). Let I be a zero-dimensional
polynomial ideal, and let < be any monomial ordering. Then

dimC(C[x]/I) = dimC(C[x]/LT<(I)).
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We know, by the definition of a Gröbner Basis, that

LT<(JP ) = 〈LT<(g), g ∈ GbP〉.

Note that 〈LT<(g), g ∈ GbP〉 has the same structure of the ideals IG of the
previous section. Actually, it is precisely IGP

, where GP is the comparability
graph of P . This graph has one node per element of P , and two nodes are
adjacent if and only if their corresponding elements are comparable. Notice
that an antichain of P is exactly an independent set of GP . As a consequence,

|A(P )| = number of independent sets of GP = dimC(C[x]/LT<(JP )).

Theorem 2.3.8. No algorithm can compute a Hilbert Series in polynomial
time when applied to initial ideals of radical zero-dimensional complete in-
tersections, unless #P = P .

Proof. If an algorithm allowed us to compute the Hilbert Series of the initial
ideal of any complete intersection, then we could apply it to the ideal gener-
ated by the leading monomials of GbP , for any finite partially ordered set P .
But then we would be able to count the antichains of P in polynomial time,
just evaluating the Hilbert Series at 1.

We now study another ideal associated with a finite partially ordered set.
An alternate way of dealing with a partially ordered set P is to look at the
cover relation. Given a and b in P , we say that a ≺ b (read “b covers a”)
if and only if a < b and there is no c ∈ P such that a < c < b. Using this
relation we define a new ideal

J ′
P = 〈xi − xi

∏

vj�vi

xj, for all vi ∈ P 〉. (2.3.4)

This ideal encodes the same information as JP , as shown by the following

Lemma 2.3.9. Let P be a finite partially ordered set. Then

JP = J ′
P . (2.3.5)

Proof. It is not hard to see that the varieties of JP and J ′
P coincide. They

essentially encode the same partially ordered set. We show that J ′
P is radical.

Since we already know that JP is radical, this proves the equality.
We prove radicality by showing that xi − x2

i is in J ′
P for all vi ∈ P . We

know this to be true for the minimal elements of P , by the very definition of
J ′

P . Suppose we have a non-minimal element vi in P , and let vj1 , . . . , vjr
be
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the elements such that vjk
≺ vi, and assume that xjk

− x2
jk

is in J ′
P for all k.

First, we observe that

(xjl
− 1)(xi − x2

i

r
∏

k=1

xjk
)− x2

i

r
∏

k=1
k 6=l

xjk
(xjl
− x2

jl
) = xixjl

− xi

is in J ′
P for all l. Now, consider the following step.

(xi − x2
i

r
∏

k=1

xjk
)− xi

r−1
∏

k=1

(xi − xixjk
) = xi −

r−1
∏

k=1

xjk
.

Since (xi−x2
i

∏r
k=1 xjk

) and (xi−xixjk
) are in J ′

P , we have that xi−
∏r−1

k=1 xjk

is also in J ′
P . If we apply this procedure repeteadly, we eliminate variables

from the product, and eventually find that xi − x2
i is in J ′

P . Since we have
shown that J ′

P has a square-free univariate polynomial in each variable, it is
a radical ideal.

2.4 Independent sets in bipartite Cohen-Ma-

caulay graphs

We are now going to refine Theorem 2.3.8. Let G be a graph, and I ′G its
edge ideal. We say that G is a Cohen-Macaulay graph if C[x]/I ′G is a Cohen-
Macaulay ring. (The quotient C[x]/IG, is always Cohen-Macaulay, because
IG is zero-dimensional.)

Not every graph is Cohen-Macaulay, of course. For example, the path of
length three (see Figure 2.1) has the edge ideal JP3

= 〈x1x2, x2x3〉, defined in
C[x1, x2, x3]. The quotient C[x1, x2, x3]/JP3

is not Cohen-Macaulay. It is not
even equidimensional, since the zero set of JP3

consists of the plane x2 = 0,
together with the line x1 = x3 = 0.

1
2

3

Figure 2.1: The path of length three P3

One particularly interesting subfamily of Cohen-Macaulay graphs are bi-
partite Cohen-Macaulay graphs. These are characterized by the following
result.

Theorem 2.4.1 ([34]). Let G = (V1 ⊔ V2, E) be a bipartite graph. Then
G is a Cohen-Macaulay graph if and only if |V1| = |V2|, and the vertices
V1 = {x1, . . . , xn} and V2 = {y1, . . . , yn} can be labeled in such a way that
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1. (xi, yi) ∈ E for all i = 1, . . . , n;

2. if (xi, yj) ∈ E, then i ≤ j;

3. if (xi, yj) and (xj, yk) are edges, then (xi, yk) is also an edge.

There are two ways of seeing a bipartite Cohen-Macaulay graph G as a
partially ordered set. One way is to view G as a poset. Suppose that the
nodes of G are split into V1 and V2. Then we set x ≤ y if and only if x = y
or x ∈ V1, y ∈ V2 and (x, y) is an edge of G. That is, we choose one of the
parts as the “upper” one.

The other way involves a different construction. Let G = (V1 ⊔ V2, E) be
a bipartite Cohen-Macaulay graph. We define a partially ordered set PG as
follows. The elements of PG are those of V1. Given xi and xj, we set xi ≤ xj

if and only if the edge (xi, yj) is in E. From the transitivity of bipartite
Cohen-Macaulay graphs, we see that PG is a partially ordered set.

Conversely, let P be a partially ordered set, with elements x1, . . . , xr.
Consider a linear extension of P . That is, we assume that if xi ≤ xj then
i ≤ j. We build a bipartite graphGP = (V,E) as follows. We set V = V1⊔V2,
with V1 = {x1, . . . , xr} and V2 = {y1, . . . , yr}. We put the edges (xi, yi) in E
for all i, and we have the edge (xi, yj) if and only if xi ≤ xj in P . In this
case, the transitivity of ≤ ensures that GP is a bipartite Cohen-Macaulay
graph.

The bijection we just oulined allows us to prove the following result.

Theorem 2.4.2. There can be no polynomial algorithm to compute the in-
dependence polynomial of bipartite Cohen-Macaulay graphs unless #P = P .

Proof. Let G and PG be a bipartite Cohen-Macaulay graph and its associated
partially ordered set, respectively. The construction outlined above expands
every element of a finite partially ordered set into a segment in a bipartite
Cohen-Macaulay graph. Any antichain of size k in the partially ordered set
is then automatically translated into 2k independent sets of size k in the
bipartite graph. Let f be the independence polynomial of G, and let g be
the “antichain polynomial” of P . Then

f(x) = g(2x).

The result now follows from[49].

2.5 Some experimental observations

In this Section, we present some observations on the performance of the
CoCoA strategy for computing Hilbert Numerators.
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We used as a working example the partially ordered set given by the
power set of {1, . . . , n}. The number of independent sets in its comparability
graph is called the n-th Dedekind number D(n) ([17]).

We implemented Algorithm 2.2.3 and tried 1000 random choices of pivots
for n = 3. They choices are plotted in Figure 2.2, next to the CoCoA choice.
We can see that the heuristic is indeed good, but not optimal in this case.

Figure 2.2: Times for D(3). The CoCoA strategy is marked with an X.

We tested the three Computer Algebra Systems mentioned earlier, be-
cause we were able to discuss the implementation details with their devel-
opers. Singular and Macaulay 2 only managed to compute D(6), and
crashed when asked to compute D(7). Only CoCoA was able to compute
D(7). Dedekind numbers are only known up to 13, but those computations
required many hours of supercomputer time [32]. CoCoA was able to compute
D(7) in desktop hardware in under 7 minutes.

There is another popular free Computer Algebra System called SAGE
([58]). However, it delegates Hilbert Series computations to Singular. It
does have a native implementation to enumerate the antichains of a poset,
but it is implemented using a naive recursive algorithm.
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Chapter 3

Maximum Independent Sets in
de Bruijn Graphs

3.1 Introduction

We begin the chapter by defining our object of study. Let d and D be
two positive integers. Throughout this chapter, we let [d] stand for the
set {0, . . . , d − 1}. The de Bruijn graph B(d,D) is a directed graph with
dD nodes, consisting of all the strings of lenght D, with each symbol taken
from the alphabet [d]. There is an edge in B(d,D) from node x = x1 . . . xD

to node y = y1 . . . yD if and only if x2 . . . xD = y1 . . . yD−1. We can think of
each as a process: we append the last symbol of y to x to obtain x1 . . . xDyD,
and then we discard the first symbol of this string. The edges of B(d,D)
can be labeled with the symbol appended to the source node (see B(2, 2) in
Figure 3.1).

These graphs were introduced in the paper “A Combinatorial Problem”
by N. G. de Bruijn, under the name of T -nets [16]. Since then, de Bruijn
graphs have been used in a wide range of contexts. For example, in the study
of normal numbers [60, 3], network topology [6, 47], quantum computation
[51], and sequence assembly [48].

This family of graphs has some interesting properties. For example, they
are d-regular, and therefore Eulerian. Also, the graph B(d,D+ 1) is the line
graph of B(d,D). The graph B(4, 3) gained some relevance in the 1950’s,
in an attempt to explain the genetic code. The structure of DNA molecules
had been recently discovered and it was known that DNA was translated into
proteins, but the mechanism of this translation was not known. However,
proteins were known to be made up of aminoacids. It was postulated (and

Some results from this chapter appear in [8]

31
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1001
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0

1

Figure 3.1: B(2, 2).

later confirmed) that short sequences of nucleobases were directly translated
into aminoacids by some mechanism. There were only 20 known aminoacids,
and there are four nucleobases: adenine, thymine, cytosine and guanine. If
the mechanism involved the translation of pairs of bases, then only 42 = 16
aminoacids could be specified. If three bases were used, there were 43 = 64
possible codewords. It was posited that “the wisest code” would be one in
which codewords did not overlap. Otherwise, it was said, “genetic chaos
would ensue.” The maximum size of such a code, using three bases per
codeword, is precisely 20. Interestingly, any possible comma-free code with
words of length 3 and d available words is a loopless maximum independent
set of B(d, 3). We see later in this chapter that there are 408 such sets.

There is a family of sequences closely related to these graphs. A de Bruijn
Sequence of order D using d symbols is a circular sequence Seq of symbols in
[d], such that every possible sequence of length D consisting of symbols in
{0, . . . , d− 1} appears exactly once in Seq . All such sequences are obtained
by reading the labels of the edges of the Eulerian circuits of B(d,D − 1).

In this chapter, we give a complete characterization of maximum inde-
pendent sets of the subfamily B(d, 3). The maximum independent sets of de
Bruijn graphs have been previously studied ([36] and [43], for example). In
particular, the size of a maximum independent set is determined for different
values of d and D in [43].

The graph B(d,D) contains d nodes of the form x1 = · · · = xD = i, for
i ∈ [d]. We refer to such nodes as loops . Every loop is adjacent to itself, and
hence cannot be present in any independent set. On account of this, we call
any maximum independent set B(d,D) a loop-less maximum independent
set. We also consider the graph B(d,D) with the d self-edges removed. We
reserve the term maximum independent set for those of this modified version
of B(d,D). See Figure 3.2 for a maximum independent set of B(3, 3).
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Figure 3.2: The nodes of a maximum independent set of B(3, 3) are high-
lighted. The self-edges of 000, 111, and 222 have been removed.

We write α(d,D) for the size of a maximum independent set with loops
and α∗(d,D) for the size of a loop-less maximum independent set. From [43],
one can show that for d ≥ 4, α(d, 2) = α∗(d, 2) = ⌊d2/4⌋ and the number of
maximum independent sets of B(d, 2) is

(

d
d/2

)

if d is even and 2
(

d
(d−1)/2

)

if d
is odd.

In this chapter, we study the maximum independent sets of the graphs
B(d, 3). Again, in [43], it was proved that

α(d, 3) =
d3 − d

3
+ 1 and α∗(d, 3) =

d3 − d
3

. (3.1.1)

The symmetric group Sd operates naturally on the independent sets of
B(d,D). We define four functions which, together with the action of the
symmetric group Sd recursively generate all maximum independent sets in
B(d, 3). From this, we deduce a recurrence relation for the number of maxi-
mum independent sets in B(d, 3).

From Theorem 3.4.5 in Section 3.4, our main result, we derive the follow-
ing:

Theorem. If we let ad be the number of maximum independent sets of
B(d, 3), then ad has exponential generating function

∞
∑

d=1

adt
d

d!
=

t+ t2

1− 2t− t2 .
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We obtained the initial data for this chapter by computing the first few
terms of ad using the free computer algebra system CoCoA ([12]). We have
computed all the maximum independent sets for d ≤ 5 by an exhaustive
procedure, and we used those sets in some of our proofs.

The rest of this chapter is organized as follows. In Section 3.2, we define
two functions f and f ′ that take a maximum independent set of B(d, 3)
and return maximum independent sets of B(d+ 1, 3). We construct another
two functions g and g′ that take a maximum independent set of B(d, 3) and
return a maximum independent set of B(d+ 2, 3). We also prove some basic
facts about the images of these four functions.

In Section 3.3 we present the interactions between the symmetric group
and the functions defined in Section 3.2. We compute the stabilizers of the
images of our four functions. We later prove that all four functions map
orbits under the action of the symmetric group into orbits under that same
action. Furthermore, we show that the images of all four functions extended
to orbits are disjoint. These results are used to prove the main theorems of
this chapter in Section 3.4.

In Section 3.5 we show the structure of the loop-less maximum indepen-
dent sets of B(d, 3), and show that their number coincides with the number
of maximum independent sets of B(d, 3) with loops. We end with some
open questions about possible generalizations of our results to words of other
lengths in Section 3.6.

3.2 Inductive Construction of Maximum In-

dependent Sets

In this section, we present four combinatorial operations that transform a
maximum independent set in the de Bruijn graph B(d, 3) into a maximum
independent set in either B(d+ 1, 3) or B(d+ 2, 3).

We start by defining a function that is key to our proofs.

Definition 3.2.1 (Lichiardopol [43]). We define a function θ : B(d,D) →
B(d,D) that performs the following rotation on the digits of a node

θ(x1 · · ·xD) = x2 · · ·xDx1. (3.2.1)

Given a node ω = x1 · · ·xD, we define its θ-cycle as

ω
θ→ θ(w)

θ→ θ2(ω)
θ→ · · · θ→ θD−1(ω)

θ→ ω. (3.2.2)
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The graph B(d,D) can be decomposed into its disjoint θ-cycles. If we
consider the graph B(d,D), with D prime, then a total of d θ-cycles have size
1 (the loops), and the remaining (dD−d)/D θ-cycles have size D. Figure 3.3
shows this decomposition of B(3, 3), with the θ-cycles indicated by darker
arrows.

In the case at hand, D = 3, each of these disjoint θ-cycles contributes at
most one node to any independent set of B(d, 3). From this point onwards,
when we speak of “cycles”, we mean θ-cycles.
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Figure 3.3: B(3, 3) with the edges induced by θ in bold.

