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Sistemas cuánticos compuestos: un enfoque algebraico

Resumen

En este trabajo estudiamos dos caracteŕısticas no clásicas de los sistemas
cuánticos compuestos, a saber, el entrelazamiento y la indistinguibilidad,
usando herramientas lógicas y algebraicas. Primero estudiamos a las mez-
clas impropias desde un punto de vista lógico y geométrico. Esto se hace
extendiendo el ret́ıculo de proposiciones de von Neumann de forma tal de
incluir a las mezclas impropias como átomos del nuevo ret́ıculo. Luego estu-
diamos la indistinguibilidad cuántica. Usamos una estructura cuántica que
es una modificación de la teoŕıa de conjuntos de Zermelo-Frenkel basada en
la mecánica cuántica, a saber, la teoŕıa de cuasiconjuntos (Q). Usando Q
desarrollamos una formulación de la mecánica cuántica que no usa la iden-
tidad de primer orden en sus bases lógicas. Luego, desarrollamos un marco
de ret́ıculos proposicionales para part́ıculas idénticas. Estas construcciones
responden a discusiones interesantes planteadas en la literatura.

Palabras Claves: Entrelazamiento, Lógica cuántica, Teoŕıa de cuasiconjuntos,
Indistinguibilidad cuántica, Conjunto convexo de estados.



Compound Quantum Systems: An Algebraic Approach

Abstract

In this work we study two non-classical features of quantum compound sys-
tems, namely, entanglement and indistinguishability using logical and alge-
braic techniques. First, we study improper mixtures from a quantum logical
and geometrical point of view. This is done by extending the von Neumann
lattice of propositions in order to include improper mixtures as atoms of
the new lattice. Then, we study the problem of quantum non-individuality.
We use a quantum structure which is a modification of Zermelo-Frenkel set-
theory based on quantum mechanics, namely, Quasi-set Theory (Q). Using
Q we develop a new formulation of quantum mechanics which does not uses
first order identity on its logical bases. These constructions answer interest-
ing discussions posed in the literature.

Key Words: Entanglement, Quantum Logic, Quasiset Theory, Quantum In-
distinguishability, Convex Set of States
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Chapter 1
Introduction

The study of compound quantum systems presents -at least- two striking fea-
tures: entanglement [14, 87, 61, 66] and indistinguishability [74, 31, 77, 76].
These radical departures from classical mechanics show themselves when
quantum systems interact or are considered as joint systems. The clarifi-
cation of this subject is of importance in several areas of research, such as
decoherence [79] or quantum information processing [39].

Quantum entanglement was considered by Schrödinger as “the character-
istic trait of Quantum Mechanics, the one that enforces its entire departure
from classical lines of thoughts” [78]. He also had similar considerations re-
garding the problem of identical particles [76, 77]. Both features of quantum
mechanics are of a great importance for the rising of new physics and the
development of new technologies [39]. In this work we study quantum entan-
glement and quantum indistinguishability from an algebraic and quantum
logical point of view.

The study of quantum mechanics using logical and algebraic tools has
different motivations. On one hand, it has been used in the foundations
of quantum mechanics, in a vast range of studies [15, 58, 47, 31, 64, 42,
69]. On the other hand it has produced new results in more applied fields
as for example in the axiomatization of quantum logical gates in quantum
computing [20]. In this thesis we study compound quantum systems using
different quantum structures. Most of the material presented here is new,
and is based on the work of the author during the last years.

The work is divided in two chapters. In chapter 2 we give a short overview
of the quantum logical approach to quantum mechanics and study improper
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Chapter 1. Introduction

mixtures from a quantum logical and geometrical point of view. This is done
by extending the von Neumann lattice of propositions in order to include
improper mixtures as atoms of new lattices. The content of this chapter
is based mainly on the algebraic constructions that we have developed in
[24, 38]. In chapter 3 we study the problem of quantum indistinguishability.
This chapter is based mainly in our work developed in [21, 22, 23] and we also
present some unpublished results. After an overview of the problem, we use
a quantum structure which is a modification of Zermelo-Frenkel set-theory
motivated on quantum mechanics, namely, Quasi-set Theory (Q)[31, 46, 47,
49]. Using Q we develop a formulation of quantum mechanics which does not
use first order identity in its logical bases. As we shall see, this construction
answers interesting discussions posed in the literature [59, 60, 75]. Next,
we apply some of the tools developed in Chapter 2 to the indistinguishable
particle case. Finally, we expose our conclusions in 4.
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Chapter 2
The Quantum Logical Approach

We study mixed states from a quantum logical and geometrical point of view.
We adopt the point of view that mixtures must be considered as states in
their own right. We use the convex set of states in order to construct two
new lattices whose atoms are all physical states: pure states and mixtures.
This is done in order to overcome one of the problems which appear in the
standard quantum logical formalism, namely, that for a subsystem of a larger
system in an entangled state the conjunction of all actual properties of the
subsystem does not yield its actual state. In fact, its state is a mixture and
cannot be represented in the von Neumann lattice as a minimal property
which determines all other properties as is the case for pure states or classical
systems. We construct two new lattice structures. The new lattices also
contain all propositions of the von Neumann lattice as elements. We argue
that these extensions express in an algebraic form the fact that -alike the
classical case- quantum interactions produce non trivial correlations between
the systems. Finally, we study the maps which can be defined between the
extended lattice of a compound system and the lattices of its subsystems.

2.1 Introduction

Non-separability of the states of quantum systems is considered with contin-
uously growing interest in relation to quantum information theory. In fact,
today entanglement is regarded not only as a feature that gives rise to inter-
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Chapter 2. The Quantum Logical Approach

esting foundational questions. It is considered also as a powerful resource for
quantum information processing [39]. In this chapter we pose the problem
of studying non-separability with algebraic and geometrical tools related to
quantum logic (QL).

The algebraic approach to the formalization of quantum mechanics was
initiated by Birkhoff and von Neumann [15], who gave it the name of “quan-
tum logic”. Although an algebraic structure, for historical reasons it has
conserved its name. QL was developed mainly by Mackey [50], Jauch [42],
Piron [64], Kalmbach [43, 44], Varadarajan [82, 83], Greechie [34], Gudder
[36], Giuntini [33], Pták and Pulmannova [62], Beltrametti and Cassinelli
[13], among others. For a complete bibliography see for example [25] and
[29]. The Geneva school of QL extended this research to analysis of com-
pound systems. The first results where obtained by Aerts and Daubechies
[1, 2, 3] and Randall and Foulis [70]. For more discussion on the notion of
entanglement in the Operational QL (OQL) approach, see [17].

In the tradition of the quantum logical research, a property of (or a propo-
sition about) a quantum system is related to a closed subspace of the Hilbert
space H of its (pure) states or, analogously, to the projector operator onto
that subspace. Moreover, each projector is associated to a dichotomic ques-
tion about the actuality of the property [85, pg. 247]. A physical magnitude
M is represented by an operator M acting over the state space. For bounded
self-adjoint operators, conditions for the existence of the spectral decompo-
sition M =

∑
i aiPi =

∑
i ai|ai〉〈ai| are satisfied (along this work we will

restrict the study to the finite dimensional case). The real numbers ai are
related to the outcomes of measurements of the magnitudeM and projectors
|ai〉〈ai| to the mentioned properties. The physical properties of the system
are organized in the lattice of closed subspaces L(H) that, for the finite di-
mensional case, is a modular lattice [51]. In this frame, the pure state of
the system is represented by the meet (i.e. the lattice infimum) of all ac-
tual properties, more on this below. A comprehensive description of QL in
present terminology may be found in [80].

Mixed states represented by density operators had a secondary role in the
classical treatise by von Neumann because they did not add new conceptual
features to pure states. In fact, in his book, mixtures meant “statistical
mixtures” of pure states [85, pg. 328], which are known in the literature as
“proper mixtures” [26, Ch. 6]. They usually represent the states of realistic
physical systems whose preparation is not well described by pure states.
A system prepared in this way is called a “Gemenge” in [58] or a “proper
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2.1. Introduction

mixture” in [26]. They can be considered as ensembles of pure states weighted
with different probabilities, and thus, they admit an ignorance interpretation.

But there is another way in which a system can be prepared in a mixed
state, namely, by separation (see section 2.2 for technical details). If a system
is a subsystem of a compound system which is in an entangled state, then its
state will be a mixture. Mittelstaedt states that a state as such “...is a genuine
mixed state, and the question whether it admits an ‘ignorance interpretation
is more complicated and requires a separate investigation” [58]. Such states
are named “improper mixtures” in [26]. The distinction between proper and
improper mixtures has been the source of a rich debate in the literature
[26, 58, 45, 27, 53, 30]). Improper mixtures are an expression of one of the
main features of quantum systems, namely entanglement. They appear in
processes like measurements on some degrees of freedom of the system, and
also when considering one system in a set of interacting systems. In fact, in
each (non trivial) case in which a part of the system is considered, we have
to deal with improper mixtures.

In classical mechanics mixtures are of a very different kind. They rep-
resent an state of ignorance of the observer, because we know in principle
that the system is in a given state s of phase space. In quantum mechanics,
a proper mixture could be considered as a density matrix plus a piece of
classical information, which encodes classical probabilities for preparations
of ensembles of pure states. This extra piece of classical information may
have its source on imperfections of the preparation procedure, or could be
produced deliberately, but the important fact is that this probabilities could
be determined -at least- in principle as is the case of mixtures in classical
mechanics. But for the case of improper mixtures, this information is not
available, not even in principle. Also for statistical mixtures it was stated
that the ignorance interpretation becomes untenable in cases of nonunique
decomposability of the density operator [13, Ch. 2]. But the debate is far
from finished (see for example [79]). We will not discuss these interesting
issues in this work, but we will mention some consequences when it is neces-
sary.

In the standard formulation of QL, mixtures as well as pure states are
included as measures over the lattice of projections [69, Ch. 3], that is, a
state s is a function:

s : L(H) −→ [0; 1]

such that:
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Chapter 2. The Quantum Logical Approach

1. s(0) = 0 (0 is the null subspace).

2. s(P⊥) = 1− s(P )

3. For any pairwise orthogonal family of projections Pj, s(
∑

j Pj) =
∑

j s(Pj)

In a similar way, in classical mechanics statistical distributions are repre-
sented as measures over the phase space. But while pure states can be put
in a bijective correspondence to the atoms of L(H), this is not the case for
mixtures of neither kind. On the contrary, the standard formulation of QL
treats improper mixtures in an analogous way as classical statistical distri-
butions. But improper mixtures have a very different physical content, and
the question of their interpretation is a subtle one. After a brief review of the
problem of quantum non-separability in Section 2.2, we turn in Section 2.3 to
the reasons why this difference leads to a dead end when compound systems
are considered from the standard quantum logical point of view. We also
discuss that the physical necessity to consider mixtures indicates that the
algebraic structure of the properties of compound systems should be studied
in a frame that takes into account the fact that density operators are states
in their own right. We show in Section 2.4 that a frame with these charac-
teristics can be built by enlarging the scope of standard QL. We do this by
constructing two lattices based on the convex set of density operators which
incorporate improper mixtures as atoms. Then, we study the relationship
between these lattices and the lattices of its subsystems and show how our
construction overcomes the problem posed in Section 2.3.

2.2 Quantum non-separability

We briefly review here the main arguments and results of the analysis of non-
separability and relate them to the frame of quantum logical research for the
sake of completeness. We start by analyzing classical compound systems in
order to illustrate their differences with the quantum case.

2.2.1 Classical systems

When considering in classical mechanics two systems S1 and S2 and their own
state spaces Γ1 and Γ2 (or, analogously, two parts of a single system), the
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2.2. Quantum non-separability

state space Γ of the composite system is the cartesian product Γ = Γ1 × Γ2

of the phase spaces of the individual systems, independently of the kind of
interaction between both of them. The physical intuition behind this fact is
that, no matter how they interact, every interesting magnitude corresponding
to the parts and the whole may be written in terms of the points in phase
space.

In the logical approach, classical properties are associated with subsets
of the phase space, precisely with the subsets consisting of the points corre-
sponding to those states such that, when being in them, one may say that
the system has the mentioned property. Thus, subsets of Γ are good repre-
sentatives of the properties of a classical system. The power set ℘(Γ) of Γ,
partially ordered by set inclusion ⊆ (the implication) and equipped with set
intersection ∩ as the meet operation, set union ∪ as the join operation and
relative complement ′ as the complement operation gives rise to a complete
Boolean lattice < ℘(Γ), ∩, ∪, ′, 0, 1 > where 0 is the empty set ∅ and 1
is the total space Γ. According to the standard interpretation, partial order
and lattice operations may be put in correspondence with the connectives
and, or, not and the material implication of classical logic.

In this frame, the points (p, q) ∈ Γ (pure states of a classical system)
represent pieces of information that are maximal and logically complete.
They are maximal because they represent the maximum of information about
the system that cannot be consistently extended (any desired magnitude
is a function of (p, q)) and complete in the sense that they semantically
decide any property [25]. Statistical mixtures are represented by measurable
functions:

σ : Γ −→ [0; 1]

such that ∫

Γ

σ(p, q)d3pd3q = 1

We point out that statistical mixtures are not fundamental objects in
classical mechanics, in the sense that they admit an ignorance interpretation.
They appear as a state of affairs in which the observer cannot access to
an information which lies objectively in the system. Although the physical
status of quantum improper mixtures is very different, they are treated in a
similar way as classical mixtures by standard QL.

When considering two systems, it is meaningful to organize the whole
set of their properties in the corresponding (Boolean) lattice built up as the
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Chapter 2. The Quantum Logical Approach

cartesian product of the individual lattices. Informally one may say that
each factor lattice corresponds to the properties of each physical system.
More precisely, in the category of lattices as objects and lattice morphisms
as arrows, the cartesian product of lattices is the categorial product. This
category is Ens, and the cartesian product is the categorial product in Ens.

2.2.2 Quantum systems

The quantum case is completely different. When two or more systems are
considered together, the state space of their pure states is taken to be the
tensor product of their Hilbert spaces. Given the Hilbert state spaces H1

and H2 as representatives of two systems, the pure states of the compound
system are given by rays in the tensor product space H = H1 ⊗H2. But it
is not true –as a naive classical analogy would suggest– that any pure state
of the compound system factorizes after the interaction in pure states of
the subsystems, and that they evolve with their own Hamiltonian operators
[58, 6]. The mathematics behind the persistence of entanglement is the lack
of a product of lattices and even posets [4, 7, 28]. A product of structures
is available for weaker structures [29, Ch. 4] but those structures, though
mathematically very valuable and promising, have a less direct relation with
the standard formalism of quantum mechanics.

In the standard quantum logical approach, properties (or propositions
regarding the quantum system) are in correspondence with closed subspaces
of Hilbert space H. The set of subspaces C(H) with the partial order defined
by set inclusion ⊆, intersection of subspaces ∩ as the lattice meet, closed
linear spam of subspaces ⊕ as the lattice join and orthocomplementation ¬
as lattice complement, gives rise in the finite dimensional case to a modular
lattice L(H) =< C(H), ∩, ⊕, ¬, 0, 1 > where 0 is the empty set ∅ and 1
is the total space H. We will refer to this lattice as LvN , the ‘von Neumann
lattice’.

When trying to repeat the classical procedure of taking the product of
the lattices of the properties of two systems to obtain the lattice of the
properties of the composite the procedure fails [5]. Mathematically, this is
the expression of the fact that the category of Hilbert lattices as objects
and lattice morphisms as arrows has not a categorial product because of the
failure of orthocomplementation. This problem is studied for example in
[2, 36]. Attempts to vary the conditions that define the product of lattices
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2.2. Quantum non-separability

have been made [68, 40], but in all cases it results that the Hilbert lattice
factorizes only in the case in which one of the factors is a Boolean lattice or
when systems have never interacted. For a complete review, see [28].

Let us briefly recall the defining properties of the tensor product of a
finite collection of vector spaces in order to discuss the main features that
make the difference with the classical case. Let us first define (following [16])
⊗Hi as the unique vector space which satisfies the following properties:

1. for each family {|xi〉}, |xi〉 ∈ Hi, there exists an element ⊗i|xi〉 ∈ ⊗iH1

depending multilinearly on the {|xi〉}. All vectors in ⊗iHi are finite
linear combinations of such elements.

2. (universal property) for each multilinear mapping π of the product of
the Hi into a vector space Y , there exists a unique linear map ϕ :
⊗iHi −→ Y such that

ϕ(⊗i|xi〉) = π({|xi〉})

for all |xi〉 ∈ Hi.

3. (associativity) for each partition∪kIk of {1, · · · , n} there exists a unique
isomorphism from ⊗iHi onto ⊗k(⊗i∈Ik

Hi) transforming ⊗i|xi〉 into
⊗k(⊗i∈Ik

|xi〉).

When the spaces Hi are Hilbert spaces, it is possible to define an inner
product on ⊗Hi by extending the following definition by linearity:

(⊗i|xi〉,⊗i|yi〉) =
∏

i

(|xi〉, |yi〉)

Note that as we are using Dirac notation, we may write 〈xi|yi〉 instead of
(|xi〉, |yi〉). The completion of ⊗Hi in the associated norm is the tensor
product of the Hilbert spaces ⊗iHi. Thus we see that the tensor product
of Hilbert spaces is in essence a multilinear extension of the direct product.
From a physical point of view, it is for this reason that the state of the joint
system contains much more information than ‘the sum’ of the information
contained in the states of its parts.

This feature of quantum systems may be regarded as a strange fact when
using classical reasoning, but it not strange at all in a landscape where the
superposition principle holds. Given two systems S1 and S2, if we prepare
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Chapter 2. The Quantum Logical Approach

them independently in states |a〉 and |b〉 respectively, then we would have
something like the direct product of the states of both systems |a〉 × |b〉 for
the state of the joint system. We could perform also different preparations
and obtain |a′〉×|b′〉. Then, if there are no superselection rules and according
to the superposition principle, it is quite natural to suppose that it is at
least in principle possible to prepare the superposition state of the form
α|a〉⊗ |b〉+β|a′〉⊗ |b′〉, and so, we need ⊗ instead of ×. This last state is not
a product of the states of the parties. It is for this reason that the product in
quantum mechanics has to be the multilinear extension of the direct product.

Let us now briefly review the standard relationship between the states of
the joint system and the states of the subsystems. If {|x(i)

k 〉} is an orthonor-
mal basis for Hi, then

⊗n
i=1|x(i)

ki
〉

forms a basis of ⊗iHi. Let us focus for simplicity on the case of two systems,
S1 and S2. If {|x(1)

i 〉} and {|x(2)
i 〉} are the corresponding orthonormal basis

of H1 and H1 respectively, then {|x(1)
i 〉 ⊗ |x(2)

j 〉} is an orthonormal basis for
H1 ⊗H2. A general (pure) state of the composite system can be written as:

ρ = |ψ〉〈ψ|
where |ψ〉 =

∑
i,j αij|x(1)

i 〉 ⊗ |x(2)
j 〉. And if M represents an observable, its

mean value 〈M〉 is given by:

tr(ρM) = 〈M〉
When observables of the form O1 ⊗ 12 and 11 ⊗ O2 (with 11 and 12 the

identity operators over H1 and H2 respectively) are considered, then partial
state operators ρ1 and ρ2 can be defined for systems S1 and S2. The relation
between ρ, ρ1 and ρ2 is given by:

ρ1 = tr2(ρ) ρ2 = tr1(ρ)

where tri stands for the partial trace over the i degrees of freedom. It can
be shown that:

tr1(ρ1O1 ⊗ 12) = 〈O1〉
and that a similar equation holds for S2. Operators of the form O1⊗ 12 and
11⊗O2 represent magnitudes related to S1 and S2 respectively. When S is in
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2.2. Quantum non-separability

a product state |ϕ1〉 ⊗ |ϕ2〉, the mean value of the product operator O1⊗O2

will yield:

tr(|ϕ1〉 ⊗ |ϕ2〉〈ϕ1| ⊗ 〈ϕ2|O1 ⊗O2) = 〈O1〉〈O2〉
reproducing statistical independence. But, as is well known, this is not the
general case.

The state of the whole system ρ = |ψ〉〈ψ| carries the information about
the correlations between S1 and S2. The fact that ρ1 and ρ2 are not pure
states is an expression of the non-triviality of these correlations, that are
stronger and of a different kind than those of the classical case. This radical
difference expresses itself also in the violation of Bell inequalities by quantum
systems [12]. These facts suggest that mixtures have to be considered as
states in their own right and be given a place in the algebraic approach to
the study of quantum properties.

2.2.3 The Convex Set of States of a Quantum System

From the analysis of the last section it becomes clear that for a complete
description that includes compound systems it is not sufficient to consider
only pure states, but we have to consider also mixtures. The standard way of
doing this is by representing the states of the system by positive, Hermitian
and trace one operators, (also called ‘density matrices’, which are connected
with measures over the lattice of projections via Gleason’s theorem [69]).
The set of all density matrixes forms a convex set (of states), which we will
denote by C:

C := {ρ ∈ A | tr(ρ) = 1, ρ ≥ 0} (2.2.1)

where A is the set of Hermitian operators. As usual, physical observables
M are represented by elements M of A, the R-vector space of Hermitian
operators acting on H :

A := {M ∈ B(H) |M = M †}

B(H) stands for the algebra of bounded operators in H. The mean value of
the observable represented by the operator M when the system is in a state
ρ is given by 〈M〉 = tr(ρM).

