biblioteca central Luis fleloir

Tesis Doctoral

Sobre caracterizaciones estructurales de clases de grafos relacionadas con los grafos perfectos y la propiedad de König

Safe, Martín Darío

2011

Este documento forma parte de la colección de tesis doctorales y de maestría de la Biblioteca Central Dr. Luis Federico Leloir, disponible en digital.bl.fcen.uba.ar. Su utilización debe ser acompañada por la cita bibliográfica con reconocimiento de la fuente.

This document is part of the doctoral theses collection of the Central Library Dr. Luis Federico Leloir, available in digital.bl.fcen.uba.ar. It should be used accompanied by the corresponding citation acknowledging the source.

[^0]
EXACTAS

Facultad de Ciencias Exactas y Naturales

UBA

Universidad de Buenos Aires

UNIVERSIDAD DE BUENOS AIRES
Facultad de Ciencias Exactas y Naturales
Departamento de Computación

Sobre caracterizaciones estructurales de clases de grafos relacionadas con los grafos perfectos
 y la propiedad de Kőnig

Tesis presentada para optar al título de Doctor de la Universidad de Buenos Aires en el área Ciencias de la Computación

Martín Darío Safe

Directores de tesis: Flavia Bonomo
Guillermo Alfredo Durán

Consejero de estudios: Min Chih Lin

Buenos Aires, 2011

Sobre caracterizaciones estructurales de clases de grafos relacionadas con los grafos perfectos y la propiedad de Kőnig

Un grafo es balanceado si su matriz clique no contiene como submatriz ninguna matriz de incidencia arista-vértice de un ciclo impar. Se conoce una caracterización para estos grafos por subgrafos inducidos prohibidos, pero ninguna que sea por subgrafos inducidos prohibidos minimales. En esta tesis probamos caracterizaciones por subgrafos inducidos prohibidos minimales para los grafos balanceados restringidas a ciertas clases de grafos y mostramos que dentro de algunas de ellas conducen a algoritmos lineales para reconocer el balanceo.

Un grafo es clique-perfecto si en cada subgrafo inducido el mínimo número de vértices que intersecan todas las cliques coincide con el máximo número de cliques disjuntas dos a dos. Contrariamente a los grafos perfectos, para estos grafos no se conoce una caracterización por subgrafos inducidos prohibidos ni la complejidad del problema de reconocimiento. En esta tesis caracterizamos los grafos clique-perfectos por subgrafos inducidos prohibidos dentro de dos clases de grafos, lo que implica algoritmos de reconocimiento polinomiales para la clique-perfección dentro de dichas clases.

Un grafo tiene la propiedad de Kônig si el mínimo número de vértices que intersecan todas las aristas iguala al máximo número de aristas que no comparten vértices. En esta tesis caracterizamos estos grafos por subgrafos prohibidos, lo que nos permite también caracterizar los grafos arista-perfectos por arista-subgrafos prohibidos.

Palabras clave. algoritmos de reconocimiento, grafos arco-circulares, grafos arista-perfectos, grafos balanceados, grafos bipartitos, grafos clique-Helly hereditarios, grafos clique-perfectos, propiedad de König, grafos coordinados, grafos de línea, grafos K-perfectos hereditarios, grafos perfectos, subgrafos prohibidos

On structural characterizations of graph classes related to perfect graphs and the Kőnig property

A graph is balanced if its clique-matrix contains no edge-vertex incidence matrix of an odd cycle as a submatrix. While a forbidden induced subgraph characterization of balanced graphs was given, no such characterization by minimal forbidden induced subgraphs is known. In this thesis, we prove minimal forbidden induced subgraph characterizations of balanced graphs, restricted to graphs that belong to certain graph classes. We also show that, within some of these classes, our characterizations lead to linear-time recognition algorithms for balancedness.

A graph is clique-perfect if, in each induced subgraph, the minimum size of a set of vertices meeting all the cliques equals the maximum number of vertex-disjoint cliques. Unlike perfect graphs, neither a forbidden induced subgraph characterization nor the complexity of the recognition problem are known for clique-perfect graphs. In this thesis, we characterize clique-perfect graphs by means of forbidden induced subgraphs within two different graph classes, which imply polynomial-time recognition algorithms for clique-perfectness within the same two graph classes.

A graph has the Kőnig property if the minimum number of vertices needed to meet every edge equals the maximum size of a set of vertex-disjoint edges. In this thesis, we characterize these graphs by forbidden subgraphs, which, in its turn, allows us to characterize edge-perfect graphs by forbidden edge-subgraphs.

Keywords. balanced graphs, bipartite graphs, circular-arc graphs, clique-perfect graphs, coordinated graphs, edge-perfect graphs, forbidden subgraphs, König property, hereditary cliqueHelly graphs, hereditary K-perfect graphs, line graphs, perfect graphs, recognition algorithms

Agradecimientos

A mis directores de tesis, Willy y Flavia, por todo lo que me enseñaron a lo largo de estos años y por haberme brindado su apoyo y confianza desde el primer momento. A los jurados, Andreas Brandstädt, Marisa Gutierrez y Fábio Protti, por sus valiosas observaciones. A Min Chih Lin, mi consejero de estudios.

A Luciano, mi compañero y amigo durante estos años. También a mis demás coautores, Mitre Dourado, Luerbio Faria y Annegret Wagler, por su generosidad.

A toda la gente del Departamento de Computación y del Instituto de Ciencias. Al CONICET que me sostuvo económicamente con una beca.

A mis padres Clara y Horacio y mi hermano Damián,
por dar todo para ayudarme a cumplir mis sueños. por dar todo para ayudarme a cumplir mis sueños.

A Sole, por el amor que me das cada día.

On structural characterizations of graph classes related to perfect graphs and the Kőnig property

Contents

1 Introduction 1
2 Preliminaries 9
2.1 Basic definitions and notation 9
2.2 Some special graph classes and the modular decomposition 14
2.2.1 Perfect graphs 14
2.2.2 Helly property and hereditary clique-Helly graphs 14
2.2.3 Circular-arc graphs and Helly circular-arc graphs 15
2.2.4 Cographs and modular decomposition 16
3 Balanced graphs 19
3.1 Background 20
3.2 Some properties of minimally not balanced graphs 22
3.3 Recognition of balanced graphs and balanced matrices 26
3.4 Balancedness of complements of bipartite graphs 27
3.5 Balancedness of line graphs of multigraphs 31
3.6 Balancedness of complements of line graphs of multigraphs 36
3.6.1 Families of L-balanced multigraphs 36
3.6.2 Characterizing balanced complements of line graphs of multi- graphs 39
3.6.3 Recognizing balanced complements of line graphs of multigraphs 48
3.6.4 Lemmas for the proof of Theorem 3.28 52
3.7 Balancedness of a superclass of Helly circular-arc graphs 58
3.8 Balancedness of claw-free circular-arc graphs 66
3.9 Balancedness of gem-free circular-arc graphs 68
4 Clique-perfect graphs 73
4.1 Background 74
4.1.1 Clique-perfect graphs 74
4.1.2 Coordinated graphs and hereditary K-perfect graphs 77
4.1.3 Connection with hypergraph theory 79
4.2 Clique-perfectness of complements of line graphs 82
4.2.1 Linear and circular structure of graphs containing no bipartite claw 83
4.2.1.1 Structure of fat caterpillars 85
4.2.1.2 Structure theorem for graphs containing no bipartite claw 91
4.2.2 Edge-coloring graphs containing no bipartite claw 95
4.2.3 Matching-perfect graphs 99
4.2.3.1 Graphs having some cycle of length $3 k$ for some $k \geqslant 2$ 102
4.2.3.2 Graphs having no cycle of length greater than 4 104
4.2.4 Recognition algorithm and computing the parameters 121
4.3 Clique-perfectness of gem-free circular-arc graphs 124
5 Graphs having the Kônig property and edge-perfect graphs 127
5.1 Background 127
5.1.1 Graphs having the Kőnig property 127
5.2 The Kőnig property in terms of forbidden subgraphs 130
5.3 Edge-perfectness and forbidden edge-subgraphs 136
6 Final remarks 141
Bibliography 145
Glossary of notation 155
Index 157

Chapter 1

Introduction

In 1969, Berge defined a $\{0,1\}$-matrix to be balanced [7] if it contains no edge-vertex incidence matrix of any cycle of odd length as a submatrix. Balanced matrices have remarkable properties studied in polyhedral combinatorics. Most notably, if A is a balanced matrix, then A is perfect and ideal, meaning, respectively, that the fractional set packing polytope $P(A)=\left\{x \in \mathbb{R}^{n}: A x \leqslant \mathbf{1}, \mathbf{0} \leqslant x \leqslant \mathbf{1}\right\}$ and the fractional set covering polytope $Q(A)=\left\{x \in \mathbb{R}^{n}: A x \geqslant \mathbf{1}, \mathbf{0} \leqslant x \leqslant \mathbf{1}\right\}$ are integral (i.e., all their extreme points have integer coordinates) [58].

Perfect graphs were defined by Berge around 1960 [5] and are precisely those graphs whose clique-matrix is perfect [36], where by a clique we mean an inclusion-wise maximal set of pairwise adjacent vertices and by a clique-matrix we mean a clique-vertex incidence matrix. Some years ago, the minimal forbidden induced subgraphs for perfect graphs were identified [34], settling affirmatively a conjecture posed more than 40 years before by Berge $[5,6]$. This result is now known as the Strong Perfect Graph Theorem and states that the minimal forbidden induced subgraphs for the class of perfect graphs are the chordless cycles of odd length having at least 5 vertices, called odd holes, and their complements, the odd antiholes.

Balanced graphs were defined to be those graphs whose clique-matrix is balanced. These graphs were already considered by Berge and Las Vergnas in 1970 [12] but the name 'balanced graphs' appears explicitly in [11]. It follows from [12] that balanced graphs form a subclass of the class of perfect graphs. Moreover, from [8] it follows that balanced graphs belong to another interesting graph class, the class of hereditary clique-Helly graphs [104]; i.e., the class of graphs whose induced subgraphs satisfy that the intersection of any nonempty family of pairwise intersecting cliques is nonempty. Prisner [104] characterized hereditary clique-Helly graphs as those graphs containing no induced $0-, 1-, 2-$, or 3-pyramid (see Figure 1.1). Hence, no balanced graph contains an odd hole, an odd antihole, or any pyramid as an induced subgraph.

Figure 1.1: The pyramids

A graph is bipartite if it has no cycle of odd length. The line graph $\mathrm{L}(\mathrm{G})$ of a graph G has the edges of G as vertices and two different edges of G are adjacent in $L(G)$ if and only if they share an endpoint. Bipartite graphs, complements of bipartite graphs, line graphs of bipartite graphs, and complements of line graphs of bipartite graphs are well-known classes of perfect graphs. Their perfectness follows already from the works of Kőnig [76, 77]. Moreover, these four graph classes constitute four of the five basic perfect graph classes in the decomposition of perfect graphs devised for the proof of the Strong Perfect Graph Theorem [34]. The validity of the Strong Perfect Graph Theorem within line graphs was first proved by Trotter [114]. Bipartite graphs and line graphs of bipartite graphs are balanced [10], but their complements are not always balanced. This is due to the fact that, contrary to perfect graphs, balanced graphs are not closed under graph complementation. For example, the graphs in Figure 1.1 are not balanced but have balanced complements.

The intersection graph of a finite family \mathcal{F} is a graph whose vertices are the members of \mathcal{F} and in which two different members of \mathcal{F} are adjacent if and only if they have nonempty intersection. An interval graph [62] is the intersection graph of a finite number of intervals on a line. The class of interval graphs is properly contained in the class of strongly chordal graphs [54], which consists of all graphs whose clique-matrices are totally balanced; i.e., whose clique-matrices contain no edge-vertex incidence matrix of a cycle of length at least 3 as a submatrix [1]. As totally balanced matrices are balanced by definition, strongly chordal graphs, and consequently also interval graphs, are balanced. A circular-arc graph [79] is the intersection graph of a finite family of arcs on a circle. Contrary to the case of interval graphs, not all circular-arc graphs are balanced. Indeed, circular-arc graphs are neither perfect nor hereditary clique-Helly in general as odd holes, odd antiholes, and pyramids are easily seen to be circular-arc graphs. Perfectness of circular-arc graphs was addressed in [119], but the study of balancedness of circular-arc graphs is still in order.

Balanced graphs were characterized by a family of forbidden induced subgraphs known as extended odd sun [21]. Nevertheless, this characterization is not by minimal forbidden induced subgraphs because there are some extended odd suns that contain some other extended odd sun as a proper induced subgraph, as in the example given

Figure 1.2: On the left, an extended odd sun that is not minimal. Bold lines correspond to the edges of a proper induced extended odd sun, depicted on the right.
in Figure 1.2.
In Chapter 3, we address the problem of characterizing balanced graphs by minimal forbidden induced subgraphs, giving several partial solutions by restricting ourselves to different graph classes. We prove structural characterization of balanced graphs, including characterizations by minimal forbidden induced subgraphs, restricted to complements of bipartite graphs, line graphs of multigraphs, and complements of line graphs of multigraphs. As a consequence of our structural characterizations, we show that the recognition problem of balanced graphs is linear-time solvable within each of these graph classes. This is in contrast, for instance, with the fact that $O\left(n^{9}\right)$ is the currently best time bound for algorithms deciding whether or not a given split graph having n vertices is balanced. In addition, we prove minimal forbidden induced subgraph characterizations of balanced graphs within three subclasses of circular-arc graphs: a superclass of the class of Helly circular-arc graphs and the classes of clawfree and gem-free circular-arc graphs.

Perfect graphs were originally defined by Berge in terms of a min-max type equality involving two important graph parameters: the clique number and the chromatic number. In many situations we are interested in knowing the minimum number of different colors needed to color all the vertices of a certain graph G in such a way that no two adjacent vertices receive the same color. This minimum number is called the chromatic number of G and is denoted by $\chi(G)$. The maximum size of a clique of a graph G is called the clique number of G and is denoted by $\omega(G)$. Clearly, $\omega(G)$ is a trivial lower bound for $\chi(G)$; i.e., the min-max type inequality

$$
\omega(\mathrm{G}) \leqslant \chi(\mathrm{G}) \quad \text { holds for every graph } G
$$

Moreover, the difference between $\chi(\mathrm{G})$ and $\omega(\mathrm{G})$ can be arbitrarily large. Mycielski presented in [102] a family of graphs G_{n} such that $\omega\left(G_{n}\right)=2$ and $\chi\left(G_{n}\right)=n$ for each $\mathrm{n} \geqslant 2$. In this context, Berge defined a graph G to be perfect if and only if the equality $\omega\left(G^{\prime}\right)=\chi\left(G^{\prime}\right)$ holds for each induced subgraph G^{\prime} of G.

An important property of perfect graphs is that the complement of a perfect graph is also perfect. This fact was conjectured by Berge. The first proof was given by Lovász [92] and there is an alternative proof due to Fulkerson based on the theory of
antiblocking polyhedra [56]. The result is known as the Perfect Graph Theorem and implies that a graph is perfect if and only if the clique number and the chromatic number coincide in each induced subgraph of its complement. Let the stability number $\alpha(\mathrm{G})$ of a graph G be the clique number of its complement \bar{G}; i.e., $\alpha(\mathrm{G})$ is the maximum number of pairwise nonadjacent vertices. Similarly, let the clique covering number $\theta(\mathrm{G})$ be the chromatic number of $\overline{\mathrm{G}}$; i.e., $\theta(\mathrm{G})$ is the minimum number of cliques covering all the vertices. So, the min-max type inequality

$$
\alpha(G) \leqslant \theta(G) \quad \text { holds for every graph } G
$$

and, by the Perfect Graph Theorem, a graph G is perfect if and only if the equality $\alpha\left(G^{\prime}\right)=\theta\left(G^{\prime}\right)$ holds for each induced subgraph G^{\prime} of G.

There is an interesting connection between the equality $\alpha(\mathrm{G})=\theta(\mathrm{G})$ and a property of some families of sets known as the König property. The transversal number of a finite family \mathcal{F} of nonempty sets with ground set X is the minimum number of elements of X needed to meet every member of \mathcal{F} and the matching number of \mathcal{F} is the maximum size of a collection of pairwise disjoint members of \mathcal{F}. If these two numbers coincide, the family \mathcal{F} is said to have the König property (see [9, Chapter 2]). Given a $\{0,1\}$-matrix A with no null columns, we may interpret its columns as the characteristic vectors of the members of some finite family \mathcal{F} of nonempty sets. In this context, we say that two columns are disjoint if they do not have a 1 in the same row. Similarly, we say that a row meets a column if there is a 1 at the common entry of the row and the column. So, the columns of A have the Kőnig property if the maximum number of disjoint columns equals the minimum number of rows meeting every column. If we let G be a graph and A_{G} be a clique-matrix of G, then the maximum number of pairwise disjoint columns of A_{G} is $\alpha(\mathrm{G})$ and the minimum number of rows meeting every column of A_{G} is $\theta(G)$. Thus, the columns of A_{G} have the Kőnig property if and only if $\alpha(G)=\theta(G)$. Interestingly, Berge and Las Vergnas [12] proved that if a \{0,1\}-matrix is balanced and has no null columns then its columns have the Kőnig property, from which they deduced that $\alpha(\mathrm{G})=\theta(\mathrm{G})$ holds for every balanced graph G. Moreover, as the class of balanced graphs is hereditary, they concluded that balanced graphs are perfect.

The Kőnig property has its origins in the study of matchings and transversals in bipartite graphs. The matching number $v(\mathrm{G})$ of a graph G is the maximum size of a set of vertex-disjoint edges and the transversal number $\tau(\mathrm{G})$ is the minimum number of vertices necessary to meet every edge. Clearly, the min-max type inequality

$$
v(G) \leqslant \tau(G) \quad \text { holds for every graph } G .
$$

In 1931, Kőnig [77] and Egerváry [52] proved that every bipartite graph B satisfies $\nu(B)=\tau(B)$. This result is known as König's matching theorem. The theorem of Berge
and Las Vergnas in [12] was originally conceived as a generalization of Kőnig's matching theorem in the following sense. As the transpose of a balanced matrix is also balanced, the result of Berge and Las Vergnas is equivalent to the fact that if A is a balanced $\{0,1\}$-matrix with no null rows, then the rows of A have the Kőnig property; i.e., the maximum number of disjoint rows equals the minimum number of columns meeting every row. Let G be a graph and let A_{G} be a clique-matrix of G . On the one hand, the maximum number of pairwise disjoint rows of A_{G} is the clique-independence number $\alpha_{c}(G)$, which is the maximum number of vertex-disjoint cliques of G. On the other hand, the minimum number of columns meeting every row of A_{G} is the cliquetransversal number $\tau_{c}(G)$, which is the minimum number of vertices meeting every clique of G. Clearly, the min-max type inequality

$$
\alpha_{c}(G) \leqslant \tau_{c}(G) \quad \text { holds for every graph } G .
$$

What follows from the theorem of Berge and Las Vergnas is that $\alpha_{c}(G)=\tau_{c}(G)$ holds for every balanced graph G; i.e., the cliques of a balanced graph have the Kőnig property. In particular, if G is bipartite, as $\alpha_{c}(G)=\nu(G)+\mathfrak{i}(G)$ and $\tau_{c}(G)=\tau(G)+\mathfrak{i}(G)$ where $\mathfrak{i}(G)$ denotes the number of isolated vertices of $G, \alpha_{c}(G)=\tau_{c}(G)$ reduces to $v(G)=\tau(G)$, which is precisely the statement of Kőnig's matching theorem.

As the class of balanced graphs is hereditary, the equality $\alpha_{c}(G)=\tau_{c}(G)$ holds not only for every balanced graph G but also for each of its induced subgraphs. Graphs G such that $\alpha_{\mathrm{c}}\left(\mathrm{G}^{\prime}\right)=\tau_{\mathrm{c}}\left(\mathrm{G}^{\prime}\right)$ holds for each induced subgraph G^{\prime} of G were named clique-perfect by Guruswami and Pandu Rangan [64] in 2000. It is important to mention that clique-perfect graphs are not perfect in general and that perfect graphs are not clique-perfect in general since, for instance, the antiholes that are clique-perfect are those having number of vertices multiple of 3 (Reed, 2001, see [50]). Notice that if the equality $\alpha_{c}(G)=\tau_{c}(G)$ holds for a graph G, the same equality may not hold for all its induced subgraphs. For instance, every graph G in the class of dually chordal graphs [29] satisfies the equality $\alpha_{c}(G)=\tau_{c}(G)$, dually chordal graphs are not clique-perfect in general; e.g., W_{5} is dually chordal but it is not clique-perfect because it contains an induced C_{5}, for which $\alpha_{c}\left(\mathrm{C}_{5}\right)=2$ but $\tau_{c}\left(\mathrm{C}_{5}\right)=3$. A set of vertex-disjoint cliques of a graph is a clique-independent set and a set of vertices meeting all the cliques of a graph is called a clique-transversal. So, $\alpha_{c}(\mathrm{G})$ is the maximum size of a clique-independent set of a graph G and $\tau_{c}(G)$ is the minimum size of a clique-transversal of G. The difference between $\alpha_{\mathrm{c}}(\mathrm{G})$ and $\tau_{\mathrm{c}}(\mathrm{G})$ can be arbitrarily large. Durán, Lin, and Szwarcfiter presented in [50] a family of graphs G_{n} such that $\alpha_{c}\left(H_{n}\right)=1$ and $\tau_{c}\left(H_{n}\right)=n$ for each $n \geqslant 2$, where the number of vertices of H_{n} grows exponentially on n. Later, Lakshmanan S. and Vijayakumar [84] found another family of graphs H_{n}^{\prime} such that $\alpha_{c}\left(H_{n}^{\prime}\right)=2 n+1$ and $\tau_{c}\left(H_{n}^{\prime}\right)=3 n+1$ for each $n \geqslant 1$, where H_{n}^{\prime} has only $5 n+2$ vertices.

Apart from balanced graphs, some other well-known graph classes are known to be clique-perfect: comparability graphs [2], complements of forests [15], and distancehereditary graphs [87]. Unlike perfect graphs, the class of clique-perfect graphs is neither closed under graph complementation nor is a complete characterization of clique-perfect graphs by forbidden induced subgraphs known. Nevertheless, partial results in this direction were obtained; i.e., characterizations of clique-perfect graphs by a restricted list of forbidden induced subgraphs within graphs that belong to certain graph classes [16, 17, 25]. For instance, in [16], a characterization of those line graphs that are clique-perfect in terms of minimal forbidden induced subgraphs was given and, in [17], clique-perfect graphs were characterized within Helly circular-arc graphs also by minimal forbidden induced subgraphs. Another open question regarding clique-perfect graphs is the time complexity of the recognition problem.

In Chapter 4, we give structural characterizations of clique-perfect graphs restricted to two different graph classes. First, we characterize, by minimal forbidden induced subgraphs, which complements of line graphs are clique-perfect and show that this characterization leads to an $\mathrm{O}\left(\mathrm{n}^{2}\right)$-time algorithm that decides whether or not a given complement of line graph G having n vertices is clique-perfect and, if affirmative, computes a minimum clique-transversal. Finally, we show that, within gem-free circulararc graphs, clique-perfect graphs coincide with perfect graphs and with two further superclass of balanced graphs: coordinated graphs and hereditary K-perfect graphs.

Graphs G satisfying the thesis of Kőnig's matching theorem, $v(G)=\tau(G)$, but not being necessarily bipartite, are called König-Egerváry graphs or simply said to have the Kőnig property. In 1979, Deming [44] and Sterboul [111] independently gave the first structural characterization of graphs having the Kőnig property. Moreover, in [44], also a polynomial-time recognition algorithm for graphs having the Kőnig property was devised. In 1983, Lovász [93] introduced the notion of nice subgraphs and characterized graphs having the Kőnig property by forbidden nice subgraphs within graphs with a perfect matching. We will show that it is not possible to extend his result to a characterization of all graphs having the Kőnig property by forbidden nice subgraphs. We introduce the notion of strongly splitting subgraphs, providing a suitable extension of Lovász's nice subgraphs, in the sense that all graphs having the Kőnig property can be characterized by forbidden strongly splitting subgraphs. Our result relies on a characterization by Korach, Nguyen, and Peis [82] of graphs having the Kőnig property by means of what we call forbidden configurations (certain arrangements of a subgraph and a maximum matching) which is itself an extension of Lovász's characterization.

Imposing the Kőnig property to each induced subgraph of a graph can be easily seen to coincide with requiring the graph to be bipartite. Instead, Escalante, Leoni, and Nasini defined a graph G to be edge-perfect [53] if each of its edge-subgraphs has
the Kőnig property, where an edge-subgraph is any induced subgraph that arises by removing a (possibly empty) set of edges together with their endpoints. Edge-perfect graphs form a superclass of the class of bipartite graphs and a subclass of the class of graphs having the Kőnig property. The class of edge-perfect graphs cannot be characterized by forbidden induced subgraphs because it is not closed under taking induced subgraphs. Instead, our aim is to characterize them by forbidden edge-subgraphs.

In Chapter 5, we give a characterization of all graphs having the Kőnig property by forbidden strongly splitting subgraphs, which is a strengthened version of the characterization due to Korach et al. by forbidden configurations. Using our characterization of graphs having the Kőnig property, we state and prove a simple characterization of edge-perfect graphs by forbidden edge-subgraphs. Unfortunately, this result does not lead to a polynomial-time recognition algorithm for edge-perfect graphs. In fact, although the problem of recognizing edge-perfect graphs is known to be polynomialtime solvable when restricted to certain graph classes [47], it is NP-hard for the general class of graphs [48].

Chapter 2

Preliminaries

2.1 Basic definitions and notation

In this section, we give some general definitions; more specific definitions are introduced as needed. Graphs in this thesis are finite, undirected, without loops, and without multiple edges. We will also deal with multigraphs, introduced near the end of this section.

Let G be a graph. The vertex set of G is denoted by $V(G)$, the edge set by $E(G)$, and the complement of G by $\overline{\mathrm{G}}$. A edge-vertex incidence matrix of G is a $\{0,1\}$-matrix having one row for each edge and one column for each vertex such that only two 1's of each row are in two columns corresponding to the endpoints of the edge the row represents. A subgraph of G is a graph H such that $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. A subgraph H of G is spanning if $V(H)=V(G)$. If H_{1} and H_{2} are two subgraphs of G, we say that H_{1} and H_{2} touch if they share exactly one vertex of G. Moreover, if $\mathrm{V}\left(\mathrm{H}_{1}\right) \cap \mathrm{V}\left(\mathrm{H}_{2}\right)=\{v\}$, we say that H_{1} and H_{2} touch at v. If $\mathrm{W} \subseteq \mathrm{V}(\mathrm{G})$, the subgraph of G induced by W is the subgraph $G[W]$ whose vertex set is W and whose edge set is $\{v w \in E(G): v, w \in W\}$. If $W \neq V(G), G[W]$ is a proper induced subgraph of G. By $G-W$, we denote the subgraph of G induced by $V(G) \backslash W$. If $W=\{v\}$, we denote $G-W$ simply by $G-v$. If G is a graph and e is any edge of $G, G-e$ denotes the graph that arises from G by making the endpoints of e nonadjacent. If v and w are two nonadjacent vertices of G, then $G+\nu w$ denotes the graph that arises from G by making v and w adjacent. If $\mathrm{F} \subseteq \mathrm{E}(\mathrm{G}), \mathrm{G} \backslash \mathrm{F}$ denotes the graph that arises from G by removing the edges in F from the edge set of G. By contracting a subgraph H of G we mean replacing $V(H)$ with a single vertex h and making each vertex $v \in \mathrm{~V}(\mathrm{G}) \backslash \mathrm{V}(\mathrm{H})$ adjacent to h if and only if v was adjacent in G to some vertex of H. For any set $S,|S|$ denotes its cardinality. For any sets X and $\mathrm{Y}, \mathrm{X} \triangle \mathrm{Y}$ denotes the symmetric difference $(X \backslash Y) \cup(Y X)$.

A vertex v of a graph G is universal if it is adjacent to every other vertex of G , pendant if it is adjacent to exactly one vertex of G , or isolated if it is adjacent to no vertex of G . An edge is pendant if it has at least one pendant endpoint. The neighborhood of v in G is the set consisting of all vertices of G adjacent to v and is denoted by $\mathrm{N}_{\mathrm{G}}(v)$, or simply $\mathrm{N}(v)$ if G is clear from context. The closed neighborhood of v is $\mathrm{N}_{\mathrm{G}}[v]=\mathrm{N}_{\mathrm{G}} \cup\{v\}$. The common neighborhood of an edge $e=v w$ is $\mathrm{N}_{\mathrm{G}}(e)=\mathrm{N}_{\mathrm{G}}(v) \cap \mathrm{N}_{\mathrm{G}}(w)$ and, in general, the common neighborhood of a nonempty set $\mathrm{W} \subseteq \mathrm{V}(\mathrm{G})$ is $\mathrm{N}_{\mathrm{G}}(\mathrm{W})=\bigcap_{w \in W} \mathrm{~N}_{\mathrm{G}}(w)$, whereas $\mathrm{N}_{\mathrm{G}}(\varnothing)=\mathrm{V}(\mathrm{G})$. Two vertices v and w of G are false twins if $\mathrm{N}_{\mathrm{G}}(v)=\mathrm{N}_{\mathrm{G}}(w)$ and true twins if $\mathrm{N}_{\mathrm{G}}[v]=\mathrm{N}_{\mathrm{G}}[w]$. Two vertices are twins if they are either false or true twins. We denote by $\mathrm{E}_{\mathrm{G}}(v)$ the set of edges of G incident to v. The degree $\mathrm{d}_{\mathrm{G}}(v)$ of a vertex v of G is the number of different neighbors of v in G . The maximum degree of the vertices of G is denoted by $\Delta(G)$ and the minimum degree by $\delta(G)$.

A graph is complete if its vertices are pairwise adjacent and the complete graph on n vertices is denoted by K_{n}. A complete of a graph is a set of pairwise adjacent vertices and a clique is an inclusion-wise maximal complete set. A clique-matrix of a graph is a clique-vertex incidence matrix; i.e., a $\{0,1\}$-matrix having one row for each clique and one column for each vertex and such that there is a 1 in the intersection of a row and a column if and only if the clique corresponding to the row contains the vertex corresponding to the column. A complete on 3 vertices is called a triangle. A stable set of a graph is a set of pairwise nonadjacent vertices. A set $A \subseteq V(G)$ and a vertex v of $V(G)$ are complete to each other if $A \subseteq N_{G}(v)$, and anticomplete if $N_{G}[v] \cap A=\varnothing$. The set $A \subseteq V(G)$ is complete (resp. anticomplete) to the set $B \subseteq V(G)$ if A and b are complete (resp. anticomplete) for each $b \in B$.

Paths and cycles are simple; i.e., have no repeated vertices aside from the starting and ending vertices in the case of cycles. Trivial paths consisting of only one vertex (and no edges) will be allowed, but cycles must have at least three vertices. An n-path (resp. n-cycle) is a path (resp. cycle) on n vertices. The starting and ending vertices of a path are called the endpoints of the path. The cycles on three vertices are also called triangles. Let Z be a path or a cycle of a graph G. By the edges of Z we mean those edges of G joining two consecutive vertices of Z. We denote by $V(Z)$ the set of vertices of Z and by $E(Z)$ the set of edges of Z. The length of Z is $|E(Z)|$. The distance between two vertices in a graph is the minimum length of a path in the graph having them as endpoints. A chord of Z is an edge joining two nonconsecutive vertices of Z and Z is chordless if Z has no chords. The chordless n-path and the chordless n-cycle are denoted by P_{n} and C_{n}, respectively. For each $n \geqslant 4, W_{n}$ denotes the graph that arises from C_{n} by adding a universal vertex. A chord $a b$ of Z is short if there is some vertex c of Z which is consecutive to each of a and b in Z. If so, c is called a midpoint of the chord $a b$ in Z. Three short chords of Z are consecutive if they admit three consecutive vertices
of Z as their midpoints. A chord of Z that is not short is called long. Two chords ab and cd of a cycle C such that their endpoints are four different vertices of C that appear in the order $\mathrm{a}, \mathrm{c}, \mathrm{b}, \mathrm{d}$ in C are called crossing. A cycle is odd if it has an odd number of vertices, and is even otherwise. A hole is a chordless cycle of length at least 4 and an antihole is the complement of a hole of length at least 5 . A cycle of a graph is Hamiltonian if it visits every vertex of the graph. If $P=v_{1} v_{2} \ldots v_{n}$ and $P^{\prime}=w_{1} w_{2} \ldots w_{m}$ are two paths (where the v_{i} 's and the w_{j} 's are vertices) and their only common vertex is $v_{n}=w_{1}$, then PP^{\prime} denotes the concatenated path $v_{1} v_{2} \ldots v_{n} w_{2} w_{3} \ldots w_{m}$. If v is a vertex outside $\mathrm{V}(\mathrm{P})$ adjacent to $v_{1}, v \mathrm{P}$ denotes the path $v v_{1} v_{2} \ldots v_{n}$.

A graph is connected if every two of its vertices are the endpoints of some path. A component of a graph is a containment-wise maximal connected subgraph. A component is nontrivial if it has at least two vertices, and is trivial otherwise. A connected graph without cycles is a tree. A graph is a forest if all its components are trees. A cutpoint is a vertex whose removal increases the number of components. A graph is nonseparable if it is connected, has at least two vertices, and has no cutpoints. A block of a graph is a containment-wise maximal nonseparable subgraph. An edge e of a graph G is a bridge if $\mathrm{G}-e$ has more components than G .

A dominating set of a graph G is a set $A \subseteq \mathrm{~V}(\mathrm{G})$ such that each $v \in \mathrm{~V}(\mathrm{G}) \backslash A$ is adjacent to at least one element of A. We say that a subset W of the vertex set of a graph H is edge-dominating if each edge of H has at least one endpoint in W. A path or cycle Z is dominating (resp. edge-dominating) if $\mathrm{V}(\mathrm{Z})$ is dominating (resp. edge-dominating).

Let G and H be two graphs. We say that G contains H if H is isomorphic to a subgraph (induced or not) of G and that G contains an induced H if H is isomorphic to an induced subgraph of G. A class \mathcal{G} of graphs is called hereditary if, for every graph G of \mathcal{G}, each induced subgraph of G belongs to \mathcal{G}. We say that G is H-free to mean that G contains no induced H . If \mathcal{H} is a collection of graphs, we say that G is \mathcal{H}-free to mean that G contains no induced H for any $\mathrm{H} \in \mathcal{H}$. A graph H is a forbidden induced subgraph for a graph class \mathcal{G} if no graph of \mathcal{G} contains an induced H . Moreover, if \mathcal{G} is a hereditary class, H is said a minimal forbidden induced subgraph for the class \mathcal{G} or a minimally not \mathcal{G} graph if H does not belong to \mathcal{G} but each proper induced subgraph of H belongs to \mathcal{G}.

Let G_{1} and G_{2} be two graphs and assume that $\mathrm{V}\left(\mathrm{G}_{1}\right) \cap \mathrm{V}\left(\mathrm{G}_{2}\right)=\varnothing$. The join of G_{1} and G_{2} is the graph $G_{1}+G_{2}$ having vertex set $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and edge set $\mathrm{E}\left(\mathrm{G}_{1}\right) \cup \mathrm{E}\left(\mathrm{G}_{2}\right) \cup\left\{v w: v \in \mathrm{~V}\left(\mathrm{G}_{1}\right), w \in \mathrm{~V}\left(\mathrm{G}_{2}\right)\right\}$.

A graph H is bipartite if its vertex set can be partitioned into two stable sets X and Y . If so, $\{\mathrm{X}, \mathrm{Y}\}$ is called a bipartition of H . If, in addition, every vertex of X is adjacent to every vertex of Y, the graph is called complete bipartite.

A matching of a graph G is a set of vertex-disjoint edges of G. Let M be a matching of G. The endpoints of the edges belonging to M are called M-saturated and the

claw

paw

diamond

bull

net

kite

bipartite claw

6-pan

braid

U_{7}

V_{7}

Figure 2.1: Some small graphs
remaining vertices of G are called M-unsaturated. M is maximal if it is inclusion-wise maximal and maximum if it is of maximum size; i.e., if $|M|=v(G)$ (where $v(G)$ denotes the matching number defined in the Introduction). M is perfect if it saturates every vertex of G and near-perfect if it saturates all but one vertex of G. Clearly, graphs with a perfect matching have an even number of vertices, while graphs with a near-perfect matching have an odd number of vertices. Perfect and near-perfect matchings are trivially maximum. A path is M-alternating if, for each two consecutive edges of the path, exactly one of them belongs to M. An M-augmenting path is an M-alternating path starting and ending in M-unsaturated vertices. Notice that if P is an M-augmenting path then $M^{\prime}=M \triangle E(P)$ is also a matching and $\left|M^{\prime}\right|=|M|+1$. Indeed, a matching M is maximum if and only if it has no M-augmenting paths [4]. The following is a well-known result about matchings in bipartite graphs.

Theorem 2.1 (Hall's theorem [66]). Let H be a bipartite graph with bipartition $\{\mathrm{X}, \mathrm{Y}\}$. Then, there is a matching M of H that saturates each vertex of X if and only if

$$
\left|\bigcup_{\mathrm{a} \in \mathrm{~A}} \mathrm{~N}_{\mathrm{H}}(\mathrm{a})\right| \geqslant|\mathrm{A}| \quad \text { for each } \mathrm{A} \subseteq \mathrm{X} .
$$

Some small graphs to be referred in what follows are depicted in Figure 2.1. We will call any of the graphs in Figure 1.1 a pyramid. The center of a bipartite-claw is its vertex of degree 3 .

Multigraphs are an extension of graphs obtained by allowing different edges to have the same pair of endpoints. Multigraphs are still finite, undirected, and without loops. Two edges joining the same pair of vertices are called parallel. We denote the vertex

Figure 2.2: Some special multigraphs
set of a multigraph H by $V(H)$ and its edge set by $E(H)$. If H is a multigraph, the underlying graph of H is the graph $\widehat{\mathrm{H}}$ having the same vertices as H and two vertices of $\widehat{\mathrm{H}}$ are adjacent if there is at least one edge in H joining them. If v is a vertex of a multigraph H , we denote by $\hat{\mathrm{d}}_{\mathrm{H}}(v)$ the degree of v in the underlying graph $\widehat{\mathrm{H}}$. A vertex of a multigraph is pendant if it has exactly one neighbor; i.e., if it is a pendant vertex of the underlying graph. Notice that there may be many edges joining a pendant vertex to its only neighbor.

Let H^{\prime} and H be two multigraphs. We say that H^{\prime} is a submultigraph of H if $\mathrm{V}\left(\mathrm{H}^{\prime}\right) \subseteq$ $\mathrm{V}(\mathrm{H})$ and, for each pair of adjacent vertices v and w of H^{\prime}, there are at least as many edges in H joining them as there are in H^{\prime}. We say that H^{\prime} is contained in H or that H contains H^{\prime} if and only if H^{\prime} is isomorphic to a submultigraph of H . Two submultigraphs touch at vertex v if v is their only common vertex. A multigraph is connected if its underlying graph is connected and a component of a multigraph is a containment-wise maximal connected submultigraph.

The paths and cycles of a multigraph are the paths and cycles of its underlying graph. A multitree is a connected multigraph without cycles; i.e., a multigraph whose underlying graph is a tree. Some multigraphs needed in what follows are displayed in Figure 2.2. Notice that we denote the multigraph consisting of two vertices and two parallel edges joining them by C_{2}, despite not being a cycle under our definition.

Two edges are incident if they share at least one endpoint, so that parallel edges are considered incident. If R is a graph or multigraph, the line graph $L(R)$ of R has the edges of R as vertices and two different edges e_{1}, e_{2} of R are adjacent in $L(R)$ if and only if e_{1} and e_{2} are incident. A graph G is a line graph of a multigraph if there exists some multigraph R such that $G=L(R)$. If R can be chosen to be a graph, G is simply said to be a line graph and R is called a root graph of G. A matching of a multigraph H is any set M of pairwise non-incident edges of H and M is maximal if it is inclusionwisemaximal.

Let H_{1} and H_{2} be two vertex-disjoint graphs or multigraphs. The disjoint union $\mathrm{H}_{1} \cup \mathrm{H}_{2}$ of H_{1} and H_{2} has vertex set $\mathrm{V}\left(\mathrm{H}_{1}\right) \cup \mathrm{V}\left(\mathrm{H}_{2}\right)$, two vertices v and w are adjacent in H if and only if they are adjacent in H_{i} for some $i \in\{1,2\}$, and there are exactly as many edges joining u and v in H as there are in H_{i}. If t is a nonnegative integer and H is a graph or multigraph, tH denotes the disjoint union of t copies of H .

2.2 Some special graph classes and the modular decomposition

In this section, we give some background about some special graph classes and the modular decomposition. Some results already stated in the Introduction are formally restated for future reference.

2.2.1 Perfect graphs

In the 1960's, Berge posed two conjectures regarding the structure of perfect graphs, the weaker of which is now known as the the Perfect Graph Theorem and states that the class of perfect graphs is closed by graph complementation.

Theorem 2.2 (Perfect Graph Theorem [92]). A graph is perfect if and only if its complement is perfect.

The stronger conjecture posed by Berge, concerning the minimal forbidden induced subgraph characterization for the class of perfect graphs, was proved only some years ago.

Theorem 2.3 (Strong Perfect Graph Theorem [34]). A graph is perfect if and only if it has no odd holes and no odd antiholes.

In addition, an $\mathrm{O}\left(\mathrm{n}^{9}\right)$-time algorithm was devised in [33] that decides whether or not a given graph G having n vertices has an odd hole or an odd antihole.

The following result characterizes perfect graphs by means of the integrality of their fractional set packing polytopes.

Theorem 2.4 ([36]). A graph is perfect if and only if its clique-matrix is perfect.