We start by defining a concept that greatly shortens our statements.

Definition 3.2.2. Let A be a set of nodes from B(d, 3). Let x and y be two
digits in [d]. We say that y appears between x in A if the node xyx ∈ A. We
define Mx(A) as the set of digits which do not appear between x in A. We
define mx(A) as the number of digits which do not appear between x in A,
i.e. mx(A) = |Mx(A)|.

The quantities mx(A) play a crucial role in proving that the functions we
later define are surjective.
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Proposition 3.2.3. A maximum independent set S of B(d, 3) contains either
one or two loops. S always contains one loop a such that ma(S) = 0. If S
contains another loop b, then mb(S) = 1 andMb(S) = {a}. In particular, S
contains aba, but not bab.

Proof. Suppose that an independent set S contains two loops a and b. Con-

sider the two cycles aab
θ→ aba

θ→ baa and bba
θ→ bab

θ→ abb. These two
cycles can contribute at most the nodes aba and bab, since aab, baa, bba and
abb are adjacent to either aaa or bbb. However, aba and bab are adjacent to
each other, so only one of them can be present in S. Therefore, for every
pair of loops present in an independent set S, one of the (d3 − d)/3 cycles
contributes no nodes to S.

If l is the number of loops in S, there are
(

l
2

)

pairs of loops, and thus
(

l
2

)

cycles which cannot contribute any nodes to S. Therefore, |S| ≤ (d3 −
d)/3 + l −

(

l
2

)

, so for l > 2, S cannot be a maximum independent set.
The rest of the proposition follows from the previous observations: S

must have one loop, by cardinality. If S is a maximum independent set
with only one loop a, then every cycle contributes one node. The cycles

aax
θ→ axa

θ→ xaa can only contribute axa. If S has two loops a and b, then
only one of aba and bab can be present.

Remark 3.2.4. The previous proof illustrates a tool we use throughout this
chapter. When dealing with a maximum independent set S, we often choose

a cycle xyz
θ→ yzx

θ→ zxy and show that two of its nodes cannot be in S,
therefore concluding that the third one is in S. Sometimes, we show that
none of the three are in S, thus contradicting the fact that S is maximum.

Convention 3.2.5. From now on, we state things like “Let S be a maximum
independent set with loops a and possibly b,” when in fact S may have just
one loop. In that case, everything said about b should be disregarded.

Definition 3.2.6. If w is a node, we denote by w[x → y] the node that
results from replacing every occurrence of the digit x by the digit y in w. We
write x ∈ w to mean that x is one of the digits that appear in w.

We denote by a the loop of S such that ma(S) = 0. If S has another loop
we denote it b.

We start the definition of the functions that allow us to enlarge maximum
independent sets. We first define two functions f and f ′ that take a maximum
independent set of B(d, 3) into one of B(d+ 1, 3).
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Definition 3.2.7. Let S be a maximum independent set of B(d, 3). We
define f(S) ⊂ B(d+ 1, 3) to be the union of S with the sets

U1(S) = {w[a→ d] | w ∈ S, a ∈ w,w 6= aaa, w 6= aba},
U2(S) = {axd | x ∈ [d]\{a, b}},
U3(S) = {dxa | x ∈ [d]\{a, b}},
U4(S) = {udv | u, v ∈ {a, b}},
U5(S) = {udd | u ∈ {a, b}}.

Using the example from Figure 3.2, S = {000, 010, 020, 011, 012, 210, 022,
211, 212}, and

U1(S) = {313, 323, 311, 312, 213, 322},
U2(S) = {013, 023},
U3(S) = {310, 320},
U4(S) = {030},
U5(S) = {033}.

Remark 3.2.8. The loops of S are the same as the loops of f(S). Notice
that md(f(S)) = l + 1, where l is the number of loops of S.

Proposition 3.2.9. If S is a maximum independent set of B(d, 3), then
f(S) is a maximum independent set of B(d+ 1, 3).

Proof. f(S) is made up of six disjoint sets. Let l be the number of loops
of S. We have

|S| = d3 − d
3

+ 1,

|U1(S)| = (d− 1)(d− 1)− (l − 1) + (d− l) = d2 − d+ 2− 2l

|U2(S)| = |U3(S)| = (d− l),
|U4(S)| = l2,

|U5(S)| = l.

Only the cardinality of U1(S) requires explanation. Notice that B(d, 3) has

(d−1)(d−1) cycles which contain a once, with the exception of abb
θ→ bba

θ→
bab in the case that l = 2. Each of these contributes one element to S and
thus to U1(S). In addition, S contains one element from each of the d − l
cycles of the form aax

θ→ axa
θ→ xaa, where x is not a loop.

We add the six quantities to obtain

|f(S)| = (d+ 1)3 − (d+ 1)

3
+ (l − 1)(l − 2) + 1.
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Since l is either 1 or 2, f(S) has the size of a maximum independent set.

We still have to prove that f(S) is an independent set. This amounts to
noticing that there are no arrows between the six sets defining f(S). The
only remark to bear in mind is that axa is in S for all x, and that bxb is also
in S, except for x = a. We leave the details to the reader.

We define another function very similar to f .

Definition 3.2.10. Let S be a maximum independent set of B(d, 3). We
define f ′(S) ⊂ B(d + 1, 3) as the union of S, the sets U1(S), U2(S), U3(S),
U4(S) from Definition 3.2.7, and

U ′
5(S) = {ddu | u ∈ {a, b}}.

Using the same example from Figure 3.2 before, U ′
5(S) = {330}.

Proposition 3.2.11. If S is a maximum independent set of B(d, 3), then
f ′(S) is a maximum independent set of B(d+ 1, 3).

Proof. This proposition is proved analogously to Proposition 3.2.9.

We now present two functions g and g′ that take a maximum independent
set of B(d, 3) into one of B(d+ 2, 3). The definitions are similar to those of
the fs.

Definition 3.2.12. Let S be a maximum independent set of B(d, 3). We
define g(S) ⊂ B(d+ 2, 3) to be the union of S with the sets

V1(S) = {w[a→ y] | y ∈ {d, d+ 1}, w ∈ S, a ∈ w,w 6= aaa, w 6= aba},
V2(S) = {axy | x ∈ [d]\{a, b}, y ∈ {d, d+ 1}},
V3(S) = {yxa | x ∈ [d]\{a, b}, y ∈ {d, d+ 1}},
V4(S) = {yxz | y, z ∈ {d, d+ 1}, y 6= z, x ∈ [d]\{a, b}},
V5(S) = {uyv | u, v ∈ {a, b}, y ∈ {d, d+ 1}},
V6(S) = {uyy | u ∈ {a, b}, y ∈ {d, d+ 1}},
V7(S) = {yzu | y, z ∈ {d, d+ 1}, y 6= z, u ∈ {a, b}},
V8(S) = {d(d+ 1)(d+ 1), (d+ 1)dd}.

Using the example from Figure 3.2 once more, we obtain

S = {000, 010, 020, 011, 012, 210, 022, 211, 212}
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V1(S) = {313, 414, 323, 424, 311, 411, 312, 412, 213, 214, 322, 422},
V2(S) = {013, 014, 023, 024},
V3(S) = {310, 410, 320, 420},
V4(S) = {314, 324, 413, 423},
V5(S) = {030, 040},
V6(S) = {033, 044},
V7(S) = {340, 430},
V8(S) = {344, 433}.

Proposition 3.2.13. If S is a maximum independent set of B(d, 3), then
g(S) is a maximum independent set of B(d+ 2, 3).

Proof. g(S) is made up of nine disjoint sets. For each pair of sets, it is clear
that there are no edges between them. We now show that g(S) has the right
size. If l is the number of loops of S,

|S| = d3 − d
3

+ 1,

|V1(S)| = 2|U1(S)| = 2(d2 − d+ 2− 2l),

|V2(S)| = 2|U2(S)| = 2(d− l),
|V3(S)| = 2|U3(S)| = 2(d− l),
|V4(S)| = 2|U4(S)| = 2l2,

|V5(S)| = 2(d− l),
|V6(S)| = 2|U5(S)| = 2l,

|V7(S)| = 2l,

|V8(S)| = 2.

The sum of these sizes is

|g(S)| = (d+ 2)3 − (d+ 2)

3
+ 2(l − 1)(l − 2) + 1.

For l = 1 or 2, g(S) is a maximum independent set of B(d+ 2, 3).

We finish our function definitions with the analogous to g of f ′.

Definition 3.2.14. Let S be a maximum independent set of B(d, 3). We
define g′(S) ⊂ B(d+ 2, 3) to be the union of S, the sets V1(S), V2(S), V3(S),
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V4(S), V5(S) from Definition 3.2.12, and the sets

V ′
6(S) = {yyu, u ∈ {a, b}, y ∈ {d, d+ 1}},
V ′

7(S) = {uyz, y, z ∈ {d, d+ 1}, y 6= z, u ∈ {a, b}},
V ′

8(S) = {(d+ 1)(d+ 1)d, dd(d+ 1)},

which are the reverses of V6(S), V7(S), and V8(S) respectively.

For the example of Figure 3.2, we have

V ′
6(S) = {330, 440},
V ′

7(S) = {034, 043},
V ′

8(S) = {334, 443}.

Proposition 3.2.15. If S is a maximum independent set of B(d, 3), then
g′(S) is a maximum independent set of B(d+ 2, 3).

Proof. This proposition is proved analogously to Proposition 3.2.13.

This concludes our definitions. In Section 3.6 we present a possible uni-
fying framework for these functions.

3.3 Action of the Symmetric Group

In this section, we study the interaction between Sd and the four functions
we defined in the previous section.

As we mentioned in the Introduction, the symmetric group Sd acts on the
nodes of B(d, 3) by σ(xyz) = σ(x)σ(y)σ(z). This action preserves the graph
structure, and therefore permutes the maximum independent sets. We write
A ∼ B to mean A and B are two sets in the same orbit under the action of
Sd. Notice that the functions f , f ′, g, and g′ are defined in such a way that if
A ∼ B, then f(A) ∼ f(B) and so on. That is, all four functions map orbits
into orbits.

We prove two propositions that show the effect of applying f , f ′, g or g′

on the stabilizer of its image. We see that f and f ′ preserve stabilizers, while
g and g′ double their size by adding a transposition to it.

Proposition 3.3.1. Let S be a maximum independent set of B(d, 3). Let
H, H ′ and H ′′ be the stabilizers of S, f(S) and f ′(S), respectively. Then

H = H ′ = H ′′,

where we identify H with its image under the inclusion Sd →֒ Sd+1.
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Proof. We know that H ⊆ H ′, and we must prove the other inclusion.
Let σ ∈ H ′, and let a and possibly b be the loops of S. The set of loops

must be preserved by σ and moreover, by Proposition 3.2.3, σ fixes each
loop. We want to show that σ(d) = d. Suppose that σ(d) = z 6= d and
then σ(w) = d, for some w 6= d. Since w is not a loop, the node awd then
belongs to the set U2(S) from Definition 3.2.7, and so to f(S). That means
that σ(awd) = adz must be in f(S). Since it begins with a, and has d in
the middle, it could only be in U4(S). But z 6= a, b, and so adz /∈ U4(S).
Therefore, σ(d) = d.

Now, since σ(d) = d, σ is also an element of Sd. Furthermore, it must
be in the stabilizer of S. Otherwise, it should map a node of S into a node
having a d. Since this is not possible, σ ∈ H.

The proof for H ′′ is completely analogous.

Proposition 3.3.2. Let S be a maximum independent set of B(d, 3). Let
H, H ′ and H ′′ be the stabilizers of S, g(S) and g′(S), respectively. Let τ be
the transposition interchanging d and d+ 1. Then

H ′ = H ′′ = 〈τ,H〉,

where, again, we identify H with its image in Sd+2. Notice that τ commutes
with every element of H.

Proof. As in the proof of Proposition 3.3.1, we know that 〈τ,H〉 ⊆ H ′.
Now, let σ ∈ H ′. Again, σ must preserve the set of loops in g(S), and by
Proposition 3.2.3, σ in fact fixes each loop. We will show that either σ or τσ
fixes d and d+ 1. Let x, y, z and w be such that

x �
σ

// d
�

σ
// y and z �

σ
// d+ 1

�

σ
// w.

We know that x, y, z, w 6= a, b. Suppose that x 6= d, d + 1. Then we must
have dxa ∈ V3(S) from Definition 3.2.12. Consider σ(dxa) = yda. This node
has to be in g(S), but it can only be in V7(S). That means that y = d + 1.
Likewise, considering

σ((d+ 1)za) = w(d+ 1)a,

we have w = d. So σ(d) = d + 1 and σ(d + 1) = d. This contradicts our
assumption about x, and implies that x = d or x = d + 1. Analogously,
z = d+1 or z = d. That means that σ fixes d and d+1 or that it transposes
them. Therefore, either σ or τσ is in H, and so σ ∈ 〈τ,H〉.

The other equality follows in much the same way.

We now show the precise way in which our functions and Sd interact.
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Lemma 3.3.3. Let S and S ′ be maximum independent sets of B(d, 3). Then
f(S) 6∼ f ′(S ′).

Proof. We proceed by contradiction. Suppose that there is a permutation
σ ∈ Sd+1 such that

f(S) = σf ′(S ′).

Let a and possibly b be the loops of S and a′ = σ−1(a) and b′ = σ−1(b) be
the corresponding loops in S ′. Let x 6= a′, b′, y 6= a, b be such that

x �

σ
// d

�

σ
// y.

Suppose that y 6= d. Then the node ayd is in U2(S), and hence in f(S).
Therefore, σ−1(ayd) must be in f ′(S ′). But σ−1(ayd) = a′dx, which cannot
be in any of the sets that make up f ′(S ′). This implies that σ(d) = d. In
other words, σ lies in the image of Sd, and so σf ′(S ′) = f ′(σS′). However,
f(S) has at least one element of the form udd, and f ′(σS′) has none, so
f(S) 6∼ f ′(S ′).

A similar result holds for g and g′:

Lemma 3.3.4. Let S and S ′ be maximum independent sets of B(d, 3). Then
g(S) 6∼ g′(S ′).

Proof. This proof is similar to that of Lemma 3.3.3, but somewhat more
subtle. Suppose that there is σ ∈ Sd+2 such that g(S) = σg′(S ′). Let a
and possibly b be the loops of S and a′ = σ−1(a) and b′ = σ−1(b) be the
corresponding loops of S ′. Let x, z 6= a′, b′, y, w 6= a, b be such that

x �

σ
// d

�

σ
// y and z �

σ
// d+ 1

�

σ
// w.

Suppose that y 6= d, d + 1. Then the node ayd is in V2(S), and therefore
in g(S). That means that σ−1(ayd) = a′dx must be in g′(S ′). But such a
node does not belong to any of the sets that make up g′(S ′). This implies
that either σ(d) = d or σ(d) = d + 1. Analogously, we can prove that
σ(d+ 1) = d+ 1 or σ(d+ 1) = d.