13



Chapter 2. The Quantum Logical Approach

The set P of pure states can be defined as

P := {ρ ∈ C | ρ2 = ρ}

This set is in correspondence with the rays of H by the usual association
(using Dirac notation) [|ψ〉] 7−→ |ψ〉〈ψ| between the elements of the projective
space of H and the class defined by the normalized vector |ψ〉 (|ϕ〉 ∼ |ψ〉 ←→
|ϕ〉 = λ|ψ〉, λ 6= 0). C is a convex set inside the hyperplane {ρ ∈ A | tr(ρ) =
1}. If dimC(H) = n <∞, we have an R-linear isomorphismB(H) ∼= Mn(R)×
Mn(R), then

A ∼= {(R, I) ∈Mn(R)×Mn(R) |Rt = R, I t = −I} = Sn(R)× ∧n(R)

A ∩ {tr(ρ) = 1} ∼= {(R, I) ∈ Sn(R)× ∧n(R) | tr(R) = 1}
So the convex set C lies inside an R-algebraic variety of dimension

dimR({ρ ∈ A | tr(ρ) = 1}) = n2 − 1 (2.2.2)

When a system S composed of subsystems S1 and S2 is considered, the
state of S cannot be decomposed in general in a product state ρ = ρ1 ⊗
ρ2. Separable states are those states of S which can be written as a convex
combination of product states [14, 86]:

ρSep =
∑

k

λkρ
(1)
k ⊗ ρ

(2)
k (2.2.3)

where ρ
(1)
k ∈ C1 and ρ

(2)
k ∈ C2,

∑
k λk = 1 and λk ≥ 0. It is easy to see that

this expression may be written as

ρSep =
∑

i,j

λijρ
(1)
i ⊗ ρ(2)

j (2.2.4)

with
∑

i,j λij = 1 and λij ≥ 0. We will denote S(H) the (convex) set of
separable states. R. Werner called a density matrix as classically correlated,
if it can be approximated (e.g., in the trace norm) by density matrixes of
the form 2.2.4. This is because in [86] he shows that their correlations can
be reproduced by a classical random generator which can be choosen as a
purely classical devise. But it is important to remark that he also noticed in
[86] that:

14



2.2. Quantum non-separability

“Since there are usually very different ways of preparing the same state
W , classical correlation does not mean that the state has actually been pre-
pared in the manner described, but only that its statistical properties can be
reproduced by a classical mechanism.”

It is a remarkable fact that there are many states in C which are not
separable. If the state is non-separable, it is said to be entangled. The
estimation of the volume of S(H) is of great interest (see for example [87],
[39] and [10]).

What is one of the main implications of considering mixtures as actual
states? For the standard formulation of QM we have at hand what it is
usually called “the superposition principle”:

Principle 1. Superposition Principle. If |ψ1〉 and |ψ1〉 are physical states,

then α|ψ1〉+ β|ψ1〉 (|α|2 + |β|2 = 1) will also be a physical state.

Are there other operations which allows us to form new states up from two
given states? If we accept that improper mixtures are states of a fundamental
nature as much as pure states do, then, the fact that we can create new
physical states mixing two given states, could be thought as a principle which
stands besides the superposition principle:

Principle 2. Mixing Principle. If ρ and ρ′ are physical states, then αρ+βρ′

(α+ β = 1, α, β ≥ 0) will also be a physical state.

Mixing principle is not contained directly in the superposition principle.
Mixing principle appears as a consequence of the axiom which states that to
a compounded system corresponds the tensor product of Hilbert spaces. It
expresses the fact that improper mixtures are physical states. We will not
consider proper mixtures in this work because they do not add interesting
features, we only concentrate in improper mixtures.

There is a remarkable physical consequence of all this. While for pure
states there always exist “true propositions” [64], i.e., propositions for which
a test will yield the answer “yes” with certainty (and a similar situation for
“false propositions”), the situation is radically different for improper mix-
tures. If we accept that improper mixtures are states of a fundamental
nature as well as pure states, then we must face the fact that there exist
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Figure 2.1: In the classical case, we can go from the state of the system to

the states of the subsystems using the set-theoretical projections π1 and π2

.

states for which no “true propositions” exist (discarding the trivial proposi-
tion represented by the Hilbert space itself). This is the case for example for
the maximum uncertainty state (finite dimension), ρ = 1

N
1.

2.3 The Problem of Representation of The

States of the Subsystems in QL

In the quantum logical approach, there is a bijective correspondence between
the states of the system and the atoms of the lattice LvN of its properties:
the atoms of LvN are the pure states. The relationship between pure states
ρpure = |ψ〉〈ψ| of the quantum system and its actual properties p is given by:

< |ψ〉 >= ∧{p ∈ LvN | p is actual} (2.3.1)

and an equivalent relation holds for the classical case. This is an expected
fact, because in LvN states are the most elemental properties of the system,
up from which all other properties are inferred. We claim that any reasonable
definition of state must satisfy this property. Furthermore, the representa-
tives of states must be atoms of the lattice, in order to grant that no other
non-trivial property be more elementary. But pure states form in general a
quite small subset of the border of C (the atoms of LvN are in one to one
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2.3. The Problem of Representation of The States of the Subsystems in QL

correspondence with this subset): pure states are in a 2(N-1)-dimensional
subset of the (N2-2)-dimensional boundary of C. And so all non-pure states
are excluded from LvN . Or in the best case, they have a different status,
when considered (as in the classical case) as measures over the lattice of
projections.

Let us emphasize that a remarkable problem appears in standard QL,
linked to the status that it gives to improper mixtures (see [8] for more
discussion on this problem and a proposal for its solution different than the
one presented here). Suppose that S1 and S2 are subsystems of a larger
system S which is in a pure entangled state |ψ〉. Then we may ask which
the states of its subsystems are. If we make the conjunction of all actual
properties for, say S1, we will no longer obtain an atom of LvN1

(see Theorem
18 of [5]). Instead of it, we will obtain a property which corresponds, in the
non-trivial case, to a subspace of dimension strictly greater than one and
does not correspond to the state of the subsystem. In fact, the state of the
subsystem is the (improper) mixture given by the partial trace tr2(|ψ〉〈ψ|).
Thus, there is no way to obtain the actual physical state of S1 using the ∧
operation of LvN1

, as it would be reasonable according to the definition of
state as minimal property out of which all other properties are inferred.

To put things graphically, consider Figures 1 and 2. For the classical case,
there exist set-theoretical projections π1 and π2 from LCM to LCM1 and LCM2

which relate the states of the system S and the states of the subsystems S1

and S2. In the quantum case (Figure 2), we do not have arrows which map
states of LvN into states of LvNi (i = 1, 2), simply because non-pure states
are not properly included in the property lattice. Thus, the “?” arrows of
Figure 2 are missing.

In spite of the fact that mixtures are also considered in classical mechan-
ics, they pose there no fundamental problem. This is so because classical
mixtures represent a lack of information that is -at least in principle- avail-
able. On the contrary, according to the orthodox interpretation of QM ,
information encoded in (improper) mixtures is all that exists, there is no
further information available. But the orthodox quantum logical approach
puts in different levels pure states and mixtures (the lattice of properties and
a measure over it) as is done in the classical case. In the classical case this
works, for pure states of the whole system and its subsystems can be properly
linked as Figure 1 shows. But we cannot do the same in the quantum case,
because subsystems are rarely found in pure states.

All of this motivates our search of algebraic structures which contain mix-
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tures in such a way that they may be given an equal treatment as the one
given to pure states. We will show that this is possible and that such struc-
tures may be defined in a natural manner, extending (in a sense explained
below) LvN so to be compatible with the physics of compounded quantum
systems. Precisely, in the following section we construct a lattice L that
has all physical states as its atoms and whose meet operation over all ac-
tual properties of a system gives the actual physical state of that system. It
also includes LvN set theoretically, so we are able to reobtain all well known
results of single isolated systems.

L is constructed in such a way that there exist projection functions which
map all states (atoms) of the structure corresponding to the whole system
S to the corresponding states (atoms) of its subsystems S1 and S2. This
assignation rule is compatible with the physics of the problem, i.e., it is
constructed using partial traces, which are the natural functions which map
states of the larger system with the states of it subsystems. Improper mix-
tures are put in correspondence with atoms of L, granting that they are the
most elementary properties.

There is another important feature of L. In LvN from two given pure
states, say |ψ1〉 and |ψ2〉, a new state α|ψ1〉+ β|ψ2〉 may be constructed; we
have at hand the superposition principle. The ∨LvN

operation of the von
Neumann lattice is directly linked to the superposition principle: starting
with two rays, the ∨LvN

operation yields the closed subspace formed by
all linear combinations of the generators of the rays. But there is another
operation available, namely we can mix states, we can perform a “mixing
operation” to get p1|ψ1〉〈ψ1|+ p2|ψ2〉〈ψ2|. There is no place for such a thing
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2.3. The Problem of Representation of The States of the Subsystems in QL

in LvN , but it may be performed in L. The ∨L operation reflects the fact
that we can mix states, playing an analogous role to that of ∨LvN

in relation
to the superposition principle.

To sum up, the strategy that we follow in this work is to search for
structures which contain improper mixtures in such a way that they have
an equal treatment as the one given to pure states. As we will see, this
is possible, and such structures can be defined in a natural way, extending
(in a sense explained below) LvN and in a way which is compatible with
the physics of compound quantum systems. We want to avoid the fact that
actual properties of the propositional system do not determine the state of
the system, understood as the state of affairs which determines its physics.
We think that every reasonable notion of physical state in a propositional
system should satisfy equation 2.3.1.

As we said above, there are improper mixtures for which all yes-no tests
are uncertain. But it is important to remark that this does not imply that the
system has no testable properties at all. Making quantum state tomographies
we can determine the state of the system. These kind of “tests” however, are
of a very different nature than that of the yes-no experiments. But the only
thing that we care about is that of the reality of physical process and our
capability of experimentally test this reality. We search for structures which
reflect this physics in a direct way.

There are other reasons for considering structures which contains im-
proper mixtures in a same status as that of pure states. There are a lot
of studies of interest which concentrate on mixtures. For example, this is
the case in quantum decoherence, quantum information processing, or the
independent generalizations of quantum mechanics which emphasize the con-
vex nature of mechanics (not necessarily equivalent to “Hilbertian” QM)
[55, 56, 57]. The set of interest in these studies is C instead of the lattice
of projections. So it seems to be adequate to study structures which in-
clude improper mixtures as well as pure states in a same level of “discourse”.
Such structures could provide a natural framework in which we study foun-
dational issues related to these topics with a propositional structure which
include propositions formed of statistical mixtures as well as the well known
propositions defined by the yes-no experiments of the von Neumann’s lattice
of projections.

Let us see examples of physical situations which could be captured by
propositional structures based on C. Suppose that we have a system S1 in a
given state ρ1 and its environment S2. Then we may state the proposition
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“the state of affairs is such that S1 is in state ρ1”. We note that when we
look the things from the point of view of the total system S = System +
Environment, to this proposition it corresponds a convex subset of C (the
convex set of states of S). This is because S can be in any state such
that tr2(ρ) = ρ1, and this corresponds to the convex set (see section 2.7.4)
tr−1

2 ({ρ1}). Similarly, we obtain the convex set tr−1
2 ({ρ1}) ∩ tr−1

1 ({ρ2}) for
the proposition S1 is in state ρ1 and S2 is in state ρ2. These propositions
represent the ignorance that we have about the actual state of the whole
system. A propositional structure which includes propositions of these kind
could be useful (or more natural) for the study of fields such as quantum
information.

It is important to notice that propositions such as the one represented by
tr−1

2 ({ρ1}) above cannot be tested by yes-no experiments in general. Notwith-
standing, they represent actual states of affairs, and they can certainly be
tested making measures on correlations, quantum tomographies, etc.

As another example, consider the von Neumann entropy S(ρ) = −tr(ρ ln(ρ)).
It has the following property of concavity [14]

Proposition 1. If ρ = αρ1 + (1− α)ρ2, 0 ≤ α ≤ 1, we have

S(ρ) ≥ αS(ρ1) + (1− α)S(ρ2) (2.3.2)

Now consider the proposition “the entropy of the system is greater than S0”.
To such a proposition -which has a very definite physical meaning- there
corresponds a convex subset of C. This is so because if we consider the set

S≥S0
= {ρ ∈ C |S(ρ) ≥ S0} (2.3.3)

if ρ1, ρ2 ∈ S≥S0
, then any convex combination ρ = αρ1 + (1 − α)ρ2 -due to

the concavity property- will also belong to S≥S0
. This example shows that

there are propositions with a very clear physical meaning which correspond
to subsets of C instead of subspaces of the Hilbert space.

We summarize below the desired properties for structures that we are
searching for, in order to solve the problems posed in this section:

1 All physical states are included as atoms of the the new lattice. Atoms
and physical states are in one to one correspondence.
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2 A state of the system will be the conjunction of all the actual properties
(i.e. elements of the structure). This means that actual properties
determine univocally the state of the system.

3 There exist projection functions which map all states (atoms) of the
structure corresponding to the whole system S, to the corresponding
states (atoms) of its subsystems S1 and S2. This assignation rule must
be compatible with the physics of the problem.

4 LvN is set theoretically included in the new structure, in order to pre-
serve physical properties in the standard sense.

5 Given two propositions of the structure there must exist an operation
which yields a proposition which expresses the fact that we can make
mixtures of states.

There is a trivial example which satisfies the conditions 1−4 listed above,
namely, the set of all subsets of C, which we denote P(C). Doted with the
conjunction (set intersection) and disjunction (set union) it is a boolean lat-
tice. If we fix an entanglement measure, consider the proposition “the system
has such amount of entanglement” or given an entropy measure, we can say
“‘the system has so much entropy” and so on. To such propositions we can
assign elements of P(C), the set of all states which satisfy those propositions.
But the boolean “or” defined by the set union hides the fact that in quan-
tum mechanics we can make superpositions of states (superposition principle,
principle 1) and that we can mix states (mixing principle, principle 2). In
this work we search for structures which satisfy condition 5. For that reason,
the lattice formed by P(C) (from now on LB) is not of interest. It expresses
the almost trivial fact that we can make propositions such as “the states of
C which make a given function to have such a value” but it hides the radical
differences between QM and CM .

We can define -at least- two structures which satisfy the above list. One
of them called L (see section 2.4 and [24]) is in close connection with the
lattice of subspaces of the space of hermitian matrixes [24]. In this work it
plays the role of a technical step to reach LC (section 2.6), the lattice formed
by the convex subsets of C. We show below that -alike LB- the study of
these structures sheds light on the study of compound quantum systems,
and provide a suitable (natural) language for them, mainly because of they
sort the problems possed above. They show things that LvN hides, or in
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other words, which are not expressed clearly. For example, given two pure
states ρ1 = |ψ1〉〈ψ1| and ρ2 = |ψ2〉〈ψ2| we can apply the “or” operation of
LvN , ∨LvN

, which yields the linear (closed) spam of |ψ1〉 and |ψ2〉. But we can
also consider the “∨LC

” operation (see section 2.6), which yields all statistical
mixtures of the form αρ1 + (1 − α)ρ2. This operation is different of linear
combination (quantum superposition), and is related to the -non classical-
mixing of states (improper mixing). This “mixing” operation cannot be
represented in QL at the level of LvN itself, i.e., it is not a lattice operation,
but it has to be represented at the level of statistical mixtures (measures over
LvN ).

It is important to notice that it is not the aim of this work to replace the
von Neumann lattice by these new structures, but to stress its limitations for
the problem of compound systems and to define its domain of applicability.
We adopt the point of view that these constructions -including LvN - yield
different complementary views of quantum systems. We only stress that it is
necessary to consider other structures than LvN in order to sort the problems
mentioned above. In the following sections, we present L and LC.

2.4 The Lattice of Density Operators

In order to construct a lattice for density operators, let us consider the pair
G(A) := (A, tr) where A is the R-vector space of operators over H and
tr is the usual trace operator on B(H), which induces the scalar product
< A,B >= tr(A · B) (dim(H) < ∞). The restriction to A of tr, makes A
into an R-Euclidean vector space. With the standard ∨, ∧ and ¬ operations,
G(A) is a modular, orthocomplemented, atomic and complete lattice (not
distributive, hence not a Boolean algebra).

Let Lo be the set of subspaces:

Lo := {L = S ∩ C |S ∈ G(A)}

There are a lot of subspaces S, Si ∈ G(A) such that S ∩ C = Si ∩ C, so for
each L ∈ Lo we may choose the subspace with the least dimension [S] as the
representative element:

[S] := min{dimR(S) |L = S ∩ C, S ∈ G(A)}
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2.4. The Lattice of Density Operators

Let [S] = L, being S ∈ G(A) an element of the class L, then

S ∩ C ⊆< S ∩ C >R⊆ S ⇒ S ∩ C ∩ C ⊆< S ∩ C >R ∩C ⊆ S ∩ C ⇒

< S ∩ C > ∩C = S ∩ C
So < S ∩C > and S are in the same class L. Note that < S ∩C >⊆ S and if
S is the subspace with the least dimension, then < S ∩ C >= S. Also note
that the representative with least dimension is unique, because if we choose
S ′ such that S ′ ∩ C = S ∩ C, then

S =< S ∩ C >=< S′ ∩ C >= S ′

Finally, the representative of a class L that we choose is the unique R-
subspace S ⊆ A such that

S =< S ∩ C >R

We call it the good representative. It is important to remark that in the case
of infinite dimensional Hilbert spaces we cannot define good representatives
in such a way.

Let us now define ∨, ∧ and ¬ operations in Lo as:

(S ∩ C) ∧ (T ∩ C) =< S ∩ C > ∩ < T ∩ C > ∩C

(S ∩ C) ∨ (T ∩ C) = (< S ∩ C > + < T ∩ C >) ∩ C
¬(S ∩ C) =< S ∩ C >⊥ ∩C

They are well defined for every element of the classes [S] and [T ]. It is
easy to see that L =< Lo,∨,∧,0, 1 > is a complete lattice, with 0 = ∅
represented by the class of G(A) whose elements are disjoint with C and
1 = C, represented by the class of A. It is an atomic lattice: the atoms of L
are given by the intersection of rays in G(A) and C. They are the sets {ρ},
with ρ a density operator.

It is important to notice that with respect to the ¬ operation, L is not
an orthocomplemented lattice -alike LvN - because if we take L = { 1

N
1} =<

1
N

1 > ∩C, then

¬(¬L) = ¬(<
1

N
1 >⊥ ∩C) = ¬∅ = C 6= L

On the other hand it is easy to show that non-contradiction holds
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L ∧ ¬L = 0

and also contraposition

L1 ≤ L2 =⇒ ¬L2 ≤ ¬L1

Proposition 2. If dim(H) <∞, L is a modular lattice.

Proof. To prove the modular equality

[S] ≤ [R]⇒ [S] ∨ ([T ] ∧ [R]) = ([S] ∨ [T ]) ∧ [R]

the key point is that

[S] ≤ [R]⇔ S ∩ C ⊆ R ∩ C ⇒ S =< S ∩ C >⊆< R ∩ C >= R

So, using S ⊆ R, is easy to see that (S+(T ∩R))∩C = ((S+T )∩R)∩C.
Furthermore, we can prove the following:

Proposition 3. There is a one to one correspondence between the states of

the system and the atoms of L.

Proof. For every ρ ∈ C, we have that < ρ > ∩ C = {ρ}. This is so because

the only positive matrix of trace one that is a multiple of ρ is ρ itself. Then,

{ρ} is an element of L. Suppose that there exists L such that 0 ≤ L ≤ {ρ}.

If L 6= 0, we can write L = S ∩ C, with S being the good representative for

the class of L. L ≤ {ρ} implies that S ⊆< ρ > and thus S =< ρ >, so it

follows that L = {ρ}. Conversely, if L is an atom of L, take ρ ∈ L. Define

L′ =< ρ > ∩ C = {ρ}. It is clear that L′ ⊆ L and, given that L′ 6= 0, we

have L′ = L.
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The last proposition shows that we can represent the states of subsystems
of a larger system as elements of the lattice L giving them a similar status as
pure states, something impossible in the standard formalism of QL and one
of the desiderata in searching a structure to deal with composite systems.
It is a well established fact [14], that there is a lattice isomorphism between
the complemented and complete lattice of faces of the convex set C and LvN .
As desired, LvN is included in L granting to represent all the good features
of standard QL in the new algebra. This is a non trivial result, and it is
ensured by the following proposition and its corollary:

Proposition 4. Every face of C is an element of L.

Proof. Let F ⊆ C be a face. Then there exists a R-hyperplane H inside

{ρ ∈ A | tr(ρ) = 1} such that F = H ∩ C.

