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Lossless Compression of Satellite

Multispectral and Hyperspectral

Images

Abstract

In this thesis, new lossless compression techniques aiming at reducing the

size of storage of satellite images are presented. Two type of images are

considered: multispectral and hyperspectral.

For multispectral images, a nonlinear lossless compressor that exploits

both intraband and interband correlations is developed. The compressor is

based on a wavelet transform that maps integers into integers, applied to tiles

of the image. Different models for statistical dependencies of wavelet detail

coefficients are proposed and analyzed. Wavelet coefficients belonging to

the fine detail subbands are successfully modelled as an affine combination

of neighboring coefficients and the coefficient at the same location in the

previous band, as long as all these coefficients belong to the same landscape.

This model is used to predict wavelet coefficients by means of already coded

coefficients. Lloyd-Max quantization is used to extract class information,

which is used in the prediction and later used as a conditioning context

to encode prediction errors with an adaptive arithmetic coder. The band

order affects the accuracy of predictions: a new mechanism is proposed for

ordering the bands, based on the wavelet detail coefficients of the 2 finest

levels. The results obtained outperform 2D lossless compressors such as

PNG, JPEG-LS, SPIHT and JPEG2000 and other 3D lossless compressors

such as SLSQ-OPT, differential JPEG-LS, JPEG2000 for color images and

3D-SPIHT. Our method has random access capability, and can be applied

for lossless compression of other kinds of volumetric data.
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For hyperspectral images, state-of-the-art algorithms LUT and LAIS-

LUT proposed for lossless compression, exploit high spectral correlations

in these images, and use lookup tables to perform predictions. However,

there are cases where their predictions are not accurate. In this thesis a

modification based also on look-up tables is proposed, giving these tables

different degrees of confidence, based on the local variations of the scaling

factor. Our results are highly satisfactory and outperform both LUT and

LAIS-LUT methods.

Two lossless compressors have been designed for two different kinds of

satellite images having different properties, namely, different spectral res-

olution, spatial resolution, and bitdepth, as well as different spectral and

spatial correlations. In each case, the compressor exploits these properties

to increase compression ratios.

Keywords: Satellite images, multispectral, hyperspectral, lossless com-

pression, wavelet transform, prediction.



iv

Compresión sin Pérdida de Imágenes

Satelitales Multiespectrales e

Hiperespectrales

Resumen

En esta tesis se presentan nuevas técnicas de compresión sin pérdida tendi-

entes a reducir el espacio de almacenamiento requerido por imágenes satelitales.

Dos tipos principales de imágenes son tratadas: multiespectrales e hipere-

spectrales.

En el caso de imágenes multiespectrales, se desarrolló un compresor no

lineal que explota tanto las correlaciones intra como interbanda presentes en

la imagen. Éste se basa en la transformada wavelet de enteros a enteros y se

aplica sobre bloques no solapados de la imagen. Diferentes modelos para las

dependencias estad́ısticas de los coeficientes de detalle de la transformada

wavelet son propuestos y analizados. Aquellos coeficientes que se encuentran

en las subbandas de detalle fino de la transformada son modelados como una

combinación af́ın de coeficientes vecinos y coeficientes en bandas adyacentes,

sujetos a que se encuentren en la misma clase. Este modelo se utiliza para

generar predicciones de otros coficientes que ya fueron codificados. La in-

formación de clase se genera mediante la cuantización LloydMax, la cual

también se utiliza para predecir y como contextos de condicionamiento para

codificar los errores de predicción con un codificador aritmético adaptativo.

Dado que el ordenamiento de las bandas también afecta la precisión de las

predicciones, un nuevo mecanismo de ordenamiento es propuesto basado

en los coeficientes de detalle de los últimos dos niveles de la transformada

wavelet. Los resultados obtenidos superan a los de otros compresores 2D sin

pérdida como PNG, JPEG-LS, SPIHT y JPEG2000, como también a otros
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compresores 3D como SLSQ-OPT, JPEG-LS diferencial y JPEG2000 para

imágenes a color y 3D-SPIHT. El método propuesto provee acceso aleatorio

a partes de la imagen, y puede aplicarse para la compresión sin pérdida de

otros datos volumétricos.

Para las imágenes hiperespectrales, algoritmos como LUT o LAIS-LUT

que revisten el estado del arte para la compresión sin pérdida para este

tipo de imágenes, explotan la alta correlación espectral de estas imágenes y

utilizan tablas de lookup para generar predicciones. A pesar de ello, existen

casos donde las predicciones no son buenas. En esta tesis, se propone una

modificación a estos algoritmos de lookup permitiendo diferentes niveles de

confianza a las tablas de lookup en base a las variaciones locales del factor

de escala. Los resultados obtenidos son altamente satisfactorios y mejores a

los de LUT y LAIS-LUT.

Se han diseñado dos compresores sin pérdida para dos tipos de imágenes

satelitales, las cuales tienen distintas propiedades, a saber, diferente res-

olución espectral, espacial y radiométrica, y también de diferentes correla-

ciones espectrales y espaciales. En cada caso, el compresor explota estas

propiedades para incrementar las tasas de compresión.

Palabras clave: imágenes satelitales, multiespectral, hiperespectral, com-

presión sin pérdida, transformada wavelet, predicción.
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Chapter 1

Introduction

The exponential growth of data acquired by satellite sensors and the high

cost of storing and transmitting these huge data volumes, present a challenge

as to the design of compression techniques, which must be lossless for storage

at ground stations, on account of ulterior processing requirements.

Compression schemes operate by reducing statistical redundancies present

in the data; reducing spectral (interband) correlations, as well as spatial cor-

relations, leading to higher compression ratios.

In this thesis lossless multiband image compression is addressed. Two

types of images are used on which tests are performed: multispectral and

hyperspectral. The former are captured by the LANDSAT satellite, one of

the oldest missions sent out to space capable of capturing multiband images.

The latter are obtained by the AVIRIS project, which has a more advanced

and evolved tecnology in its sensors with respect to LANDSAT, since it

provides images with more resolution.

This thesis is organized in three main chapters. In Chapter 2, in order

to get familiar with the type of images that will be used throughout this

thesis, a review of satellite images is presented and the two main satellites

or missions are described. Depending on the capabilities of the sensors on

the satellites, they are able to capture images with different characteristics.

1
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These aspects such as the types of resolutions have a great influence on what

methods or techniques are more suitable to compress the images.

In Chapter 4 we focus on multispectral images captured by the Landsat

mission. A new lossless compression method based on prediction of wavelet

coefficients taking into account classes in the images is presented. Two

approaches are taken: offline and online. The former aims at speeding up

the compression process while the latter takes advantage of the available

data as the compressor is running. For each approach, different ways of

establishing classes and band orderings are used.

In Chapter 5, hyperspectral lossless compression techniques are pre-

sented. Well-known compression methods are briefly mentioned and the

popular lookup table-based methods LUT and LAIS-LUT are described.

Then our prediction-based compression scheme is presented, which uses

lookup tables as well as classification so as to make prediciton more ac-

curate.



Chapter 2

Satellites and images

The term remote sensing refers to methods that employ electromagnetic

energy, such as light, heat, and radio waves, as the means of detecting and

measuring target characteristics. This electromagnetic energy refers to all

energy that moves with the velocity of light in a harmonic wave pattern.

The waves can be described in terms of their velocity (which is the speed

of light when waves move through a vacuum), wavelength (distance from

any point of one cycle to the same position of the next one), and frequency

(number of wave crests passing a given point in a specified period of time;

unlike velocity and wavelength, which change as electromagnetic energy is

propagated through media of different densities, frequency remains constant

and is therefore a more fundamental property).

When electromagnetic energy encounters matter, many of the energy

properties are changed, and the science of remote sensing is the one that

detects and records these changes by acquiring images that are interpreted

and used to determine the characteristics of the matter.

The continuum of energy that ranges from meters to nanometers in wave-

lengths is called the electromagnetic spectrum (ES). It is divided into regions

depending on the wavelength. For example, shorter wavelengths measured

in fractions of nanometers belong to the gamma region while the radio region

3
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spans wavelengths on the order of meters (see Figure 2.1).

Figure 2.1: Regions in the electromagnetic spectrum.

In this thesis only passive remote sensing systems are considered. These

systems record energy that naturally radiates or reflects from an object as

opposed to active systems which supply their own source of energy directing

it at objects and measuring how much of this energy is returned (for example,

radar systems). Regular photographs are examples of passive systems, which

record wavelengths from 0.3 to 0.9 µm that correspond to the visible range

of the ES. Passive remote sensing systems are capable of capturing other

regions of the ES as well; this makes them a versatile tool for detection of a

wide variety of objects, among other applications. Because some regions in

the spectrum are absorbed by the atmosphere (such as gamma rays, X-rays

and most of the ultraviolet region) they are not used for remote sensing.

Images captured by pasive remote sensing systems can be described in

terms of many characteristics. Attributes and features of each of these sys-

tems determine the characteristics of the images they acquire. All the images

captured by the satellites or systems considered in this thesis are multiband.

That is, for an image taken of a certain location, several bands are obtained.

Each of these bands corresponds to the response of a certain range in the

ES. For example, color photographic images are represented as three bidi-

mensional arrays (or matrices), each array representing a different band of

color: red, green or blue. In the same way, a remote sensor system could
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be able to capture three bands in the visible region (0.4 to 0.7 µm), each

band corresponding to the appropiate color, in order to build a photograph

as if it was taken with a regular camera. This multiband concept leads to

one important characteristic of images: spectral resolution. Sensors with im-

ages captured at a higher spectral resolution are able to discriminate finer

ranges of the ES and therefore more bands can be obtained in a given range

of the spectrum. In this thesis two type of images are used: multispectral

(formed by 7 bands) and hyperspectral (formed by over 200 bands covering

wavelengths from the visible region to the infrared region).

Another important characteristic of satellite images is related to their

scale, that is, the relation between two points on an image and their cor-

responding distance on the ground. This aspect, the spatial resolution, is

important in order to determine what portion of the ground a pixel of an

image represents. For instance, some applications require high resolution

images in order to detect specific objects on the ground, whereas other ap-

plications that only need to segment types of crops on the ground, lower

spatial resolutions are enough.

Remote sensing systems are able to detect different levels of the intensity

of electromagnetic radiation that an object reflects, emits, or scatters at a

particular wavelength (i.e., band of the image). The magnitude of this

response is directly proportional to the brightness of that object in the image.

Usually, each pixel is represented as an integer value where higher values

indicate a higher response, and the range of possible values is assigned a gray-

scale from black (lower values) to white (higher values). This characteristic

of images is connected with another type of resolution: radiometric. This

resolution refers to the number of digital levels used to express the data

collected by the sensor. Generally, it is expressed as bits per pixel.

There are other image characteristics but they are more related with

their interpretation, which is out of the scope of this thesis. The variation
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in any of the aforementioned characteristics of images has a great impact on

compression since methods developed for images of particular resolutions

may not work when they are acquired with different resolutions. See [1,

2] for more details of the underlying physical principles of sensors, image

interpretation and satellite missions.

2.1 LANDSAT images

The Landsat (‘land satellite’) program [3] was designed in the 1960s and

aimed at observing broad-scale land areas of the Earth. There have been

7 missions launched since july 1972 and still 2 of them remain operational

[4]. The first 3 missions (1972, 1975 and 1978) are commonly regarded as

the first Landsat generation because of their shared characteristics (altitude,

number of orbits, sensors, etc).

The imaging system on satellites consists of spacecraft-borne sensors,

each designed for specific purposes. These are:

• RBV (Return Beam Vidicom): it generated high-resolution television-

like images, providing 3 spectral channels (green, red and near in-

frared) each obtained by a separate camera that captures the corre-

sponding segment of the spectrum. One of the intended applications

was photogrammetry. This sensor was present in the first Landsat

generation and dropped later because of their limited value images

and technical difficulties.

• MSS (Multispectral Scanner Subsystem): this sensor was designed to

provide multispectral data (by the use of a spectometer that disperses

the incoming energy into a spectrum) regardless of the positional accu-

racy. It captured four spectral bands: green (0.5-0.6 µm), red (0.6-0.7

µm), and two near infrared (0.7-0.8 µm and 0.8-1.1 µm); the Landsat

3 MSS included an additional band in the far infrared from 10.4 to
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12.6 µm. Although the MSS has been replaced in the last mission, it

is significant because of the concepts it introduced and were later used

in the TM system.

• TM (Thematic Mapper): it is an upgraded version of the MSS, which

had an improved geometric fidelity and more precise definition of spec-

tral regions, among other enhancements. TM captures 7 spectral re-

gions and this sensor was part of Landsat missions 4 and 5. An en-

hanced version of the TM (ETM) was on the Landsat 6 mission in

1993 but it was lost at launch. In April 1999 the Enhanced Thematic

Mapper Plus (ETM+) sensor was placed in orbit with the successful

Landsat 7 [5] mission. It extended the capabitilies of the previous

ETM by a better use of calibration and efficiency of data transmission

but maintaining the spectral definitions and resolutions of the former

sensor version.