Therefore, σ transposes d and d + 1 or leaves them fixed. By Proposi-
tion 3.3.2, the transposition (d, d + 1) is in the stabilizer of g′(S ′) and so
by possibly multiplying σ on the right by this transposition, we can assume
that σ fixes d and d + 1 and so it lies in Sd. Therefore, σg′(S ′) = g′(σS′),
but g(S) has at least one node of the form udd, and g′(σS′) has none, so
g(S) 6∼ g′(S ′).
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We establish two invariants that completely characterize maximum inde-
pendent sets in de Bruijn graphs with D = 3. This is useful to prove that our
functions f, f ′, g, and g′, together with the action of Sd, allow us to construct
all maximum independent sets of B(d, 3). In order to reverse these functions,
we need the following lemma:

Lemma 3.3.5. If S is a (possibly loop-less) maximum independent set of
B(d, 3), with loops a and possibly b. Let d′ be an integer such that a, b < d′ <
d. Then,

S ′ = S ∩B(d′, 3)

is a maximum independent set of B(d′, 3) with loops a and possibly b.

Proof. Since B(d′, 3) is a subgraph of B(d, 3), S ′ is clearly an independent
set. Furthermore, since S has one element from each cycle except possibly
a cycle that only uses the digits a and b, then S ′ has the same property.
Therefore, S ′ has the cardinality of a maximum independent set.

We now present one of the keys to the surjectivity of f and f ′.

Proposition 3.3.6. Let S be a maximum independent set of B(d, 3) with l
loops, where d is at least 3. There exists a digit x such that mx(S) = l+ 1 if
and only if there exist σ ∈ Sd and S ′ a maximum independent set of B(d−1, 3)
such that S = σf(S ′) or S = σf ′(S ′).

Proof. One implication follows from the definitions of f and f ′, taking x =
σ(d− 1).

Suppose now that there is such an x. We know it is not a loop by
Proposition 3.2.3. We define the transposition σ = (d − 1, x) and the set
S ′ = σS ∩ B(d − 1, 3), which is a maximum independent set of B(d − 1, 3)
by Proposition 3.3.5.

Let a and possibly b be the loops of S. We know that the node xax /∈ S.
Therefore, either xxa or axx must be in S.

Suppose that axx ∈ S. We are going to show that S = σf(S ′). To do so,
we consider each of the sets that make up σf(S ′), and show that they are
included in S.

The nodes of σS′ belong to S, because of the way we defined S ′.
Let us consider the nodes of σU1(S

′). The nodes of this set are of the
form xyx, xyy, yyx, xyz or yzx, for y, z 6= a, b, x.

• The nodes of the form xyx are all in S. Otherwise, the hypothesis
cannot be satisfied.
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• If xyy ∈ σU1(S
′), then ayy ∈ S ′. This means that ayy ∈ S, and so yyx

cannot be in S. The node yxy cannot be in S either, since xyx is. So,
xyy ∈ S. Analogously, if yyx ∈ σU1(S

′), then yyx ∈ S.

• If xyz ∈ σU1(S
′), then ayz ∈ S ′ and ayz ∈ S. Since neither zxy

(adjacent to xyx) nor yzx (adjacent to ayz) can be in S, xyz must be
in S. The same reasoning applies to yzx.

Let us consider the nodes of σU2(S
′). These have the form ayx. The

nodes yxa (adjacent to xyx) and xay (adjacent to aya) cannot be in S,
which implies that ayx ∈ S. The same reasoning shows that σU3(S

′) ⊂ S.
Now, take a node from σU4(S

′). That is a node of the form uxv, with u, v
loops. The nodes xuv (adjacent to uxu) and uvx (adjacent to vxv) cannot
be in S. Therefore, uxv ∈ S, and σU4(S

′) ⊂ S.
Finally, we know that axx ∈ S. The nodes xbx (adjacent to bxb) and xxb

(adjacent to axx) cannot be in S. That implies that bxx ∈ S, which means
σU5(S

′) ⊂ S.
This proves that S ⊇ σf(S ′). By cardinality, we conclude that equality

holds.
If, instead of axx ∈ S we have xxa ∈ S, an analogous procedure shows

that S = σf ′(S ′).

The following technical lemma is used in the proof of the next Proposition.

Lemma 3.3.7. Let S be a (possibly loop-less) maximum independent set of
B(d, 3), with d ≥ 3. If there exist two different digits y and z, which are not
loops, such that

my(S) = mz(S) = l + 2,

then yzy /∈ S and zyz /∈ S.

Proof. Suppose that yzy ∈ S. Then, by the assumptions on my(S), there
must be some v 6= y such that yvy /∈ S. Suppose that vyy ∈ S. The node
zyz cannot be in S, and by the assumption on mz(S), zvz ∈ S. Therefore,
the nodes zvy (adjacent to vyy), vyz (adjacent to yzy) and yzv (adjacent

to zvz) are not in S. But then the cycle zvy
θ→ vyz

θ→ yzv contributes no
nodes to S, which contradicts the fact that S is maximum. If we assume

that yyv ∈ S, then the cycle yvz
θ→ vzy

θ→ zyv cannot contribute any node
to S.

In conclusion, our assumption that yzy is in S is inconsistent with S
being a maximum independent set. By symmetry, the same holds if we
assume zyz ∈ S.
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The following proposition is the equivalent of Proposition 3.3.6 for g and
g′, and is one of the keys to the surjectivity of those two functions.

Proposition 3.3.8. Let S be a maximum independent set of B(d, 3), with
d ≥ 3. There are two different digits y and z such that

my(S) = mz(S) = l + 2

and no digit x such that mx(S) = l+ 1, if and only if there exist σ ∈ Sd and
S ′ a maximum independent set of B(d− 2, 3) such that

S = σg(S ′) or S = σg′(S ′).

Proof. One implication follows from the construction of g and g′ taking y =
σ(d− 1) and z = σ(d− 2).

The proof in the other direction is analogous to the proof of Proposi-
tion 3.3.6. We can safely assume that y = d − 1 and z = d − 2. By
Lemma 3.3.7, either (d − 1)(d − 2)(d − 2) and (d − 2)(d − 1)(d − 1) are in
S, or (d− 1)(d− 1)(d− 2) and (d− 2)(d− 2)(d− 1) are in S. In the former
case, we find that there is an S ′ such that S = σg(S ′). In the latter case, we
find that S = σg′(S ′).

Corollary 3.3.9. Let S and S ′ be maximum independent sets of B(d− 1, 3)
and B(d− 2, 3), d ≥ 3. Then for F = f, f ′ and G = g, g′, we have

F(S) 6∼ G(S ′).

Proof. This result follows from the invariants of F(S) and G(S ′) that are
stated in Propositions 3.3.6 and 3.3.8.

This Corollary, together with Lemmas 3.3.3 and 3.3.4 shows that all four
functions give rise to essentially different (i.e. in different Sd-orbits) maximum
independent sets.

3.4 Characterization of Maximum Indepen-

dent Sets

In this section, we show that the functions f , f ′, g, and g′, together with
the action of Sd are sufficient to construct every maximum independent set
of B(d, 3). For the rest of this section L denotes the set of loops of S, and l
denotes |L|. In Section 3.5, we take S to be a loop-less maximum independent
set, i.e. L is empty.
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Lemma 3.4.1. Let S be a (possibly loop-less) maximum independent set of
B(d, 3). There cannot be three different digits x, y, and z, with x, y, z /∈ L,
such that

Mx(S) =My(S) = L ∪ {x, y, z},
Mz(S) = L ∪ {x, z} or L ∪ {x, y, z}.

Proof. Suppose that S is a maximum independent set and x, y, and z satisfy
the given condition. Without loss of generality, we can assume that x, y,
z, and the loops are less than 5. Then S ′ = S ∩ B(5, 3) is a maximum
independent set in B(5, 3) by Proposition 3.3.5, that satisfies Mx(S

′) =
Mx(S),My(S

′) =My(S), andMz(S
′) =Mz(S).

We can show that there cannot be such an independent set S ′. Suppose
we had S ′ ⊂ B(5, 3) with

Mx(S) =My(S) = L ∪ {x, y, z},
Mz(S) = L ∪ ∪{x, y, z}.

Then either {xxy, yyx, xxz, zzx, zzy, yyz} ⊂ S ′ or {yxx, xyy, zxx, xzz,
yzz, zyy} ⊂ S ′. In either case, the cycle xyz

θ→ yzx
θ→ zxy can contribute

no nodes to S ′, and hence it is not a maximum independent set.
Suppose now that

Mx(S) =My(S) = L ∪ {x, y, z},
Mz(S) = L ∪ {x, z}.

Then either {xxy, xxz, yyx, yyz, zzx} ⊂ S ′ or {yxx, zxx, xyy, zyy, xzz} ⊂ S ′.

In the first case, the cycle xyz
θ→ yzx

θ→ zxy can contribute no nodes to S ′,
and hence it is not a maximum independent set. In the second case, the

same observation applies to the cycle zyx
θ→ yxz

θ→ xzy.
Therefore, there is no such independent set S.

Lemma 3.4.2. Let S be a (possibly loop-less) maximum independent set of
B(d, 3). There cannot be three different digits x, y, and z, none of them
loops, such that

mx(S) = my(S) = mz(S) = l + 2.

Proof. We prove the result by contradiction. Suppose there are such x, y
and z. We know that L ∪ {x} ⊂ Mx(S) and |Mx(S)| = l+ 2. Therefore, at
least one of y and z must appear between x. An analogous statement holds
for y and z. Without loss of generality, suppose that y appears between x.
Then yxy (adjacent to xyx) is not in S, which forces z to appear between
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y. That, in turn, forces x to appear between z. That is, the nodes xyx, yzy

and zxz are in S. But then, none of the nodes xyz
θ→ yzx

θ→ zxy are in S,
which cannot hold.

Remark 3.4.3. Let S be a maximum independent set of B(d, 3) with loops
a and possibly b. There cannot be two different digits x and y such that
mx(S) = my(S) = l + 1. If there were, then xyx and yxy would have to be
in S, leading to a contradiction.

Proposition 3.4.4. Let S be a (possibly loop-less) maximum independent set
of B(d, 3), d ≥ 3. Suppose there is no digit z such that mz(S) = l+1. Then,
there must be exactly two digits x and y such that mx(S) = my(S) = l + 2.
Moreover, Mx(S) =My(S) = L ∪ {x, y}.
Proof. We just need to show that mx(S) = my(S) = l + 2. Lemma 3.3.7
then implies thatMx(S) =My(S) = L ∪ {x, y}.

Without loss of generality, we can assume that md−1(S) ≤ md−2(S) and
md−2(S) ≤ mi(S) for all i < d − 2. We know that md−1(S) ≥ l + 2 and we
want to prove that md−2(S) = l+2. By Lemma 3.4.2, this would imply that
d− 2 and d− 1 are the only digits with this property.

We prove our result by induction on d. We manually check the result for
all d ≤ 5. Now, let d be greater than 5 and consider S ′ = S ∩ B(d − 1, 3).
By the inductive hypothesis, we must have one of two possibilities:

Case 1: S ′ has exactly one digit z with mz(S
′) = l + 1. If z = d− 2, we

are done.
Suppose that z 6= d − 2. By Remark 3.4.3, md−2(S

′) > mz(S
′). On

the other hand, we have md−2(S) ≤ mz(S), and md−2(S
′) has to be at

most md−2(S). Since mz(S
′) is at most mz(S), we must have mz(S

′) =
mz(S) − 1 and md−2(S

′) = md−2(S). This means that z(d − 1)z /∈ S and
(d− 2)(d− 1)(d− 2) ∈ S. We then have that md−2(S) = l+ 2, as we wanted
to show.

Case 2: S ′ has exactly two digits x and y with mx(S
′) = my(S

′) = l+2.
We split this situation in two subcases.

Case 2.1: We suppose x, y 6= d − 2. By an argument similar to that of
Case 1, we know that

Mx(S) =My(S) = L ∪ {x, y, d− 1},
and that d− 1 /∈Md−2(S). On the other hand, we know that

md−1(S) ≤ mx(S) = l + 3 = md−2(S).

By cardinality, one of x or y appears between d − 1 in S. Without loss of
generality, suppose (d− 1)x(d− 1) ∈ S. None of the nodes x(d− 2)(d− 1),
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(d − 2)(d − 1)x and (d − 1)x(d − 2) can be in S, because they are adjacent
to (d− 2)(d− 1)(d− 2), (d− 1)x(d− 1) and x(d− 2)x, respectively. Thus,
S cannot be a maximum independent set, a contradiction.

Case 2.2: Either x or y equals d−2. Suppose y = d−2. Sincemd−2(S
′) =

l+2, if (d−2)(d−1)(d−2) ∈ S, then md−2(S) = l+2, and the result follows.
Therefore, we assume (d − 2)(d − 1)(d − 2) /∈ S. This forces x(d − 1)x /∈ S
as well.

We know that

Mx(S) =Md−2(S) = L ∪ {x, d− 2, d− 1}. (3.4.1)

Since md−1(S) ≤ md−2(S) = l + 3, there can be at most two digits, besides
the loops and itself, which do not appear between d − 1 in S. Call them u
and v (potentially, u = v).

Case 2.2.1: Suppose u 6= v. We assume u, v 6= d − 2. That means
that (d − 1)(d − 2)(d − 1) ∈ S. Since u 6= v, we can assume without loss of
generality that u 6= x. Then xux ∈ S and (d − 2)u(d − 2) ∈ S. The nodes
(d − 1)u(d − 2) and (d − 2)u(d − 1) must be in S, because the rest of the
nodes in their cycles are adjacent to something just shown to be in S. We
know that (d− 1)u(d− 1) /∈ S, because of the very definition of u. Plus, the
nodes u(d − 1)(d − 1) and (d − 1)(d − 1)u are adjacent two one of the two
nodes we just mentioned being in S. Therefore, neither of them belong to S.
That gives us a contradiction.

Therefore, one of u, v must be d− 2, and so we have (3.4.1) and

Md−1(S) = L ∪ {u, d− 2, d− 1}.

We want to show that u = x. Assume the contrary. Then xux and
(d − 1)x(d − 1) are in S. Therefore, by inspecting their cycles we see that
both xu(d − 1) and (d − 1)ux must be in S. On the other hand, either
u(d− 1)(d− 1) ∈ S or (d− 1)(d− 1)u ∈ S.

However, u(d−1)(d−1) ∈ S implies xu(d−1) /∈ S, and (d−1)(d−1)u ∈ S
implies (d−1)ux /∈ S. Therefore, u = x. By Lemma 3.4.1 applied to x, d−1
and d− 2, this is a contradiction.

Case 2.2.2 u = v. If we assume u 6= x and u 6= d−2 and proceed as in the
previous case, we get a contradiction. Therefore, u = x or u = d−2. In either
case, Lemma 3.4.1 applied to x, d− 1 and d− 2 leads to a contradiction.