Given that H = {l = α} with α ∈ R and l an R-linear form on A, we have

that:

F = H ∩ C = H ∩ C ∩ {tr = 1} = {l = α, tr = 1} ∩ C =

{l = αtr, tr = 1} ∩ C = {l = αtr} ∩ C ∩ {tr = 1} = {l − αtr = 0} ∩ C

So {ρ ∈ A | l(ρ)− αtr(ρ) = 0} ∈ G(A), and then F ∈ L.

So, we can naturally embed LvN in L as a poset.

Corollary 1. The complemented and complete lattice of faces of the convex

set C is a subposet of L.

Proof. We have already seen that LvN ⊆ L as sets. Moreover it is easy to

see that if F1 ≤ F2 in LvN then F1 ≤ F2 in L. This is so because both orders

are set theory inclusions.
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The previous Corollary shows that L and LvN are closely connected. Let
us analyze the relationship between the operations of the two lattices in order
to characterize this connection. We recall that the meet of two faces is their
intersection and the join is the smallest face containing both. In LvN , the
meet of two subspaces is their intersection and the join is their closed linear
spam.

∧: F1, F2 ∈ LvN , then F1∧F2 in LvN is the same as in L. So the inclusion
LvN ⊆ L preserves the ∧-operation.

∨: In general it does not preserve the ∨-operation. The relation between
the two operations is:

F1 ∨L F2 ≤ F1 ∨LvN
F2

F1 ≤ F2 ⇒ F1 ∨L F2 = F1 ∨LvN
F2 = F2

For example, if the convex set C is a rectangle and F1 and F2 are two
opposite vertices then, the face-join of them is the whole rectangle, and
the L-join is the diagonal joining them.

¬: In any lattice, x is a complement to y if x ∨ y = 1 and x ∧ y = 0.
In general the lattice of faces of a convex set is complemented, but in
the case of C it is orthocomplemented, that is, it has a distinguished
complemented face for every face F ⊂ C. Given that LvN

∼= P(H), the
lattice of projectors in H, the ¬-operation in LvN is that induced from
P(H). If F ⊆ C is a face, there exists a unique projector P ∈ A such
that

F = {ρ ∈ C | tr(Pρ) = 0} = {ρ ∈ C | ρ ⊥ P} ⇒
¬LvN

F = {ρ ∈ C | ρ ⊥ 1− P}
It is easy (using eigenvalues) to see that it is well defined and that ¬F
is again a face. Given that F ∈ L, it has a good representative F = [S].
Then

¬LF = S⊥ ∩ C
Using this, we can prove that ¬LF ≤ ¬LvN

F , because:

ν ∈ ¬LF then ν ⊥ ρ, ρ ∈ F
and, in particular,

ν ⊥ 1− P then ν ∈ ¬LvN
F
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2.4.1 Quantum Interactions Enlarge the Lattice of Prop-

erties

The results of the last section show that L is a quite natural extension of
LvN and satisfies that improper mixtures are in a bijective correspondence
with the atoms of the lattice. This feature allows this lattice to avoid the
problems which appear in the standard formulation of QL posed in [8] and
also discussed in section 2.3 of this work. In the new lattice, the conjunction
of all actual properties yields the physical state of the system because all
states are in correspondence with atoms, which are minimal elements. From
the physical point of view the necessity of an extension becomes clear from
the comparison between classical and quantum compound systems. When
we have a single classical system, its properties are faithfully represented by
the subsets of its phase space. When another classical system is added and
the compound system is considered, no enrichment of the state space of the
former system is needed in order to describe its properties, even in the pres-
ence of interactions. No matter which the interaction may be, the cartesian
product of the individual phase spaces gives all is needed to represent the
compound system, and the same stands for the property lattices. But the
situation is quite different in quantum mechanics. This is so because if we
add a new quantum system to the first one, pure states are no longer faithful
in order to describe subsystems. Interactions produce non trivial correla-
tions, which are reflected in the presence of entangled states and violation
of Bell inequalities. These non trivial correlations are behind the fact that
within the standard quantum logical approach, the conjunction of all actual
properties does not yield the physical state of the subsystem. Thus, besides
their own properties, we need information about the non trivial correlations
that each subsystem has with other subsystems -for example, a system with
the environment- that may be regarded as new elements in the structure of
properties and cannot be described otherwise. For this reason an enlarge-
ment of the lattice of properties is needed to represent improper mixtures by
atoms {ρ} in L. We will come back to this point in Subsection 2.5.2, where
we study the projections from the lattice of the compound system onto the
lattices of the subsystems.
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2.5 The Relationship Between L and Li
Given two systems with Hilbert spaces H1 and H2, we can construct the
lattices L1 and L2 according to the procedure of section 2.4. We can also
construct L, the lattice associated to the product space H1 ⊗ H2. In this
section we examine their mutual relations. We study some special maps
between these lattices and their properties, in order to get an insight in the
characterization of compound quantum systems.

2.5.1 Separable States (Going Up)

We start defining the map:

Ψ : L1 × L2 −→ L
(S1 ∩ C1, S2 ∩ C2) −→ S ∩ C

where S = (< S1 ∩ C1 > ⊗ < S2 ∩ C2 >)

In terms of good representatives, Ψ([S1], [S2]) = [S1⊗ S2]. We can prove the
following:

Proposition 5. Fixing [U ] ∈ L2 then L1 is isomorphic (as complete lattice)

to L1 × [U ] ⊆ L. The same is true for L2 and an arbitrary element of L1.

Proof. Let us prove it for L1. Let ([S], [U ]) ∈ L1 × [U ] with S a good repre-

sentative for [S] and U for [U ]. When we apply Ψ we obtain the proposition

[S⊗U ] ∈ L, then, we can consider the image under Ψ of L1× [U ] ⊆ L1×L2:

Ψ(L1 × [U ]) = {[S ⊗ U ] where S is a good representative for [S] ∈ L1}

From this characterization it is easy to see that Ψ is injective. If [S ⊗ U ] =

[T ⊗ U ] (S and T are good representatives), taking partial traces (more in

Subsection 2.5.2) then [S] = [T ].
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Moreover, Ψ(−, [U ]) is a lattice morphism: let [S ⊗U ], [T ⊗U ] ∈ L with

S and T good representatives of [S], [T ] ∈ L1. The key observation is that

S⊗U and T ⊗U are also good representatives (taking partial traces). Then

we have:

[S ⊗ U ] ∧ [T ⊗ U ] = [(S ∩ T )⊗ U ] = Ψ([S] ∧ [T ], [U ])

[S ⊗ U ] ∨ [T ⊗ U ] = [(S ⊕ T )⊗ U ] = Ψ([S] ∨ [T ], [U ])

This ensures that L1 is a sublattice of L. The same is true for L2.

Notice that we can use an arbitrary atom ρ2 ∈ C2 instead of some [U ] ∈ L2

and that the application Ψ restricted to L1 × ρ2 does not preserve the ¬-
operation. This is so, because:

Ψ(¬[S], ρ2) = [S⊥ ⊗ ρ2] ⊂ [(S ⊗ ρ2)
⊥] =

= ¬[S ⊗ ρ2] = ¬Ψ([S], ρ2)

The inclusion holds, because if ρ ∈ [S⊥ ⊗ ρ2], then ρ = (Σλiρi) ⊗ ρ2 =
Σλiρi ⊗ ρ2, with ρi ∈ S⊥. It is clear that all the ρi ⊗ ρ2 are orthogonal to
S ⊗ ρ2, and then ρ ∈ (S ⊗ ρ2)

⊥. In general the inclusion is strict, because
we can have elements of the form ρ1 ⊗ ρ′2, with ρ1 ∈ S⊥ and ρ′2 6= ρ2. Then,
ρ1⊗ρ2 ∈ S⊗ρ2, but ρ1⊗ρ2 /∈ S⊥⊗ρ2. This has a clear physical meaning: in
fact, when the system S1 is isolated, its lattice of properties L1 is equivalent
to L1 × ρ2. But when we add system S2 we can, for example, prepare the
systems independently, in such a way that the state after preparation is ρ1⊗ρ′2
with ρ1 ∈ S⊥ and ρ′2 an arbitrary state of S2. Then, we see that there is
much more freedom in the space of all states.

Let us study now the image of Ψ. First, we note that given L1 ∈ L1 and
L2 ∈ L2, we can define the following convex tensor product:

Definition 1. L1⊗̃L2 := {∑λijρ
1
i ⊗ ρ2

j | ρ1
i ∈ L1, ρ

2
j ∈ L2,

∑
λij = 1 and

λij ≥ 0}
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Chapter 2. The Quantum Logical Approach

that is formed by all possible convex combinations of tensor products of
elements of L1 and elements of L2, and it is again a convex set.

Proposition 6. L1⊗̃L2 ⊆ Ψ(L1, L2)

Proof. If ρ ∈ L1⊗̃L2, then ρ =
∑
λijρ

1
i⊗ρ2

j , with ρ1
i ∈ L1, ρ

2
j ∈ L2,

∑
λij = 1

and λij ≥ 0. For each i, j, ρ1
i ⊗ ρ2

j is again a positive trace one operator and

so belongs to C. It belongs to < L1 > ⊗ < L2 > because of the definition of

tensor product. Then, it belongs to Ψ(L1, L2). As C is convex, then ρ ∈ C,

because it is a convex combination of elements in C. It is a linear combination

of elements of < L1 > ⊗ < L2 > also, and so it belongs to it. This proves

that ρ ∈ Ψ(L1, L2).

We can also prove that:

Proposition 7. If L ∈ Im(Ψ), then L ∩ S(H) 6= ∅.

Proof. L ∈ Im(Ψ) implies that there exist L1 and L2 such that L = Ψ(L1, L2).

By definition Ψ(L1, L2) = (S1⊗S2)∩C, with L1 = S1 ∩C1 and L2 = S2 ∩C2.

Let ρ1 ∈ L1 and ρ2 ∈ L2. Then, ρ1 ⊗ ρ2 ∈ L. But we have also that

ρ1 ⊗ ρ2 ∈ S(H), and then L ∩ S(H) 6= ∅.

From the last proposition it follows that Im(Ψ) ⊂ L, because if we take
a nonseparable state ρ ∈ C, then ρ ∈ L, but ρ ∩ S(H) = ∅, and so, it cannot
belong to Im(ψ). Note that in general L1⊗̃L2 is not an element of L.

Let us compute C1⊗̃ C2. Remember that C1 = [A1] ∈ L1 and C2 = [A2] ∈
L2:

C1⊗̃ C2 = {
∑

λijρ
1
i ⊗ ρ2

j | ρ1
i ∈ C1, ρ2

j ∈ C2,
∑

λij = 1 and λij ≥ 0}

So, using the definition of S(H), the set of all separable states, we have
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S(H) = C1⊗̃ C2 (2.5.1)

We know that C1⊗̃ C2 ⊂ C. But it does not necessarily belong to L. We can
prove also the following propositions:

Proposition 8. Let L ∈ Im(Ψ) and ρ ∈ L. Then, ρ is a linear combination

of product states.

Proof. Let L ∈ Im(Ψ). Then, there exist L1 ∈ L1 and L2 ∈ L2 such that

Ψ(L1, L2) = L. If L1 = S1 ∩ C1 and L2 = S2 ∩ C2, with S1 and S2 good

representatives, we have:

L = (S1 ⊗ S2) ∩ C =⇒ ρ =
∑

i,j

λijρ
1
i ⊗ ρ2

j

Proposition 9. Let ρ = ρ1 ⊗ ρ2, with ρ1 ∈ C1 and ρ2 ∈ C2. Then {ρ} =

Ψ({ρ1}, {ρ2}) with {ρ1} ∈ L1, {ρ2} ∈ L2 and {ρ} ∈ L.

Proof. We already know that the atoms are elements of the lattices.

Ψ({ρ1}, {ρ2}) = (< ρ1 > ⊗ < ρ2 >)∩ C =< ρ1⊗ρ2 > ∩ C = {ρ1⊗ρ2} = {ρ}

Proposition 10. Let ρ ∈ S(H), the set of separable states. Then, there exist

L ∈ L, L1 ∈ L1 and L2 ∈ L2 such that ρ ∈ L and L = Ψ(L1, L2).

Proof. If ρ ∈ S(H), then ρ =
∑

ij λijρ
1
i ⊗ ρ2

j , with
∑

ij λij = 1 and λij ≥ 0.

Consider the subspaces S1 =< ρ1
1, ρ

1
2, · · · , ρ1

k > and S2 =< ρ2
1, ρ

2
2, · · · , ρ2

l >.
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Take L1 = S1∩C1 and L2 = S2∩C2. Let us observe first that < S1∩C1 >⊆ S1.

We have ρ1
i ∈ C1 and so < S1 ∩ C1 >= S1, because S1 is generated by the set

ρ1
i . We also have that < S2 ∩ C2 >= S2. Now we can compute:

Ψ(L1, L2) = (< S1 ∩ C1 > ⊗ < S2 ∩ C2 >) ∩ C = (S1 ⊗ S2) ∩ C

But the set {ρ1
i ⊗ ρ2

j} generates S1⊗S2, and then, (S1⊗S2)∩C is formed by

all the possible convex combinations of {ρ1
i⊗ρ2

j}. This proves that ρ ∈ L.

The above propositions show that Im(Ψ) encodes information related to
separable states. As a general state in S is non separable, we obtain that
Im(Ψ) is not equal to L. This is a reasonable result. If we interpret L1 and
L2 as encoding all the information that is available for S1 and S2 expressed
via observables of the subsystems separately, it will never be possible to re-
construct from it alone all the information about the correlations between S1

and S2, which is encoded in L. This information is available only in observ-
ables of the whole system S. From Im(Ψ) it is possible to recover information
about separated states only. As said above, the tensor product contains more
information than that of its parties, and this is directly linked to the non ex-
istence of a satisfactory theory of tensor products of orthomodular posets
and lattices compatible with physics.

2.5.2 Projections Onto L1 and L2 (Going Down)

There are other maps of interest. If the whole system is in a state ρ, using
partial traces we can define states for the subsystem ρ1 = tr2(ρ) and similarly
for ρ2. Then, we can consider the maps:

tri : C −→ Cj | ρ −→ tri(ρ)

from which we can construct the induced projections:

τi : L −→ Li | S ∩ C −→ tri(< S ∩ C >) ∩ Ci
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2.5. The Relationship Between L and Li

In terms of good representatives τi([S]) = [tri(S)]. Then we can define the
product map

τ : L −→ L1 × L2 | L −→ (τ1(L), τ2(L))

We can prove the following about the image of τi.

Proposition 11. The functions τi are surjective and preserve the ∨-operation.

They are not injective.

Proof. Take L1 ∈ L1. Choose an arbitrary element of C2, say ρ2. Now

consider the following element of L

L =< L1 ⊗ ρ2 > ∩C

It is clear that τ1(L) = L1, because if ρ1 ∈ L1, then tr(ρ1 ⊗ ρ2) = ρ1. So, τ1

is surjective. On the other hand, the arbitrariness of ρ2 implies that it is not

injective. An analogous argument follows for τ2.

Let us see that τi preserves the ∨-operation:

τi([S] ∨ [T ]) = τi([S ⊕ T ]) = [tri(S ⊕ T )] =

= [tri(S)⊕ tri(T )] = [tri(S)] ∨ [tri(T )] = τi([S]) ∨ τi([T ])

Let us now consider the ∧-operation. Let us compute:

τi([S] ∧ [T ]) = τi([S ∩ T ]) = [tri(S ∩ T )] ⊆

⊆ [tri(S) ∩ tri(T )] = [tri(S)] ∧ [tri(T )] = τi([S]) ∧ τi([T ])
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Figure 2.3: The different maps between L1, L2, L1 × L2, and L. π1 and π2

are the canonical projections.

It is easy to see that tri(S ∩ T ) ⊆ tri(S) ∩ tri(T ). This is because if ρ ∈
tri(S ∩ T ), then ρ = tri(σ), with σ ∈ S and σ ∈ T . This means that
ρ ∈ tri(S) ∩ tri(T ), and so we have the inclusion of classes. But these sets
are not equal in general, as the following example shows. Take {ρ1⊗ρ2} ∈ L
and {ρ1 ⊗ ρ′2} ∈ L, with ρ′ 6= ρ. It is clear that {ρ1 ⊗ ρ2} ∧ {ρ1 ⊗ ρ′2} = 0
and so, τ1({ρ1 ⊗ ρ2} ∧ {ρ1 ⊗ ρ′2}) = 0. On the other hand, τ1({ρ1 ⊗ ρ2}) =
{ρ1} = τ1({ρ1⊗ ρ′2}), and so, τ1({ρ1⊗ ρ2})∧ τ1({ρ1⊗ ρ′2}) = {ρ1}. A similar
fact holds for the ¬-operation.

The lack of injectivity of the τi may be physically recognized from the fact
that the state of the whole system encodes information about correlations
between its parts. It is again useful to make a comparison with the classi-
cal case in order to illustrate what is happening. The same as in classical
mechanics, we have atoms in L which are tensor products of atoms of L1

and L2. But in contrast to classical mechanics, entangled states originate
atoms of L which cannot be expressed in such a way and thus, loosely using
a topological language, we may say the fiber of the projection τi is much
bigger than that of its classical counterpart.

It is important to note that the projection function τ cannot be properly
defined within the frame of the traditional approach of QL because there
was no place for improper mixtures in LvN , where they have to be defined
as functions over the sublattices. On the contrary, mixtures are elements
of the lattices L and Li, and thus we can define the projections from the
lattice of the whole system to the lattices of the subsystems mapping the
states of S into the corresponding states of Si. This enables a more natural
approach when compound systems are considered from a quantum logical
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2.5. The Relationship Between L and Li

point of view.

It is interesting also to analyze the functions Ψ ◦ τ and τ ◦Ψ.

Proposition 12. τ ◦Ψ = Id.

Proof. Let us see it in terms of good representatives:

τ1(Ψ([S], [T ])) = τ1([S ⊗ T ]) = [tr1(S ⊗ T )] = [S]

τ2(Ψ([S], [T ])) = τ2([S ⊗ T ]) = [tr2(S ⊗ T )] = [T ]

Then τ(Ψ([S], [T ])) = ([S], [T ]).

It is clear, from a physical point of view, that Ψ ◦ τ is not the identity
function: when we take partial traces information is lost that cannot be
recovered by making products of states. This can be summarized as “going
down and then going up is not the same as going up and then going down”
(another way to express quantum non-separability). We show these maps in
Figure 2.5.

Let us finally make an observation about the image of Ψ. Consider
the category of lattices as objects and lattice-morphisms as arrows. A bi-
morphism is a morphism in each variable, and Proposition 5 ensures that Ψ
is a bi-morphism. Let us define I as the lattice generated by Im(Ψ) inside
L. Then, the following relationship holds between I, L1 and L2 (See Figure
2.5.2):

Proposition 13. (I,Ψ) is the lattice tensor product (in categorical terms)

of L1 and L2. That is, it satisfies the following universal property: for every

bi-morphism of lattices φ : L1 × L2 →M there exists a unique φ̂ : I → M

such that φ̂Ψ = φ. And if (I ′,Ψ′) is another product then they are isomorphic

by a unique isomorphism.
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Figure 2.4: This is a commutative diagram. (I,Ψ) is the lattice tensor

product (in categorical terms) of L1 and L2.

Proof. Let φ : L1×L2 →M a bi-morphism whereM is an arbitrary lattice.

Given that Im(Ψ) lattice-generates I we can define φ̂ over the elements of

the form [S ⊗ T ]:

φ̂([S ⊗ T ]) := φ([S], [T ])

Note that it is unique by definition and φ̂Ψ = φ.

The unicity of (I,Ψ) follows from a standard categorical argument: Given

that Ψ′ is a bi-morphism we have Ψ̂′Ψ = Ψ′ because Ψ has the universal

property. Given that Ψ′ also has the universal property we have IdI′Ψ′ =

Ψ′. The same holds for Ψ, that is Ψ̂Ψ′ = Ψ and IdIΨ = Ψ. Note that

Ψ̂′, Ψ̂, IdI′ , IdI are all unique having this property. Given that Ψ̂′Ψ̂Ψ′ = Ψ′

and Ψ̂Ψ̂′Ψ = Ψ then we have:

Ψ̂Ψ̂′ = IdI Ψ̂′Ψ̂ = IdI′

So I and I ′ are isomorphic by a unique isomorphism.
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2.6. The Lattice of Convex Subsets

2.6 The Lattice of Convex Subsets

In section 2.4 we saw that L is a suitable extension of LvN . The elements of
L are formed by intersections between closed subspaces and C. Given that
closed subspaces are closed sets and so is C, they are also convex subsets of
C. We may go on further and consider all convex subsets of C. On the other
hand (because of linearity), partial trace operators preserve convexity and so
they will map propositions of the system into propositions of the subsystem,
as desired.

Another motivation for a further extension comes from the following anal-
ogy. If the propositions of classical mechanics are the subsets of the set of
states (classical phase space), why cannot we consider the convex subsets of
the convex set of states? It seems, after all, that convexity is an important
feature of quantum mechanics (see for example [56], [57] and [55]). And as
will be seen below, this “convexification” of the lattice allows for an algebraic
characterization of entanglement.