2.2.2 Helly property and hereditary clique-Helly graphs

A family \mathcal{F} of sets has the Helly property if every nonempty subfamily of \mathcal{F} of pairwise intersecting members has nonempty intersection. A graph is clique-Helly if the family of its cliques has the Helly property. So, a hereditary clique-Helly graph is a graph such that each of its induced subgraphs is clique-Helly. Prisner characterized hereditary clique-Helly graphs both by forbidden submatrices of their clique-matrices and by minimal forbidden induced subgraphs, as follows.

Theorem 2.5 ([104]). A graph is hereditary clique-Helly if and only if its clique-matrices contain no edge-vertex incidence matrix of C_{3} as a submatrix or, equivalently, if and only if it does not contain any of the graphs in Figure 1.1 as an induced subgraph.

Prisner also gave a recognition algorithm for hereditary clique-Helly graphs.

Figure 2.3: Some forbidden induced subgraphs for the class of circular-arc graphs

Theorem 2.6 ([104]). It can be decided in $\mathrm{O}\left(\mathrm{n}^{2} \mathrm{~m}\right)$ time whether or not a given graph having n vertices and m edges is hereditary clique-Helly.

Moreover, he proved that if G is a connected hereditary clique-Helly graph, then G has at most m cliques and concluded that all the cliques of G can be found in $O\left(m^{2} n\right)$ time by means of the algorithm devised in [116] that enumerates the cliques of G, one after the other, in $\mathrm{O}(\mathrm{mn})$ time per clique. Therefore, the following holds.

Theorem $2.7([104,116])$. In $\mathrm{O}\left(\mathrm{m}^{2} \mathrm{n}\right)$ time, it can be decided whether or not a given a connected graph G having n vertices and m edges is hereditary clique-Helly and, if affirmative, output a clique-matrix of G , which has at most m rows.

2.2.3 Circular-arc graphs and Helly circular-arc graphs

A circular-arc graph is the intersection graph of a finite family of arcs on a circle. Such a family of arcs is called a circular-arc model of the graph. The structure of circulararc graphs was first studied by Tucker $[117,118,119,120]$ and these graphs can be recognized in linear time [100]. Some minimal forbidden induced subgraphs for the class of circular-arc graphs are $\mathrm{K}_{2,3}, \mathrm{G}_{2}, \mathrm{G}_{3}$, domino, $\mathrm{G}_{5}, \mathrm{G}_{6}, \overline{\mathrm{C}_{6}}$, net $\cup \mathrm{K}_{1}, \mathrm{C}_{n} \cup \mathrm{~K}_{1}$ for each $n \geqslant 4$, and G_{9} [115] (see Figure 2.3).

Since $C_{n} \cup K_{1}$ is not a circular-arc graph for any $n \geqslant 4$, if G is a circular-arc graph and H is a hole of G, then $V(H)$ is dominating in G. We state the following slightly more general result for future reference (see [18]).

Lemma 2.8. Let G be a circular-arc graph and H be a hole of G . If $v \in \mathrm{~V}(\mathrm{G}) \backslash \mathrm{V}(\mathrm{H})$, then either v is adjacent to every vertex of H or $\mathrm{N}_{\mathrm{G}}(v) \cap \mathrm{V}(\mathrm{H})$ induces a path in G .

A Helly circular-arc graph [61] is a circular-arc graph admitting a circular-arc model having the Helly property. We call any circular-arc model \mathcal{A} having the Helly property a Helly circular-arc model of the graph. The class of Helly circular-arc graphs contains all interval graphs because every set of intervals of a line has the Helly property [72]. Let G be a Helly circular-arc graph and let us denote by A_{v} the arc of \mathcal{A} that corresponds to vertex $v \in \mathrm{~V}(\mathrm{G})$. For a clique Q of G , we call any point $\mathrm{p} \in \bigcap_{\nu \in \mathrm{Q}} \mathrm{A}_{v}$ an anchor of Q. Since Q is an inclusion-wise maximal complete, for each anchor p of Q and each
$v \in \mathrm{~V}(\mathrm{G})$, it holds that $p \in A_{v}$ if and only if $v \in \mathrm{Q}$. In [75], a linear-time recognition algorithm for Helly circular-arc graphs was given, as well as a characterization by forbidden induced subgraphs of Helly circular-arc graphs within circular-arc graphs (see Theorem 3.46 on page 64).

2.2.4 Cographs and modular decomposition

Let G be a graph. A set M of vertices of G is a module if every vertex outside M is either adjacent to all vertices of M or to none of them. The empty set, the singletons $\{v\}$ for each $v \in \mathrm{~V}(\mathrm{G})$, and $\mathrm{V}(\mathrm{G})$ are the trivial modules of G . A nonempty module M of G is strong if, for every other module M^{\prime} of G, either $M \cap M^{\prime}=\varnothing, M$, or M^{\prime}. The modular decomposition tree $\mathrm{T}(\mathrm{G})$ of a graph G is a rooted tree having one node for each strong module of G and such that a node h representing a strong module M has as its children the nodes representing the inclusion-wise maximal strong modules of G properly contained in M. Therefore, the root of $T(G)$ is $V(G)$ and the leaves of $\mathrm{T}(\mathrm{G})$ are the singletons $\{v\}$ for each $v \in \mathrm{~V}(\mathrm{G})$. We will identify the module $\{v\}$ with the vertex v and say that the leaves of $T(G)$ are the vertices of G. For each node h of $\mathrm{T}(\mathrm{G})$, we denote by $M(\mathrm{~h})$ the strong module of G represented by h. By definition, $M(h)$ is the set of vertices of G having h as their ancestor in $T(G)$. For each node h of $T(G)$, we denote $G[M(h)]$ by $G[h]$. Each internal node of $T(G)$ is labeled P, S, or N , according to whether $\mathrm{G}[\mathrm{h}]$ is disconnected, $\overline{\mathrm{G}[\mathrm{h}]}$ is disconnected, or both $\mathrm{G}[\mathrm{h}]$ and $\bar{G}[\mathrm{~h}]$ are connected, respectively. Nodes labeled P, S, or N are called parallel, series, or neighborhood, respectively. Therefore, if h is an internal node of $T(G)$ and h_{1}, \ldots, h_{k} are the children of h in $T(G)$, the following conditions holds:
(i) If $\mathrm{G}[\mathrm{h}]$ is disconnected, then h is labeled P and $\mathrm{G}\left[h_{1}\right], \ldots, \mathrm{G}\left[h_{k}\right]$ are the components of G.
(ii) If $\overline{\mathrm{G}[\mathrm{h}]}$ is disconnected, then h is labeled S and $\overline{\mathrm{G}\left[\mathrm{h}_{1}\right]}, \ldots, \overline{\mathrm{G}\left[\mathrm{h}_{\mathrm{k}}\right]}$ are the components of $\overline{\mathrm{G}}$.
(iii) If $\mathrm{G}[\mathrm{h}]$ and $\overline{\mathrm{G}[\mathrm{h}]}$ are both connected, then h is labeled N and $\mathrm{G}\left[h_{1}\right], \ldots, \mathrm{G}\left[h_{k}\right]$ is the set of inclusion-wise maximal proper submodules of $\mathrm{G}[\mathrm{h}]$.

There are linear-time algorithms for computing the modular decomposition tree of any given graph [40, 41, 101, 113].

A cograph if a P_{4}-free graph. The following result implies that a graph is a cograph precisely when each internal node of its modular decomposition tree is either a parallel or a series node.

Theorem 2.9 ([108]). If G is a cograph having at least two vertices, then either G or $\overline{\mathrm{G}}$ is disconnected.

Seinsche [108] used this fact to prove that cographs are perfect since K_{1} is perfect and the disjoint union and the join of two perfect graphs are perfect.

Chapter 3

Balanced graphs

In this chapter, we address the problem of characterizing balanced graphs by minimal forbidden induced subgraphs within different graph classes. The chapter is organized as follows:

- In Section 3.1, we give some background about balanced graphs.
- In Section 3.2, we prove basic properties about minimally not balanced graphs.
- In Section 3.3, we show that there is a strong tie between the time complexities of the problem of recognizing balanced graphs and that of recognizing balanced matrices
- In Sections 3.4 to 3.6, we give structural characterizations of balanced graph, including minimal forbidden induced subgraphs characterizations, within each of the following graph classes: complements of bipartite graphs, line graphs of multigraphs, and complements of line graphs of multigraphs. These characterizations lead to linear-time algorithms for recognizing balancedness within each of these graph classes. This is in contrast with the fact that the currently best bound on the running time of an algorithm that recognizes balanced graphs within split graphs is $\mathrm{O}\left(\mathrm{n}^{9}\right)$, where n denotes the number of vertices of the input graph.
- In Section 3.7, we present a minimal forbidden induced subgraph characterization of balanced graphs within a superclass of the class of Helly circular-arc graphs. In Sections 3.8 and 3.9, we prove analogous characterizations within the classes of claw-free circular-arc graphs and gem-free circular-arc graphs, respectively.

The main results of this chapter appeared in [22] and [23].

3.1 Background

Recall that a $\{0,1\}$-matrix A is balanced if and only if it contains no edge-vertex incidence matrix of an odd cycle as a submatrix. Notice that if A contains the edge-vertex incidence matrix of an odd cycle, then A contains the edge-vertex incidence matrix of an odd chordless cycle. Equivalently, \mathcal{A} is balanced if and only if it contains no odd square submatrix with exactly two 1's per row and per column. Notice that any matrix that arises by permuting the rows and/or columns of a balanced matrix is balanced and that the transpose of a balanced matrix is also balanced.

In [12], Berge and Las Vergnas reported to have found a new class of perfect graphs in an attempt to prove a conjecture about perfect graphs. In fact, they concluded the following.

Theorem 3.1 ([12]). A graph G has a balanced clique-matrix if and only if every odd cycle in G contains at least one edge with the property that every maximal clique containing this edge contains a third vertex of the cycle. Moreover, any such graph G is perfect.

In [8], Berge gave a more detailed characterization of these graphs, which we reproduce below. For each graph G, each $W \subseteq V(G)$, and each subfamily \mathcal{D} of the family of cliques of G, let $G_{W, D}$ be the graph that arises from G by deleting the vertices of $V(G) \backslash W$ and the edges that do not belong to a clique in \mathcal{D}.

Theorem 3.2 ([8]). Let G be a graph. Then, the following assertions are equivalent:
(i) The clique-matrix of G is balanced.
(ii) $\omega\left(\mathrm{G}_{W, \mathcal{D}}\right)=\chi\left(\mathrm{G}_{W, \mathcal{D}}\right)$ for each W and each \mathcal{D}.
(iii) $\alpha\left(G_{W, \mathcal{D}}\right)=\theta\left(G_{W, \mathcal{D}}\right)$ for each W and each \mathcal{D}.
(iv) Every odd cycle in G contains at least one edge with the property that every maximal clique containing this edge contains a third vertex of the cycle.

So, a balanced graph is any graph satisfying all of the above assertions. The name 'balanced graphs' for these graphs appears in [11]. As Berge [8] also proved that the rows (resp. columns) of a balanced matrix have the Helly property, we have the following.

Theorem 3.3 ([8]). Balanced graphs are hereditary clique-Helly.
Theorem 3.1 characterizes balanced graphs by means of the absence of unbalanced cycles; i.e., the absence of odd cycles C such that, for each edge $e \in E(C)$, there exists a (possibly empty) complete subgraph W_{e} of G such that $W_{e} \subseteq N(e) \backslash V(C)$ and
$N\left(W_{e}\right) \cap N(e) \cap V(C)=\varnothing$. More recently, balanced graphs were characterized by forbidden induced subgraphs, called extended odd suns. An extended odd sun [21] is a graph G with an unbalanced cycle C such that $V(G)=V(C) \cup \bigcup_{e \in E(C)} W_{e}$ and $\left|W_{e}\right| \leqslant|\mathrm{N}(e) \cap \mathrm{V}(\mathrm{C})|$ for each edge $e \in \mathrm{E}(\mathrm{C})$. The extended odd suns with the smallest number of vertices are C_{5} and the pyramids in Figure 1.1. The characterization of balancedness by forbidden induced subgraphs is as follows.

Theorem 3.4 ([21]). A graph is balanced if and only if it contains no induced extended odd sun.

As already noted in [21], extended odd suns are not necessarily minimal forbidden induced subgraphs because some extended odd suns may contain some others as proper induced subgraphs.

A graph is chordal [65] if every cycle of length at least 4 has some chord. For each $t \geqslant 3$, a t-sun, or simply sun, is a chordal graph G on $2 t$ vertices whose vertex set can be partitioned into two sets, $W=\left\{w_{1}, \ldots, w_{t}\right\}$ and $U=\left\{u_{1}, \ldots, u_{t}\right\}$, such that W is a stable set and, for each $\mathfrak{i}=1,2, \ldots, t, N_{G}\left(w_{i}\right)=\left\{\mathfrak{u}_{i}, \mathfrak{u}_{i+1}\right\}$ (where \mathfrak{u}_{t+1} stands for \mathfrak{u}_{1}). Such a sun is odd if t is odd and complete if U is a complete. We denote the complete t-sun by S_{t}. For instance, S_{3} coincides with the graph 3-sun of Figure 1.1. The graph S_{4} is depicted in Figure 2.1. Clearly, extended odd suns contain odd suns as a special case.

Strongly chordal graphs, which we mentioned in the Introduction as one example of balanced graphs, are precisely the sun-free chordal graphs [54]. More generally, the following characterization of those chordal graphs that are balanced was proved in [88].

Theorem 3.5 ([88]). Let G be a chordal graph. Then, G is balanced if and only if it contains no induced odd sun.

Notice that the extended odd suns in Figure 1.2 are also odd suns and, consequently, not all odd suns are minimal forbidden induced subgraphs for balancedness. Indeed, characterizing balanced graphs by minimal forbidden induced subgraphs is unresolved even when the problem is restricted to chordal graphs.

Notice, however, that the problem is easily settled within the class of split graphs, which is a subclass of the class of chordal graphs. A graph is split [55] if its vertex set can be partitioned into a complete and a stable set. In [55], it was shown that split graphs are precisely those graphs that are chordal and whose complement is also chordal, and also that they coincide with the $\left\{2 \mathrm{~K}_{2}, \mathrm{C}_{4}, \mathrm{C}_{5}\right\}$-free graphs. A pseudosplit graph $[13,98]$ is a $\left\{2 \mathrm{~K}_{2}, \mathrm{C}_{4}\right\}$-free graph. So, the class of pseudo-split graphs is a superclass of the class of split-graphs, but not of the class of chordal graphs. The fol-
lowing corollary of Theorem 3.5 gives the characterization of balanced graphs within pseudo-split graphs by minimal forbidden induced subgraphs.

Corollary 3.6. Let G be a pseudo-split graph. Then, G is balanced if and only if it contains no induced C_{5} and no induced odd complete sun.

Proof. Let H be a pseudo-split graph that is minimally not balanced. We must show that H is either C_{5} or a complete odd sun. If H contains an induced C_{5}, then the minimality of H implies that H is C_{5}. Therefore, assume, without loss of generality, that H is C_{5}-free. So, as H is pseudo-split, H is a split graph. Then, by Theorem $3.5, \mathrm{H}$ is an odd sun and let $\{\mathrm{U}, \mathrm{V}\}$ be a partition of the vertex set of H as in the definition of odd sun. If there were two nonadjacent vertices in U, say u_{i} and u_{j}, then $\left\{u_{i}, w_{i}, u_{j}, w_{j}\right\}$ would induce $2 \mathrm{~K}_{2}$ in H , a contradiction with the fact that H is split. So, U is a complete and H is an odd complete sun.

3.2 Some properties of minimally not balanced graphs

The aim of this section is to prove some basic properties of minimally not balanced graphs; i.e., those graphs that are not balanced but such that each of their induced subgraphs are balanced.

Lemma 3.7. If H is a minimally not balanced graph, then each of the following holds:
(i) H is connected.
(ii) H has no pendant vertices.
(iii) H has no true twins.
(iv) H has no universal vertices.
(v) H has no cutpoints.

Proof. (i) Suppose, by the way of contradiction, that H is not connected. Let $\mathrm{H}=$ $H_{1} \cup H_{2}$ for some graphs H_{1} and H_{2} having at least one vertex each and let A_{1} and A_{2} be clique-matrices of H_{1} and H_{2}, respectively. Then, $A=\left(\begin{array}{cc}A_{1} & 0 \\ 0 & A_{2}\end{array}\right)$ is a cliquematrix of H . As H is not balanced, there is some submatrix A^{\prime} of A which is the edge-vertex incidence matrix of an odd chordless cycle. As A^{\prime} cannot intersect both A_{1} and A_{2} in A, A^{\prime} is a submatrix of either A_{1} or A_{2}. But then, H_{1} or H_{2} is not balanced, contradicting the minimality of H . This contradiction proves that H is connected.
(ii) Suppose, by the way of contradiction, that H has some pendant vertex v. Then, a clique-matrix of $\mathrm{H}-v$ arises from the clique-matrix of H by first removing a column with exactly one 1 (which is the column corresponding to vertex v) and then removing a row with exactly one 1 (which is the row corresponding to the clique $\mathrm{N}_{\mathrm{H}}[\nu]$). Since an edge-vertex incidence matrix of a chordless cycle has two 1's per row and per column, H is balanced if and only if $\mathrm{H}-v$ is balanced. This contradicts the minimality of H and proves that H has no pendant vertices.
(iii) Suppose, by the way of contradiction, that there are two true twins v and w in H. Then, a clique-matrix of $\mathrm{H}-v$ arises from a clique-matrix of H by removing the column corresponding to vertex v, which is identical to the column corresponding to vertex w. Since an edge-vertex incidence matrix of a chordless cycle contains no two identical columns, H is balanced if and only if $\mathrm{H}-v$ is balanced. This contradicts the minimality of H and proves that H has no true twins.
(iv) Suppose, by the way of contradiction, that there is some universal vertex v in H . Then, a clique-matrix of $\mathrm{H}-v$ arises from a clique-matrix of H by removing a column with all its entries equal to 1 . Since an edge-vertex incidence matrix of a chordless cycle contains no columns with all entries equal to $1, \mathrm{H}$ is balanced if and only if $\mathrm{H}-v$ is balanced. This contradicts the minimality of H and proves that H has no universal vertices.
(v) As H is minimally not balanced, Theorem 3.4 implies that H is an extended odd sun. Let C and $\left\{W_{e}\right\}_{e \in \mathrm{E}(\mathrm{C})}$ be as in the definition of extended odd sun. It is clear that neither the vertices of C nor the vertices of the W_{e} 's are cutpoints of H. Since $H=V(C) \cup \bigcup_{e \in E(C)} W_{e}, H$ has no cutpoints.

We will now establish necessary and sufficient conditions for the join of two graphs to be balanced. They involve the notion of trivially perfect graphs, introduced by Golumbic [63]. A graph is trivially perfect if each induced subgraph H has a stable set meeting all the cliques of H . Trivially perfect graphs coincide with $\left\{\mathrm{P}_{4}, \mathrm{C}_{4}\right\}$-free graphs [63] and also arise as the comparability graphs of trees, which means that trivially perfect graphs are those in which the closed neighborhoods of any two adjacent vertices are nested (see [124, 125] or [126]). The latter characterization can also be phrased in terms of clique-distinguishability: we say that two vertices u and v of a graph are clique-distinguishable if there is a clique containing u and not containing v and vice versa. As two vertices are clique-distinguishable if and only if their closed neighborhoods are not nested, we have the following.

Theorem 3.8 ([124]). A graph is trivially perfect if and only ifevery two clique-distinguishable vertices are nonadjacent.

This also means that a graph is trivially perfect if and only if a clique-matrix of it contains no submatrix that arises by permuting the rows of $\left(\begin{array}{ll}1 & 0 \\ 1 & 1 \\ 0 & 1\end{array}\right)$. This immediately means that trivially perfect graphs are balanced. Moreover, we have the following.

Lemma 3.9. Let G be a graph that is the join of two graphs G_{1} and G_{2}. Then, G is balanced if and only if at least one of the following assertions holds:
(i) One of G_{1} and G_{2} is complete and the other one is balanced.
(ii) Both G_{1} and G_{2} are trivially perfect.

Proof. Suppose that G is balanced. Since G_{1} and G_{2} are induced subgraphs of G, they are balanced too. Therefore, if at least one of G_{1} and G_{2} were complete, then (i) would hold. Suppose, on the contrary, that none of G_{1} and G_{2} is complete. Then, G_{1} is trivially perfect; otherwise G_{1} would contain an induced P_{4} or C_{4} and, since G_{2} is not complete, $G=G_{1}+G_{2}$ would contain an induced $P_{4}+2 K_{1}=2$-pyramid or $\mathrm{C}_{4}+2 \mathrm{~K}_{1}=3$-pyramid, respectively, contradicting the fact that G is balanced. Symmetrically, G_{2} is also trivially perfect. Thus, (ii) holds.

Now suppose that G is not balanced. If G_{1} were complete, then the clique-matrix of G_{2} would arise from the clique-matrix of G by removing some columns all whose entries are 1's and, as G is not balanced, necessarily G_{2} would not be balanced. Symmetrically, if G_{2} were complete, then G_{1} would not be balanced. We conclude that (i) does not hold. Assume now that none of G_{1} and G_{2} is complete. Since G is not balanced, there exist some cliques $\mathrm{Q}_{1}, \ldots, \mathrm{Q}_{2 \mathrm{t}+1}$ of G and some pairwise different vertices $v_{1}, \ldots, v_{2 t+1}$ of G for some $t \geqslant 1$ such that $Q_{i} \cap\left\{v_{1}, v_{2}, \ldots, v_{2 t+1}\right\}=\left\{v_{i}, v_{i+1}\right\}$ for each $\mathfrak{i}=1, \ldots, 2 \mathrm{t}+1$ (where $v_{2 t+2}$ stands for v_{1}). In particular, $\mathrm{C}=v_{1} v_{2} \ldots v_{2 \mathrm{t}+1} v_{1}$ is an odd cycle of G. Since C is odd, there are two consecutive vertices of C that belong both to G_{1} or both to G_{2}. Without loss of generality, assume that v_{1} and v_{2} both belong to G_{1}. As Q_{i} is a clique of $G, Q_{i}^{\prime}=Q_{i} \cap V\left(G_{1}\right)$ is a clique of G_{1} for each $\mathfrak{i}=1,2, \ldots, 2 t+1$. By construction, $Q_{2 t+1}^{\prime} \cap\left\{x_{1}, x_{2}\right\}=\left\{x_{1}\right\}, Q_{1}^{\prime} \cap\left\{x_{1}, x_{2}\right\}=\left\{x_{1}, x_{2}\right\}$, and $Q_{2}^{\prime} \cap\left\{x_{1}, x_{2}\right\}=\left\{x_{2}\right\}$. Therefore, x_{1} and x_{2} are two adjacent clique-distinguishable vertices and, by Theorem $3.8, \mathrm{G}_{1}$ is not trivially perfect and (ii) does not hold.

The above lemma implies the following fact about minimally not balanced graphs.
Corollary 3.10. The only minimally not balanced graphs whose complements are disconnected are the 2 -pyramid and the 3 -pyramid.

Proof. Let H be a minimally not balanced graph whose complement $\overline{\mathrm{H}}$ is disconnected. Since \bar{H} is disconnected, H is the join of two graphs H_{1} and H_{2} with at least one vertex each. Therefore, as H is minimally not balanced, H_{1} and H_{2} are balanced. Nevertheless, as H is not balanced, Lemma 3.9 implies that H_{1} or H_{2} is not trivially perfect.

Without loss of generality, assume that H_{1} is not trivially perfect; i.e., H_{1} contains an induced P_{4} or an induced C_{4}. Since $H=H_{1}+H_{2}$ is not balanced and H_{1} is balanced, Lemma 3.9 implies that H_{2} is not complete. Thus, H_{2} contains an induced $2 \mathrm{~K}_{1}$. Finally, $\mathrm{H}=\mathrm{H}_{1}+\mathrm{H}_{2}$ contains an induced $\mathrm{P}_{4}+2 \mathrm{~K}_{1}=2$-pyramid or an induced $\mathrm{C}_{4}+2 \mathrm{~K}_{1}=3$-pyramid. By minimality, H is the 2-pyramid or the 3-pyramid.

By Lemma 3.9, the join of two trivially perfect graphs is balanced. Below, we state a generalization of this fact for future reference. Notice that, in the result below, $G[X]$ and $\mathrm{G}[\mathrm{Y}]$ are trivially perfect by Theorem 3.8.

Lemma 3.11. If the vertex set of a graph G can be partitioned into two sets X and Y such that every two clique-distinguishable vertices in G that belong both to X or both to Y are nonadjacent, then G is balanced.

Proof. Suppose, by the way of contradiction, that G is not balanced. Then, there is some submatrix A of a clique-matrix A_{G} of G such that A is an edge-vertex incidence matrix of an odd chordless cycle. Notice that no row of A has two 1's in columns corresponding to vertices of X; otherwise, these two columns would correspond to adjacent vertices of X which, by hypothesis, are not clique-distinguishable in G, meaning that one of these columns would dominate the other in A_{G}, contradicting the fact that A has no dominated columns. Similarly, no row of A contains two 1's in columns corresponding to vertices of Y. So, as each row of A has exactly two 1 's, each row of A has exactly one 1 in a column corresponding to a column corresponding to a vertex of X and exactly one 1 in a column corresponding to a vertex of Y, which contradicts the fact that A is an edge-vertex incidence matrix of an odd chordless cycle. This contradiction arose from assuming that G was not balanced.

We close this section with the following reformulation of Lemma 3.9, also for future reference.

Lemma 3.12. A graph G is balanced if and only if exactly one of the following assertions holds:
(i) $\overline{\mathrm{G}}$ has only trivial components.
(ii) $\overline{\mathrm{G}}$ has only one nontrivial component and the complement of this component is balanced.
(iii) \bar{G} has exactly two nontrivial components and the complements of these two components are trivially perfect.

Proof. If \bar{G} has only trivial components, then G is a complete graph and, in particular, balanced. If $\overline{\mathrm{G}}$ has only one nontrivial component H , then G is the join of a (possibly empty) complete and H and, by Lemma 3.9, G is balanced if and only if H is balanced. Suppose now that $\overline{\mathrm{G}}$ has two nontrivial components H_{1} and H_{2}. Then, G is the join of
a (possibly empty) complete with the join of $\overline{\mathrm{H}}_{1}$ and $\overline{\mathrm{H}}_{2}$, where none of $\overline{\mathrm{H}}_{1}$ and $\overline{\mathrm{H}}_{2}$ is a complete graph. Therefore, by Lemma 3.9, G is balanced if and only if \bar{H}_{1} and \bar{H}_{2} are trivially perfect. Finally, notice that if \bar{G} has 3 or more nontrivial components, then G is not balanced because it contains an induced $\overline{3 \mathrm{~K}_{2}}=3$-pyramid.

3.3 Recognition of balanced graphs and balanced matrices

As noted in [42], a polynomial-time algorithm for recognizing balanced graphs follows from Theorem 2.7 and the fact, first proved in [37], that balanced matrices can be recognized in polynomial time. The purpose of this section is to show that there is a stronger tie between the recognition of balanced graphs and of balanced matrices.

In [128], Zambelli devised a recognition algorithm for balanced $\{0,1\}$-matrices, which has the currently best time bound.

Theorem 3.13 ([128]). There is a $\mathrm{O}\left((\mathrm{r}+\mathrm{c})^{9}\right)$-time algorithm that decides whether or not a given $\mathrm{r} \times \mathrm{c}\{0,1\}$-matrix is balanced.

It is easy to see that the above result immediately implies that whether or not a given graph G having n vertices and m edges is balanced can be decided in $O\left(m^{9}+n\right)$ time. Indeed, as it takes only $\mathrm{O}(\mathrm{m}+\mathrm{n})$ time to compute the components of G , it suffices to show that if G is connected then it can be decided in $\mathrm{O}\left(\mathrm{m}^{9}\right)$ time whether or not G is balanced. Indeed, if G is connected, then Theorem 2.7 ensures that in $O\left(m^{2} n\right)$ time it can either be detected that G is not hereditary clique-Helly (and, consequently, not balanced) or a clique-matrix of G be computed. In the latter case, such a clique-matrix of G has at most m rows and at most m columns and Zambelli's algorithm is able to determine whether or not the clique-matrix of G is balanced in $\mathrm{O}\left(\mathrm{m}^{9}\right)$ time.

We observe that for graphs having the number of cliques bounded from above by a linear function on the number of vertices, like chordal graph [57], pseudo-split graphs [13], planar graphs [105], and Helly circular-arc graphs [61], the same analysis shows that deciding their balancedness can be completed in $\mathrm{O}\left(\mathrm{n}^{9}\right)$ time. One might be tempted to consider the $\mathrm{O}\left(\mathrm{n}^{9}\right)$ time bound too loose, for instance, for chordal graphs, given that, in order to decide the balancedness of chordal graphs, there is no need to test for balancedness of arbitrary $\{0,1\}$-matrices, but just those that are clique-matrices of chordal graphs. The lemma below shows that it is not the case, as any improvement on the $\mathrm{O}\left(\mathrm{n}^{9}\right)$-time bound for the recognition of balanced graphs within split graphs is tied to the existence of recognition algorithms for balanced matrices asymptotically faster than that of Zambelli, and vice versa. The reduction we apply here was used in [32] to prove the NP-completeness of determining α_{c} and τ_{c} for split graphs.

Lemma 3.14. Let $\mathrm{p} \geqslant 2$. Then, there exists an $\mathrm{O}\left(\mathfrak{n}^{\mathfrak{p}}\right)$-time algorithm for deciding the balancedness of any given split graph having n vertices if and only if there exists an $\mathrm{O}\left((\mathrm{r}+\mathrm{c})^{\mathrm{p}}\right)$ time algorithm for deciding the balancedness of any given $\mathrm{r} \times \mathrm{c}\{0,1\}$-matrix.

Proof. Suppose that there is an $\mathrm{O}\left(\mathrm{n}^{\mathfrak{p}}\right)$-time algorithm for deciding the balancedness of split graphs having n vertices and let $A=\left(a_{i j}\right)$ be a given $r \times c\{0,1\}$-matrix. Without loss of generality, assume that no row of A is full of 1 's, as such rows can be ignored when deciding the balancedness of A. Consider the graph $G(A)$ with vertex set $\left\{s_{1}, \ldots, s_{r}, k_{1}, \ldots, k_{c}\right\}$, where $\left\{s_{1}, \ldots, s_{r}\right\}$ is a stable set, $\left\{k_{1}, \ldots, k_{c}\right\}$ is a complete, and such that s_{i} is adjacent to k_{j} if and only if $a_{i j}=1$. Clearly, $G(A)$ can be constructed in $O\left((r+c)^{2}\right)$ time and a clique-matrix of $G(A)$ is $A^{\prime}=\left(\begin{array}{cc}I_{r} & A \\ 0 & 1\end{array}\right)$ where I_{r} denotes the identity matrix of order r, 0 a row of r entries equal to 0 's, and 1 denotes a row of c entries equal to 1 's. Clearly, A^{\prime} is balanced if and only if A is balanced. So, A is balanced if and only if $G(A)$ is balanced, which, by hypothesis, can be decided in $\mathrm{O}\left((\mathrm{r}+\mathrm{c})^{\mathfrak{p}}\right)=\mathrm{O}\left(\mathrm{n}^{\mathfrak{p}}\right)$ time.

Conversely, suppose that there is an $\mathrm{O}\left((\mathrm{r}+\mathrm{c})^{\mathfrak{p}}\right)$-time algorithm that decides the balancedness of $r \times c\{0,1\}$-matrices and let G be a split graph. Let $\{S, K\}$ be a partition of $V(G)$ such that $S=\left\{s_{1}, \ldots, s_{x}\right\}$ is a stable set and $K=\left\{k_{1}, \ldots, k_{y}\right\}$ is complete of G, and let $A=\left(a_{i j}\right)$ be the $x \times y\{0,1\}$-matrix such that $a_{i j}=1$ if and only if s_{i} is adjacent to k_{j}. Reasoning as in the preceding paragraph, G is balanced if and only if A is balanced, which, by hypothesis, can be decided in $O\left(n^{p}\right)$ time once the matrix A is constructed in $O\left(n^{2}\right)$ time, where $n=x+y$ is the number of vertices of G.

Notice that if $p \geqslant 2$ and there were an $\mathrm{O}\left((\mathrm{r}+\mathrm{c})^{\mathrm{p}}\right)$-time recognition algorithm for balanced matrices, then, by reasoning as we did with Zambelli's algorithm, one concludes that there would be an $\mathrm{O}\left(\mathfrak{m}^{p}+\mathfrak{m}^{2} \mathfrak{n}\right)$-time algorithm for deciding the balancedness of any given graph having n vertices and m edges. Notice also that above proof of the lemma leads to an alternative derivation of Corollary 3.6.

3.4 Balancedness of complements of bipartite graphs

Recall from the Introduction that bipartite graphs are balanced, but also that the class of balanced graphs is not self-complementary. In particular, it turns out that the complements of bipartite graphs are not necessarily balanced. In this section, we characterize those complements of bipartite graphs that are balanced by minimal forbidden induced subgraphs. In fact, we show that the complement of a bipartite graph is balanced if and only if it is hereditary clique-Helly.

Theorem 3.15. Let G be the complement of a bipartite graph. Then, the following statements are equivalent:
(i) G is balanced.
(ii) A clique-matrix of G has no edge-vertex incidence matrix of C_{3} as a submatrix.
(iii) G is hereditary clique-Helly.
(iv) G contains no induced 1-pyramid, 2-pyramid, or 3-pyramid.

Proof. The implication (i) \Rightarrow (ii) follows by definition and (ii) \Rightarrow (iii) \Rightarrow (iv) follows from Theorem 2.5. In order to prove that (iv) \Rightarrow (i), assume that G contains no induced 1-pyramid, 2-pyramid, or 3-pyramid, and we will prove that G is balanced. Since G is the complement of a bipartite graph, its vertex set can be partitioned into red and blue vertices such that any two vertices of the same color are adjacent. Suppose, by the way of contradiction, that G is not balanced. Let $\mathrm{C}=v_{1} v_{2} \ldots v_{2 \mathrm{t}+1} v_{1}$ be an unbalanced cycle in G and let the W_{e} 's for each $e \in \mathrm{E}(\mathrm{C})$ be as in the corresponding definition. Since the 3 -sun is not the complement of a bipartite graph, G is pyramid-free and, by Theorem 2.5, $\mathrm{t}>1$.

Since C is odd, there exist consecutive vertices v_{k} and $v_{\mathrm{k}+1}$ in C having the same color (here, and all along the proof, subindices should be understood modulo $2 \mathrm{t}+$ 1). Either, there is another vertex v_{ℓ} in $\mathrm{V}(\mathrm{C}) \backslash\left\{v_{k}, v_{k+1}\right\}$ of this color, or all vertices in $\mathrm{V}(\mathrm{C}) \backslash\left\{v_{\mathrm{k}}, v_{\mathrm{k}+1}\right\}$ have the other color. In any case, as $\mathrm{t}>1, \mathrm{C}$ has three pairwise different vertices v_{i}, v_{i+1}, and v_{j} of the same color, say red. Thus, v_{i}, v_{i+1}, and v_{j} induce a triangle and $v_{j} \in \mathrm{~N}_{\mathrm{G}}\left(v_{i} v_{i+1}\right) \cap \mathrm{V}(\mathrm{C})$ follows.

Next, we shall construct a blue triangle \mathfrak{u}_{1}, u_{2}, and u_{3} in G. By the definition of an unbalanced cycle, $\mathrm{N}\left(\mathrm{W}_{v_{i} v_{i+1}}\right) \cap \mathrm{N}\left(v_{i} v_{i+1}\right) \cap \mathrm{V}(\mathrm{C})=\varnothing$ and there exists some $\mathfrak{u}_{1} \in W_{v_{i} v_{i+1}}$ such that u_{1} is nonadjacent to v_{j}. Since v_{j} is red, u_{1} is blue. If v_{i-1} is nonadjacent to v_{i+1}, we let $\mathfrak{u}_{2}=v_{i-1}$; otherwise, $v_{i+1} \in N\left(v_{i-1} v_{i}\right) \cap \mathrm{V}(\mathrm{C})$ and we let u_{2} be any vertex of $W_{v_{i-1} v_{i}}$ nonadjacent to v_{i+1}. In both cases, u_{2} is blue because it is nonadjacent to the red vertex v_{i+1}. Similarly, if v_{i+2} is nonadjacent to v_{i}, we define $u_{3}=v_{i+2}$; otherwise, we let u_{3} be any vertex of $W_{v_{i+1} v_{i+2}}$ nonadjacent to v_{i}. In both cases, u_{3} is blue because it is nonadjacent to v_{i}. By construction, u_{1}, u_{2}, and u_{3} are pairwise different because $\mathrm{N}_{\mathrm{G}}\left(\mathfrak{u}_{1}\right) \cap\left\{v_{i}, v_{i+1}\right\}=\left\{v_{i}, v_{i+1}\right\}, \mathrm{N}_{\mathrm{G}}\left(\mathfrak{u}_{2}\right) \cap\left\{v_{i}, v_{i+1}\right\}=\left\{v_{i}\right\}$, and $\mathrm{N}_{\mathrm{G}}\left(\mathfrak{u}_{3}\right) \cap\left\{v_{i}, v_{i+1}\right\}=\left\{v_{i+1}\right\}$. Since u_{1}, u_{2}, and u_{3} are blue, they induce a triangle in G. Therefore, $\left\{u_{1}, v_{i}, v_{i+1}, v_{j}, u_{2}, u_{3}\right\}$ induces a 1-pyramid, 2-pyramid, or 3-pyramid in G , a contradiction. This contradiction arose from assuming that G was not balanced. Hence, G is balanced, which concludes the proof of (iv) \Rightarrow (i) and of the theorem.

As a consequence of the equivalence between (i) and (iii) of the above theorem, deciding if the complement of a bipartite graph is balanced is equivalent to determining whether it is hereditary clique-Helly. The currently best known time bound for recognizing hereditary clique-Helly graphs is $\mathrm{O}\left(\mathrm{m}^{2}+\mathfrak{n}\right)$ where m is the number of edges
of the input graph [91]. Notice that if the input graph is the complement of a bipartite graph with n vertices and m edges, then $m^{2}=\Theta\left(n^{4}\right)$, which means that $O\left(m^{2}+n\right)$ is not a linear-time bound. In fact, the algorithm in [91] 'as is' takes $\Omega\left(\mathrm{n}^{3}\right)$ time when applied to the complement of a bipartite graph with n vertices because its main loop runs over all the triangles of the input graph. We will show that there is a simple linear-time recognition algorithm for hereditary clique-Helly graphs (or, equivalently, balanced graphs) when the input graph is known to be the complement of a bipartite graph.

As a consequence of Theorem 3.15, Lemma 3.12 becomes the following when specialized to complements of bipartite graphs.

Corollary 3.16. Let G be the complement of a bipartite graph. Then, G is balanced if and only if one of the following assertions holds:
(i) $\overline{\mathrm{G}}$ has only trivial components.
(ii) $\overline{\mathrm{G}}$ has exactly one nontrivial component and this component is $\left\{\mathrm{E}, \mathrm{P}_{4} \cup \mathrm{P}_{2}, 3 \mathrm{~K}_{2}\right\}$-free.
(iii) \bar{G} has exactly two nontrivial components and these two components are complete bipartite graphs.

Proof. The results follows from Lemma 3.9 by noticing that if H is a connected bipartite graph then: (1) $\overline{\mathrm{H}}$ is balanced if and only if H is $\left\{E, \mathrm{P}_{4} \cup \mathrm{P}_{2}, 3 \mathrm{~K}_{2}\right\}$-free, and (2) \bar{H} is trivially perfect if and only if H is a complete bipartite graph. Assertion (1) follows immediately from Theorem 3.15. When considering (2), it is clear that, if H is a complete bipartite graph, then $\overline{\mathrm{H}}$ is trivially perfect because the endpoints of any pair of non-incident edges in H induce C_{4} in H . Conversely, suppose that $\overline{\mathrm{H}}$ is trivially perfect. In particular, H is P_{4}-free, which means that any two nonadjacent vertices u and v belonging to a same component of H are at distance 2 in H . So, since we are assuming that H is a connected bipartite graph, any two nonadjacent vertices of H are on the same set of the bipartition of H . This proves that H is complete bipartite, which completes the proof of (2) and of the corollary.

Let G be the complement of a bipartite graph H and let n and m be the number of vertices and edges of G. We will show that there is a simple $O\left(n^{2}\right)$-time algorithm that decides whether or not G is balanced. Notice that, in this case, $O\left(n^{2}\right)$ is a lineartime bound because, being G the complement of a bipartite graph, $m=\Theta\left(n^{2}\right)$. Since conditions (i) and (iii) of Corollary 3.16 can be clearly verified in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time, it suffices to show that it is easy to decide in $\mathrm{O}\left(\mathfrak{n}^{2}\right)$ time whether or not a connected bipartite graph having n vertices is $\left\{E, P_{4} \cup P_{2}, 3 K_{2}\right\}$-free.

If H is any bipartite graph, we write $H=(X, Y ; F)$ to mean that $\{X, Y\}$ is a bipartition of H and $\mathrm{F}=\mathrm{E}(\mathrm{H})$. The bipartite complement of a connected bipartite graph $\mathrm{H}=$
$(X, Y ; F)$ is the bipartite graph $\bar{H}^{\text {bip }}=(X, Y ;(X \times Y) \backslash F)$. For instance, $\bar{P}_{5}{ }^{\text {bip }}=2 K_{2} \cup K_{1}$. The recognition algorithm for $\left\{E, P_{4} \cup P_{2}, 3 K_{2}\right\}$-free bipartite graphs follows from the study of E-free bipartite graphs in [95]. In particular, we make use of the following result.

Theorem 3.17 ([95]). Let H be a connected bipartite graph. Then, the following assertions are equivalent:
(i) H is $\left\{\mathrm{E}, \mathrm{P}_{7}\right\}$-free.
(ii) H is ${\overline{\mathrm{P}_{5}}}^{\mathrm{bip}}{ }_{-}$free.
(iii) Each component of $\overline{\mathrm{H}}^{\text {bip }}$ is $2 \mathrm{~K}_{2}$-free.