We now state our main result.

Theorem 3.4.5 (Characterization of the Maximum Independent
Sets of B(d, 3)). For all positive d we have:
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1. Any orbit of independent sets of B(d, 3) under the action of Sd is ob-
tained from the orbit of {000} under S1 and the orbit of {000, 010, 111}
under S2 by a unique sequence of applications of f, f ′, g, and g′.

2. Let S be a maximum independent set of B(d, 3). Then the stabilizer
of S is generated by disjoint transpositions. In particular, this implies
that the size of the stabilizer of S is a power of 2.

3. Let bd,k be the number of orbits of maximum independent sets in B(d, 3)
whose elements have stabilizers of size 2k. Then we have the recurrence
relation











b1,0 = 1,

b2,0 = 3,

bd,k = 2bd−1,k + 2bd−2,k−1 for d ≥ 3,

and the generating function

∞
∑

d=1

∞
∑

k=0

bd,kt
dsk =

t+ t2

1− 2t− 2t2s
.

4. Let ad be the number of maximum independent sets of B(d, 3). Then
ad satisfies











a1 = 1,

a2 = 6,

ad = 2dad−1 + d(d− 1)ad−2 for d ≥ 3,

and has exponential generating function

∞
∑

d=1

adt
d

d!
=

t+ t2

1− 2t− t2 .

Proof. For d = 1, the only maximum independent set of B(1, 3) consists of
the unique node {000}. For the case of d = 2, it can be checked manually
that the three orbits of maximum independent sets under S2 are the orbits of
{000, 010, 011}, {000, 010, 110}, and {000, 010, 111}. Note that the first two
of these are f({000}) and f ′({000}) respectively.

Thus, the existence statement in (1) follows from Propositions 3.4.4, 3.3.6,
and 3.3.8. The uniqueness comes from Lemmas 3.3.3, 3.3.4, and Corol-
lary 3.3.9.

The statements in (2) and (3) follow from the previous result and the
description of the stabilizers in Propositions 3.3.1 and 3.3.2.
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Finally, the generating function in (4) is obtained by substituting s = 1/2
into the previous generating function, because

ad =
∞
∑

k=0

d!bd,k

2k
.

The recurrence follows immediately.

Remark 3.4.6. The sequence ad is under A052608 in Sloane’s Encyclopedia
of Integer Sequences ([55]).

For illustrative purposes, we show the values of bd,k, for all d ≤ 6.

k\d 1 2 3 4 5 6

0
1 3 6 12 24 48

(1,0) (2,1) (4,2) (8,4) (16,8) (32,16)

1
2 10 32 88

(2,0) (8,2) (24,8) (64,24)

2
4 28

(4,0) (24,4)

In each entry, the first number between parentheses indicates the number
of orbits whose elements have only one loop, whereas the second number
indicates the number of orbits whose elements have two loops.

3.5 Loop-less Maximum Independent Sets

In this section, we analyze the number of loop-less maximum independent
sets of B(d, 3), for all d. Recall from the introduction that the size of a
loop-less maximum independent set of B(d, 3) is

α∗(d, 3) =
d3 − d

3
= α(d, 3)− 1.

By maximum independent set, we will continue to mean a maximum inde-
pendent set with loops.

We define a bijection between maximum independent sets and loop-less
maximum independent sets of B(d, 3).

Definition 3.5.1. Let S be a maximum independent set of B(d, 3), d ≥ 3
with loops a and possibly b. We define

h(S) =











S\{aaa} if S has only one loop,

S\{aaa, bbb, aba} ∪ {aab, bba} if S has two loops a < b,

S\{aaa, bbb, aba} ∪ {baa, abb} if S has two loops a > b.

(3.5.1)
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Proposition 3.5.2. Let S be a maximum independent set of B(d, 3). Then
h(S) is a loop-less maximum independent set of B(d, 3).

Proof. Let S be a maximum independent set of B(d, 3). If S has only one
loop, then eliminating it leaves us with an independent set of the correct size.

If S has two loops, then h(S) is a set of the correct size, since the nodes
we added were not already present in S. However, we must see that h(S) is
an independent set. Assume a < b. Suppose we have a node adjacent to aab.
Then it is of the form abx or xaa. Since bxb and aaa are in S, then abx and
xaa cannot be in S. Suppose now that we have a node adjacent to bba. Then
it must be bax or xbb. Again, we know that aba and bbb are in S. Therefore,
the nodes we add are not adjacent to any other nodes in the construction,
and the result follows. The case a > b is proved analogously.

Proposition 3.5.3. The function h is injective.

Proof. Let S and S ′ be two different maximum independent sets of B(d, 3).
Then showing that h(S) 6= h(S ′) is just a matter of analyzing all the possible
combinations of loops and their relative order in S and S ′. We leave the
details to the reader.

The following technical Lemma is used to prove the surjectivity of h.

Lemma 3.5.4. Let S be a maximum independent set with two loops a and
b. Let τ be the transposition of a and b. Let S ′ = S\{aaa, bbb, aba}. Then
S ′ = τS ′.

Proof. We must show that for every node w ∈ S ′ such that a ∈ w, we have
w[a→ b] ∈ S ′ and vice versa.

Notice that any node of S ′ cannot contain a and b simultaneously. The
nodes that contain two a’s or two b’s are axa and bxb, and they are in S ′ for
all x 6= a, b. Thus, xay /∈ S ′ for all x, y 6= a, so the nodes that contain only
one a are xya or axy for x, y 6= a. If xya ∈ S ′, then bxy /∈ S ′, and so xyb
must be in S ′ in order to have one element from its cycle. We can prove that
axy ∈ S ′ implies bxy ∈ S ′ in a similar fashion.

Proposition 3.5.5. The function h is surjective.

Proof. Let S be a loop-less maximum independent set of B(d, 3). By Propo-
sition 3.4.4, we have two possibilities:

If there is a digit x such that mx(S) = 1, then there is no node of the
form xxy or yxx. Therefore, S ′ = S ∪ {xxx} is a maximum independent set
of B(d, 3), and S = h(S ′).
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On the other hand, if there are two digits x and y such that mx(S) =
my(S) = 2, then we have either xxy, yyx ∈ S or yxx, xyy ∈ S. In the first
case, we construct

S ′ = S ∪ {xxx, yyy, xyx}\{xxy, yyx}.

If x < y, then S = h(S ′). If x > y, then S = h(τS ′), where τ is the
transposition of x and y. The remaining case is dealt with analogously.

Theorem 3.5.6. Let a∗d be the number of loop-less maximum independent
sets of B(d, 3). Then a∗d = ad.

Proof. Propositions 3.5.3 and 3.5.5 show that there is a bijection between
the set of maximum independent sets and loop-less maximum independent
sets of B(d, 3).

3.6 Generalizations

In this chapter, we give a complete characterization of the structure of the
maximum independent sets of B(d, 3). We believe that this paves the way
for a characterization of the maximum independent sets of de Bruijn graphs
with word length higher than 3. For example, Lichiardopol proved that

α(d,D) =
(D − 1)(dD − d)

2D
+ 1 and α∗(d,D) =

(D − 1)(dD − d)
2D

,

for D = 3, 5, and 7, and he conjectured that these hold for every prime
D ≥ 3 [43]. We think that our procedures can be generalized to higher prime
numbers. For example, the statement of Proposition 3.2.3 also holds for D =
5, 7 and more generally for any D for which Lichiardopol’s conjecture is true.
However, we know that, remarkably, the number of maximum independent
sets and loop-less maximum independent sets do not coincide for D = 5.

As en example, we present the proof of a generalized version of Proposi-
tion 3.2.3.

Remark 3.6.1. Let P be a simple path with k > 0 nodes. If k is even, any
(of several possible) maximum independent set of P has k/2 nodes. If k is
odd, the only maximum independent set of P has k+1

2
nodes, and it contains

both endpoints of P .

We fix some notation that will help us prove the next result.
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Definition 3.6.2. Let D be an odd prime number satisfying Lichiardopol’s
conjecture. Let x and y be two nodes in the same θ-cycle of B(d,D). Then
we define θ̂(x, y) as the directed path from x to y obtained by applying θ
successively, and excluding the nodes x and y.

For example, if we let x = 00001 and y = 10000, then θ̂(x, y) = {00010
θ→

00100
θ→ 01000}.

Definition 3.6.3. Let D be an odd prime number sastisfying Lichiardopol’s
conjecture. Let a and b be two integers in [d]. Let 1 ≤ i ≤ D−1

2
. Denote

Ci
D(a, b) the θ-cycle of B(d,D) containing the node aD−2i(ab)i.

As an example, the θ-cycle C1
5(0, 1) contains the node 00001. The cycle

C3
7(1, 0) contains the node 1101010.

Proposition 3.6.4. Let D be an odd prime number sastisfying Lichiardopol’s
conjecture. Let S be a maximum independent set of B(d,D). Then S contains
at most two loops. Let a be a loop of S, and let x ∈ [d] be any digit which is
not a loop of S. Then the node (ax)(D−1)/2a is in S.

Proof. In order to prove this proposition, we assume that S contains two
loops a and b, and we show that one of the θ-cycles that involve only a and
b cannot contribute D−1

2
nodes to S. Therefore, having one pair of loops

means that we lose one node from some cycle. If S has more than one pair

of loops, then |S| < α(d,D) = (D−1)(dD−d)
2D

. To analyze the proposition, we
consider the cycles Ci

D(a, b) and Ci
D(b, a).

Set i = 1 and consider the cycle C1
D(a, b), which contains aD−2ab and

baD−1. These two nodes are not in S, since they are adjacent to aD. The
path θ̂(aD−2ab, baD−1) has D− 2 nodes, and the path θ̂(baD−1, aD−2ab) has 0
nodes. We have an analogous consideration for the cycle C1

D(b, a). If any of
the two cycles considered contribute less than D−1

2
nodes to S, we are done.

Suppose that both C1
D(a, b) and C1

D(b, a) contribute D−1
2

nodes to S. By

Remark 3.6.1, all four endpoints of the paths θ̂(aD−2ab, baD−1) and θ̂(bD−2ba,
abD−1) must be in S. We now set i = 2 and consider the cycles C2

D(a, b) and
C2

D(b, a). From these cycles, the nodes aD−4abab, babaD−3, bD−4baba and
ababD−3 cannot be in S, since they are adjacent to endpoints of the paths
θ̂(aD−2ab, baD−1) and θ̂(bD−2ba, abD−1) above. In the cycle C2

D(a, b), the path

θ̂(aD−4abab, babaD−3) containsD−4 nodes, and the path θ̂(babaD−3, aD−4abab)
contains 2 nodes. An analogous consideration holds for the cycle C2

D(b, a).
If any of these two cycles contributes less than D−1

2
nodes, then we are done.

Otherwise we repeat this procedure.
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The procedure outlined in the previous paragraph can be repeated until
i = D−1

2
. More precisely, by an inductive argument we shor for each i < D−1

2

that the nodes aD−2i(ab)i and (ba)iaD−2i are not in S, and that the endpoints
of θ̂(aD−2i(ab)i, (ba)iaD−2i) are in S, and the analogous swapping a and b.

The cycle C
D−1

2

D (a, b) contains the nodes a(ab)
D−1

2 and (ba)
D−1

2 a, which

cannot be in S. The path θ̂(a(ab)
D−1

2 , (ba)
D−1

2 a) contains only the node

(ab)
D−1

2 a. If this cycle is to contribute D−1
2

nodes to S, then this node

must be present. An analogous consideration shows that the node (ba)
D−1

2 b

from the cycle C
D−1

2

D (b, a) must be in S. But these two nodes are mutually

adjacent. So, at least one of the cycles C
D−1

2

D (a, b) and C
D−1

2

D (b, a) contributes
less than D−1

2
nodes to S.

Figure 3.4 illustrates this process for D = 7. The rightmost cycles cor-
respond to i = D−1

2
, and contain the two (boxed) nodes that are mutually

adjacent. The nodes known not to be in S are crossed out. The nodes known
to be in S are underlined. The nodes that remain unmarked may or may not
be in S.

Figure 3.4: An example illustrating the process outlined in the proof of
Proposition 3.6.4.
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As we can see, the general version of the result requires a far more elab-
orate proof than was necessary for D = 3, but it is manageable.
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Chapter 4

Additive Graph Labelings

4.1 Introduction

This chapter deals with two problems inspired by the study of biological
networks. A biological network can be described using a directed graph G =
(V,E) with its edges labeled by a function fE : E → Z2, where Z2 = {0, 1}.
The nodes of the graph represent concentrations of chemical species. A label
0 between two nodes indicates an activates relation, and a label 1 indicates
an inhibits relation. A network is said to be monotone if and only if there
exists a function fV : V → Z2 that satisfies

fE((u, v)) = fV (u) + fV (v), (4.1.1)

for every (u, v) in E. For technical reasons (see [15]), it suffices to study
the undirected variant of this problem. The characterization of monotone
systems is given by the following result.

Theorem 4.1.1 ([15]). A network G is monotone if and only if every cycle
in G has an even number of edges labeled with 1.

We can generalize this problem to other sets of labels. The expression
(4.1.1) remains valid if we replace Z2 by Zd, for any integer d > 1. In fact,
we can replace Z2 by any abelian group H, with the understanding that
the operation on the right-hand-side of (4.1.1) is the group operation in H
(see Section 4.4). We study the particular case H = Zd, which is more
transparent and hints at the solution of the general case.

We state our two problems. Let G = (V,E) be a simple undirected graph.
Let d > 1 be an integer. We call any function fV : V → Zd a v-labeling of
G. Analogously we call any function fE : E → Zd an e-labeling of G.

Some of the results in this chapter appear in [19].

57
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Problem 4.1.2. Let fE be an e-labeling of G. Is there a v-labeling fV of G,
such that

fE((u, v)) = fV (u) + fV (v), (4.1.2)

for every edge (u, v) ∈ E? If so, how many are there?

There is a natural dual of this problem.

Problem 4.1.3. Let fV be a v-labeling of G. Is there an e-labeling fE of G,
such that

fV (u) =
∑

(u,v)∈E

fE((u, v)), (4.1.3)

for every vertex u ∈ V . If so, how many are there?

In order to more explicitly understand this duality, we state the following
result.

Lemma 4.1.4. If applied to a graph that is actually a simple cycle Prob-
lems 4.1.2 and 4.1.3 are essentially the same.

Proof. In a simple cycle, the roles of the nodes and the edges are inter-
changeable: every edge connects two nodes, and every node is reached by
two edges.

The subject of graph labeling encompasses a myriad variants, including
harmonious labelings [23] and felicitous labelings [41]. A comprehensive sur-
vey of the subject can be found in [21].

We introduce two definitions that simplify the exposition.