Let us begin by considering the set of all convex subsets of C:

Definition 2. LC := {C ⊆ C |C is a convex subset of C}
In order to give LC a lattice structure, we introduce the following opera-

tions:

Definition 3. For all C,C1, C2 ∈ LC

∧ C1 ∧ C2 := C1 ∩ C2

∨ C1 ∨C2 := conv(C1, C2). It is again a convex set, and it is included in

C (using convexity).

¬ ¬C := C⊥ ∩ C

−→ C1 −→ C2 := C1 ⊆ C2

where conv(C1, C2) stands for the convex hull of C1 and C2. With the oper-
ations of definition 3, it is apparent that (LC;−→) is a poset. If we set ∅ = 0
and C = 1, then, (LC;−→;0; ∅ = 0) will be a bounded poset.
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Proposition 14. (LC;−→;∧;∨) satisfies

(a) C1 ∧ C1 = C1

(b) C1 ∧ C2 = C2 ∧ C1

(c) C1 ∨ C2 = C2 ∨ C1

(d) C1 ∧ (C2 ∧ C3) = (C1 ∧ C2) ∧ C3

(e) C1 ∨ (C2 ∨ C3) = (C1 ∨ C2) ∨ C3

(f) C1 ∧ (C1 ∨ C2) = C1

(g) C1 ∨ (C1 ∧ C2) = C1

Proof. C1 ∧ C1 = C1 ∩ C1 = C1, so we have (a). (b), (c) and (d) are equally

trivial. In order to prove e we have that

C1 ∨ (C2 ∨ C3) = conv(C1, conv(C2, C3))

Given that conv(C2, C3) ⊆ conv(C1, conv(C2, C3)), then,

C1, C2, C3 ⊆ conv(C1, conv(C2, C3))

Using the above equation and convexity of conv(C1, conv(C2, C3)), we have

that

conv(C1, C2) ⊆ conv(C1, conv(C2, C3))
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and so, using convexity,

conv(conv(C1, C2), C3) ⊆ conv(C1, conv(C2, C3))

A similar argument implies the converse inclusion, and so we conclude that

(C1∨C2)∨C3 = conv(conv(C1, C2), C3) = conv(C1, conv(C2, C3)) = C1∨(C2∨C3)

In order to prove (f), we have C1 ∧ (C1 ∨ C2) = C1 ∩ conv(C1, C2). As C1 ∩

conv(C1, C2) ⊆ C1 and C1 ⊆ conv(C1, C2), we have C1 = C1 ∩ conv(C1, C2),

and so (f) is true. Let us finally check (g). C1∨(C1∧C2) = conv(C1, C1∩C2).

This implies that C1, C1 ∩C2 ⊆ conv(C1, C1 ∩C2). As C1 is convex, we have

conv(C1, C1 ∩ C2) ⊆ C1, and so we have (g).

Regarding the “¬” operation, if C1 ⊆ C2, then C⊥
2 ⊆ C⊥

1 . So C⊥
2 ∩ C ⊆

C⊥
1 ∩ C, and hence

C1 −→ C2 =⇒ ¬C2 −→ ¬C1 (2.6.1)

Given that C ∩ (C⊥ ∩ C) = ∅, we also have:

C ∧ (¬C) = 0 (2.6.2)

and so, contraposition and non contradiction hold. But if we take the propo-
sition C = { 1

N
1}, then an easy calculation yields ¬C = 0. And then,

¬(¬C) = 1, and thus ¬(¬C) 6= C in general. Double negation does not
hold, thus, LC is not an ortholattice.
LC is a lattice which includes all convex subsets of the quantum space

of states. It includes L, and so, all quantum states (including all improper
mixtures) as propositions. It is also in strong analogy with classical physics,
where the lattice of propositions is formed by all measurable subsets of phase
space (the space of states).
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2.6.1 The Relationship Between LvN , L and LC

Proposition 15. LvN ⊆ L ⊆ LC as posets.

Proof. We have already seen that LvN ⊆ L as sets. Moreover it is easy to

see that if F1 ≤ F2 in LvN then F1 ≤ F2 in L. This is so because both orders

are set theoretical inclusions. Similarly, if L1, L2 ∈ L, because intersection of

convex sets yields a convex set (and closed subspaces are convex sets also),

L1, L2 ∈ LC, then we obtain set theoretical inclusion. And, again, because of

both orders are set theoretical inclusions, we obtain that they are included

as posets.

Regarding the ∨ operation, let us compare ∨LvN
, ∨L and ∨LC

. If L1, L2 ∈
L, then they are convex sets and so, L1, L2 ∈ LC. Then we can compute

L1 ∨LC
L2 = conv(L1, L2) (2.6.3)

On the other hand (if S1 and S2 are good representatives for L1 and L2),
then:

L1 ∨L L2 = (< S1 ∩ C > + < S2 ∩ C >) ∩ C (2.6.4)

The direct sum of the subspaces < S1 ∩ C > and < S2 ∩ C > contains as a
particular case all convex combinations of elements of L1 and L2. So we can
conclude

L1 ∨LC
L2 ≤ L1 ∨L L2 (2.6.5)

As faces of C can be considered as elements of LC because they are convex,
if F1 and F2 are face, we can also state

F1 ∨LC
F2 ≤ F1 ∨L F2 ≤ F1 ∨LvN

F2 (2.6.6)

Intersection of convex sets is the same as intersections of elements of L
and so we have
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L1 ∧LC
L2 = L1 ∧L L2 (2.6.7)

and similarly

F1 ∨LvN
F2 = F1 ∧LC

F2 = F1 ∧L F2 (2.6.8)

What is the relationship between ¬LC
and ¬L? Suppose that L1 ∈ L, then

they are convex sets also, and so L1 ∈ LC. Then we can compute ¬LC
L1. We

obtain:

¬LC
L1 = L⊥

1 ∩ C (2.6.9)

On the other hand, if L1 = S ∩ C, with S a good representative

¬LL1 =< S ∩ C >⊥ ∩C (2.6.10)

As L1 ⊆< S ∩ C >, then < S ∩ C >⊥⊆ L⊥
1 , and so

¬LL1 ≤ ¬LC
L1 (2.6.11)

2.6.2 Interactions in QM and CM Compared

The results of sections 2.4 and 2.6 show that L and LC are structures which
satisfy conditions listed in section 2.3. Both structures extend LvN quite nat-
urally (see proposition 15) and are adequate for the description of subsystems
of a larger system because this construction takes into account improper mix-
tures as atoms of the lattice.

The origin of the extension of LvN becomes clear if wee make a comparison
between classical and quantum compound systems. As said above, for a
single classical system its properties are faithfully represented by the subsets
of its phase space. When another classical system is added and the compound
system is considered, no enrichment of the state space of the former system is
needed in order to describe its properties, even in the presence of interactions.
No matter which the interaction may be, the cartesian product of phase
spaces is sufficient for the description of the compound system.

The situation is quite different in quantum mechanics. This is so because,
if we add a new quantum system to a previously isolated one, pure states are
no longer faithful in order to describe subsystems. Interactions produce non
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trivial correlations, which are reflected in the presence of entangled states
(and violation of Bell inequalities). Thus, besides their own properties, we
need information about the non trivial correlations that each subsystem has
with other subsystems -for example, a system with the environment- that
may be regarded as new elements in the structure of properties and cannot
be described otherwise.

2.7 The Relationship Between LC and The

Tensor Product of Hilbert Spaces

In this section we study the relationship between the lattice LC of a system
S composed of subsystems S1 and S2, and the lattices of its subsystems, LC1

and LC2 respectively. We do this by making the physical interpretation of
maps which can be defined between them.

2.7.1 Separable States (Going Up)

Let us define:

Definition 4. Given C1 ⊆ C1 and C2 ⊆ C2

C1 ⊗ C2 := {ρ1 ⊗ ρ2 | ρ1 ∈ C1, ρ2 ∈ C2}

Then, we define the map:

Definition 5.

Λ : LC1 × LC2 −→ LC

(C1, C2) −→ conv(C1 ⊗ C2)

In the rest of this work will use the following proposition (see for example
[84]):
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Proposition 16. Let S be a subset of a linear space L. Then x ∈ conv(S)

iff x is contained in a finite dimensional simplex ∆ whose vertices belong to

S.

From Equation 2.5.1 and Definition 1 it should be clear that Λ(C1, C2) =
S(H). Definition 1 also implies that for all C1 ⊆ C1 and C2 ⊆ C2:

Λ(C1, C2) = C1⊗̃C2 (2.7.1)

Proposition 17. Let ρ = ρ1 ⊗ ρ2, with ρ1 ∈ C1 and ρ2 ∈ C2. Then {ρ} =

Λ({ρ1}, {ρ2}) with {ρ1} ∈ LC1, {ρ2} ∈ LC2 and {ρ} ∈ C.

Proof. We already know that the atoms are elements of the lattices.

Λ({ρ1}, {ρ2}) = conv({ρ1 ⊗ ρ2}) = {ρ1 ⊗ ρ2} = {ρ}

Proposition 18. Let ρ ∈ S(H), the set of separable states. Then, there exist

C ∈ LC, C1 ∈ LC1
and C2 ∈ LC2

such that ρ ∈ C and L = Λ(C1, C2).

Proof. If ρ ∈ S(H), then ρ =
∑

ij λijρ
1
i ⊗ ρ2

j , with
∑

ij λij = 1 and λij ≥ 0.

Consider the convex sets:

C1 = conv({ρ1
1, ρ

1
2, · · · , ρ1

k}) C2 = conv({ρ2
1, ρ

2
2, · · · , ρ2

l })

Then we define:

C := Λ(C1, C2) = conv(C1 ⊗ C2)

Clearly, the set {ρ1
i ⊗ ρ2

j} ⊆ C1 ⊗ C2, and then ρ ∈ C.
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2.7.2 Projections Onto LC1 and LC2 (Going Down)

Let us now study the projections onto LC1
and LC2

. From a physical point of
view, it is of interest to study the partial trace operators. If the whole system
is in a state ρ, using partial traces we can define states for the subsystems
ρ1 = tr2(ρ) and a similar definition for ρ2. Then, we can consider the maps:

tri : C −→ Cj | ρ −→ tri(ρ) (2.7.2)

from which we can construct the induced projections:

τi : LC −→ LCi
| C −→ tri(C) (2.7.3)

Then we can define the product map

τ : LC −→ LC1
× LC2

| C −→ (τ1(C), τ2(C)) (2.7.4)

We use the same notation for τ and τi (though they are different functions)
as in 2.5.2, and this should not introduce any difficulty. These maps preserve
the convex structure.
We can prove the following about the image of τi.

Proposition 19. The maps τi preserve the convex structure, i.e., they map

convex sets into convex sets.

Proof. Let C ⊆ C be a convex set. Let C1 be the image of C under τ2 (a

similar argument holds for τ1). Let us show that C1 is convex. Let ρ1 and ρ′1

be elements of C1. Consider σ1 = αρ1 + (1 − α)ρ′1, with 0 ≤ α ≤ 1. Then,

there exist ρ, ρ′ ∈ C such that:

σ1 = αtr2(ρ) + (1− α)tr2(ρ
′) = tr2(αρ+ (1− α)ρ′)

where we have used the linearity of trace. Because of convexity of C, σ :=

αρ+ (1− α)ρ′ ∈ C, and so, σ1 = tr2(σ) ∈ C1.
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Proposition 20. The functions τi are surjective and preserve the ∨-operation.

They are not injective.

Proof. Take the convex set C1 ∈ LC1
. Choose an arbitrary element of C2, say

ρ2. Now consider the following element of LC

C = C1 ⊗ ρ2

C is convex, and so belongs to LC, because if ρ ⊗ ρ2, σ ⊗ ρ2 ∈ C, then any

convex combination αρ ⊗ ρ2 + (1 − α)σ ⊗ ρ2 = (αρ + (1 − α)σ)ρ2 ∈ C

(where we have used convexity of C1). It is clear that τ1(C) = C1, because if

ρ1 ∈ C1, then tr(ρ1 ⊗ ρ2) = ρ1. So, τ1 is surjective. On the other hand, the

arbitrariness of ρ2 implies that it is not injective. An analogous argument

follows for τ2.

Let us see that τi preserves the ∨-operation. Let C and C ′ be convex subsets

of C. We have to compute tr2(C ∨C ′)) = tr2(conv(C,C
′)). We have to show

that this is the same as conv(tr2(C), tr2(C
′)). Take x ∈ conv(tr2(C), tr2(C

′)).

Then x = αtr2(ρ)+ (1−α)tr2(ρ
′), with ρ ∈ C, ρ′ ∈ C ′ and 0 ≤ α ≤ 1. Using

linearity of trace, x = tr2(αρ+ (1−α)ρ′). αρ+ (1−α)ρ′ ∈ conv(C,C ′), and

so, x ∈ tr2(conv(C,C
′)). Hence we have

conv(tr2(C), tr2(C
′)) ⊆ tr2(conv(C,C

′))

In other to prove the other inclusion, take x ∈ tr2(conv(C,C
′)). Then,
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x = tr2(αρ+ (1− α)ρ′) = αtr2(ρ) + (1− α)tr2(ρ
′)

with ρ ∈ C1 and ρ′ ∈ C ′. On the other hand, tr2(ρ) ∈ tr2(C) and tr2(ρ
′) ∈

tr2(C
′). This proves that:

tr2(conv(C,C
′)) ⊆ conv(tr2(C), tr2(C

′))

Let us now consider the ∧-operation. If x ∈ τi(C ∧ C ′) = τi(C ∩ C ′) then
x = τi(ρ) with ρ ∈ C ∩ C ′. But if ρ ∈ C, then x = τi(ρ) ∈ tri(C). As
ρ ∈ C ′ also, a similar argument shows that x = τi(ρ) ∈ tri(C

′). Then
x ∈ τi(C) ∩ τi(C ′). And so:

τi(C ∩ C ′) ⊆ τi(C) ∩ τi(C ′)

which is the same as:

τi(C ∧ C ′) ≤ τi(C) ∧ τi(C ′)

But these sets are not equal in general, as the following example shows.
Take {ρ1 ⊗ ρ2} ∈ L and {ρ1 ⊗ ρ′2} ∈ L, with ρ′ 6= ρ. It is clear that
{ρ1⊗ ρ2}∧ {ρ1⊗ ρ′2} = 0 and so τ1({ρ1⊗ ρ2}∧ {ρ1⊗ ρ′2}) = 0. On the other
hand, τ1({ρ1 ⊗ ρ2}) = {ρ1} = τ1({ρ1 ⊗ ρ′2}), and so τ1({ρ1 ⊗ ρ2}) ∧ τ1({ρ1 ⊗
ρ′2}) = {ρ1}. A similar fact holds for the ¬-operation.
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The last result is in strong analogy with what happens in L, where lack
of injectivity of the τi may be physically interpreted in the fact that the
whole system has much more information than that of its parts. It is again
useful to make a comparison with the classical case in order to illustrate
what is happening. The same as in classical mechanics, we have atoms in L
which are tensor products of atoms of L1 and L2. But in contrast to classical
mechanics, entangled states originate atoms of L which cannot be expressed
in such a way, and thus, the fiber of the projection τi is much bigger than
that of its classical counterpart.

It is again an important result that the projection function τ cannot
be defined properly within the frame of the traditional approaches of QL
because there no place for improper mixtures in those formalisms. But in
the formalism presented here they are included as elements of the lattices,
and so we can define the projections from the lattice of the whole system to
the lattices of the subsystems. This enables a more natural approach when
compound systems are considered from a quantum logical point of view.

2.7.3 An Algebraic Characterization for Entanglement

We have shown that it is possible to extend LvN in order to deal with mixed
states and that L and LC are possible extensions. It would be interesting to
search for a characterization of entanglement within this framework. Let us
see first what happens with the functions Λ ◦ τ and τ ◦ Λ. We have:

Proposition 21. τ ◦ Λ = Id.

Proof.

τ1(Λ(C1, C2)) = τ1(conv(C1 ⊗ C2)) = tr2(conv(C1 ⊗ C2)) = C1

τ2(Λ(C1, C2)) = τ2(conv(C1 ⊗ C2)) = tr1(conv(C1 ⊗ C2)) = C2

Then τ(Λ(C1, C2)) = (C1, C2).

Again, as in [24], if we take into account physical considerations, Λ ◦ τ
is not the identity function. This is because when we take partial traces,
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we face the risk of losing information which will not be recovered when we
make products of states. So we obtain the same slogan as before (Section
2.5.2): “going down and then going up is not the same as going up and
then going down”. We show these maps in Figure 2.5. How is this related
to entanglement? If we restrict Λ ◦ τ to the set of product states, then it
reduces to the identity function, for if ρ = ρ1 ⊗ ρ2, then:

Λ ◦ τ({ρ}) = {ρ} (2.7.5)

On the other hand, it should be clear that if ρ is an entangled state

Λ ◦ τ({ρ}) 6= {ρ} (2.7.6)

because Λ ◦ τ({ρ}) = {Tr2(ρ)⊗ Tr1(ρ)} 6= {ρ} for any entangled state. This
property points in the direction of an arrow characterization of entanglement.
Unfortunately, there are mixed states which are not product states, and so,
entangled states are not the only ones who satisfy equation 2.7.6. What is
the condition satisfied for a general mixed state? The following proposition
summarizes all of this.

Proposition 22. If ρ is a separable state, then there exists a convex set

Sρ ⊆ S(H) such that ρ ∈ Sρ and Λ ◦ τ(Sρ) = Sρ. More generally, for

a convex set C ⊆ S(H), then there exists a convex set SC ⊆ S(H) such

that Λ ◦ τ(SC) = SC. For a product state, we can choose Sρ = {ρ}. Any

proposition C ∈ LC which has at least one non-separable state satisfies that

there is no convex set S such that C ⊆ S and Λ ◦ τ(S) = S.

Proof. We have already seen above that if ρ is a product state, then Λ ◦

τ({ρ}) = {ρ}, and so Sρ = {ρ}. If ρ is a general separable state, then

there exists ρ1k ∈ C1, ρ2k ∈ C1 and αk ≥ 0,
∑N

k=1 αk = 1 such that ρ =

∑N

k=1 αkρ1k ⊗ ρ2k. Now consider the convex set (a simplex)
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M = {σ ∈ C |σ =
N∑

i,j=1

λi,jρ1i ⊗ ρ2j, λi,j ≥ 0,
N∑

i,j=1

λi,j = 1} (2.7.7)

It is formed by all convex combinations of products of the elements which

appear in the decomposition of ρ. It should be clear that ρ ∈M . If we apply

(tr1(), tr2()) to σ ∈M , we get

(tr1(σ), tr2(σ)) = (
N∑

i=1

(
N∑

j=1

λi,j)ρ1i,

N∑

j=1

(
N∑

i=1

λi,j)ρ2j) = (
N∑

i=1

µiρ1i,
N∑

j=1

νjρ2j)

(2.7.8)

with µi =
∑N

j=1 λi,j and νi =
∑N

i=1 λi,j. Note that
∑N

j=1 µj =
∑N

j=1 νj = 1.

If we now apply Λ we will obtain:

Λ((
N∑

i=1

µiρ1i,

N∑

j=1

νjρ2j)) =
N∑

i,j=1

µiνjρ1i ⊗ ρ2j (2.7.9)

which is an element of M . In a similar way, we conclude that Λ ◦ τ(M) ⊆M

(using the definition of Λ and τ). On the other hand, if σ ∈ M , then

σ =
∑N

i,j=1 λi,jρ1i ⊗ ρ2j (convex combination). It is important to notice that

Λ ◦ τ(M) is a convex set, because trace operators preserve convexity, and Λ

is a convex hull. On the other hand Λ ◦ τ({ρ1i⊗ ρ2j}) = {ρ1i⊗ ρ2j} and it is

also easy to see that {ρ1i⊗ ρ2j} ⊆ Λ ◦ τ(M) for all i, j. And so, by convexity

of Λ ◦ τ(M), σ ∈ Λ ◦ τ(M). Finally, Λ ◦ τ(M) = M (and ρ ∈ M). Then M

is the desired Sρ ⊆ S(H).

If C ⊆ S(H), then all ρ ∈ C are separable. S(H) is by definition, a

convex set. Let us see that it is invariant under Λ ◦ τ . First of all, we know

49



Chapter 2. The Quantum Logical Approach

that S(H) is formed by all possible convex combinations of products of the

form ρ1 ⊗ ρ2, with ρ1 ∈ C1 and ρ2 ∈ C2. But for each one of these tensor

products, Λ ◦ τ({ρ1⊗ ρ2}) = {ρ1⊗ ρ2}, and it is easy to see that they belong

to Λ ◦ τ(S(H)). This is a convex set, thus all convex combinations of them

belong to it. So we can conclude that

Λ ◦ τ(S(H)) = S(H) (2.7.10)

Now, consider C ∈ LC such that there exists ρ ∈ C, being ρ nonseparable.