We have the following immediate consequence.
Corollary 3.18. Let H be a connected bipartite graph. Then, H is $\left\{\mathrm{E}, \mathrm{P}_{4} \cup \mathrm{P}_{2}, 3 \mathrm{~K}_{2}\right\}$-free if and only if each component of $\overline{\mathrm{H}}^{\text {bip }}$ is $2 \mathrm{~K}_{2}$-free.

Proof. In fact, if H is $\left\{E, P_{4} \cup P_{2}, 3 K_{2}\right\}$-free, then, in particular, H is $\left\{E, P_{7}\right\}$-free (because P_{7} contains an induced $P_{4} \cup P_{2}$) and, by Theorem 3.17, each component of $\bar{H}^{\text {bip }}$ is $2 K_{2}-$ free.

Conversely, suppose that each component of $\bar{H}^{\text {bip }}$ is $2 \mathrm{~K}_{2}$-free. Then, by Theorem 3.17, H is ${\overline{P_{5}}}^{\text {bip }}$-free. Since each of $E, P_{4} \cup P_{2}$, and $3 K_{2}$ contains an induced ${\overline{P_{5}}}^{\text {bip }}, H$ is $\left\{E, P_{4} \cup P_{2}, 3 K_{2}\right\}$-free.

Bipartite $2 \mathrm{~K}_{2}$-free graphs are known as chain graphs [127] or difference graphs [67]. It is well-known that a linear-time recognition for these graphs follows from the fact that, in any bipartite chain graph $\mathrm{H}=(\mathrm{X}, \mathrm{Y} ; \mathrm{F})$, the neighborhoods of the vertices of X (resp. Y) are nested. (For a detailed account, the reader may consult [71].) Therefore, as a consequence of Corollary 3.18, given a connected bipartite graph H with n vertices, it can be decided whether or not H is $\left\{E, P_{4} \cup K_{2}, 3 K_{2}\right\}$-free in $O\left(n^{2}\right)$ time, as follows: $\overline{\mathrm{H}}^{\text {bip }}$ can be clearly computed in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time and, since bipartite chain graphs can be recognized in linear time, we can decide whether each of the components of $\overline{\mathrm{H}}^{\text {bip }}$ is $2 \mathrm{~K}_{2}$-free also in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time.

Altogether, we have a simple $\mathrm{O}\left(\mathrm{n}^{2}\right)$-time algorithm to decide whether or not a given complement of bipartite graph with n vertices is balanced. Recalling that an $\mathrm{O}\left(\mathrm{n}^{2}\right)$-time algorithm is linear-time if its input is the complement of a bipartite graph, we conclude the following.

Corollary 3.19. It can be decided in linear time whether or not the complement of a bipartite graph is balanced (or, equivalently, hereditary clique-Helly).

3.5 Balancedness of line graphs of multigraphs

The first characterization of perfect line graphs appeared in [114] and an alternative algorithmic proof was given in [43]. This characterization was later extended in [97]. It is known that line graphs of bipartite graphs are balanced [10]. In this subsection, we prove structural characterizations of those line graphs that are balanced, including a characterization by minimal forbidden induced subgraphs. Near the end of this subsection, we show how these structural results naturally extend to line graphs of multigraphs.

In order to state our results we need to introduce some definitions. First, we note that the cliques in the line graph $L(R)$ of a given graph R correspond to the inclusionwise maximal sets of pairwise incident edges in R, called by us the L-cliques of R, which are the edge sets of the triangles of R, called triads, and the stars $\mathrm{E}_{\mathrm{R}}(v)(v \in \mathrm{~V}(\mathrm{R}))$ that are not contained in another star or triad.

A t -bloom $\left\{v ; v_{1}, \ldots, v_{\mathrm{t}}\right\}$ in a graph is a set of $\mathrm{t}>0$ different pendant vertices $v_{1}, \ldots, v_{\mathrm{t}}$ all being adjacent to vertex v. By identifying two nonadjacent vertices u and v, we mean replacing them by a new vertex w with $N(w)=N(u) \cup N(v)$. If G_{1} and G_{2} are two vertex-disjoint graphs, $A=\left\{a ; a_{1}, \ldots, a_{t}\right\}$ is a t-bloom in G_{1}, and $B=\left\{b ; b_{1}, \ldots, b_{t}\right\}$ is a t-bloom in G_{2}, then $G_{1} \triangle_{A B} G_{2}$ denotes the graph that arises from $G_{1} \cup G_{2}$ by adding the edge $a b$ and identifying a_{i} with b_{i} for each $i=1, \ldots, t$.

The following result characterizes which line graphs are balanced, including a characterization by minimal forbidden induced subgraphs.

Theorem 3.20. Let G be a line graph and let R be a graph such that $G=L(R)$. Then, the following assertions are equivalent:
(i) G is balanced.
(ii) G is perfect and hereditary clique-Helly.
(iii) G has no odd holes and contains no induced 3-sun, 1-pyramid, or 3-pyramid.
(iv) R has no odd cycles of length at least 5 and contains no net, kite, or K_{4}.
(v) Each component of R belongs to the graph class \mathcal{S} which is the minimal graph class satisfying the following two conditions:
(a) All connected bipartite graphs belong to \mathcal{S}.
(b) If $\mathrm{G}_{1}, \mathrm{G}_{2} \in \mathcal{S}$ and the sets A and B are t -blooms of G_{1} and G_{2}, respectively, then $\mathrm{G}_{1} \triangle_{\mathrm{AB}} \mathrm{G}_{2}$ belongs to \mathcal{S}.

Proof. The implication (i) \Rightarrow (ii) follows from Theorems 3.1 and 3.3 and (ii) \Rightarrow (iii) from Theorem 2.5. That (iii) \Rightarrow (iv) follows from the definition of line graph.

We prove that (iv) $\Rightarrow(\mathrm{v})$ by induction on the number n of edges of R . Assume that R has no odd cycles of length at least 5 and contains no kite, net, or K_{4}. If $n=1$, (v) holds trivially. Let $\mathfrak{n}>1$ and assume that (v) holds for graphs with less than \mathfrak{n} edges. Let S be any component of R and assume that S is not bipartite. In order to prove that S belongs to S, we need to show that $S=S_{1} \triangle_{A B} S_{2}$ for some $S_{1}, S_{2} \in \mathcal{S}$ and some blooms A and B. Since S is not bipartite and has no odd cycles of length at least 5 , there is some triangle T in S. Since S contains no net, kite, or K_{4}, there is some vertex of T of degree 2 in S. Let $T=\left\{a, b, c_{1}\right\}$ where $d_{S}\left(c_{1}\right)=2$. Let $c_{1}, c_{2}, \ldots, c_{t}$ be all the vertices of S with $\{a, b\} \subseteq N_{S}\left(c_{i}\right)$. Since S contains no $K_{4},\left\{c_{1}, \ldots, c_{t}\right\}$ is a stable set of S. Moreover, we have $\{a, b\}=N_{S}\left(c_{i}\right)$, for each $i=2, \ldots, t$, because S contains no kite. Let S^{\prime} be the graph that arises from S by removing the edge $a b$ and the vertices $c_{1}, \ldots, c_{t} ;$ i.e., $S^{\prime}=(S-a b)-\left\{c_{1}, \ldots, c_{t}\right\}$. Since S has no odd cycles of length at least 5 , there is no path joining a and b in S^{\prime}. Nevertheless, $S^{\prime}+a b=S-\left\{c_{1}, \ldots, c_{t}\right\}$ is connected because S is connected. Consequently, S^{\prime} consists of two components S_{1}^{\prime} and S_{2}^{\prime} such that a belongs to S_{1}^{\prime} and b belongs to S_{2}^{\prime}. Let S_{1} be the graph that arises from S_{1}^{\prime} by adding t pendant vertices a_{1}, \ldots, a_{t} adjacent to a. Analogously, let S_{2} be the graph that arises from S_{2}^{\prime} by adding t pendant vertices b_{1}, \ldots, b_{t} adjacent to b. Then, $A=\left\{a ; a_{1}, \ldots, a_{t}\right\}$ and $B=\left\{b ; b_{1}, \ldots, b_{t}\right\}$ are t-blooms of S_{1} and S_{2}, respectively, and $S=S_{1} \triangle_{A B} S_{2}$. Moreover, S_{1} and S_{2} satisfy (iv) because they are subgraphs of S. Therefore, as S_{1} and S_{2} are connected and have less edges than S, by induction hypothesis, $S_{1}, S_{2} \in \mathcal{S}$. This completes the proof of (iv) \Rightarrow (v).

Let us now turn to the proof of (v) \Rightarrow (i). Assume that every component of R belongs to \mathcal{S}. We will prove that $G=L(R)$ is balanced by induction on the number n of edges of R. Without loss of generality we can assume that R has no isolated vertices. If $n=1$, then $G=K_{1}$ is balanced. Let $n>1$ and assume that (i) holds when R has less than n edges. If R is disconnected, each component S of R has less than n edges and, by induction hypothesis, each $L(S)$ is balanced, which implies that $G=L(R)$ is balanced, as desired. So, without loss of generality, we assume that R is connected. Suppose, by the way of contradiction, that G is not balanced; i.e, there exist some L-cliques E_{1}, \ldots, E_{r} and some pairwise different edges e_{1}, \ldots, e_{r} of R such that $E_{i} \cap\left\{e_{1}, \ldots, e_{r}\right\}=$ $\left\{e_{i}, e_{i+1}\right\}$ (from this point on, all subindices should be understood modulo r) for some odd $r \geqslant 3$.

Recall from the Introduction that line graphs of bipartite graphs are balanced. Hence, R is not bipartite and, since $R \in \mathcal{S}$ by hypothesis, $R=R_{1} \triangle_{A B} R_{2}$ where $R_{1}, R_{2} \in \mathcal{S}, A=\left\{a ; a_{1}, \ldots, a_{t}\right\}$ is a t-bloom of R_{1}, and $B=\left\{b ; b_{1}, \ldots, b_{t}\right\}$ is a t-bloom of R_{2}. Since R_{1} and R_{2} have less edges than R, the induction hypothesis implies that
$L\left(R_{1}\right)$ and $L\left(R_{2}\right)$ are both balanced. If $E_{R}(a)$ is an L-clique of R, we will identify $E_{R}(a)$ with $E_{R_{1}}(a)$ and say that $E_{R}(a)$ is an L-clique of R_{1}. Similarly, if $E_{R}(b)$ is an L-clique of R, we will identify $E_{R}(b)$ with $E_{R_{2}}(b)$ and say that $E_{R}(b)$ is an L-clique of R_{2}. With this conventions, the L-cliques of R are the L-cliques of R_{1} and R_{2}, plus the triads $T_{k}=\left\{a b, a c_{k}, b c_{k}\right\}$ for each $k=1, \ldots, t$, where c_{k} is the vertex that results from identifying a_{k} with b_{k}. If $r=3$, Theorem 2.5 implies that G contains an induced pyramid, which means that R contains net, kite, or K_{4}; and consequently, by definition of \triangle, either R_{1} or R_{2} contain net, kite or K_{4}, a contradiction with $L\left(R_{1}\right)$ and $L\left(R_{2}\right)$ balanced. Hence, we have $r \geqslant 5$ and suppose that at least one of E_{1}, \ldots, E_{r} is an $L-$ clique of R_{1}. Since $L\left(R_{1}\right)$ is balanced, not all of E_{1}, \ldots, E_{r} are L-cliques of R_{1}. Therefore, there exists some $i \in\{1, \ldots, r\}$ such that E_{i} is an L-clique of R_{1}, but E_{i+1} is not. Since $E_{i} \cap E_{i+1} \neq \varnothing$, necessarily, $E_{i}=E_{R}(a)$. Similarly, there is some $j \in\{1, \ldots, r\}$ such that E_{j} is an L-clique of R_{1} and E_{j-1} is not, and necessarily $E_{j}=E_{R}(a)$. Hence, every block of consecutive L-cliques of R_{1} in the circular ordering $E_{1} E_{2} \ldots E_{r} E_{1}$ starts and ends with $E_{R}(a)$. Since E_{1}, \ldots, E_{r} are r pairwise different L-cliques of $R, E_{R}(a)$ is the only L-clique of R_{1} that may belong to E_{1}, \ldots, E_{r}. Similarly, $E_{R}(b)$ is the only L-clique of R_{2} that may belong to E_{1}, \ldots, E_{r}.

Since $r \geqslant 5$ and among E_{1}, \ldots, E_{r} there are at most one L-clique of R_{1} and at most one L-clique of R_{2}, there are two consecutive elements in the circular ordering $E_{1} E_{2} \ldots E_{k} E_{1}$ that are triads T_{k} for some values of k. Without loss of generality, $E_{1}=T_{1}$ and $E_{2}=T_{2}$. Therefore, $e_{2} \in E_{1} \cap E_{2}=\{a b\}$. But then, $e=a b$ belongs to each of E_{1}, \ldots, E_{r}, a contradiction. This contradiction arose from assuming that G was not balanced. So, G satisfies (i), as desired.

As a corollary of the above theorem, we now prove another characterization of those line graphs that are balanced which leads to a linear-time recognition algorithm for balanced graphs within line graphs.

Corollary 3.21. Let G be a line graph and let R be a graph such that $\mathrm{G}=\mathrm{L}(\mathrm{R})$. Let U be the set of vertices of R of degree 2 that belong to some triangle of R and let E^{\prime} be the set of edges of R whose both endpoints are the two neighbors of some vertex of U . Then, G is balanced if and only if $\mathrm{R}-\mathrm{U}$ is a bipartite graph and every edge of $\mathrm{R}-\mathrm{U}$ that belongs to E^{\prime} is a bridge of R-U.

Proof. Suppose that G is balanced. By assertion (iv) of Theorem 3.20, R contains no kite, net, or K_{4}. Thus, every triangle of R has at least one vertex of degree 2 and, therefore, R - U has no triangles. Since, in addition, R has no odd cycles of length at least $5, R-U$ is bipartite. Let $a b$ be an edge of $R-U$ that belongs to E^{\prime} and suppose, by the way of contradiction, that $a b$ is not a bridge of $R-U$. Thus, $a b$ is an edge of some cycle C of $R-U$. Since $R-U$ is bipartite, $C=a b v_{1} \ldots v_{2 k} a$ for some $k \geqslant 1$.

Since $a b \in E^{\prime}$, there exists some vertex $c \in R$ such that $N_{R}(c)=\{a, b\}$. But then, $C^{\prime}=a c b v_{1} \ldots v_{2 k} a$ is a cycle of R of length $2 k+3$ with $k \geqslant 1$, a contradiction since R has no odd cycles of length at least 5 .

Conversely, assume that $\mathrm{R}-\mathrm{U}$ is bipartite and every edge of $\mathrm{R}-\mathrm{U}$ that belongs to E^{\prime} is a bridge of $R-U$. We will prove that assertion (iv) of Theorem 3.20 holds. R contains no kite, net, or K_{4} (otherwise, $\mathrm{R}-\mathrm{U}$ would contain a triangle, in contradiction with R - U bipartite). It only remains to prove that R has no odd cycles of length at least 5. Suppose, by the way of contradiction, that R has a cycle $C=v_{1} v_{2} \ldots v_{r} v_{1}$ of odd length at least 5 . Let $w_{1}, w_{2}, \ldots, w_{s}$ be the sequence of vertices that arises from the sequence $v_{1}, v_{2}, \ldots, v_{r}$ by removing all the vertices that belong to U. Notice that, if $v_{i} \in \mathrm{U}$, then each of v_{i-1} and v_{i+1} has degree at least 3 in R and, therefore, none of v_{i-1} and v_{i+1} belongs to U and $v_{i-1} v_{i+1}$ is an edge of $\mathrm{R}-\mathrm{U}$. Therefore, $\mathrm{C}^{\prime}=w_{1} w_{2} \ldots w_{s} w_{1}$ is a cycle of $R-U$. Since C is an odd cycle and $R-U$ is bipartite, $C^{\prime} \neq C$. So, necessarily, there is at least one vertex of C that belongs to U. Without loss of generality assume that $v_{2} \in \mathrm{U}$. By construction, $w_{1}=v_{1}, w_{2}=v_{3}, v_{1} v_{3} \in E^{\prime}$, and $v_{1} v_{3}$ is an edge of the cycle C^{\prime} in $R-U$. Therefore, $v_{1} v_{3}$ is an edge of $R-U$ that belongs to E^{\prime} but is not a bridge of $R-U$, a contradiction. This contradiction proves that R has no odd cycles of length at least 5 . Hence statement (iv) of Theorem 3.20 holds and, consequently, G is balanced.

From Corollary 3.21, we deduce the following.
Corollary 3.22. It can be decided in linear time whether a given line graph G is balanced.
Proof. Let n and m be the number of vertices and edges of G. A graph R without isolated vertices such that $L(R)=G$ can be computed in $O(m+n)$ time [89, 107]. Additionally, the neighborhoods of the vertices of R can be easily sorted, consistently with some fixed total ordering of $V(R)$, in $O(n)$ time (see, e.g., [80, p. 115]). Notice that $O(n)$ time means linear time of R because R has n edges and no isolated vertices. We now show that U and E^{\prime} defined as in Corollary 3.21 can also be computed in $O(n)$ time. Let H be an auxiliary multigraph whose vertex set is $V(R)$ and having each of its edges labeled with a vertex of R defined as follows: two vertices v and w of H are joined by one (and exactly one) edge labeled with x if and only if $N_{R}(x)=\{v, w\}$. Clearly, H can be computed in $O(n)$ time and, as we did with R, we can sort the neighborhoods of H (ignoring the edge labels), consistently with the total ordering of $\mathrm{V}(\mathrm{R})$ used for the neighborhoods of R, also in $O(n)$ time. Now, as both $N_{R}(v)$ and $N_{H}(v)$ are sorted consistently for each $v \in \mathrm{~V}(\mathrm{R})$, we can find, in overall $\mathrm{O}(\mathrm{n})$ time, the set D of all triples (v, w, x) that satisfy both that $w \in \mathrm{~N}_{\mathrm{R}}(v) \cap \mathrm{N}_{\mathrm{H}}(v)$ and that there is an edge joining v and w labeled with x. Then, U consists of all vertices x such that there is some triple $(v, w, x) \in \mathrm{D}$ and E^{\prime} consists of all edges $v w$ such that there is some triple $(v, w, x) \in \mathrm{D}$.

This shows that indeed U and E^{\prime} can be computed in $O(n)$ time. Finally, we can also decide in $\mathrm{O}(\mathrm{n})$ time whether $\mathrm{R}-\mathrm{U}$ is bipartite and whether the edges of $\mathrm{R}-\mathrm{U}$ that belong to E^{\prime} are bridges of $R-U$, because the bridges of a graph can be determined in linear time by depth-first search [112].

In the above proof, the sets U and E^{\prime} can also be computed in $\mathrm{O}(\mathrm{m}+\mathfrak{n})$ time by enumerating all triangles of R using the approach sketched in [80, p. 115], which leads to an alternative linear-time algorithm to decide the balancedness of G. Nevertheless, our procedure has the advantage that it takes only linear time of R to decide the balancedness of $L(R)$ if R is given as input.

We will now briefly comment on how the above results for line graphs naturally extend to line graphs of multigraphs. Since two edges of a multigraph H are adjacent in $L(H)$ if and only if they have at least one endpoint in common, every two parallel edges of H are true twins in $\mathrm{L}(\mathrm{H})$. This means that the line graph of the multigraph H arises from the line graph of its underlying graph \hat{H} by adding true twins. As adding a true twin to a graph only duplicates one column of its clique-matrix, its balancedness is not affected. Therefore, $L(H)$ is balanced if and only if $L(\hat{H})$ is balanced. Moreover, adding true twins affects neither perfectness nor the fact of being hereditary cliqueHelly (as follows, for instance, from Theorems 2.3 and 2.5 because no odd hole, no odd antihole, and no pyramid has true twins). Therefore, $\mathrm{L}(\mathrm{H})$ is perfect and hereditary clique-Helly if and only if $L(\hat{H})$ is so. As a consequence, Theorem 3.20 extends to line graphs of multigraphs as follows.

Theorem 3.23. Let G be the line graph of a multigraph H . Then, the following assertions are equivalent:
(i) G is balanced.
(ii) G is perfect and hereditary clique-Helly.
(iii) G has no odd holes and contains no induced 3-sun, 1-pyramid, or 3-pyramid.
(iv) H has no odd cycles of length at least 5, and contains no net, kite, or K_{4}.
(v) Each component of the underlying graph of H belongs to the class \mathcal{S} (as defined in the statement of Theorem 3.20).

Finally, also the linear-time recognition algorithm for balanced graphs within line graphs can be extended to line graphs of multigraphs.

Corollary 3.24. Given the line graph G of a multigraph, it can be decided in linear time whether or not G is balanced.

Proof. In [80], an algorithm is proposed that, given a graph G, computes in linear time the representative graph $\mathcal{R}(G)$ of G, which is the graph that arises from G by successively removing one vertex of some pair of true twins, as long as this is possible. It is easy to see that $\mathcal{R}(\mathrm{G})$ is unique up to isomorphisms. Indeed, a representative graph of G is any induced subgraph of G induced by a set of representatives of the equivalence classes of the relation "is a true twin of" on the vertices of G. As G $=\mathrm{L}(\mathrm{H})$ arises from $L(\widehat{H})$ by adding true twins, $\mathcal{R}(G)$ is also the representative graph of $L(\widehat{H})$. Thus, $\mathcal{R}(G)$ is an induced subgraph of $L(\widehat{\mathrm{H}})$ and, in particular, $\mathcal{R}(\mathrm{G})$ is a line graph. In addition, as adding true twins does not affect balancedness, G is balanced if and only if $\mathcal{R}(G)$ is balanced. We conclude that the algorithm for computing the representative graph in [80] reduces the problem of deciding the balancedness of the line graphs of multigraphs G to that of deciding the balancedness of the line graphs $\mathcal{R}(\mathrm{G})$, which, as we have seen, is linear-time solvable.

3.6 Balancedness of complements of line graphs of multigraphs

We say that a multigraph H is $\overline{\mathrm{L}}$-balanced if the complement of its line graph is balanced. In this subsection, we will characterize those complements of line graphs of multigraphs that are balanced by determining which multigraphs are $\bar{L}-$ balanced. As completes in $\overline{\mathrm{L}(\mathrm{H})}$ correspond to matchings in H , the clique-matrices of $\overline{\mathrm{L}(\mathrm{H})}$ are the maximal matching vs. edge incidence matrices of H , which we call the matching-matrices of H . Consequently, H is $\overline{\mathrm{L}}$-balanced if and only if its matching-matrix is balanced.

3.6.1 Families of L-balanced multigraphs

The main result of this subsection is Theorem 3.28 which establishes that certain multigraph families are \bar{L}-balanced. The proof of this theorem splits into two parts. The first part will follow from a sufficient condition for $\bar{L}-b a l a n c e d n e s s ~ g i v e n ~ i n ~ L e m m a ~ 3.27, ~$ near the end of this subsection. The second part is postponed to Subsection 3.6.4. In order to prove the aforesaid sufficient condition, we introduce three multigraph families: $\mathcal{A}_{1}, \mathcal{A}_{2}$, and \mathcal{A}_{3}. In Figure 3.1, a generic member of each of these families is shown, where light lines represent single edges, bold lines one or more parallel edges, p is any positive integer, and a_{1}, \ldots, a_{p} are pairwise false twins.

Our next lemma shows that the multigraph families $\mathcal{A}_{1}, \mathcal{A}_{2}$, and \mathcal{A}_{3} arise naturally when characterizing those multigraphs H such that $\overline{\mathrm{L}(\mathrm{H})}$ is trivially perfect.

Lemma 3.25. Let G be the line graph of a multigraph H . Then, the following assertions are equivalent:
(i) G is trivially perfect.

Figure 3.1: Multigraphs families $\mathcal{A}_{1}, \mathcal{A}_{2}$, and \mathcal{A}_{3}. Light lines represent single edges, whereas bold lines represent one or more parallel edges. Parameter p varies over all positive integers and $a_{1}, a_{2}, \ldots, a_{p}$ are pairwise false twins
(ii) H contains no $\mathrm{P}_{5}, 2 \mathrm{P}_{3}, \mathrm{P}_{3} \cup \mathrm{C}_{2}$, or $2 \mathrm{C}_{2}$.
(iii) Some component of H is contained in some member of $\mathcal{A}_{1}, \mathcal{A}_{2}$, or \mathcal{A}_{3}, and each of the remaining components of H has at most one edge.

Proof. The equivalence between (i) and (ii) follows immediately from the definitions of trivially perfect graphs and line graphs of multigraphs. It is also clear, by simple inspection, that each of the members of the families $\mathcal{A}_{1}, \mathcal{A}_{2}$, and \mathcal{A}_{3} contains no P_{5}, $2 P_{3}, P_{3} \cup C_{2}$, or $2 C_{2}$. Therefore, the same holds also for any submultigraph of them, which proves that (iii) implies (ii). To complete the proof, we prove that (ii) implies (iii). Recall that $\hat{\mathrm{d}}_{\mathrm{H}}(v)$ denotes the degree of v in the underlying graph \widehat{H} and that a vertex v of H is pendant if and only if $\hat{d}_{H}(v)=1$.

Suppose that H satisfies (ii) and let S be any component of H . First assume that S is a multitree and let $P=v_{1} v_{2} \ldots v_{t}$ be a longest path in S. Since S contains no P_{5} and P is maximal, necessarily $t \leqslant 4, v_{1}$ and v_{t} are pendant vertices, and each neighbor of v_{2}, \ldots, v_{t-1} outside P is a pendant vertex. If $t \leqslant 3, S$ is contained in some member of \mathcal{A}_{3}, as desired. So, let $\mathrm{t}=4$. Since S contains no $\mathrm{P}_{3} \cup \mathrm{C}_{2}$ or $2 \mathrm{C}_{2}$, we can assume, by symmetry, that there is a single edge joining v_{1} to v_{2} and $\hat{\mathrm{d}}_{S}\left(v_{2}\right)=2$. We conclude that S is contained in some member of \mathcal{A}_{3}, as desired. So, from now on, we assume, without loss of generality, that S is not a multitree and let ℓ be the length of the longest cycle of S. Since S contains no $P_{5}, \ell=3$ or $\ell=4$.

Suppose that $\ell=3$ and let $T=v_{1} v_{2} v_{3} v_{1}$ be some triangle of S. Since S contains no P_{5} or bipartite claw and $\ell=3$, at most one vertex of T has some neighbor $v \in V(S) \backslash V(T)$ and each of these neighbors v is a pendant vertex. Without loss of generality, we assume that $\hat{\mathrm{d}}_{\mathrm{S}}\left(v_{1}\right)=\hat{\mathrm{d}}_{\mathrm{S}}\left(v_{2}\right)=2$. If $\hat{\mathrm{d}}_{\mathrm{S}}\left(v_{3}\right)>3$ or v_{3} is joined to some pendant vertex through two or more parallel edges, then there is a single edge joining v_{1} to v_{2} (because S contains no $\mathrm{P}_{3} \cup \mathrm{C}_{2}$ or $2 \mathrm{C}_{2}$) and S is contained in some member of \mathcal{A}_{3}. If $\hat{\mathrm{d}}_{\mathrm{S}}\left(v_{3}\right) \leqslant 3$ and there are no two parallel edges joining v_{3} to a pendant neighbor, then S is contained in some member of \mathcal{A}_{1}.

Finally, suppose that $\ell=4$ and let C be a 4 -cycle of S. Since C contains no P_{5} or $2 C_{2}, V(S)=V(C)$ and S has no two non-incident pairs of parallel edges. Therefore, S is some member of \mathcal{A}_{1} or \mathcal{A}_{2}.

We conclude that H satisfies (iii), which completes the proof.
We say that two edges e_{1} and e_{2} of a multigraph H are matching-distinguishable if there is some maximal matching of H that contains e_{1} but not e_{2} and vice versa. Equivalently, e_{1} and e_{2} are matching-distinguishable in H if and only if they are cliquedistinguishable as vertices of $\overline{\mathrm{L}(\mathrm{H})}$. Notice that every two parallel edges are always matching-distinguishable. It is easy to see that, for each member of $\mathcal{A}_{1}, \mathcal{A}_{2}$, and \mathcal{A}_{3}, any two matching-distinguishable edges are incident. Indeed, in each of the multigraphs represented in Figure 3.1, the edges in bold are pairwise incident and each light edge is not matching-distinguishable from any edge that is non-incident to it. (Alternatively, the result follows by applying Theorem 3.8 to $\overline{\mathrm{L}(\mathrm{H})}$ for each multigraph H in Figure 3.1, as we know that $\overline{\mathrm{L}(\mathrm{H})}$ is trivially perfect.)

Let F be a submultigraph of a multigraph H. We say that F is a fragment of H if there is an embedding of F in some of the multigraphs represented in Figure 3.1 such that the edges of F corresponding, under the embedding, to light edges in Figure 3.1 are incident in H to edges of F only. We observe the following.

Lemma 3.26. If F is a fragment of H , then any pair of edges of F matching-distinguishable in H are incident.

Proof. Indeed, the edges of F corresponding under the embedding to bold edges are pairwise incident and, if M is a maximal matching of H that does not contain some edge e of F corresponding to a light edge, then M must contain some edge e^{\prime} of F that is incident to e and it follows that M cannot contain any edge $e^{\prime \prime}$ of F that is non-incident to e (because the edges $e^{\prime \prime}$ of F that are non-incident to e turn out to be necessarily incident to e^{\prime}).

In Figure 3.2, we introduce multigraph families $\mathcal{B}_{1}, \mathcal{B}_{2}, \ldots, \mathcal{B}_{16}$ by presenting a generic member of each family: light lines represent single edges, bold lines represent one or more parallel edges, p is any positive integer, and a_{1}, \ldots, a_{p} are pairwise false twins. Notice, for instance, that for each member of $\mathcal{B}_{2}, \mathcal{B}_{3}$, and \mathcal{B}_{4}, its edge set can be partitioned into the edge sets of two fragments. Our next result shows that this condition is sufficient for $\overline{\mathrm{L}}$-balancedness.

Lemma 3.27. If the edge set of a multigraph H can be partitioned into the edge sets of two fragments of H , then H is $\overline{\mathrm{L}}$-balanced.

Proof. Let F_{1} and F_{2} be two fragments of H such that $\left\{E\left(F_{1}\right), E\left(F_{2}\right)\right\}$ is a partition of $E(H)$. Let $G=\overline{L(H)}$ and let $X=E\left(F_{1}\right)$ and $Y=E\left(F_{2}\right)$. Then, $\{X, Y\}$ is a partition of the vertex set of G and, by Lemma 3.26, any two vertices clique-distinguishable in G that belong both to X or both to Y are nonadjacent. So, by Lemma 3.11, G is balanced, as desired.

Figure 3.2: Multigraph families $\mathcal{B}_{1}, \mathcal{B}_{2}, \ldots, \mathcal{B}_{16}$. Light lines represent single edges, whereas bold lines represent one or more parallel edges. Parameter p varies over the positive integers, and $a_{1}, a_{2}, \ldots, a_{p}$ are pairwise false twins

In Figure 3.2, we introduce the multigraph families $\mathcal{B}_{1}, \mathcal{B}_{2}, \ldots, \mathcal{B}_{16}$ by presenting a generic member of each family. If follows, by direct application of the above lemma, that the families $\mathcal{B}_{2}, \mathcal{B}_{3}, \mathcal{B}_{4}, \mathcal{B}_{9}, \mathcal{B}_{10}, \mathcal{B}_{11}, \mathcal{B}_{12}$, and \mathcal{B}_{16} are \bar{L}-balanced; i.e., each of their members are \bar{L}-balanced. In Subsection 3.6.4, we provide separate proofs of the \bar{L} balancedness of each of the remaining families displayed in Figure 3.2. As a result, we conclude the following.

Theorem 3.28. The families $\mathcal{B}_{1}, \mathcal{B}_{2}, \ldots, \mathcal{B}_{16}$ are $\overline{\bar{L}}$-balanced.

3.6.2 Characterizing balanced complements of line graphs of multigraphs

In this subsection, we characterize those complements of line graphs of multigraphs that are balanced, including a characterization by minimal forbidden induced subgraphs.

Theorem 3.29. Let G be the complement of the line graph of a multigraph H . Then, the following assertions are equivalent:
(i) G is balanced.
(ii) A clique-matrix of G has no edge-vertex incidence matrix of $\mathrm{C}_{3}, \mathrm{C}_{5}$, or C_{7} as a submatrix.
(iii) G contains no induced 3 -sun, 2-pyramid, 3-pyramid, $\mathrm{C}_{5}, \overline{\mathrm{C}_{7}}, \mathrm{U}_{7}$, or V_{7}.
(iv) H contains no bipartite claw, $\mathrm{P}_{5} \cup \mathrm{P}_{3}, \mathrm{P}_{5} \cup \mathrm{C}_{2}, 3 \mathrm{P}_{3}, 2 \mathrm{P}_{3} \cup \mathrm{C}_{2}, \mathrm{P}_{3} \cup 2 \mathrm{C}_{2}, 3 \mathrm{C}_{2}, \mathrm{C}_{5}, \mathrm{C}_{7}$, 6-pan, braid, 1-braid, or 2-braid.
(v) One of the following conditions holds:
(a) Each component of H has at most one edge.
(b) H has exactly one component with more than one edge, which is contained in a member of $\mathcal{B}_{1}, \mathcal{B}_{2}, \ldots$, or \mathcal{B}_{16}
(c) H has exactly two components with more than one edge each, each of which is contained in a member of $\mathcal{A}_{1}, \mathcal{A}_{2}$, or \mathcal{A}_{3}.

Proof. The implication (i) \Rightarrow (ii) follows by definition. The implication (ii) \Rightarrow (iii) follows from the fact that a clique-matrix of each of 3-sun, 2-pyramid, 3-pyramid, C_{5}, $\overline{C_{7}}, U_{7}$, and V_{7} contains an edge-vertex incidence matrix of $\mathrm{C}_{3}, \mathrm{C}_{5}$, or C_{7} as a submatrix. The implication (iii) \Rightarrow (iv) follows by definition of the line graph of a multigraph.

The implication (v) \Rightarrow (i) can be proved as follows. If (a) holds, then $\mathrm{G}=\overline{\mathrm{L}(\mathrm{H})}$ is a clique and, in particular, G is balanced. So, assume that (b) or (c) holds. Without loss of generality, H has no isolated vertices. Moreover, we can also assume that H has no component with only one edge because removing these components from H amounts to removing the universal vertices from $\overline{\mathrm{L}(\mathrm{H})}$, which does not affect the balancedness of $\overline{\mathrm{L}(\mathrm{H})}$ (because each universal vertex corresponds to a column full of 1's in the cliquematrix). Therefore, we can assume that H is contained in a member of $\mathcal{B}_{1}, \mathcal{B}_{2}, \ldots$, or \mathcal{B}_{16} or H has two components, each of which is contained in a member of $\mathcal{A}_{1}, \mathcal{A}_{2}$, or \mathcal{A}_{3}. If the former holds, $\overline{\mathrm{L}(\mathrm{H})}$ is balanced by Theorem 3.28, if the latter holds, $\overline{\mathrm{L}(\mathrm{H})}$ is balanced by Lemma 3.27. This concludes the proof of $(\mathrm{v}) \Rightarrow(\mathrm{i})$.

The rest of the proof is devoted to showing that (iv) \Rightarrow (v). In order to do so, assume that H satisfies (iv). Suppose first that H has two or more components with two or mores edges each. Since H contains no $3 P_{3}, 2 P_{3} \cup C_{2}, P_{3} \cup 2 C_{2}$, or $3 C_{2}, H$ has exactly two components S_{1} and S_{2} with at least two edges each. In particular, S_{2} contains P_{3} or C_{2}, which means that S_{1} contains no $P_{5}, 2 P_{3}, P_{3} \cup C_{2}$, or $2 C_{2}$ and, by Lemma 3.25, S_{1} is contained in some member of $\mathcal{A}_{1}, \mathcal{A}_{2}$, or \mathcal{A}_{3}. By symmetry, S_{2} is also contained in some member of $\mathcal{A}_{1}, \mathcal{A}_{2}$, or \mathcal{A}_{3}. This proves that if H has at least two components with two or more edges each, (c) holds. If each component of H has at most one edge, (a) holds. Therefore, we assume that H has exactly one component S having at least two edges. We will prove that S is contained in some member of \mathcal{B}_{1}, $\mathcal{B}_{2}, \ldots, \mathcal{B}_{16}$ and, consequently, (b) holds, concluding the proof of the theorem.

We split the proof into four main cases. In the first case S is a multitree. In the other cases, we assume that S is not a multitree and we let ℓ be the length of the longest cycle in S. Since S contains no C_{5}, C_{7}, or $P_{5} \cup P_{3}$, necessarily $\ell=3,4$, or 6 .

Along this proof, we adopt the following convention: Given any two adjacent vertices u and v of S, we will say that $u v$ is a simple edge if there is exactly one edge joining u to v; otherwise, we say that $u v$ is a multiple edge. Recall that we say that a vertex v of S is pendant if and only if $\hat{\mathrm{d}}(v)=1$ (where $\hat{\mathrm{d}}_{\mathrm{S}}(v)$ denotes the degree of v in the underlying graph \widehat{S}).

Case 1. S is a multitree.
Let $\mathrm{P}=v_{1} v_{2} \ldots v_{\mathrm{t}}$ be a path of S of maximum length. As S is not edgeless, $\mathrm{t} \geqslant 2$. Moreover, since S is a multitree, the endpoints of P are pendant vertices and $t \leqslant 7$ because S contains no $P_{5} \cup P_{3}$. By maximality of P and since S contains no bipartite claw, the neighbors of $v_{2}, \ldots, v_{\mathrm{t}-1}$ outside P are pendant vertices of S .

1a $t \leqslant 4$. Then, S is contained in some member of \mathcal{B}_{15}.
1b $t=5$. If $\hat{\mathrm{d}}_{\mathrm{S}}\left(v_{3}\right) \leqslant 3$ and any edge joining v_{3} to a pendant neighbor is simple, then S is contained in some member of \mathcal{B}_{15}. If $\hat{\mathrm{d}}_{\mathrm{S}}\left(v_{3}\right)>3$ or there is a multiple edge joining v_{3} to a pendant neighbor, then either $\hat{\mathrm{d}}_{\mathrm{S}}\left(v_{2}\right)=2$ and $v_{1} v_{2}$ is simple, or $\hat{\mathrm{d}}_{\mathrm{S}}\left(v_{4}\right)=2$ and $v_{4} v_{5}$ is simple (otherwise S would contain $3 \mathrm{P}_{3}, 2 \mathrm{P}_{3} \cup \mathrm{C}_{2}, \mathrm{P}_{3} \cup 2 \mathrm{C}_{2}$, or $3 C_{2}$). In either case, S is contained in some member of \mathcal{B}_{16}.

1c $t=6$. If $\hat{\mathrm{d}}_{\mathrm{S}}\left(v_{2}\right)=\hat{\mathrm{d}}_{\mathrm{S}}\left(v_{5}\right)=2$ and $v_{1} v_{2}$ and $v_{5} v_{6}$ are simple, then S is contained in some member of \mathcal{B}_{16}. By symmetry, assume, without loss of generality, that $\hat{\mathrm{d}}_{\mathrm{S}}\left(v_{2}\right)>2$ or $v_{1} v_{2}$ is multiple. Then, $\hat{\mathrm{d}}_{\mathrm{S}}\left(v_{3}\right)=2$ follows since S contains no $P_{5} \cup P_{3}$ and no $P_{5} \cup C_{2}$. In addition, $\hat{\mathrm{d}}_{\mathrm{S}}\left(v_{5}\right)=2$ and $v_{5} v_{6}$ is simple, because S contains no braid, 1-braid, or 2-braid. Thus, also in this case, S is contained in some member of \mathcal{B}_{16}.

1d $t=7$. Since S contains no $P_{5} \cup P_{3}$ and no $P_{5} \cup C_{2}, \hat{d}_{S}\left(v_{2}\right)=\hat{d}_{S}\left(v_{4}\right)=\hat{d}_{S}\left(v_{6}\right)=$ 2 and the edges $v_{1} v_{2}$ and $v_{6} v_{7}$ are simple. Therefore, S is contained in some member of \mathcal{B}_{16}.

Case 2. S has a longest cycle of length $\ell=3$.
In each subcase, we assume that the previous subcases do not hold.
2a There is some triangle T such that all its vertices have some neighbor outside T . Let $\mathrm{T}=$ $v_{1} v_{2} v_{3} v_{1}$ be such a triangle in S. By hypothesis, S has no 4 -cycle and S contains no bipartite claw. Therefore, for each $i=1,2,3$, each vertex $v \in N_{S}\left(v_{i}\right) \backslash V(T)$ is a pendant vertex of S. Since S contains no $3 P_{3}, 2 P_{3} \cup C_{2}, P_{3} \cup 2 C_{2}$, or $3 C_{2}$, there are at most two vertices of T having more than one pendant neighbor or joined to a pendant neighbor by a multiple edge. Therefore, S is contained in some member of \mathcal{B}_{15}.