Definition 4.1.5. Let G = (V,E) be a graph. Let fE be an e-labeling of G.
If there exists a v-labeling fV such that condition (4.1.2) is satisfied for every
edge, we say that fE is e-additive, and that fV is valid for fE. We define
κ(G, fE) as the number of valid v-labelings for fE.

Definition 4.1.6. Let G = (V,E) be a graph, and let fV be a v-labeling of
G. If there exists an e-labeling fE of G such that condition (4.1.3) is satisfied
for every node, we say that fV is v-additive, and that fE is valid for fV . We
define κ(G, fV ) as the number of valid e-labelings for fV .

The similarity between the two definitions above is another indication of
the duality of the problems studied. Figures 4.1 and 4.2 show instances of
both problems.
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Figure 4.1: Different graphs e-labeled with Z3. (a) An additive e-labeling
and (b) a valid v-labeling for it. (c) A non-additive e-labeling.
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Figure 4.2: Different graphs v-labeled with Z3. (a) An additive v-labeling
and (b) a valid e-labeling for it. (c) A non-additive v-labeling.

A graph G, v-labeled with fV is v-additive if and only if every connected
component of G is v-additive with the v-labeling induced by fV . Further-
more, if G1, . . . , Gr are the connected components of G, we have

κ(G, fV ) =
r
∏

i=1

κ(Gi, fV ).

This analysis also holds for e-labelings. Therefore, from this point on we
restrict our work to connected graphs.

The following two definitions are crucial to the solution of Problem 4.1.2.

Definition 4.1.7. We say that an e-labeled graph (G, fE) has the even-cycle
property if every cycle of even length in G, with edges e1, . . . , e2k, satisfies

∑

l odd

fE(el) =
∑

l even

fE(el). (4.1.4)

Definition 4.1.8. We say that an e-labeled graph (G, fE) has the odd-cycle
property if for every cycle of odd length in G, with edges e1, . . . , e2k+1, there
exists x ∈ Zd such that

2k+1
∑

l=1

fE(el) = 2x. (4.1.5)



60 CHAPTER 4. ADDITIVE GRAPH LABELINGS

Remark 4.1.9. Notice that if d is odd, then definition 4.1.8 imposes no
restrictions on the cycles of G, since 2 is invertible modulo d.

Remark 4.1.10. If we let d = 2, then the even- and the odd-cycle properties
mean the same: The number of 1’s in every cycle of G has to be even.

We now combine the definitions presented above in order to characterize
additive e-labelings.

Definition 4.1.11. Let (G, fE) be an e-labeled graph. We say that (G, fE)
is e-compatible if either one of the following conditions holds

• d is odd and (G, fE) has the even-cycle property;

• d is even and (G, fE) has both the even- and the odd-cycle properties.

Remark 4.1.12. The preceding definitions take into account all the cycles
of a graph, not just its simple cycles. The example in Figure 4.3 shows two
simple cycles joined at a vertex. Both cycles are e-labeled, and each of them,
considered as a graph, is additive. However, they assign different labels to
the shared vertex. This incompatibility only appears if we check non-simple
cycles too.

2

2

2 0

0

0

Figure 4.3: Two simple cycles joined at a vertex. Their edges are labeled
with Z3.

We define a shorthand for a quantity that we encounter often when dealing
with Problem 4.1.3.

Notation 4.1.13. Let G = (V,E) be a graph, and fV a v-labeling of G, and
let V ′ ⊆ V be any set of nodes of G. We write

∑

V ′ for the sum
∑

v∈V ′ fV (v).

The following definition states the properties that characterize for Prob-
lem 4.1.3.

Definition 4.1.14. Let (G, fV ) be a v-labeled graph. We say that (G, fV )
is v-compatible if either one of the following conditions holds

• G is bipartite, with V = V1 ⊔ V2, and
∑

V1 =
∑

V2; (4.1.6)
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• G is not bipartite and there exists x ∈ Zd such that
∑

V = 2x. (4.1.7)

Remark 4.1.15. If G is a bipartite graph, then the first condition implies
the second condition. Furthermore, if d is odd, the second condition imposes
no restriction, since 2 is then invertible modulo d.

We now have our main result, which once again shows the similarity
betwen the two problems.

Theorem 4.1.16. Let G = (V,E) be a graph. Then

• A v-labeling fV G is v-additive if and only if it is v-compatible.

• An e-labeling fE of G is e-additive if and only if it is e-compatible.

Proof. This Theorem is a consequence of Theorems 4.2.13 and 4.2.25, which
we prove in the next section.

We also compute the numbers κ(G, fV ) and κ(G, fE).

Theorem 4.1.17. Let fE be an e-additive labeling of a graph G. Then

• If G is bipartite, κ(G, fE) = d.

• If G is not bipartite, then

– if d is odd, κ(G, fE) = 1;

– if d is even, κ(G, fE) = 2.

Let fV be a v-additive labeling of a graph G. Then

• If G is bipartite, κ(G, fV ) = dm−n+1.

• If G is not bipartite, then

– if d is odd, κ(G, fV ) = dm−n;

– if d is even, κ(G, fV ) = 2dm−n+1.

Proof. The result concerning e-additive labelings can be derived from The-
orem 4.2.14. The result concerning v-additive labelings follows from Theo-
rem 4.3.8.

We give a characterization of our problems in terms of graphs, and present
algorithms to solve them, in Section 4.2. In Section 4.3 we study the kernel
of the incidence matrix of G modulo an integer d > 1, and we use this to
derive the value of κ(G, fV ). We apply Problem 4.1.2 to the theory of toric
ideals, and we generalize our results to the setting of labels in an arbitrary
abelian group in Section 4.4.
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4.2 Graphical characterization

4.2.1 Additive e-labelings

In this section, we analyze Problem 4.1.2. We show that a given e-labeling is
additive if and only if the cycles of (G, fE) satisfy certain conditions. Addi-
tionally, we present polynomial algorithms to recognize whether an e-labeling
is additive and to generate all valid v-labelings of it.

Throughout this chapter, we use the term cycle with a general meaning
(i.e. they need not be simple cycles).

Notation 4.2.1. If C = (V,E) is a cycle of length k in G, we number its
nodes “consecutively” v1, . . . , vk and its edges e1, . . . , ek, where ei = (vi, vi+1)
for all i < k, and ek = (vk, v1).

We first show that compatibility is a necessary condition for additivity.

Lemma 4.2.2. If (G, fE) is an additive e-labeled graph, then (G, fE) has the
even-cycle property.

Proof. Let e1, . . . , e2k be the edges of a cycle of even length in G. Recall that
ei = (vi, vi+1). Let fV be a v-labeling of G satisfying (4.1.2). We have

∑

l even

fE(el) =
∑

l even

(fV (vl) + fV (vl+1))

=
∑

l odd

(fV (vl) + fV (vl+1)) =
∑

l odd

fE(el).

Lemma 4.2.3. If d is even, and (G, fE) is an additive e-labeled graph, then
G has the odd-cycle property.

Proof. Let e1, . . . , e2k+1 be the edges of a cycle of odd length in G. Let fV

be a v-labeling of G satisfying (4.1.2). We have

2k+1
∑

l=1

d

2
fE(el) =

2k+1
∑

l=1

(
d

2
fV (vl) +

d

2
fV (vl+1)) =

2k+1
∑

l=1

dfV (vl) = 0.

We have just shown that compatibility is necessary for additivity. In
fact, the compatibility conditions are sufficient for additivity. We break up
the proof of this result into several smaller Lemmas. At the end of this
section, we present a polynomial algorithm that allows us to decide whether
an e-labeling is additive, and if so, gives us all its valid v-labelings.
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Lemma 4.2.4. Let (G, fE) be a connected additive e-labeled graph, and sup-
pose that fV and f ′

V are valid v-labelings of (G, fE). If there is a vertex v ∈ V
such that fV (v) = f ′

V (v), then fV = f ′
V .

Proof. Let v ∈ V be such that fV (v) = f ′
V (v). Let v′ ∈ V . We prove

that fV (v′) = f ′
V (v′) by induction on the distance k between v and v′. The

conclusion holds for k = 0, so we assume now that k > 0 and fV and f ′
V are

equal on all the vertices at distance less than k from v. Let v′ be at distance
k. Let ṽ ∈ V be such that d(v, ṽ) = k − 1 and d(ṽ, v′) = 1. Then, by the
induction hypothesis, fV (ṽ) = f ′

V (ṽ). Since fV and f ′
V are valid v-labelings,

fV (v′) = fE(v′, ṽ)− fV (ṽ) = fE(v′, ṽ)− f ′
V (ṽ) = f ′

V (v′) modulo d.

The previous lemma is important because it says that, given a connected
additive e-labeled graph, once we fix the label for one vertex, the rest of the
vertex labels are fixed. Furthermore, it shows that κ(G, fE) ≤ d.

Remark 4.2.5. There is no equivalent version of Lemma 4.2.4 for Prob-
lem 4.1.3: Given a v-additive labeling fV , several valid e-labelings can coin-
cide in an edge and still be different.

The following Lemma shows that it is not necessary to inspect every
possible cycle of odd length to check whether a graph satisfies the odd-cycle
property.

Lemma 4.2.6. Let (G, fE), with d even, be a connected e-labeled graph sat-
isfying the even-cycle property. Let C be any odd cycle in G. Then (G, fE)
satisfies the odd-cycle property if and only if (4.1.5) holds for C.

Proof. We only need to prove one implication. Suppose that (G, fE) satisfies
the even-cycle property, and that (4.1.5) holds for C. Let C ′ be an odd cycle
in G. Let v ∈ C and v′ ∈ C ′. Since G is connected, there is a path P from
v to v′. Let e1, . . . , e2k+1, e

′
1, . . . , e

′
2s+1 and eP

1 , . . . , e
P
r be the edges of C, C ′

and P , such that v is a vertex of e1 and of eP
1 , and such that v′ is a vertex of

e′1 and eP
r (see Figure 4.4).

The even-cycle property of (G, fE) applied to the even cycle made up of
C, P from v to v′, C ′ and then P from v′ to v, implies that

2k+1
∑

i=1

(−1)i+1fE(ei) +
r
∑

i=1

(−1)ifE(eP
i ) +

2s+1
∑

i=1

(−1)r+ifE(e′i)+

r
∑

i=1

(−1)ifE(eP
i ) = 0.
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Figure 4.4: A path between v and v′.

If we multiply both sides by d/2, and since d/2 = −d/2 in Zd, we obtain

d

2

(

2k+1
∑

i=1

fE(ei) +
2s+1
∑

i=1

fE(e′i)

)

= 0.

Since (C, fE) satisfies (4.1.5), we obtain

d

2

2s+1
∑

i=1

fE(e′i) = 0,

which means that (4.1.5) holds for C ′ too.

Let C be a simple cycle, and v and v′ two vertices in C. There are two
ways to go from v to v′ using a simple path made up of edges of C, and we
often need to refer to them. The following note fixes a way of identifying
those two paths.

Notation 4.2.7. Given a simple cycle C and three vertices v, v′ and v′′ in
C, we define C[v, v′, v′′] as the simple path in C from v to v′ that contains
v′′. Conversely, C[v, v′, v′′] is the simple path from v to v′ in C that does not
contain v′′ (see Figure 4.5).

v

v′

v′′C[v, v′, v′′] C[v, v′, v′′]

Figure 4.5: Two simple paths from v to v′ in C.
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Given a path P , with its edges labeled by some fE, we can assign a label
to one of its endpoints, and then propagate that label to the rest of the path.
The following note makes this notion more precise.

Notation 4.2.8. Let P be a path with vertices v1, . . . , vk and edges e1 =
(v1, v2), . . . , ek−1 = (vk−1, vk). Let fE be an e-labeling of P . We define a
function ϕP : Zd → Zd.

ϕP (c) = (−1)k−1c+
k−1
∑

l=1

(−1)k−1−lfE(el). (4.2.1)

In other words, ϕP (c) is the label that vk would have if we assigned label c
to v1 and propagated it through P .

Remark 4.2.9. Let (C, fE) be an additive e-labeled simple cycle. Let v, v′, v′′

be in C and set C1 = C[v, v′, v′′] and C2 = C[v, v′, v′′]. Let fV be a valid
v-labeling of (C, fE). We have

ϕC1
(fV (v)) = ϕC2

(fV (v)) = fV (v′).

The following Lemma is a first approximation to a solution of Prob-
lem 4.1.2: It solves the problem for simple cycles of odd length.

Lemma 4.2.10. If (C, fE) is an e-compatible e-labeled simple cycle of odd
length then it is e-additive. If d is odd, κ(C, fE) = 1. If d is even, κ(C, fE) =
2.

Proof. Let v1, . . . , v2k+1 be the nodes of the cycle. Suppose that we have a
valid v-labeling fV . We want to see which are the possible values of fV (v1).
We need

ϕC[v1,v2k+1,v2](fV (v1)) = ϕC[v1,v2k+1,v2](fV (v1)). (4.2.2)

We have

ϕC[v1,v2k+1,v2](fV (v1)) = (−1)2kfV (v1) +
2k
∑

l=1

(−1)2k−lfE(el),

and
ϕC[v1,v2k+1,v2](fV (v1)) = fE(e2k+1)− fV (v1).

Merging these two expressions with (4.2.2) we get

(−1)2kfV (v1) +
2k
∑

l=1

(−1)2k−lfE(el) = fE(e2k+1)− fV (v1).
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Since 2k is even, this expression is equivalent to

2fV (v1) =
2k+1
∑

l=1

(−1)l+1fE(el). (4.2.3)

If d is odd, then 2 is invertible modulo d and equation (4.2.3) has a
unique solution. That implies that there is at most one possible value for
fV (v1). Since this value gives a valid v-labeling, there is a unique valid v-
labeling of (C, fE).

If d is even, we use the odd-cycle property. Recall that this implies that
the sum of the labels of the edges in the cycle is an even number. Since
changing the sign of some summands does not alter the parity of a sum, the
right-hand side of (4.2.3),

ℓ :=
2k+1
∑

l=1

(−1)l+1fE(el),

is also even.
Equation (4.2.3) is then of the form

2X = 2b (mod 2c).

This equation has exactly two solutions: X = b and X = b+ c. This means
that fV (v1) is either ℓ/2 or (ℓ+ d)/2. Since these two values for fV (v1) give
valid v-labelings, our proof is complete.

The proof we just presented shows the relationship between the two pos-
sible ways of labeling a compatible simple odd cycle. We formalize this in
the following

Corollary 4.2.11. Let (C, fE), with d even, be an e-additive e-labeled simple
cycle of odd length. If fV and f ′

V are its two different valid v-labelings, then
fV (v) = f ′

V (v) + d/2 (mod d) for all v ∈ V .

Let (G, fE) be an e-labeled graph. In the following proofs, we abuse our
notation. If C is a subgraph of G, then (C, fE) stands for the graph C labeled
with the restriction of fE to the edges of C.