Λ ◦ τ(S) ⊆ S(H) for all S ∈ LC. Then, it could never happen that there

exists S ∈ LC such that C ⊆ S and Λ ◦ τ(S) = S.

From the last proposition, we conclude that there is a property which the
convex subsets of separable states satisfy, and convex subsets which include
non-separable sates do not. This motivates the following definition.

Definition 6. If C ∈ LC, we will say that it is a separable proposition if

there exists SC ∈ LC such that Λ ◦ τ(SC) = SC and C ⊆ SC. Otherwise, we

will say that it is a non-separable or entangled proposition.

Another conclusion of proposition 22 is that a density matrix ρ is sepa-
rable iff there exists a convex set Sρ such that ρ ∈ Sρ and Λ ◦ τ(Sρ) = Sρ.
Thus, proposition 22 also provides an entanglement criteria.

2.7.4 The Inverse τ-map

In sections 2.5.2 and 2.7.2 we defined the function τ = (τ1, τ2). Now we show
that we can define lattice morphisms using the inverse map τ−1 = (τ−1

1 , τ−1
2 ).

It is easy to show that τ−1
i maps any proposition from Ci into a proposition

of C. This is because the pre-image of a convex set under these functions is
again a convex set. If C1 is a proposition of C and if τ1(ρ), τ1(ρ

′) ∈ C1, it is
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clear that any convex combination of ρ and ρ′ will belong to τ−1
1 (C1), because

the partial trace is linear and C1 is convex. Consider then the following set

Ω = {(τ−1
1 (C1), τ

−1
2 (C2)) ∈ LC × LC |C1 ∈ LC1

andC2 ∈ LC2
} (2.7.11)

With the elements of Ω we can construct different maps. Consider Υ :
LC1
×LC2

−→ LC such that Υ(C1, C2) = τ−1
1 (C1)∨τ−1

2 (C2). We can construct
also the map Ξ : LC1

×LC2
−→ LC such that Ξ(C1, C2) = τ−1

1 (C1)∧ τ−1
2 (C2).

We can prove the following propositions:

Proposition 23. Ξ(C1, C2) = Υ(C1, C2) = C

Proof. It is easy to show that τ−1
1 (C1) = C = τ−1

2 (C2). Then, it follows that

Ξ(C1, C2) = C ∧ C = C. A similar arguments runs for Υ.

Proposition 24. For all X ∈ LC X ⊆ τ−1
1 (τ1(X)) and for all Y ∈ LC1

,

τ1(τ
−1
1 (Y )). For all C ⊆ C we have C ⊆ Ξ(τ1(C), τ2(C))

Proof. Let X ∈ LC . Then, if x ∈ X it follows that τ1(x) ∈ τ1(X) and so,

X ⊆ τ−1
1 (τ1(X)). If Y ∈ LC1

and z ∈ τ1(τ
−1
1 (Y )). Then by definition of

τ−1
1 (Y ), it follows that z ∈ Y .

Let C ∈ LC. Now τ1(C) = C1 ∈ LC1
and τ2(C) = C2 ∈ LC2

. Then, it

is apparent that C ⊆ τ−1
1 (C1) and C ⊆ τ−1

2 (C2). And so C ⊆ τ−1
1 (C1) ∧

τ−1
2 (C2) = Ξ(C1, C2).

Proposition 25. For all a, b ∈ LC1
τ−1
1 (a∧b) = τ−1

1 (a)∧τ−1
1 (b), τ−1

1 (a∨b) =

τ−1
1 (a) ∨ τ−1

1 (b). Furthermore, τ−1
1 is an injective function and if a, b ∈ LC1

and a ⊆ b, then τ−1
1 (a) ⊆ τ−1

1 (b). If ρ 6= ρ′ then τ−1
1 (ρ) ∧ τ−1

1 (ρ′) = 0.
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Proof. Consider the sets τ−1
1 (a ∧ b) and τ−1

1 (a) ∧ τ−1
1 (b). Then, x ∈ τ−1

1 (a)

and x ∈ τ−1
1 (b). If x ∈ τ−1

1 (a∧ b), then τ1(x) ∈ a∧ b ⊆ a, and we obtain also

τ1(x) ∈ a ∧ b ⊆ b. This means that x ∈ τ−1
1 (a) and x ∈ τ−1

1 (b). So we have

τ−1
1 (a∧ b) ⊆ τ−1

1 (a)∧ τ−1
1 (b). On the other hand, if x ∈ τ−1

1 (a)∧ τ−1
1 (b), then

x ∈ τ−1
1 (a) and x ∈ τ−1

1 (b). This means that τ1(x) ∈ a and τ1(x) ∈ b, and

so, τ1(x) ∈ a ∧ b. This means that x ∈ τ−1
1 (a ∧ b). This concludes the proof

that τ−1
1 (a ∧ b) = τ−1

1 (a) ∧ τ−1
1 (b).

If x ∈ τ−1
1 (a)∨τ−1

1 (b) then x = αρ+βρ′, with τ1(ρ) ∈ a and τ1(ρ
′) ∈ b. So

τ1(x) = ατ1(ρ)+βτ1(ρ
′) ∈ a∨b. This means that x ∈ τ−1

1 (a∨b), and we have

τ−1
1 (a∨b) ⊇ τ−1

1 (a)∨τ−1
1 (b). Now, let x ∈ τ−1

1 (a∨b). Then, τ1(x) ∈ a∨b. This

means that τ1(x) = αρ + βρ′ (convex combination), with ρ ∈ a and ρ′ ∈ b.

There exist σ ∈ τ−1
1 (a) and σ′ ∈ τ−1

1 (b) such that τ1(σ) = ρ and τ1(σ
′) = ρ′.

Then τ1(x) = ατ1(σ) + βτ1(σ
′). τ1() is a linear function so, the last equality

implies τ1(x − (ασ + βσ′)) = 0. Then, there exists ς ∈ Ker(τ1()) such that

x = ασ + βσ′ + ς. If β = 0, then α = 1 (convex combination), and then,

x = σ ∈ τ−1
1 (a), and in that case x ∈ τ−1

1 (a) ∨ τ−1
1 (b). If β 6= 0, we can put

x = ασ+ β(σ′ + 1
β
ς). τ1((σ

′ + 1
β
ς)) = τ1(σ

′) + 0 ∈ b, and so σ′ + 1
β
ς ∈ τ−1

1 (b).

This proves that x ∈ τ−1
1 (a) ∨ τ−1

1 (b), and thus τ−1
1 (a ∨ b) ⊆ τ−1

1 (a) ∨ τ−1
1 (b)

Let a and b be two propositions such that a 6= b. Suppose that τ−1
1 (a) =

τ−1
1 (b). If a 6= b, there exists ρa ∈ a such that ρa /∈ b. It is clear that

τ−1
1 (ρa) ⊆ τ−1

1 (a) = τ−1
1 (b) and then, there exists ρ ∈ τ−1

1 (b) such that

τ1(ρ) = ρa. But by definition of τ−1
1 (b), we would have that ρa ∈ b, a

contradiction. Thus, we have τ−1
1 (a) 6= τ−1

1 (b). If a ⊆ b, suppose that
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x ∈ τ−1
1 (a). Then τ1(x) ∈ b, and so x ∈ τ−1

1 (b) also. If x ∈ τ−1
1 (ρ), x ∈ τ−1

1 (ρ′)

and ρ 6= ρ′, then ρ = τ1(x) = ρ′, a contradiction.
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Quantum Indistinguishability

In this chapter we briefly review the subject of quantum indistinguishability
using algebraic tools. We concentrate on two problems. First, we show how a
formulation of (non-relativistic) quantum mechanics can be done using Quasi-
set Theory (Q). Our aim is to take quite seriously Heinz Post’s claim that
the non-individuality and the indiscernibility of quantum objects should be
introduced right at the start, and not made a posteriori by introducing sym-
metry conditions [67]. Using a different mathematical framework, namely,
Q, we avoid working within a label-tensor-product-Hilbert-space-formalism
(LTPHSF), to use Redhead and Teller’s words [71, 72], and get a more in-
tuitive way of dealing with the formalism of quantum mechanics, although
the underlying logic should be modified. We build a vector space with inner
product, the Q-space, using the non-classical part of quasi-set theory, to deal
with indistinguishable elements. Vectors in Q-space refer only to occupation
numbers and permutation operators act as the identity operator on them,
reflecting in the formalism the fact of unobservability of permutations. After
that, we apply some of the constructions developed in section 2.6 for the case
of indistinguishable particles. Doing so, we show that it is possible to develop
a lattice theoretical formalism for the indistinguishable particle case, a sub-
ject which was not widely studied in the literature (though see for example
[35]).
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3.1 Quasi-set theory

We recall here some notions of quasi-set theory that will play an important
role in what follows (for further details, see [31, Chap. 7]). We shall not
present all the postulates and definitions of the theory, but just review the
main ideas and results which interest us here. Intuitively speaking a quasi-set
is a collection of indistinguishable (but not identical) objects. This of course
is not a strict “definition” of a quasi-set, acting more or less as Cantor’s
“definition” of a set as “any collection into a wholeM of definite and separate
[that is, distinguishable] objects m of our intuition or our thought” (see the
discussion in [31, §6.4]), giving no more than an intuitive account of the
concept.

The Quasi-set theory (Q in the following) was conceived to handle collec-
tions of indistinguishable objects, and was motivated by some considerations
taken from quantum physics, mainly in what respects Schrödinger’s idea that
the concept of identity would not be applied to elementary particles [76, pp.
17-18] (see also [31] and [54]). Of course the theory can be developed inde-
pendently of any formulation of quantum mechanics, but here we shall have
this motivation always in mind. The way in which Q deals with indistin-
guishability is by assuming that expressions like x = y are not always well
formed. This is expressed by saying that the concept of identity does not ap-
ply to the entities denoted by x and y when they “refer” to indistinguishable
quantum objects. Due to the lack of sense in applying the concept of iden-
tity to certain elements, informally, a quasi-set (qset), that is, a collection
involving such objects, may be such that its elements cannot be identified by
names, counted, ordered, although there is a sense in saying that these col-
lections have a cardinal (not defined by means of ordinals, as usual [37] –but
see below). But Q is constructed so to keep standard mathematics intact.
The theory is developed in a way that ZFU (and hence ZF [37], perhaps with
the axiom of choice, ZFC) is a subtheory of Q. In other words, the theory
is constructed so that it extends standard Zermelo-Frenkel with Urelemente
(ZFU) set theory [31]; thus standard sets (of ZFU) can be viewed as parti-
cular qsets (that is, there are qsets that have all the properties of the sets of
ZFU; the objects in Q corresponding to the Urelemente of ZFU are termed
M -atoms). These objects will be called Q-sets, or just sets when there will
be no confusion. But quasi-set theory encompasses another kind of Urele-
mente, the m-atoms, to which the standard theory of identity does not apply
(that is, expressions like x = y are not well formed if either x or y denote
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m-atoms). Thus, we can say that Q-sets are qsets whose transitive closure
[37] (defined as usual) does not contain m-atoms (in other words, they are
“constructed” in the “classical” part of the theory –see Fig. 1).
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Figure 3.1: The quasi-set universe: Q is a “model” of Q.

When Q is used in connection with quantum physics, these m-atoms are
thought of as representing quantum objects (henceforth, q-objects). The q-
objets can represent ‘particles’, waves and whatever ‘objects’ sharing the
property of indistinguishability of point-like elementary particles. The lack
of the concept of identity for the m-atoms makes them non-individuals in a
sense, and it is mainly (but not only) to deal with collections of m-atoms
that the theory was conceived. So, Q is a theory of generalized collections
of objects, involving non-individuals. For details about Q and about its
historical motivations, see [31, Chap. 7].

In order to distinguish between Q-sets and q-sets that have m-atoms in
their transitive closure, we write (in the metalanguage) {x : ϕ(x)} for the
former and [x : ϕ(x)] for the latter. In Q, the so called ‘pure’ qsets have only
q-objects as elements (although these elements may be not always indistin-
guishable from one another), and to them it is assumed that the usual notion
of identity cannot be applied (that is, let us recall, x = y, so as its negation,
x 6= y, are not well formed formulas if either x or y stand for q-objects).
Notwithstanding, there is a primitive relation ≡ of indistinguishability hav-
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ing the properties of an equivalence relation, and a concept of extensional
identity, not holding among m-atoms, is defined and has the properties of
standard identity of classical set theories. More precisely, we write x =E y
(x and y are extensionally identical) iff they are both qsets having the same
elements (that is, ∀z(z ∈ x ←→ z ∈ y)) or they are both M -atoms and
belong to the same qsets (that is, ∀z(x ∈ z ←→ y ∈ z)). From now on, we
shall use the symbol “=” for the extensional equality, except when explicitly
mentioned.

Since the elements of a qset may have properties (and satisfy certain
formulas), they can be regarded as indistinguishable without turning to be
identical (that is, being the same object), that is, x ≡ y does not entail x = y.
Since the relation of equality (and the concept of identity) does not apply to
m-atoms, they can also be thought of as entities devoid of individuality. We
remark further that if the ‘property’ x = x (to be identical to itself, or self-
identity, which can be defined for an object a as Ia(x) := x = a) is included as
one of the properties of the considered objects, then the so called Principle
of the Identity of Indiscernibles (PII) in the form ∀F (F (x) ↔ F (y)) →
x = y is a theorem of classical second order logic, and hence there cannot be
indiscernible but not identical entities (in particular, non-individuals). Thus,
if self-identity is linked to the concept of non-individual, and if quantum
objects are to be considered as such, these entities fail to be self-identical,
and a logical framework to accommodate them is in order (see [31] for further
argumentation).

3.1.1 The basic ideas of quasi-set theory

Quasi-sets are the collections obtained by applying ZFU-like (Zermelo-Frenkel
plus Urelemente) axioms to a basic domain composed of m-atoms, M -atoms
and aggregates of them. The theory still admits a primitive concept of quasi-
cardinal which intuitively stands for the ‘quantity’ of objects in a collection.
This is made so that certain quasi-sets x (in particular, those whose elements
are q-objects) may have a quasi-cardinal, written qc(x), but not an ordinal.
It is also possible to define a translation from the language of ZFU into the
language of Q in such a way so that there is a ‘copy’ of ZFU in Q (the ‘clas-
sical’ part of Q). In this copy, all the usual mathematical concepts can be
defined (inclusive the concept of ordinal for the Q-sets), and (as said above)
the Q-sets turn out to be those quasi-sets whose transitive closure (this con-
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cept is like the usual one) does not contain m-atoms. So, we can make sense
to the primitive concept of quasi-cardinal of a quasi-set x as being a cardinal
defined in the ‘classical’ part of the theory. It is worth to mention that we
have defined the quasi-cardinal for finite qsets as a derived concept [21] by
modifying the axioms of Q.

To understand the basic ideas involved here, let us consider the three
protons and the four neutrons in the nucleus of a 7Li atom. As far as quantum
mechanics goes, nothing distinguishes these three protons. If we regard these
protons as forming a quasi-set, its quasi-cardinal should be 3, and there is no
apparent contradiction in saying that there are also 3 subquasi-sets with 2
elements each, despite we cannot distinguish their elements, and so on. So, it
is reasonable to postulate that the quasi-cardinal of the power quasi-set of x
is 2qc(x). Whether we can distinguish among these subquasi-sets is a matter
which does not concern logic.

In other words, we may consistently (with the axiomatics of Q) reason
as if there are three entities in our quasi-set x, but x must be regarded as
a collection for which it is not possible to discern its elements as individ-
uals. The theory does not enable us to form the corresponding singletons.
The grounds for such kind of reasoning has been delineated by Dalla Chiara
and Toraldo di Francia [18] as partly theoretical and partly experimental.
Speaking of electrons instead of protons, they note that in the case of the
helium atom we can say that there are two electrons because, theoretically,
the appropriate wave function depends on six coordinates and thus “we can
therefore say that the wave function has the same degrees of freedom as a
system of two classical particles”. Dalla Chiara and Toraldo di Francia have
also noted that, “[e]xperimentally, we can ionize the atom (by bombardment
or other means) and extract two separate electrons . . .” [18].

Of course, the electrons can be counted as two only at the moment of
measurement; as soon as they interact with other electrons (in the measure-
ment apparatus, for example) they enter into entangled states once more. It
is on this basis that one can assert that there are two electrons in the helium
atom or six in the 2p level of the sodium atom or (by similar considerations)
three protons in the nucleus of a 7Li atom.

An axiom of ‘weak extensionality’ is stated in Q, which says that those
quasi-sets that have the same quantity of elements of the same sort (in the
sense that they belong to the same equivalence class of indistinguishable
objects) are indistinguishable. This axiom has interesting consequences. As
we have said, there is no space here for the details, but let us mention just
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one of them which is related to the above discussion on the non observability
of permutations in quantum physics, which is one of the most basic facts
regarding indistinguishable quanta. In standard set theories (like ZF or
ZFU), if w ∈ x, then of course (x − {w}) ∪ {z} = x iff z = w. That is, we
can ‘exchange’ (without modifying the original arrangement) two elements
iff they are the same elements, by force of the axiom of extensionality. But in
Q we can prove the following theorem, where z′ (and similarly w′) stand for a
quasi-set with quasi-cardinal 1 whose only element is indistinguishable from
z (respectively, from w –one should not think that this element is identical
to either z or w, for the relation of equality does not apply here; the set
theoretical operations can be understood according to their usual definitions):

Theorem 3.1.1. [Unobservability of Permutations] Let x be a finite qset such

that x does not contain all indistinguishable from z, where z is an m-atom

such that z ∈ x. If w ≡ z and w /∈ x, then there exists w′ such that

(x− z′) ∪ w′ ≡ x

Supposing that x has n elements, then if we ‘exchange’ their elements z
by correspondent indistinguishable elements w (set theoretically, this means
performing the operation (x − z′) ∪ w′), then the resulting qset remains
indistinguishable from the original one. In a certain sense, it is not important
whether we are dealing with x or with (x − z′) ∪ w′. This of course gives a
‘set-theoretical’ sense to the following claim made by Roger Penrose:

“[a]ccording to quantum mechanics, any two electrons must
necessarily be completely identical [in the physicist’s jargon, that
is, indistinguishable], and the same holds for any two protons and
for any two particles whatever, of any particular kind. This is not
merely to say that there is no way of telling the particles apart;
the statement is considerably stronger than that. If an electron
in a person’s brain were to be exchanged with an electron in a
brick, then the state of the system would be exactly the same
state as it was before, not merely indistinguishable from it! The
same holds for protons and for any other kind of particle, and for
the whole atoms, molecules, etc. If the entire material content of
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a person were to be exchanged with the corresponding particles
in the bricks of his house then, in a strong sense, nothing would
be happened whatsoever. What distinguishes the person from his
house is the pattern of how his constituents are arranged, not the
individuality of the constituents themselves” [?, p. 32].

Within Q we can express that ‘permutations are not observable’, without
necessarily introducing symmetry postulates, and in particular to derive ‘in
a natural way’ the quantum statistics (see [48], [31, Chap. 7]).

3.2 Quantity in Quantum Mechanics

As is well known, performing a single measurement in a quantum system
does not allow to attribute the result of this measurement to a property
which the system possesses before the measurement is performed without
giving rise to serious problems [58]. What is the relationship between this
fact and the quantity of particles in a quantum system? Take for example an
electromagnetic field (with a single frequency for simplicity) in the following
state:

| ψ〉 = α | 1〉+ β | 2〉 (3.2.1)

where | 1〉 and | 2〉 are eigenvectors of the particle number operator with
eigenvalues 1 and 2 respectively, and α and β are complex numbers which
satisfy | α |2 + | β |2= 1. If a measurement of the number of particles of the
system is made, one or two particles will be detected, with probabilities | α |2
and | β |2 respectively. And any other possibility is excluded. Suppose that in
a single measurement two particles are detected. What allows us to conclude
that the system had two particles before the measurement was performed?
The assertion that the number of particles is varying in time because particles
are being constantly created and destroyed is also problematic, because it
assumes that at each instant the number of particles is well defined. Only
in case that it is known with certainty that the system is in an eigenstate of
the particle number operator we can say that the system has a well defined
cardinal. There would be no problem too if it is known with certainty that the
system is prepared in an statistical mixture. In this case, the corresponding
density operator would be:

ρm =| α |2| 1〉〈1 | + | β |2| 2〉〈2 | (3.2.2)
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where the subindex “m” stands for statistical mixture. But the density op-
erator corresponding to (3.2.1) is:

ρ = (α | 1〉+ β | 2〉)(α∗〈1 | +β∗〈2 |) (3.2.3)

which is the same as:

ρ =| α |2| 1〉〈1 | + | β |2| 2〉〈2 | +αβ∗ | 1〉〈2 | +α∗β | 2〉〈1 | (3.2.4)

The presence of interference terms in the last equation implies that difficulties
will appear in stating that, after a single measurement, the system has the
quantity of particles obtained as the result of the measurement. In this case,
the incapability of knowing the particle number would not come from our
ignorance about the system, but from the fact that in this state, the particle
number is not even well defined.