The Landsat program is one of the pioneer observational programs and it

was useful as an introduction to similar land observation satellites operated

by other organizations. For the purpose -and at the time- it was designed

the resolutions provided were moderate. In this thesis, Landsat 5 and 7

images are used. The spectral resolution provides for three bands in the

visible region, and four in the infrared region (see Figure 2.1). Each pixel

is allocated 1 byte yielding a radiometric resolution of 256 different digital

values per pixel. Spatial resolution is about 30 meters.

2.2 Hyperspectral images

These images have a main distinction with respect to multispectral images:

they provide for a higher spectral resolution. Now, 224 bands are avail-

able each with a spectral bandwidth of 10 nm in the region of 0.4 to 2.5

µm. Images captured by the scanner system called AVIRIS (Airborne Vis-
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Figure 2.2: Expanded diagrams of visible and infrared regions

(upper) and microwave regions (lower). Gases responsible for at-

mospheric absorption are indicated. Wavelengths in visible and

infrared regions that are recorded by indicated Landsat MSS and

TM bands are shown (middle).

ible/Infrared Imaging Spectometer) [6] are used in this thesis. It was de-

veloped by JPL (Jet Propulsion Laboratory) and is carried in a NASA U-2

aircraft at an altitude of 20 km. These images also have a higher spatial

resolution than multispectral LANDSAT images. For AVIRIS images each

pixel represents 20 m, and is allocated a 2 byte signed integer (which almost

doubles the radiometric resolution of LANDSAT images).



Chapter 3

General introduction to

compression techniques

Nowadays, media storage systems have increased their capacity cosiderably.

Hundreds of gigabytes are available in small and portable devices at afford-

able costs. So the following question arises: why do we need compression?

Well, compression is used in most of the data these days, for transmission

or archiving. Take for instance a media library with thousands of music or

video files. In order to digitally represent 1 second of video without compres-

sion, more than 20 megabytes, or 160 megabits, are needed using the CCIR

601 format (imagine the popular HD format). Two minutes of uncompressed

CD-quality audio with 44100 samples per second and 16 bits per sample, re-

quire more than 84 million bits (10 megabytes). A lot of current file formats

make use of compression: mp3/acc/ogg (audio), mpeg/mov/div-x (video),

jpeg/png/tiff (image), pdf/doc/odt (documents) and many more. With-

out compression all the massive available storage would be worthless. Also,

in spite of the fact that broadband internet access is becoming more and

more popular, transmission of video or audio would not be feasible without

compression.

The classical scheme for compressing data includes three sequential steps:

9
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transformation, quantization and encoding. In some compressors these steps

do not overlap, but somtimes it is hard to tell in which step of the process we

are. During transformation, the original data to be compressed is changed

so that its new representation is more suitable for compression. This may

be thought as a change of basis. For instance, some input data are more

compressible when expressed in a frequency domain. As another example,

assume we have a large sequence of numbers x0, . . . , xn where xi+1 := xi+1.

If the original sequence is expressed as differences x0, x1−x0, . . . , xi+1−xi, . . .

this new sequence is more compressible than the original one since less bits

per symbol are needed to code it. In turn, given the ‘compressed’ sequence

and the decompression algorithm, we are able to recover the original se-

quence without loss of information. This is called lossless compression. On

the other hand, if an approximation of the original sequence is obtained

after the decompression process, we are in presence of lossy compression.

During the second step is where the loss of information is produced.

Quantization aims at reducing the number of symbols to code. For in-

stance, if during the transformation step a source of integer numbers is

transformed into a source of real numbers (which might potentially be all

different), these transformed symbols could be less compressible. We could

use a simple quantization function such as rounding each real number to its

nearest integer so as to reduce the number of symbols to code. Even though

data that is possibly more compressible is obtained, the original data can-

not be recovered at the decompression process. Usually the quantization

process is quite simple, but its design has a great impact on the amount of

compression obtained and loss incurred in a lossy compression scheme. In

lossless compression, this quantization step is omitted.

Finally, the coding step. After the symbols are transformed or quantized

they are assigned a codeword. These codewords have their own alphabet.

The Morse code is a classical example: this is a binary code whose codewords
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are formed by ‘·’ and ‘−’ (dots and dashes is the binary alphabet for the

codewords). It was designed taking into account the statistics of the english

dictionary. It is an efficient code, since smaller codewords (i.e., shorter

sequences of dots and dashes) are assigned to most frequent letters. In

english words, the letter e is the one that most frequently occurs, while letter

z is not that frequent. So, in Morse code, the shorter codeword formed by a

dot ‘·’ is assigned to letter e, while a longer code ‘− − · ·’ is used to code z.

Huffman code is another example, where a binary tree is built according to

the statistics of the symbols. The final tree with the symbols on their leaves

is used for encoding. The path to a leaf (starting from the root) indicates

the codeword for the symbol on that leaf: each time a left branch is used,

a 0 is added to the codeword and, in the same way, a 1 is added each time

a right branch is taken on the path to the leaf. This tree is built in such a

way that most frequent symbols end up closer to the root of the tree and

therefore shorter codewords are used. Generally, binary codestreams contain

codewords that are sequences of 0’s and 1’s which is the natural language of

computers. Coding theory is vast and plenty of codes are designed in order

to fit certain purposes and efficiently code particular sources. See [7] for

more details.

3.0.1 Entropy

When data is compressed, we aim at creating a shorter representation for

the data. For that, redundancies must be eliminated. There are several ap-

proaches for doing so and they depend on the type of data. First, a measure

for determining how much is the cost to code a source of data is needed.

In information theory, the information of an event E is determined by its

probability P (E): the more probable an event is, the less information it

provides. When E takes place we say that I(E) = log(1/P (E)) units of

information have been received. If 2 is chosen as the basis for the loga-
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rithm, we refer to bits of information. Symbols to be coded belonging to a

certain alphabet may be described mathematically as a discrete source of

information S = {s1, s2, . . . , sn} that emits symbols si with a fixed proba-

bility P (si), i = 1, . . . , n. The most simple source assumes that the emitted

symbols are statistically independent. As stated before, the presence of a

symbol si amounts to I(si) = log(1/P (si)) bits of information and we may

estimate the average information per symbol associated with the source as
∑

S I(si) · P (si) and this is the entropy of the source, defined as

H(S) ,
∑

S

P (si) · log
1

P (si)

Shannon [8] showed that the entropy is a measure of the average number of

binary symbols needed to code the symbols emitted by the source S. So,

the entropy is a good measure to estimate how many bits are required to

compress any source.

It was mentioned that in the coding process, a codestream is generated

by assigning codewords to symbols. The average length of a code may be

computed as

L =
∑

S

P (Si) · ℓi

where ℓi indicates the length of the codeword assigned to symbol si. As an

example, two different codes are presented in Table 3.1 for the source S =

{s1, s2, s3, s4} whose symbols are emitted by the source with probabilities

P (s1) = 1/2, P (s1) = 1/4, P (s1) = 1/8, P (s1) = 1/8 (or analogously, we

have a sequence of symbols whose probabilities are the ones mentioned). It

can be observed that CODE 1 is a fixed-length code, since codewords have

the same length for every symbol (ℓi = 2, for 1 ≤ i ≤ 4). On the contrary,

CODE 2 is a variable-length code.

The entropy of the source is H(S) = 1.75. Since CODE 1 is fixed-length,

it clearly has an average length of 2, while CODE 2 has a shorter average

length and it is equal to the entropy. By a closer observation, CODE 2 is
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CODE 1

Symbol Codeword

s1 00

s2 01

s3 10

s4 11

CODE 2

Symbol Codeword

s1 1

s2 01

s3 001

s4 000

Table 3.1: Two different binary codes for a source of 4 symbols.

more efficient than CODE 1: it assigns shorter codewords to symbols that

have higher probability (or have more repetition in a sequence of symbols).

The first theorem of Shannon states that the following inequality holds

for any code that is uniquely decodable:

L ≥ H(S)

3.1 Arithmetic encoding

The Huffman algorithm codes symbols with an average number of bits that

is generally quite close (or equal) to the entropy of the source. Nonetheless,

there are examples where Huffman fails to produce a code with such char-

acteristics. Such is the case when the source has few different symbols and

the probabilities are skewed. One solution to this is source extension. This

approach groups symbols to form sequences and a codeword is generated for

each possible sequence (i.e., sequences are considered as the new symbols).

This approach has a clear drawback: as the length of sequences become

larger, the number of possible sequences grows considerably; building the

Huffman tree might be significantly time consuming.

The arithmetic coder follows a similar approach. Suppose a sequence of

length m out of a source of n different symbols is to be coded (m ≫ n).

In order to distinguish among all the possible mn sequences, the arithmetic
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coder assigns a different identifier to each different sequence. This identifier

is some real number in the [0, 1) interval and will correspond to the codeword.

The advantage of the arithmetic coder over Huffman, is that this identifier

is built as each symbol of the sequence is coded and there is no need to

generate all the possible mn identifiers. So any source of symbols is coded

with a real number (usually binary, although some integer implementations

are available) in the range [0, 1) and the longer the sequence, the higher the

precision needed to represent such number.

It can be shown that the longer the sequence to code, the closer the

average length of the code (generated by the arithmetic coder) gets to the

entropy.

3.1.1 Statistics update

The classical implementation of the arithmetic coder assumes that proba-

bilities of the source being coded are known in advance. This means that

we know that the symbols to be compressed are a realization of a source

whose distribution is known to the coder. When dealing with data compres-

sion, the statistics of the source are rarely known in advance. That is why

a first pass throughout the file or image may be needed to get their distri-

bution, before the second pass where the actual compression process takes

place. This is usually a disadvantage when demanding complexity require-

ments are imposed. This ‘static’ variant of how the coder handles statistics

usually adds some overhead data to the codestream since the decoder must

use the same statistics in order to recover the compressed source correctly.

This overhead data may be avoided if both, coder and decoder, agree on the

same statistics in advance. But if the source to be coded does not have that

previously agreed distribution, the compression rates achieved may be far

from the entropy.

The other variant is the ‘dynamic’ statistics update, where probabilities
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do not remain fixed during the whole process of compression. This is a more

flexible scheme where no overhead data needs to be sent in the codestream.

Coder and decoder just need to agree on any initial distribution –usually

all symbols are equiprobable. Once the compression/decompression process

starts, each time a symbol is coded/decoded, the probabilities are updated

so as to reflect the distribution of the symbols already coded. Therefore,

coder and decoder always share the same statistics as long they update the

probabilites in the same manner.

The dynamic version is the usual implementation for the arithmetic coder

in order to avoid scanning the source twice so as to obtain the distribution.

Nonetheless, this implementation may be affected by the order in which

symbols are coded. For example, suppose two files are to be coded, having

symbols {s1, . . . , sn} with the same distribution. In the first file the symbols

are ordered in such a way that after a small portion of this file has been

coded, the statistics of the symbols read so far are similar to the statistics

of the whole file and, as the compression process goes on, these statistics

do not change too much. In the second file, on the other hand, symbols are

placed in order: the first symbols are all s1, then come all symbols s2 and

so on. It is clear that for this second file that, as the compression process

ocurrs, the statistics estimated never reflect the distribution of the whole file

until the last symbol is coded. Therefore, even though these two files have

the same distribution, different compression rates may be achieved. This

would not have happened with the static variant.

3.1.2 Coding with contexts

So far we have assumed that we have a model of the source represented by

a set of probabilities, and we make use of this model every time a symbol

needs to be coded. We also have assumed that this model has no memory:

new symbols to be coded are supposed to follow the model but previously
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coded symbols are not taken into account. Consider the case of text com-

pression. We could count the appearences of characters in words from the

spanish dictionary and estimate a model for them. Now suppose the char-

acter u from word que is to be coded. Our current approach would code

this character according to its probability but without taking into account

that q is the previous character. Instead of using this memoryless model

we could use a single-character context, that is, a probability model given

q (or equivalently, a first-order Markov model). In spanish, if a q letter is

observed it is highly probable that a letter u comes afterwards. This model

would be more accurate instead of just considering the probability of letter

u in the alphabet regardless of the preceding letter.

A similar concept is used when coding images by considering a neigh-

bourhood of already coded pixels as a context. CALIC (Context Adaptive

Lossless Image Compression) [9] is a good example of a context-based image

coder. In CALIC, each pixel is predicted with a gradient-adjusted predictor.

The bias in the prediction error is corrected with context information which

takes into account spatial texture patterns and the energy of prediction er-

rors. Then, corrected prediction errors are entropy coded using error energy

(formed by a linear combination of the magnitude of gradients and previous

prediction errors) as contexts.

By embedding contexts into the arithmetic coder, separate statistics may

be used depending in which context the symbol to be coded occurs.