Lemma 4.2.12. Let (G, fE) be an e-compatible e-labeled connected graph.
Let C and C ′ be two cycles of odd length in G. Let e1, . . . , er be the edges of
C and e′1, . . . , e

′
s be the edges of C ′. Assume that C and C ′ share at least one

vertex v1, such that both e1 and e′1 are incident with v1. Then

r
∑

l=1

(−1)r−lfE(el) =
s
∑

l=1

(−1)s−lfE(e′l). (4.2.4)
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Proof. Consider the cycle obtained by traversing e1, . . . , er, e
′
1, . . . , e

′
s. Since

r and s are odd, this cycle has even length. The compatibility hypothesis
implies that

fE(e1)− fE(e2) + · · ·+ fE(er)− fE(e′1) + fE(e′2)− · · · − fE(e′s) = 0. (4.2.5)

But this means

r
∑

l=1

(−1)r−lfE(el)−
s
∑

l=1

(−1)s−lfE(e′l) = 0, (4.2.6)

which is what we wanted to prove.

We now have all the elements we need to tackle a complete characteriza-
tion of the solution of Problem 4.1.2. As one can anticipate from the prepara-
tory Lemmas, e-additive e-labelings are exactly e-compatible e-labelings.

Theorem 4.2.13. Let (G, fE) be an e-labeled graph. Then (G, fE) is e-
additive if and only if it is e-compatible.

Proof. Let (G, fE) be a compatible e-labeled graph. We prove the theorem
by constructing a valid v-labeling of G.

If G has odd simple cycles, call one of them C. By Lemma 4.2.10, we can
choose a valid v-labeling f of (C, fE). Pick a vertex v in C and set ℓ = f(v).
If G has no odd cycles, choose any vertex v in G and label it with any ℓ in
Zd.

We build a valid v-labeling fV of (G, fE) by propagating the label of v to
the rest of the graph. For that, set fV (v) = ℓ. For any vertex v′ ∈ V , choose
a path P from v to v′ and set

fV (v′) = ϕP (ℓ),

where ϕP is as in (4.2.1). We have to prove that fV is well-defined and that
it is a valid v-labeling of (G, fE).

Given v′ and two simple paths P1 and P2 from v to v′, we have to prove
that

ϕP1
(ℓ) = ϕP2

(ℓ).

Let e1, . . . , er and e′1, . . . , e
′
s be the edges of P1 and P2, respectively, and

assume that v is an endpoint of e1 and e′1. We call C ′ the cycle formed by
the union of P1 and P2.

If the sum of the lengths of P1 and P2 is even, we can use the
even-cycle property of (G, fE) applied to C ′. That is,

fE(e1)− fE(e2) + · · ·+ (−1)r+1fE(er) + (−1)r+2fE(e′s) + · · · − fE(e′1) = 0,
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which can be rewritten as

r
∑

l=1

(−1)l+1fE(el) +
s
∑

l=1

(−1)r+1+s−l+1fE(e′l) = 0.

This condition is equivalent to the identity

r
∑

l=1

(−1)lfE(el) =
s
∑

l=1

(−1)lfE(e′l). (4.2.7)

We have

ϕP1
(ℓ) = (−1)rℓ+

r
∑

l=1

(−1)r−lfE(el), (4.2.8)

and

ϕP2
(ℓ) = (−1)sℓ+

s
∑

l=1

(−1)s−lfE(el). (4.2.9)

We must prove that ϕP1
(ℓ) = ϕP2

(ℓ). Since the parity of r and s is the same,
(−1)sℓ = (−1)rℓ, and we just need to prove that

s
∑

l=1

(−1)s−lfE(el) =
r
∑

l=1

(−1)r−lfE(el). (4.2.10)

If r and s are even, (−1)r−l = (−1)s−l = (−1)l for any integer l. There-
fore, (4.2.7) shows that (4.2.10) holds. If r and s are odd, (−1)r−l =
(−1)s−l = (−1)l+1 for any integer l, and again (4.2.7), this time multiplied
by −1, shows that (4.2.10) holds.

If r is odd and s is even, the cycle C ′ has odd length. We need to
prove that ϕP1

(ℓ) = ϕP2
(ℓ), which is equivalent to

− ℓ+
r
∑

l=1

(−1)l+1fE(el) = ℓ+
s
∑

l=1

(−1)lfE(el). (4.2.11)

This is the same as proving that

2ℓ =
r
∑

l=1

(−1)l+1fE(el) +
s
∑

l=1

(−1)l+1fE(el). (4.2.12)

The right-hand side of (4.2.12) is the alternating sum of the labels of the
edges of the odd cycle C ′, starting at v. By Lemma 4.2.12, this sum is
equal to the alternating sum of the labels of the edges of C, starting at v.
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By Lemma 4.2.10, this sum is equivalent to 2ℓ, which is what we needed to
prove.

We now know that fV is a well-defined labeling. We must show that it is
also a valid v-labeling of (G, fE). That is, for each edge (v′, v′′),

fE((v′, v′′)) = fV (v′) + fV (v′′). (4.2.13)

All the edges incident to v satisfy (4.2.13) by the previous argument. Let v′

and v′′ be two adjacent vertices in G, both different from v. Let e be the edge
between v′ and v′′. Let P1 and P2 be paths from v to v′ and v′′, respectively.
Let e1, . . . , er and e′1, . . . , e

′
s be the edges of P1 and P2, respectively (see

Figure 4.6). We must prove that

Figure 4.6: Paths between v, v′ and v′′.

ϕP1
(ℓ) + ϕP2

(ℓ) = fE(e). (4.2.14)

Consider the path P ′
2 = P2 ∪ {e}. P ′

2 and P1 are two paths from v to v′. If
we write e′s+1 = e, we have just proved that

(−1)rℓ+
r
∑

l=1

(−1)r−lfE(el) = (−1)s+1ℓ+
s+1
∑

l=1

(−1)s+1−lfE(e′l). (4.2.15)

But the right-hand side of (4.2.15) can be split

s+1
∑

l=1

(−1)s+1−lfE(e′l) = fE(e) +
s
∑

l=1

(−1)s+1−lfE(e′l). (4.2.16)

So joining (4.2.15) and (4.2.16), we obtain

(−1)rℓ+
r
∑

l=1

(−1)r−lfE(el) + (−1)sℓ+
s
∑

l=1

(−1)s−lfE(e′l) = fE(e), (4.2.17)

which proves (4.2.14).
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Theorem 4.2.14. The following algorithm decides whether an e-labeling is
e-additive. Furthermore, the choice of label in steps 3 and 5 allows us to
generate every valid v-labeling.

Algorithm 4.2.15. Decide whether an e-labeled graph is additive
and generate all valid v-labelings.

Input: A graph G, with its edges labeled by a function fE : E → Zd.
Output: true if and only if the (G, fE) is an additive e-labeled graph.
1: Find a simple cycle C of odd length in G, if there is one.
2: if the graph has odd cycles then
3: Label the simple cycle C using in one of the at most two ways pre-

scribed by Lemma 4.2.10.
4: else
5: Label any node v of G with any label a ∈ Zd.
6: end if
7: Propagate the labeling to the rest of the graph.
8: Check every edge. Return true if and only if equation (4.1.2) is satisfied

for every edge.

Proof. The correctness of the algorithm follows from Theorem 4.2.13.

Algorithm 4.2.15 runs in time O(m + n), because steps 1 and 7 can be
achieved using Breadth First Search (see [37]). As usual, we write n = |V |
and m = |E|.

4.2.2 Additive v-labelings

In this section, we characterize additive v-labelings. Whereas for additive e-
labelings the key to the problem lies with the cycles of G, the characterization
of v-labelings does not depende strongly on them.

As in the previous section, we begin our characterization with some nec-
essary conditions for the additivity of a v-labeling. We then move on to
proving that they are sufficient.

Lemma 4.2.16. Let G = (V,E) be a graph. Let fV be a v-additive labeling
of G. Then fV is v-compatible.

Proof. If G is bipartite, with V = V1 ⊔ V2, then we have

∑

V1 =
∑

e∈E

fE(e) =
∑

V2.



4.2. GRAPHICAL CHARACTERIZATION 71

Furthermore, we always have

∑

V = 2
∑

e∈E

fE(e).

We now prove that if a labeling fV is v-compatible, that is enough to
show that fV is v-additive. We prove it by presenting algorithms that find a
solution to Problem 4.1.3, provided the v-compatibility conditions are satis-
fied. We present two algorithms, one for bipartite graphs and the other for
non-bipartite graphs.

We start with an ancillary procedure. Let G = (V,E) be a graph. Let v
be a vertex of V . The degree d of v is the number vertices adjacent to v in G.
We say that a node v is a leaf of G if d(v) = 1. Given a graph G = (V,E),
a v-labeling fV and an e-labeling fE, Algorithm 4.2.17 removes the leaves
from a graph G and returns updated versions of fV and fE that reflect the
deletions that took place.

The algorithm is quite intuitive. In each iteration, a leaf v is deleted. The
e-labeling fE is updated to assign the value fV (v) to the edge connecting v to
the rest of the graph. The v-labeling fV is updated to assign fV (u)− fV (v)
to the only vertex u adjacent to v in G.

Algorithm 4.2.17. Removing the leaves from a graph.

Input: A graph G = (V,E), a v-labeling fV and an e-labeling fE.
Output: All the leaves of G are eliminated, and the labelings are updated

to reflect these deletions.
1: while G has leaves do
2: v ← a leaf of G
3: u← the only node adjacent to v in G
4: fE((u, v))← fV (v)
5: fV (u)← fV (u)− fV (v)
6: E ← E\{(u, v)}
7: V ← V \{v}
8: end while

The running time of this procedure is O(n lg n). This complexity can be
attained by maintaining a priority queue of nodes, sorted by degree.

Remark 4.2.18. Notice that the graph and the labelings updated by Al-
gorithm 4.2.17 satisfy conditions (4.1.6) and (4.1.7), provided the original
graph satisfied it.



72 CHAPTER 4. ADDITIVE GRAPH LABELINGS

Armed with Algorithm 4.2.17, we can assume that our graphs are leafless.
This helps us to prove that condition (4.1.6) is sufficient for bipartite graphs.

Proposition 4.2.19. Let G = (V = V1⊔V2, E) be a bipartite graph v-labeled
by fV . If fV is v-compatible, then there exists a solution fE to Problem 4.1.3.
Furthermore, all possible solutions can be obtained using Algorithm 4.2.20.

Proof. Algorithm 4.2.20 shows how to construct a valid e-labeling fE start-
ing with a bipartite graph satisfying (4.1.6). In each iteration, an edge is
removed from the graph, and the labelings are updated accordingly. If the
removal causes leaves to appear, the following iteration removes them using
Algorithm 4.2.17.

Algorithm 4.2.20. Labeling a bipartite graph.

Input: A bipartite graph G = (V = V1 ⊔ V2, E) and a labeling fV : V → Zd

satisfying equation (4.1.6).
Output: A labeling fE : E → Zd solving Problem 4.1.3.
1: while E 6= ∅ do
2: Remove any leaves from (V,E) using Algorithm 4.2.17
3: (u, v)← any edge in E
4: fE((u, v))← a, for any a ∈ Zd

5: fV (v)← fV (v)− a
6: fV (u)← fV (u)− a
7: E ← E\{e}
8: end while
9: return fE

The loop of this algorithm removes at least one edge from E in each
iteration, and hence terminates after finitely many steps. Furthermore, con-
dition (4.1.6) remains valid throughout the whole iteration. Therefore, when,
after some time, E contains only one edge (u, v), we have fV (u) = fV (v),
and we can set fE((u, v)) = fV (u) (this is performed by the leaf removal
algorithm).

The running time of Algorithm 4.2.20 is O(mn lg n).
Our characterization of Problem 4.1.3 for the non-bipartite case is also al-

gorithmic. The base case and the iterative step of that algorithm are justified
by the following two results, respectively.

Lemma 4.2.21. Let G = (V,E) consist only of a simple cycle of odd length.
Suppose that fV is a v-compatible labeling of G. Then, Problem 4.1.3 has 1
solution if d is odd and 2 solutions if d is even.
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Proof. This result is a corollary of the duality expressed in Lemma 4.1.4 and
of Lemma 4.2.10.

Lemma 4.2.22. Let G be a connected, leafless, non-bipartite graph, such
that m > n. Then, we can remove an edge of G to obtain another non-
bipartite, connected graph G′, such that m′ = m − 1. Applying this Lemma
repeteadly (and removing leaves), we obtain a simple cycle of odd length (i.e.
m = n).

Proof. Since G is not bipartite, it contains at least one simple cycle C of
odd length. One of the vertices of C must have degree higher than two.
Otherwise, G would be a simple cycle of odd length and we would have
m = n.

Let v be a vertex of C with degree at least three. We move through the
edges of G as follows. Start at v, and move through an edge not belonging
to C. From then on, whenever we reach a vertex, we leave it by a different
edge. Since G has no leaves, we can do this until we reach a vertex v′ we had
already visited. From this traversal, we can obtain a simple cycle C ′ that
contains v′. Namely, the sub-path from v′ to v′ (see Figure 4.7). There are

Figure 4.7: Two cycles C and C ′.

two edges e and e′ in C that are incident to v. C ′ cannot have both e and
e′, because if we reach v during our traversal, we stop. Therefore, C ′ and C
are different simple cycles, and there is an edge present in C ′ but not in C.
We remove that edge.

The graph obtained in the previous paragraph contains the odd cycle C,
and therefore is not bipartite. Furthermore, since we removed an edge from
a simple cycle, the resulting graph remains connected.

The procedure outlined above allows us to remove at most m− n edges.
We then get a connected, leafless graph such that m = n. The leafless prop-
erty means that the degree of each vertex is at least two. The additional
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property m = n implies that the degree of all vertices is exactly two. There-
fore, the graph is a simple cycle. Since it is not bipartite, it must have odd
length.

We now have all the tools we need to present the complete characteriza-
tion of Problem 4.1.3 for non-bipartite graphs.

Proposition 4.2.23. Let G = (V,E) be a graph with an odd cycle, and
fV : V → Zd a v-labeling of G. If there exists x ∈ Zd such that fV satisfies
condition (4.1.7), then there is an e-labeling fE that solves Problem 4.1.3.

Proof. Algorithm 4.2.24 gives a procedure to label the edges of a non-bipartite
graph satisfying the conditions of this proposition, thus proving them suffi-
cient. Notice that the body of the loop (steps 2-8) preserves condition (4.1.7)
by transforming the right-hand side from 2k into 2(k−a). The graph remains
non-bipartite. When the execution reaches step 11, by Lemma 4.2.22 the
graph is just a simple cycle of odd length, and we can apply Lemma 4.2.21.

Algorithm 4.2.24. Labeling a non-bipartite graph.