2b There is a triangle T touching a 5-path P at an endpoint of P . Let $\mathrm{T}=v_{1} v_{2} v_{3} v_{1}$ touch $P=v_{1} w_{1} w_{2} w_{3} w_{4}$ at v_{1}. As S contains no $P_{5} \cup P_{3}$ or $P_{5} \cup C_{2}$ and $\ell=3, \hat{d}_{S}\left(v_{2}\right)=$ $\hat{\mathrm{d}}_{\mathrm{S}}\left(v_{3}\right)=2, \mathrm{~N}_{\mathrm{S}}\left(w_{1}\right) \subseteq\left\{v_{1}, w_{2}, w_{3}\right\}, \mathrm{N}_{\mathrm{S}}\left(w_{3}\right) \subseteq\left\{w_{1}, w_{2}, w_{4}\right\}, \mathrm{N}_{\mathrm{S}}\left(w_{4}\right) \subseteq\left\{w_{2}, w_{3}\right\}$, each $v \in \mathrm{~N}_{\mathrm{S}}\left(v_{1}\right) \backslash\left\{v_{2}, v_{3}, w_{1}, w_{2}\right\}$ is pendant, each $v \in \mathrm{~N}_{\mathrm{S}}\left(w_{2}\right) \backslash\left\{v_{1}, w_{1}, w_{3}, w_{4}\right\}$ is pendant, and the edges $v_{2} v_{3}$ and $w_{3} w_{4}$ are simple. If w_{1} and w_{3} are nonadjacent, then S is contained in some member of \mathcal{B}_{16}. So, assume, without loss of generality, that w_{1} and w_{3} are adjacent. Then, w_{2} is nonadjacent to v_{1} and to w_{4} because S has no 4 -cycles, and $\hat{d}_{S}\left(w_{2}\right)=2$ because S contains no $P_{5} \cup P_{3}$. Therefore, S is contained in some member of \mathcal{B}_{10}.

2c There are two touching triangles, say $\mathrm{T}=v_{1} v_{2} v_{3} v_{1}$ and $\mathrm{T}^{\prime}=v_{1} w_{1} w_{2} v_{1}$. By symmetry and since 2 a does not hold, we assume, without loss of generality, that $\hat{\mathrm{d}}_{\mathrm{S}}\left(v_{2}\right)=2$ and $\hat{\mathrm{d}}_{\mathrm{S}}\left(w_{1}\right)=2$. As S has no 4 -cycles and no bipartite claw, each $v \in \mathrm{~N}_{\mathrm{S}}\left(v_{1}\right) \backslash\left\{v_{2}, v_{3}, w_{1}, w_{2}\right\}$ is a pendant vertex. Since S has no 4 -cycles and 2 b does not hold, each $v \in \mathrm{~N}_{\mathrm{S}}\left(v_{3}\right) \backslash \mathrm{V}(\mathrm{T})$ is a pendant vertex. Symmetrically, each $v \in \mathrm{~N}_{\mathrm{S}}\left(w_{2}\right) \backslash \mathrm{V}\left(\mathrm{T}^{\prime}\right)$ is also a pendant vertex.

If each of v_{1} and w_{2} is adjacent to some pendant neighbor, then $v_{2} v_{3}$ is simple and $\hat{d}_{S}\left(v_{3}\right)=2$ (because S contains no $P_{5} \cup C_{2}$ or $P_{5} \cup P_{3}$), which means that S is contained in some member of \mathcal{B}_{16}.

So, if v_{1} is adjacent to some pendant neighbor, we can assume that $\hat{\mathrm{d}}_{\mathrm{S}}\left(v_{3}\right)=$ $\hat{d}_{S}\left(w_{2}\right)=2$ and, since S contains no $P_{3} \cup 2 C_{2}$ or $3 C_{2}$, one of the following conditions hold:

- v_{1} is adjacent to exactly one pendant neighbor and the edge joining v_{1} to its pendant neighbor is simple, which means that S is contained in \mathcal{B}_{1}.
- At least one of $v_{2} v_{3}$ and $w_{1} w_{2}$ is simple, which implies that S is contained in a member of \mathcal{B}_{16}.

So, without loss of generality, assume that v_{1} is not adjacent to any pendant neighbor. If w_{2} is adjacent to at least two pendant neighbors or there is a multiple edge joining w_{2} to a pendant neighbor, then $v_{2} v_{3}$ is simple (because S contains no 1-braid or 2-braid) and, as a result, S is contained in some member of \mathcal{B}_{16}. If w_{2} is adjacent to at most one pendant neighbor and any edge joining w_{2} to a pendant vertex is simple, then, symmetrically, v_{3} is adjacent to at most one pendant neighbor and any edge joining v_{3} to a pendant vertex is simple and we conclude that S is contained in some member of \mathcal{B}_{2}.

2d There is an edge touching two different triangles. Since S has no 4 -cycles and 2c does not hold, any pair of different triangles of T in S are vertex-disjoint. Let $v_{1} w_{1}$ be
an edge touching the two triangles $T=v_{1} v_{2} v_{3} v_{1}$ and $T^{\prime}=w_{1} w_{2} w_{3} w_{1}$ in S. Since S has no 4-cycle and 2 b does not hold, $\hat{\mathrm{d}}_{\mathrm{S}}\left(w_{2}\right)=\hat{\mathrm{d}}_{\mathrm{S}}\left(w_{3}\right)=\hat{\mathrm{d}}_{\mathrm{S}}\left(v_{2}\right)=\hat{\mathrm{d}}_{\mathrm{S}}\left(v_{3}\right)=2$. As S contains no bipartite claw and 2 c does not hold, each $v \in \mathrm{~N}_{\mathrm{S}}\left(v_{1}\right) \backslash\left\{v_{2}, v_{3}, w_{1}\right\}$ is a pendant vertex and also each $v \in \mathrm{~N}_{\mathrm{S}}\left(w_{1}\right) \backslash\left\{w_{2}, w_{3}, v_{1}\right\}$ is a pendant vertex. If none of the edges $v_{2} v_{3}$ and $w_{2} w_{3}$ is multiple, S is contained in some member of \mathcal{B}_{16}. If $v_{2} v_{3}$ is multiple, then $w_{2} w_{3}$ is simple (because S contains no 2-braid) and $\hat{\mathrm{d}}_{\mathrm{S}}\left(v_{1}\right)=3$ (because S contains no $P_{5} \cup C_{2}$), and we conclude that S is contained in a member of \mathcal{B}_{10}.

2e There is a triangle T touching a 4-path P at an endpoint of P . Let $\mathrm{T}=v_{1} v_{2} v_{3} v_{1}$ touch $\mathrm{P}=v_{1} w_{1} w_{2} w_{3}$ at v_{1}. Since 2a does not hold, we assume, without loss of generality, that $\hat{\mathrm{d}}_{\mathrm{S}}\left(v_{2}\right)=2$. As 2 c does not hold, v_{1} and w_{2} are nonadjacent. Since S has no 4 -cycles, v_{1} and w_{3} are nonadjacent. As 2 d does not hold, w_{1} and w_{3} are nonadjacent. Since S has no 4 -cycles and no 5 -cycles, v_{3} is nonadjacent to w_{1}, w_{2}, and w_{3}. So, two vertices of $\mathrm{V}(\mathrm{T}) \cup \mathrm{V}(\mathrm{P})$ are adjacent only if they are adjacent in T or in P. Since $2 b$ does not hold, w_{3} is a pendant vertex. As S contains no $\mathrm{P}_{3} \cup \mathrm{P}_{5}$ and $\ell=3$, there is at most one vertex $v \in \mathrm{~N}_{S}\left(v_{3}\right) \backslash\left\{v_{1}, v_{2}\right\}$ and, if so, v is a pendant vertex and $v v_{3}$ is simple. Since S has no 4 -cycles, 2c does not hold, and S contains no bipartite claw, each $v \in \mathrm{~N}_{\mathrm{S}}\left(v_{1}\right) \backslash\left\{v_{2}, v_{3}, w_{1}\right\}$ is a pendant vertex. As 2d does not hold and S contains no bipartite claw, each $v \in \mathrm{~N}_{\mathrm{S}}\left(w_{1}\right) \backslash\left\{v_{1}, w_{2}\right\}$ is a pendant vertex. Since $2 b$ does not hold, each vertex $v \in \mathrm{~N}_{S}\left(w_{2}\right) \backslash\left\{w_{1}, w_{3}\right\}$ is a pendant vertex.
If w_{2} has a pendant neighbor or $w_{2} w_{3}$ is multiple, then $\hat{\mathrm{d}}_{\mathrm{S}}\left(w_{1}\right)=\hat{\mathrm{d}}_{\mathrm{S}}\left(v_{3}\right)=2$ and $v_{2} v_{3}$ is simple (otherwise S contains $P_{5} \cup P_{3}, P_{5} \cup C_{2}$, braid, 1-braid, or 2-braid) and, therefore, S is contained in some member of \mathcal{B}_{16}. Hence, we can assume that $\hat{\mathrm{d}}_{\mathrm{S}}\left(w_{2}\right)=2$ and $w_{2} w_{3}$ is simple.
If $\hat{\mathrm{d}}_{\mathrm{S}}\left(v_{3}\right)=3$ or $v_{2} v_{3}$ is multiple, then $\hat{\mathrm{d}}_{\mathrm{S}}\left(v_{1}\right)=3$ (because S contains no $P_{5} \cup P_{3}$ or $\left.P_{5} \cup C_{2}\right)$ and S is contained in some member of \mathcal{B}_{10}. Otherwise, S is contained in some member of \mathcal{B}_{16}.

2f None of the previous subcases holds. Let $T=v_{1} v_{2} v_{3} v_{1}$ be triangle of S. Suppose, by the way of contradiction, that v_{1} has two non-pendant neighbors different from v_{2} and v_{3}. Let $w_{1}, w_{2} \in \mathrm{~N}_{\mathrm{G}}\left(v_{1}\right) \backslash\left\{v_{2}, v_{3}\right\}$ such that w_{1} and w_{2} are non-pendant. Since w_{1} is non-pendant, there exists some vertex $w_{3} \in N_{G}\left(w_{1}\right) \backslash\left\{v_{1}\right\}$. As S has no 4 -cycles and 2 c does not hold, $w_{3} \notin \mathrm{~V}(\mathrm{~T}) \cup\left\{w_{1}, w_{2}\right\}$. Similarly, there is a vertex $w_{4} \in \mathrm{~N}_{\mathrm{G}}\left(w_{2}\right) \backslash\left\{v_{1}\right\}$ and $w_{4} \notin \mathrm{~V}(\mathrm{~T}) \cup\left\{w_{1}, w_{2}, w_{3}\right\}$. But then, S contains a bipartite claw, a contradiction.
Hence, each vertex of T is adjacent to at most one non-pendant vertex not in $V(T)$. Since S has no 4 -cycles, 2 cand 2 e do not hold, and $\ell=3$, if w is a non-pendant
neighbor of v_{i} for some $i \in\{1,2,3\}$, then each $v \in \mathrm{~N}_{S}(w) \backslash\left\{v_{i}\right\}$ is a pendant vertex.

Suppose that v_{1} is adjacent to some non-pendant vertex w_{1} such that w_{1} is adjacent to two pendant neighbors or there is a multiple edge joining w_{1} to a pendant neighbor. Since S contains no $P_{5} \cup P_{3}, P_{5} \cup C_{2}, 3 P_{3}, 2 P_{3} \cup C_{2}, P_{3} \cup 2 C_{2}$, or $3 C_{2}$, if $\hat{\mathrm{d}}_{\mathrm{S}}\left(v_{1}\right) \geqslant 4$, then $\hat{\mathrm{d}}_{\mathrm{S}}\left(v_{2}\right)=\hat{\mathrm{d}}_{\mathrm{S}}\left(v_{3}\right)=2$ and one of the following holds:

- $\hat{\mathrm{d}}_{\mathrm{S}}\left(v_{1}\right)=4$ and the edge joining v_{1} to a pendant vertex is simple and, consequently, S is contained in some member of \mathcal{B}_{13}.
- $v_{2} v_{3}$ is simple and S is contained in some member of \mathcal{B}_{16}.

So, we assume that $\hat{d}_{\mathrm{S}}\left(v_{1}\right)=3$. Since 2 a does not hold, we assume, without loss of generality, that $\hat{d}_{S}\left(v_{3}\right)=2$. Since S contains no $P_{5} \cup P_{3}, P_{5} \cup C_{2}$, braid, 1-braid, or 2-braid, $\hat{\mathrm{d}}_{\mathrm{S}}\left(v_{2}\right) \leqslant 3$ and if there is $v \in \mathrm{~N}_{\mathrm{S}}\left(v_{2}\right) \backslash\left\{v_{1}, v_{3}\right\}$, then v is pendant and $v_{2} v$ is simple. We conclude that S is contained in some member of \mathcal{B}_{10}.
So it only remains to consider the case in which each non-pendant vertex w of v_{i} for some $i \in\{1,2,3\}$ satisfies that $\hat{\mathrm{d}}_{\mathrm{S}}(w)=2$ and that, for each $w^{\prime} \in \mathrm{N}_{S}(w) \backslash\left\{v_{i}\right\}$, $w w^{\prime}$ is simple. Since 2 a does not hold, S is contained in some member of \mathcal{B}_{16}.

Case 3. S has a longest cycle of length $\ell=4$.

In each subcase, we assume that the previous subcases do not hold.
3a There are two touching 4-cycles in S , say $\mathrm{C}=v_{1} v_{2} v_{3} v_{4} v_{1}$ and $\mathrm{C}^{\prime}=v_{1} w_{2} w_{3} w_{4} v_{1}$. Since S has no 5-cycle and contains no $P_{3} \cup P_{5}, V(S)=V(C) \cup V\left(C^{\prime}\right)$. Since S contains no $P_{5} \cup C_{2}$, the edges $v_{2} v_{3}, v_{3} v_{4}, w_{1} w_{2}$, and $w_{2} w_{3}$ are simple. If $v_{2} v_{4}$ is multiple, then there is no edge $v_{1} v_{3}$. Symmetrically, if $w_{1} w_{3}$ is multiple, then there is no edge $v_{1} w_{2}$. We conclude that S is contained in some member of \mathcal{B}_{2}, \mathcal{B}_{3}, or \mathcal{B}_{4}.

3b There is a triangle T touching a 4 -cycle in S . Let $\mathrm{C}=v_{1} v_{2} v_{3} v_{4} v_{1}$ touch $T=v_{1} w_{1} w_{2} v_{1}$. As S has no 5 -cycle and contains no bipartite claw, we have $N_{S}\left(v_{2}\right) \subseteq\left\{v_{1}, v_{3}, v_{4}\right\}$, $\mathrm{N}_{\mathrm{S}}\left(v_{4}\right) \subseteq\left\{v_{1}, v_{2}, v_{3}\right\}$, and $\mathrm{N}_{\mathrm{S}}\left(v_{3}\right) \cap\left\{w_{1}, w_{2}\right\}=\varnothing$. This also means that $\mathrm{N}_{\mathrm{S}}\left(w_{1}\right) \cap$ $V(C)=N_{S}\left(w_{2}\right) \cap V(C)=\left\{v_{1}\right\}$. Since S contains no $P_{5} \cup P_{3}$ and 3a does not hold, $\hat{\mathrm{d}}_{\mathrm{S}}\left(w_{1}\right) \leqslant 3$ and we assume, without loss of generality, that $\hat{\mathrm{d}}_{\mathrm{S}}\left(w_{2}\right)=2$.

Let us consider the case when $\hat{\mathrm{d}}_{\mathrm{S}}\left(w_{1}\right)=3$ or $w_{1} w_{2}$ is multiple. Since S contains no $\mathrm{P}_{5} \cup \mathrm{P}_{3}$ or $\mathrm{P}_{5} \cup \mathrm{C}_{2}, \mathrm{~N}_{\mathrm{S}}\left(v_{1}\right) \subseteq \mathrm{V}(\mathrm{C}) \cup \mathrm{V}(\mathrm{T}), \mathrm{N}_{\mathrm{S}}\left(v_{3}\right) \subseteq \mathrm{V}(\mathrm{C})$, and if there is some $w_{3} \in \mathrm{~N}_{S}\left(w_{1}\right) \backslash\left\{v_{1}, w_{2}\right\}$ then w_{3} is a pendant vertex of S and $w_{1} w_{3}$ is simple. In addition, $v_{2} v_{3}$ and $v_{3} v_{4}$ are simple because S contains no 1-braid or 2-braid. If $v_{2} v_{4}$ is not a multiple edge of S, then S is contained in some member of \mathcal{B}_{3}. Otherwise, $v_{1} v_{3}$ is not an edge of S (because S contains no 1-braid or 2-braid)
and S is contained in some member of \mathcal{B}_{2}. So, from now on, we assume that $\hat{\mathrm{d}}_{\mathrm{S}}\left(w_{1}\right)=\hat{\mathrm{d}}_{\mathrm{S}}\left(w_{2}\right)=2$ and $w_{1} w_{2}$ is simple.

Suppose that v_{2} and v_{4} are adjacent. Since S contains no bipartite claw, each $v \in \mathrm{~N}_{\mathrm{S}}\left(v_{1}\right) \backslash(\mathrm{V}(\mathrm{T}) \cup \mathrm{V}(\mathrm{C}))$ is a pendant vertex of S. So, if $\mathrm{N}_{\mathrm{S}}\left(v_{3}\right) \subseteq \mathrm{V}(\mathrm{C})$, then S is contained in some member of \mathcal{B}_{12}. Therefore, we can assume that there is some $w_{3} \in N_{S}\left(v_{3}\right) \backslash V(C)$. Since S contains no bipartite claw, $P_{5} \cup P_{3}$, or $P_{5} \cup C_{2}$, $v_{1} v_{3}$ is not an edge of $S,\left|N_{S}\left(v_{3}\right) \backslash V(C)\right|=1, w_{3}$ is a pendant vertex of S, and $v_{3} w_{3}$ is simple. We conclude that S is contained in some member of \mathcal{B}_{11}.

It only remains to consider the case when v_{2} and v_{4} are nonadjacent. Due to the first remarks of this subcase, $\mathrm{N}_{\mathrm{S}}\left(v_{2}\right)=\mathrm{N}_{\mathrm{S}}\left(v_{4}\right)=\left\{v_{1}, v_{3}\right\}$. Notice that each $v \in$ $\mathrm{N}_{\mathrm{S}}\left(v_{1}\right) \backslash(\mathrm{V}(\mathrm{T}) \cup \mathrm{V}(\mathrm{C}))$ satisfies $\mathrm{N}_{\mathrm{S}}(v) \subseteq\left\{v_{1}, v_{3}\right\}$ because S contains no bipartite claw. If each $v \in \mathrm{~N}_{S}\left(v_{3}\right) \backslash\left\{v_{1}\right\}$ satisfies that $\mathrm{N}_{\mathrm{S}}(v) \subseteq\left\{v_{1}, v_{3}\right\}$, then S is contained in some member of \mathcal{B}_{16}. So, we can assume that there is some $w_{3} \in \mathrm{~N}_{S}\left(v_{3}\right) \backslash\left\{v_{1}\right\}$ and some $w_{4} \in \mathrm{~N}_{\mathrm{S}}\left(w_{3}\right) \backslash\left\{v_{1}, v_{3}\right\}$. By construction, $w_{3}, w_{4} \notin \mathrm{~V}(\mathrm{C}) \cup \mathrm{V}(\mathrm{T})$. Then, $N_{S}\left(w_{3}\right)=\left\{v_{3}, w_{4}\right\}$ and $w_{3} w_{4}$ is simple since S contains no braid or 1-braid. In addition, $\mathrm{N}_{S}\left(w_{4}\right) \subseteq\left\{v_{3}, w_{3}\right\}$ because S contains no $\mathrm{P}_{3} \cup \mathrm{P}_{5}$. Since S contains no bipartite claw, each $v \in \mathrm{~N}_{\mathrm{S}}\left(v_{3}\right) \backslash\left\{v_{1}, v_{2}, v_{4}, w_{3}, w_{4}\right\}$ satisfies $\mathrm{N}_{\mathrm{S}}(v) \subseteq\left\{v_{1}, v_{3}\right\}$. Thus, S is contained in some member of \mathcal{B}_{16}.

3c S contains $K_{2,3}$. Equivalently, suppose that there are two vertices $v_{1}, v_{3} \in \mathrm{~V}(\mathrm{~S})$ such that $\mathrm{N}_{\mathrm{S}}\left(v_{1}\right) \cap \mathrm{N}_{\mathrm{S}}\left(v_{3}\right)$ consists of at least three vertices. Let v_{2} be a vertex of $N_{S}\left(v_{1}\right) \cap N_{S}\left(v_{3}\right)$ of maximum degree in \widehat{S} and let v_{4} and v_{5} be any two other vertices of $\mathrm{N}_{\mathrm{S}}\left(v_{1}\right) \cap \mathrm{N}_{\mathrm{S}}\left(v_{3}\right)$. Since S has no 5-cycle and contains no bipartite claw, $\left\{v_{2}, v_{4}, v_{5}\right\}$ is a stable set, $\hat{\mathrm{d}}_{\mathrm{S}}\left(v_{4}\right)=\hat{\mathrm{d}}_{\mathrm{S}}\left(v_{5}\right)=2$, and each $v \in \mathrm{~N}_{\mathrm{S}}\left(v_{2}\right) \backslash\left\{v_{1}, v_{3}\right\}$ is a pendant vertex.
Suppose that each vertex $v \in\left(\mathrm{~N}_{\mathrm{S}}\left(v_{1}\right) \cup \mathrm{N}_{\mathrm{S}}\left(v_{3}\right)\right) \backslash\left\{v_{1}, v_{2}, v_{3}\right\}$ is such that $\mathrm{N}_{\mathrm{S}}(v) \subseteq$ $\left\{v_{1}, v_{3}\right\}$. If v_{2} is adjacent to at most one pendant vertex and any edge joining v_{2} to a pendant vertex is simple, then S is contained in some member of \mathcal{B}_{15}. So, assume, on the contrary, that v_{2} is adjacent to at least two pendant vertices or v_{2} is joined to a pendant vertex by a multiple edge. Then, $\mathrm{N}_{\mathrm{S}}\left(v_{1}\right) \subseteq\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\}$ and $N_{S}\left(v_{3}\right) \subseteq\left\{v_{1}, v_{2}, v_{4}, v_{5}\right\}$ (because S contains no $P_{5} \cup P_{3}$), each of the edges $v_{1} v_{4}, v_{1} v_{5}, v_{3} v_{4}, v_{3} v_{5}$ is simple (because S contains no 1-braid and no 2-braid) and, consequently, S is contained in some member of \mathcal{B}_{14}. So, we can assume that there is some vertex $w_{1} \in \mathrm{~N}_{S}\left(v_{1}\right) \backslash\left\{v_{2}, v_{3}\right\}$ such that $\mathrm{N}_{S}\left(w_{1}\right) \nsubseteq\left\{v_{1}, v_{3}\right\}$ and let $w_{2} \in N_{S}\left(w_{1}\right) \backslash\left\{v_{1}, v_{3}\right\}$. Since S contains no $P_{3} \cup P_{5}, \hat{\mathrm{~d}}_{S}\left(v_{2}\right)=2$. Notice that, by construction, w_{1} is nonadjacent to v_{3}; otherwise, $w_{1} \in \mathrm{~N}_{\mathrm{S}}\left(v_{1}\right) \cap \mathrm{N}_{\mathrm{S}}\left(v_{3}\right)$ and $\hat{\mathrm{d}}_{\mathrm{S}}\left(w_{1}\right)>2=\hat{\mathrm{d}}_{\mathrm{S}}\left(v_{2}\right)$, contradicting the choice of v_{2}. Since S contains no braid or 1-braid, $\hat{\mathrm{d}}_{\mathrm{S}}\left(w_{1}\right)=2$ and $w_{1} w_{2}$ is simple. Notice that w_{2} is a pendant vertex
because S has no 5 -cycle, contains no $P_{5} \cup P_{3}$, and $3 b$ does not hold. Since S contains no bipartite claw, w_{1} is the only vertex $v \in \mathrm{~N}_{S}\left(v_{1}\right) \backslash\left\{v_{2}, v_{3}\right\}$ such that $\mathrm{N}_{\mathrm{S}}(v)$ is not contained in $\left\{v_{1}, v_{3}\right\}$. By symmetry, there is at most one vertex $w_{3} \in \mathrm{~N}_{\mathrm{S}}\left(v_{3}\right) \backslash\left\{v_{1}, v_{2}\right\}$ such that $\mathrm{N}_{\mathrm{S}}\left(w_{3}\right) \nsubseteq\left\{v_{1}, v_{3}\right\}$ and, if so, $\hat{\mathrm{d}}_{\mathrm{S}}\left(w_{3}\right)=2$, the vertex $w_{4}=\mathrm{N}_{\mathrm{S}}\left(w_{3}\right) \backslash\left\{v_{3}\right\}$ is a pendant vertex, and $w_{3} w_{4}$ is simple. Since, by construction, all vertices $v \in\left(\mathrm{~N}_{\mathrm{S}}\left(v_{1}\right) \cup \mathrm{N}_{S}\left(v_{3}\right)\right) \backslash\left\{v_{1}, v_{3}, w_{1}, w_{3}\right\}$ are such that $\mathrm{N}_{\mathrm{S}}(v) \subseteq\left\{v_{1}, v_{3}\right\}, \mathrm{S}$ is contained in some member of \mathcal{B}_{16}.

3d There is a 4 -cycle $\mathrm{C}=v_{1} v_{2} v_{3} v_{4} v_{1}$ such that each vertex v_{i} of C has a neighbor $w_{i} \notin$ $V(C)$. Since S has no 5-cycle and 3c does not hold, $N_{S}\left(v_{i}\right) \cap N_{S}\left(v_{j}\right) \subseteq V(C)$ for all i and all j. In particular, w_{1}, w_{2}, w_{3}, and w_{4} are pairwise different. Since S contains no $P_{5} \cup P_{3}$ or $P_{5} \cup C_{2}, w_{i}$ is the only vertex in $N_{S}\left(v_{i}\right) \backslash V(C)$ and $v_{i} w_{i}$ is simple for each $i=1,2,3,4$. Moreover, w_{1}, w_{2}, w_{3}, and w_{4} are pendant vertices as S has no 6 -cycle and contains no bipartite claw. Finally, since S contains no bipartite claw, C is chordless and we conclude that S is a member of \mathcal{B}_{5}.

3e There is a 4-cycle C touching a 4-path P at an endpoint of P . Let $\mathrm{C}=v_{1} v_{2} v_{3} v_{4} v_{1}$ touch $P=v_{1} w_{1} w_{2} w_{3}$ in v_{1}. Since $\ell=4, S$ contains no $P_{5} \cup P_{3}$ or $P_{5} \cup C_{2}$, and 3a does not hold, $\mathrm{N}_{\mathrm{S}}\left(w_{3}\right) \subseteq\left\{w_{1}, w_{2}\right\}$ and $w_{2} w_{3}$ is simple. Similarly, and since 3 b does not hold, $\mathrm{N}_{S}\left(w_{2}\right)=\left\{w_{1}, w_{3}\right\}$. Since S has no 5 -cycles and 3 c does not hold, $\mathrm{N}_{\mathrm{S}}\left(w_{1}\right) \cap \mathrm{V}(\mathrm{C})=\left\{v_{1}\right\}$. Since $\ell=4$ and S contains no $P_{5} \cup P_{3}$, each $v \in \mathrm{~N}_{\mathrm{S}}\left(w_{1}\right) \backslash\left\{v_{1}, w_{2}, w_{3}\right\}$ is a pendant vertex of $\mathrm{S}, \mathrm{N}_{\mathrm{S}}\left(v_{1}\right) \subseteq \mathrm{V}(\mathrm{C}) \cup\left\{w_{1}\right\}$, and $\mathrm{N}_{\mathrm{S}}\left(v_{2}\right), \mathrm{N}_{\mathrm{S}}\left(v_{3}\right), \mathrm{N}_{\mathrm{S}}\left(v_{4}\right) \subseteq \mathrm{V}(\mathrm{C})$. Notice also that $v_{2} v_{3}$ and $v_{3} v_{4}$ are simple because S contains no $P_{5} \cup C_{2}$. Therefore, if $v_{2} v_{4}$ is not a multiple edge of S, then S is contained in some member of \mathcal{B}_{9}. If, on the contrary, $v_{2} v_{4}$ is multiple, then v_{1} and v_{3} are nonadjacent (because S contains no $P_{5} \cup C_{2}$) and S is contained in some member of \mathcal{B}_{10}.

3f There is a 4 -cycle $\mathrm{C}=v_{1} v_{2} v_{3} v_{4} v_{1}$ such that three of its vertices have a neighbor outside C, say, v_{i} has a neighbor $w_{i} \notin V(C)$ for each $\mathfrak{i}=1,2,3$. Then, $N_{S}\left(v_{1}\right) \backslash V(C)$, $\mathrm{N}_{S}\left(v_{2}\right) \backslash V(\mathrm{C})$, and $\mathrm{N}_{S}\left(v_{3}\right) \backslash V(\mathrm{C})$ are pairwise disjoint and each $w \in \mathrm{~N}_{S}\left(v_{i}\right) \backslash \mathrm{V}(\mathrm{C})$, for some $i \in\{1,2,3\}$, is a pendant vertex because 3c does not hold and S has no 5 -cycles or 6-cycle and contains no $P_{5} \cup P_{3}$. Since 3d does not hold and S contains no bipartite claw, $N_{S}\left(v_{4}\right)=\left\{v_{1}, v_{3}\right\}$. Finally, w_{2} is the only pendant neighbor of v_{2} and $v_{2} w_{2}$ is simple because S contains no $P_{5} \cup P_{3}$ or $P_{5} \cup C_{2}$. We conclude that S is a contained in some member of \mathcal{B}_{15}.
$3 \mathbf{g}$ There is a 4 -cycle $\mathrm{C}=v_{1} v_{2} v_{3} v_{4} v_{1}$ where v_{1} is adjacent to a non-pendant vertex $w_{1} \notin$ $\mathrm{V}(\mathrm{C})$. Let w_{2} be any vertex of $\mathrm{N}_{\mathrm{S}}\left(w_{1}\right) \backslash\left\{v_{1}\right\}$. Then, $w_{2} \notin \mathrm{~V}(\mathrm{C})$ because S contains no 5 -cycle and 3c does not hold. As S has no 5 -cycle or 6 -cycle and 3 b does
not hold, $\mathrm{N}_{\mathrm{S}}\left(w_{2}\right) \cap \mathrm{V}(\mathrm{C})=\varnothing$. Therefore, w_{2} is a pendant vertex as 3e does not hold. Notice that $\mathrm{N}_{\mathrm{S}}\left(v_{2}\right), \mathrm{N}_{\mathrm{S}}\left(v_{4}\right) \subseteq \mathrm{V}(\mathrm{C})$ because S contains no bipartite claw. Since w_{2} is an arbitrary vertex of $\mathrm{N}_{\mathrm{S}}\left(w_{1}\right) \backslash\left\{v_{1}\right\}$, each $w \in \mathrm{~N}_{\mathrm{S}}\left(w_{1}\right) \backslash\left\{v_{1}\right\}$ is a pendant vertex. Since w_{1} is an arbitrary non-pendant vertex in $\mathrm{N}_{\mathrm{S}}\left(v_{1}\right) \backslash \mathrm{V}(\mathrm{C})$, for every non-pendant vertex w_{1}^{\prime} in $\mathrm{N}_{\mathrm{S}}\left(v_{1}\right) \backslash V(\mathrm{C})$, each $w \in \mathrm{~N}_{\mathrm{S}}\left(w_{1}^{\prime}\right) \backslash\left\{v_{1}\right\}$ is a pendant vertex. Thus, since S contains no $\mathrm{P}_{3} \cup \mathrm{P}_{5}, w_{1}$ is the only non-pendant vertex in $\mathrm{N}_{\mathrm{S}}\left(v_{1}\right) \backslash \mathrm{V}(\mathrm{C})$; i.e., each $v \in \mathrm{~N}_{\mathrm{S}}\left(v_{1}\right) \backslash\left\{v_{2}, v_{3}, v_{4}, w_{1}\right\}$ is a pendant vertex.

Suppose first that $\hat{d}_{S}\left(w_{1}\right)>2$ or $w_{1} w_{2}$ is multiple. Since S contains no $P_{5} \cup P_{3}$ or $P_{5} \cup C_{2}, v_{1}$ has no pendant neighbors and $N_{S}\left(v_{3}\right) \subseteq V(C)$. If $v_{2} v_{4}$ is not a multiple edge, then S is contained in some member of \mathcal{B}_{9}, but if $v_{2} v_{4}$ is a multiple edge, then $v_{1} v_{3}$ is not an edge of S (because S contains no 1-braid or 2-braid) and S is contained in some member of \mathcal{B}_{10}. So, from now on, we assume that $\hat{\mathrm{d}}_{\mathrm{S}}\left(w_{1}\right)=2$ and $w_{1} w_{2}$ be simple.

Suppose that v_{2} and v_{4} are adjacent. If v_{3} is adjacent to some $v \in \mathrm{~V}(\mathrm{~S}) \backslash \mathrm{V}(\mathrm{C})$, then v is a pendant vertex and $v_{3} v$ is simple (because S contains no $P_{5} \cup P_{3}$ or $P_{5} \cup C_{2}$) and v_{1} is not adjacent to v_{3} (because S contains no bipartite claw), so S is contained in some member of \mathcal{B}_{11}. Otherwise, S is contained in some member of \mathcal{B}_{12}. So, from now, we assume that v_{2} and v_{4} are nonadjacent.

If v_{3} also has some non-pendant neighbor $w_{3} \in V(S) \backslash V(C)$, then, reasoning with w_{3} as we did with w_{1}, we prove that each $v \in \mathrm{~N}_{S}\left(v_{3}\right) \backslash V(\mathrm{C})$ different from w_{3} is pendant and we can assume that $\hat{\mathrm{d}}_{\mathrm{S}}\left(w_{3}\right)=2$ and, if w_{4} is the only vertex of $\mathrm{N}_{\mathrm{S}}\left(w_{3}\right) \backslash\left\{v_{3}\right\}$, then $w_{3} w_{4}$ is simple. Thus, S is contained in some member of \mathcal{B}_{16}, even if v_{3} has no non-pendant neighbor.

3h None of the previous subcases holds. Since $\ell=4$, there exists some 4 -cycle $\mathrm{C}=$ $v_{1} v_{2} v_{3} v_{4} v_{1}$ in S. Since $3 g$ does not hold, each $v \in \mathrm{~N}_{\mathrm{S}}\left(v_{i}\right) \backslash \mathrm{V}(\mathrm{C})$ is pendant, for each $i=1,2,3,4$. Since $3 f$ does not hold, there are at most two vertices of C that are adjacent to pendant vertices. If there are less than two vertices of $V(C)$ adjacent to pendant vertices, S is contained in some member of \mathcal{B}_{13}. Therefore, we assume that there are two vertices of $\mathrm{V}(\mathrm{C})$ adjacent to pendant vertices, say v_{1} and v_{j}, where $\mathfrak{j}=2$ or $\mathfrak{j}=3$.

If each of the vertices v_{1} and v_{j} is adjacent to two pendant vertices or joined to some pendant vertex through a multiple edge, then $\mathfrak{j}=3$ and v_{1} is nonadjacent to v_{3} (because S contains no braid, 1-braid, or 2-braid). We conclude that S is contained in some member of \mathcal{B}_{16}.

Finally, if v_{j} is adjacent to only one pendant vertex through a simple edge, then S is contained in some member of \mathcal{B}_{13}.

Case 4. S has a longest cycle C of length $\ell=6$,
Let $C=v_{1} v_{2} v_{3} v_{4} v_{5} v_{6} v_{1}$. Since S is connected and contains no 6-pan, the vertices of C are the only vertices of S. As S contains no 5-cycle, C has no short chords.

Suppose first that C has two multiple chords, say $v_{1} v_{4}$ and $v_{2} v_{5}$ are multiple edges. Since S contains no 2 -braid, there is no edge $v_{3} v_{6}$ in S and each of $v_{2} v_{3}, v_{3} v_{4}, v_{5} v_{6}$, and $v_{6} v_{1}$ is simple. This means that S is a member of \mathcal{B}_{7}. So, from now on, we can assume that C has at most one multiple chord.

Since C has at most one multiple chord, S would belong to \mathcal{B}_{8} if no edge of C were multiple. Therefore, from now on, we assume that $v_{1} v_{2}$ is multiple. As S contains no 2-braid, none of $v_{3} v_{4}$ and $v_{5} v_{6}$ is multiple and at most one of $v_{1} v_{6}, v_{2} v_{3}, v_{5} v_{6}$ is multiple. In its turn, this means that, if C has no multiple chords, then S is a member of \mathcal{B}_{7} or \mathcal{B}_{8}. So, from now on, let C have exactly one multiple chord.

Since S contains no 2 -braid, if $\nu_{3} v_{6}$ were the only multiple chord of S, then $v_{4} \nu_{5}$ would not be multiple, v_{1} would be nonadjacent to v_{4}, v_{2} would be nonadjacent to v_{5}, and, as a result, S is a member of \mathcal{B}_{6}, By symmetry, we assume that the only chord of S is $v_{1} v_{4}$. Recall that the only possible multiple edges of C are $v_{1} v_{6}, v_{2} v_{3}$, and $v_{4} v_{5}$ and that at most one of them is multiple. If $v_{1} v_{6}$ is multiple, then S is a member of \mathcal{B}_{8}. If $v_{4} v_{5}$ is multiple, then there is no edge $v_{3} v_{6}$ in S (because S contains no 2 -braid) and, consequently, S is a member of \mathcal{B}_{7}. If $v_{2} v_{3}$ is multiple, then $v_{2} v_{5}$ and $v_{3} v_{6}$ are not edges of S (because S contains no 2-braid) and, consequently, S is a member of \mathcal{B}_{6}. Finally, if none of $v_{4} v_{5}, v_{1} v_{6}$, and $v_{2} v_{3}$ is multiple, then S is a member of \mathcal{B}_{8}.

In each of the Cases 1 to 4 above, we proved that the component S of H is contained in some member of $\mathcal{B}_{1}, \mathcal{B}_{2}, \ldots$, or \mathcal{B}_{16}. Consequently, case (b) of assertion (v) holds, which completes the proof.

3.6.3 Recognizing balanced complements of line graphs of multigraphs

We will derive, from the above theorem, the existence of a linear-time recognition algorithm for balanced graphs within complements of line graphs of multigraphs.

Given a graph G, we define a pruned graph of G as any maximal induced subgraph of G having no three pairwise false twins and no universal vertices. Let $V_{1}, V_{2}, \ldots, V_{q}$ be the equivalent classes of the relation "is a false twin of" on the set of vertices of G. We say that the equivalent class V_{i} is universal if some vertex of V_{i} is a universal vertex of G. Clearly, if V_{i} is universal, then $\left|V_{i}\right|=1$. The pruned graphs of G are those subgraphs of G induced by some set $V_{1}^{\prime} \cup V_{2}^{\prime} \cup \ldots \cup V_{q}^{\prime}$ such that $V_{i}^{\prime} \subseteq V_{i}$ and $\left|V_{i}^{\prime}\right|=\beta_{i}$, for each $i=1,2, \ldots, q$, where

$$
\beta_{i}= \begin{cases}\min \left(\left|V_{i}\right|, 2\right) & \text { if } V_{i} \text { is not universal } \\ 0 & \text { otherwise }\end{cases}
$$

Since any two vertices that belong the same V_{i} are nonadjacent and have the same neighbors, the pruned graphs of G are unique up to isomorphisms and we denote any of them by $\mathcal{P}(\mathrm{G})$.
Lemma 3.30. A pruned subgraph of a graph G can be computed in linear time.
Proof. In order to compute $\mathcal{P}(\mathrm{G})$, we first construct the modular decomposition tree $\mathrm{T}(\mathrm{G})$ of G . Then, two vertices u and v of G are false twins if and only if the leaves of the modular decomposition tree representing them are children of the same parallel node. This means that we can find a subset of vertices inducing a pruned graph of G by marking for exclusion all universal vertices of G and by performing a breadth-first search on the modular decomposition tree of G in order to mark for exclusion also the third, fourth, fifth, and so on, leaf children of each parallel node. Since the modular decomposition tree can be computed in linear time, $\mathcal{P}(G)$ can also be computed in linear time.

The following fact about $\mathcal{P}(G)$ is crucial for our purposes.
Corollary 3.31. Let G be the complement of the line graph of a multigraph. Then, G is balanced if and only if $\mathcal{P}(\mathrm{G})$ is balanced.

Proof. If G is balanced, then clearly $\mathcal{P}(\mathrm{G})$ is also balanced (because $\mathcal{P}(\mathrm{G})$ is an induced subgraph of G . In order to prove the converse, we assume that G is not balanced and we will prove that $\mathcal{P}(G)$ is not balanced. Let W be a subset of vertices inducing a minimal induced subgraph of G that is not balanced. By Theorem 3.29, the subgraph of G induced by W is isomorphic to 3 -sun, 2-pyramid, 3-pyramid, C_{5}, C_{7}, U_{7}, or V_{7}. In particular, there are no three pairwise false twins of G in W and there is no universal vertex of G in W. Therefore, if the equivalent classes $V_{1}, V_{2}, \ldots, V_{q}$ and β_{i} are as defined earlier and $W_{i}=W \cap V_{i}$, then $\left|W_{i}\right| \leqslant \beta_{i}$ for each $i=1,2, \ldots, q$. So, it is possible to find $V_{1}^{\prime}, V_{2}^{\prime}, \ldots, V_{q}^{\prime}$ such that $W_{i} \subseteq V_{i}^{\prime} \subseteq V_{i}$ and $\left|V_{i}^{\prime}\right|=\beta_{i}$ for each $i=1,2, \ldots, q$. Then, $\mathrm{G}^{\prime}=\mathrm{G}\left[\mathrm{V}_{1}^{\prime} \cup \mathrm{V}_{2}^{\prime} \cup \cdots \cup \mathrm{V}_{\mathrm{q}}^{\prime}\right]$ is a pruned graph of G and G^{\prime} is not balanced because $W \subseteq V\left(G^{\prime}\right)$ and $G^{\prime}[W]=G[W]$ is not balanced.

Let G be the complement of the line graph of a multigraph and let k be a fixed integer. According to Corollary 3.31, if $\mathcal{P}(\mathrm{G})$ has at most k vertices, we can decide whether G is balanced in linear time by computing $\mathcal{P}(G)$ in linear time and then deciding whether $\mathcal{P}(G)$ is balanced in constant time. (Indeed, the obvious $O\left(n^{7}\right)$-time recognition algorithm for balancedness among complements of line graphs of multigraphs that follows from assertion (iii) of Theorem 3.29 becomes constant-time when $n=O(1)$.) In what follows, we will fix $k=40$ and the remainder of this subsection is devoted to proving that we can decide in linear time whether $\mathcal{P}(G)$ is balanced even if $\mathcal{P}(G)$ has more than 40 vertices.