Chapter 4

Multispectral image

compression

As introduced in the first chapter, one of the goals of this thesis is the de-

sign of a lossless compressor for multispectral images. In this chapter this

compressor is described. First, the most important methods and techniques

applied to compress multispectral images are mentioned. Then, the math-

ematical tool on which the proposed compressor is based is reviewed: the

discrete wavelet transform (DWT). In the following sections several improve-

ments are presented, each of which successively increases the compression

rates achieved. They include classification of pixels and wavelet coefficients,

ordering of bands, etc.

When the properties of multispectral images were briefly explained in

Chapter 2, it was mentioned that thermal bands, which capture a wide

range of the electromagnetic spectrum, have different characteristics com-

pared to the other bands. That is why a different approach in the proposed

compressor is taken for these bands; it is presented in Section 4.4. Finally,

nonlinear prediction using neural networks applied on wavelet coefficients is

described in Section 4.3.4.

17
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4.1 State of the art for lossless compression of

multispectral images

All image compression techniques operate by reducing statistical redundan-

cies present in an image. To achieve this, standard single image compressors

apply a wavelet transform (see Section 4.2). By representing an image as

the sum of its details at different resolutions and orientations (plus a coarse

approximation), a wavelet transform substantially reduces spatial correla-

tions. Detail subbands have histograms that are peaked and centered at

zero: their entropies are small. This is a remarkable property of the wavelet

transform, and explains why wavelets are used in state-of-the-art image

compressors. Traditional wavelets produce real coefficients. For lossless

compression, wavelets that map integers into integers have been designed

[10]. These transforms are reversible when the values of the original image

are integers, as is the case. They are used in SPIHT [11], and JPEG 2000

[12, 13, 14]. Both compressors encode the most significant bitplanes first;

JPEG2000 also uses contextual information.

Another approach to reduce spatial correlations, is to apply prediction–

based methods, which have long been used. For each pixel being encoded,

a prediction for that pixel is performed, using a small neighborhood of the

pixel, called the prediction context or prediction set. The differences between

the predictions and the original pixels are then encoded with an entropy

based coder. The more accurate the predictions, the smaller the differences,

and the higher the compression ratio. In the final coding step, sometimes

the coding context (another neighborhood) of the pixels is used: different

coding contexts define different coders. In order to perfectly recover the

information at the decompressor’s side, both the prediction context and

the coding context must consist of pixels that have already been coded.

CALIC [9] performs a prediction based on gradients in the prediction set,
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uses texture and gradient information to correct the prediction bias, and

applies an adaptive entropy coder with a local error energy estimator as a

coding context. JPEG–LS [15] uses a nonlinear median edge prediction, and

for coding it uses a large number of context classes based on vertical and

horizontal gradients.

Sometimes predictions involve parameters that are calculated over a large

set of pixels called the training set. This is the case when linear predictions

are made, and weights for the prediction must be calculated. Then either

the weights are written into the code, or they must be recalculated by the

decoder: in the latter case the training set must also consist of already coded

pixels. ALPC [16] classifies the pixels locally, according to their own pre-

diction set, and performs a different linear prediction for each pixel; weights

of the linear prediction are calculated over the pixels belonging to the same

class. Slyz et al. [17] predict a pixel with the average of past pixels having

the same vector–quantized context. By conditioning the prediction to the

class of the prediction context, or coding the prediction differences condi-

tioned to the context, the mentioned compressors try to capture variations

in the local statistics of the image.

When considering multiband images, and especially multispectral im-

ages, correlations between bands can be considerable. Reducing spectral

(interband) correlations as well as spatial correlations will lead to higher

compression ratios. Some of the mentioned 2D lossless compressors have

later been extended for cubic data, such as multispectral images, hyper-

spectral images and video [18, 19, 20, 21]. The first two perform a wavelet

transform on the 3 dimensions of the data. The last two include pixels

from other bands/frames into the prediction. Wang et al. proposed differ-

ent intraband and interband predictors, plus an ordering of the bands, for

multispectral images [22].

In this thesis, predictions are not made on the value of pixels. Neither a
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3D wavelet transform is applied. Instead, a different approach is taken: a 2D

wavelet transform is performed on blocks of each image band, and then both

the interband and remaining intraband correlations are reduced via an affine

prediction of the wavelet coefficients. Distributions of wavelet coefficients

vary with their resolution level, their orientation, and the landscape, so that

different predictions for each stack/block/subband/class are considered.

Predictions made upon the wavelet coefficients of an image have been

proposed before. Linear predictions of wavelet detail coefficients using in-

formation of wavelet coefficients at the same or at different scales have been

designed for single images [23, 24]. For compression of multispectral images,

Benazza et al. apply a wavelet transform to each band; a linear prediction,

which involves pixels from several previous bands, is built into the lifting

scheme of the wavelet transform [25]. Yet none of the proposed methods take

into account variations due to the landscape: the training set is the whole

wavelet subband, even though a mixture of landscapes may be present in it;

therefore the weights they calculate are not optimal.

4.2 The wavelet transform

It was mentioned that decorrelation of images is related to their compres-

sion since a sparse representation is obtained after the decorrelation process,

which favors compression. The wavelet transform is a versatile tool widely

used in multiple scenarios and in many applications. It is good at decorre-

lating images and has become part of the (not so) new standard for image

compression: JPEG 2000 [12]. Since it provides for spatial localization –as

opposed to the Discrete Cosine Transform used in basic JPEG [26], although

this lack of spatial localization is dealt with the partition of the image into

small blocks–, it allows the inclusion of features such as quality and spatial

scalability, region of interest, lossless compression, etc.
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4.2.1 The S+P wavelet transform

For our compressor we chose to apply the S+P transform [27], that maps

integers into integers: when tested on several multispectral images, the en-

tropy of the S+P transform was lower than the entropy of other integer

wavelet transforms [28]. Briefly, the formulae of the S (similar to Haar) and

S+P transforms are given for 1D signals.

Given the original signal {sn}, (n = 0 . . . N −1, N even), its S transform

(one step) is composed of 2 sequences that are half its length: {cn, dn}, (n =

0 . . . N2 − 1), where {cn} are the approximation (or “lowpass” coefficients),

and {dn} are the detail or “highpass” coefficients:

cn =

⌊
s2n + s2n+1

2

⌋
, dn = s2n − s2n+1. (4.1)

The inverse transform for S is calculated as

s2n = cn +

⌊
dn + 1

2

⌋
, s2n+1 = s2n − dn, (4.2)

for n = 0 . . . N2 − 1. Observe that there is a truncated average in the ap-

proximation coefficients. The proof of the reversibility of this transform is

based on the properties: ∀x ∈ R, ∀n ∈ Z,

⌊x± n⌋ = ⌊x⌋ ± n, −⌊n/2⌋ = ⌊(−n+ 1)/2⌋ .

The S+P transform [27] applies the S transform and then operates a

differential prediction on the detail coefficients, rounding the result and sub-

tracting it from dn to give d ′
n.

Let {cn, dn} be the S transform of the signal sn. For n = 1 . . . N2 − 2,

calculate a prediction for the details

d̂n =
1

4
△cn +

3

8
△cn+1 −

1

4
dn+1, (4.3)

where △cn = cn−1 − cn. First and last prediction values are

d̂0 =
1

4
△c1, d̂(N

2
−1) =

1

4
△c(N

2
−1). (4.4)
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Now obtain the new detail coefficients d ′
n:

d ′
n = dn −

⌊
d̂n +

1

2

⌋
, n = 0 . . .

N

2
− 1. (4.5)

Then {cn, d
′
n} is the S+P transform of sn (one step). By substitution

it may be shown that this is equivalent to filtering the data with 2 filters –a

lowpass filter and a highpass one– and then downsampling the results. There

is a rounding operation to give integer coefficients. Several steps are carried

out by repeating the process on the lowpass filtered branch of the signal, so

that the signal is split into its details at different scales and positions, plus

a coarse approximation (of the signal).

The inverse S+P transform is calculated in reverse order, by applying

equations (4.4), (4.3), and

dn = d ′
n +

⌊
d̂n +

1

2

⌋
, n =

N

2
− 1 . . . 0. (4.6)

When applied to an image, the same process is performed on the rows

and resulting columns of the image. One step produces 4 subimages or

subbands, one of which is an approximation of the image, and the 3 others

capture the vertical, horizontal and diagonal details of the image. The

process is repeated on the approximation subband. After several steps, the

image is split into its details at different scales, orientations and positions,

plus a coarse approximation.

In Fig. 4.1 (a) we have a 256×256 original image block. We show 3 steps

of its S+P wavelet transform in Fig. 4.1 (b). The largest subbands V1, H1

and D1 capture the vertical, horizontal and diagonal details, respectively, at

the finest scale. Subbands V2, H2 and D2 belong to the second fine scale.

There is a coarse approximation LL of the image in the upper left corner.

All the subbands have been rescaled independently; most of the coefficients

are grey (close to zero) indicating that spatial correlation has been reduced.
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(a)

V2

H2 D2

V1

H1 D1

(b)

Figure 4.1: (a) A block of an image and (b) 3 steps of S+P

wavelet transform of image in (a).

4.3 Prediction of wavelet coefficients

Wavelet transforms decorrelate images, eliminating spatial redundancy, i.e.,

the entropy of the transformed coefficients is much lower than that of the

original image. Even so, similarities can be observed between the absolute

values of the coefficients corresponding to the same spatial location at dif-

ferent scales – see the block of an original image in Figure 4.2 (a), and a

thresholded version of its wavelet transform in Figure 4.2 (b), where we have

the 9 detail subbands and 1 approximation subband of 3 steps of the S+P

transform. Inside white circles and squares are observable similarities.

These similarities were used in [23] to state a model of statistical de-

pendence among coefficients and it was applied to the lossy compression of

photographic grayscale images. This model states that the dependencies

are fixed inside each subband, and do not depend on the coefficients’ actual

value.

Based on the similarities observed in Figure 4.2 (b) and using the afore-

mentioned underlying model, prediction may be performed upon wavelet

coefficients. Since similarities are present when observing throughout scales
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(a) Original block.
(b) Circles and squares indicates similar-

ities between subbands.

Figure 4.2: (a) A block of an image and (b) its S+P transform

(coefficients above a threshold in white)

but at the same spatial location, a wavelet coefficient belonging to a wavelet

subband can be predicted with certain candidate coefficients. Consider Fig-

ure 4.3 as an example. In (a) the black coefficient in subband H1 at the

finest scale is considered for prediction; in white, candidate coefficients for

prediction are shown. They may be located at other scales, orientations or

adjacent to the coefficient to be predicted. These candidates may be com-

bined -linearly, for instace- to generate a prediction for the coefficient in

black. Then, the prediction error is entropy coded. Notice that candidates

must be other coefficients that have already been coded so that the same

prediction can be estimated when recovering the compressed image (decom-

pression process). That is why the coefficient at the same spatial location in

the finest D1 subband is shown in dashed line; this means that this subband

has not been traversed yet so this coefficient cannot be considered as a can-

didate for prediction. So it is assumed that each subband is predicted at a

time, starting, as is the case in the figure, from coarser scales to finer scales

(see next paragraph for more details). Since wavelet transforms from other

bands are also available for prediction, the set of candidates is extended. If
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(a) Coefficient (dash line) not avail-

able for prediction, since H1 sub-

band has not been coded.

(b) In gray, candidates from already coded

bands.

Figure 4.3: Current coefficient to be coded (black), with candi-

dates in the same band (white) and in other bands (gray).

pixels between two bands are correlated, so are the coefficients of the wavelet

transform. That is why wavelet coefficients at the same spatial location but

on already coded bands belong to the set of candidates.This is shown in 4.3

(b).

Since the set of candidates only includes coefficients that were already

coded, an ordering for encoding must be set. It has been shown in some

works that statistics are not the same for every subband in the wavelet

transform. For instance, when quantizing wavelet coefficients -either for

achieving better compression rates or smaller errors-, global results improve

when subbands are treated separately. Another example is the wavelet trans-

form coding: if a compressor is restarted for every different wavelet subband,

the compression rates achieved are higher than if all coefficientes are coded

together. That is why coefficients in each subband will be treated and pre-

dicted separately. The order in which subbands are traversed is shown in

Figure 4.4 (a). When considering one subband in particular, the coefficients

within are predicted or sent in raster-scan order. In Figure 4.4 (b) the cur-

rent wavelet coefficient to be encoded is shown in black. Also shown are the
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coefficients that have been encoded at this stage in light grey -these coef-

ficients are available both to the encoder and to the decoder-, and in dark

grey, the coefficients to be encoded.

(a) Ordering of wavelet subbands.
(b) Current coefficient (black) and

encoded coefficients (light grey).

Figure 4.4: Traverse order.