Taking into account these considerations, it is worth asking: is it possible
to represent a system prepared in the state (3.2.4) in the frame of Q? Which
place would correspond to a system like (3.2.4) in that theory? If such
system could be represented as a qset, then it should have an associated
quasi-cardinal, for every qset has it. But this does not seem to be proper,
considering what we have discussed in this section. It follows that it does not
appear reasonable to assign a quasi-cardinal to every qset if Q has to include
all bosonic and fermionic systems (in all their possible many particle states).
Therefore, a system in the state (3.2.4) cannot be included in Q as a qset.
Yet, it would be interesting to study the possibility of including systems in
those states in the formalism. A possible way out is to reformulate Q in
such a way that the quasi-cardinal is not to be taken as a primitive concept,
but as a derived one, turning into a property that some qsets have and some
others do not (in analogy with the property “being a prime number” of the
integers). Those qsets for which the property of having a quasi-cardinal is
not satisfied, would be suitable to represent quantum systems with particle
number not defined. This property would also fit well with the position that
asserts that particle interpretation is not adequate in, for example, quantum
electrodynamics. With such a modification of Q, a field (in any state) could
always be represented as a qset, avoiding the necessity of regarding the field
as a collection of classical “things”. On the contrary, the field would be
described by a qset which has a defined quasi-cardinal only in special cases,
but not in general.

In the following section we discuss the concept of particle number as the
result of a process (the measurement process). We will discuss its relationship
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with the idea of individuality suggested by experiments, and relate it with
the possibility of developing quasi-cardinal as a derived concept.

3.3 Particle number as the result of a process

In the last section, we suggested that the development of a Q-like theory
in which quasi-cardinal is a derived concept, could be useful if one aims to
represent quantum systems with particle number not defined as qsets. In
this section, we discuss the experimental relation of the concept of “particle
number” and find new arguments for the development of quasi-cardinal as a
derived concept. We start posing the question: In which sense do we talk
about quantum systems composed, for example, of a single photon? We cer-
tainly know about the existence of the electromagnetic field, and that this
field obeys the rules of quantum theory. How do we decide if the field is in a
single photon state or not? What do we mean when we use the words “single
photon”? These questions find an answer in our laboratory experience, i.e.,
making measurements on the system. The measurement process (which in
the case of photons could be described by the theory of interaction of the
electromagnetic field with matter) allows us to construct an idea of individ-
uality which in time allows us to speak about the photon as a particle. In a
similar way, and always mediated by a measuring process, we talk about the
other particles (electrons, protons, etc.). But these corpuscular features of
quantum systems differ notably from the classical ones, and though exper-
iments suggest an idea of individuality, it is well established that this does
not enable us to consider particles as individuals, at least not in an equal
sense to classical individuality. Elementary particles cannot be considered
as individuals, as E. Schrödinger pointed out in the early days of quantum
mechanics [76, 77]. In spite of these difficulties, we continue speaking about
photons, electrons, etc., using a jargon which has a lot of points in common
with classical physics, source of conceptual confusion.

Let us consider an example to illustrate how particle number arises as
a result of the measuring process. A photoelectric detector consists in its
fundamental aspects of an atom that can be ionized due to the interaction
with the electromagnetic field. The signal (a current originated by the ion-
ized atom) must be amplified in order to be detected. The amplified signal
is a (macroscopical) current, and we say that the intensity of this current is
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proportional to the quantity of “absorbed photons” in the volume of the de-
tector (in practice, composed of many atoms). In the limit of single photon
states, we would observe a single current pulse each time a photon is de-
tected. Thus, we see that once the detection mechanisms are considered, it
is possible to assign to some quantum systems an associated number, which
represents the “particle number”. It is important to point out again that the
so called “particle number” only appears, in general, after the measurement
process is performed. And we have already mentioned that the measurement
process almost always implies the modification of the original state, and that
the result of the measurement cannot be attributed in general to a property
pertaining to the system before the measure is performed. In particular, it is
not true that a particle number can be always assigned in a consistent man-
ner, as we saw in the last section. Thus, counting the quantity of elements
in quantum mechanics (here understood as measuring particle number) is
qualitatively different from counting the quantity of elements of a classical
system. In particular, in quantum mechanics the system is usually destroyed
or modified when counted, alike the classical case, where the counting process
can be made in principle without disturbing the system.

Nevertheless, we know that there exist in nature systems for which it is
possible to assign a cardinal in a consistent manner (a well defined number
of particles, as for example the electrons of a Litium atom, or single photon
states). But they cannot simply be considered as aggregates of individuals as
if they were distinguishable. This is to say that there should exist the possi-
bility of counting without distinguishing. If this were not the case, physicists
would have never talked about something like “number of indistinguishable
particles”. Here, the word “counting” is taken in the sense of assigning in
a consistent manner a “number of elements” to a system which is not so
simple as an individuals aggregate. For example, we could count how many
electrons has an Helium atom imagining the following process (perhaps not
the best, but possible in principle). Put the atom in a cloud chamber and use
radiation to ionize it. Then we would observe the tracks of both, an ion and
an electron. It is obvious that the electron track represents a system of par-
ticle number equal to one and, of course, we cannot ask about the identity of
the electron (because this question has no meaning in the standard interpre-
tation of quantum mechanics), but the counting process does not depend on
this query. The only thing that cares is that we are sure that the track is due
to a single electron state, and for that purpose, the identity of the electron
does not matter. If we ionize the atom again, we will see the track of a new
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ion (of charge 2e), and a new electron track. Which electron is responsible of
the second electron track? This query is ill defined, but we still do not care.
Now, the counting process has finished, for we cannot extract more electrons.
The process finished in two steps, and so we say that an Helium atom has
two electrons, and we know that, as the wave function of the electrons is an
eigenstate of the particle number operator, no problem of consistence will
arise in any other experiment if we make this assertion. In [18] Dalla Chiara
and Toraldo di Francia had already noted that we know experimentally that
the Helium atom has two electrons, because we can ionize it and extract
two separate electrons. They were looking for experimental and theoretical
grounds for developing a Quaset theory (for a comparison between Q and
Quaset theory see [19]).

From the example of the ionized Helium atom, we find that the process of
counting the elements of a given “collection” extracting them one by one can
be applied to some quantum systems without giving rise to serious contra-
dictions. Then, we should be able to count the Urelemente of some quasisets
too. A radical difference between counting the electrons of an atom and
counting the elements in a collection of classical objects in the way shown
above is that, in the classical case we can ask about the identity of the ex-
tracted element at each step while, in the case of the atom, this cannot be
done. But this fact, does not alter the essence of the counting process and
we will exploit this fact. In the following section, we will translate this idea
to the language of Q. As we have already mentioned, Q describes collec-
tions of truly indistinguishable objects as quasisets and the quasicardinal is
introduced as a primitive concept. The latter is justified arguing that indis-
tinguishability prohibits well ordering, and for that reason the possibility of
counting à la ZF . We agree that quasisets cannot be counted in the same
form as in ZF , but our point is that it should be interesting to search for
other ways of counting, motivated by physical examples.

The possibility of modifying the axiomatic of Q in order to include quan-
tum systems with undefined quasi-cardinal, was explored in [21]. The basic
idea was to define a quasi-cardinal as a derived concept. For that proposal,
a notion of “descendent chains” was proposed. The basic idea behind this
concept is that it is possible to count the elements of a collection of electrons
extracting them one by one, but never identifying them in the process. Using
the notion of descendant chains, it is possible to define finite qsets for which
quasi-cardinal is a derived concept. In particular, a notion of “individual
qset” is developed, and it is used as a basis for developing the notion of
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quantity of elements of a certain kind of given qsets. But it turns out that
within that particular axiomatic variant (as in Q), there are no qsets with
undefined quasi-cardinal, and so, it is not possible to represent systems in
states like 3.2.4. It is an open problem to find an axiomatic variant with the
characteristics mentioned above.

Yet there is another interesting possibility, which is to use the non-
classical part of Q (without modifying its axioms) in order to represent sates
such as 3.2.4. This possibility will be considered in the following, and as we
shall see, it has interesting consequences.

3.4 The Q-space

In the standard formulation of quantum mechanics, pure states of quantum
systems are represented by normalized to unit vectors in a Hilbert space.
In the case of identical particles, the vectors representing their states are
symmetrized or antisymmetrized, as mentioned above. In this section, we
will use Q to construct a vector space, which we will call Q-space, in which
the states are defined without labeling particles for they are represented by
m-atoms. The structure of this space will result analogous to that of the
Fock-space.

3.4.1 Motivation

Let us analyze with a deeper detail how quantum mechanics deals with a
system of two indistinguishable particles, just to introduce some notation
and to motivate our construction. Recall that the usual construction of a
vector space –and of the whole formalism of quantum mechanics– makes use
of set theory, which presupposes the individuality and distinguishability of
the elements of any set. First the Hilbert space H = H1

⊗H2 is constructed
up from the one particle spaces H1 and H2. We use Dirac notation for
simplicity. Let {|α〉} be a basis set of Hi. Then, {|α〉⊗ |β〉} is a basis for H.
α and β run over all possible values of the corresponding physical magnitudes
and it is understood that the first ket corresponds to the particle labeled “1”
and the second to the one labeled “2”.
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The scalar product of any two basis vectors is given by:

(〈α| ⊗ 〈β|)(|α′〉 ⊗ |β′〉) = 〈α|α′〉〈β|β′〉 (3.4.1)

and, in general, the scalar product between two product vectors |ψ〉 ⊗ |ϕ〉
and |ψ′〉 ⊗ |ϕ′〉 of the product space is given by:

(〈ψ| ⊗ 〈ϕ|)(|ψ′〉 ⊗ |ϕ′〉) = 〈ψ|ψ′〉〈ϕ|ϕ′〉. (3.4.2)

It is worth noting that when α and β are different, |α〉 ⊗ |β〉 will be not
the same vector as |β〉 ⊗ |α〉. Thus, in general, if |ψ′〉 and |ϕ′〉 are linear
combinations of basis vectors:

(〈ψ| ⊗ 〈ϕ|)(|ψ′〉 ⊗ |ϕ′〉) 6= (〈ψ| ⊗ 〈ϕ|)(|ϕ′〉 ⊗ |ψ′〉) (3.4.3)

for the general case.
We aim to develop a procedure that takes into account indistinguishabil-

ity from the start, so we recall in which steps artificial labeling has occurred.
First of all, one assigns vector states to each particle in their corresponding
Hilbert spaces and “names” in some way these spaces to perform the tensor
product. Informally, we say that we make the product of the Hilbert space of
particle “1” and the Hilbert space of particle “2”, and does the same thing for
the resulting states. At this step particles are assumed to be distinguishable.
In order to recreate indistinguishability we apply the symmetrization pos-
tulate. Then, when defining the scalar product, the differentiation of state
spaces is maintained when taking brackets, the bra of particle “1” with the
ket of particle “1” and the same for particle “2”. Thus, there are two steps
to be avoided: the use of the tensor product and this differentiation in the
scalar product, which expresses itself in equation 3.4.3.

To introduce the formal construction which will be developed in the next
sections, consider the possibility of a definition of a scalar product resembling
the following: Let {|α〉 ⊗ |β〉} and {|α′〉 ⊗ |β′〉} be two basis vectors of the
state space of the two particle system, then we could define a different scalar
product “◦” such that

(〈α| ⊗ 〈β|) ◦ (|α′〉 ⊗ |β′〉) = δαα′δββ′ + δαβ′δβα′ . (3.4.4)

For any two vectors |ψ〉 ⊗ |ϕ〉 and |ψ′〉 ⊗ |ϕ′〉 that are linear combinations of
basis vectors, one should obtain:

(〈ψ| ⊗ 〈ϕ|) ◦ (|ψ′〉 ⊗ |ϕ′〉) = 〈ψ|ψ′〉〈ϕ|ϕ′〉+ 〈ψ|ϕ′〉〈ϕ|ψ′〉. (3.4.5)
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It is easy to verify that this product satisfies:

(〈ψ| ⊗ 〈ϕ|) ◦ (|ψ〉 ⊗ |ϕ〉) = |ψ|2|ϕ|2 + |〈ψ|ϕ〉|2 ≥ 0, (3.4.6)

and also:

(〈ψ′| ⊗ 〈ϕ′|) ◦ (|ψ〉 ⊗ |ϕ〉) = ((〈ψ| ⊗ 〈ϕ|) ◦ (|ψ′〉 ⊗ |ϕ′〉))∗. (3.4.7)

where * stands for complex conjugation. Another possibility to be considered
is a “•” such that

(〈ψ| ⊗ 〈ϕ|) • (|ψ′〉 ⊗ |ϕ′〉) = 〈ψ|ψ′〉〈ϕ|ϕ′〉 − 〈ψ|ϕ′〉〈ϕ|ψ′〉. (3.4.8)

This “product” clearly depends on the order of the terms, and it is defined up
to a minus sign. But recall that in quantum mechanics we are interested in
squared probability amplitudes and its square does not depend on the order.
Furthermore, the “•” has the following interesting property:

(〈ψ| ⊗ 〈ψ|) • (|ψ〉 ⊗ |ψ〉) = 〈ψ|ψ〉〈ψ|ψ〉 − 〈ψ|ψ〉〈ψ|ψ〉 = 0, (3.4.9)

and this will turn of great importance, because if we interpret |ψ〉 ⊗ |ψ〉 as
a vector with two fermions in the same state, then it will be a vector of null
norm, and thus, null probability, and also its scalar product with any other
vector is zero:

(〈ϕ| ⊗ 〈φ|) • (|ψ〉 ⊗ |ψ〉) = 〈φ|ψ〉〈ϕ|ψ〉 − 〈φ|ψ〉〈ϕ|ψ〉 = 0 (3.4.10)

Moreover, using Cauchy-Schwartz inequality we have that

(〈ψ| ⊗ 〈ϕ|) • (|ψ〉 ⊗ |ϕ〉) = |ψ|2|ϕ|2 − |〈ψ|ϕ〉|2 ≥ 0, (3.4.11)

or
(〈ψ| ⊗ 〈ϕ|) • (|ψ〉 ⊗ |ϕ〉) = −|ψ|2|ϕ|2 + |〈ψ|ϕ〉|2 ≤ 0. (3.4.12)

These two possibilities come from the ambiguity in the sign when we define
“•”. This ambiguity will be solved later.

3.4.2 Construction of the Q-space

In the following we apply the guiding ideas discussed above to define a prod-
uct in a Q-space constructed using the non-classical part of Q.
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Quasi-functions

Let us consider a Q-set ǫ =E {ǫi}i∈I , where I is an arbitrary (denumerable)
collection of indexes (remember that a Q-set is a qset from the copy of ZFU
in Q). From now own, by a “set” we mean a Q-set, and “=” stands for “=E”,
except if explicitly mentioned. We also recall that all the usual mathematical
concepts mentioned below can be obtained in the “classical” part of Q. We
take the elements ǫi to represent the eigenvalues of a physical magnitude of
interest, and so, they are real numbers. To fix the ideas, they may be the
energy eigenvalues of the Hamiltonian H of a (one particle) system, H|ϕi〉 =
ǫi|ϕi〉, with |ϕi〉 being the corresponding eigenstates. The construction we
present is, of course, independent of this particular choice. Consider then
the quasi-functions f , f : ǫ −→ Fp, where Fp is the quasi-set formed of all
finite and pure quasi-sets. f is the quasi-set formed of ordered pairs 〈ǫi;x〉
with ǫi ∈ ǫ and x ∈ Fp. Let us choose these quasi-functions in such a way
that whenever 〈ǫik ;x〉 and 〈ǫi

k′
; y〉 belong to f and k 6= k′, then x ∩ y = ∅.

Let us further assume that the sum of the quasi-cardinals of the quasi-sets
which appear in the image of each of these quasi-functions is finite, and
then, qc(x) = 0 for almost every x in the image of f , except for a finite
number of elements of ǫ. Let us call F the quasi-set formed of these quasi-
functions. If 〈ǫi;x〉 is a pair of f ∈ F , we will interpret that the energy level
ǫi has occupation number qc(x). These quasi-functions will be represented by
symbols such as fǫi1

ǫi2
...ǫim

(or by the same symbol with permuted indexes).
This indicates that the levels ǫi1ǫi2 . . . ǫim are occupied. It will be taken
as convention that if the symbol ǫik appears j-times, then the level ǫik has
occupation number j. For example, the symbol fǫ1ǫ1ǫ1ǫ2ǫ3 means that the
level ǫ1 has occupation number 3 while the levels ǫ2 and ǫ3 have occupation
numbers 1. We could also choose the expression f3ǫ1ǫ2ǫ3 , but it will not be
necessary. The levels that do not appear have occupation number zero.

These quasi-functions will be used to construct quantum states. It is
worth to say that, because of the utilization of pure qsets with indistinguish-
able elements, there is no reference to particle indexation. The only reference
is to the occupation numbers, because permutations make no sense here, as
it should be. Let us consider, for example, the quasi-function fǫ1ǫ1ǫ1ǫ2ǫ3 . As
we have said above, we interpret this as a state in which the level 1 has occu-
pation number three, the levels 2 and 3 only one, and the others zero. Thus,
a permutation of particles makes no difference because the quasi-function
fǫ1ǫ1ǫ1ǫ2ǫ3 is a collection of ordered pairs. These pairs are 〈ǫ1;x〉, 〈ǫ2; y〉,
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〈ǫ3; z〉 and 〈ǫn; ∅〉 (for n > 3), where x, y and z are pure and disjoint quasi-
sets which satisfy qc(x) = 3 and qc(y) = 1 = qc(z). Thus, permutation of two
particles is formally represented by the procedure that takes an element of,
say, x and interchanges it with an element of y (or z). But it is a theorem ofQ
that permutation of m-atoms gives place to indistinguishable quasi-sets (un-
observability of permutations). By definition, we have 〈ǫ1;x〉 = [[ǫ1]; [ǫ1;x]].
Also by definition, [ǫ1;x] is the collection of all the indistinguishable from
either ǫ1 or x (taken from some previously given qset). For this reason, if we
replace x by x′, with x ≡ x′ we will obtain [ǫ1;x] = [ǫ1;x

′]. Thus, we obtain
〈ǫ1;x〉 = 〈ǫ1;x′〉 and the ordered pairs of the ‘permuted’ quasi-function will
be the same and, consequently, the new quasi-function is again fǫ1ǫ1ǫ1ǫ2ǫ3 . We
thus see that the permutation of indistinguishable elements does not produce
changes in the quasi-functions and, then, in any vector space constructed us-
ing them, the permutation operation will be reduced to identity.

It is important to point out that the order of the indexes in a quasi-
function fǫi1

ǫi2
...ǫin

has no meaning at all because up to now, there is no need
to define any particular order in ǫ, the domain of the quasi-functions of F .
Nevertheless, we may define an order in the following way. For each quasi-
function f ∈ F , let {ǫi1ǫi2 . . . ǫim} be the quasi-set formed by the elements
of ǫ such that 〈ǫik , X〉 ∈ f and qc(X) 6= 0 (k = 1 . . .m). We call supp(f)
this quasi-set (the support of f). Then consider the pair 〈o, f〉, where o is a
bijective quasi-function:

o : {ǫi1ǫi2 . . . ǫim} −→ {1, 2, . . . ,m}. (3.4.13)

Each of these quasi-functions o define an order on supp(f). For each f ∈ F ,
if qc(supp(f)) = m, then, there are m! orderings. Then, let OF be the
quasi-set formed by all the pairs 〈o, f〉, where f ∈ F and o is a a particular
ordering in supp(f). Thus, OF is the quasi-set formed by all the quasi-
functions of F with ordered support. For this reason, if we now say that
fǫi1

ǫi2
...ǫin

∈ OF , we will be speaking of a quasifunction f ∈ F and of an
special ordering of {ǫi1ǫi2 . . . ǫin}. For the sake of simplicity, we will use the
same notation as before. But now the order of the indexes is meaningful.
It is also important to remark, that the order on the indexes must not be
understood as a labeling of particles, for it easy to check that, as above, the
permutation of particles does not give place to a new element of OF . This
is so because a permutation of particles operating on a pair 〈o, f〉 ∈ OF will
not change f , and so, will not alter the ordering. We will use the elements
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of OF later, when we deal with fermions.

Vector space structure

A linear space structure is required to adequately represent quantum states.
To equip F and OF with such a structure, we need to define two operations
“⋆” and “+”, a product by scalars and an addition of their elements, respec-
tively. We will construct a vector space starting from the quasi-functions of
the quasi-sets F (or equivalently OF) defined above. Call C the collection of
quasi-functions which assign to every f ∈ F (or f ∈ OF) a complex number.
That is, a quasi-function c ∈ C is a collection of ordered pairs 〈f ;λ〉, where
f ∈ F (or f ∈ OF) and λ a complex number. Let C0 be the subset of C
such that, if c ∈ C0, then c(f) = 0 for almost every f ∈ OF (i.e., c(f) = 0
for every f ∈ OF except for a finite number of quasi-functions). We can
define in C0 a sum and a product by scalars in the same way as it is usually
done with functions as follows.