Figure 3.3: Multigraph family $\mathcal{B}_{16}^{\prime}$. Light lines represent single edges, whereas bold lines represent one or more parallel edges. Parameter p varies over the positive integers, and $\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{p}}$ are pairwise false twins

We denote by $L^{-1}(G)$ any multigraph H without isolated vertices such that $L(H)=$ G and whose underlying graph \widehat{H} satisfies $L(\widehat{H})=\mathcal{R}(G)$, where $\mathcal{R}(G)$ is the representative graph of G as defined in Section 3.5. Given a graph G, a multigraph $L^{-1}(G)$ can be computed in linear time of G (see [78, p. 67-68]). We say that two incident edges e_{1} and e_{2} of a multigraph H are twins if they are incident to the same edges of $E(H)$. We say that a multigraph H is reduced if each pair of twin edges are parallel. By construction, $H=L^{-1}(G)$ is reduced. In Figure 3.3 we introduce the multigraph family $\mathcal{B}_{16}^{\prime}$.

Corollary 3.32. Let G be the complement of the line graph of a multigraph and suppose that $\mathcal{P}(\mathrm{G})$ has more than 40 vertices. If $\mathrm{H}=\mathrm{L}^{-1}(\overline{\mathcal{P}(\mathrm{G})})$, then the following conditions are equivalent:
(i) G is balanced.
(ii) H is a connected submultigraph of some member of \mathcal{B}_{15} or $\mathcal{B}_{16}^{\prime}$.
(iii) H is connected, has exactly two vertices v_{1} and v_{2} that are incident to at least six edges each, and, for each $\mathfrak{i}=1,2$, there is at most one vertex w_{i} that is adjacent to v_{i} and such that there is some $x_{i} \in N_{H}\left(w_{i}\right) \backslash\left\{v_{1}, v_{2}\right\}$ and, if so, each of the following holds: $\mathrm{N}_{\mathrm{H}}\left(w_{\mathrm{i}}\right) \subseteq\left\{x_{i}, v_{1}, v_{2}\right\}$, there is exactly one edge e_{i} joining w_{i} to x_{i}, and e_{i} is the only edge incident to x_{i}. (It is possible that $w_{1}=w_{2}$.)

Proof. Suppose that G is balanced and let $\mathrm{H}=\mathrm{L}^{-1}(\overline{\mathcal{P}(\mathrm{G})})$. As H has no isolated vertices and $\mathcal{P}(\mathrm{G})$ has no universal vertices, each component of H has at least two edges. Since G is balanced, $\mathcal{P}(\mathrm{G})$ is balanced; i.e., H is $\overline{\mathrm{L}}$-balanced. So, by Theorem 3.29, either H is a connected submultigraph of some member of $\mathcal{B}_{1}, \mathcal{B}_{2}, \ldots, \mathcal{B}_{16}$ or H has two components, each of which is contained in a member of $\mathcal{A}_{1}, \mathcal{A}_{2}$, or \mathcal{A}_{3}. But, as $\mathcal{P}(\mathrm{G})$ has more than 40 vertices, H has more than 40 edges. Since, by construction, $\overline{\mathcal{P}(\mathrm{G})}$ has no three pairwise true twins, H has no three pairwise parallel edges. Since, in addition, H is reduced, H is necessarily a connected submultigraph of \mathcal{B}_{15} or $\mathcal{B}_{16}^{\prime}$. Conversely, if H is a submultigraph of some member of \mathcal{B}_{15} or $\mathcal{B}_{16}^{\prime}$, then $\mathcal{P}(G)$ is balanced by Theorem 3.29 and, then, G is also balanced by Corollary 3.31. This concludes the proof of the equivalence between (i) and (ii).

Since clearly (iii) implies (ii), it only remains to show that (ii) implies (iii). So, assume that H is is a connected submultigraph of some member of \mathcal{B}_{15} or $\mathcal{B}_{16}^{\prime}$. Since $\mathrm{H}=\mathrm{L}^{-1}(\overline{\mathcal{P}(\mathrm{G})}), \mathrm{H}$ has no three pairwise parallel edges. Therefore, H has at most two vertices incident to at least six edges. Moreover, since H has at least 40 edges, H has exactly two vertices incident to at least six edges each, and (iii) clearly holds.

The next result implies that if $\mathcal{P}(G)$ has more than 40 vertices, then we can either detect that G is not balanced or compute $\mathrm{L}^{-1}(\overline{\mathcal{P}(\mathrm{G})})$ efficiently.

Corollary 3.33. Let G be the complement of the line graph of a multigraph. Let $\mathfrak{n}_{\mathcal{P}}$ and $\mathfrak{m}_{\mathcal{P}}$ be the number of vertices and edges of $\mathcal{P}(\mathrm{G})$ and suppose that $\mathrm{n}_{\mathcal{P}}>40$. If

$$
\begin{equation*}
m_{\mathcal{P}} \geqslant \frac{2}{9}\left(n_{\mathcal{P}}-3\right)\left(n_{\mathcal{P}}-36\right) \tag{3.1}
\end{equation*}
$$

does not hold, then G is not balanced. On the other hand, if (3.1) holds, then $\mathrm{H}=\mathrm{L}^{-1}(\overline{\mathcal{P}(\mathrm{G})})$ can be computed from G in linear time.

Proof. Suppose first that G is balanced and let $\mathrm{H}=\mathrm{L}^{-1}(\overline{\mathcal{P}(\mathrm{G})})$. Then, H has $\mathrm{n}_{\mathcal{P}}$ edges and satisfies condition (iii) of Corollary 3.32. Let A be the set of vertices a of H such that $\mathrm{N}_{\mathrm{H}}(\mathfrak{a}) \subseteq\left\{v_{1}, v_{2}\right\}$. Since $\overline{\mathcal{P}(G)}$ has no three pairwise true twins, H has no three pairwise parallel edges. Moreover, as H is reduced, there are at most two edges joining v_{i} to pendant vertices in A, for each $i=1,2$. Let E_{i} be the set of edges joining v_{i} to non-pendant vertices in A, for each $i=1,2$. Since H is a submultigraph of a member of \mathcal{B}_{15} or $\mathcal{B}_{16}^{\prime}$ and H is reduced, $\left|E_{1}\right|+\left|E_{2}\right| \geqslant n_{\mathcal{P}}-12$. Without loss of generality, assume that $\left|E_{1}\right| \geqslant\left|E_{2}\right|$. Then, $\frac{1}{2}\left(n_{\mathcal{P}}-12\right) \leqslant\left|E_{1}\right| \leqslant \frac{2}{3} n_{\mathcal{P}}$ because each non-pendant vertex of A is joined to v_{1} by at most two edges and joined to v_{2} by at least one edge. So, since each edge of E_{2} is incident to at most two edges of E_{1} and $\mathcal{P}(G)=\overline{L(H)}$,

$$
\mathfrak{m}_{\mathcal{P}} \geqslant\left|E_{2}\right|\left(\left|E_{1}\right|-2\right) \geqslant\left(n_{\mathcal{P}}-12-\left|E_{1}\right|\right)\left(\left|E_{1}\right|-2\right) \geqslant \frac{2}{9}\left(\mathfrak{n}_{\mathcal{P}}-3\right)\left(n_{\mathcal{P}}-36\right) .
$$

This proves that if (3.1) does not hold, then G is not balanced.
Suppose now that (3.1) holds. We have seen that $\mathcal{P}(G)$ can be computed in $O(m+n)$ time, where n and m are the number of vertices and edges of G. The complement of $\mathcal{P}(\mathrm{G})$ can obviously be computed in $\mathrm{O}\left(\mathfrak{n}_{\mathcal{P}}^{2}\right)$ time. In addition, $\mathrm{H}=\mathrm{L}^{-1}(\overline{\mathcal{P}(\mathrm{G})})$ can be computed from $\overline{\mathcal{P}(\mathrm{G})}$ in linear time of $\overline{\mathcal{P}(\mathrm{G})}$, which is again $\mathrm{O}\left(\mathfrak{n}_{\mathcal{P}}^{2}\right)$. Notice that since $\mathfrak{m}_{\mathcal{P}} \leqslant \mathfrak{m}$ and we are assuming that (3.1) holds, $\mathrm{O}\left(\mathfrak{n}_{\mathcal{P}}^{2}\right)$ is $\mathrm{O}(\mathfrak{m})$. We conclude that H can be computed from G in $\mathrm{O}(\mathrm{m}+\mathfrak{n})$ time, as desired.

Let G be the complement of the line graph of a multigraph. We know that if $\mathcal{P}(\mathrm{G})$ has at most 40 vertices, we can decide whether G is balanced in linear time. So, suppose that $\mathcal{P}(G)$ has more than 40 vertices and let $\mathfrak{n}_{\mathfrak{P}}$ and $\mathfrak{m}_{\mathfrak{p}}$ be the number of vertices
and edges of $\mathcal{P}(G)$. If (3.1) does not hold, we know that G is not balanced. Otherwise, we can decide whether G is balanced in linear time by first computing $H=L^{-1}(\overline{\mathcal{P}(G)})$ and then checking the validity of condition (iii) of Corollary 3.32. As a conclusion, we have the following.

Corollary 3.34. Given a graph G that is the complement of the line graph of a multigraph, it can be decided whether or not G is balanced in linear time.

3.6.4 Lemmas for the proof of Theorem 3.28

This subsection is devoted to prove that each of the multigraph families $\mathcal{B}_{1}, \mathcal{B}_{5}, \mathcal{B}_{6}$, $\mathcal{B}_{7}, \mathcal{B}_{8}, \mathcal{B}_{13}, \mathcal{B}_{14}$, and \mathcal{B}_{15} is \bar{L}-balanced.

A bicoloring of a $\{0,1\}$-matrix is a partition of its columns into red and blue columns such that every row with two or more 1 's contains at least a 1 in a red column and at least a 1 in a blue column. Clearly, the edge-vertex incidence matrix of an odd cycle cannot be bicolored. Interestingly, a $\{0,1\}$-matrix is balanced if and only if each of its submatrices is bicolorable [8]. Let A be a submatrix of the matching-matrix of a multigraph H and let \mathcal{M} and \mathcal{E} be the sets of maximal matchings and edges of H corresponding to the rows and columns of the submatrix A, respectively. In this context, we say that a partition $\left\{\varepsilon_{1}, \mathcal{E}_{2}\right\}$ of \mathcal{E} is a bicoloring of A if for each $M \in \mathcal{M}$ either $|M \cap \mathcal{E}| \leqslant 1$ or M intersects both ε_{1} and ε_{2}.

We will make repeated use the following lemma.
Lemma 3.35. Let H be a multigraph that is not $\overline{\mathrm{L}}$-balanced. Then, a matching-matrix of H has some submatrix A which is an edge-vertex incidence matrix of an odd chordless cycle and let \mathcal{E} be the set of edges of H corresponding to the columns of A . If X is a set of pairwise incident edges of H , there must be some maximal matching M of H such that $|\mathrm{M} \cap \mathcal{E}|=2$ and $M \cap \mathcal{E} \cap X=\varnothing$.

Proof. Let \mathcal{M} be the set of maximal matchings of H corresponding to the rows of the submatrix A. Since A is an edge-vertex incidence matrix of an odd chordless cycle, $|M \cap \mathcal{E}|=2$ for each $M \in \mathcal{M}$. Since X consists of pairwise incident edges of $X, \mid M \cap$ $\mathcal{E} \cap X \mid \leqslant 1$ for every matching M of X. As $|M \cap \mathcal{E}|=2$ for each $M \in \mathcal{M}$, it follows that $\mid(M \cap \mathcal{E}) \backslash X) \mid \geqslant 1$ for each $M \in \mathcal{M}$. Since A is not bicolorable, $\{X \cap \mathcal{E}, \mathcal{E} \backslash X\}$ is not a bicoloring of A and, necessarily, there is some $M \in \mathcal{M}$ such that $|M \cap X \cap \mathcal{E}|=0$.

If u, v, w are three pairwise adjacent vertices of H of a multigraph, we denote by $\mathrm{T}_{\mathrm{H}}(u, v, w)$ the set of all edges of H joining any two of the vertices u, v, and w. Recall that $\mathrm{E}_{\mathrm{H}}(v)$ denote the set of edges of H incident to v.

Lemma 3.36. The family \mathcal{B}_{1} is $\overline{\mathrm{L}}$-balanced.

Figure 3.4: Vertex labeling of the multigraph H for the proofs of Lemmas 3.36 to 3.43. Light lines represent single edges, whereas bold lines represent one or more parallel edges. Parameter p varies over the positive integers, and $a_{1}, a_{2}, \ldots, a_{p}$ are pairwise false twins

Proof. By the way of contradiction, consider a not $\overline{\text { L-balanced multigraph }} \mathrm{H} \in \mathcal{B}_{1}$. Label its vertices as in Figure 3.4 and let A and \mathcal{E} be as in Lemma 3.35.

We claim that $\mathrm{b}_{1} \mathrm{~b}_{6} \in \mathcal{E}$. By Lemma 3.35 applied to $\mathrm{X}=\mathrm{T}_{\mathrm{H}}\left(\mathrm{b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3}\right)$, there is some maximal matching M of H such that $|M \cap \mathcal{E}|=2$ but $M \cap \mathcal{E} \cap X=\varnothing$. Necessarily, $\mathrm{b}_{1} \mathrm{~b}_{6} \in M \cap \mathcal{E}$ and, in particular, $\mathrm{b}_{1} \mathrm{~b}_{6} \in \mathcal{E}$, as claimed.

By Lemma 3.35 applied to $X=E_{H}\left(b_{1}\right)$, there is some maximal matching M of H such that $|M \cap \mathcal{E}|=2$ but $M \cap \mathcal{E} \cap X=\varnothing$. Necessarily, $M \cap \mathcal{E}$ consists of one edge joining b_{2} to b_{3} and one edge joining b_{4} to b_{5} and, by the maximality of $M, b_{1} b_{6} \in M$. So, as we proved that $b_{1} b_{6} \in \mathcal{E}$, we conclude that $b_{1} b_{6} \in M \cap \mathcal{E} \cap X$, which contradicts $M \cap \mathcal{E} \cap X=\varnothing$. Hence, any member of \mathcal{B}_{1} is \bar{L}-balanced.

Lemma 3.37. The family \mathcal{B}_{5} is $\overline{\mathrm{L}}$-balanced.
Proof. By the way of contradiction, consider a not \bar{L}-balanced multigraph $\mathrm{H} \in \mathcal{B}_{5}$. Label its vertices as in Figure 3.4 and let A and \mathcal{E} be as in Lemma 3.35.

By Lemma 3.35 applied to $X=\mathrm{E}_{\mathrm{H}}\left(\mathrm{b}_{2}\right)$, there is a maximal matching M of H such that $|M \cap \mathcal{E}|=2$ but $M \cap \mathcal{E} \cap X=\varnothing$. So, necessarily, $M \cap \mathcal{E}$ contains at least one of $b_{1} b_{5}$ and $b_{3} b_{7}$. Symmetrically, $M \cap \mathcal{E}$ contains at least one of $b_{2} b_{6}$ and $b_{4} b_{8}$. So, we assume, without loss of generality, that $b_{1} b_{5}, b_{2} b_{6} \in \mathcal{E}$.

We claim that from $b_{1} b_{5}, b_{2} b_{6} \in \mathcal{E}$ it follows that $b_{3} b_{7}, b_{4} b_{8} \in \mathcal{E}$. By Lemma 3.35 applied to $X=E_{H}\left(b_{1}\right)$, there is some maximal matching M of H such that $|M \cap \mathcal{E}|=2$ but $M \cap \mathcal{E} \cap X=\varnothing$. As $b_{1} b_{5} \in \mathcal{E} \cap X$, it follows that $b_{1} b_{5} \notin M$. Thus, by the maximality of M, M contains an edge joining b_{1} to either b_{2} or b_{4}. Then, as $M \cap \mathcal{E}$ consists of two non-incident edges and is disjoint from $E_{H}\left(b_{1}\right)$, necessarily $b_{3} b_{7} \in M \cap \mathcal{E}$ and, in particular, $b_{3} b_{7} \in \mathcal{E}$. Symmetrically, $b_{4} b_{8} \in \mathcal{E}$.

Let $R=\left(E_{H}\left(b_{2}\right) \cup\left\{b_{4} b_{8}\right\}\right) \cap \mathcal{E}$ and $B=\mathcal{E} \backslash R$. Then, $\{R, B\}$ is a partition of \mathcal{E} and we claim that $\{R, B\}$ is bicoloring of A. Let \mathcal{M} the set of maximal matchings of H corresponding to the rows of A and let $M \in \mathcal{M}$. As A is an edge-vertex incidence matrix of an odd chordless cycle, $|M \cap \mathcal{E}|=2$. Suppose, by the way of contradiction, that $M \cap R=\varnothing$. This meas that $M \cap \mathcal{E}$ is disjoint from $E_{H}\left(b_{2}\right) \cup\left\{b_{4} b_{8}\right\}$. So, since $|M \cap \mathcal{E}|=2, M \cap \mathcal{E}$ consists of one edge incident to b_{1} and one edge incident to b_{3} but none of them incident to b_{2} and, by the maximality of $M, b_{2} b_{6} \in M$. Consequently, $b_{2} b_{6} \in M \cap R$, a contradiction. This contradiction arose from assuming that $M \cap R=\varnothing$.

Suppose now that $M \cap B=\varnothing$. This means that $M \cap \mathcal{E}$ consists of two edges contained in $E_{H}\left(b_{2}\right) \cup\left\{b_{4} b_{8}\right\}$. Since M is a matching, $M \cap \mathcal{E}$ consists of $b_{4} b_{8}$ and one edge incident to b_{2}. Then, the maximality of M implies that $M \cap\left\{b_{1} b_{5}, b_{3} b_{7}\right\} \neq \varnothing$ and, consequently, $(M \cap B) \cap\left\{b_{1} b_{5}, b_{3} b_{7}\right\} \neq \varnothing$, a contradiction. This contradiction arose from assuming that $M \cap B=\varnothing$.

So, we have proved that for each $M \in \mathcal{M}, M \cap R \neq \varnothing$ and $M \cap B \neq \varnothing$, which proves that $\{R, B\}$ is a bicoloring of A, contradicting the choice of A. Hence, any member of \mathcal{B}_{5} is $\overline{\text { L }}$-balanced.

Lemma 3.38. The family \mathcal{B}_{6} is $\overline{\bar{L}}$-balanced.
Proof. By the way of contradiction, consider a not \bar{L}-balanced multigraph $H \in \mathcal{B}_{6}$. Label its vertices as in Figure 3.4 and let \mathcal{A} and \mathcal{E} be as in Lemma 3.35.

We claim that $b_{4} b_{5} \in \mathcal{E}$. Suppose, by the way of contradiction, that $b_{4} b_{5} \notin \mathcal{E}$. By Lemma 3.35 applied to $X=\mathrm{E}_{\mathrm{H}}\left(\mathrm{b}_{3}\right)$, there is some maximal matching M of H such that $|M \cap \mathcal{E}|=2$ but $M \cap \mathcal{E} \cap X=\varnothing$. Necessarily, $M \cap \mathcal{E}$ consists of the edge $b_{5} b_{6}$ and an edge joining b_{1} to b_{2}. In particular, $b_{5} b_{6} \in \mathcal{E}$. Similarly, by Lemma 3.35 applied to $X=E_{H}\left(b_{6}\right)$, there is some maximal matching M of H such that $|M \cap \varepsilon|=2$ and $M \cap \mathcal{E} \cap X=\varnothing$. Necessarily, $M \cap \mathcal{E}$ consists of $b_{3} b_{4}$ and an edge joining b_{1} to b_{2}. Hence, the maximality of M implies that $b_{5} b_{6} \in M$ and, since $b_{5} b_{6} \in \mathcal{E}$, it follows that $b_{5} b_{6} \in M \cap \mathcal{E} \cap X$, contradicting $M \cap \mathcal{E} \cap X=\varnothing$. This contradiction arose from assuming that $\mathrm{b}_{4} \mathrm{~b}_{5} \notin \mathcal{E}$ and completes the proof of the claim.

Moreover, we claim that no edge joining b_{3} to b_{6} belongs to \mathcal{E}. Suppose, by the way of contradiction there is some edge $e \in \mathcal{E}$ joining b_{3} to b_{6}. Let \mathcal{M} be the set of maximal matchings of H corresponding to the rows of A. As A is an edge-vertex incidence matrix of an odd chordless cycle, there are two different maximal matchings $M, M^{\prime} \in$ \mathcal{M} such that $|M \cap \mathcal{E}|=|M \cap \mathcal{E}|=2$ and $e \in M, M^{\prime}$. Since every maximal matching of H containing e also contains $b_{4} b_{5}$, we conclude that $M \cap \mathcal{E}=M^{\prime} \cap \mathcal{E}=\left\{e, b_{4} b_{5}\right\}$. This means that rows and columns of A corresponding to M, M^{\prime} and $e, b_{4} b_{5}$ determine a 2×2 submatrix of A full of 1 's, which contradicts the choice of A. This contradiction arose from assuming that $e \in \mathcal{E}$ and completes the proof of the claim.

We also claim that $\mathrm{b}_{5} \mathrm{~b}_{6} \in \mathcal{E}$. Suppose, by the way of contradiction that $\mathrm{b}_{5} \mathrm{~b}_{6} \notin \mathcal{E}$, by Lemma 3.35 applied to $X=\mathrm{E}_{\mathrm{H}}\left(\mathrm{b}_{4}\right)$, there is some maximal matching M of H such that $|M \cap \mathcal{E}|=2$ and $M \cap \mathcal{E} \cap X=\varnothing$. As $b_{5} b_{6} \notin \mathcal{E}, M \cap \mathcal{E}$ consists of $b_{1} b_{6}$ and an edge joining b_{2} to b_{3} and the maximality of M implies that $b_{4} b_{5} \in M$. Thus, since $b_{4} b_{5} \in \mathcal{E}$, it follows that $\mathrm{b}_{4} \mathrm{~b}_{5} \in \mathrm{M} \cap \mathcal{E} \cap \mathrm{X}$, which contradicts $\mathrm{M} \cap \mathcal{E} \cap X=\varnothing$. This contradiction arose from assuming that $\mathrm{b}_{5} \mathrm{~b}_{6} \notin \mathcal{E}$. This concludes the proof of the claim.

We further claim that $b_{3} b_{4}, b_{1} b_{6} \in \mathcal{E}$. By Lemma 3.35 applied to $X=E_{H}\left(b_{5}\right)$, there is some maximal matching M of H such that $|M \cap \mathcal{E}|=2$ and $M \cap \mathcal{E} \cap X=\varnothing$. Reasoning as in the preceding paragraph, $b_{3} b_{4} \in M \cap \varepsilon$; otherwise, the maximality of M would imply that $b_{4} b_{5} \in M$ and, since $b_{4} b_{5} \in \mathcal{E}$, it would follow that $b_{4} b_{5} \in M \cap \mathcal{E} \cap X$, a contradiction. Suppose, by the way of contradiction, that $b_{1} b_{6} \notin M \cap \mathcal{E}$. Then, $M \cap \mathcal{E}$ consists of $b_{3} b_{4}$ and an edge joining $b_{1} b_{2}$ and, by maximality of $M, b_{5} b_{6} \in M$. But then, since $b_{5} b_{6} \in \mathcal{E}$, it follows that $b_{5} b_{6} \in M \cap \mathcal{E} \cap X$, a contradiction. This contradiction arose from assuming that $b_{1} b_{6} \notin M \cap \mathcal{E}$. As we proved that $b_{3} b_{4}, b_{1} b_{6} \in M \cap \mathcal{E}$, in particular $b_{3} b_{4}, b_{1} b_{6} \in \mathcal{E}$, as claimed.

Let $R=\left(E_{H}\left(b_{3}\right) \cup\left\{b_{4} b_{5}\right\}\right) \cap \mathcal{E}$ and $B=\mathcal{E} \backslash R$. Then, $\{R, B\}$ is a partition of \mathcal{E} and we claim that $\{R, B\}$ is a bicoloring of A. Recall that \mathcal{M} is the set of maximal matchings of H corresponding to the rows of A and let $M \in \mathcal{M}$. Since \mathcal{A} is an edge-vertex incidence matrix of an odd chordless cycle, $|M \cap \mathcal{E}|=2$. Suppose, by the way of contradiction, that $M \cap R=\varnothing$. This means that $M \cap \mathcal{E}$ is disjoint from $E_{H}\left(b_{3}\right) \cup\left\{b_{4} b_{5}\right\}$. So, since $|M \cap \mathcal{E}|=2$, necessarily $M \cap \mathcal{E}$ consists of $b_{5} b_{6}$ plus an edge joining b_{1} to b_{2} and, by the maximality of $M, b_{3} b_{4} \in M$, which implies $b_{3} b_{4} \in M \cap R$, a contradiction. This contradiction arose from assuming that $M \cap R=\varnothing$.

Suppose now that $M \cap B=\varnothing$. This means that $M \cap \mathcal{E}$ consists of two edges that belong to $E_{H}\left(b_{3}\right) \cup\left\{b_{4} b_{5}\right\}$. Since there is no edge in \mathcal{E} joining b_{3} to $b_{6}, M \cap \mathcal{E}$ consists of $b_{4} b_{5}$ and an edge joining b_{2} to b_{3}. Then, the maximality of M implies that $b_{1} b_{6} \in M$ and, as $b_{1} b_{6} \in \mathcal{E}, b_{1} b_{6} \in M \cap B$, a contradiction. This contradiction arose from assuming that $M \cap B=\varnothing$.

So, we have proved that $\{R, B\}$ is a partition of \mathcal{E} such that, for each $M \in \mathcal{M}, M \cap R \neq$ \varnothing and $M \cap B \neq \varnothing$; i.e., $\{R, B\}$ is a bicoloring of A, which contradicts the choice of A. Hence, any member of \mathcal{B}_{6} is $\overline{\mathrm{L}}$-balanced.

Lemma 3.39. The family \mathcal{B}_{7} is $\overline{\mathrm{L}}$-balanced.
Proof. By the way of contradiction, consider a not \bar{L}-balanced multigraph $\mathrm{H} \in \mathcal{B}_{7}$. Label its vertices as in Figure 3.4 and let \mathcal{A} and \mathcal{E} be as in Lemma 3.35.

By Lemma 3.35 applied to $X=\mathrm{E}_{\mathrm{H}}\left(\mathrm{b}_{2}\right)$, there is some maximal matching M such that $|M \cap \mathcal{E}|=2$ and $M \cap \mathcal{E} \cap X=\varnothing$. Since $M \cap \mathcal{E}$ is a matching of size 2 disjoint from X, necessarily at least one of $b_{1} b_{6}, b_{3} b_{4}$, or $b_{5} b_{6}$ belongs to $M \cap \mathcal{E}$ and, in particular, to
\mathcal{E}. By symmetry, we assume, without loss of generality, that $b_{1} b_{6} \in \mathcal{E}$.
We now show that our assumption that $b_{1} b_{6} \in \mathcal{E}$ implies that $b_{5} b_{6} \in \mathcal{E}$ and, moreover, that $b_{2} b_{3} \in \mathcal{E}$ or $b_{3} b_{4} \in \mathcal{E}$. By Lemma 3.35 applied to $X=E_{H}\left(b_{1}\right)$, there is some maximal matching M of H such that $|M \cap \mathcal{E}|=2$ and $M \cap \mathcal{E} \cap X=\varnothing$. Suppose, by the way of contradiction, that $b_{5} b_{6} \notin M \cap \mathcal{E}$. Then, $M \cap \mathcal{E}$ consists either of $b_{2} b_{3}$ and one edge joining b_{4} to b_{5}, or of $b_{3} b_{4}$ and one edge joining b_{2} to b_{5}. In either case, the maximality of M implies that $b_{1} b_{6} \in M$ and, since we are assuming that $b_{1} b_{6} \in \mathcal{E}$, it follows that $b_{1} b_{6} \in M \cap \mathcal{E} \cap X$, which contradicts $M \cap \mathcal{E} \cap X=\varnothing$. This contradiction arose from assuming that $b_{5} b_{6} \notin \mathcal{E}$. As $M \cap \mathcal{E}$ is a matching of size 2 , disjoint from X, and containing $b_{5} b_{6}$, necessarily $b_{2} b_{3} \in M \cap \mathcal{E}$ or $b_{3} b_{4} \in \mathcal{M} \cap \mathcal{E}$. This completes the proof of the claim. As we are assuming that $b_{1} b_{6}$, we assume further, without loss of generality, that $b_{2} b_{3}, b_{5} b_{6} \in \mathcal{E}$.

Reasoning as in the previous paragraph, from the assumption that $b_{2} b_{3} \in \mathcal{E}$ we can derive that $b_{3} b_{4} \in \mathcal{E}$. We conclude that $\mathcal{E}_{1}=\left\{b_{1} b_{6}, b_{2} b_{3}, b_{3} b_{4}, b_{5} b_{6}\right\}$ is contained in \mathcal{E}. Let $R=\left(E_{H}\left(b_{2}\right) \cup\left\{b_{5} b_{6}\right\}\right) \cap \mathcal{E}$, and $B=\mathcal{E} \backslash R$. We claim that $\{R, B\}$ is bicoloring of A. Let M be a maximal matching of H corresponding to a row of A. By construction, $|M \cap \mathcal{E}|=2$. If $\left|M \cap \mathcal{E}_{1}\right|=2$, necessarily M has an edge in R and an edge in B. Notice that if $\left|M \cap \mathcal{E}_{1}\right| \neq 2$, necessarily $M \cap \mathcal{E}_{1}=\varnothing$ and, since $M \cap \mathcal{E}$ is a matching of size 2 , M also has one edge in R and one edge in B. This shows that $\{R, B\}$ is a bicoloring of A, which contradicts the choice of A. Hence, any member of \mathcal{B}_{7} is \bar{L}-balanced.

Lemma 3.40. The family \mathcal{B}_{8} is $\overline{\mathrm{L}}$-balanced.
Proof. By the way of contradiction, consider a not L-balanced multigraph $H \in \mathcal{B}_{8}$. Label its vertices as in Figure 3.4 and let A and \mathcal{E} be as in Lemma 3.35.

By Lemma 3.35 applied to $X=E_{H}\left(b_{3}\right)$, there is some maximal matching M of H such that $|M \cap \mathcal{E}|=2$ and $M \cap \mathcal{E} \cap X=\varnothing$. By symmetry, we assume, without loss of generality, that $M \cap \mathcal{E}=\left\{b_{1} b_{2}, b_{4} b_{5}\right\}$ and, in particular, $b_{1} b_{2}, b_{4} b_{5} \in \mathcal{E}$.

We claim that no edge joining b_{3} to b_{6} belongs to \mathcal{E}. Suppose, by the way of contradiction, that there is some edge $e \in \mathcal{E}$ joining b_{3} to b_{6}. Since \mathcal{A} is an edgevertex incidence matrix of an odd chordless cycle, there are two different maximal matchings M and M^{\prime} of H such that $e \in M, M^{\prime}$ and $|M \cap \mathcal{E}|=\left|M^{\prime} \cap \mathcal{E}\right|=2$. But $\left\{e, b_{1} b_{2}, b_{4} b_{5}\right\}$ and $\left\{e, b_{1} b_{4}, b_{2} b_{5}\right\}$ are the only maximal matchings of H containing e and $\left|\left\{e, b_{1} b_{2}, b_{4} b_{5}\right\} \cap \mathcal{E}\right|=3$, a contradiction. This contradiction proves the claim.

We now show that our assumption that $b_{1} b_{2}, b_{4} b_{5} \in \mathcal{E}$ implies that $b_{1} b_{6} \in \mathcal{E}$ or $b_{5} b_{6} \in \mathcal{E}$. By Lemma 3.35 applied to $X=E_{H}\left(b_{2}\right)$, there is some maximal matching M of H such that $|M \cap \mathcal{E}|=2$ and $M \cap \mathcal{E} \cap X=\varnothing$. Necessarily, $M \cap \mathcal{E}$ consists of one edge incident to b_{4} and one edge incident to b_{6} and, since no edge joining b_{3} to b_{6} belongs to \mathcal{E}, it follows that $M \cap \mathcal{E}$ contains $b_{1} b_{6}$ or $b_{5} b_{6}$. In particular, $b_{1} b_{6} \in \mathcal{E}$ or $b_{5} b_{6} \in \mathcal{E}$.

By symmetry, we assume, without loss of generality that $b_{1} b_{6} \in \mathcal{E}$.
We further claim that $b_{5} b_{6} \in \mathcal{E}$. By Lemma 3.35 applied to $X=E_{H}\left(b_{1}\right)$, there is some maximal matching M of H such that $|M \cap \mathcal{E}|=2$ and $M \cap \mathcal{E} \cap X=\varnothing$. Suppose, by the way of contradiction, that $b_{5} b_{6} \notin \mathcal{E}$. In particular, $b_{5} b_{6} \notin M \cap \mathcal{E}$. As we proved that no edge joining b_{3} to b_{6} belongs to \mathcal{E}, we conclude that $M \cap \mathcal{E}$ consists either of the edge $b_{2} b_{5}$ and an edge joining b_{3} to b_{4}, or of the edge $b_{4} b_{5}$ and an edge joining b_{2} to b_{3}. In either case, the maximality of M implies that $b_{1} b_{6} \in M$ and, since $b_{1} b_{6} \in \mathcal{E}$, it follows that $b_{1} b_{6} \in M \cap \mathcal{E} \cap X$, contradicting $M \cap \mathcal{E} \cap X=\varnothing$. This contradiction arose from assuming that $b_{5} b_{6} \notin \mathcal{E}$. This concludes the proof of the claim.

As $b_{1} b_{2}, b_{4} b_{5} \in \mathcal{E}$ implies that $b_{1} b_{6}, b_{5} b_{6} \in \mathcal{E}$, by symmetry, $b_{1} b_{2}, b_{5} b_{6} \in \mathcal{E}$ implies that $b_{1} b_{4} \in \mathcal{E}$. Similarly, from $b_{1} b_{6}, b_{4} b_{5} \in \mathcal{E}$ follows that $b_{2} b_{5} \in \mathcal{E}$. We infer that $E_{H}\left(b_{1}\right) \cup E_{H}\left(b_{5}\right) \subseteq \mathcal{E}$. Let $R=E_{H}\left(b_{1}\right)$ and $B=\mathcal{E} \backslash R$. Then, $\{R, B\}$ is a partition of \mathcal{E} and we claim that $\{R, B\}$ is a bicoloring of A. Indeed, given any maximal matching M of H, it contains one edge incident to b_{1}, one edge incident to b_{3}, and one edge incident to b_{5}. As $E_{H}\left(b_{1}\right)=R$ and $E_{H}\left(b_{5}\right) \subseteq B, M$ contains one edge from R and at least one edge from B. This proves that $\{R, B\}$ is a bicoloring of A, contradicting the choice of A. Hence, any member of \mathcal{B}_{8} is \bar{L}-balanced.

Lemma 3.41. The family \mathcal{B}_{13} is $\overline{\mathrm{L}}$-balanced.
Proof. By the way of contradiction, consider a not L-balanced multigraph $H \in \mathcal{B}_{13}$. Label its vertices as in Figure 3.4 and let A and \mathcal{E} be as in Lemma 3.35.

We claim that $b_{3} b_{4} \in \mathcal{E}$. By Lemma 3.35 applied to $X=E_{H}\left(b_{1}\right)$, there is some maximal matching of M of H such that $|M \cap \mathcal{E}|=2$ but $M \cap \mathcal{E} \cap X=\varnothing$. Necessarily $\mathrm{b}_{3} \mathrm{~b}_{4} \in M \cap \mathcal{E}$ and, in particular, $\mathrm{b}_{3} \mathrm{~b}_{4} \in \mathcal{E}$.

By Lemma 3.35 applied to $X=E_{H}\left(b_{3}\right)$, there is some maximal matching of M such that $|M \cap \mathcal{E}|=2$ but $M \cap \mathcal{E} \cap X=\varnothing$. Necessarily, $b_{2} b_{4} \in M \cap \mathcal{E}$ and, by the maximality of $M, b_{3} b_{4} \in M$. Hence, as $b_{3} b_{4} \in \mathcal{E}$, we conclude that $b_{3} b_{4} \in M \cap \mathcal{E} \cap X$, which contradicts $M \cap \mathcal{E} \cap X=\varnothing$. Hence, any member of \mathcal{B}_{13} is \bar{L}-balanced.

Lemma 3.42. The family \mathcal{B}_{14} is $\overline{\mathrm{L}}$-balanced.
Proof. By the way of contradiction, consider a not L-balanced multigraph $H \in \mathcal{B}_{14}$. Label its vertices as in Figure 3.4 and let \mathcal{A} and \mathcal{E} be as in Lemma 3.35.

By Lemma 3.35 applied to $X=E_{H}\left(b_{1}\right)$, there is some maximal matching M of H such that $|M \cap \mathcal{E}|=2$ but $M \cap \mathcal{E} \cap X=\varnothing$. Necessarily, $b_{2} b_{3} \in M \cap \mathcal{E}$ or $b_{2} b_{4} \in M \cap \mathcal{E}$. By symmetry, we assume, without loss of generality, that $b_{2} b_{3} \in M \cap \mathcal{E}$. Then, the maximality of M implies that $b_{1} b_{4} \in M$ and, necessarily $b_{1} b_{4} \notin \mathcal{E}$ (otherwise, $b_{1} b_{4}$ would belong to $M \cap \mathcal{E} \cap X$).

By Lemma 3.35 applied to $X=E_{H}\left(b_{3}\right)$, there is some maximal matching M such that $|M \cap \mathcal{E}|=2$ but $M \cap \mathcal{E} \cap X=\varnothing$. Since $b_{1} b_{4} \notin \mathcal{E}$, necessarily $b_{1} b_{3} \in M \cap \mathcal{E}$. Then,
the maximality of M implies that $b_{2} b_{4} \in M$ and, necessarily $b_{2} b_{4} \notin \mathcal{E}$ (otherwise, $b_{2} b_{4}$ would belong to $M \cap \mathcal{E} \cap X$.)

By Lemma 3.35 applied to $X=T_{H}\left(b_{1}, b_{2}, b_{3}\right)$, there is some maximal matching M of H such that $|M \cap \mathcal{E}|=2$ but $M \cap \mathcal{E} \cap X=\varnothing$. Necessarily, $M \cap \mathcal{E}$ contains an edge incident to b_{4} and, in particular, $b_{1} b_{4} \in \mathcal{E}$ or $b_{2} b_{4} \in \mathcal{E}$, which contradicts the conclusion of the preceding two paragraphs.

Hence, any member of \mathcal{B}_{14} is \bar{L}-balanced.

Lemma 3.43. The family \mathcal{B}_{15} is $\overline{\mathrm{L}}$-balanced.
Proof. By the way of contradiction, consider a not L-balanced multigraph $H \in \mathcal{B}_{15}$. Label its vertices as in Figure 3.4 and let A and \mathcal{E} be as in Lemma 3.35.

We claim that $b_{3} b_{4} \in \mathcal{E}$. By Lemma 3.35 applied to $R=E_{H}\left(b_{1}\right)$, there is some maximal matching M of H such that $|M \cap \mathcal{E}|=2$ but $M \cap \mathcal{E} \cap X=\varnothing$. Necessarily $\mathrm{b}_{3} \mathrm{~b}_{4} \in M \cap \mathcal{E}$ and, in particular, $\mathrm{b}_{3} \mathrm{~b}_{4} \in \mathcal{E}$.

By Lemma 3.35 applied to $X=E_{H}\left(b_{3}\right)$, there is some maximal matching M of H such that $|M \cap \mathcal{E}|=2$ but $M \cap \mathcal{E} \cap X=\varnothing$. Necessarily, $M \cap \mathcal{E}$ consists one edge incident to b_{1} and one edge incident to b_{2}, but none of them incident to b_{3}. Hence, by the maximality of $M, b_{3} b_{4} \in M$ and, as we proved that $b_{3} b_{4} \in \mathcal{E}$, we conclude that $\mathrm{b}_{3} \mathrm{~b}_{4} \in M \cap \mathcal{E} \cap X$, which contradicts $M \cap \mathcal{E} \cap X=\varnothing$.

Hence, any member of \mathcal{B}_{15} is $\overline{\mathrm{L}}$-balanced.

3.7 Balancedness of a superclass of Helly circular-arc graphs

In this section, we give a minimal forbidden induced subgraph characterization of balancedness for a superclass of Helly circular-arc graphs. In order to do so, we introduce the graph families below, which are schematically represented in Figure 3.5.

- For each $t \geqslant 2$ and each p even such that $2 \leqslant p \leqslant 2 t$, the graph $V_{p}^{2 t+1}$ has vertex set $\left\{v_{1}, v_{2}, \ldots, v_{2 t+1}, u_{1}, u_{2}\right\}, v_{1} v_{2} \ldots v_{2 t+1} v_{1}$ is a cycle whose only chord is $v_{1} v_{3}$, $N\left(u_{1}\right)=\left\{v_{1}, v_{2}\right\}$, and $N\left(u_{2}\right)=\left\{v_{2}, v_{3}, \ldots, v_{p+1}\right\}$.
- For each $t \geqslant 2$, let $D^{2 t+1}$ be the graph with $\left\{v_{1}, v_{2}, \ldots, v_{2 t+1}, u_{1}, u_{2}, u_{3}\right\}$ as vertex set such that $v_{1} v_{2} \ldots v_{2 t+1} v_{1}$ is a cycle whose only chords are $v_{2 t+1} v_{2}$ and $v_{1} v_{3}$, $N\left(u_{1}\right)=\left\{v_{2 t+1}, v_{1}\right\}, N\left(u_{2}\right)=\left\{v_{2}, v_{3}\right\}$, and $N\left(u_{3}\right)=\left\{v_{1}, v_{2}\right\}$.
- For each $t \geqslant 2$ and each even p with $4 \leqslant p \leqslant 2 t$, let $X_{p}^{2 t+1}$ be the graph with vertex set $\left\{v_{1}, v_{2}, \ldots, v_{2 t+1}, u_{1}, u_{2}, u_{3}, u_{4}\right\}$ such that $v_{1} v_{2} \ldots v_{2 t+1} v_{1}$ is a cycle whose only chords are $v_{2 t+1} v_{2}$ and $v_{1} v_{3}, N\left(u_{1}\right)=\left\{v_{2 t+1}, v_{1}\right\}, N\left(u_{2}\right)=\left\{v_{2}, v_{3}, u_{4}\right\}$, $N\left(u_{3}\right)=\left\{v_{2 t+1}, v_{1}, v_{2}, u_{4}\right\}$, and $N\left(u_{4}\right)=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{p}, u_{2}, u_{3}\right\}$.