As described earlier, Simmoncelli and Benazza performed predictions

over wavelet coefficients in their works. The former applied it to grayscale

2D images while the latter extended the lifting scheme for multiband im-

ages. For the proposed compressor, the set of candidates is extended so as

to consider coefficients from other bands as candidates as well. However,

none of the aforementioned works take into account variations due to the

landscape. In this work a further step is taken: the mixture of landscapes

or clases in images is considered when performing predictions. When try-

ing to predict coefficients, the best combination of candidates (that is, in a

linear combination, the best weights) is estimated only taking into account

the candidates that belong to the same class of the coefficient to be pre-

dicted. How classes are established and predictions computed, depend on

the approach taken (offline or online; see Section 4.3.2 and 4.3.3).
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4.3.1 General outline of the compressor

The compressor operates blockwise. For that, the image is split into blocks

of 256× 256 pixels. The group of blocks in different bands but at the same

spatial location will be referred to as a stack of blocks. Each stack of blocks

is coded independently by the compressor. The main advantage of splitting

the image into blocks, is that it enables to reduce the number of operations.

The wavelet transform has linear complexity in size, therefore, applying

one step of the wavelet transform to each block of a band gives the same

number of operations as applying one step of the wavelet transform to the

whole band. However, to decorrelate a block of size 256 × 256, 5 steps of

the wavelet transform are sufficient. And to decorrelate a whole image of

size 6000 × 7000, many more wavelet steps should be performed. For this

reason, applying the wavelet transform on a block basis reduces the number

of operations.

A stack of blocks is fed at a time to the compresor, the blocks are scanned

(one by one) in raster-scan order. Let Nb be the number of different bands

in the image. First subbands (to be encoded) refer to the first 10 subbands

(approximation coefficients and coarse detail): {LL, {Vi, Hi, Di}, i =

5, . . . 3}. Last subbands (to be encoded) refer to 6 fine detail subbands:

{V2, H2, D2, V1, H1, D1} that are predicted. The steps performed for

each stack are shown in Fig. 4.5.

As depicted in Fig. 4.5, though some wavelet coefficients are coded as

is, most of the coefficients are predicted (the two finest scales represent

the 93.75% of the whole transform). Also, no details were given about the

classification process, since it depends on the approach taken: in the offline

approach classes are determined before each stack is predicted and encoded,

whereas classes are estimated anew for each block in a stack for the online

approach.
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foreach stack of blocks in an image do

Initialization

1 Calculate the S+P transform for each block.

2 Select a band ordering.

foreach block in a stack do

Classification and Prediction

1 Classify the pixels of the block.

2 Compute predictions for the coefficients in the last

subbands depending on the class they belong to.

3 Calculate the prediction error.

Coding
1 Encode the coefficients in the first subbands separately,

with an adaptive arithmetic coder.

2 Encode the prediction errors for each of the last

subbands separately, with an adaptive arithmetic coder,

using the class as a context.

Figure 4.5: General algorithm for a stack of blocks.
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4.3.2 Offline approach

In this approach [29], priority is given to lower the computational overload.

For that, the following steps of the compressor are modified accordingly:

• Class determination. A supervised algorithm based on the spectral

signature is used so as to determine which is the most numerous class

in the stack. Based on observed types of landscape on available images,

a group of classes is set. These are embbeded in the compressor and

used each time a new stack is to be classified.

• Band ordering. Each of the classes also has a predefined ordering

for bands. The ordering for each class is established offline taking into

account the correlation between bands. Once a stack is set to belong

to a certain class, the blocks are coded in the corresponding order.

• Weight computation. Weights for the linear combination are also

computed in advance for each class, where sample stacks are used to

train the best weights for each subband to be predicted.

Since speed is one of the goals for this approach, adjusting parameters

(ie, which candidates, weights for prediction, best classification) to the data

being compressed is avoided. Instead, fast algorithms based on offline train-

ing are chosen.

Supervised stack classification using spectral signature

If the reflectance of the earth is plotted in terms of the wavelength, different

typical curves are obtained according to each landscape. These reflectance

curves are called the spectral signature of the landscape [30, 5]. The re-

flectance curves for water, snow, vegetation and bare soil are shown in Fig-

ure 4.6. In order to determine the class of a stack, first each pixel considered

as a vector in R
N (where N is the number of bands in the image) is classified

according to its spectral signature.
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Figure 4.6: Reflectance curves for different types of landscapes.

Figure 4.7: A block to be classified.

We developed short ad hoc classification algorithms based on the shape

of these reflectance curves.

For example, in the case of vegetation, it is noticed (Figure 4.6) that the

reflectance curve for vegetation has a sharp increase at around wavelength

0.7 µm. Now, for each position (pixel) in a Landsat image we have 8 samples

at the wavelengths given in Table 4.1. As a consequence of this increase,

Band 3 < Band 4, so that, the algorithm classifies a pixel as vegetation if

the well-known vegetation index Band 4 − Band 3 is positive. Similarly, a
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Band Wavelength

1 0.45 − 0.52 µm

2 0.52 − 0.60 µm

3 0.63 − 0.69 µm

4 0.76 − 0.90 µm

5 1.55 − 1.75 µm

6.1,6.2 10.4 − 12.5 µm

7 2.08 − 2.35 µm

Table 4.1: Wavelength of each band in Landsat latest missions

(thematic mapper sensor, see Figure 2.1).

pixel is classified as water if Band 4−Band 3 < 0 and the values for band 4

and band 7 are small. In case of dry bare soil, its reflectance curve is smooth

and slighty upward. Although several factors such as humidity and chemical

composition affect its spectral behaviour, the search of increasing and uni-

form values through Landsat bands turned out to be a good classification

algorithm. Different kinds of soil without vegetation, as well as cities, fit

into this category. If there are many classes inside a stack, the class having

the most pixels determines the classification of the whole stack.

Figure 4.8: Pixels classified as water (in white).
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For the block of Figure 4.7, the pixels classified as water are shown in

Figure 4.8, the ones classified as vegetation are shown in Figure 4.9, and the

ones classified as ’city’ (bare soil) are shown in Figure 4.10. This block is

classified as ‘vegetation’ since most of the pixels belong to that class.

Figure 4.9: Pixels classified as vegetation (white).

Figure 4.10: Pixels classified as city (in white).

Fast predictions based on offline training

Consider s ∈ {V2,H2,D2, V1,H1,D1} as one of the subbands whose coeffi-

cients are to be predicted. Let Ss be the set of subbands whose coefficients



CHAPTER 4. MULTISPECTRAL IMAGE COMPRESSION 33

may be chosen as candidates to predict coefficients in s, and let ζs be the

number of elements in Ss (ie, the number of candidate subbands). In Figure

4.3 (a), s = H1 and Ss = {V1,H1,H2,D2, V2}. Since the subband s has 2

candidate coefficients, the total number of candidate coefficients is ζs+1 = 6.

Suppose a wavelet coefficient = w
(b)
i,j,s is to be encoded, belonging to

block b, at position (i, j) of detail subband s. Now let w ∈ R
ζs+1 be the

vector which contains all ζs + 1 candidates for predicting coefficient w
(b)
i,j,s.

The prediction for this coefficient is estimated by a linear combination of

candidates. Let a ∈ R
ζs+2 be the weights, with the (ζs + 2)-th component

being an offset. So, the prediction is

ŵ
(b)
i,j,s = at


w
1




This version of the algorithm strives to decrease computational costs.

Now, computing predictions as accurately as possible and using all available

candidates becomes prohibited. By inspecting which candidates contribute

most to predictions (ie, which weights are more significant) it is observed

that the inclusion of all candidates does not provide for much bigger com-

pression rates than using just a few. After several tests, it was decided to

set to three the number of candidates to perform predictions since there was

no significant improvement if more were added. Offline, a greedy algorithm

is run to determine which are the best three, adding candidates one by one.

This greedy strategy is applied on each subband and each class. This may

be thought of as a training phase: for each of the classes determined ac-

cording to the spectral signature several stacks of blocks are selected, which

are used to train the best weigths for that class. The weights for the linear

combination are calculated by least squares, computing the average over all

stack of blocks of the corresponding class. Then, the weights estimated in

the training phase, are incorporated into the compressor. This makes the

compression process much faster, since once the class of the stack of blocks is
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established predictions may be computed rapidly using the proper weights.

It should be noticed that, if we have a mixture of classes in a stack of

blocks, then inaccurate predictions may occur. Since the most numerous

class determines the class of the whole stack, in the case of a stack of blocks

composed of several classes or landscapes, the weights selected may not be

the ones that yield best predictions (and therefore, bigger compression). Yet

lossless compression is achieved.

Band ordering

With the purpose of maximizing the chance of obtaining predictions as ac-

curate as possible, correlation between bands may be considered. In a first

approach when offline training was used, it was observed that candidates

that were chosen frequently to form the final set of three candidates and

that belonged to a previously coded band, this band was highly correlated

with the one to be predicted. So if bands are ordered in a way such that

consecutive bands are highly correlated, when candidates from other bands

are selected at the offline training process, predictions with these candidates

would be more accurate than if they come from an uncorrelated band. Now,

since a different set of candidates is chosen for each class of stack, a different

ordering may be established for each class. All these orderings for each class

are embedded in the compressor.

With all the previous considerations, the algorithm in Fig. 4.11 summa-

rizes this offline approach.

Results

This approach of the compressor was tested on 4 Landsat 7 images from

Argentina: Buenos Aires, Santa Cruz, San Luis and Mendoza. These im-

ages were used for the training phase, which include –for each of the classes
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foreach stack of blocks s in an image do

Initialization

1 Determine class of s

2 Select a band ordering b(1), b(2), . . . , b(Nb) depending on class

of s.

foreach block b = b(1), b(2), . . . , b(Nb) in a stack s do

1 Calculate the S+P transform for block b.

foreach of the last subbands u = V2,H2,D2, V1,H1,D1 do

Prediction

2 Compute predictions for the coefficients in u using

weights embbeded for the class of s.

3 Calculate the prediction error.

Coding

1 Encode the coefficients in the first subbands separately,

with an adaptive arithmetic coder.

2 Encode the prediction errors for each of the last

subbands separately, with an adaptive arithmetic coder,

using the class as a context.

Figure 4.11: Offline approach of our general algorithm.

determined– the estimation of weights for the prediction of wavelet coeffi-

cients and the selection of a band ordering. In subsequent graphs we show

how much is gained by the algorithms applied by our compressor for the im-

age of San Luis. In Fig. 4.12 we have the entropy of each band of the original

image (dotted) and the entropy of the wavelet S+P coefficients (solid); the

gap between both curves indicates how much we have gained by applying

the wavelet transform.

In Fig. 4.13 we have the entropy (bits per pixel) for each band of the
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Figure 4.12: Entropy of the S+P transform (solid line) vs original

image (dotted line).

S+P wavelet coefficients (dotted), versus our method based on the prediction

of wavelet coefficients. The gap indicates how much we have gained by

prediction.

Figure 4.13: S+P transform(dotted) vs our method (solid) in

bpp.

In Fig. 4.14 we have the performance of our method, in bpp, compared to

the results of other lossless compressors: Winzip, LOCO-I, JPEG2000 and

PNG (notice that these compressors do not benefit from spectral correlations

since they are applied on each band separately). They are applied to the

San Luis Landsat image and the different shades of the bars indicate the
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volume occupied by each band in the compressed image. We have the final

Figure 4.14: Results in accumulated bpp.

results of the 5 mentioned lossless compressors applied to the mentioned 4

images of Argentina, in Table 4.2. Landsat 8-band images have 8 bpp. For

PRED WINZIP LOCO-I JPEG2000 PNG

Buenos As 104.76 161.05 106.88 113.53 121.67

Santa Cruz 90.37 139.94 92.43 98.54 105.61

San Luis 103.98 159.24 105.33 111.3 117.92

Mendoza 116.72 179.8 114.83 125.1 136.65

Table 4.2: Results in MB.

the image of San Luis, each band has 7044 rows and 7476 columns. For

San Luis, our method gives 2.07 bpp, that is, a saving of 5.93 bpp, and a

compression rate of 3.86:1.
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4.3.3 Online approach

All the actions that were taken before the compressor started running in the

offline approach, now are performed as the compression process occurs [31].

Only the order in which the blocks in a stack are encoded is determined

before the compression starts. The main differences are:

1. weights for the linear combination are estimated for each subband and

class;

2. classes for pixels in a block are established based on the block that has

been previously coded (in the same stack);

Suppose a wavelet coefficient w = w
(b)
i,j,s is to be encoded, belonging to

block b, at position (i, j) of detail subband s, where s ∈ {V2,H2,D2, V1,H1,D1}.

It is conjectured that pixels/ coefficients at the same position in 2 con-

secutive bands belong to the same class (see Section 4.3.3). The prediction

for block b is based on the classes of block b− 1.