Input: A non-bipartite graph G = (V,E) and a labeling fV : V → Zd

satisfying condition (4.1.7).
Output: A labeling fE : E → Zd that solves Problem 4.1.3.
1: while m > n do
2: Remove the leaves fromG using Algorithm 4.2.17, recording the changes

in fV and fE

3: if m > n then
4: Choose an edge (u, v) as in the proof of Lemma 4.2.22
5: fE((u, v))← a, for any a ∈ Zd

6: fV (v)← fV (v)− a
7: fV (u)← fV (u)− a
8: E ← E\{(u, v)}
9: end if

10: end while
11: Label the edges of G using Lemma 4.2.21 and complete fE with those

labels
12: return fE

Algorithm 4.2.24 has running time O(mn lg n).
The algorithms presented above implicitly shows how to obtain all pos-

sible solutions to Problem 4.1.3. Step 4 in Algorithm 4.2.20 and step 5 in
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Algorithm 4.2.24 can use any element of Zd, and thus allows to compute any
solution.

We summarize the results of this section.

Theorem 4.2.25. Let G be a graph, with its vertices labeled with fV . The
labeling fV is additive if and only if one of the following conditions holds:

• G is bipartite (V = V1 ⊔ V2) and
∑

V1 =
∑

V2;

• G is not bipartite and
∑

V is an even element of Zd.

We still have not computed the number of solutions κ(G, fV ). We defer
that discussion until the next section.

4.3 The Kernel of AG and of At
G modulo d

Problems 4.1.2 and 4.1.3 can be restated in matrix form. Set n = |V | and
m = |E|. Assume that the vertices and edges of G are numbered 1 through
n and 1 through m, respectively. The incidence matrix of G is the n × m
matrix AG, defined by

Ai,j =

{

1 if the vertex i is incident with the edge j,

0 otherwise.
(4.3.1)

Suppose we have an e-labeling fE of G. We can restate Problem 4.1.2
using AG as follows. We define y ∈ Zm

d , with yj = fE(j). Is there a vector
x ∈ Zn

d such that the equation

At
Gx = y (4.3.2)

has a solution? If so, how many are there? Here At
G is the transpose of AG.

Suppose we have a v-labeling fV of G. The analogous restatement of
Problem 4.1.3 follows. We define x ∈ Zn

d , with xi = fV (i). Is there a vector
y ∈ Zm

d such that the equation

AGy = x (4.3.3)

has a solution? If so, how many are there?
These formulations bring to mind perfect b-matchings (see [50]), but the

nature of the labels in that problem is different, as all are required to be
positive integers (see [50]).

In this section, we study the kernel of the incidence matrix of G and of
its transpose At

G, modulo some integer d > 1, which we define here.



76 CHAPTER 4. ADDITIVE GRAPH LABELINGS

Definition 4.3.1. GivenM ∈ Za×b, we define kerZd
(M) = {x ∈ Zb

d,Mx = 0
(mod d)}.

We use the Smith Normal Form (SNF) S of AG together with the left
and right multipliers U, V . Here, U ∈ Zn×n, V ∈ Zm×m, S ∈ Zn×m have the
following properties:

1. U and V are unimodular,

2. S is a diagonal matrix, with si,i|si+1,i+1 for all i, and

3. AG = USV .

Let 0 be the n×m− n matrix of 0’s. Then the SNF S of AG is ([27])
[

D 0
]

, (4.3.4)

where D is an n × n diagonal matrix, with Di,i = 1 for i ≤ n − 1, and
Dn,n = α. Here, α = 0 if G is bipartite and 2 otherwise.

We introduce some notation to simplify our statements.

Definition 4.3.2. Let G = (V,E) be a graph and let C be any cycle of G.
We associate a vector ωC ∈ Z|E| with C. We index the coordinates of ωC

using the edges of G.
Label the consecutive edges of C

e1, e2, . . . , ek−1, ek, (4.3.5)

with e1 any edge of the cycle. If C is an even cycle, we adjoin (−1)i+1 to ei:

e1,−e2, . . . , (−1)i+1ei, . . . , ek−1,−ek. (4.3.6)

If C is an odd cycle and d is even, we adjoin d/2 to each edge:

d

2
e1, . . . ,

d

2
ei, . . . ,

d

2
ek. (4.3.7)

Since C need not be a simple cycle, some edges may appear more than
once in (4.3.5). Let e′1, . . . , e

′
r be the distinct edges of C. For each distinct

edge e′i, we define ωe′i
to be the sum of the coefficients of each appearance

of e′i in (4.3.6) or (4.3.7). For example, if an edge e′i appears twice, both
times accompanied by a 1, then the corresponding ωe′i

is 2. If one of the
appearances has a 1 and the other one a (−1), then ωe′i

is 0.
Given a cycle C, we define ωC ∈ ZE as

(ωC)(u,v) =

{

ω(u,v) if (u, v) is in C,

0 otherwise.
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Notice that in (4.3.6), the choice of e1 may swap the 1’s and the −1’s.
This is not problematic, since it only changes ωC into −ωC . The ωC , with
C of even length, are in the kernel of the incidence matrix of G and we only
use them in that context.

Remark 4.3.3. Let C be a cycle of G. If the length of C is even, then the
sum of the coordinates of ωC is 0. If the length of C is odd, then the sum of
the coordinates of ωC is d/2 (mod d).

Let (G, fE) be an e-labeled graph and ω ∈ ZE. We set

〈ω, fE〉 :=
∑

(u,v)∈E

ω(u,v)fE((u, v)).

Let πd : Z|E| → Z
|E|
d denote the projection

πd(x)(u,v) = rd(x(u,v)),

where rd is the remainder modulo d. Finally, we denote by C the set of even
cycles in G.

The integer kernel of AG was computed in [61], and was shown to be the
submodule spanned by {ωC , C ∈ C}:

kerZ(AG) = 〈ωC , C ∈ C〉. (4.3.8)

Proposition 4.3.4. Let G be a connected graph, and let AG be its incidence
matrix. Then

1. If d is odd or if G is bipartite, then kerZd
(AG) = πd(kerZ(AG)).

2. If d is even and there is an odd cycle C ′ in G, then

kerZd
(AG) = πd(kerZ(AG))⊕ 〈πd(ωC′)〉.

Proof. In this proof, {z1, . . . , zm} denotes the canonical basis of Zm. That
is, (zi)i = 1 and (zi)j = 0, for j 6= i. We also write {z1, . . . , zm} to denote
the canonical basis of Zm

d .
Let S be the SNF of AG, and U ,V such that AG = USV , as described in

(4.3.4). Equivalently, U−1AG = SV . Since U and V are both unimodular,
they have integer inverses and hence they have integer inverses modulo d.
Therefore kerZ(AG) = kerZ(SV ) and kerZd

(AG) = kerZd
(SV ), implying that

kerZ(AG) = V −1 kerZ(S). (4.3.9)

kerZd
(AG) = πd(V

−1 kerZd
(S)). (4.3.10)



78 CHAPTER 4. ADDITIVE GRAPH LABELINGS

Let x = (x1, . . . , xm) ∈ kerZd
(S). That means that

Sx =







x1
...

αxn






= 0 (mod d). (4.3.11)

If α = 0 (i.e. G has no odd cycles), equation (4.3.11) holds if and only if
xi = 0 (mod d) for i ∈ {1, . . . , n− 1}. That means that

kerZd
(S) = 〈zn, . . . , zm〉 and kerZ(S) = 〈zn, . . . , zm〉.

Therefore, we have kerZd
(S) = πd(kerZ(S)), whence kerZd

(AG) = πd(kerZ(AG)).
If α = 2 (i.e. G has an odd cycle) and d is odd, equation (4.3.11) holds

if and only if xi = 0 (mod d) for i ∈ {1, . . . , n}. That means that

kerZd
(S) = 〈zn+1, . . . , zm〉.

Once more,
kerZ(S) = 〈zn+1, . . . , zm〉.

And again kerZd
(S) = πd(kerZ(S)), implying kerZd

(AG) = πd(kerZ(AG)).
We now assume that α = 2 and that d is even. From equation (4.3.11)

we now deduce that

kerZd
(S) = 〈zn+1, . . . , zm〉 ⊕ 〈

d

2
zn〉, (4.3.12)

kerZ(S) = 〈zn+1, . . . , zm〉. (4.3.13)

Notice that

〈d
2
zn〉 = {0, d

2
zn}. (4.3.14)

Combining equations (4.3.9), (4.3.10), (4.3.12) and (4.3.13), we have

kerZd
(AG) = 〈πd(V

−1zn+1), . . . , πd(V
−1zm)〉 ⊕ 〈πd(V

−1d

2
zn)〉. (4.3.15)

kerZ(AG) = 〈V −1zn+1, . . . , V
−1zm〉. (4.3.16)

Let C ′ be an odd cycle of G. Then πd(ωC′) ∈ kerZd
(AG). To see why,

recall that entry ej of ωC′ is d/2 times the number of occurrences of the edge
ej in C ′. For every vertex vi of the cycle, the number of edges that enter
and leave it must be the same. That means that the vi-th entry of AGωC′ is
an even number times d/2 (if vertex vi is in the cycle) or 0. In both cases,
AGωC′ = 0 (mod d).
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Now, since πd(ωC′) ∈ kerZd
(AG), we must have

πd(ωC′) =
m
∑

l=n+1

γlπd(V
−1zl) + επd(V

−1d

2
zn), (4.3.17)

where ε is 0 or 1 (see (4.3.14)). The first summand consists of multiples of
the projections of even cycles (see (4.3.8)). That means that if we take the
sum of the coordinates of both sides of equation (4.3.17), we get ε = 1 (see
Remark 4.3.3 ). If we set

γ =
m
∑

l=n+1

γlπd(V
−1zl),

we can write

πd(V
−1d

2
zn) = γ − πd(ωC′). (4.3.18)

Now, take any x ∈ kerZd
(AG). We have that

x =
m
∑

l=n+1

βlπd(V
−1zl) + βπd(V

−1d

2
zn).

Plugging in equation (4.3.18) we get

x =
m
∑

l=n+1

βlπd(V
−1zl) + β(γ − πd(ωC′)).

If we set β̃l = βl + γl, we have

x =
m
∑

l=n+1

β̃lπd(V
−1zl) + (−β)πd(ωC′),

which shows that

kerZd
(AG) = πd(kerZ(AG))⊕ 〈πd(ωC′)〉.

We can combine this series of results to obtain the following result linking
compatibility, additivity and the modular kernel of AG.

Theorem 4.3.5. Let (G, fE) be an e-labeled connected graph. Let AG be the
incidence matrix of G. The following statements are equivalent:
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1. (G, fE) is an e-compatible e-labeled graph.

2. 〈πd(ωC), fE〉 = 0 (mod d), for every cycle C of G.

3. 〈ω, fE〉 = 0 (mod d), for all ω ∈ kerZd
(AG).

4. If d is odd or if G is bipartite, 〈ω, fE〉 = 0 (mod d), for all ω belonging
to the projection of a finite set of generators of kerZ(AG). If d is even
and has an odd cycle, 〈ω, fE〉 = 0 (mod d), for all ω belonging to a
finite set of generators of kerZ(AG) and for ωC, for some odd cycle C.

5. (G, fE) is an e-additive e-labeled graph.

Proof. Clause 1. is equivalent to clause 5. by Theorem 4.2.13. Clause 2.
is a restatement of clause 1. using a different notation. Clauses 2. and 3.
are equivalent by Proposition 4.3.4. Clauses 3. and 4. also follow from that
proposition: the finite sets described in clause 4. were shown to be generators
of kerZd

(AG).

Remark 4.3.6. Given a graph G, consider the cycle space of G ([30]). It is
the Z2-vector space generated by the fundamental cycles of G. That is, the
cycles obtained when adding an edge of G to a spanning tree.

One might be tempted to think that checking the compatibility conditions
on these generators suffices to verify the compatibility of a graph with labels
in Zd for any d, as in the case d = 2. However, consider for instance the graph
in Figure 4.8, in which we marked the spanning tree with edges {e14, e23, e24}:
The sum of the two fundamental triangle cycles C1 and C2 (represented by

v2v1

v4 v3

e12

e23e14

e34

e24

Figure 4.8: A spanning tree of a graph.

their 0, 1 vectors) equals the square cycle C only when d = 2. This situation is
depicted informally in Figure 4.9. However, if d is odd we do not impose any
conditions on C1 and C2, and so this cannot ensure the even-cycle property we
need to check. When d 6= 2 is even, we get d

2
times the even cycle condition,

which again is not sufficient to ensure additivity. Consider for instance the
labeling f(e12) = f(e24) = f(e34) = 1, f(e14) = f(e23) = 0 and d = 4. The
odd-cycle property is verified for C1 and C2 but the labeling is not additive.
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+ = (mod 2)
C1

C2

C

Figure 4.9: Adding two odd cycles to obtain an even one.

We now turn our attention to the modular kernel of At
G.

Proposition 4.3.7. Let G be a graph, and let AG be its incidence matrix.
Then

1. If G is bipartite, with V = V1 ⊔ V2, then

kerZ(At
G) = 〈ωV1,V2

〉,

where ωV1,V2
is a vector with 1 in the coordinates corresponding to ver-

tices of V1 and −1 in those corresponding to vertices of V2. Further-
more,

kerZd
(At

G) = πd(kerZ(At
G))

2. If G is not bipartite, then

kerZ(At
G) = 〈0〉.

If d is odd, then
kerZd

(At
G) = πd(kerZ(At

G)).

If d is even, then
kerZd

(At
G) = 〈ωd/2〉,

where ωd/2 is the vector that has d/2 in every entry.

Proof. 1. Let x = (x1, . . . , xn) be a vector. Then x is in kerZ(At
G) if and

only if

At
G







x1
...
xn






=







xu1
+ xv1

...
xum

+ xvm






=







0
...
0






,

where xui
and xvi

are the variables that correspond to the vertices of
edge i. This expression shows that ωV 1,V 2 ∈ kerZ(At

G).

Now that we want to see when






xu1
+ xv1

...
xum

+ xvm






= 0
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In each row of this vector we have the label of one element of V1, and
that of an element of V2. They have to be the inverse of each other.
Combined with the connectedness of G, this implies that the xu must
have the same value for every element of V1, the xv must have the same
value for every element of V2, and that xu = −xv. Therefore, x is a
multiple of ωV1,V2

.

Moving into the modular setting maintains the validity of this argu-
ment.

2. Let x be in kerZ(At
G). An observation similar to the one just made

shows that every coordinate xv of x must satisfy xv = −xv, and they
must all be equal to the same value.

Theorem 4.3.8. Let fV be a v-additive labeling of a graph G. We set r =
m− rankH(At

G) (i.e. the corank of AT
G). Then

• If G is bipartite or if d is odd, κ(G, fV ) = dr.

• If G is not bipartite and d is even, then κ(G, fV ) = 2dr.

Proof. The result follows from a straightforward linear algebra argument:
The set of solutions to Problem 4.1.3 is a fiber of the linear map x 7→ AGx.