Figure 3.5: Families of minimally not balanced Helly circular-arc graphs: (a) Family $\mathrm{V}_{\mathrm{p}}^{2 \mathrm{t}+1}$: The dotted paths joining v_{3} and v_{p+1} resp. v_{p+2} and v_{1} represent chordless even paths, not simultaneously empty. All vertices of the dotted path joining v_{3} to v_{p+1} are adjacent to u_{2}. (b) Family $\mathrm{D}^{2 t+1}$: The dotted path joining v_{3} and $v_{2 t+1}$ represents a nonempty even path of length $2 t-2$. (c) Family $X_{p}^{2 t+1}$: The dotted paths joining v_{4} and v_{p} resp. v_{p+1} and $v_{2 t+1}$ represent any chordless even paths, both of them possibly empty, even simultaneously. The vertices of the dotted path joining v_{4} to v_{p} are all adjacent to u_{4}.

In the three families of graphs above, $\mathrm{C}=v_{1} v_{2} \ldots v_{2 t+1} v_{1}$ is an unbalanced cycle and consequently all their members are not balanced. In fact, we will see later that all these graphs are minimally not balanced (see Corollary 3.45).

Our first result below is a minimal forbidden induced subgraph characterization of balanced graphs restricted to Helly circular-arc graphs.

Theorem 3.44. Let G be a Helly circular-arc graph. Then, G is balanced if and only if G has no odd holes and contains no induced 3-sun, 1-pyramid, 2-pyramid, $\overline{\mathrm{C}_{7}}, \mathrm{~V}_{\mathrm{p}}^{2 \mathrm{t}+1}, \mathrm{D}^{2 \mathrm{t}+1}$, or $\mathrm{X}_{\mathrm{p}}^{2 \mathrm{t}+1}$ for any $\mathrm{t} \geqslant 2$ and any valid p .

Proof. The 'only if' part is clear because the class of balanced graphs is hereditary. Conversely, suppose that G is not balanced. Then, G contains some induced subgraph H that is minimally not balanced. Since G is a Helly circular-arc graph, H is also so. The proof will be complete as soon as we prove that H is a 3-sun, 1-pyramid, 2-pyramid, $\overline{C_{7}}, V_{p}^{2 t+1}, D^{2 t+1}$, or $X_{p}^{2 t+1}$ for some $t \geqslant 2$ and some valid p.

Since H is not balanced, a clique-matrix of H contains some square submatrix that is an edge-vertex incidence matrix of an odd chordless cycle. Therefore, there are some cliques $\mathrm{Q}_{1}, \mathrm{Q}_{2}, \ldots, \mathrm{Q}_{2 \mathrm{t}+1}$ and some pairwise different vertices $v_{1}, v_{2}, \ldots, v_{2 t+1}$ of H such that $\left\{v_{1}, v_{2}, \ldots, v_{2 t+1}\right\} \cap Q_{i}=\left\{v_{i}, v_{i+1}\right\}$ for each $i=1,2, \ldots, 2 t+1$ (all along the proof, subindices are to be understood modulo $2 t+1$) for some $t \geqslant 1$. It is easy to verify that $\mathrm{C}=v_{1} v_{2} \ldots v_{2 t+1} v_{1}$ is an unbalanced cycle by setting $W_{e}:=\mathrm{Q}_{i} \backslash\left\{v_{i}, v_{i+1}\right\}$ for each edge $e=v_{i} v_{i+1}$ of C.

If $\mathrm{t}=1$, Theorem 2.5 implies that H contains an induced pyramid. This implies that H itself is a pyramid because H is minimally not balanced. So, if $t=1$, then H equals
the 3-sun, 1-pyramid or 2-pyramid (because the 3-pyramid is not a Helly circular-arc graph). So, from now on, we assume, without loss of generality, that $t \geqslant 2$.

Let \mathcal{A} be a Helly circular-arc model of H on a circle \mathcal{C}. Denote by A_{i} the arc of \mathcal{A} corresponding to the vertex v_{i} for each $i=1,2, \ldots, 2 t+1$. Fix an anchor p_{j} of the clique Q_{j} for each $j=1, \ldots, 2 t+1$. By construction, $p_{j} \in A_{i}$ if and only if $v_{i} \in Q_{j}$. Therefore, by hypothesis, $\left\{p_{1}, p_{2} \ldots, p_{2 t+1}\right\} \cap A_{i}=\left\{p_{i-1}, p_{i}\right\}$ for each $i=1, \ldots, 2 t+1$. Since $A_{1}, A_{2}, \ldots, A_{2 t+1}$ are arcs of \mathcal{C}, there are only two possible orders for the anchors when traversing \mathcal{C} in clockwise direction, either $p_{1}, p_{2}, \ldots, p_{2 t+1}$ or $p_{2 t+1}, \ldots, p_{2}, p_{1}$. So, we can assume, without loss of generality, that the anchors $p_{1}, p_{2}, \ldots, p_{2 t+1}$ appear exactly in that order when traversing \mathcal{C} in clockwise direction. Hence, $A_{i} \cap\left\{p_{1}, p_{2}, \ldots, p_{2 t+1}\right\}=\left\{p_{i-1}, p_{i}\right\}$ implies that A_{i} is contained in the clockwise open arc of \mathcal{C} that starts in p_{i-2} and ends in p_{i+1} for each $i=1, \ldots, 2 t+1$. We now prove the following three claims about C.

Claim 1. All chords of C are short.
Proof of the claim. If $t=2$, all possible chords of C are short. So, suppose that $t \geqslant 3$. Since A_{i} is contained in the clockwise open arc of \mathcal{C} that starts in p_{i-2} and ends in p_{i+1} for each $i \in\{1, \ldots, 2 t+1\}$, it follows that if the arc A_{i} intersects A_{j} for some $\mathfrak{j} \in\{1, \ldots, 2 t+1\}$ then $\mathfrak{i}=\mathfrak{j}-2, \mathfrak{j}-1, \mathfrak{j}, \mathfrak{j}+1$, or $\mathfrak{j}+2$ (modulo $2 t+1$). We conclude that each chord of C is short, as claimed.

Claim 2. Any set of three vertices of C that induces a triangle in H consists of three consecutive vertices of C .

Proof of the claim. Suppose, by the way of contradiction, that there is some set S of three vertices of C that induces a triangle T in H but, nevertheless, S does not consist of three consecutive vertices of C. Notice that if each vertex of S were consecutive in C to some other vertex of S, then S would consist of three consecutive vertices of C. So, necessarily, there must be some vertex s_{1} of S such that s_{1} is not consecutive in C to any vertex of $S \backslash\left\{s_{1}\right\}$. By symmetry, we can assume that $s_{1}=v_{1}$ and, since all chords of C are short, $S=\left\{v_{1}, v_{3}, v_{2 t}\right\}$. Being C odd and each of its chords short, necessarily $t=2$. Consequently, $S=\left\{v_{1}, v_{3}, v_{4}\right\}$ is contained in some clique of H, that should have some anchor q. Nevertheless, since A_{1} is contained in the clockwise open arc of \mathcal{C} that starts in p_{4} and ends in p_{2}, A_{3} is contained in the clockwise open arc of \mathcal{C} that starts in p_{1} and ends in p_{4}, and \mathcal{A}_{4} is contained in the clockwise open arc of \mathcal{C} that starts in p_{3} and ends in p_{1}, there is no suitable position in \mathcal{C} for q. This contradiction proves that indeed any set of three vertices of C that induces a triangle in H consists of three consecutive vertices of C, as claimed.

Claim 3. Every two chords of C are crossing.

Proof of the claim. Suppose, by the way of contradiction, that C has two different chords $e_{i}=v_{i-1} v_{i+1}$ and $e_{j}=v_{j-1} v_{j+1}$ that are not crossing. Notice that it is possible that e_{i} and e_{j} share one endpoint. We will show that $\mathrm{H}-\left\{v_{i}, v_{j}\right\}$ is not balanced. Indeed, consider the cycle $C^{\prime}=v_{1} v_{2} \ldots v_{i-1} v_{i+1} \ldots v_{j-1} v_{j+1} \ldots v_{2 t+1} v_{1}$. For each edge e of C^{\prime}, define $W_{e}^{\prime}=\varnothing$, if $e=e_{i}$ or e_{j}; and $W_{e}^{\prime}=W_{e}$, otherwise. Since all the triangles of C are induced by three consecutive vertices of C, by Claim $2, \mathrm{C}^{\prime}$ and the $W_{e}^{\prime \prime}$ s satisfy the definition of unbalanced cycle. Indeed, for each edge e of C, either $W_{e}^{\prime}=W_{e}$ and $W_{e}^{\prime} \cap N(e) \cap V\left(C^{\prime}\right) \subseteq W_{e} \cap N(e) \cap V(C)=\varnothing$, or $e=e_{k}$ for $k \in\{i, j\}$ and $N\left(W_{e}^{\prime}\right) \cap$ $\mathrm{N}(e) \cap \mathrm{V}\left(\mathrm{C}^{\prime}\right) \subseteq \mathrm{N}(e) \cap\left(\mathrm{V}(\mathrm{C}) \backslash\left\{v_{k}\right\}\right)=\varnothing$ because, by Claim 2, the only vertex of C with which vertices $v_{\mathrm{k}-1}$ and $v_{\mathrm{k}+1}$ can form a triangle in H is v_{k}. Therefore, $\mathrm{H}-\left\{v_{\mathrm{i}}, v_{j}\right\}$ is not balanced, a contradiction with the minimality of H . This contradiction shows that indeed every two chords of C are crossing, as claimed.

With the help of the three previous claims, we complete the proof of Theorem 3.44. Notice that if C has no chords, then, by the minimality of $\mathrm{H}, \mathrm{H}=\mathrm{C}_{2 \mathrm{t}+1}$, as required. Therefore, we will assume that C contains at least one chord. Since all chords of C are short and crossing by Claims 1 and 3 , either C has exactly one chord that is short or C has two chords that are short and are crossing. We divide the remaining proof into two parts corresponding to the former and the latter case.

Case 1. C has exactly one chord that is short.
Without loss of generality, let $v_{1} v_{3}$ be the only chord of C. Since C is an unbalanced cycle, there exists $\mathfrak{u}_{1} \in N_{H}\left(v_{1} v_{2}\right) \backslash V(C)$ such that \mathfrak{u}_{1} is not adjacent to v_{3}. Analogously, there exists $u_{2} \in N_{H}\left(v_{2} v_{3}\right) \backslash V(C)$ such that u_{2} is not adjacent to v_{1}. By minimality, $\mathrm{V}(\mathrm{H})=\mathrm{V}(\mathrm{C}) \cup\left\{\mathrm{u}_{1}, \mathrm{u}_{2}\right\}$. Let $\mathrm{p}=\left|\mathrm{N}_{\mathrm{H}}\left(\mathrm{u}_{2}\right) \cap \mathrm{V}(\mathrm{C})\right|$ and $\mathrm{q}=\mid \mathrm{N}_{\mathrm{H}}\left(\mathrm{u}_{1}\right) \cap$ $\mathrm{V}(\mathrm{C}) \mid$. By construction, $2 \leqslant \mathrm{p}, \mathrm{q} \leqslant 2 \mathrm{t}$. By Lemma 2.8 applied to the hole induced by $\mathrm{V}(\mathrm{C}) \backslash\left\{v_{2}\right\}, \mathrm{N}_{\mathrm{H}}\left(\mathrm{u}_{2}\right) \cap \mathrm{V}(\mathrm{C})=\left\{v_{2}, v_{3}, v_{4}, \ldots, v_{\mathrm{p}+1}\right\}$ and, by symmetry, $\mathrm{N}_{\mathrm{H}}\left(\mathrm{u}_{1}\right) \cap \mathrm{V}(\mathrm{C})=$ $\left\{v_{2}, v_{1}, v_{2 t+1}, v_{2 t}, \ldots, v_{2 t-q+4}\right\}$ (where for $\mathrm{q}=2$, we mean that $\mathrm{N}_{\mathrm{H}}\left(\mathfrak{u}_{1}\right) \cap \mathrm{V}(\mathrm{C})=$ $\left\{v_{2}, v_{1}\right\}$).

Suppose, by the way of contradiction, that \mathfrak{u}_{1} is adjacent to \mathfrak{u}_{2}. If \mathfrak{u}_{2} were adjacent to $v_{2 t+1}$, then either $\left\{v_{2 t+1}, v_{1}, v_{2}, v_{3}, u_{1}, u_{2}\right\}$ would induce a proper 2-pyramid in H or $\left\{v_{2 t+1}, v_{1}, v_{3}, u_{1}, u_{2}\right\}$ would induce a $K_{2,3}$ in H, depending on whether u_{1} is adjacent $v_{2 t+1}$ or not, respectively. Since H is a minimally not balanced circular-arc graph and $\kappa_{2,3}$ is not a circular-arc graph, we conclude that \mathfrak{u}_{2} is not adjacent to $v_{2 t+1}$. If \mathfrak{u}_{1} were adjacent to $v_{2 t+1}$, then $\left\{v_{2 t+1}, v_{1}, v_{2}, v_{3}, u_{1}, u_{2}\right\}$ would induce a proper 1-pyramid in H . This contradiction shows that \mathfrak{u}_{1} is not adjacent to $v_{2 \mathrm{t}+1}$, and this means that $\mathrm{q}=2$. Symmetrically, $p=2$. But then, $\left\{v_{1}, v_{3}, u_{2}, u_{1}, v_{5}\right\}$ induces a $C_{4} \cup K_{1}$ in H, which is not a circular-arc graph, a contradiction. This contradiction arose from assuming that \mathfrak{u}_{1} and u_{2} were adjacent, so we conclude that u_{1} is not adjacent to u_{2}.

If p were odd, then $u_{2} v_{\mathfrak{p}+1} v_{p+2} \ldots v_{2 t+1} v_{1} v_{2} u_{2}$ would be an odd hole in H, con-
tradicting the minimality of H . Thus, p is even and, by symmetry, q is also even. If $t=2$, then, up to symmetry, either $p=q=4$ and $H=\overline{C_{7}}$, or $q=2$ and $H=V_{p}^{5}$ for some $p \in\{2,4\}$, as desired. So, without loss of generality, assume that $t \geqslant 3$. If $N_{H}\left(u_{1}\right) \cap N_{H}\left(u_{2}\right) \neq\left\{v_{2}\right\}$, then, since p and q are even, there would exist some k such that $5 \leqslant k \leqslant 2 t$ and $v_{\mathrm{k}} \in \mathrm{N}_{\mathrm{H}}\left(\mathfrak{u}_{1}\right) \cap N_{\mathrm{H}}\left(\mathfrak{u}_{2}\right)$; but then, $\left\{v_{1}, \mathfrak{u}_{1}, v_{\mathrm{k}}, \mathfrak{u}_{2}, v_{3}\right\}$ would induce a C_{5} in H , in contradiction with the minimality of H . This contradiction shows that $\mathrm{N}_{\mathrm{H}}\left(\mathfrak{u}_{1}\right) \cap \mathrm{N}_{\mathrm{H}}\left(\mathfrak{u}_{2}\right)=\left\{v_{2}\right\}$. If $\mathfrak{p} \neq 2$ and $\mathrm{q} \neq 2$, then $\mathfrak{u}_{2} v_{\mathfrak{p}+1} v_{\mathfrak{p}+2} \ldots v_{2 \mathrm{t}-\mathrm{q}+4} \mathfrak{u}_{1} v_{2} u_{2}$ would be an odd hole in H, contradicting the minimality of H. Therefore, we can assume that $q=2$, and finally $H=V_{p}^{2 t+1}$ for some p even such that $2 \leqslant p \leqslant 2 t$.

Case 2. C has exactly two chords that are short and are crossing.
Since the two chords are crossing, we assume, without loss of generality, that the chords of C are $v_{1} v_{3}$ and $v_{2 t+1} v_{2}$. Since C is an unbalanced cycle, there is some $u_{1} \in N_{H}\left(v_{2 t+1} v_{1}\right) \backslash V(C)$ such that u_{1} is not adjacent to v_{2} and there is some $u_{2} \in$ $\mathrm{N}_{\mathrm{H}}\left(v_{2} v_{3}\right) \backslash V(\mathrm{C})$ such that u_{2} is not adjacent to v_{1}.

Let $\mathrm{r}=\left|\mathrm{N}_{\mathrm{H}}\left(\mathrm{u}_{2}\right) \cap \mathrm{V}(\mathrm{C})\right|$. By construction, $2 \leqslant \mathrm{r} \leqslant 2 \mathrm{t}$ and, by Lemma 2.8 applied to the hole induced by $\mathrm{V}(\mathrm{C}) \backslash\left\{v_{1}\right\}, \mathrm{N}_{\mathrm{H}}\left(\mathrm{u}_{2}\right) \cap \mathrm{V}(\mathrm{C})=\left\{v_{2}, v_{3}, v_{4}, \ldots, v_{r+1}\right\}$. If $r=2 t$, then $\left\{v_{2 t+1}, v_{1}, v_{2}, v_{3}, u_{1}, u_{2}\right\}$ would induce a proper 1-, 2- or 3-pyramid in H (depending on the existence or not of the edges $\mathfrak{u}_{1} u_{2}$ and $u_{1} v_{3}$), a contradiction with the minimality of H. If r is even and $2<r<2 t$, then $u_{2} v_{r+1} v_{r+2} \ldots v_{2 t} v_{2 t+1} v_{2} u_{2}$ would be a proper odd hole in H, a contradiction. If r were odd and $r \neq 3$, then the cycle $u_{2} v_{r+1} v_{r+2} \ldots v_{2 t} v_{2 t+1} v_{1} v_{3} u_{2}$ would be a proper odd hole in H , a contradiction. So, $r=2$ or 3 . Symmetrically, if $s=\left|N_{H}\left(u_{1}\right) \cap V(C)\right|$, then $s=2$ or 3 and, by Lemma 2.8 applied to the hole induced by $\mathrm{V}(\mathrm{C}) \backslash\left\{v_{2}\right\}, \mathrm{N}_{\mathrm{H}}\left(\mathfrak{u}_{1}\right) \cap \mathrm{V}(\mathrm{C})=\left\{v_{2 t+1}, v_{1}\right\}$ or $\left\{v_{2 \mathrm{t}}, v_{2 \mathrm{t}+1}, \nu_{1}\right\}$, respectively.

Suppose, by the way of contradiction, that \mathfrak{u}_{1} and \mathfrak{u}_{2} are adjacent. Then, the set $\left\{u_{1}, v_{1}, v_{2}, u_{2}\right\}$ induces a C_{4} in H, which must be dominating because H is a circulararc graph. If $t=2$, then at least one of u_{1} and u_{2} should be adjacent to v_{4} and $V(C) \cup\left\{u_{1}, u_{2}\right\}$ would induce a proper V_{4}^{5} or $\overline{C_{7}}$ in H. (Notice that indeed $V(C) \cup$ $\left\{u_{1}, u_{2}\right\} \neq \mathrm{V}(\mathrm{H})$ because, by definition of unbalanced cycle, $W_{v_{1} v_{2}} \subseteq \mathrm{~V}(\mathrm{H}) \backslash \mathrm{V}(\mathrm{C})$ and $N_{H}\left(W_{v_{1} v_{2}}\right) \cap\left\{v_{3}, v_{4}\right\}=\varnothing$, which implies $W_{v_{1} v_{2}} \neq \varnothing$ and, by construction, $W_{v_{1} v_{2}} \cap\left(\mathrm{~V}(\mathrm{C}) \cup\left\{u_{1}, \mathfrak{u}_{2}\right\}\right)=\varnothing$.) If $\mathrm{t} \geqslant 3$, then \mathfrak{u}_{1} must be adjacent to $v_{2 \mathrm{t}}$ and $\left\{v_{2 t}, v_{2 t+1}, v_{1}, v_{2}, v_{3}, u_{1}, u_{2}\right\}$ would induce a proper $V_{4}^{5} \mathrm{in} \mathrm{H}$. So, in all cases we reach a contradiction with the minimality of H . These contradictions prove that u_{1} and \mathfrak{u}_{2} are nonadjacent.

We claim that $\mathrm{r}=s=2$. Indeed, if $\mathrm{r}=s=3$, then $v_{1} v_{2} u_{2} v_{4} v_{5} \ldots v_{2 \mathrm{t}} u_{1} v_{1}$ would be an odd hole in H , a contradiction. Alternatively, if $\mathrm{r}=3$ and $s=2$, then $\mathrm{C}^{\prime}=$ $v_{1} v_{2} u_{2} v_{4} v_{5} \ldots v_{2 t+1} v_{1}$ would be a cycle whose only chord is $v_{2 t+1} v_{2}, \mathrm{~N}_{\mathrm{H}}\left(\mathrm{u}_{1}\right) \cap \mathrm{V}\left(\mathrm{C}^{\prime}\right)=$ $\left\{v_{2 t+1}, v_{1}\right\}, N_{H}\left(v_{3}\right) \cap \mathrm{V}\left(\mathrm{C}^{\prime}\right)=\left\{v_{1}, v_{2}, u_{2}, v_{4}\right\}$ and, therefore, $\mathrm{V}(\mathrm{C}) \cup\left\{u_{1}, u_{2}\right\}$ would
induce a proper $V_{4}^{2 t+1}$ in H, a contradiction. (Recall that $V(C) \cup\left\{u_{1}, u_{2}\right\} \neq V(H)$ from the discussion in the paragraph above.) The case $r=2$ and $s=3$ is symmetric. We conclude that our claim, $r=s=2$, is true; in other words, $N_{H}\left(u_{1}\right) \cap \mathrm{V}(\mathrm{C})=\left\{v_{2 t+1}, v_{1}\right\}$ and $\mathrm{N}_{\mathrm{H}}\left(\mathrm{u}_{2}\right) \cap \mathrm{V}(\mathrm{C})=\left\{\nu_{2}, v_{3}\right\}$.

Suppose that

$$
\begin{equation*}
\text { there is some } u_{3} \in N_{H}\left(v_{1} v_{2}\right) \backslash V(C) \text { such that } u_{3} v_{2 t+1}, u_{3} v_{3} \notin E(H) \tag{3.2}
\end{equation*}
$$

Then, by minimality, $\mathrm{V}(\mathrm{H})=\mathrm{V}(\mathrm{C}) \cup\left\{\mathfrak{u}_{1}, u_{2}, u_{3}\right\}$. By Lemma 2.8 applied to the holes induced by $\mathrm{V}(\mathrm{C}) \backslash\left\{v_{1}\right\}$ and $\mathrm{V}(\mathrm{C}) \backslash\left\{v_{2}\right\}, \mathrm{N}_{\mathrm{H}}\left(u_{3}\right) \cap \mathrm{V}(\mathrm{C})=\left\{v_{1}, v_{2}\right\}$. If u_{1} were adjacent to u_{3}, then either $t=2$ and $\left\{v_{2}, v_{3}, v_{4}, v_{5}, u_{1}, u_{3}\right\}$ would induce a domino, or $t \geqslant 3$ and $\left\{u_{1}, v_{2 t+1}, v_{1}, u_{3}, v_{5}\right\}$ would induce $C_{4} \cup K_{1}$ in H, which are not circular-arcgraphs, a contradiction. So, u_{1} is nonadjacent to u_{3} and, symmetrically, u_{2} is nonadjacent to u_{3}. We conclude that, if (3.2) holds, $\mathrm{H}=\mathrm{D}^{2 \mathrm{t}+1}$, as desired.

It only remains to consider the case when (3.2) does not hold. Since C is an unbalanced cycle, this means that there are two adjacent vertices u_{3} and u_{4} such that $u_{3}, u_{4} \in N_{H}\left(v_{1} v_{2}\right) \backslash V(C), u_{3}$ is adjacent to $v_{2 t+1}$ but not to v_{3}, and u_{4} is adjacent to v_{3} but not to $v_{2 t+1}$.

Suppose, by the way of contradiction, that $N_{H}\left(u_{3}\right) \cap N_{H}\left(u_{4}\right) \cap \mathrm{V}(\mathrm{C}) \neq\left\{v_{1}, v_{2}\right\}$. Then, there exists some k such that $4 \leqslant k \leqslant 2 t$ and $v_{k} \in N_{H}\left(u_{3}\right) \cap N_{H}\left(u_{4}\right)$. If $k=4$, then $\left\{v_{2 t+1}, v_{1}, v_{3}, v_{4}, u_{3}, u_{4}\right\}$ would induce a proper 1- or 2-pyramid in H depending on whether $t \geqslant 3$ or $t=2$, respectively, contradicting the minimality of H . So, $k \neq 4$ and, symmetrically, $k \neq 2 t$. But then, $\left\{v_{2 t+1}, v_{1}, v_{3}, u_{3}, u_{4}, v_{k}\right\}$ induces a proper 3 -sun in H, a contradiction. We conclude that $N_{H}\left(u_{3}\right) \cap N_{H}\left(u_{4}\right) \cap \mathrm{V}(\mathrm{C})=\left\{v_{1}, v_{2}\right\}$.

Let $\mathrm{p}=\left|\mathrm{N}_{\mathrm{H}}\left(u_{4}\right) \cap \mathrm{V}(\mathrm{C})\right|$ and $\mathrm{q}=\left|\mathrm{N}_{\mathrm{H}}\left(\mathrm{u}_{3}\right) \cap \mathrm{V}(\mathrm{C})\right|$. By construction, $3 \leqslant \mathrm{p}, \mathrm{q} \leqslant 2 \mathrm{t}$. By Lemma 2.8 applied to the hole induced by $\mathrm{V}(\mathrm{C}) \backslash\left\{v_{2}\right\}$, it follows that $\mathrm{N}_{\mathrm{H}}\left(u_{4}\right) \cap$ $V(C)=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{p}\right\}$ and $N_{H}\left(u_{3}\right) \cap V(C)=\left\{v_{2}, v_{1}, v_{2 t+1}, \ldots, v_{2 t-q+4}\right\}$. If p were odd and $p \neq 3$, then $v_{1} u_{4} v_{p} v_{p+1} \ldots v_{2 t+1} v_{1}$ would be a proper odd hole in H, a contradiction. So, $p=3$ or p is even. Symmetrically, $q=3$ or q is even. If p and q had the same parity, then $u_{3} u_{4} v_{p} v_{p+1} \ldots v_{2 t-q+4} u_{3}$ would be a proper odd hole of H (recall that $N_{H}\left(u_{3}\right) \cap N_{H}\left(u_{4}\right) \cap \mathrm{V}(\mathrm{C})=\left\{v_{1}, v_{2}\right\}$), a contradiction. By symmetry, we will assume, without loss of generality, that p is even, $p \geqslant 4$, and $q=3$. In particular, u_{4} is adjacent to ν_{4}.

Notice that u_{2} is not adjacent to u_{3}, since otherwise $u_{2} v_{3} v_{4} \ldots v_{2 t+1} u_{3} u_{2}$ would be a proper odd hole of H. This, in its turn, implies that u_{2} is adjacent to u_{4}, since otherwise $\left\{v_{2}, v_{3}, v_{4}, u_{3}, u_{4}, u_{2}\right\}$ would induce a proper 3-sun in H. So, $N_{H}\left(u_{2}\right)=\left\{v_{2}, v_{3}, u_{4}\right\}$. (Recall that we already proved that u_{1} and u_{2} are nonadjacent.)

If u_{1} were adjacent to u_{4}, then $\left\{v_{2 t+1}, v_{1}, v_{2}, u_{1}, u_{2}, u_{4}\right\}$ would induce a proper 1pyramid in H, contradicting the minimality of H. So, u_{1} is nonadjacent to u_{4}. Finally, if
\mathfrak{u}_{1} were adjacent to u_{3}, then $C^{\prime}=u_{3} v_{2} v_{3} \ldots v_{2 t+1} u_{3}$ would be a cycle whose only chord is $v_{2 t+1} v_{2}, N_{H}\left(u_{1}\right) \cap V\left(C^{\prime}\right)=\left\{v_{2 t+1}, u_{3}\right\}, N_{H}\left(u_{4}\right) \cap V\left(C^{\prime}\right)=\left\{u_{3}, v_{2}, v_{3}, \ldots, v_{p}\right\}$ and, therefore, since \mathfrak{u}_{1} and \mathfrak{u}_{4} are nonadjacent, $V\left(C^{\prime}\right) \cup\left\{u_{1}, \mathfrak{u}_{4}\right\}$ would induce a proper $V_{p}^{2 t+1}$ in H, a contradiction. This contradiction shows that u_{1} is nonadjacent to u_{3} and we conclude that $\mathrm{N}_{\mathrm{H}}\left(\mathfrak{u}_{1}\right)=\left\{v_{2 t+1}, v_{1}\right\}$. We proved that $\mathrm{H}=\mathrm{X}_{\mathrm{p}}^{2 \mathrm{t}+1}$ where p is even and $4 \leqslant p \leqslant 2 t$, as required.

It is easy to see that among the forbidden induced subgraphs that characterize balancedness in Theorem 3.44 there are no two of them such that one is a proper induced subgraph of the other. Therefore, Theorem 3.44 is indeed a characterization by minimal forbidden induced subgraphs. In particular, we obtain the following result.

Corollary 3.45. The graphs $\mathrm{V}_{\mathrm{p}}^{2 \mathrm{t}+1}, \mathrm{D}^{2 \mathrm{t}+1}$, and $\mathrm{X}_{\mathrm{p}}^{2 \mathrm{t}+1}$ are minimally not balanced for any $\mathrm{t} \geqslant 2$ and any valid p .

We will extend Theorem 3.44 to a superclass of Helly circular-arc graphs; namely, the class of $\left\{\right.$ net, $\left.\mathrm{U}_{4}, \mathrm{~S}_{4}\right\}$-free circular-arc graphs (see Figure 2.1). This extension will also serve as a basis for the characterizations in the following two sections.

For that, let us firstly present the forbidden induced subgraph characterization of those circular-arc graphs that are Helly circular-arc graphs given in [75]. Let an obstacle be a graph H containing a clique $\mathrm{Q}=\left\{v_{1}, v_{2}, \ldots, v_{t}\right\}$ where $\mathrm{t} \geqslant 3$ and such that for each $\mathfrak{i}=1, \ldots, \mathrm{t}$, at least one of the following assertions holds (where in both assertions, w_{t+1} means w_{1}):
$\left(O_{1}\right) N\left(w_{i}\right) \cap Q=Q \backslash\left\{v_{i}, v_{i+1}\right\}$, for some $w_{i} \in V(H) \backslash Q$.
$\left(\mathcal{O}_{2}\right) \mathrm{N}\left(\mathrm{u}_{\mathfrak{i}}\right) \cap \mathrm{Q}=\mathrm{Q} \backslash\left\{v_{i}\right\}$ and $\mathrm{N}\left(z_{\mathfrak{i}}\right) \cap \mathrm{Q}=\mathrm{Q} \backslash\left\{v_{i+1}\right\}$, for some adjacent vertices $u_{i}, z_{i} \in V(H) \backslash Q$.

With this definition, the characterization of those circular-arc graphs that are Helly circular-arc graphs runs as follows.

Theorem 3.46 ([75]). Let G be a circular-arc graph. Then, G is a Helly circular-arc graph if and only if G contains no induced obstacle.

Notice that obstacles are not necessarily minimal; i.e., there are obstacles that contain proper induced obstacles. For instance, $\overline{2 \mathrm{C}_{5}}$ is an obstacle and contains a proper induced $\overline{2 P_{4}}$, which is also an obstacle. In addition, there are minimal obstacles that are not circular-arc graphs; e.g., antenna and $\overline{\mathrm{C}_{6}}$ are minimal obstacles that are not circular-arc graphs. Our next result determines all the \{1-pyramid,2-pyramid\}-free minimal obstacles that are circular-arc graphs. Recall that for each $t \geqslant 3, S_{t}$ denotes the complete t-sun.

Theorem 3.47. Let H be a \{1-pyramid,2-pyramid\}-free minimal obstacle which is a circulararc graph. Then, H is 3 -pyramid, U_{4}, or $\overline{\mathrm{S}_{\mathrm{t}}}$ for some $\mathrm{t} \geqslant 3$.

Proof. Let $\mathrm{Q}=\left\{v_{1}, \ldots, v_{t}\right\}$, the $w_{i}{ }^{\prime}$ s, the u_{i} 's, and the z_{i} 's as in the definition of an obstacle. All along the proof, subindices should be understood modulo t.

Let us consider first the case where $t=3$. Suppose that $\left(\mathcal{O}_{2}\right)$ holds for at least two values of \mathfrak{i}, say $\mathfrak{i}=1$ and $\mathfrak{i}=2$. Then, $\left\{\mathfrak{u}_{1}, z_{1}, z_{2}\right\}$ is a complete and $\left\{v_{1}, v_{2}, v_{3}, u_{1}, z_{1}, z_{2}\right\}$ induces a 3-pyramid, since otherwise $\left\{v_{1}, v_{2}, v_{3}, u_{1}, z_{1}, z_{2}\right\}$ would induce a 1-pyramid or a 2 -pyramid. Hence, by minimality, $\mathrm{H}=3$-pyramid. Consider now the case where $\left(\mathcal{O}_{2}\right)$ holds for exactly one value of i, say $i=1$, and, consequently, $\left(\mathcal{O}_{1}\right)$ holds for $i=2$ and $\mathfrak{i}=3$. We claim that $\left\{u_{1}, z_{1}\right\}$ is anticomplete to w_{2}. Indeed, if w_{2} were adjacent to z_{1}, then $\left\{v_{1}, v_{2}, v_{3}, w_{2}, z_{1}, u_{1}\right\}$ would induce a 1-pyramid or a 2-pyramid in H, a contradiction. In addition, if w_{2} were adjacent to \mathfrak{u}_{1}, then $\left\{v_{1}, v_{2}, \mathfrak{u}_{1}, z_{1}, w_{2}\right\}$ would induce a $K_{2,3}$ in G, which is not a circular-arc graph. We proved that $\left\{u_{1}, z_{1}\right\}$ is anticomplete to w_{2} and, symmetrically, to w_{3}. Also notice that w_{2} and w_{3} are nonadjacent, since otherwise $\left\{v_{1}, v_{2}, w_{2}, w_{3}, u_{1}, z_{1}\right\}$ would induce a domino, which is not a circular-arc graph. Then, by minimality, $\mathrm{H}=\mathrm{U}_{4}$, as desired. Finally, assume that $\left(\mathcal{O}_{1}\right)$ holds for each $\mathfrak{i}=1,2,3$. Necessarily $\left\{w_{1}, w_{2}, w_{3}\right\}$ is a stable set, since otherwise G would contain an induced $C_{4} \cup K_{1}, G_{3}$ (see Figure 2.3), or $\overline{C_{6}}$ which are not circular-arc graphs. By minimality, $\mathrm{H}=$ net $=\overline{\mathrm{S}_{3}}$, as desired.

From now on, we assume that $t \geqslant 4$. Suppose, by the way of contradiction, that $\left(\mathcal{O}_{2}\right)$ holds for some i, say $i=1$. On the one hand, if $\left(\mathcal{O}_{1}\right)$ held for $i=3$, then $\left\{v_{1}, v_{2}, v_{3}, u_{1}, z_{1}, w_{3}\right\}$ would induce a 1-pyramid, 2-pyramid, or a proper 3-pyramid in H, a contradiction. On the other hand, if $\left(\mathcal{O}_{2}\right)$ held for $i=3$, then $\left\{v_{1}, v_{2}, v_{3}, u_{1}, z_{1}, u_{3}\right\}$ would induce a 1-pyramid, 2-pyramid or a proper 3-pyramid in H , a contradiction. These contradictions arose from assuming that $\left(\mathcal{O}_{2}\right)$ held for some i. We conclude that, if $t \geqslant 4$, then $\left(\mathcal{O}_{2}\right)$ does not hold for any $\mathfrak{i}=1, \ldots, t$ and, by definition of an obstacle, $\left(\mathcal{O}_{1}\right)$ holds for each $\mathfrak{i}=1, \ldots, \mathrm{t}$. By minimality, the vertices of H are $\mathrm{Q} \cup W$ where $W=\left\{w_{1}, w_{2}, \ldots, w_{t}\right\}$. We claim that W is a stable set and, consequently, $\mathrm{H}=\overline{S_{\mathrm{t}}}$. We divide the proof of the claim into two cases: $t=4$ and $t \geqslant 5$.

Assume that $\mathrm{t}=4$. Suppose, by the way of contradiction, that W is not a stable set. Suppose first that w_{i} is adjacent to w_{i+1} for some i, say w_{3} is adjacent to w_{4}. Necessarily w_{1} is nonadjacent to w_{4}, since otherwise $\left\{v_{1}, v_{2}, v_{3}, w_{1}, w_{3}, w_{4}\right\}$ would induce a 1-pyramid or a 2 -pyramid in H (depending on the adjacency between w_{1} and w_{3}), a contradiction. In addition, w_{1} is nonadjacent to w_{3}, since otherwise $\left\{w_{1}, v_{1}, w_{4}, v_{3}, w_{3}\right\}$ would induce a $K_{2,3}$, which is not a circular-arc graph. Symmetrically, w_{2} is nonadjacent to w_{3} and w_{4}. On the one hand, if w_{1} and w_{2} are adjacent, $\left\{w_{2}, v_{1}, w_{3}, w_{4}, v_{3}, w_{1}\right\}$ induces a domino in G , which is not a circular-arc graph. On the other hand, if w_{1} and w_{2} are nonadjacent, then $\left\{v_{1}, v_{2}, v_{3}, w_{1}, w_{2}, w_{3}, w_{4}\right\}$ induces a proper U_{4} in H, a
contradiction with the minimality of H . These contradictions prove that w_{i} is not adjacent to w_{i+1} for any i. Notice that also w_{i} and w_{i+2} are nonadjacent, since otherwise $\left\{v_{i}, w_{i}, w_{i+2}, v_{i+3}, w_{i+3}\right\}$ would induce $K_{4} \cup K_{1}$ in G, which is not a circular-arc graph. We conclude that W is a stable set and $\mathrm{H}=\overline{\mathrm{S}_{4}}$, as claimed.

It only remains to consider the case where $t \geqslant 5$. Let S be any unordered pair of vertices from W. Since $t \geqslant 5, S$ can be extended to a set $S^{\prime}=\left\{w_{i}, w_{j}, w_{j+1}\right\}$ of three vertices where i and j are not consecutive modulo t and neither are i and $j+1$. Notice that S^{\prime} is a stable set in H, since otherwise $\left\{v_{i}, v_{j}, v_{j+2}, w_{i}, w_{j}, w_{j+1}\right\}$ would induce a 1-pyramid, a 2-pyramid, or a proper 3-pyramid in H, a contradiction. Since S^{\prime} is a stable set, so is S. Since S is any pair of vertices from W, W is a stable set and $H=\overline{S_{t}}$, as claimed.

Finally, notice that 3-pyramid, U_{4} and $\overline{\mathrm{S}_{\mathrm{t}}}$ for $\mathrm{t} \geqslant 3$ are obstacles, are circular-arc graphs, and none of them is a proper induced subgraph of any of the others.

As a corollary of Theorems 3.46 and 3.47, we obtain a minimal forbidden induced subgraph characterization of Helly circular-arc graphs within \{1-pyramid,2-pyramid\}free circular-arc graphs.

Corollary 3.48. Let G be a \{1-pyramid, 2 -pyramid\}-free circular-arc graph. Then, G is a Helly circular-arc graph if and only if it contains no induced 3-pyramid, U_{4}, or $\overline{\mathrm{S}_{\mathrm{t}}}$ for any $\mathrm{t} \geqslant 3$.

Since net, U_{4}, and S_{4} are obstacles, the class of $\left\{\right.$ net, $\left.\mathrm{U}_{4}, \mathrm{~S}_{4}\right\}$-free circular-arc graphs is indeed a superclass of Helly circular-arc graphs. We now prove the main result of this section, which is an extension of the characterization of Theorem 3.44 to the class of $\left\{\right.$ net $\left., \mathrm{U}_{4}, \mathrm{~S}_{4}\right\}$-free circular-arc graphs.

Corollary 3.49. Let G be a $\left\{\right.$ net $\left., \mathrm{U}_{4}, \mathrm{~S}_{4}\right\}$-free circular-arc graph. Then, G is balanced if and only if G has no odd holes and contains no induced pyramid, $\overline{\mathrm{C}_{7}}, \mathrm{~V}_{\mathrm{p}}^{2 t+1}, \mathrm{D}^{2 \mathrm{t}+1}$, or $\mathrm{X}_{\mathrm{p}}^{2 \mathrm{t}+1}$ for any $\mathrm{t} \geqslant 2$ and any valid p .

Proof. If G is a Helly circular-arc graph, the result reduces to Theorem 3.44. So, assume that G is not a Helly circular-arc graph. Then, by Corollary 3.48 and since G is $\left\{\right.$ net, $\left.\mathrm{U}_{4}, \mathrm{~S}_{4}\right\}$-free, G contains an induced 1-pyramid, 2-pyramid, or 3-pyramid or an induced $\overline{S_{t}}$ for some $t \geqslant 5$ (notice that $\overline{S_{3}}=$ net and $\overline{S_{4}}=S_{4}$). Since $\overline{S_{t}}$ contains an induced 3 -sun for every $t \geqslant 5$, we conclude that G is not balanced and contains an induced pyramid.

3.8 Balancedness of claw-free circular-arc graphs

In this section we will characterize, by minimal forbidden induced subgraphs, those claw-free circular-arc graphs that are balanced. A proper circular-arc graph is a circulararc graph admitting a circular-arc model in which no arc properly contains another.