Let w
(b−1)
i,j,s belong to class c. Suppose that w

(b−1)
i,j−1,s and w

(b−1)
i−1,j,s also

belong to the same class. It is presumed that w
(b)
i,j,s, w

(b)
i−1,j,s and w

(b)
i,j−1,s

also belong to class c. The prediction ŵ for w is calculated as an affine

combination of the coefficient at the same position in the previous band,

and the left and upper neighbors of w:

ŵ
(b)
i,j,s = a

(c)
3 w

(b−1)
i,j,s + a

(c)
2 w

(b)
i,j−1,s + a

(c)
1 w

(b)
i−1,j,s + a

(c)
0 . (4.7)

If w
(b−1)
i,j−1,s does not belong to class c, its weight a

(c)
2 is set to zero since it is

presumed that the left neighbor of w does not belong to class c. Similarly,

if w
(b−1)
i−1,j,s does not belong to class c, then a

(c)
1 is set to 0.

To calculate the weights a
(c)
k , k = 0 . . . 3, the training set consists of all

the coefficients in the same subband that belong to class c, and have their

left and upper neighbors in the same class. They are calculated by least
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squares, thereby minimizing the Euclidian norm of the prediction error in

the same class and subband. They are quantized to 10 bits.

The prediction is rounded and the prediction differences encoded

∆w
(b)
i,j,s = w

(b)
i,j,s −

⌊
ŵ

(b)
i,j,s + 0.5

⌋
. (4.8)

At the decompressor side, prediction differences are decoded, and also

the same prediction is performed, recovering w from

w
(b)
i,j,s = ∆w

(b)
i,j,s +

⌊
ŵ

(b)
i,j,s + 0.5

⌋
. (4.9)

Any error in the assumptions will result in less accurate predictions and

less compression ratio; it will affect the decoder in no other way.

When processing the first block, no previous band is available: in this

case prediction is intraband (a
(c)
3 = 0). None of the classes are available

either; therefore the weights are calculated over the whole subband. It

should be noticed that both, the original block and their S+P transforms,

must be kept in memory. Also, some overhead information must be sent to

the decoder: block ordering is stored in the stack header and a total of 48

weights (4 parameters (a
(c)
3 . . . a

(c)
0 ) × 2 classes × 6 subbands) must be stored

into the block header. For the first block, classification is skipped and, since

no previous band is used for prediction, only 18 weights are stored into the

block header. A block diagram for this approach is shown in Figure 4.15.

In the compression process there are various steps which are non-linear.

These are: 1) in each stack of blocks the bands are ordered differently,

2) an offset is added to the linear prediction, 3) the prediction performed is

different for each stack of blocks, depending on the band, subband and class,

4) there are rounding operations both at the S+P wavelet transform and at

the prediction, This nonlinearity enables it to exploit complex dependencies.

In [20] Wu and Memon observe that correlation between 2 bands can

vary spatially with the landscape; therefore it is counterproductive to use

interband predictors in case of weak interband correlation. They propose
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switching between interband and intraband prediction according to the cor-

relation in a local window. For the online version of the proposed compres-

sor, the best weights for prediction are learned for each subband and each

class of landscape: when the correlation between the bands is locally high,

the calculated weight of the coefficient in the preceeding band will be high;

when the correlation is low, the same weight will be comparatively small, so

that the compressor also “switches” from interband to intraband prediction

if the correlation is low.
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S+P
block 1 wav. coef.

(blk 1)

S+P
block 2 wav. coef.

(blk 2)

S+P
block 8 wav. coef.

(blk 8)

b

b

b

Reorder
blocks

Classify
pixels

Delay
b− 1

Classify
wav. coeffs.

Arithmetic
Coder

(subband)

Calculate
weights

(subb/ class)

Calculate
prediction
differences

Arithmetic
Coder

(subb/ class)

Concatenate
block b

LL +
coarse
detail

bitstream

Fine
detail

wav. coef.
(blk b)

Figure 4.15: Compressor scheme. Left: Initial step for a stack.

Right: core of the compressor for a particular block.
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Unsupervised Classification

The former classification algorithm (see Section 4.3.2) was done on a stack

basis. It assigned a landscape to each stack of blocks, and was based on the

spectral signatures (i.e. typical behaviours of the reflectance in terms of the

wavelength) of the different landcover types. Prediction weights (for each

landscape, band and subband) were calculated offline on typical stacks of

different landscapes, and stored into the compressor. One drawback was the

impossibility to include weights for all possible kinds of landscapes. Another

drawback was the inferior compression ratios obtained when a mixture of

landscapes was present in a stack.

An online approach was also taken for classification. In order to avoid

the problems mentioned in the last paragraph, now the classification is per-

formed i) with an algorithm needing no previous knowledge on landscapes,

and ii) on a pixel basis. A Lloyd–Max [32] quantization algorithm was used

to determine the classes. Separating the pixel values into 2 classes converges

in 2 or 3 iterations.

Classifying vectors (involving all the blocks in a stack), would require

sending the template with the classes for reconstruction, a prohibitive over-

head. Instead, pixels are classified inside one block. The classes and the

weights (for each landscape and subband) are calculated anew for each block.

According to a previously established order for band coding (see next Sec-

tion), each time a new block needs to be coded, the Lloyd–Max algorithm is

run on the previously coded block so as to determine the clases for this new

block. Based on tests, there is no significant increase in the compression

ratio when more than 2 classes are considered: accordingly, pixels in each

block are separated into 2 classes.

For reconstruction it is necessary to have exactly the same classes at the

decompressor side. Both the compressor and decompressor must determine

the classes in an identical way: this can only be done if the classification
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1 0 1 1 · · ·

0 0 1 1 · · ·

1 1 0 1 · · ·

0 0 0 0 · · ·

...

0 1 · · ·

1 0 · · ·

...

Figure 4.16: Left: Original template. Right: Second template.

involves data that is available to the decompressor. Therefore predictions

are based on the classes of the block previous to the one being encoded. That

is, assuming correlation between 2 consecutive bands to be significant, it is

expected that pixels at the same position in 2 consecutive bands, generally

belong to the same class.

The initial cut-off value determining 2 quantization intervals for the first

block is fixed. This value and the centroids (one for each interval) evolve

through Lloyd–Max iterations until they converge. The classes obtained are

used to calculate weights for the second block. These are written into the

code and related to the class through their index. The initial cut-off value

for blocks 2 and onwards are set to the final cut-off value obtained in the

previous block.

The pixels of the image block are separated into 2 classes turning out

in a 256 × 256 binary template indicating the class of each pixel. This in

turn induces a classification of the wavelet coefficients in the 6 predicted

subbands. First, a second template is built that is a fourth (in size) of the

original one, to indicate the classes in subbands V1, H1 and D1. For this, the

original template is divided in 2 × 2 submatrices, and the most numerous

class in a submatrix is an entry in the second template – see Fig. 4.16.

Similarly, a third template indicating the classes in subbands V2, H2 and

D2 is obtained. These templates are used to control that predictions are

restricted to a class.

After separating the pixels of Fig. 4.2 (a) into 2 classes: land and water,

wavelet coefficients have been classified –see Fig. 4.17.
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V2

H2 D2
V1

H1 D1

Figure 4.17: S+P wavelet transform of the original block (3

steps). In black: detail coefficients (of the 2 finest scales) clas-

sified as water.

Band Ordering

The order of the bands affects the accuracy of predictions, because coeffi-

cients from the previous band are included in the affine combination. It is

therefore desirable to have an optimal band ordering, so that highly cor-

related bands are coded consecutively. This ordering may not be unique

and must be sent to the decoder to recover all the bands in the right order

[33]. Our compressor operates on one stack of blocks after the other, and

determines a different band ordering for each stack. Originally this order

was determined according to the correlation between blocks inside a stack.

Since the wavelet transform decorrelates an image, correlations are lowered

by the transform, and the optimal order may change. Our predictions are

made on the wavelet coefficients: it was therefore natural to fix an order

according to the correlations of the S+P transformed blocks (only consider-

ing the 6 subbands for which prediction is done). Doing so improved results

[34].
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Inside a stack of blocks, from now on the block in band b will be refered

as block b. The mechanism is as follows: for each transformed block b,

with a greedy algorithm an order Ob is found that starts with b, and at

every step chooses the transformed block having the greater correlation with

the previous one. From the Nb orders found, then Õ is selected, the one

having the greatest sum of correlations. Formally, W (b) = {w
(b)
i,j,s} is the

set of wavelet coefficients belonging to the block in band b, of subband

s ∈ {V2,H2,D2, V1,H1,D1}. For b = 1 . . . Nb, set Ob(1) = b and Ob(k+1) =

argmaxℓ 6=Ob(1),...Ob(k)|ρ(W
(k),W (ℓ))|. The final order is then Õ = O

b̃
, where

b̃ = arg max
1≤b≤Nb

Nb−1∑

k=1

∣∣∣ρ(W (Ob(k)),W (Ob(k+1)))
∣∣∣ .

Results

Our compressor was tested on different Landsat 7 images of Argentina.1

In Table 4.3 we give the entropy of each original image, averaged over all

the bands (1st column) and compare our compressor LLWPred to different

available lossless compressors. These are: 2D compressors PNG[35], JPEG-

LS[15], SPIHT [11] and JPEG2000 [14], and 3D compressors SLSQ-OPT

[36], D-JPEGLS (or differential JPEG-LS, in which the difference between

2 consecutive bands are coded with JPEG-LS), JPEG2000 Color (every 3

bands are set as color components in JPEG2000) and 3D-SPIHT[18]. We

have also implemented a cubic S+P transform, and DEC3, a wavelet-based

interband prediction with lifting [25]. Both were followed by arithmetic

coding. Results are given in bits per pixel; the best result for each image is

enhanced.

1Results listed in Table 4.3 correspond to the Landsat 7 ETM+ images (Path /Row -

adquisition date (in yyyymmdd format)): 228/084-20011126; 225/084-20030127; 229/094-

20020715; 221/074-20030523; 227/079-20020615; 229/092-20010423; 231/083-20010115;

232/084-20011021; 227/089-20030501; 230/087-20030506; 231/078-20030529; 226/098-

20020710; 229/088-20030515. We thank CONAE for providing them.
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Clearly our compressor outperforms the others. For each image tested,

the final bitrate given by our compressor is around 2
5 of the image’s entropy.

On average our compressor used 1.89 bpp to store the images. Since they

originally used 8 bpp, this represents a compression ratio of 4.23 :1.
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# H PNG JPEG-LS SPIHT JPEG2000 SLSQ

-OPT

D-JPEGLS JPEG2000

Color

3D S+P 3D-SPIHT DEC3 LLWPred

1 5.28 2.58 2.24 2.43 2.43 2.62 2.26 2.36 3.43 2.70 2.36 2.18

2 4.81 2.40 2.11 2.24 2.24 2.49 2.17 2.19 3.24 2.49 2.19 2.02

3 4.37 2.03 1.78 1.90 1.90 2.08 1.65 1.82 2.54 1.93 1.80 1.66

4 4.98 2.32 2.21 2.39 2.45 2.53 2.34 2.44 3.42 2.78 2.26 2.20

5 3.86 2.09 1.86 2.00 1.99 2.16 1.95 1.96 2.87 2.28 1.96 1.84

6 4.17 1.96 1.70 1.84 1.83 1.99 1.67 1.77 2.46 1.96 1.77 1.66

7 4.78 2.35 2.10 2.22 2.22 2.36 2.06 2.12 3.19 2.38 2.12 1.93

8 5.51 2.77 2.33 2.55 2.54 2.70 2.16 2.33 3.53 2.61 2.39 2.20

9 3.89 1.70 1.58 1.64 1.68 2.00 1.71 1.72 2.56 1.96 1.60 1.53

10 3.98 1.90 1.79 1.88 1.94 2.23 1.88 1.93 2.90 2.21 1.84 1.74

11 5.21 2.61 2.54 2.81 2.87 3.04 2.49 2.77 3.79 2.99 2.43 2.41

12 3.86 1.72 1.58 1.72 1.74 2.05 1.64 1.74 2.53 1.90 1.60 1.58

13 3.65 1.81 1.71 1.80 1.83 2.11 1.80 1.85 2.67 2.08 1.73 1.66

Avg. 4.49 2.17 1.96 2.11 2.13 2.34 1.98 2.08 3.01 2.33 2.00 1.89

Table 4.3: Bitrates obtained with different lossless compressors
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4.3.4 Prediction with neural networks

In the previous sections linear dependencies among wavelet coefficients were

exploited. Now, we turn to a tool that will help us to take advantage of

possible nonlinear dependencies: neural networks. We chose a simple archi-

tecture based on a multilayer feedforward neural network, with nonlinear

transfer functions associated to the hidden layer, and a linear transfer func-

tion associated to the output layer. A description of the network architecture

and training algorithm are presented in the next section.

The compressor presented in this work acts in a similar way as before.

The two finest scales (which represent the 93.75% of the coefficients) are

predicted and the prediction error is entropy coded; the rest of the sub-

bands are encoded as they are. For each of the predicted subbands a neural

network is trained with an input (the candidates for each coefficient) and a

desired output (every coefficient in the subband). Once the parameters are

learned, the coefficients are fed into the network in order to compute the

prediction (network output). This prediction is rounded (so as to ensure

lossless compression) and the prediction error is coded with an arithmetic

coder. Now, the selection of candidates is no longer made during the train-

ing phase. Based on observations, for a given coefficient, the coefficients on

the left, on the right, and in the same location but in the previously coded

band, were the most frequently selected. So now, only the neural network

parameters are established during the training phase.