Definition 7. Let α, β and γ ∈ C, and c, c1 and c2 be quasi-functions of

C0, then

(γ ∗ c)(f) := γ(c(f)) (3.4.14)

(c1 + c2)(f) := c1(f) + c2(f) (3.4.15)

The quasi-function c0 ∈ C0 such that c0(f) = 0, for any f ∈ F , acts as the
null element of the sum, for

(c0 + c)(f) = c0(f) + c(f) = 0 + c(f) = c(f),∀f. (3.4.16)

With the sum and the multiplication by scalars defined above we have that
(C0,+, ∗) is a complex vector space. Each one of the quasi-functions of
C0 should be interpreted in the following way. If c ∈ C0 (and c 6= c0),
let f1, f2, f3,. . ., fn be the only functions of C0 which satisfy c(fi) 6= 0
(i = 1, . . . , n). These quasi-functions exist because, as we have said above,

71



Chapter 3. Quantum Indistinguishability

the quasi-functions of C0 are zero except for a finite number of quasi-functions
of F . If λi are complex numbers which satisfy that c(fi) = λi (i = 1, . . . , n),
we will make the association

c ≈ (λ1f1 + λ2f2 + · · ·+ λnfn). (3.4.17)

The symbol ≈ must be understood in the sense that we use this notation to
represent the quasi-function c. The idea is that the quasi-function c repre-
sents the pure state which is a linear combination of the states represented by
the quasi-functions fi according to the interpretation given above. As a par-
ticular case of this notation, we have that if cj ∈ C0 are the quasi-functions
such that cj(fi) = δij (δij is the Kronecker symbol), then cj ≈ fj and in a
similar way λ ∗ cj ≈ λfj. In this space, the vectors cj are the “natural” basis
vectors, while the others are linear combinations of them.

Scalar products

With the aid of a vector space structure, we can express quantum super-
positions. In order to calculate probabilities and mean values, we need to
introduce the notion of scalar product. In the following, we will introduce
two different products for bosons and fermions separately, following the ideas
of Section 3.4.1. Let us do it first for bosons.

Definition 8. Let δij be the Kronecker symbol and fǫi1
ǫi2

...ǫin
and fǫ

i′
1

ǫ
i′
2

...ǫ
i′m

two basis vectors which belong to F , then

fǫi1
ǫi2

...ǫin
◦ fǫ

i′
1

ǫ
i′
2

...ǫ
i′m

:= δnm

∑

p

δi1pi′
1
δi2pi′

2
. . . δinpi′n

(3.4.18)

The sum is extended over all the permutations of the index set i′ = (i′1, i
′
2, . . . , i

′
n)

and for each permutation p, pi′ = (pi′1, pi
′
2, . . . , pi

′
n).

This product can be easily extended over linear combinations:

(
∑

k

αkfk) ◦ (
∑

k

α′
kf

′
k) :=

∑

kj

α∗
kα

′
j(fk ◦ f ′

j) (3.4.19)

On the other hand, we can consider another “•” product as follows, which
will be adequate for fermions:
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Definition 9. Let δij be the Kronecker symbol and fǫi1
ǫi2

...ǫin
and fǫ

i′
1

ǫ
i′
2

...ǫ
i′m

two basis vectors which belong to OF , then

fǫi1
ǫi2

...ǫin
• fǫ

i′
1

ǫ
i′
2

...ǫ
i′m

:= δnm

∑

p

σpδi1pi′
1
δi2pi′

2
. . . δinpi′n

(3.4.20)

where:

σp =





1 if p is even,

−1 if p is odd.

The result of this product is an antisymmetric sum of the indexes which
appear in the quasi-functions. In order that the product is well defined, the
quasi-functions must belong to OF . Once this product is defined over the
basis functions, we can extend it to linear combinations, in a similar way as
in (3.4.19). If the occupation number of a product is more or equal than two,
then the vector has null norm, as in equations 3.4.9 and 3.4.10. As it is a
vector of null norm, the product of this vector with any other vector of the
space would yield zero, and thus the probability of observing a system in a
state like this vanishes. This means that we can add to any physical state an
arbitrary linear combination of null norm vectors for they do not contribute
to the scalar product, which is the meaningful quantity.

We have defined two products, “◦” and “•”, which are adequate for bosons
and fermions, respectively. We will return to this point in the following
section.

We point out that to formulate quantum mechanics in such a way that
no reference to particle individuality is made, we need to avoid labeling in
state vectors as much as in operators representing observable quantities. As
said above, in the Fock-space formalism, the observables can be written in
terms of creation and annihilation operators, avoiding particle labeling. In
the following section we will introduce creation and annihilation operators
in order to express observable quantities, without making appeal to particle
labeling in the operators themselves. We will review Fock-space formalism
also.
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3.5 The construction of quantum mechanics

using Q-spaces

In this section we will first briefly review for completeness the formulation
of quantum mechanics using the Fock-space formalism. After that, we will
rewrite that formulation using the language of the Q-space developed above.

3.5.1 Fock-space formalism

As is well known, the standard formulation of quantum mechanics and the
Fock-space formulation are deeply connected. Equivalence with wave me-
chanics is studied (for example) in [73]. It is important to remark that all
the mathematics of this section is contained in the classical part of Q. Here
we briefly recall some basic notions of the standard formalism to fix notation.
We call T1 the kinetic energy of a single particle and V1 the external potential
acting on it. For n particles we have:

Tn :=
n∑

i=1

T1(ri) (3.5.1)

and the same for the external potential. We represent by

Vn :=
n∑

i>j=1

V2(ri, rj) (3.5.2)

the pairwise interaction potential. Thus, the total hamiltonian operator is
given by

Hn =
n∑

i=1

[T1(ri) + V1(ri) +
n∑

i>j=1

V2(ri, rj)] (3.5.3)

The n-particles wave function is written as

Ψn(r1, . . . , rn) (3.5.4)

The standard Fock-space is built up from the one particle Hilbert spaces.
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Let H be a Hilbert space and define:

H0 = C
H1 = H
H2 = H⊗H
...

Hn = H⊗ · · · ⊗ H (3.5.5)

If no symmetry condition is required for the states, the Fock-space is con-
structed as the direct sum of n particles Hilbert spaces:

F =
∞⊕

n=0

Hn (3.5.6)

When dealing with bosons or fermions, the standard procedure to obtain the
physical space state is as follows. Given a vector v = v1 ⊗ · · · ⊗ vn ∈ Hn,
define:

σn(v) = (
1

n!
)
∑

P

P (v1 ⊗ · · · ⊗ vn) (3.5.7)

and:

τn(v) = (
1

n!
)
∑

P

spP (v1 ⊗ · · · ⊗ vn) (3.5.8)

where:

sp =

{
1 if p is even,
−1 if p is odd.

It is important to realize that in this construction, particles are labeled
and then symmetry conditions are imposed by state symmetrization. Thus,
indistinguishability is not taken from the beginning. Calling

Hn
σ = {σn(v) : v ∈ Hn} (3.5.9)

and:
Hn

τ = {τn(v) : v ∈ Hn} (3.5.10)

we have the Fock-space

Fσ =
∞⊕

n=0

Hn
σ (3.5.11)
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for bosons and

Fτ =
∞⊕

n=0

Hn
τ (3.5.12)

for fermions. Once each Fock-space is constructed, the usual procedure runs
as follows. Let ψ(r) and its hermitian conjugate ψ(r)† be operators acting
on the Fock-space and satisfying:

[ψ(r), ψ(r′)]∓ = 0

[ψ(r)†, ψ(r′)†]∓ = 0

[ψ(r), ψ(r′)†]∓ = δr−r
′ (3.5.13)

where δ(r− r′) is the Dirac delta function. For any operators A and B, the
brackets are defined by:

[A,B]∓ := AB ∓BA (3.5.14)

Corresponding to the n particle wave function Ψn(r1, . . . , rn) of the standard
formulation, the n particle state in the Fock-space is defined:

|ψn〉 := (n!)−
1

2

∫
d3r1 · · ·

∫
d3rnψ(r1)

† · · ·ψ(rn)†|0〉Ψn(r1, . . . , rn)(3.5.15)

which can be shown to be an eigenvector (with eigenvalue n) of the particle
number operator:

N :=

∫
d3rψ(r)†ψ(r) (3.5.16)

The connection between the two representations is given by:

Ψn(r1, · · · , rn) = (n!)−
1

2 〈0|ψ(r1) · · ·ψ(rn)|Ψn〉 (3.5.17)

In general, an arbitrary vector of the Fock-space:

|Ψ〉 =
∞∑

n=0

|Ψn〉 (3.5.18)

will not be an eigenstate of the particle number operator (and so, it has
undefined particle number).

Corresponding to the kinetic energy operator of standard wave mechanics,
an operator in the Fock-space is defined as:

T :=

∫
d3rψ†(r)T1(r)ψ(r) (3.5.19)
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and it is easy to see that:
T † = T (3.5.20)

It can also be shown that:

T |Ψn〉 = (n!)−
1

2

∫
d3r1 · · ·

∫
d3rnΨ†(r1) · · ·Ψ†(rn)|0〉

n∑

i=1

T1(ri)Ψn(r1, · · · , rn)

(3.5.21)
Analogously, if there is a pairwise interaction potential V2(r, r

′), the operator:

V :=
1

2

∫
d3r

∫
d3r′ψ†(r)ψ†(r′)V2(r, r

′)ψ(r′)ψ(r) (3.5.22)

is defined on the Fock-space. Its action on |Ψn〉 is given by:

V |Ψn〉 = (n!)−
1

2

∫
d3r1 · · ·

∫
d3r1[V, ψ

†(rn) · · ·ψ†(r1)]|0〉Ψn(r1 . . . rn)

(3.5.23)
and it follows that:

V |Ψn〉 = (n!)−
1

2

∫
d3r1 · · ·

∫
d3r1ψ

†(rn) · · ·ψ†(r1)|0〉

×
n∑

i=1

i−1∑

j=1

V2(ri, rj)Ψn(r1, . . . , rn) (3.5.24)

It can be shown that that the following equations holds:

TnΨn(r1, · · · , rn) = (n!)−
1

2 〈0|Ψ(r1) · · ·Ψ(rn)T |Ψn〉 (3.5.25)

VnΨn(r1, · · · , rn) = (n!)−
1

2 〈0|Ψ(r1) · · ·Ψ(rn)V |Ψn〉 (3.5.26)

where:

Tn :=
n∑

i=1

T1(ri) (3.5.27)

Vn :=
n∑

i>j=1

V2(ri, rj) (3.5.28)

The equivalence with wave mechanics can now be established as follows. If
Ψn(r1, · · · , rn) satisfies the n particle Schrödinger wave equation with Hamil-
tonian (3.5.3), it follows that in the Fock-space formulation |Ψn〉 must satisfy
the Fock-space Schrödinger equation:

[i~(
∂

∂t
)−H]|Ψn〉 = 0 (3.5.29)
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with H := T + V : given by:

H =

∫
d3rψ†(r)[T1 + V1(r)]ψ(r)

+
1

2

∫
d3r

∫
d3r′ψ†(r)ψ†(r′)V2(r, r

′)ψ(r′)ψ(r) (3.5.30)

It is important to remark that the n particle Schrödinger wave equation is
not completely equivalent to its analogue in the Fock-space formalism. Only
solutions of the Fock-space equation which are eigenvectors of the particle
number operator with particle number n can be solutions of the correspond-
ing n particle Schrödinger wave equation. On the other hand, not all the
solutions of the n particle Schrödinger wave equation can be solutions of the
Fock equation, only those which are adequately symmetrized do. So, both
conditions, defined particle number and symmetrization, must hold in order
that both formalisms be equivalent.

3.5.2 Creation and annihilation operators

The standard manner to handle with the equations in Fock-space is to write
physical magnitudes in terms of creation and annihilation operators. To do
so, one makes the following expansion:

ψ(r) =
∑

k

akuk(r) (3.5.31)

using basis functions {uk(r)}. The coefficients of the expansion are the an-
nihilation operators:

ak :=

∫
d3ru∗k(r)ψ(r) (3.5.32)

A similar expansion stands for the creation operator: a†k. In quantum field

theory, it is commonly assumed that the action of the operator a†k describes
the “creation of a particle” with wave function uk(r). In a similar way, is
interpreted that the action of ak describes the “annihilation of a particle”.
It can be shown, that these operators satisfy the commutation relations:
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[ak, al]∓ = 0

[a†k, a
†
l ]∓ = 0

[ak, a
†
l ]∓ = δkl (3.5.33)

and we can define the particle number operator associated with level k:

Nk := a†kak (3.5.34)

We can cast these equations in a more familiar form, using the “[, ]” sym-
bol for bosonic commutation relations and the “{, }” symbol for fermionic
(anti)commutation relations. Then for bosons we have:

[aα; a†β] = aαa
†
β − a†βaα = δαβI (3.5.35)

[a†α; a†β] = 0 (3.5.36)

[aα; aβ] = 0 (3.5.37)

and for fermions, (with C†
α and Cα playing the role of fermionic creation and

annihilation operators respectively) we have:

{Cα;C†
β} = CαC

†
β + C†

βCα = δαβI (3.5.38)

{C†
α;C†

β} = 0 (3.5.39)

{Cα;Cβ} = 0 (3.5.40)

Substitution of (3.5.31) in (3.5.30) yields:

H =
∑

kl

a†kTklal +
1

2

∑

klpq

a†ka
†
lVklpqapaq (3.5.41)

where the matrix elements Tkl and Vklpq are given by:

Tkl =
∫
d3ru∗k(r)[(−~2∇2

2m
) + V1(r)]ul(r)

Vklpq =
∫
d3r

∫
d3r′u∗k(r)u

∗
l (r

′)V2(r, r
′)up(r

′)uq(r) (3.5.42)

and similar expressions can be found for more general obserables.

79



Chapter 3. Quantum Indistinguishability

3.5.3 Using the Q-space

We have constructed two spaces whose vectors make no reference to particle
indexation and, besides, particles are not labeled in any step of the formal
construction. This is possible because these spaces are constructed using
the non classical part of Q, which may refer to intrinsically indistinguishable
particles. Vectors in these spaces are only distinguished by the occupation
number in each (energy) level. With these tools and using the language of
Q, the formalism of quantum mechanics may be completely rewritten giving
a straightforward answer to the problem of giving a formulation of quantum
mechanics in which intrinsical indistinguishability is taken into account from
the beginning, without artificially introducing extra postulates.

Let us first show that the Q-space is useful to provide a states space
analogous to Fock-space. With this aim, we make the following association
in order to turn the notation similar to that of standard quantum mechanics.
For each quasi-function fǫi1

ǫi2
...ǫin

of the qsets F or OF constructed above,
we will write:

αfǫi1
ǫi2

...ǫin
:= α|ǫi1ǫi2 . . . ǫin) (3.5.43)

with the obvious corresponding generalization for linear combinations.
Let us recall again that in |ǫi1ǫi2 . . . ǫin) ∈ F , the order of the indexes has

no meaning. But in |ǫi1ǫi2 . . . ǫin) ∈ OF , the order makes sense.
As we have already pointed out, in order to avoid particle labeling in the

expressions for observables, no reference to particle indexation should appear
in their corresponding operators. For that reason we will only use creation
and annihilation operators. To do so, we construct creation and annihilation
operators acting on Q-spaces. We will first develop the construction for
bosons and later fermions. We will use creation and annihilation operators
and instead of postulating commutation relations, we will deduce them from
their definitions and the properties of the vectors of the Q-spaces (following
an analogous procedure as that exposed, for example, in [11, Chap. 17]).

3.5.4 Bosonic states

For bosons, the procedure is similar to the procedure of the standard ap-
proach for, as we have remarked earlier, a scalar product naturally arises
from the symmetric product (3.4.18). This implies that, once normalized
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to unity, the vectors |αβγ . . .) constructed using Q, are equivalent to the
symmetrized vectors |αβγ . . .〉 for bosonic states. This is so, because permu-
tations do not alter the vector in none of the spaces.

Suppose then that vectors |αβγ . . .) are normalized to unity. If ζ repre-
sents an arbitrary collection of indexes, we want define the operators “a†α” in
such a way that they satisfy:

a†α|ζ) = K|αζ) (3.5.44)

and the proportionality constant K be such that

a†αaα|ζ) = nα|ζ) (3.5.45)

with nα being the occupation number of level α in |ζ). Then, it follows that:

((ζ|a†α)(aα|ζ)) = nα (3.5.46)

Making the definition

Definition 10.

aα| . . . nα . . .) =
√
nα | . . . nα − 1 . . .) (3.5.47)

we obtain

aαa
†
α| . . . nα . . .) = K

√
nα + 1 | . . . nα . . .) (3.5.48)

If we apply a†α once again:

a†αaαa
†
α| . . . nα . . .) = K2

√
nα + 1 | . . . nα + 1 . . .) (3.5.49)

and using (3.5.45):

(a†αaα)a†α| . . . nα . . .) = (nα + 1)K| . . . nα + 1 . . .) (3.5.50)

so K =
√
nα + 1. Then we define

Definition 11.

a†α| . . . nα . . .) =
√
nα + 1 | . . . nα + 1 . . .) (3.5.51)
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Chapter 3. Quantum Indistinguishability

Once this is established, let us obtain the commutation relations. By a
straightforward computation, we see that:

(aαa
†
β − a†βaα)|ψ) = δαβ|ψ) (3.5.52)

which is the same as:
[aα; a†β] = δαβI (3.5.53)

In an analogous way we can show that:

[aα; aβ] = [a†α; a†β] = 0 (3.5.54)

This shows that the (bosonic) commutation relations that are obtained in
Q-space are the same ones as in the standard Fock-space.

3.5.5 Fermionic states

For the fermionic case, we will use C0 equipped with the antisymmetric
product given by equation (3.4.20). We define the creator operator C†

α as
follows:

Definition 12. Let ζ represent a collection of indexes with non null occupa-

tion number, then

C†
α|ζ) = |αζ) (3.5.55)

Note that if α was already in the collection ζ, then |αζ) is a vector with
null norm (as in 3.4.9 and 3.4.10). To have null norm implies that (ψ|αζ) = 0
for all |ψ). Then, if a given vector has null norm, its scalar product with any
other vector in the space is zero. It follows that in the case that a system
were eventually in a state of null norm, the probability of observing it would
be zero. In the same way, if a linear combination of null norm vectors were
added to the vector representing the state of a system, this addition would
not give place to observable results. It follows then that null norm vectors do
not represent real physical states, and the same holds for linear combinations
of them. Moreover, adding a vector of null norm to any other one does not
produce observable affects, because the terms of null norm do not contribute
to the mean values or to the probabilities. In order to express this situation,
we define the following relation:
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3.5. The construction of quantum mechanics using Q-spaces

Definition 13. Two vectors |ϕ) and |ψ) are similar (and we will write |ϕ) ∼=

|ψ))) if the difference between them is a linear combination of null norm

vectors.