The class of claw-free circular-arc graphs is a superclass of the class of proper circulararc graphs, as follows from the forbidden induced subgraph characterization of proper circular-arc graphs in [118].

By Corollary 3.49, in order to characterize those claw-free circular-arc graphs that are balanced, it will be enough to study the balancedness of those claw-free circular-arc graphs containing an induced net (because claw-free graphs contain neither induced U_{4} 's nor induced S_{4} 's). The following lemma will be of help in analyzing the structure of claw-free circular-arc graphs containing an induced net.

Lemma 3.50 ([18]). Let G be a claw-free circular-arc graph containing a net induced by the set $W=\left\{t_{1}, t_{2}, t_{3}, s_{1}, s_{2}, s_{3}\right\}$, where $\left\{t_{1}, t_{2}, t_{3}\right\}$ induces a triangle and s_{i} is adjacent to t_{i} for $\mathfrak{i}=1,2,3$. If v is a vertex of $G-W$, then $\mathrm{N}_{\mathrm{G}}(v) \cap \mathrm{W}$ is either $\left\{\mathrm{s}_{i}, \mathrm{t}_{i}\right\}$, or $\left\{\mathrm{t}_{1}, \mathrm{t}_{2}, \mathrm{t}_{3}, \mathrm{~s}_{i}\right\}$, or $\left\{s_{i+1}, \mathrm{t}_{\mathfrak{i}+1}, \mathrm{t}_{\mathfrak{i}+2}, s_{i+2}\right\}$, for some $\mathfrak{i} \in\{1,2,3\}$ (subindices should be understood modulo 3).

A graph G is a multiple of another graph H if G arises from H by successively adding true twins to H ; i.e., if G arises from H by replacing each vertex x of H by a nonempty complete graph M_{x} and adding all possible edges between M_{x} and M_{y} if and only if x and y are adjacent in H. In [18], a slightly stronger variant of the above lemma is used to study the structure of chordal claw-free circular-arc graphs containing an induced net. The proof in [18] can be easily adapted to prove the following related result in which chordality is not required. For the sake of completeness, we give the adapted proof.

Theorem 3.51 ([18]). If G is a claw-free circular-arc graph containing an induced net and containing no induced 3 -sun, then G is a multiple of a net.

Proof. The proof will be by induction on the number of vertices of G. If $|\mathrm{V}(\mathrm{G})|=$ 6 , G equals a net, which is a trivial multiple of a net. So, assume that $|V(G)|>6$. Then, there is some vertex v of G such that $G-\{v\}$ contains an induced net. Since $\mathrm{G}-\{v\}$ is also a claw-free graph containing an induced net and containing no induced 3-sun, by induction hypothesis, $\mathrm{G}-\{v\}$ is the multiple of a net; i.e., the vertices of $V(G-\{v\})$ can be partitioned into nonempty completes $S_{1}, S_{2}, S_{3}, T_{1}, T_{2}, T_{3}$ such that T_{1}, T_{2}, T_{3} are mutually complete and T_{i} is complete to S_{i} and anticomplete to S_{i+1} and S_{i+2}, for each $\mathfrak{i}=1,2,3$ (where subindices along the proof should be understood modulo 3). By Lemma 3.50, $\mathrm{N}_{\mathrm{G}}(v) \cap \mathrm{H}=\left\{s_{i}, \mathrm{t}_{\mathrm{i}}\right\}$ or $\mathrm{N}_{\mathrm{G}}(v) \cap \mathrm{H}=\left\{\mathrm{t}_{1}, \mathrm{t}_{2}, \mathrm{t}_{3}, s_{i}\right\}$ for some $i \in\{1,2,3\}$. (Notice that the fact that G contains no induced 3 -sun prevents $N_{G}(v) \cap H=\left\{t_{i+1}, s_{i+1}, t_{i+2}, s_{i+2}\right\}$ from holding.)

Suppose first that $\mathrm{N}_{\mathrm{G}}(v) \cap \mathrm{H}=\left\{\mathrm{t}_{\mathrm{i}}, \mathrm{s}_{i}\right\}$ for some $\mathfrak{i} \in\{1,2,3\}$. Let $j \in\{1,2,3\}$, $s_{j}^{\prime} \in S_{j}$ and H^{\prime} be the net induced by $\left\{\mathrm{t}_{1}, \mathrm{t}_{2}, \mathrm{t}_{3}, \mathrm{~s}_{1}, \mathrm{~s}_{\mathfrak{j}+1}, \mathrm{~s}_{\mathrm{j}+2}\right\}$. Applying Lemma 3.50 to H^{\prime}, it follows that v is adjacent to $s_{\mathfrak{j}}$ if and only if $\mathfrak{i}=\mathfrak{j}$. Thus, v is complete to S_{i}
and anticomplete to S_{i+1} and S_{i+2}. Using the same strategy, we can prove that v is complete to T_{i} and anticomplete to $\mathrm{T}_{\mathrm{i}+1}$ and $\mathrm{T}_{\mathrm{i}+2}$. Thus, we can obtain a partition of the vertices of G showing that G as a multiple of a net by replacing S_{i} by S_{i+1}.

Finally, consider that $\mathrm{N}_{\mathrm{G}}(v) \cap \mathrm{H}=\left\{\mathrm{t}_{1}, \mathrm{t}_{2}, \mathrm{t}_{3}, \mathrm{~s}_{i}\right\}$. Reasoning as in the above paragraph, it follows that v is complete to $\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}$, and S_{i}, and v is anticomplete to $\mathrm{S}_{\mathrm{i}+1}$ and S_{i+2}. Thus, we obtain a partition of the vertices of G showing that G is a multiple of a net by replacing T_{i} by $T_{i} \cup\{v\}$.

Now, we state and prove the main result of this section.
Theorem 3.52. Let G be a claw-free circular-arc graph. Then, G is balanced if and only if G has no odd holes and contains no induced pyramids and no induced $\overline{\mathrm{C}_{7}}$.

Proof. The 'only if' part is clear. In order to prove the 'if' part, suppose that G is not balanced. Then, G contains some induced subgraph H that is minimally not balanced. Since G is a claw-free circular-arc graph, H also is so. The proof will be complete if we prove that H is an odd hole, a pyramid, or $\overline{\mathrm{C}_{7}}$. Suppose, by the way of contradiction, that H is not net-free. By Theorem 3.51, H is a net, has true twins, or contains an induced 3 -sun. Since the net is balanced and since minimally not balanced graphs have no true twins (Lemma 3.7), G contains an induced 3-sun. By minimality, H is a 3sun, a contradiction with the fact that H is not net-free. This contradiction proves that H is net-free. Since U_{4} and S_{4} are not claw-free, H is $\left\{\right.$ net, $\left.\mathrm{U}_{4}, \mathrm{~S}_{4}\right\}$-free and Corollary 3.49 implies that H has an odd hole or contains an induced pyramid or $\overline{\mathrm{C}_{7}}$ (because each of $X_{p}^{2 t+1}, D^{2 t+1}$, and $X_{p}^{2 t+1}$ contains an induced claw for each $t \geqslant 2$ and each valid p). By the minimality of H , we conclude that H is an odd hole, a pyramid, or $\overline{\mathrm{C}_{7}}$, as required.

As proper circular-arc graphs are claw-free, and the odd holes, the pyramids, and $\overline{\mathrm{C}_{7}}$ are all proper circular-arc graphs, the minimal forbidden induced subgraphs for balancedness within proper circular-arc graphs are the same as those within claw-free circular-arc graphs.

3.9 Balancedness of gem-free circular-arc graphs

In this section, we will give a minimal forbidden induced subgraph characterization of those gem-free circular-arc graphs that are balanced.

Lemma 3.53. Let G be a gem-free circular-arc graph that contains an induced net or an induced U_{4}. Then, G either has true twins or has a cutpoint.

Proof. Assume that G has no true twins. We will prove that G has a cutpoint.
Consider first the case where G contains an induced U_{4}. That is, there is some chordless cycle $C=\mathfrak{u}_{1} u_{2} u_{3} u_{4} \mathfrak{u}_{1}$ in G, some vertex z that is complete to $V(C)$, and a pair of nonadjacent vertices p_{1}, p_{2} of G such that $N_{G}\left(p_{i}\right) \cap(V(C) \cup\{z\})=\left\{u_{i}\right\}$ for each $i=1,2$. Since G is a circular-arc graph, $V(C)$ is a dominating set of G. Let v be a vertex of G not in $V(C) \cup\left\{p_{1}, p_{2}\right\}$. We will analyze the possibilities for the nonempty set $\mathrm{N}_{\mathrm{G}}(v) \cap \mathrm{V}(\mathrm{C})$.

Suppose, by the way of contradiction, that the neighbors of v in C are two. Then, they are consecutive vertices of C by Lemma 2.8. So, $N_{G}(v) \cap V(C)=\left\{u_{i}, u_{i+1}\right\}$ for some $i \in\{1,2,3,4\}$ (from now on, subindices should be understood modulo 4). If v were not adjacent to z, then $\left\{v, u_{i}, z, u_{i+2}, u_{i+1}\right\}$ would induce a gem in G. If v were adjacent to z, then $\left\{v, u_{i+1}, u_{i+2}, u_{i+3}, z\right\}$ would induce a gem in G. Since G is gemfree, we conclude that $\left|\mathrm{N}_{\mathrm{G}}(v) \cap \mathrm{V}(\mathrm{C})\right| \neq 2$.

Now, for each $\mathfrak{i}=1, \ldots, 4$, let V_{i} be the set of vertices not in $V(C)$ whose only neighbor in C is \mathfrak{u}_{i}. In particular, $p_{i} \in V_{i}$ for each $i=1$, 2 . Let Z be the set of vertices not in $V(C)$ that are complete to $V(C)$, so $z \in Z$. Finally, for each $i=1, \ldots, 4$, let \bar{V}_{i} be the set of vertices not in $V(C)$ whose only non-neighbor in C is u_{i}.

Claim 1. V_{i} is anticomplete to V_{j} for every $\mathfrak{i} \neq \mathfrak{j}$.
Proof of the claim. Indeed, if $v_{i} \in V_{i}$ and $v_{j} \in V_{j}$ were adjacent, then $V(C) \cup\left\{v_{i}, v_{j}\right\}$ would induce either a domino or the graph G_{2} in Figure 2.3, which are not circulararc graphs, a contradiction.

Claim 2. V_{i} is anticomplete to Z for every $1 \leqslant i \leqslant 4$.
Proof of the claim. Indeed, if $v_{i} \in V_{i}$ were adjacent to $w \in Z$, then $\left\{v_{i}, u_{i}, \mathfrak{u}_{i+1}, \mathfrak{u}_{i+2}, w\right\}$ would induce a gem in G , a contradiction.

Claim 3. Z is a complete.
Proof of the claim. Indeed, if w, w^{\prime} in Z were nonadjacent, then, by the previous claim, both of them would be nonadjacent to p_{2} and $\left\{u_{1}, w, u_{3}, w^{\prime}, p_{2}\right\}$ would induce $C_{4} \cup K_{1}$ in G, which is not a circular-arc graph, a contradiction.

Claim 4. \bar{V}_{i} is a complete and is complete to Z for every $1 \leqslant i \leqslant 4$.
Proof of the claim. Indeed, if $\bar{v}_{i}, \bar{v}_{i}^{\prime}$ in \bar{V}_{i} were nonadjacent, then $\left\{\bar{v}_{i}, \bar{v}_{i}^{\prime}, u_{i}, u_{i-1}, \mathfrak{u}_{i+1}\right\}$ would induce $\mathrm{K}_{2,3}$ in G , which is not a circular-arc graph, a contradiction. And, if $\bar{v}_{i} \in \overline{\mathrm{~V}}_{i}$ and $w \in Z$ were nonadjacent, then $\left\{\bar{v}_{i}, u_{i+2}, w, u_{i}, u_{i+1}\right\}$ would induce a gem in G , also a contradiction.

By the previous claims, all the vertices in Z are true twins. So, since G has no true twins, we conclude that $Z=\{z\}$.

Claim 5. \bar{V}_{i} is complete to \bar{V}_{i+1} and anticomplete to \bar{V}_{i+2} for every $1 \leqslant i \leqslant 4$.
Proof of the claim. Let $\bar{v}_{i} \in \bar{V}_{i}$ and $\bar{v}_{i+1} \in \bar{V}_{i+1}$. By Claim $4, z$ is adjacent to both of them. So, if \bar{v}_{i} and \bar{v}_{i+1} were nonadjacent, then $\left\{\bar{v}_{i}, u_{i+1}, u_{i}, \bar{v}_{i+1}, z\right\}$ would induce a gem in G, a contradiction. Now, let $\bar{v}_{i+2} \in \bar{V}_{i+2}$. If \bar{v}_{i+2} were adjacent to \bar{v}_{i}, then $\left\{u_{i}, \bar{v}_{i+2}, \bar{v}_{i}, u_{i+2}, u_{i+1}\right\}$ would induce a gem in G, a contradiction.

Claim 6. \bar{V}_{i} is anticomplete to V_{j} for every $j \neq i+2$.
Proof of the claim. Let $\bar{v}_{i} \in \bar{V}_{i}$ and $v_{j} \in V_{j}$ and suppose, by the way of contradiction, they are adjacent. If $\mathfrak{j}=\mathfrak{i}$, then $\left\{u_{i}, \bar{v}_{i}, u_{i+1}, u_{i+3}, v_{j}\right\}$ induces a $K_{2,3}$ in G, that is not a circular-arc graph, a contradiction. If $\mathfrak{j}=\mathfrak{i} \pm 1$, then $\left\{v_{j}, u_{i+1}, u_{i+2}, u_{i+3}, \bar{v}_{i}\right\}$ induces a gem in G, also a contradiction. These contradictions prove that \bar{v}_{i} and v_{j} are nonadjacent unless $\mathfrak{j}=\mathfrak{i}+2$.

Claim 7. V_{i} is empty for every $1 \leqslant \mathfrak{i} \leqslant 4$.
Proof of the claim. Suppose, by the way of contradiction, that \bar{V}_{i} is nonempty for some $i \in\{1,2,3,4\}$ and let $\bar{v}_{i} \in \bar{V}_{i}$. Since \bar{v}_{i} is not a true twin of v_{i+2}, by the previous claims, there must be a vertex v_{i+2} in V_{i+2} nonadjacent to \bar{v}_{i}. But then, $\left\{\bar{v}_{i}, u_{i+3}, u_{i}, u_{i+1}, v_{i+2}\right\}$ induces a $C_{4} \cup K_{1}$ in G, that is not a circular-arc graph, a contradiction.

By the above claims, u_{1} and u_{2} are cutpoints of G, as required. This completes the proof when G contains an induced U_{4}.

It only remains to consider the case where G contains no induced U_{4} but a net induced by $H=T \cup S$ where $T=\left\{t_{1}, t_{2}, t_{3}\right\}$ is a complete, $S=\left\{s_{1}, s_{2}, s_{3}\right\}$ is a stable set and $\mathrm{N}_{\mathrm{G}}\left(\mathrm{s}_{\mathrm{i}}\right) \cap \mathrm{T}=\left\{\mathrm{t}_{\mathrm{i}}\right\}$ for each $i=1,2,3$. Let v be a vertex of G not in H. Then, $\mathrm{N}_{\mathrm{G}}(v) \cap \mathrm{H}$ is nonempty because net $\cup \mathrm{K}_{1}$ is not a circular-arc graph. If $\left|\mathrm{N}_{\mathrm{G}}(v) \cap \mathrm{H}\right| \geqslant 5$, then G would contain an induced gem, so $\left|N_{G}(v) \cap H\right| \leqslant 4$.

Suppose that $\left|\mathrm{N}_{\mathrm{G}}(v) \cap \mathrm{H}\right|=4$. If $\left|\mathrm{N}_{\mathrm{G}}(v) \cap S\right|=3$ then G would contain the graph G_{3} in Figure 2.3 as induced subgraph, which is not a circular-arc graph. If $\left|N_{G}(v) \cap S\right|=2$, then G would contain an induced gem. So, if $\left|N_{G}(v) \cap H\right|=4$, then $\left|N_{G}(v) \cap S\right|=1$.

Suppose, by the way of contradiction, that $\left|\mathrm{N}_{\mathrm{G}}(v) \cap \mathrm{H}\right|=3$. If $\left|\mathrm{N}_{\mathrm{G}}(v) \cap \mathrm{S}\right|=3$, then G would contain the graph G_{9} in Figure 2.3 as induced subgraph, which is not a circular-arc graph. If $\left|N_{G}(v) \cap S\right|=2$, then G would contain either $C_{5} \cup K_{1}$ or $C_{4} \cup K_{1}$ as induced subgraph, and none of them is a circular-arc graph. If $\left|N_{G}(v) \cap S\right|=1$, then G would contain either a gem or $C_{4} \cup K_{1}$ as induced subgraph. If $\left|N_{G}(v) \cap S\right|=0$, then G would contain the graph G_{6} in Figure 2.3 as induced subgraph, which is not a circular-arc graph. We conclude that $\left|\mathrm{N}_{\mathrm{G}}(v) \cap S\right| \neq 3$.

Suppose now that $\left|\mathrm{N}_{\mathrm{G}}(v) \cap \mathrm{H}\right|=2$. If $\left|\mathrm{N}_{\mathrm{G}}(v) \cap \mathrm{S}\right|=2$, then G would contain $\mathrm{C}_{5} \cup \mathrm{~K}_{1}$ as induced subgraph, which is not a circular-arc graph. If $\left|\mathrm{N}_{\mathrm{G}}(v) \cap \mathrm{S}\right|=1$ and the neighbors of v in H were nonadjacent, then G would contain $\mathrm{C}_{4} \cup \mathrm{~K}_{1}$ as induced
subgraph. So, if $\left|N_{G}(v) \cap H\right|=2$, then either $N_{G}(v) \cap H \subseteq T$ or $N_{G}(v) \cap H=\left\{t_{i}, s_{i}\right\}$ for some $i \in\{1,2,3\}$.

Finally, if $\left|\mathrm{N}_{\mathrm{G}}(v) \cap \mathrm{H}\right|=1$, then the neighbor of v in H belongs to T; since otherwise G would contain the graph G_{5} in Figure 2.3 as induced subgraph, and it is not a circular-arc graph.

Let S_{i} be the set of vertices in $G-H$ whose only neighbor in T is t_{i} (i.e., the set of neighbors in H is either $\left\{t_{i}\right\}$ or $\left.\left\{t_{i}, s_{i}\right\}\right), T_{i}$ be the set of vertices in $G-H$ whose neighbors in H are $\left\{t_{1}, t_{2}, t_{3}, s_{i}\right\}$, and Z_{i} be the set of vertices in $G-H$ whose neighbors in H are $T-\left\{t_{i}\right\}$. Since G is gem-free, at most one of the Z_{i} 's is nonempty. So, without loss of generality, assume that Z_{2} and Z_{3} are empty.

Claim 8. S_{i} is anticomplete to S_{j} for $\mathrm{i} \neq \mathfrak{j}$.
Proof of the claim. Indeed, if $v \in S_{i}$ were adjacent to $w \in S_{j}$ and $i \neq j,\left\{v, t_{i}, t_{j}, w, s_{6-i-j}\right\}$ would induce a $C_{4} \cup K_{1}$ in G, which is not a circular-arc graph, a contradiction.

Claim 9. For each $\mathfrak{i}=1,2,3, S_{i}$ is complete to T_{i} and anticomplete to T_{j} for every $\mathfrak{j} \neq \boldsymbol{i}$.
Proof of the claim. If $v \in S_{i}$ and $w \in T_{i}$ were nonadjacent, then $\left(H \backslash\left\{s_{1}\right\}\right) \cup\{v, w\}$ would induce the graph G_{6} in Figure 2.3, which is not a circular-arc graph, a contradiction. If $v \in S_{i}$ were adjacent to $w \in T_{j}$ and $j \neq i$, then $\left\{s_{j}, t_{j}, t_{i}, v, w\right\}$ would induce a gem in G , a contradiction.

Claim 10. For each $i=1,2,3, T_{i}$ is a complete and T_{i} is complete to T_{j} for every $j \neq i$.
Proof of the claim. Indeed, if $w, w^{\prime} \in T_{i}$ were nonadjacent, then $\left\{w, s_{i}, w^{\prime}, \mathrm{t}_{\mathrm{i}+1}, s_{i+2}\right\}$ would induce $C_{4} \cup K_{1}$ in G, which is not a circular-arc graph, a contradiction. Also, if $w_{i} \in T_{i}$ were nonadjacent to $w_{j} \in T_{j}$ and $j \neq i$, then $\left\{s_{j}, w_{j}, t_{i}, w_{i}, t_{j}\right\}$ would induce a gem in G, a contradiction.

Claim 11. For each $i=1,2,3, S_{i}$ is anticomplete to Z_{1}.
Proof of the claim. Indeed, if $v \in S_{i}$ were adjacent to $z_{1} \in Z_{1}$, then either $i=1$ and $\left\{v, t_{1}, t_{2}, z_{1}, s_{3}\right\}$ would induce $C_{4} \cup K_{1}$ in G, or $i \neq 1$ and $\left\{t_{1}, t_{5-i}, z_{1}, v, t_{i}\right\}$ would induce gem in G , and in both cases we would reach a contradiction.

Claim 12. T_{1} is anticomplete to Z_{1}.
Proof of the claim. Indeed, if $w_{1} \in T_{1}$ were adjacent to $z_{1} \in Z_{1}$, then $\left\{s_{1}, t_{1}, t_{2}, z_{1}, w_{1}\right\}$ would induce a gem in G , a contradiction.

By the previous claims, every vertex in T_{1} is a true twin of t_{1} and, since there are no true twins in G, T_{1} is empty. Since the claims also prove that $S_{1} \cup\left\{s_{1}\right\}$ is anticomplete to $V\left(G-\left\{t_{1}\right\}\right) \backslash\left(S_{1} \cup\left\{s_{1}\right\}\right), t_{1}$ is a cutpoint of G, as required.

Now we are ready to characterize balanced graphs among gem-free circular-arc graphs.

Theorem 3.54. Let G be a gem-free circular-arc graph. Then, G is balanced if and only if G has no odd holes and contains no induced 3-pyramid.

Proof. The 'only if' part is clear. In order to prove the 'if' part, suppose that G is not balanced. Then, G contains some induced subgraph H that is minimally not balanced. Clearly, H is a gem-free circular-arc graph because G is so. The proof will be complete as soon as we prove that H is an odd hole or a 3-pyramid. Suppose, by the way of contradiction, that H is not $\left\{\right.$ net $\left., \mathrm{U}_{4}, \mathrm{~S}_{4}\right\}$-free. Since H is gem-free, H contains an induced net or an induced U_{4}. By Lemma 3.53, H has true twins or has a cutpoint, a contradiction with the minimality of H (Lemma 3.7). This contradiction proves that H is $\left\{\right.$ net, $\left.\mathrm{U}_{4}, \mathrm{~S}_{4}\right\}$-free and Corollary 3.49 implies that H has an odd hole or contains an induced 3-pyramid (because each of 3-sun, 1-pyramid, 2-pyramid, $\overline{\mathrm{C}_{7}}, \mathrm{X}_{\mathrm{p}}^{2 t+1}, \mathrm{D}^{2 t+1}$, and $X_{p}^{2 t+1}$, for each $t \geqslant 2$ and each valid p, contains an induced gem). The minimality of H ensures that H is an odd hole or 3-pyramid, which concludes the proof.

Chapter 4

Clique-perfect graphs

This chapter is organized as follows.

- In Section 4.1, we give some background about clique-perfect graphs and introduce two further superclasses of balanced graphs: coordinated graphs and hereditary K-perfect graphs. In Subsection 4.1.3, we give a brief account on the connections between these four graph classes and with some notions studied in hypergraph theory.
- In Section 4.2, we characterize clique-perfect graphs by minimal forbidden induced subgraphs within complements of line graphs. This characterization leads to an $\mathrm{O}\left(\mathrm{n}^{2}\right)$-time algorithm for deciding whether or not a given complement of line graph having n vertices is clique-perfect and, if affirmative, finding a minimum clique-transversal. Our results follows from a characterization by minimal forbidden subgraphs of matching-perfect graphs, which we define to be those graphs such that, in each of its subgraphs, the maximal matchings have the Kőnig property (i.e., the minimum number of edges needed to meet every maximal matching equals the maximum number of edge-disjoint maximal matchings). On the way to the proof, we also describe a simple linear and circular structure for graphs containing no bipartite claw that help us give a structural characterization of all Class 2 graphs with respect to edge-coloring within graphs containing no bipartite claw.

The results of this section appeared in [24].

- In Section 4.3, we show that a gem-free circular-arc graph is clique-perfect if and only if it has no odd holes. This means that clique-perfect graphs coincide with perfect graphs within gem-free circular-arc graphs. Moreover, we show that,
within gem-free circular-arc graphs, clique-perfect graphs coincide also with coordinated graphs and hereditary K-perfect graphs.

4.1 Background

4.1.1 Clique-perfect graphs

A graph G is clique-perfect if and only if $\alpha_{c}\left(G^{\prime}\right)=\tau_{c}\left(G^{\prime}\right)$ for each induced subgraph G^{\prime} of G , where α_{c} and τ_{c} are the clique-independence number and τ_{c} is the clique-transversal number defined in the Introduction. While the name 'clique-perfect' was introduced in 2000 by Guruswami and Pandu Rangan [64], the equality between α_{c} and τ_{c} was studied long before. Recall from the Introduction that Kőnig's matching theorem $[52,77]$ is easily seen to be equivalent to the fact that $\alpha_{c}(G)=\tau_{c}(G)$ holds for every bipartite graph G and that Berge and Las Vergnas [12] generalized this result by proving that $\alpha_{\mathcal{C}}(G)=\tau_{c}(G)$ remains true for all balanced graphs G. In [2], the equality $\alpha_{c}(G)=\tau_{c}(G)$ was shown to hold for all comparability graphs G, which form another superclass of bipartite graphs [59]. As the classes of balanced graphs and comparability graphs are hereditary, all the graphs in these classes are clique-perfect. Recall from the Introduction that dually chordal graphs G defined in [29] satisfy $\alpha_{c}(G)=\tau_{c}(G)$ but are not clique-perfect in general because they are not closed under taking induced subgraphs. More recently, it was shown that complements of forests and distancehereditary graphs are clique-perfect [15, 87]. Balanced graphs, comparability graphs, complements of forests, and distance-hereditary graphs, are perfect. However, cliqueperfect graphs are not necessarily perfect and perfect graphs are not necessarily cliqueperfect, as the following result holds.

Theorem 4.1 ([64] and Reed (2001), see [50]). A hole is clique-perfect if and only if it is even. An antihole is clique-imperfect if and only if its number of vertices is a multiple of 3.

So, the odd holes and the antiholes whose number of vertices are not multiples of 3 are forbidden induced subgraphs for the class of clique-perfect graphs. In fact, all these graphs are minimal forbidden induced subgraphs for clique-perfectness [15].

Odd generalized suns [20] are a family of forbidden subgraph for the class of cliqueperfect graphs that properly contain the odd suns and the odd holes, and are defined as follows. Let G be a graph and C be a cycle of G . An edge $e \in \mathrm{E}(\mathrm{C})$ is non-proper (or improper) if it forms a triangle with some vertex of C; i.e., if $N(e) \cap V(C) \neq \varnothing$. For each $\mathrm{t} \geqslant 3$, a t -generalized sun, is a graph G whose vertex set can be partitioned into two sets: a cycle C of t vertices whose set of non-proper edges is $\left\{e_{j}\right\}_{j \in J}$ (J is permitted to be an empty set) and a stable set $U=\left\{u_{j}\right\}_{j \in J}$ such that, for each $j \in J, u_{j}$ is adjacent exactly to the endpoints of e_{j}. A t-generalized sun is odd if t is odd. A cycle is said proper if
none of its edges is improper. By definition, proper odd cycles are odd generalized suns. What interest us about odd generalized suns is that they are not clique-perfect.

Theorem 4.2 ([20]). Odd generalized suns are not clique-perfect.
Unfortunately, as the extended odd suns in Figure 1.2 are also odd generalized suns, odd generalized suns are not necessarily minimal forbidden induced subgraphs for the class of clique-perfect graphs. Some odd generalized suns that are minimally not clique-perfect are the odd holes and the odd complete suns.

The following characterization of clique-perfect graphs within chordal graphs follows from Theorem 3.5 because balanced graphs are clique-perfect and because the odd suns are not clique-perfect.

Theorem 4.3 ([12, 88]). Let G be a chordal graph. Then, G is clique-perfect if and only if it contains no induced odd sun.

In other words, a chordal graph is clique-perfect if and only if it is balanced. So, the situation regarding Theorem 4.3 is the same as that regarding Theorem 3.5: characterizing clique-perfect graphs (or equivalently, balanced graphs) by minimal forbidden induced subgraphs is open even within chordal graphs. Moreover, Corollary 3.6 remains true if 'balanced' is replaced by 'clique-perfect' and the resulting characterization of clique-perfect graphs within pseudo-split graphs is by minimal forbidden induced subgraph. This also meas that Lemma 3.14 remains true if 'balancedness of any given split graph' is replaced by 'clique-perfectness of any given split graph'. However, the problem of determining the complexity of the recognition problem of clique-perfect graphs in general is still open, as balanced graphs and clique-perfect graphs do not coincide in general (see Figure 4.3 on page 81).

A graph G is called clique-complete [96] if each pair of its cliques has nonempty intersection; i.e., if $\alpha_{c}(G)=1$. In [96], the clique-complete graphs G without universal vertices (i.e., such that $\tau_{c}(G)>1$) that are minimal with respect to taking induced subgraphs were identified to be those graphs $Q_{2 n+1}(n \geqslant 1)$ having $4 n+2$ vertices $\mathfrak{u}_{1}, u_{2}, \ldots, u_{2 n+1}, v_{1}, v_{2}, \ldots, v_{2 n+1}$ such that $Q_{2 n+1}\left[\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}\right]=\overline{C_{2 n+1}}$ and $\mathrm{N}_{2_{2 n+1}}\left(\mathfrak{u}_{\mathrm{i}}\right)=\mathrm{V}\left(\mathrm{Q}_{2 n+1}\right) \backslash\left\{v_{i}\right\}$, for each $\mathfrak{i}=1,2, \ldots, 2 n+1$.

Theorem 4.4 ([96]). For each $\mathrm{n} \geqslant 1, \alpha_{c}\left(Q_{2 n+1}\right)=1$ and $\tau_{c}\left(Q_{2 n+1}\right)=2$. Moreover, if G is a graph such that $\alpha_{c}(G)=1$ but $\tau_{c}(G)>1$, then G contains an induced $Q_{2 n+1}$ for some $n \geqslant 1$.

In [15], it was shown that $Q_{2 n+1}$ is minimally clique-imperfect if and only if $n \equiv 1$ mod 3. Yet, forbidding induced odd generalized suns, clique-imperfect antiholes, and clique-imperfect $Q_{2 n+1}$ graphs is not sufficient to ensure clique-perfectness in general. For instance, the following holds.

Figure 4.1: Four families of minimal forbidden induced subgraphs for the class of cliqueperfect graphs within the class of Helly circular-arc graphs. Dashed lines represent induced paths of length $2 t-3$ for each $t \geqslant 2$.

Theorem 4.5 ([17]). Let G be a Helly circular-arc graph. Then, G is clique-perfect if and only if it has no odd holes and it contains no induced 3 -sun, $\overline{\mathrm{C}_{7}}$, or any graph belonging to any of the four families depicted in Figure 4.1.

Here, the graphs of the families (c) and (d) of Figure 4.1 are neither odd generalized suns, nor antiholes, nor $Q_{2 n+1}$ graphs for any $n \geqslant 1$. Although there is no known forbidden induced subgraph characterization of clique-perfect graphs in general, there are some more graph classes within which clique-perfect graphs were characterized by forbidden induced subgraphs [16, 17, 25]: diamond-free graphs, line graphs, hereditary clique-Helly claw-free graphs, paw-free graphs, and \{gem, W_{4},bull\}-free graphs (see, for instance, Theorems 4.6 and 4.15). For each of the graph classes within which clique-perfect graphs were characterized by forbidden induced subgraphs, also a poly-nomial-time or even linear-time algorithm for the recognition of clique-perfectness within the class was devised, with the only exception of diamond-free graphs. In [17], the following characterization of those diamond-free graphs that are clique-perfect was given.

Theorem 4.6 ([17]). Let G be a diamond-free graph. Then, G is clique-perfect if and only if G contains no induced odd generalized sun.

In [17], also the question of whether there is a polynomial-time algorithm for deciding whether a given diamond-free graph is clique-perfect was posed. Interestingly, the answer can be shown to be affirmative by reducing the problem to that of deciding balancedness, as follows.

Corollary 4.7. Let G be a diamond-free graph. Then, G is clique-perfect if and only if G is balanced.

Proof. Since balanced graphs are clique-perfect, we only need to prove that diamondfree clique-perfect graphs are balanced, or equivalently, that a diamond-free graph that is not balanced is not clique-perfect. Let G be a diamond-free graph that is not balanced. By Theorem 3.4, G contains an unbalanced cycle C, that is, an odd cycle C.

Notice that if u and v are two consecutive vertices of C, then $N_{G}(u v) \cap V(C)=\varnothing$. Indeed, if $N_{G}(u v) \cap V(C) \neq \varnothing$, then, as $N_{G}\left(W_{u v}\right) \cap N_{G}(u v) \cap V(C)=\varnothing$, for each $v \in \mathrm{~N}_{\mathrm{G}}(u v)$ there is some $w \in \mathrm{~W}_{e} \subseteq \mathrm{~N}_{\mathrm{G}}(e)$ such that w is nonadjacent to x and, in particular, $\{u, v, x, w\}$ induces a diamond in G. Since $N_{G}(u v) \cap V(C)=\varnothing$ for each two consecutive vertices u and v of $C, V(C)$ induces an odd generalized sun in G and, by Theorem 4.2, G is not clique-perfect, as desired.

Notice also that if G is a diamond-free graph, the problem of deciding whether G is a minimal odd generalized sun can be solved in polynomial time (it suffices to verify that G is not clique-perfect but $G-v$ is clique-perfect for every vertex v of G). Rather surprisingly, the problem of deciding whether a graph is an odd generalized sun (not necessarily minimal) is NP-complete even if G is a triangle-free graph [83]. Indeed, an odd cycle in a triangle-free graph cannot have improper edges. Hence, if G is a triangle-free graph with an odd number of vertices, then G is an odd generalized sun if and only if G has a Hamiltonian cycle, and the Hamiltonian cycle problem on triangle-free graphs with an odd number of vertices is NP-complete [60, pp. 56-60].

4.1.2 Coordinated graphs and hereditary K-perfect graphs

Coordinated graphs and K-perfect graphs were introduced while looking for characterizations of clique-perfect graphs and the three classes are strongly related [19, 20].

Let \mathcal{F} be a family of nonempty sets. The chromatic index $\gamma(\mathcal{F})$ of \mathcal{F} is the minimum number of colors necessary to color the members of \mathcal{F} such that any two intersecting members are colored with different colors. For each $x \in \bigcup \mathcal{F}$, let $d_{\mathcal{F}}(x)$ be the number of members of \mathcal{F} to which x belongs and let the maximum degree $\Delta(\mathcal{F})=$ $\max _{x \in \cup \mathcal{F}} \mathrm{~d}_{\mathcal{F}}(\mathrm{x})$. Clearly, $\Delta(\mathcal{F}) \leqslant \gamma(\mathcal{F})$ and \mathcal{F} is said to have the edge-coloring property [9] if equality $\Delta(\mathcal{F})=\gamma(\mathcal{F})$ holds. The edge coloring property has its origins in a celebrated theorem of Kőnig [76] that states that the number of colors needed to color the edges of a bipartite graph in such a way that incident edges receive different colors equals the maximum degree of the graph. This result is known as König's edge-coloring theorem.

Let the clique-chromatic index $\gamma_{\mathrm{c}}(\mathrm{G})$ of a graph G be the minimum number of colors needed to assign different colors to intersecting cliques of G and let the maximum clique-degree $\Delta_{\mathrm{c}}(\mathrm{G})$ be the maximum cardinality of a family of cliques having at least one vertex of G in common. Then, $\Delta_{c}(G) \leqslant \gamma_{c}(G)$ holds for every graph G and a graph G is called coordinated [19] if $\Delta_{c}\left(G^{\prime}\right)=\gamma_{c}\left(G^{\prime}\right)$ for each induced subgraph G^{\prime} of G. Equivalently, a graph is coordinated if, in every induced subgraph, the rows of a clique-matrix have the edge coloring property. Interestingly, the edge coloring property is connected to the equality $\omega=\chi$ in such a way that a graph is perfect if and only

Figure 4.2: The graph N_{1} and its clique graph
if, in every induced subgraph, the columns of its clique-matrix have the edge-coloring property. Moreover, in [19], coordinated graphs were proved to form a subclass of the class of perfect graphs. In [25] and [26], coordination was characterized by forbidden induced subgraphs within graphs belonging to different graph classes: line graphs, paw-free graphs, $\left\{\mathrm{gem}, W_{4}\right.$, bull\}-free graphs, and complements of forests. No complete characterization of coordinated graphs by forbidden induced subgraphs is known, but it is known that the recognition problem is NP-hard [110] and the number of minimal forbidden induced subgraphs for the class grows exponentially with the number of vertices and edges [109].

The clique graph $K(G)$ of a graph G is the intersection graph of the family of cliques of G. A graph G is called K-perfect [20] if $K(G)$ is perfect. Notice that the class of K perfect graphs is not hereditary. For instance, the graph N_{1} of Figure 4.2 is K-perfect but it contains an induced C_{5} and $\mathrm{K}\left(\mathrm{C}_{5}\right)=\mathrm{C}_{5}$ is imperfect. We introduce here the following terminology: a graph will be said hereditary K -perfect graph if all its induced subgraphs are K-perfect. It turns out that hereditary K-perfect graphs are perfect, as implied by the Strong Perfect Graph Theorem (Theorem 2.3) together with the following lemma.

Lemma 4.8. A hereditary K-perfect graph has no odd holes and has no antiholes with more than 6 vertices.

Proof. Hereditary K-perfect graphs have no odd holes since odd holes are clearly Kimperfect. Along the proof, C_{n} will denote the graph such that $V\left(C_{n}\right)=\{0,1, \ldots, n-$ $1\}$ and $E\left(C_{n}\right)=\{01,12,23, \ldots,(n-1) 0\}$. Assume that $n \geqslant 5$ and $n \neq 6,7,9,12$. By elementary number theory, $n=5 a+3 b$ for some $a \geqslant 1$ and some $b \geqslant 0$. This implies that there exists a sequence a_{1}, \ldots, a_{k} of integers taken from the set $\{2,3\}$ that satisfies the following conditions: (1) $a_{1}+\cdots+a_{k}=n$; (2) $a_{i}=2$ for some $i \in\{1, \ldots, k\}$; and (3) for each $\mathfrak{j}=1, \ldots, k, a_{j}=2$ implies $a_{j+1}=3$ (where a_{k+1} stands for a_{1}). Assume that such a sequence $\left\{a_{i}\right\}$ is given and define b_{i} equal to $a_{1}+\cdots+a_{i}$ modulo n for each $\mathfrak{i}=1, \ldots, k$. In particular, $b_{k}=0$. Let $Q_{1}=\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}, Q_{2}=Q_{1}+2$, $\mathrm{Q}_{3}=\mathrm{Q}_{1}+4, \mathrm{Q}_{4}=\mathrm{Q}_{1}+1$, and $\mathrm{Q}_{5}=\mathrm{Q}_{1}+3$, where $A+\mathrm{p}=\{\mathrm{a}+\mathrm{p}: \mathrm{a} \in A\}$ and the sum is taken modulo n. Then, Q_{i} is a clique of $\overline{C_{n}}$ for $i=1,2, \ldots, 5$ and, by construction, $Q_{1} Q_{2} \ldots \mathrm{Q}_{5} \mathrm{Q}_{1}$ is an odd hole in $\mathrm{K}\left(\overline{\mathrm{C}_{n}}\right)$. Finally, observe that $\mathrm{K}\left(\overline{\mathrm{C}_{7}}\right)=\overline{\mathrm{C}_{7}}$;
that if $\mathrm{Q}_{1}=\{0,2,4,6\}$ then $\left\{\mathrm{Q}_{1}, \mathrm{Q}_{1}+1, \mathrm{Q}_{1}+2, \ldots, \mathrm{Q}_{1}+8\right\}$ induces a $\overline{\mathrm{C}_{9}}$ in $\mathrm{K}\left(\overline{\mathrm{C}_{9}}\right)$; and that if $Q_{1}=\{0,2,5,7,9\}$ and $Q_{2}=\{1,3,5,7,10\}$ then $\left\{Q_{1}, Q_{1}+1, Q_{1}+2, Q_{1}+3, Q_{1}+\right.$ $\left.9, Q_{2}, Q_{2}+1, Q_{2}+2, Q_{2}+3\right\}$ induces a $\overline{C_{9}}$ in $K\left(\overline{C_{12}}\right)$.

Interestingly, a careful reading of the proofs in $[16,17,25]$ reveals that hereditary K-perfectness was implicitly characterized when restricted to different graph classes: line graphs, Helly circular-arc graphs, hereditary clique-Helly claw-free graphs, pawfree graphs, and $\left\{\right.$ gem,W_{4}, bull $\}$-free graphs.

In the next subsection, we will show how coordinated and hereditary K-perfect graphs relate to balanced and clique-perfect graph, with the help of some results in hypergraph theory.