For the decompression process, the neural network parameters need to

be known in order to be able to compute again the prediction and then

add it to the decoded difference. This enables the exact recovery of the

coefficients. On the other hand it adds some overhead information to the

codestream: each neural network configuration used in each subband must

be sent (i.e., weights for the neurons’ links).

Because of the greater overhead that class conditioned prediction would
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entail, we omit the classification step when predictions are performed with

neural networks. Although the overhead of the mask for each block and

band is so large that this method is computationally prohibitive, we include

the method in this thesis to show that neural networks are a powerful tool

that may be used to generate nonlinear predictions, which will generally be

more accurate than in the linear case.

Before training the neural networks, a band order is established for each

stack of blocks, which ensures that highly correlated bands will be consecu-

tive (see Section 4.3.3).

Neural network architecture

We use two-layer feed-forward neural networks as nonlinear coefficient pre-

dictors. The neural network architecture, shown in Fig. 4.18, has three

input units associated with the candidate values, a hidden layer of nine neu-

rons or nodes, and an output unit. Neurons in the hidden layer have full

connections from the nodes in the previous (input) layer and the proceed-

ing (output) one. Weight values are associated to each connection in the

network. The output at a node is a function of the weighted sum of the

connected nodes at the previous layer. In our case, the output of a hid-

den neuron is the result of applying a nonlinear transfer function f to the

weighted sums of the inputs. This function f : R→ R is

f(x) =
1− exp(−2x)

1 + exp(−2x)

The last (output) layer applies the identity function f(x) = x to a

weighted sum of the outputs of the hidden layer; i.e., the output of the

neural network is a linear combination of the outputs from the hidden layer.

Once the architecture is defined, appropiate weights w
(k)
i,j must be learned.

For that, the network is trained aming at minimizing the cost function (de-

fined as an average of the squares of errors). The usual approach consists
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Figure 4.18: Architecture used in this work: p is an input value;

w is a connection weight; b represents a bias value and a an unit

output. The first layer has 9 neurons and an associated nonlinear

function; the output layer performs a linear combination of the

outputs of the previous layer.

of a stochastic back-propagation algorithm based on gradient descent. The

algorithm gives a prescription for changing the weights w for each input pat-

tern chosen in random order to learn a training set of input-output pairs [37]

[38]. This strategy decreases the cost function (for small enough learning

parameter) at each step, and lets successive steps adapt to the local gradi-

ent. Although the method allows wider exploration of the cost surface, it

does not necessarily produce the fastest convergence. So, we use conjugate

gradient algorithm for training, where a search is performed along conjugate

directions and we get faster convergence for our experiments. In most of the

conjugate gradient algorithms, the step size is adjusted at each iteration. A
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search is made along the conjugate gradient direction to determine the step

size which minimizes the cost function along that line. We used a varia-

tion to avoid this time-consuming line search known as the scaled conjugate

gradient algorithm[39].

Results

Tests on sample stacks of blocks belonging to Landsat 7 images are pre-

sented. The performance of the neural network is compared with the least

squares approach. For that, instead of training a neural network, the pre-

diction is computed by means of a linear combination whose weights are

estimated via least squares. The bitrates achieved by different methods (in-

cluding our method with neural networks and using linear prediction as in

our previous works) are listed in Table 4.4, for one stack of blocks of size

256 × 256 × 8. We trained neural networks with the architecture and al-

gorithm depicted in the previous Section. For the finest scale, three neural

networks (one for each orientation) were used and trained with 128 × 128

patterns; for the scale in a coarser level of detail less patterns are used: we

have 64 × 64 coefficients to predict in each orientation.

In Table 4.5 we summarize results for some sample stack of blocks that

belong to different areas of Argentina. As in the previous table, other lossless

methods like LOCO-I, JPEG2000 and PNG are included. The nonlinear

approach of the neural network method, lowers the bitrates achieved by the

linear prediction of coefficients.
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Block Neural Net Linear Pred JPEG 2000 LOCO-I PNG

1 2.63 2.64 2.76 2.63 3.04

2 2.46 2.47 2.78 2.61 3.04

3 2.83 2.85 3.11 2.95 3.32

4 3.36 3.37 3.80 3.67 3.88

5 3.18 3.20 3.81 3.65 3.88

6.1 1.28 1.28 1.33 1.11 1.43

6.2 1.49 1.49 1.57 1.39 1.73

7 3.17 3.18 3.47 3.30 3.61

Total 2.55 2.56 2.83 2.66 2.99

Table 4.4: Bitrates for each band of a sample stack of block

of Chaco (Argentina). First column shows our results and second

column corresponds to the linear prediction used in previous works.

Sample Stack Neural Network Linear Pred JPEG 2000 PNG LOCO-I

Chaco 2.550 2.560 2.830 2.991 2.661

Santa Cruz 2.406 2.418 2.691 2.889 2.525

San Luis 2.429 2.436 2.697 2.863 2.550

Table 4.5: Results for sample stacks of blocks of Landsat 7 images

of Argentina.
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4.4 Context-based edge prediction for thermal in-

frared band

The thermal bands in Landsat images are responses captured from the far

infrared region (10.4−12.5µm wavelengths) of the electromagnetic spectrum.

This region is captured with a coarser spatial resolution compared to the

resolution of the other bands2. Initially the MSS sensor captured far infrared

in band 8 in the Landsat 3 program. Later, the TM (Thematic Mapper)

was in charge of capturing this region (as well as their enhanced versions

ETM and ETM+). The information in these thermal bands has several

applications such as vegetation stress analysis, soil moisture discrimination,

thermal mapping and plant heat stress, etc.

In Landsat 7, all ETM+ bands –excluding band 6– have an adjustable

‘gain’ setting, which allows the Mission Operations Center (MOC) to maxi-

mize the instrument’s radiometric resolution for each band without saturat-

ing the detectors. Generally, acquisition of a scene in low gain allows a higher

dynamic range with less risk of saturation over bright areas. Acquisition in

high gain will provide greater radiometric resolution (sensitivity). Band 6

is acquired in two gain settings: low (6L) and high (6H), each provided in

a separate band file. Band 6L provides an expanded dynamic range and

lower radiometric resolution (sensitivity), with less saturation at high Dig-

ital Number (DN) values, while Band 6H has higher radiometric resolution

(sensitivity) with a more restricted dynamic range (see Fig. 4.19).

A special algorithm was designed for the compression of band 6L [28].

The histogram of this band is very similar to that of band 6H. Consider a

few histograms of a 256 × 256 × 8 stack of blocks of the image of San Luis

having coordinates x = 2817, y = 1537: in Fig. 4.20 we have the histograms

2ETM+ Band 6 is acquired at half the resolution (60-meter) of other bands (30-meters)

although newer products are resampled to match the spatial resolution of other bands.
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Figure 4.19: Design ETM+ reflective band high and low gain

dynamic ranges.

of blocks 1 and 4, and in Fig. 4.21 we have the histograms of blocks 6L and

6H. The latter look alike.

We also take into consideration that both bands 6L and 6H are highly

correlated - see the correlations between bands in Table 4.6. This special

algorithm is not based on the wavelet transform; instead, the coefficients of

the image are simply predicted and the difference is encoded.

In their lossless image compressor LOCO-I [15], Weinberger, Seroussi

and Sapiro used what they called the ‘median edge detector’ (MED) as a

fixed predictor for pixel x, in the case of a single image- see Figure 4.22.

This median edge detector was formerly used in the work of Martucci [40].

The MED predicts the value of x with x̂ according to the formula:

x̂ = median{a, b, a + b− c}.

Actually, the MED predicts x with a when it detects a horizontal edge above

pixel x, it predicts x with b when it detects a vertical edge left of pixel x,

and it predicts x by performing a linear interpolation at the positions of a,
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Figure 4.20: Histograms of a) block 1 and b) block 4, for a sample

stack of blocks.

band 1 1

band 2 0,9782 1

band 3 0,9743 0,9841 1

band 4 0,7628 0,8052 0,7555 1

band 5 0,804 0,8014 0,8249 0,6225 1

band 6.1 0,255 0,2485 0,3103 -0,0715 0,387 1

band 6.2 0,2612 0,2539 0,3155 -0,0616 0,3928 0,9737 1

band 7 0,8826 0,8761 0,9083 0,5817 0,9252 0,4659 0,4703 1

band 1 band 2 band 3 band 4 band 5 band 6.1 band 6.2 band 7

Table 4.6: Interband correlations for image San Luis.

b and c in all the other cases.

For the compression of a Landsat image, specifically for the compression

of band 6L, which is compressed after band 6H, we aimed at a predictor

similar to MED, but which would also include the information of pixel z

(same position as x in the previous band 6H)- see Figure 4.23. This revealed

itself insufficient. Histograms from band 6L and 6H, however similar in

shape, have different mean values and different standard deviations. It was

necessary to equalize band 6H to band 6L, by matching their cumulative

histograms, before we made use of pixel z.
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Figure 4.21: Histograms of a) block 6L and b) block 6H for a

sample stack of blocks.

c b

a x

Figure 4.22: One image: pixels for prediction of x.

Consider band 6H as a sample of random variable U , with cumulative

distribution FU , and consider band 6L as a sample of random variable Y ,

with cumulative distribution FY . For each value u, let v be the value such

that

FY (v) = FU (u)

and define g(u) as

g(u) = v = F−1
Y FU (u);

then g(U) has the desired cumulative distribution similar to FY [41].

z

c b

a x

6H 6L

Figure 4.23: Landsat image: pixels for the prediction of x in

band 6L.
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c b d

a x

Figure 4.24: Pixels for block 6L gradient template.

By calculating g(u) for each pixel u of block 6H (in the stack being

processed), we transform block 6H to a new image having a cumulative

histogram similar to that of block 6L: the values will be akin to the values

of block 6L, and useful for predicting them. Accordingly, the proposed

prediction of our method for pixel x in block 6L is

x̂ = median{a, b, a + b− c, g(z)}.

The predictions errors x − x̂ were encoded with an entropy-based coder.

The size of the whole band 6L of the San Luis image was thus reduced from

50.2 MB to 5.5 MB. Further reduction was obtained by using contexts in

the entropy-based coder. As in LOCO-I [15], the contexts used were the

gradients of each pixel of band 6L, that is, d− b, b− c and c− a (see Figure

4.24). To decrease the great number of possible contexts, the values of the

gradients were grouped into three classes {0}, {−1, 1} and {x ∈ Z : |x| > 1}.

Band 6L finally occupied 5.1 MB, after the context-based entropy coder was

run. This gives a compression ratio of 9.84:1 with no loss of information.



Chapter 5

Hyperspectral image

compression

5.1 State of the art for lossless compression of hy-

perspectral images

Most of the hyperspectral compressors are prediction–based. Since spec-

tral correlation is usually high (much more higher than spatial) pixels are

predicted with others in an adjacent band (rather than pixels surrounding

the one to be predicted). SLSQ [36], a low-complexity method designed

for hyperspectral image compression, performs a simple prediction for each

pixel, by taking a constant times the same pixel in the previous band. The

constant is calculated by least squares over 4 previously encoded neighbor-

ing pixels. SLSQ–OPT version of SLSQ performs one band look–ahead to

determine if the whole band is better compressed this way or with intraband

prediction, while in the SLSQ–HEU version this decision is taken by an of-

fline heuristic. CCAP [42] predicts a pixel with the conditional expected

value of a pixel given the context. The expected value is calculated over

coded pixels having matching (highly correlated) contexts. Slyz and Zhang

58
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[43] propose 2 compressors (BH and LM) for hyperspectral images. BH pre-

dicts a block as a scalar times the same block in the previous band. Coding

contexts are defined by the quantized average error. LM predicts a pixel by

choosing among different intraband predictions the one that works best for

several pixels at the same position in previous bands.

Mielikainen and Toivanen proposed C-DPCM [44], a method that clas-

sifies the pixels at the same location and through all the bands, with vector

quantization. Interband prediction is performed using the pixels at the same

position in 20 previous bands. Weights, calculated for each class/ band, are

sent into the code, as well as the 2D template with the classes. Aiazzi et al.

[45] classify the prediction context of every pixel using fuzzy clustering, and

then calculate the weights for each class. For compression of hyperspectral

images [46] they divide each band into small blocks (16×16), they calculate

weights for interband prediction over each pixel in a block, and then make

a fuzzy clustering of the weights obtained for all the blocks. For each pixel

a membership degree is computed according to the efficiency of the weights

(from different clusters) on a causal context of the pixel. The final predic-

tion for a pixel is obtained by a combination of linear predictions involving

weights from different clusters, pondered by the degrees of membership of

the pixel to each cluster.