Let us now compute the effect of applying Cα to the vectors of OF . Using
Definition (12) we find that:

(ζ|Cα = (αζ| (3.5.56)

Then, for any vector |ψ):

(ζ|Cα|ψ) = (αζ|ψ) = 0 (3.5.57)

for α ∈ ζ or (ψ|αζ) = 0. Then, if we choose |ψ) = |0) it follows that:

(ζ|Cα|0) = (αζ|0) = 0 (3.5.58)

and thus we obtain that Cα|0) is orthogonal to any vector which contains α
and to any vector which does not contain α. Then, it is orthogonal to any
vector, and for that reason, it has to be a linear combination of null norm
vectors. Then, we do not loose anything if we establish Cα|0) = ~0. In an
analogous way we can assert that:

Cα|(∼ α) · · · ) = ~0 (3.5.59)

where (∼ α) means that α has occupation number zero, and the dots mean
that the other levels have arbitrary occupation numbers. Using (13) we can
also write:

Cα|0) ∼= ~0 (3.5.60)

and

Cα|(∼ α) . . .) ∼= ~0 (3.5.61)

In what follows we will use ∼= if necessary, but the same results are ob-
tained if we replace ∼= by the equality symbol. Making |ψ) = |α) in (3.5.57)
it follows that:

(ζ|Cα|α) = (αζ|α) = 0 (3.5.62)
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Chapter 3. Quantum Indistinguishability

in any case except for |ζ) = |0). In that case, (0|Cα|α) = 1. Then, it follows
that Cα|α) ∼= |0). In an analogous way we obtain:

Cα|αζ) ∼= |(∼ α)ζ) (3.5.63)

if α does not belongs to ζ. But in the case that α belongs to ζ, (i.e., the
occupation number is greater than 1) we have that |αζ) has null norm, and
so:

(αζ|C†
α|ψ) = (αζ|αψ) = 0,∀|ψ) (3.5.64)

From this equation it follows that:

(ψ|Cα|αζ) = 0,∀|ψ) (3.5.65)

and so, Cα|αζ) has null norm too.
Now, let us find the anti-commutation relations obeyed by the fermionic

creation and annihilation operators. To do so, let us first study the relation-
ship between |αβ) ∈ OF and |βα) ∈ OF . With this aim, consider the vector
|αβ)+ |βα) and perform the product of this sum with another arbitrary vec-
tor. It suffices to study what happens with basis vectors. The product yields
trivially zero for any vector different from |αβ) or |βα). Making the product
with |αβ) we obtain:

(αβ|[|αβ) + |βα)] = (αβ|αβ) + (αβ|βα) =

δααδββ − δαβδβα + δαβδαα − δααδββ = 1− 0 + 0− 1 = 0 (3.5.66)

The same conclusion holds if we multiply it by |βα). Then, it follows
that |αβ) + |βα) is a linear combination of null norm vectors (which we will
denote by |nnlc)) and, thus:

|αβ) = −|βα) + |nnlc) (3.5.67)

We do not care about which is the particular null norm linear combina-
tion, because it has no observable effects. Now, we can compute

C†
αC

†
β|ψ) = |αβψ) = −|βαψ) + |nnlc) = −C†

βC
†
α|ψ) + |nnlc) (3.5.68)

and thus
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3.5. The construction of quantum mechanics using Q-spaces

{C†
α;C†

β}|ψ) = |nnlc) (3.5.69)

Then, we do not loose generality if we set

{C†
α;C†

β}|ψ) = 0 (3.5.70)

In an analogous way, we conclude that

{Cα;Cβ}|ψ) = 0 (3.5.71)

Now let us calculate the commutation relation between Cα and C†
β. Sup-

pose first that α 6= β. If α /∈ ψ or β ∈ ψ then it is clear that

{Cα;C†
β}|ψ) ≈ −→0 (3.5.72)

If α ∈ ψ and β /∈ ψ, suppose (without loss of generality), that α is the first
symbol in the list of ψ. Then,

{Cα;C†
β}|ψ) = Cα|βψ) + C†

β|ψ(∼ α)) ∼=
∼= −|βψ(∼ α)) + |βψ(∼ α)) =

−→
0 (3.5.73)

If α = β, and α ∈ ψ, then

{Cα;C†
α}|ψ) = Cα|αψ) + C†

α|ψ(∼ α)) ∼=
∼= −→0 + |ψ) = |ψ) (3.5.74)

If α = β, and α /∈ ψ, then

{Cα;C†
α}|ψ) = Cα|αψ) + C†

α|ψ(∼ α)) ∼=
∼= |ψ) +

−→
0 = |ψ) (3.5.75)

So, in any case, we recover the relation

{Cα;C†
α}|ψ) ∼= δαβ|ψ) (3.5.76)

and then, we can set
{Cα;C†

α} = δαβ. (3.5.77)

Thus, we have shown that the same commutation relations hold, as the stan-
dard formalism hold in Q-space. This means that both formulations are
equivalent, for all the interesting information is contained in the commuta-
tion relations. In the following section, we show an example of this new
formulation.
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3.5.6 Observables

To avoid particle labeling in the expressions for observables, in Fock-space
formalism they are written in terms of creation and annihilation operators.
This is also the case in the Q-space. For example, we have shown that
operators T acting over a single particle states are of the form:

T =
∑

αβ

tαβa
†
αaβ =

∑

k

(α|k)tk(k|β)a†αaβ =
∑

k

∑

j

(α|k)(k|T (1)|j)(j|β)a†αaβ

(3.5.78)
Interaction operators act over spaces of a greater number of particles.

The expression of an interaction operator V between two particles is:

V =
1

2

∑

α

∑

β

∑

γ

∑

δ

Vαβ,γδa
†
αa

†
βaγaδ =

1

4

∑

α

∑

β

∑

γ

∑

δ

(κλ|V |µν)a†αa†βaγaδ

(3.5.79)

3.6 Correlation in a two-particle state

In this section we show an application of the use of the formalism in Q-
space to illustrate how the usual results of the standard QM formalism are
obtained. To do so, let us consider a two spin 1/2 quanta regarding only to
spin degrees of freedom. Let Si = (~/2)σi be the spin operator, σi the Pauli
matrices. We use eq. (3.5.78) to write σz:

σz =
∑

αβ

(σz)αβ C
†
αCβ = C†

+C+ − C†
−C−. (3.6.1)

To obtain the spin operator in an arbitrary direction n̂ = (sin θ cosφ, sin θ sinφ, cos θ),
we propose σn in the form:

σn = cos θ C†
+C+ + e−iφ sin θC†

+C− + eiφ sin θC†
−C+ − cos θ C†

−C− (3.6.2)

In fact, this operator rotates the basis vectors as usual. Thus, the mean
value of σn in the one particle state ‘up’ in direction ẑ results:
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3.6. Correlation in a two-particle state

(+|σn|+) = cos θ(+|+) + eiφ sin θ(+|−) = cos θ (3.6.3)

Now we consider the a pair of indistinguishable fermions, one with spin
‘up’ and the other with spin ‘down’. In the Q-space its state is |+−). It has
not to be confused with the standard | + −〉 of the tensor product Hilbert
space, which is not an antisymmetric state. We first show that in the same
spatial direction, say ẑ, the spin components are in perfect anticorrelation.
As usual, the correlation is evaluated as the mean value of an operator that
represents the measurement of σz for both components over the state. Dif-
ferently from the standard formulation, where this operator is obtained in
the labeled tensor product space, here it is obtained from eq. (3.5.79) for the
fermionic case:

σzz =
1

2

∑

α

∑

β

∑

γ

∑

δ

(σzz)αβ,γδC
†
αC

†
βCδCγ

=
1

2
[C†

+C
†
+C−C+ − C†

+C
†
−C+C− + C†

−C
†
−C−C− − C†

−C
†
+C+C−]

(3.6.4)

When applied to a state |+−) it yields

σzz|+−) =
1

2
[C†

+C
†
+C+C+|+−)− C†

+C
†
−C−C+|+−)

+ C†
−C

†
−C−C−|+−)− C†

−C
†
+C+C−]|+−)

=
1

2
[−|+−) + | −+)] = −|+−)

(3.6.5)

Thus, the mean value results

(+− |σzz|+−) = −(+− |+−) = −1 (3.6.6)

which is the usual result.

To obtain the correlation between components in two arbitrary directions,
say ẑ and n̂, we have to follow an analogous procedure. First we write
the operator σzn that acts over the state space of the two particles without
distinguishing them:
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σzn =
1

2
[cos θC†

+C
†
+C+C+ + e−iφ sin θC†

+C
†
+C−C+

+ eiφ sin θC†
+C

†
−C+C+ − cos θC†

+C
†
−C−C+

+ cos θC†
−C

†
−C−C− − e−iφ sin θC†

−C
†
−C+C−

− e−iφ sin θC†
−C

†
+C−C− − cos θC†

−C
†
+C+C−]

(3.6.7)

Applied to the state |+−) it yields:

σzn|+−) =
1

2
[e−iφ sin θC†

+C
†
+|0)− cos θC†

+C
†
−|0)

+ e−iφ sin θC†
−C

†
−|0) + cos θC†

−C
†
+|0)]

=
1

2
[− cos θ|+−) + cos θ| −+)] =

1

2
[− cos θ|+−)− cos θ|+−)]

= − cos θ|+−)

(3.6.8)

Thus, the mean value which gives the correlation results

(+− |σzn|+−) = − cos θ (3.6.9)

as it must be. It is important to remark that the state | + −) takes into
account indistinguishability and antisymmetry without ‘tricks’, just because
it is constructed in the Q-space.

3.7 The Lattice of Convex Subsets and The

Symmetrization Operators P±

In this section we apply the tools developed in Section 2.6 to the indistin-
guishable particles case. The application of lattice theoretical techniques for
indistinguishable particles is not widely studied. Even so, there are some
interesting discussions as the one given in [35].

A lot of effort has been devoted to the characterization of entanglement
[66] and there are new relatively recent efforts to characterize entanglement
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of indistinguishable particles [65, 32, 74, 41, 9, 81]. The distinction between
entanglement and exchange correlations has been a matter of recent debate
(see for example [65] and [41]). We cannot concentrate in all this discussion
here, but we only apply some tools of Chapter 2 to the identical particle
case, hoping that further development on the logic-algebraic approach can
contribute to these questions.

3.7.1 The Symmetrization Operators P±

Given two indistinguishable particles, the state of the system in which one
particle is in state |ϕ〉 and the other in state |φ〉, with |φ〉 6= |ϕ〉, is given by
the symmetrization of |ϕ〉 ⊗ |φ〉 (as we saw in section 3.5.1). Let P± denote
the operators which yield a symmetrized and normalized state. If P12 is the
permutation operator between the two particles, it is easy to see that in this
case:

P+ = (1/
√

2)(1 + P12) (3.7.1)

P− = (1/
√

2)(1− P12) (3.7.2)

yield the correct states when applied to |ϕ〉 ⊗ |φ〉. The “admissible” pure
states of the compound system of two identical particles represented by the
Hilbert space H will be the rays of the subspaces of H⊗H

H+ := (1/
√

2)(1 + P12)(H⊗H) (3.7.3)

for bosons and

H− = (1/
√

2)(1− P12)(H⊗H) (3.7.4)

for fermions. If we form the density matrix ρ± which corresponds to the state
1√
2
(|ϕ〉 ⊗ |φ〉 ± |φ〉 ⊗ |ϕ〉), (with |ϕ〉 6= |φ〉), then. it is easy to verify that

ρ± = P±ρ(P±)† = [(1/
√

2)(1± P12)] ρ [((1/
√

2)(1± P12))
†] (3.7.5)

where ρ is the density matrix corresponding to the non-symmetrized state
|ϕ〉 ⊗ |φ〉.
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As the pure states of the compound system will be given by the rays of
H±, we can form the convex set of states of the symmetrized subspaces. In
doing that, we must consider all hermitian matrixes A± acting on H± which
satisfy the symmetrization condition. Then, we can define:

C± := {ρ± ∈ A± | tr(ρ±) = 1, ρ± ≥ 0} (3.7.6)

Suppose that ρ± ∈ C±. Then, ρ± is hermitian, and so, we can always find
a diagonal decomposition such that:

ρ± =
N∑

i=1

piPi (3.7.7)

The Pi are projection operators over H±. Suppose for simplicity that ρ±

is non-degenerate. Then, Pi = |ψi〉〈ψi|, for some |ψi〉 ∈ H±. But then
|ψi〉 = P±|ϕ〉i, with |ϕi〉 in H⊗H. And so, we can write:

ρ± = P±[
N∑

i=1

pi|ϕi〉〈ϕi|](P±)† = P±ρ(P±)† (3.7.8)

where ρ ∈ H ⊗H. It is easy to see that the same relation holds if ρ± is
degenerate. After this discussion, we can state the following:

Proposition 26. C± = P±C(P±)†

Now we are ready to construct a lattice for indistinguishable particles.

3.7.2 The Indistinguishable Particles Lattice LC±
Proceeding in an analogous way as in 2.6, we define:

LC± := {C ⊆ C± | C is a convex subset of C±} (3.7.9)

In order to give LC± a lattice structure similar to that of LC we introduce
the following operations:

Definition 14. For all C,C1, C2 ∈ LC±
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∧± : C1 ∧± C2 := C1 ∩ C2

∨± : C1 ∨± C2 := conv(C1, C2). It is again a convex set, and it is included

in C±

¬± : ¬±C := C⊥ ∩ C±

−→±: C1 −→± C2 := C1 ⊆ C2

With the operations of definition 14, it is apparent that (LC± ;−→±;∧±;∨±)
is a complete bounded lattice, setting ∅ = 0 and C± = 1. All of this is granted
by the following proposition:

Proposition 27. (LC± ;−→±;∧±;∨±) satisfies

(a) C1 ∧± C1 = C1

(b) C1 ∧± C2 = C2 ∧± C1

(c) C1 ∨± C2 = C2 ∨± C1

(d) C1 ∧± (C2 ∧± C3) = (C1 ∧± C2) ∧± C3

(e) C1 ∨± (C2 ∨± C3) = (C1 ∨± C2) ∨± C3

(f) C1 ∧± (C1 ∨± C2) = C1

(g) C1 ∨± (C1 ∧± C2) = C1

As any ρ± ∈ C± satisfies that ρ± = P±ρ(P±)† for some ρ ∈ H, it is easy
to show that

Proposition 28. If C± ∈ LC± then C± = P±C(P±)†, for some C ∈ LC.

91



Chapter 3. Quantum Indistinguishability

Thus, in this section we have shown how to apply the methods of Section
2.6 to systems of indistinguishable particles. It is important to remark that
the orthodox approach of quantum logic does not pay too much attention to
systems of indistinguishable particles. As far as we know, an analysis such as
the one presented here is completely new in the lattice theoretical approach
to quantum mechanics.

The connection of the approach of this section and the approach of the
Q-space is obvious, because when we restrict to the two particle case (or
in general, for fixed particle number), the Q-space approach is completely
equivalent to that of standard quantum mechanics. So the same lattice can
be constructed using the Q-space.
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Conclusions

In chapter 2 we have shown that it is possible to construct a lattice theoret-
ical framework which incorporates mixed states as atoms. This is done in
order to overcome a problem of the standard QL formalism posed in Section
2.3, namely that the conjunction of all actual properties of the system does
not yield its actual state when compound systems are considered. We showed
that this is directly linked with the fact that QL treats mixtures as measures
over the projection lattice, in an analogous way as classical statistical dis-
tributions are measures over the phase space. But alike classical mixtures,
mixed states in quantum mechanics are of a very different nature, and its
interpretation gives rise to well known difficulties. While each state (pure or
mixed) induces a measure in the lattice of projections, this has nothing to do
with the identification of these measures with classical mixtures. Indeed, any
pure state is not dispersion free also and so induces a measure over LvN that
has a radical different nature than that of classical measures. This was at
the origin of the problems posed in Section 2.3. Our construction is a quite
natural extension of the von Neumann lattice, and its properties and charac-
teristics are consistent with the constraints imposed by quantum mechanics.
More precisely, in the standard quantum logical approach, when the whole
system is in a pure entangled state there are no elements available in the lat-
tices of the subsystems to represent the states of the subsystems as elements
of the lattice. This is expressed in the absence of projection functions which
map the states of the lattice of the whole system to the the states of the
lattices of the subsystems which satisfy in turn, to be compatible with the
physical description. Alike the standard approach, the projections defined in

93



Chapter 4. Conclusions

the frame of the enlarged structures satisfy this condition. They are also the
canonical ones in the sense that they are constructed using partial traces, in
accordance with the quantum formalism. This was shown in Sections 2.5.2
and in 2.7.2.

Traditionally, the difference between classical and quantum lattices is said
to be that the classical lattice is a Boolean lattice while von Neumann lattice
is an orthomodular one. We claim that this is not the only difference, the
other one –although not independent– being their behavior with respect to
the coupling of two or more systems. The necessity of the enlargement of
the von Neumann lattice in order to preserve the condition that the meet of
actual properties defines the state of the system may be seen as an algebraic
expression of the existence of entanglement. The approach presented here
shows, in an algebraic fashion, the radical difference between quantum me-
chanics and classical mechanics when two systems interact. If the systems
are classical, no non-trivial enlargement of the lattice is needed even in the
presence of interactions. It is enough in order to describe all relevant physics
about the subsystems. But the existence of entanglement in quantum me-
chanics forces an enlargement of the state space of pure states to the convex
set C to deal with the states of subsystems and thus the enlargement of LvN .
Two possible candidates to fulfill this task, namely the lattices L and LC,
has been presented in this work and the relations among L and Li (and also
for LC and LCi) have been analyzed. We think that paying more attention
to this kind of approaches would shed new light on the algebraic properties
of quantum non-separability.

The structures presented in this work do not have the problems of the
orthodox approach. This is so because they satisfy the conditions listed in
section 2.3. In our approach, mixed states are in the same status than pure
states and induce measures over LvN as well as pure states, but measures
and states are not identified. This situation is very different than that of
CM , in which the measures induced by pure states are trivial.

Our approach presents itself as a natural logic-algebraic language for the
study of topics which involve compound quantum systems, such as quantum
information processing and decoherence, which concentrate on the study of
C instead of the lattice of projections. They also capture the physics behind
the fact that we can mix states according to the “mixing principle” of section
2.2.3.

On the other hand, as we shown in section 2.7.3, our approach sheds
new light into algebraic properties of quantum entanglement via the study of
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the natural arrows defined between the lattice of the system and its subsys-
tems. The study of these arrows reveals itself as adequate for the of algebraic
characterization of entanglement, as shown in section 2.7.3, providing an en-
tanglement criteria.

In chapter 3 have shown that it is possible to construct the quantum
mechanical formalism for indistinguishable particles without labeling them
in any step, and in particular, avoiding the LTPHSF. So, it gives an al-
ternative answer to the problems posed in [72], and also contributes to an
answer to Manin’s problem posed in [52]. To do so, we have built a vector
space with inner product, the Q-space, using the non-classical part of Q, a
generalization of ZFU, to deal with indistinguishable elements. Vectors in
Q-space refer only to occupation numbers and permutations operators act as
the identity operator, reflecting in the formalism the fact of unobservability
of permutations, already expressed in terms of the formalism of Q.

We have also argued that it is useful to represent operators (which are
intended to represent observable quantities) as combinations of creator and
annihilation operators, in order to avoid particle indexation in the expres-
sion of observable quantities. We have shown that creation and annihilation
operators which act on Q-space can be constructed. We have proved that
they obey the usual commutation and anticommutation relations for bosons
and fermions respectively, and this means that our construction is equivalent
to that of the Fock-space formulation of quantum mechanics. Thus, using
the results reviewed in section 3.5, this implies that we can recover the n-
particles wave equation using Q-space in the same way as in the standard
theory. Though both formulations are equivalent ‘for all practical purposes’,
when subjected to careful analysis, the conceptual difference turns very im-
portant. And so, we give an alternative approach in which we show explicitly
that a formulation of QM which incorporates indistinguishability avoiding
the LTPHSF is possible. Thus, our construction gives a different turn to the
questions posed in [59, 60, 75]. In section 3.6 we gave an example of how our
construction can be applied to the singlet state.

Finally, in section 3.7 we applied some of the tools developed in section 2.6
to the indistinguishable particle case. This construction opens the door for
new developments on the lattice theoretical approach of the indistinguishable
particles case, which is not widely studied in the literature.
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[14] Bengtsson, I. and Życzkowski, K. Geometry of Quantum States: An
Intrdoduction to Quantum Entanglement (Cambridge University Press,
Cambridge, 2006)

[15] Birkhoff, G. and von Neumann, J. “The logic of quantum mechanics”,
Annals Math., 37 (1936) 823-843

[16] Bratelli, O. and Robinson, D. Operator Algebras and Quantum Statisti-
cal Mechanics, vol. I, (Springer-Verlag, Berlin, 1981)

[17] Christiaens, W. de Ronde, C. DHooghe B. and Holik F.: “Some Remarks
on the Notion of Separability Within the Creation Discovery View” In-
ternational Journal of Theoretical Physics, 49, (2010), pp. 3061-3068

[18] Dalla Chiara, M. L. and Toraldo di Francia, G.: 1995, “Identity Ques-
tions from Quantum Theory”, in Gavroglu, K. et. al., (eds.), Physics,
Philosophy and the Scientific Community, Dordrecht, Kluwer Academic
Publishers, 39-46.

[19] Dalla Chiara, M. L., Giuntini, R. and Krause, D.: 1998, “Quasiset Theo-
ries for Microobjects: A Comparision”, in Castellani, E. (ed.), Interpret-
ing bodies: Classical and quantum objects in modern physics, Princeton
University Press, Princeton.

98



[20] Domenech G. and Freytes H., “Fuzzy propositional logic associated
with quantum computational gates”, International Journal of Theoret-
ical Physics, Vol. 45, No. 1, (2006) 228-261

[21] Domenech, G. and Holik, F. “A discussion on particle number and quan-
tum indistinguishability”, Foundations of Physics, 37 (6), (2007) 855-
878

[22] Domenech, G., Holik, F., Kniznik L. and Krause, D. “No labeling quan-
tum mechanics of indiscernible particles”, International Journal of The-
oretical Physics, 49, (2010) 3085-3091

[23] Domenech, G., Holik, F. and Krause, D. “Quasi-spaces and the founda-
tions of quantum mechanics”, Foundations of Physics, 38, (2008) 969-
994

[24] Domenech, G., Holik, F., and Massri, C. “A quantum logical and geo-
metrical approach to the study of improper mixtures”, J. Math. Phys.
51, (2010) 052108

[25] Dalla Chiara, M. L., Giuntini, R. and Greechie, R. Reasoning in Quan-
tum Theory (Kluwer Acad. Pub., Dordrecht, 2004)

[26] D’Espagnat, D. Conceptual Foundations of Quantum Mechanics (Ben-
jaming, Reading, MA, 1976)

[27] D’Espagnat, D. “Reply to K A Kirkpatrick”, arXiv:quant-ph0111081 v1
14 Nov 2001

[28] Dvurec̆enskij, A. “Tensor product of difference posets or of effect alge-
bras”, Int. J. Theor. Phys., 34, (1995) 1337-1348
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