In light of the results we have shown about the structure of the kernel of
AG, we can see that any solution to the e-labeling of the v-labeling problem
can be expressed as the sum of a particular solution x0 and an element of
kerZd

(AG) or kerZd
(At

G), depending on the problem. The algorithms of the
previous section provide an efficient combinatorial procedure to obtain such
an x0.

4.4 Applications to Toric Varieties and Gen-

eralizations

The results of the previous sections remain valid if we swap Zd for Gd, the
group of d-th roots of unity. In this case the solution to Problem 4.1.2
provides a modular version of a classical result on toric parametrizations.
We refer the reader to [59] for a general introduction to toric ideals.

Let G = (V,E) be a connected graph and d an integer greater than 1. Let
n = |V | and m = |E|. Let v1, . . . , vn be the vertices of G and let e1, . . . , em
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be its edges. We work with complex variables xvi
for each vi ∈ V , and yei

for each ei ∈ E. The value of xvi
corresponds to the label of vertex vi,

and the value of yei
corresponds to the label of edge ei. The statement of

Problem 4.1.2 in this setting gives us

Problem 4.4.1. For which y ∈ Gm
d are there x ∈ Gn

d such that

yei
= xvi

xvj
(4.4.1)

holds for every edge ei = (vi, vj) ∈ E?

According to a classic result for toric parametrizations, given a vector
y ∈ (C∗)m of complex nonzero numbers, there is a vector x ∈ (C∗)n satisfy-
ing (4.4.1) if and only if

yu = yu1

1 · · · yum

m = 1, (4.4.2)

for every u = (u1, . . . , um) ∈ kerZ(AG). Furthermore, when these conditions
are satisfied, the number of such solutions is

g = gcd({maximal minors of AG}), (4.4.3)

provided that g 6= 0, in which case there are infinitely many solutions. We
deduce from (4.3.4) that g = 2 or 0, depending on whether G has an odd
cycle or not, respectively. It was this result which prompted us to study the
incidence matrix of G in connection with Problem 4.1.2.

We now state a modular version of this toric result. We impose the
additional restriction that

xd
vi

= 1, (4.4.4)

for all vi ∈ V . This condition, together with (4.4.1), implies that the yei
are

also in Gd.

Theorem 4.4.2. Let G = (V,E) be a connected graph. Given y ∈ Gm
d , there

exists x ∈ Gn
d satisfying (4.4.1) if and only if

yu = 1, (4.4.5)

for every u ∈ kerZd
(AG). If g is 0, there are d solutions to (4.4.1) and (4.4.4)

simultaneously. If g is 2 and d is even, there are two solutions. Otherwise,
there is a unique solution.

The result can be translated from Theorem 4.2.13. Alternatively, we
could prove that given y ∈ Gm

d , there are as many solutions x ∈ Gn
d as stated
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using the knowledge of g in (4.4.3), by checking how many of the complex
solutions x ∈ (C∗)n consist of d-th roots of unity.

We can derive analogous results for v-labelings, switching AG for At
G.

Moreover, we could use any suitable integer matrix (e.g. the incidence matrix
of a hypergraph).

As we mentioned, our results for Zd or Gd can be extended to an arbitrary
abelian group. The statement of Problems 4.1.2 and 4.1.3 are well-defined in
this general setting. So are the e- and v-compatiblity conditions layed out it
in Definitions 4.1.11 and 4.1.14. In Theorem 4.1.17 we stated the number of
solutions. The move to an arbitrary abelian group H forces us to replace 1
and 2 in that theorem for the size of the set

0H = {x ∈ H, such that 2x = 0}.

This set has size 1 and 2 if we work in Zd, with d odd or even, respectively.
The only other significant change we need to make is that whenever we speak
of d/2, what we mean is “a non-zero element of 0H .” We can also study which
results from Section 4.3 can be translated to the generalized setting.



Appendix A

Summary of Algebraic Tools
and Techniques

In this appendix we present the algebraic definitions and results used through-
out this thesis. We present definitions and results, but we omit all the proofs.

A.1 Groups

We refer the reader to [40] for a general introduction to the study of groups.

A.1.1 Basic definitions

Definition A.1.1. A set of elements H, together with an operation · : H ×
H → H and a distinguished element e ∈ H is called a group if

1. The operation · is associative.

2. For every element x ∈ H, xe = ex = x.

3. For every element x ∈ H, there is an element x−1 ∈ H, called the
inverse of x, such that xx−1 = x−1x = e.

Definition A.1.2. A group (H, ·) is called abelian if the operation · is com-
mutative. In that case, the operation is usually written +, the unit element
is written as 0 and the inverse of x is written −x.

Definition A.1.3. The cardinality of a group is called its order .

Definition A.1.4. Let H be a group. A subgroup M of H is a subset of
H containing the unit element, and such that M is closed under the law of
composition and inverse.
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Theorem A.1.5. If H is a finite group and M is a subgroup of H, then the
order of M divides the order of H.

A.1.2 The action of a group on a set

Definition A.1.6. Let H be a group and let S be a set. An action of H on
S is a function · : H × S → S that satisfies

• es = s for all s ∈ S.

• (xy)s = x(ys) for all x, y ∈ H and s ∈ S.

Definition A.1.7. Let H be a group acting on a set S. Let s be an element
of S. The stabilizer of s, written Hs is the set of elements x ∈ H that satisfy

xs = s.

The stabilizer of an element is always a subgroup of H.

Definition A.1.8. Let H be a group acting on a set S. Let s be an element
of S. The orbit of s, written Hs is the subset of S defined as {xs |x ∈ H}.
Definition A.1.9. Let H be an abelian group. There is a canonical action
of the integers Z on H, defined by

nx =











0 if n = 0

(n− 1)x+ x if n > 0

(−n)(−x) if n < 0

A.1.3 Cyclic groups

Definition A.1.10. Let H be an abelian group, and let X be a subset of
H. We define the subgroup generated by X as the group

〈X〉 = {x1 + · · ·+ xk | for any finite combination of elements of X}

Definition A.1.11. A group H is cyclic if there is an element x ∈ H such
that H = 〈x〉.

Common examples of cyclic groups include the integers ZD modulo d
with addition, the group Gd of d-th roots of unity with multiplication and
the integers with addition.

Remark A.1.12. All cyclic groups are abelian.

Theorem A.1.13. Any cyclic group of finite order d is isomorphic to Zd.
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A.1.4 The Symmetric Group Sd

Definition A.1.14. Let d be a positive integer. The symmetric group Sd is
the group of bijections (also called permutations) of the set {0, . . . , d − 1},
together with function composition.

Definition A.1.15. An element τ of Sd is called a transposition if

|{s | s ∈ H ∧ τs 6= s}| = 2

In other words, a transposition is a permutation that only swaps two ele-
ments.

Remark A.1.16. In the literature, the symmetric group is usually defined
to be the group of permutations of {1, . . . , d}, but our choice is more suited
to our work.

A.2 Rings and polynomials

A.2.1 Basic definitions

Definition A.2.1. A set of elements A, together with two operations + :
A × A → A and · : A × A → A, and two distinguished elements 0 and 1 is
called a commutative ring if

1. The set A, with + and 0 is an abelian group.

2. The operation · is associative and commutative.

3. For every element x ∈ A, x1 = 1x = x.

4. For every x, y and z in A, we have (x+ y)z = xz + yz.

Definition A.2.2. Let A be a commutative ring. A subset I ⊆ A is called
an ideal of A if it is a subgroup of A and if xy ∈ I for all x ∈ A and all y ∈ I.

Remark A.2.3. Fields (e.g. rational, real or complex numbers) are special
cases of commutative rings.

Definition A.2.4. Let A be a commutative ring, and let X ⊂ A be any set
of elements of A. We define the ideal generated by X as

〈X〉 = {
∑

p∈S

cpp, with S ⊆ X, |S| <∞, cp ∈ A}. (A.2.1)



88 APPENDIX A. SUMMARY OF ALGEBRAIC TOOLS AND . . .

A.2.2 Polynomials

As a general reference on the subject of polynomials, we refer the reader to
the books [13] and [14].

Definition A.2.5. Given a field k, we can define a commutative ring k[x] =
k[x1, . . . , xn], called the ring of polynomials in n variables with coefficients
in k.

Definition A.2.6. A monomial ordering < is a relation on the set of mono-
mials in n variables such that

1. The relation < is a total ordering.

2. If xα < xβ, then xαxγ < xβxγ, for any monomials xα, xβ and xγ.

3. The relation < is a well-ordering. That is, every non-empty set of
monomials has a smallest element.

Definition A.2.7. Let p ∈ k[x] be a non-zero polynomial, and let < be
a monomial ordering. We define the leading term of p with respect to <,
LT<(p) as its maximum monomial with respect to the ordering <.

Remark A.2.8. It is not really relevant whether a coefficient is included in
the leading term of a polynomial or not.

Definition A.2.9. Let I be a polynomial ideal. The initial ideal of I is
defined as

LT<(I) = {LT<(p), for all p ∈ I}. (A.2.2)

Remark A.2.10. If a polynomial ideal I is generated by a finite set of
polynomials X, it is not true, in general, the LT<(I) is generated by the
leading terms of the elements of X.

Definition A.2.11. Let I be a polynomial ideal, and let < be a monomial
ordering. A finite subset Gb of I is a Gröbner Basis of I with respect to <,
if

LT<(I) = 〈LT<(g), g ∈ GB〉. (A.2.3)

Definition A.2.12. Let I be a polynomial ideal. We define the quotient
k[x]/I as the partition of k[x] induced by the relation p ∼ q ⇐⇒ p− q ∈ I.
The quotient k[x]/I has a k-vector space structure. The dimension of the
quotient k[x]/I is its vector space dimension over k.
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Definition A.2.13. Let I be a polynomial ideal. We define the variety V (I)
of I as the set of points y in kn such that p(y) = 0 for all p ∈ I. We say that
I is zero-dimensional if V (I) has a finite number of points in the algebraic
closure of k.

Theorem A.2.14. Let I be a polynomial ideal. Then I is zero-dimensional
if and only if k[x]/I is a finite-dimensional vector space over k. If that is
the case, then dimk(k[x]/I) is the number of elements of V (I), counted with
multiplicity.

Theorem A.2.15. Let I be a polynomial ideal, and let < be any monomial
ordering. Then

dimC(C[x]/I) = dimC(C[x]/LT<(I )). (A.2.4)

Definition A.2.16. Let I be a polynomial ideal. We define the radical
√
I

of I as the ideal given by

f ∈
√
I ⇐⇒ ∃n, such that fn ∈ I. (A.2.5)

An ideal I is said to be radical if I =
√
I.

Definition A.2.17. A polynomial ideal I is a complete intersection if and
only if it is generated by r equations, where r is its codimension.

For a definition of the Krull dimension of a polynomial ideal, see [13,
Chapter 9].

Definition A.2.18. Let I be a polynomial ideal, and let f be a polynomial.
Then the colon ideal is defined by

(I : f) = {g ∈ C[x], such that gf ∈ I}. (A.2.6)

We now describe Cohen-Macaulay rings. For the a comprehensve treat-
ment of the subject, see [33].

Definition A.2.19. Let A be a ring. If there is exactly one proper ideal m

(different from A and from {0}), we say that A is a local ring. We usually
refer to “the local ring” (A,m).

Definition A.2.20. Let A be a ring. An A-module M is an abelian group,
together with a group action · : A×M →M , satisfying

• (a+ b)x = ax+ bx, for all a, b ∈ A, x ∈M .
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• a(x+ y) = ax+ ay, for all a ∈ A, x, y ∈M .

Definition A.2.21. Let M 6= {0} be a module over a local ring (A,m). The
depth of M is the length of any maximal regular sequence on M which is
contained in m.

Definition A.2.22. Let M be an (A,m)-module. Then M is a Cohen-
Macaulay module if depth(M) = dim(M).

Definition A.2.23. A local ring (A,m) is Cohen-Macaulay if it is a Cohen-
Macaulay A-module.

The depth of a ring is always bounded above by the Krull dimension;
equality provides interesting regularity conditions on the ring, enabling some
powerful theorems to be proven in this rather general setting.

Definition A.2.24. A non-local ring A is Cohen-Macaulay if the localization
Ap is a Cohen-Macaulay local ring for every prime ideal p of A.

Definition A.2.25. An ideal I of A is Cohen-Macaulay if A/I is a Cohen-
Macaulay A-module.

A.3 Smith Normal Form

Definition A.3.1. A matrix A ∈ Zn×n is said to be unimodular if its deter-
minant is 1 or −1 (i.e. it has an integer inverse).

Theorem A.3.2 (Smith Normal Form [56]). Let A be an n×m integer
matrix. There exist unimodular matrices U ∈ Zn×n and V ∈ Zm×m, and a
diagonal matrix S ∈ Zn×m, such that A = USV , and Si,i |Si+1,i+1.



Appendix B

Hilbert Series in CAS’s

B.1 Introduction

In this appendix, we summarize the syntax used for working with Hilbert
Series in three free Computer Algebra Systems. We work with the modified
edge ideal IG of the graph G shown in Figure B.1.

1
2

3

Figure B.1: A sample graph

In this case, IG = 〈x2
1, x

2
2, x

2
3, x1x2, x2x3〉, and the Hilbert Series we are

looking for is 1 + 3z + z2.

B.2 CoCoA

We first have to declare the polynomial ring we work in.

Use R ::= QQ[x[1..3]];

Next we define the ideal

I := Ideal(x[1]^2,x[2]^2,x[3]^2,x[1]*x[2],x[2]*x[3]);

And finally we ask for the Hilbert Series of R/I.

Hilbert(R/I);

obtaining as output

91



92 APPENDIX B. HILBERT SERIES IN CAS’S

H(0) = 1

H(1) = 3

H(2) = 1

H(t) = 0 for t >= 3

-------------------------------

B.3 Macaulay2

We first have to declare the polynomial ring we work in.

R = QQ[x1,x2,x3]

Next we define the ideal

I = ideal(x1^2,x2^2,x3^2,x1*x2,x2*x3)

And finally we ask for the Hilbert Series of R/I.

numerator reduceHilbert hilbertSeries (R/I)

obtaining as output

2

o3 = 1 + 3T + T

B.4 Singular

We first have to declare the polynomial ring we work in.

ring r = 0,(x1,x2,x3),dp;

Next we define the ideal

ideal i = std(ideal(x1^2,x2^2,x3^2,x1*x2,x2*x3));

And finally we ask for the Hilbert Series of R/I.

hilb(i);

obtaining as output
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// 1 t^0

// -5 t^2

// 5 t^3

// -1 t^5

// 1 t^0

// 3 t^1

// 1 t^2

// dimension (affine) = 0

// degree (affine) = 5

We read the Hilbert Series from the second polynomial printed by the pro-
gram.
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[61] Rafael Heraclio Villarreal Rodŕıguez. Rees algebras of edge ideals. Com-
munications in Algebra, 23(9):3513–3524, 1995.

[62] Rafael Heraclio Villarreal Rodŕıguez. Monomial Algebras. Number 238
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