It is worth mentioning that wavelet-based compressors such as JPEG2000

[12] have been successfuly used for lossy compression of multiband images,

either hyperspectral [47, 48] or general earth data [49].

5.2 Look-up table-based methods

5.2.1 LUT

The Look Up Table algorithm [50] is a fast compression technique based on

predicting a pixel with another pixel from the same band. Which pixel is
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used for prediction is determined by inspecting the previous band. Suppose

we want to predict pixel I
(z)
x,y where z is the band number. Then we seek on

band z−1 the pixel with the same intensity as I
(z−1)
x,y which is nearest to it in

a causal neighbourhood. Let I
(z−1)
x′,y′ be that pixel. Then, the prediction for

pixel I
(z)
x,y will be I

(z)
x′,y′ . If no match is found, pixel I

(z−1)
x,y is the one selected

for prediction. In order to speed things up, a look up table data structure is

used for searching the pixel on the previous band. With this data structure

the algorithm is efficiently implemented as shown in Fig 5.1 for consecutive

bands z and z−1. Then, the difference I(z)−P (z) between the band and its

prediction is entropy coded and this process is repeated for z = 2, . . . , 224.

Data: Bands I(z), I(z−1) and table initialized as LUTable(i) = i

Result: Prediction for band z: P (z)

for every pixel I
(z)
x,y do

P
(z)
x,y ← LUTable(I

(z−1)
x,y );

LUTable(I
(z−1)
x,y ) ← I

(z)
x,y;

end

Figure 5.1: Look-up Table algorithm.

In Fig. 5.2 entropy values are ploted for each band of the Jasper Ridge

image. In dashed line, entropies of the pixels of the image are ploted. 6

steps of the 2D S+P wavelet transform were computed and the entropy of the

coefficients is plotted in dotted line for each band. Finally it is shown in gray

line the entropy of the prediction differences for the LUT algorithm. It is

remarkable how high is the compression achieved with this simple algorithm,

which is only based on indexing and updating a table. It is entirely based

on the premise of high correlation between bands and designed in order to

take advantage of this fact.
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Original Wavelet S+P LUT prediction

8.6656 6.6587 4.9504

Table 5.1: Average entropies for first scene of Jasper Ridge.
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Figure 5.2: Entropy values for every band of the Jasper Ridge

image computed over the original image (dashed), over the predic-

tion differences for the LUT method (gray), and over the 2D S+P

wavelet transform (dotted). See averaged values in Table 5.1.

5.2.2 LAIS-LUT

An improvement over the LUT algorithm has been presented by Bormin

Huang [51]. It was named LAIS-LUT after Locally Averaged Interband

Scaling LUT and it is supposed to behave more accurately in presence of

outliers. This modification adds an extra LUT table and the predictor is

selected from one of the two LUTs. Using a scaling factor α which is pre-

computed on a causal neighbourhood, an estimate P̃
(z)
x,y is calculated for a

current pixel I
(z)
x,y as P̃

(z)
x,y = αI

(z−1)
x,y . Since two values are now possible can-

didates for prediction (one for each LUT), the one that is closer to P̃
(z)
x,y is

selected as the final prediction (Fig. 5.3 shows LAIS-LUT algorithm). When

prediction P (z) for band z is estimated, the prediction error I(z) − P (z) is
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entropy coded. This is repeated for z = 2, . . . , 224. Notice that when the

tables are not initialized, P
(z)
x,y is selected for prediction, and, the value of

the first LUT is used for prediction only when this table is initilialized.

Data: Bands I(z), I(z−1), tables LUTable1 and LUTable2 are not

initialized

Result: Prediction for band z: P (z)

for every pixel I
(z)
x,y do

if both tables are not initialized on entry (x,y) then

P
(z)
x,y ← αI

(z−1)
x,y

else if only LUTable1 is initialized in (x,y) then

P
(z)
x,y ← LUTable1(I

(z−1)
x,y );

else

P
(z)
x,y ← closer value of {LUTable1(I

(z−1)
x,y ),LUTable2(I

(z−1)
x,y )}

to αI
(z−1)
x,y ;

end

LUTable2(I
(z−1)
x,y ) ← LUTable1(I

(z−1)
x,y );

LUTable1(I
(z−1)
x,y ) ← I

(z)
x,y;

end

Figure 5.3: LAIS-LUT algorithm.

5.2.3 LAIS-QLUT

Mielikainen and Toivanen proposed a modification to the LAIS-LUT method

in order to shrink Lookup tables [52]. For that, the value used for indexing

into the LUTs is quantized and smaller LUTs can be used (i.e., the value x

used as an index in the LUT is replaced by ⌊x/q⌋ for some quantization step

q, being ⌊·⌋ : R→ Z a function that maps to a close integer). In the previous

section, LAIS-LUT found exact matches in the previous band in order to

obtain the predictor in the current band. Now, this search is no more exact

and the predictor’s selection in the current band is based on ‘similarities’ in
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the previuos band. In the tests performed here, the same quantization step

is used for each band. Resuls for the Jasper Ridge image are presented in

Table 5.2 and in Figure 5.4 for several quantization steps.

q 10 20 25 28 30 35

entropy 4.6772 4.7761 4.8411 4.8805 4.9075 4.9730

Table 5.2: Mean entropies using the corresponding quantization

step q in the LAIS-QLUT method.
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Figure 5.4: Entropies for LUT, LAIS-LUT, and LAIS-QLUT

methods, for q = 20, 25, 28, 30, 35.

5.2.4 LAIS-LUT + Classification

In this subsection a classification step is added before the LAIS-LUT algo-

rithm is applied. For that, LAIS-LUT is applied on pixels belonging to each

class separately; this is equivalent to using separate LUT tables for each

class (see Fig. 5.5 for a description of this algorithm).
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Data: Image I, N=number of classes.

begin

Classify I into N classes;

Encode I(1);

for z = 2 . . . 224 do

for i = 1 . . . N do

I
(z)
i ← pixels in I(z) that belong to class Ci;

P
(z)
i ← LAIS LUT(I

(z)
i , I(z−1));

end

Encode I(z) − P (z)

end

end

Figure 5.5: LAIS-LUT algorithm with classes.

Note that every time the function LAIS LUT is called, LUT tables are

reset. In addition, a template indicating pixel classes should be sent to the

decoder, since classification is performed on all bands.

This method did not show any improvements on bitrates.
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5.3 LAIS-LUT with Varying Degrees of Confidence

(LAIS-LUT-VDC)

Based on observed examples where LAIS-LUT predictions were inaccurate,

an improvement was introduced in this thesis, which was partly published

in [53]. In LAIS-LUT, when both LUTs entries reference a pixel on the

current band (i.e., both tables have been updated at least once), one of the

two values is selected, whether it is near to the LAIS prediction P
(z)
x,y or

not. The scaling factor (LAIS) is estimated on quotients between pixels on

consecutive bands; these pixels surround spatialy the one to be predicted

(see equation 5.2). In order to avoid outliers when predicting, the LAIS-LUT

method assumes that either

αI(z−1)
x,y ≈ LUTable1(I

(z−1)
x,y ) or αI(z−1)

x,y ≈ LUTable2(I
(z−1)
x,y ),

that is, αI
(z−1)
x,y is close to the LUT prediction, or, the scaling factor observed

in the neighbourhood is similar to the scaling factor between the pair values

(index and content) of one of the LUTs. Roughly speaking, the actual pixel

and the one used for prediction are implicitly conjectured to belong to the

same ‘class’. When this is not the case, predictions are inaccurate. For that

reason, a distinction may be made based on the proximity of these values.

Let t̃ be the lookup table whose I
(z−1)
x,y -th entry is closest to the LAIS-LUT

predicted value, ie,

t̃ = argmin
1≤i≤2

∣∣∣LUTablei(I(z−1)
x,y )− αI(z−1)

x,y

∣∣∣

and let P̃
(z)
x,y be the prediction, that is, P̃

(z)
x,y = LUTablet̃(I

(z−1)
x,y ).

For a given threshold uz, the final predictions P
(z)
x,y for the method LAIS-

LUT-VDC (LAIS-LUT with Varying Degrees of Confidence) is defined as

P (z)
x,y (uz) =





P̃
(z)
x,y if

∣∣∣∣α−
P̃

(z)
x,y

I
(z−1)
x,y

∣∣∣∣ < uz

αI
(z−1)
x,y otherwise

(5.1)
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In order to determine the best value for uz, the entropy of the prediction

error is minimized:

min
uz

H(I(z) − P (z)(uz))

This minimization is done for each band. We used the golden section search

[54] algorithm which is quite simple and converges linearly to the minimum.

In Fig. 5.6 the entropy of the error prediction is shown for bands 38, 92,

144 and 157. The x-axis of each plot indicates the threshold utilized to

estimate the entropy of the prediction error. It should be noticed that this

new method is a generalization of LAIS-LUT, since as the threshold becomes

larger the prediction chosen according to equation (5.1) is more similar to

LAIS-LUT. Fig. 5.6 (c) and (d) shows that LAIS-LUT performs better on

bands 144 and 157 since the larger the threshold (and therefore, the method

behaves more like LAIS-LUT) the smaller is the entropy; in other cases,

(Fig. 5.6 (a) and (b)) finding other thresholds is worth the effort.

Although they may seem smooth functions, they are not if we look closer

–see Fig. 5.6 (d) for a clear example. For that reason, faster algorithms (such

as Newton) were not used for minimization since they assume continuous

functions and, in order to obtain such smooth version, too many evalua-

tions of the entropy had to be performed. The golden-search reaches the

minimun in less than 20 iterations, with only one evaluation of the entropy

per iteration. Another constraint of this algorithm is that the function to

be minimized must be unimodal. Extra care had to be taken on the ini-

tialization of this algorithm since it starts on 3 points where the function

value in the middlepoint must be less than that of the other 2. We used a

recursive algorithm in order to determine these three points; in case these

points cannot be found (probably because the function is strictly increas-

ing/decreasing) the minimun value is returned.

Fig. 5.7 shows the LAIS-LUT-VDC algorithm for two consecutive bands.

Once the prediction P (z) for band z is estimated, the difference I(z) − P (z)
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Figure 5.6: Entropy of I(z) − P (z)(uz) depending on threshold uz,

for bands z = 38, 92, 144, 157 of Jasper Ridge image. Prediction P is

estimated according to LAIS-LUT-VDC algorithm shown in Fig. 5.7.

is entropy coded. This is repeated for z = 2, . . . , 224.

In this modified version of LAIS-LUT, the LUT prediction is trusted only

if the quotient between this prediction and the pixel in the previous band

is similar to α (i.e., they are in the same ‘class’). If not, the surrounding

pixels are trusted for predicting. This may be thought of as a division into

classes (depending on the threshold): on one side we rely upon the high

correlation between the two bands (a global meter), which is the underlying

premise of the LUT and LAIS-LUT methods; on the other side, we restrict

to the local activity of the pixels examining their behaviour on a confined
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Data: Bands I(z), I(z−1), threshold uz, tables LUTable1 and

LUTable2 are not initialized

Result: Prediction for band z: P (z)

begin

for every pixel I
(z)
x,y do

if both tables are not initialized then

P
(z)
x,y ← αI

(z−1)
x,y ;

else

// get best LUT prediction

if only LUTable1 is initialized then

P̃
(z)
x,y ← LUTable1(I

(z−1)
x,y );

else

P̃
(z)
x,y ← closer value of

{LUTable1(I
(z−1)
x,y ),LUTable2(I

(z−1)
x,y )} to αI

(z−1)
x,y ;

end

// determine final prediction

if

∣∣∣∣α−
P̃

(z)
x,y

I
(z−1)
x,y

∣∣∣∣ < uz then

P
(z)
x,y ← P̃

(z)
x,y ;

else

P
(z)
x,y ← αI

(z−1)
x,y ;

end

end

LUTable2(I
(z−1)
x,y ) ← LUTable1(I

(z−1)
x,y );

LUTable1(I
(z−1)
x,y ) ← I

(z)
x,y;

end

end

Figure 5.7: LAIS-LUT-VDC algorithm for consecutive bands z − 1 and z.
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neighbourhood.

5.3.1 Estimating the scaling factor

We choose among 4 possible ways to estimate α for our method:

1. Locally Averaged Interband Scale. This is how α is computed

for LAIS-LUT (as described in [51]):

α1 =
1

3

(
I
(z)
x−1,y

I
(z−1)
x−1,y

+
I
(z)
x,y−1

I
(z−1)
x,y−1

+
I
(z)
x−1,y−1

I
(z−1)
x−1,y−1

)
(5.2)

2. Median of quotients.

α2 = median

{
I
(z)
x−1,y

I
(z−1)
x−1,y

,
I
(z)
x,y−1

I
(z−1)
x,y−1

,
I
(z)
x−1,y−1

I
(z−1)
x−1,y−1

}

3. Quotient of Local Sums. Proposed in [52] for the LAIS-QLUT

method:

α3 =
I
(z)
x−1,y + I

(z)
x,y−1 + I

(z)
x−1,y−1

I
(z−1)
x−1,y + I

(z−1)
x,y−1 + I

(z−1)
x−1,y−1

4. Least Squares. This is the least squares estimator for the model

I
(z−1)
x,y · α = I

(z)
x,y for three neigbouring pixels:

α4 =
I
(z)
x−1,yI

(z−1)
x−1,y + I

(z)
x,y−1I

(z−1)
x,y−1 + I

(z)
x−1,y−1I

(z−1)
x−1,y−1

(I
(z−1)
x−1,y)

2 + (I
(z−1)
x,y−1)

2 + (I
(z−1)
x−1,y−1)

2

We made tests in order to find the best estimate for α among the four

choices given. According to results given in Table 5.3, on average better

results were obtained with α3. This is the estimate for α that we chose for

our method.

5.3.2 Results

Bitrates results for each band are shown in Figs. 5.8 and 5.9 for Jasper

Ridge and Low Altitude images respectively. For comparison, we extract

from [52] and [55] compression ratio results for other lossless methods and
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α1 α2 α3 α4

Jasper 3.4866 3.4659 3.4919 3.4913

Low Alt 3.2404 3.2218 3.2461 3.2475

Cuprite 3.6669 3.6539 3.6701 3.6683

Lunar 3.5456 3.5330 3.5493 3.5473

Average 3.4849 3.4686 3.4894 3.4886

Table 5.3: Compression ratios obtained by our method LAIS-

LUT-VDC using different estimations of the scaling factor.
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Figure 5.8: Bitrates per band for Jasper Ridge image.

append our achieved compression ratios in the last row (see Tables 5.4 and

5.5). BH, SLSQ, CCAP and C-DPCM were introduced in Section 5.1. 3D-

CALIC [20] and M-CALIC [56] are CALIC-based [9] compressors devel-

oped for multiband images. NPHI [57] is a method for hyperspectral image

compression that predicts pixels from its context (in the current and pre-

vious band) and EPHI extends NPHI using edge-based analysis. Finally,
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Figure 5.9: Bitrates per band for Low Altitude image.

Algorithm
Cuprite Jasper

Ridge

Lunar

Lake

Low

Alt

3D-CALIC 2.97 2.98 3.01

SLSQ 3.15 3.15 3.15

M-CALIC 3.14 3.06 3.19

SLSQ-HEU 3.23 3.22 3.23

NPHI 3.34 3.27 3.22

LUT 3.44 3.23 3.4

S-RLP 3.41 3.44 3.41

S-FMP 3.43 3.46 3.43

RKLT ML 4+JPEG2K 3.30 3.31 3.23 3.09

LAIS-LUT 3.58 3.42 3.53

LAIS-LUT-VDC 3.67 3.49 3.55 3.25

Table 5.4: Compression ratios for BIL methods.
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Algorithm
Cuprite Jasper

Ridge

Lunar

Lake

Low

Alt

CCAP 3.53 2.56 3.21

BH 3.13 3.06 3.13

3D-CALIC 3.06 3.08 3.09

SLSQ-OPT 3.24 3.23 3.23

M-CALIC 3.22 3.17 3.28

LUT 3.44 3.23 3.4

EPHI 3.36 3.29 3.28

C-DPCM 3.42 3.46 3.37

S-RLP 3.41 3.44 3.41

S-FMP 3.43 3.46 3.43

RKLT ML 4+JPEG2K 3.30 3.31 3.23 3.09

LAIS-LUT 3.58 3.42 3.53

LAIS-LUT-VDC 3.67 3.49 3.55 3.25

Table 5.5: Compression ratios for BSQ methods.

the method RKLT ML 4 + JPEG2K [55] applies a 4-level multiclustered

reversible Karhunen-Loêve transform in the spectral dimension; the spec-

tral decorrelated data is then losslessly coded with JPEG2000. Results are

reported for BSQ (band sequential) and BIL (band interleaved by line) for-

mats. Notice that look-up table methods do not benefit from any particular

format since only data from the line in the previous band is needed and no

more than one band is used by the methods. In the results provided, our

method outperforms LUT and LAIS-LUT.

5.4 LAIS-LUT-VDC with classes in the context

The scaling factor used in LAIS-LUT-VDC, is computed in a small neigh-

bourhood of the pixel to be predicted using just three pixels so as to be as
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fast as possible. This neighbourood may be expanded in order to include

more pixels. However, pixels that are not related with the one to be pre-

dicted may introduce a bias in the estimation of the scaling factor. If, on

the contrary, this pixels are related (i.e., are in the same class) the estima-

tion of the scaling factor would still be accurate. That is why, in order to

make LAIS-LUT-VDC predictions more accurate, in this approach we try

to improve the prediction that does not come from the lookup tables. For

that, the scaling factor is enhanced by:

1. expanding the context size in which it is calculated;

2. only using the pixels that are in the same class with respect to the one

to be predicted.

Two ways of obtaining a template of classes were used:

5.4.1 Entropy-based classification.

AVIRIS images are formed by 224 bands. Each pixel Ix,y may be thought

of as a vector in Z
224 where each component belongs to a different band. In

Figure 5.10 the first scene of the Jasper Ridge image is shown along with four

pixels belonging to different classes, marked with symbols ‘⊕’, ‘◦’, ‘♥’ and

‘♦’. The spectral vectors associated to the same 4 positions are plotted in

Figure 5.11, showing different behaviours depending on what type of soil is

being considered (this was mentioned earlier when spectral signatures were

introduced).

In order to classify the image, for every pixel, a 1-D wavelet transform is

applied along the spectral direction. Then, the entropy of each transformed

spectral vector is computed, giving an image S where Sx,y := H(w(Ix,y))

where H(·) denotes the entropy function and w is a 1-D wavelet transform.

In Figure 5.12 a grayscale image of the entropies are displayed. This image

may be further split into classes with an unsupervised classifier (in this work,
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Figure 5.10: Band 50 of Jasper Rigde image.

K-means in 1 dimension was used). Results of compressing AVIRIS images

with LAIS-LUT-VDC, in which the scaling factor is calculated with pixels

belonging to the same class, and the classification is carried out with the

mentioned entropy-based method are given in Table 5.6 (a) - bitrates are

shown for different sizes of the context and number of classes.

5.4.2 Classification based on selected bands

In Figure 5.11 it can be observed that low reflectance values are present in

some groups of bands, regardless of the landscape to which the pixels belong.

In most bands, though, the spectral behaviour is different according to the

landscape, and this can be useful for classification. In this second approach,

a few of these bands are selected for unsupervised classification. They are

bands 45, 70, 93, 175, 183. In Figure 5.11 they are indicated with black

vertical lines. K-means in 5 dimensions was implemented. Results of com-
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Figure 5.11: Spectral signatures of different classes: values of

selected pixels in Fig 5.10 throughout the bands. Vertical lines

indicate the bands chosen for K-means classification.

Figure 5.12: Entropy of the wavelet transform of every pixel.
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pressing AVIRIS images with LAIS LUT-VDC, in which the scaling factor

is calculated with pixels belonging to the same class, and the classification

is carried out with K-means on 5 selected bands, are listed in Table 5.6 (b)-

bitrates are shown for different sizes of the context and number of classes.
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Image
2 classes 3 classes

CZ 4 CZ 5 CZ 6 CZ 7 CZ 8 CZ 4 CZ 5 CZ 6 CZ 7 CZ 8

Cuprite 4.3285 4.3181 4.3112 4.3140 4.3094 4.3348 4.3247 4.3182 4.3140 4.3094

Jasper 4.5926 4.5883 4.5877 4.6125 4.6124 4.5998 4.5925 4.5891 4.6125 4.6124

Low Alt 4.9412 4.9368 4.9371 4.9734 4.9765 4.9582 4.9496 4.9463 4.9734 4.9765

Lunar 4.4665 4.4598 4.4562 4.4593 4.4554 4.4793 4.4699 4.4643 4.4593 4.4554

Avg 4.5822 4.5757 4.5731 4.5898 4.5884 4.5930 4.5842 4.5795 4.5898 4.5884

(a) Classes determined with the entropy-based classification.

Image
2 classes 3 classes

CZ 4 CZ 5 CZ 6 CZ 7 CZ 8 CZ 4 CZ 5 CZ 6 CZ 7 CZ 8

Cuprite 4.3203 4.3088 4.3020 4.2973 4.2952 4.3493 4.3296 4.3168 4.3104 4.3065

Jasper 4.5936 4.5931 4.5939 4.5957 4.5978 4.5956 4.5891 4.5864 4.5855 4.5862

Low Alt 4.9480 4.9409 4.9392 4.9400 4.9425 4.9490 4.9420 4.9396 4.9401 4.9422

Lunar 4.4686 4.4565 4.4492 4.4456 4.4429 4.4956 4.4773 4.4664 4.4593 4.4554

Avg. 4.5826 4.5748 4.5711 4.5697 4.5696 4.5974 4.5845 4.5773 4.5738 4.5726

(b) Classes determined with K-means on selected bands.

Table 5.6: Bitrate results for LAIS-LUT-VDC with the scaling factor estimated

on the context using pixels of the same class. CZ stands for Context Size.
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Conclusions

In this thesis the lossless compression of satellite images has been addressed.

Two major types of multiband images were considered: multispectral and

hyperspectral.

For multispectral images a new lossless compressor that exploits both

spatial and spectral correlation was presented. With an integer wavelet

transform a significant reduction of spatial correlation was obtained. To re-

duce spectral correlation (and remaining spatial correlation) we rely on inter

and intraband predictions and encoding of prediction differences. These are

performed on the wavelet coefficients instead of the pixels. Tests for dif-

ferent models of statistical dependencies between wavelet detail coefficients,

showed the importance of separating information into classes. The idea of

conditioning the estimation of weights to the class (besides the band, block

and subband), has led to more accurate predictions. This resulted in lower

entropies of prediction differences. Spectral correlations were exploited in

three more ways. In each stack of blocks, correlations between wavelet–

transformed bands determined a new band order. In the classification step,

initial classes for a Lloyd–Max quantizer were set according to the classes

of the block in the previous band. And pixel classes (and induced classes

for wavelet coefficients) were used to estimate the classes of the block in the

78
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next band.

Hyperspectral images have quite different characteristics compared to

multispectral images. In case of AVIRIS, their high spectral resolution make

them suitable for spectral prediction; on the other hand, 2D transforms

cannot achieve a good spatial decorrelation because of the high radiometric

resolution (bitdepth) of these images. An algorithm based on look-up ta-

bles was presented. The simple and efficient LAIS-LUT compressor fails to

predict accurately in some cases. The prediction in LAIS-LUT is necessar-

ily obtained by one of two lookup tables. These tables keep track of pixel

values that, have the same intensity with respect to the one to be predicted

(if we restrict to the previous band). So if these pixels in the previous band

have the same intensity, the corresponding pixels (ie, at the same location)

in the current band are supposed to have the same (or similar) values too

(because of the high correlation between adjacent bands). Those pixels in

the current band are: the one to be predicted, and the one kept in the table

that is used for prediction. So, values in the tables are used for prediction.

A scaling factor, computed on a surrounding neighbourhood of the pixel to

be predicted, is used only to determine which one of the two tables are used.

The scaling factor itself may be used to generate a prediction as well. By

setting a threshold value that allows to either predict with a lookup table

value or by using the scaling factor, a more flexible version of LAIS-LUT was

designed: LAIS-LUT-VDC. This may be thought as a division into classes

(depending on the threshold): on one side we rely upon the high correlation

between the two bands (a global meter), which is the underlying premise

of the LUT and LAIS-LUT methods; on the other side, we restrict to the

local activity of the pixels examining their behaviour on a confined neigh-

bourhood. A classification step has been added as well in order to compute

the scaling factor in a more suitable way. This classification is performed

considering all the bands and determining a class for each pixel. By ex-
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tending the neighbourhood in which the scaling factor is computed and only

allowing the utilization of those pixels in the neighbourhood that have the

same class of that to be predicted, a more precise scaling factor is obtained.

This in turn, favors more accurate predictions in LAIS-LUT-VDC since the

scaling factor is a key feature: it is used, depending on the threshold, either

to generate a prediction or to select a value from one of the lookup tables.

For the design of these two lossless compressors, different properties of

the images were studied thoroughly, namely, their resolutions (spectral, spa-

tial and radiometric) and correlations (spatial and spectral). Techniques

and algorithms which take advantage of each set of properties have been

presented. Original contributions of this work, are: an analysis of different

models for wavelet coefficient’s dependencies, a novel combination of tech-

niques for the compression of multispectral images, an original method for

band ordering, based on wavelet coefficients correlation, an original vari-

ant of the LAIS-LUT method for the compression of hyperspectral images,

and an original segmentation of these images based on the entropy of 1D

wavelet coefficients, calculated along the spectral direction. All of these

contributions aim at achieving competitive compression rates for the loss-

less compression of these satellite images.
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