4.1.3 Connection with hypergraph theory

A hypergraph H is an ordered pair $(\mathrm{X}, \varepsilon)$ where X is a finite set and \mathcal{E} is a family of nonempty subsets of X such that $X=\bigcup \mathcal{E}$. The elements of X are the vertices of H and the elements of \mathcal{E} are the hyperedges of H. If x_{1}, \ldots, x_{n} are the vertices of H and $\mathrm{E}_{1}, \ldots, \mathrm{E}_{\mathrm{m}}$ are the hyperedges of H , then a hyperedge-vertex incidence matrix of H is a $m \times n$ matrix $A=\left(a_{i j}\right)$ where $a_{i j}$ is 1 if $x_{j} \in E_{i}$ and 0 otherwise. The dual hypergraph H^{*} of a hypergraph $\mathrm{H}=(\mathrm{X}, \mathcal{\varepsilon})$ has \mathcal{E} as vertex set and its hyperedges are the sets $\mathcal{E}_{x}=\{E \in \mathcal{E}: x \in E\} \mid$ for each $x \in X$. This means that a hyperedge-vertex incidence matrix of H^{*} is the transpose of one of H .

We will be mostly interested in clique hypergraphs of graphs. Namely, the clique hypergraph of a graph G is the hypergraph $\mathcal{K}(G)=(X, \mathcal{E})$ where X is the set of vertices of G and \mathcal{E} is the family of cliques of G . A hyperedge-vertex incidence matrix of $\mathcal{K}(\mathrm{G})$ is a clique-matrix of G .

A hypergraph has the König property if the family of its hyperedges have the Kőnig property. A hypergraph has the dual Kőnig property if its dual has the Kőnig property. As discussed in the Introduction, for every graph $G, \alpha_{c}(G)=\tau_{c}(G)$ is equivalent to the Kőnig property for $\mathcal{K}(\mathrm{G})$ and $\theta(\mathrm{G})=\alpha(\mathrm{G})$ is equivalent to the dual Kőnig property for $\mathcal{K}(\mathrm{G})$. Therefore, the following holds.

Remark 4.9. Let G be a graph. Then:

- G is perfect if and only if $\mathcal{K}\left(\mathrm{G}^{\prime}\right)$ has the dual Kőnig property for every induced subgraph G^{\prime} of G
- G is clique-perfect if and only if $\mathcal{K}\left(\mathrm{G}^{\prime}\right)$ has the Kônig property for every induced subgraph G^{\prime} of G .

A hypergraph has the edge-coloring property if its hyperedges have the edge coloring property. A hypergraph has the dual edge-coloring property if its dual has the
edge coloring property. It is easy to see that the equality $\omega(\mathrm{G})=\chi(\mathrm{G})$ for a graph G is equivalent to the dual edge coloring property for $\mathcal{K}(\mathrm{G})$. Therefore, the following holds.

Remark 4.10. Let G be a graph. Then:

- G is perfect if and only if $\mathcal{K}\left(\mathrm{G}^{\prime}\right)$ has the dual edge coloring property for every induced subgraph G^{\prime} of G
- G is coordinated if and only if $\mathcal{K}\left(\mathrm{G}^{\prime}\right)$ has the edge coloring property for every induced subgraph G^{\prime} of G .

A partial hypergraph of a hypergraph $H=(X, \varepsilon)$ is any hypergraph having as hyperedge set a subset of \mathcal{E}. A hypergraph has the Helly property if the family \mathcal{E} of its hyperedges has the Helly property. So, a graph G is clique-Helly if and only if $\mathcal{K}(G)$ has the Helly property. The line graph (or representative graph) of a hypergraph $\mathrm{H}=(\mathrm{X}, \mathcal{\varepsilon})$, denoted by $\mathrm{L}(\mathrm{H})$, is the intersection graph of the family ε. The line graph relates clique graphs and clique hypergraphs in the following way: $\mathrm{K}(\mathrm{G})=\mathrm{L}(\mathcal{K}(\mathrm{G}))$. The Kőnig property, the edge coloring property, the Helly property, and perfectness are related in the following way.

Theorem 4.11 ($[36,92])$. Let H be a hypergraph, A_{H} be the hyperedge-vertex incidence matrix of H , and $\mathrm{A}_{\mathrm{H}}^{\mathrm{T}}$ be its transpose. Then, the following assertions are equivalent:
(i) Every partial hypergraph of H has the König property.
(ii) Every partial hypergraph of H has the colored edge property.
(iii) H has the Helly property and $\mathrm{L}(\mathrm{H})$ is perfect.
(iv) The matrix A_{H}^{T} is perfect.

Lovász defined the hypergraphs satisfying the above assertions to be normal [92]. Since $K(G)=L(\mathcal{K}(G))$ and recalling Remarks 4.9 and 4.10, Theorem 4.11 implies the following.

Corollary 4.12. If G is hereditary-clique Helly and hereditary K -perfect, then G is cliqueperfect and coordinated.

Berge defined a hypergraph to be balanced [7] if its hyperedge-vertex incidence matrix is balanced. So, a graph is balanced if its clique hypergraph is balanced. In [12], Berge and Las Vergnas proved that balanced hypergraphs had the Kőnig property and, since the partial hypergraphs of a balanced hypergraph are balanced by definition, the following holds.

Figure 4.3: Containment and intersections among the classes of balanced, perfect, cliqueperfect, coordinated, and hereditary K-perfect graphs.

Theorem 4.13 ([12]). Every balanced hypergraph is normal.

In light of Theorem 4.11, the above theorem implies that every balanced graph is clique-Helly and K-perfect. As the class of balanced graphs is hereditary, we have the following.

Corollary 4.14 ([12, 92]). Balanced graphs are hereditary clique-Helly and hereditary Kperfect. In particular, balanced graphs are clique-perfect and coordinated.

Figure 4.3 illustrates the containment relations and intersections among balanced, perfect, clique-perfect, coordinated, and hereditary K-perfect graphs by exhibiting one graph in each possible intersection.

4.2 Clique-perfectness of complements of line graphs

In [16], clique-perfect graphs were characterized by minimal forbidden induced subgraphs within the class of line graphs, as follows.

Theorem 4.15 ([16]). Let G be a line graph. Then, G is clique-perfect if and only if G contains no induced 3-sun and has no odd hole.

Nevertheless, as clique-perfect graphs are not closed by complementation, this result does not tell us which complements of line graphs are clique-perfect. Precisely, the main result of this section is the following characterization of clique-perfect graphs within complements of line graphs by means of minimal forbidden induced subgraphs.

Theorem 4.16. Let G be the complement of a line graph. Then, G is clique-perfect if and only if G contains no induced 3 -sun and has no antihole $\overline{\mathrm{C}_{\mathrm{k}}}$ for any $\mathrm{k} \geqslant 5$ such that k is not a multiple of 3 .

Let G be the complement of the line graph of a graph H. In order to prove Theorem 4.16, we profit from the fact that the cliques of G are precisely the maximal matchings of H . We call a matching-transversal of H any set of edges meeting all the maximal matchings of H and matching-independent set of H any collection of edge-disjoint maximal matchings of H . We define the matching-transversal number $\tau_{\mathrm{m}}(\mathrm{H})$ of H as the minimum size of a matching-transversal of H and the matching-independence number $\alpha_{\mathrm{m}}(\mathrm{H})$ of H as the maximum size of a matching-independent set of H. Clearly, $\alpha_{c}(G)=\alpha_{m}(H)$ and $\tau_{c}(G)=\tau_{m}(H)$. Finally, we say that H is matching-perfect if $\alpha_{m}\left(H^{\prime}\right)=\tau_{m}\left(H^{\prime}\right)$ for every subgraph H^{\prime} (induced or not) of H . Hence, G is clique-perfect if and only if H is matching-perfect, and Theorem 4.16 can be reformulated as follows.

Theorem 4.17. Let H be a graph. Then, H is matching-perfect if and only if H contains no bipartite claw and the length of each cycle of H is at most 4 or is a multiple of 3 .

Recall that 'H contains no bipartite claw' means H contains neither induced nor non-induced subgraphs isomorphic to the bipartite claw. To prove Theorem 4.17, it suffices to show that, if H is a graph containing no bipartite claw and the length of each cycle of H is at most 4 or is a multiple of 3 , then $\alpha_{m}(H)=\tau_{m}(H)$. In addition, we can assume that H is connected because clearly $\alpha_{m}(H)$ (resp. $\tau_{m}(H)$) is the minimum of $\alpha_{\mathrm{m}}\left(\mathrm{H}^{\prime}\right)$ (resp. $\tau_{\mathrm{m}}\left(\mathrm{H}^{\prime}\right)$) among the components H^{\prime} of H . The proof splits into two parts according to whether or not H has some cycle of length at least 5 . In both cases, we obtain an upper bound on $\tau_{\mathrm{m}}(\mathrm{H})$ and exhibit a collection of edge-disjoint maximal matchings of the same size, which means that $\alpha_{\mathrm{m}}(\mathrm{H})=\tau_{\mathrm{m}}(\mathrm{H})$. To produce these
collections of edge-disjoint maximal matchings, we ultimately rely on edge-coloring (via Theorem 4.30) tailored subgraphs of H.

The structure of this section is as follows. In Subsection 4.2.1, we present a structure theorem for graphs containing no bipartite claw that is used all along this section. In Subsection 4.2.2, we completely describe those graphs not containing bipartite claw that are Class 2 with respect to edge-coloring. In Subsection 4.2.3, we prove the main results of this section (Theorems 4.16 and 4.17). Finally, in Subsection 4.2.4, we show a linear-time recognition algorithm for matching-perfect graphs and a quadratic-time one for clique-perfect graphs that follow from our main results.

4.2.1 Linear and circular structure of graphs containing no bipartite claw

In this subsection, we present a structure theorem for graphs containing no bipartite claw that will prove very useful to us all along this section. In [30], the linear and circular structure of net-freenclaw-free graphs is studied. As the line graphs of graphs containing no bipartite claw are the net-free \cap line graphs, the main result of this subsection (Theorem 4.25 on page 93) can be regarded as describing a more explicit linear and circular structure for the more restricted class of net-free \cap line graphs.

Our structure theorem will be stated in terms of linear and circular concatenations of two-terminal graphs that we now introduce. A two-terminal graph is a triple $\Gamma=$ $(\mathrm{H}, \mathrm{s}, \mathrm{t})$, where H is a graph and s and t are two different vertices of H , called the terminals of Γ. We now introduce in some detail the two-terminal graphs depicted in Figure 4.4. For each $m \geqslant 0$, the m-crown is the two-terminal graph $(\mathrm{H}, \mathrm{s}, \mathrm{t})$ where $V(H)=\left\{s, t, a_{1}, a_{2}, \ldots, a_{m}\right\}$ and $E(H)=\{s t\} \cup\left\{\operatorname{sa}_{i}: 1 \leqslant \mathfrak{i} \leqslant m\right\} \cup\left\{\mathrm{ta}_{\mathfrak{i}}: 1 \leqslant \mathfrak{i} \leqslant \mathfrak{m}\right\}$. The 0 -crown and the 1 -crown are called edge and triangle, respectively. For each $\mathfrak{m} \geqslant 2$, the m-fold is the two-terminal graph (H, s, t) where $V(H)=\left\{s, t, a_{1}, a_{2}, \ldots, a_{m}\right\}$ and $E(H)=\left\{s a_{i}: 1 \leqslant \mathfrak{i} \leqslant m\right\} \cup\left\{\operatorname{ta}_{\mathfrak{i}}: 1 \leqslant \mathfrak{i} \leqslant m\right\}$. The 2-fold is also called square. By a crown we mean an m-crown for some $m \geqslant 0$, and by a fold we mean an m-fold for some $m \geqslant 2$. Finally, K_{4} will also denote the two-terminal graph ($\left.K_{4}, s, t\right)$ for any two vertices s and t of the K_{4}. We will refer to the crowns, folds, rhombus, and K_{4} as the basic two-terminal graphs.

If $\Gamma=(\mathrm{H}, \mathrm{s}, \mathrm{t})$ is a two-terminal graph, H is called the underlying graph of Γ, s is its source, and t its sink. If $\Gamma_{1}=\left(\mathrm{H}_{1}, \mathrm{~s}_{1}, \mathrm{t}_{1}\right)$ and $\Gamma_{2}=\left(\mathrm{H}_{2}, \mathrm{~s}_{2}, \mathrm{t}_{2}\right)$ are two-terminal graphs, the p-concatenation $\Gamma_{1} \&_{p} \Gamma_{2}$ is the two-terminal graph ($\mathrm{H}, \mathrm{s}_{1}, \mathrm{t}_{2}$) where H arises from $H_{1} \cup H_{2}$ by identifying t_{1} and s_{2} into one vertex u and attaching p pendant vertices adjacent to u. The 0-concatenation $\Gamma_{1} \&_{0} \Gamma_{2}$ is denoted simply by $\Gamma_{1} \& \Gamma_{2}$. If a twoterminal graph $\Gamma=(H, s, t)$ is such that $N_{H}[s] \cap N_{H}[t]=\varnothing$, we define its p-closure, denoted $\Gamma \&_{p} \circlearrowright$, as the graph that arises by identifying s and t into one vertex u and then attaching p pendant vertices adjacent to u. The 0 -closure of Γ is simply denoted

Figure 4.4: Basic two-terminal graphs with terminals s and t

(a)

(b)

Figure 4.5: A linear and a circular concatenation the sequence $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}, \Gamma_{4}$ of two-terminal graphs, where Γ_{1} is a square, Γ_{2} and Γ_{4} are rhombi, and Γ_{3} is a triangle: (a) Underlying graph of $\Gamma_{1} \& \Gamma_{2} \& 2 \Gamma_{3} \& \Gamma_{4}$ and $(b) \Gamma_{1} \& \Gamma_{2} \&_{2} \Gamma_{3} \&_{1} \Gamma_{4} \&{ }_{3} \circlearrowright$. Concatenation vertices are circled.
by Γ \& \circlearrowright.
Let $\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{\mathrm{n}}$ be a sequence of two-terminal graphs. A linear concatenation of $\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{n}$ is the underlying graph of the two-terminal graph $\Gamma_{1} \&_{p_{1}} \Gamma_{2} \&_{p_{2}} \cdots \&_{p_{n-1}} \Gamma_{n}$ for some nonnegative integers $p_{1}, p_{2}, \ldots, p_{n-1}$. The two-terminal graphs $\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{n}$ are called the links of the linear concatenation. The concatenation vertices of such a linear concatenation are the $n-1$ vertices that arise by identifying the sink of Γ_{i} with the source of Γ_{i+1} for each $i=1,2, \ldots, n-1$. The two links Γ_{i} and Γ_{i+1} are called adjacent in the linear concatenation, for each $i=1,2, \ldots, n-1$. The graph K_{1} will be regarded as the linear concatenation of an empty sequence of two-terminal graphs. See Figure 4.5(a) for an example of a linear concatenation. A circular concatenation of $\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{n}$ is any graph $\Gamma_{1} \&_{\mathfrak{p}_{1}} \Gamma_{2} \&_{p_{2}} \cdots \&_{\mathfrak{p}_{n-1}} \Gamma_{n} \&_{p_{n}} \circlearrowright$ for some nonnegative integers $p_{1}, p_{2}, \ldots, p_{n-1}$. The two-terminal graphs $\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{n}$ are called the links of the circular concatenation. The concatenation vertices of such a circular concatenation are the $n-1$ vertices that arise by identifying the sink of Γ_{i} with the source of Γ_{i+1} for each $\mathfrak{i}=1,2, \ldots, n-1$, as well as the vertex that arises by identifying the sink of Γ_{n} with the source of Γ_{1}. The two links Γ_{i} and $\Gamma_{\mathrm{i}+1}$ are called adjacent in the circular concatenation, for each $i=1,2, \ldots, n-1$, as well as the links Γ_{n} and Γ_{1}. See Figure $4.5(\mathrm{~b})$ for an example of a circular concatenation. Each of the Γ_{i} 's is called a link of either the linear or the circular concatenation.

4.2.1.1 Structure of fat caterpillars

A caterpillar [69] is a connected graph containing no bipartite claw and having no cycle. We call fat caterpillars to those connected graphs containing no bipartite claw and having no cycle of length greater than 4 . The fact that caterpillars have edge-dominating paths gives them a very simple linear structure; namely, they are linear concatenations (in our sense) of edge links [68]. We will show that fat caterpillars containing no A and no net are linear concatenations of basic two-terminal graphs, like the graph depicted in Figure 4.5(a). This result will be the last in the following sequence of three lemmas.

Lemma 4.18. Let H be a fat caterpillar containing no A and no net. Then, H has an edgedominating path $\mathrm{P}=\mathfrak{u}_{0} \mathfrak{u}_{1} \ldots \mathfrak{u}_{\ell}$ having no long chords and no three consecutive short chords, and such that each vertex $v \in \mathrm{~V}(\mathrm{H}) \backslash \mathrm{V}(\mathrm{P})$ satisfies one the following assertions:
(i) v is a pendant vertex and the only neighbor of v is neither an endpoint of P nor the midpoint of any short chord of P .
(ii) v has degree 2 and is a false twin of u_{j} for some $j \in\{1,2, \ldots, \ell-1\}$.
(iii) v has degree 3 and is a true twin of $\mathfrak{u}_{\mathfrak{j}}$ for some $\mathfrak{j} \in\{1, \ell-1\}$ such that $\mathbf{u}_{\mathrm{j}-1}$ is adjacent to u_{j+1}.

Proof. If H is the underlying graph of an m -crown for some $\mathrm{m} \geqslant 3$, then the lemma holds trivially by letting P be any path of H of length 2 whose endpoints are the two vertices of H of degree $\mathrm{m}+1$. Therefore, without loss of generality, we will assume that H is not the underlying graph of an m-crown for any $m \geqslant 3$. Among the longest paths of H without long chords, let us choose some path $P=u_{0} \mathfrak{u}_{1} u_{2} \ldots u_{\ell}$ that maximizes $d_{H}\left(u_{0}\right)+d_{H}\left(u_{\ell}\right)$ and, among those with maximal $d_{H}\left(u_{0}\right)+d_{H}\left(u_{\ell}\right)$, we choose one that minimizes $\min \left\{\mathrm{d}_{\mathrm{H}}\left(\mathrm{u}_{0}\right), \mathrm{d}_{\mathrm{H}}\left(\mathrm{u}_{\ell}\right)\right\}$. We will show that P satisfies the thesis of the lemma. Notice that P has no long chords by construction and that P has no three consecutive short chords simply because H has no 5 -cycle. The lemma follows from the following four claims.

Claim 1. P is edge-dominating.
Proof of the claim. Suppose, by the way of contradiction, that P is not edge-dominating. Since H is connected, there is some edge $v w$ of H such that none of v and w is a vertex of P and v is adjacent to u_{j} for some $j \in\{0,1,2, \ldots, \ell\}$. Since H contains no bipartite claw, $\mathfrak{j} \in\{0,1, \ell-1, \ell\}$. Let us consider first the case $\mathrm{j}=0$. Then, the path $v \mathrm{P}$ must have some long chord because it is longer than P . Since P has no long chords and H has no cycle of length greater than 4 , necessarily v is adjacent to u_{2}. So, as H contains no A, $\ell=2$. Then, as $\mathrm{P}^{\prime}=\mathfrak{u}_{1} \mathrm{u}_{0} v w$ is a path longer than $\mathrm{P}^{2} \mathrm{P}^{\prime}$ must have some long chord; i.e., w is adjacent to u_{1}. In addition, $\left\{u_{0}, u_{2}, w\right\}$ is a stable set because H has no 5 -cycles.

Moreover, $\mathrm{N}_{\mathrm{H}}\left(\mathrm{u}_{0}\right)=\mathrm{N}_{\mathrm{H}}\left(\mathrm{u}_{2}\right)=\mathrm{N}_{\mathrm{H}}(w)=\left\{\mathrm{u}_{1}, v\right\}$ because H contains no A. Now, $\mathrm{P}^{\prime \prime}=$ $u_{1} u_{0} v$ is a path of the same length than P but the sum of the degrees of the endpoints of $P^{\prime \prime}$ is $d_{H}\left(u_{1}\right)+d_{H}(v)>4=d_{H}\left(u_{0}\right)+d_{H}\left(u_{2}\right)$, which contradicts the choice of P. The contradiction arose from assuming that $j=0$. So, $j \neq 0$ and, symmetrically, $j \neq \ell$. Therefore, also by symmetry, we assume, without loss of generality, that $j=1$. As $P^{\prime \prime \prime}=w \nu u_{1} u_{2} \ldots u_{\ell}$ is longer than $P, P^{\prime \prime \prime}$ must have some long chord. So, as H is a fat caterpillar containing no A and no net, this means that w is adjacent to u_{2} and $\ell=2$. But then, we find ourselves in the case $j=\ell$ by letting w play the role of v and vice versa, which leads again to a contradiction. As this contradiction arose from assuming that P was not edge-dominating, Claim 1 follows.

Claim 2. If $v \in \mathrm{~V}(\mathrm{H}) \backslash \mathrm{V}(\mathrm{P})$ is pendant, then (i) holds.
Proof of the claim. Suppose that $v \in \mathrm{~V}(\mathrm{H}) \backslash \mathrm{V}(\mathrm{P})$ is pendant. As P is edge-dominating, $\mathrm{N}_{\mathrm{H}}(v)=\left\{u_{j}\right\}$ for some $j \in\{0,1,2, \ldots, \ell\}$. If $j=0$, then $v P$ would be a path longer than P and without long chords, contradicting the choice of P. This contradiction proves that $j \neq 0$ and, by symmetry, $j \neq \ell$. Suppose, by the way of contradiction, that u_{j} is the midpoint of some short chord of P; i.e., u_{j-1} is adjacent to u_{j+1}. Since H contains no net and by symmetry, we assume, without loss of generality, that $j=1$. As $v u_{1} u_{0} u_{2} u_{3} \ldots u_{\ell}$ is longer than P, it must have some long chord; i.e., u_{1} is adjacent to u_{3}. Then, as H contains no A and P has no long chords, $\ell=3$ and $d_{H}\left(u_{0}\right)=$ $\mathrm{d}_{\mathrm{H}}\left(u_{3}\right)=2$. So, $\mathrm{P}^{\prime}=v u_{1} u_{0} u_{2}$ is a path of the same length that P without long chords and such that $\mathrm{d}_{\mathrm{H}}(v)+\mathrm{d}_{\mathrm{H}}\left(u_{2}\right) \geqslant 4=\mathrm{d}_{\mathrm{H}}\left(u_{0}\right)+\mathrm{d}_{\mathrm{H}}\left(u_{3}\right)$ and $\min \left\{\mathrm{d}_{\mathrm{H}}(v), \mathrm{d}_{\mathrm{H}}\left(u_{2}\right)\right\}=$ $1<\min \left\{d_{H}\left(u_{0}\right), d_{H}\left(u_{3}\right)\right\}$, which contradicts the choice of P. This contradiction arose from assuming that v was adjacent to the midpoint of some short chord of P . Now, Claim 2 follows.

Claim 3. If $v \in \mathrm{~V}(\mathrm{H}) \backslash \mathrm{V}(\mathrm{P})$ has degree 2 , then (ii) holds.
Proof of the claim. Let $v \in \mathrm{~V}(\mathrm{H}) \backslash \mathrm{V}(\mathrm{P})$ of degree 2 and suppose, by the way of contradiction, that v is adjacent to two consecutive vertices of P; i.e., $\mathrm{N}_{\mathrm{H}}(v)=\left\{u_{j}, u_{j+1}\right\}$ for some $j \in\{0,1,2, \ldots, \ell-1\}$. If $j=0$, then $v P$ would be a path without long chords and longer than P, contradicting the choice of P. Therefore, $j \geqslant 1$ and, by symmetry, $\mathfrak{j} \leqslant \ell-1$. The path $u_{0} u_{1} \ldots u_{j} v u_{j+1} u_{j+2} \ldots u_{\ell}$ must have some long chord because it is longer than P and, as P has no long chords, this means that $u_{j} u_{j+2}$ or $u_{j+1} u_{j-1}$ is a chord of P. By symmetry, suppose, without loss of generality, that $u_{j} u_{j+2}$ is a chord of P. Then, $\mathfrak{j}=\ell-2$ since otherwise H would contain A. In addition, $\mathrm{N}_{\mathrm{H}}\left(u_{\ell}\right)=\left\{u_{\ell-2}, u_{\ell-1}\right\}$ because P has no long chords and H contains no A. Hence, $d_{H}\left(u_{\ell}\right)=2<d_{H}\left(u_{\ell-1}\right)$. Now, $P^{\prime}=u_{0} u_{1} \ldots u_{\ell-2} v u_{\ell-1}$ is a path of the same length than P but $d_{H}\left(u_{0}\right)+d_{H}\left(u_{\ell-1}\right)>d_{H}\left(u_{0}\right)+d_{H}\left(u_{\ell}\right)$. Because of the choice of P, P^{\prime} must have some long chord and, necessarily, u_{j+1} is adjacent to u_{j-1}. As u_{j} adjacent
to $\mathfrak{u}_{\mathfrak{j}+2}$ implies $\mathfrak{j}=\ell-2$ and $d_{H}\left(\mathfrak{u}_{\ell}\right)=2, \mathfrak{u}_{\mathfrak{j}+1}$ adjacent to $\mathfrak{u}_{\mathfrak{j}-1}$ implies $\mathfrak{j}=1$ and $\mathrm{d}_{\mathrm{H}}\left(\mathrm{u}_{0}\right)=2$. Therefore, $\ell=3, \mathrm{~d}_{\mathrm{H}}\left(\mathrm{u}_{0}\right)=\mathrm{d}_{\mathrm{H}}\left(\mathfrak{u}_{\ell}\right)=2$, and $\mathrm{N}_{\mathrm{H}}(v)=\left\{\mathfrak{u}_{1}, u_{2}\right\}$. Hence, as H is connected and P is edge-dominating, every vertex $v \in \mathrm{~V}(\mathrm{H}) \backslash \mathrm{V}(\mathrm{P})$ is adjacent to u_{1} and / or to u_{2} only. If some vertex $w \in V(H) \backslash V(P)$ were adjacent to u_{1} but not to u_{2}, then $P^{\prime \prime}=w u_{1} u_{0} u_{2}$ would be a path without long chords of the same length than P and such that $d_{H}(w)+d_{H}\left(u_{2}\right)>4=d_{H}\left(u_{0}\right)+d_{H}\left(u_{3}\right)$, contradicting the choice of P. This proves that each vertex $w \in V(H) \backslash V(P)$ satisfies $N_{H}(w)=\left\{u_{1}, u_{2}\right\}$. We conclude that H is the underlying graph of an m-crown for some $m \geqslant 3$, which contradicts our initial hypothesis. This contradiction arose from assuming that v was adjacent to two consecutive vertices of P . So, as P is edge-dominating and H has no cycle of length greater than 4, necessarily $\mathrm{N}_{\mathrm{H}}(v)=\left\{v_{j-1}, v_{j+1}\right\}$ for some $\mathrm{j} \in\{1,2, \ldots, \ell-1\}$. Suppose, by the way of contradiction, that $\mathrm{d}_{\mathrm{H}}\left(\mathfrak{u}_{\mathfrak{j}}\right)>2$ and let w be a neighbor of $\mathfrak{u}_{\mathrm{j}}$ different from \mathfrak{u}_{j-1} and $\mathfrak{u}_{\mathfrak{j}+1}$. Then, as H contains no A and has no 5-cycle, $\ell=2$ and $\mathfrak{j}=1$. But then, $w u_{1} u_{2} v$ is a path longer than P and without long chords, contradicting the choice of P. This contradiction arose from assuming that $d_{H}\left(\mathfrak{u}_{j}\right)>2$. Consequently, u_{j} is a false twin of v and (ii) holds. Hence, Claim 3 follows.

Claim 4. If $v \in \mathrm{~V}(\mathrm{H}) \backslash \mathrm{V}(\mathrm{P})$ has degree at least 3, then (iii) holds.
Proof of the claim. Let $v \in \mathrm{~V}(\mathrm{H}) \backslash \mathrm{V}(\mathrm{P})$ of degree at least 3. As P is edge-dominating and H has no cycles of length greater than $4, N_{H}(v)=\left\{\mathfrak{u}_{j-1}, \mathfrak{u}_{j}, \mathfrak{u}_{j+1}\right\}$ for some $\mathfrak{j} \in$ $\{1,2, \ldots, \ell-1\}$. As $\mathfrak{u}_{0} \mathfrak{u}_{1} \ldots \mathfrak{u}_{\mathfrak{j}-1} v \mathfrak{u}_{\mathfrak{j}} \mathfrak{u}_{\mathfrak{j}+1} \ldots \mathfrak{u}_{\ell}$ and $\mathfrak{u}_{0} \mathfrak{u}_{1} \ldots \mathfrak{u}_{\mathfrak{j}-1} \mathfrak{u}_{\mathfrak{j}} v \mathfrak{u}_{\mathfrak{j}+1} \ldots \mathfrak{u}_{\ell}$ are longer than P, they have at least one long chord each. So, if \mathfrak{u}_{j-1} were nonadjacent to u_{j+1}, then u_{j} would be adjacent to u_{j-2} and to u_{j+2} and, therefore, $v u_{j+1} u_{j+2} u_{j} u_{j-2} u_{j-1} v$ would be a 6 -cycle of H, a contradiction. Therefore, u_{j-1} is adjacent to u_{j+1}. As H contains no $A, j=1$ or $j=\ell-1$. By symmetry, assume that $N_{H}(v)=\left\{u_{0}, u_{1}, u_{2}\right\}$. Suppose, by the way of contradiction, that u_{1} is not a true twin of v. Then, there is some $w \in \mathrm{~N}_{\mathrm{H}}\left(\mathfrak{u}_{1}\right) \backslash\left\{v, \mathrm{u}_{0}, \mathfrak{u}_{2}\right\}$ and, as P is edge-dominating and H has no cycle of length greater than $4, w$ is pendant. Then, $w u_{1} u_{0} u_{2} u_{3} \ldots u_{\ell}$ is a path longer than P and without long chords, a contradiction with the choice of P. This contradiction proves that v is a true twin of u_{1} and (iii) holds. This completes the proof of Claim 4 and of the lemma.

Lemma 4.19. Let H be a fat caterpillar containing no A and no net, let $\mathrm{P}=\mathrm{u}_{0} \mathfrak{u}_{1} \ldots \mathrm{u}_{\ell}$ as in the statement of Lemma 4.18, and suppose that $\ell \geqslant 1$. Then, H is the underlying graph of $\Gamma_{1} \&_{\mathfrak{p}_{1}} \Gamma_{2} \&_{\mathfrak{p}_{2}} \cdots \&_{\mathfrak{p}_{n-1}} \Gamma_{n}$ for some basic two-terminal graphs $\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{n}$ and some nonnegative integers $\mathfrak{p}_{1}, \mathfrak{p}_{2}, \ldots, \boldsymbol{p}_{\mathfrak{n}-1}$ such that the source of Γ_{1} is \mathfrak{u}_{0} and the sink of $\Gamma_{\mathfrak{n}}$ is \mathfrak{u}_{ℓ}.

Proof. The proof will be by induction on ℓ. If $\ell=1, \mathrm{H}$ is the underlying graph of an edge link with source u_{0} and $\operatorname{sink} u_{1}$. Let $\ell \geqslant 2$ and assume that the claim holds whenever P has length less than ℓ. We will define a two-terminal graph Γ_{1} by considering
several cases. In each case, we assume that the preceding cases do not hold.
Case 1. u_{0} is adjacent to some vertex $v \in \mathrm{~V}(\mathrm{H}) \backslash \mathrm{V}(\mathrm{P})$ of degree 3.
Then, by assertions (i)-(iii) of Lemma 4.18, we have that v is a true twin of u_{1} and $N_{H}\left(u_{0}\right)=\left\{v, u_{1}, u_{2}\right\}$. We define Γ_{1} to be the two-terminal graph with source u_{0} and sink u_{2} and whose underlying graph is the subgraph of H induced by $N_{H}[v]$. In particular, Γ_{1} is a K_{4}.

Case 2. u_{0} is adjacent to some vertex in $v \in \mathrm{~V}(\mathrm{H}) \backslash \mathrm{V}(\mathrm{P})$ of degree 2.
Then, by assertions (i)-(iii) of Lemma 4.18, we have that v is a false twin of u_{1} and each neighbor of u_{0} in $V(H) \backslash V(P)$ is also a false twin of u_{1}. We define Γ_{1} as the two-terminal graph with source u_{0} and $\operatorname{sink} u_{2}$, and whose underlying graph is the subgraph of H induced by $\mathrm{N}_{\mathrm{H}}\left[\mathrm{u}_{0}\right] \cup\left\{u_{2}\right\}$. Notice that Γ_{1} is a crown or a fold, depending on whether or not u_{0} is adjacent to u_{2}.

As (i)-(iii) of Lemma 4.18 imply that each neighbor of u_{0} in $V(H) \backslash V(P)$ has degree 2 or 3 , in the cases below we are assuming that u_{0} has no neighbors in $V(H) \backslash V(P)$.

Case 3. u_{0} is adjacent to u_{2} and u_{1} is adjacent to u_{3}.
Then, by assertions (i)-(iii) of Lemma 4.18, $\mathrm{d}_{\mathrm{H}}\left(u_{0}\right)=2$ and $\mathrm{d}_{\mathrm{H}}\left(u_{1}\right)=\mathrm{d}_{\mathrm{H}}\left(u_{2}\right)=3$. Let Γ_{1} be the two-terminal graph with source u_{0} and sink u_{3}, and whose underlying graph is the subgraph of H induced by $\left\{u_{0}, u_{1}, u_{2}, u_{3}\right\}$. Then, Γ_{1} is a rhombus.

Case 4. u_{0} is adjacent to u_{2} and u_{1} is nonadjacent to u_{3}.
As u_{1} is the midpoint of the short chord $u_{0} u_{2}$ and we are assuming that u_{0} has no neighbors in $\mathrm{V}(\mathrm{H}) \backslash \mathrm{V}(\mathrm{P})$, assertions (i)-(iii) of Lemma 4.18 imply that u_{1} has no neighbors in $V(H) \backslash V(P)$. Therefore, as u_{1} is nonadjacent to $u_{3}, d_{H}\left(u_{1}\right)=2$. Let Γ_{1} be the two-terminal graph whose source is u_{0} and $\operatorname{sink} u_{2}$, and whose underlying graph is the subgraph of H induced by $\left\{u_{0}, u_{1}, u_{2}\right\}$. Then, Γ_{1} is a triangle.

Case 5. u_{0} is nonadjacent to u_{2}.
In this case, we define Γ_{1} as the two-terminal graph with source u_{0}, sink u_{1}, and whose underlying graph is the induced subgraph of H induced by $\left\{u_{0}, u_{1}\right\}$. Then, Γ_{1} is an edge.

Once defined Γ_{1} as prescribed in Cases 1 to 5 above, we let j be such that u_{j} is the sink of $\Gamma_{1}, v_{1}, v_{2}, \ldots, v_{p_{1}}$ be the pendant vertices adjacent to $u_{j}, P^{\prime}=u_{j} u_{j+1} \ldots u_{\ell}$, and $\mathrm{H}^{\prime}=\mathrm{H}-\left(\left(\mathrm{V}\left(\Gamma_{1}\right) \backslash\left\{u_{j}\right\}\right) \cup\left\{v_{1}, \ldots, v_{p_{1}}\right\}\right)$. By construction, H^{\prime} and P^{\prime} satisfy the statement of Lemma 4.18 by letting H^{\prime} and P^{\prime} play the roles of H and P , respectively. If $j=\ell$, then H is the underlying graph of Γ_{1} with source u_{0} and $\operatorname{sink} u_{\ell}$ and the lemma holds for H . If $\mathrm{j}<\ell$, by induction hypothesis, H^{\prime} is the underlying graph of some $\Gamma_{2} \&_{p_{2}} \Gamma_{3} \&_{p_{3}} \cdots \&_{p_{n-1}} \Gamma_{n}$ where each Γ_{i} is a basic two-terminal graphs and each
$p_{i} \geqslant 0$, the source of Γ_{2} is u_{j}, and the sink of Γ_{n} is \mathfrak{u}_{ℓ}. So, H is the underlying graph of $\Gamma_{1} \&_{\mathfrak{p}_{1}} \Gamma_{2} \&_{\mathfrak{p}_{2}} \Gamma_{3} \&_{\mathfrak{p}_{3}} \cdots \&_{\mathfrak{p}_{n-1}} \Gamma_{n}$ where \mathfrak{u}_{0} is the source of Γ_{1} and \mathfrak{u}_{ℓ} is the sink of Γ_{n}. Now, Lemma 4.19 follows by induction.

As a consequence of the two above results, we now prove a structural characterization for fat caterpillars containing no A and no net.

Lemma 4.20. Let H be a graph. Then, H is a fat caterpillar containing no A and no net if and only if H is a linear concatenation of crowns, folds, rhombi, and K_{4} 's where the K_{4} links may occur only as the first and/or last links of the concatenation.

Proof. Suppose that H is a linear concatenation of a sequence $\Gamma_{1}, \ldots, \Gamma_{\mathrm{n}}$ of basic twoterminal graphs such that if Γ_{j} is a K_{4} then $j \in\{1, n\}$. Then, H contains no A and no net because each 4 -cycle of H has two nonconsecutive vertices adjacent to vertices of the 4 -cycle only and each triangle of H has at least one vertex of degree 2. Moreover, H has no cycle of length greater than 4 because each cycle of H is contained in one of the links and, by construction, the links are basic. Suppose, by the way of contradiction, that H contains a bipartite claw B. Let b_{0} be the center of B and let b_{1}, b_{2}, and b_{3} be the neighbors of b_{0} in B. As b_{0} has degree at least 3 in H, b_{0} is a concatenation vertex of H or a non-terminal vertex of a rhombus link. If b_{0} were the non-terminal vertex of a rhombus links and, without loss of generality, b_{1} were the remaining non-terminal vertex of the same link, then $N_{H}\left(b_{1}\right)=\left\{b_{0}, b_{2}, b_{3}\right\}$, which contradicts the choice of b_{0}, b_{1}, b_{2}, and b_{3}. Therefore, b_{0} is necessarily a concatenation vertex of H. As each of b_{1}, b_{2}, and b_{3} is a non-pendant vertex, at least two of them belong to the same link of H . Hence, we assume, without loss of generality, that b_{0} is a terminal vertex of Γ_{j} for some $j \in\{1,2, \ldots, n\}$ and b_{1} and b_{2} are two other vertices of Γ_{j}. By construction, $\mathrm{b}_{1}, \mathrm{~b}_{2} \in \mathrm{~N}_{\mathrm{H}}\left(\mathrm{b}_{0}\right), \mathrm{N}_{\mathrm{H}}\left(\mathrm{b}_{1}\right) \backslash\left\{\mathrm{b}_{0}, \mathrm{~b}_{2}\right\} \neq \varnothing, \mathrm{N}_{\mathrm{H}}\left(\mathrm{b}_{2}\right) \backslash\left\{\mathrm{b}_{0}, \mathrm{~b}_{1}\right\} \neq \varnothing$, and $\left|\left(N_{H}\left(b_{1}\right) \cup N_{H}\left(b_{2}\right)\right) \backslash\left\{b_{0}, b_{1}, b_{2}\right\}\right| \geqslant 2$. So, since Γ_{j} is basic, necessarily Γ_{j} is a K_{4} and either b_{1} or b_{2} is also a concatenation vertex of H. By symmetry, we assume, without loss of generality, that $j=1, b_{0}$ is the source of Γ_{1}, b_{1} is the sink of Γ_{1}, and b_{2} and b_{3} are the non-terminal vertices of H. Then, $N_{H}\left[b_{2}\right]=N_{H}\left[b_{3}\right]=\left\{b_{0}, b_{1}, b_{2}, b_{3}\right\}$, contradicting the choice of b_{0}, b_{1}, b_{2}, and b_{3}. This contradiction shows that H contains no bipartite claw and we conclude that H is a fat caterpillar.

Conversely, let H be a fat caterpillar containing no A and no net. If $H=K_{1}, H$ is the linear concatenation of an empty sequence of two-terminal graphs. Otherwise, there is some path $P=\mathfrak{u}_{0} \mathfrak{u}_{1} \ldots \mathfrak{u}_{\ell}$ as in Lemma 4.18 and $\ell \geqslant 1$. Then, by Lemma 4.19, H is the linear concatenation of basic two-terminal graphs. Moreover, as H contains no A, the K_{4} links, if any, occur as first and/or last links of the concatenation, which completes the proof of Lemma 4.20.

The following two lemmas describe the structure of the remaining fat caterpillars; i.e., those containing A or net.

Lemma 4.21. Let H be graph. Then, H is a fat caterpillar containing A if and only if H has an edge-dominating 4-cycle $\mathrm{C}=v_{1} v_{2} v_{3} v_{4} v_{1}$ and two different vertices $\mathrm{x}_{1}, \mathrm{x}_{2} \in \mathrm{~V}(\mathrm{H}) \backslash \mathrm{V}(\mathrm{C})$ such that x_{i} is adjacent to v_{i} for $i=1,2$, each non-pendant vertex in $\mathrm{V}(\mathrm{H}) \backslash \mathrm{V}(\mathrm{C})$ is a false twin of v_{4} of degree 2 , and one of the following holds:
(i) C is chordless.
(ii) $v_{1} v_{3}$ is the only chord of C and $\mathrm{d}_{\mathrm{H}}\left(v_{4}\right)=2$.
(iii) C has two chords and $\mathrm{d}_{\mathrm{H}}\left(v_{3}\right)=\mathrm{d}_{\mathrm{H}}\left(v_{4}\right)=3$.

Proof. The 'if' part is clear. In order to prove the 'only if', suppose that H is a fat caterpillar containing A. Then, there is some 4 -cycle $C=v_{1} v_{2} v_{3} v_{4} v_{1}$ and two different vertices $x_{1}, x_{2} \in V(H) \backslash V(C)$ such that x_{i} is adjacent to v_{i} for $i=1,2$. As H contains no bipartite claw and H is connected, C is edge-dominating in H . Therefore, as H has no 5-cycle, each vertex in $\mathrm{V}(\mathrm{H}) \backslash \mathrm{V}(\mathrm{C})$ is pendant or has exactly two neighbors which are nonconsecutive vertices of C. If there are two non-pendant vertices $w_{1}, w_{2} \in \mathrm{~V}(\mathrm{H}) \backslash \mathrm{V}(\mathrm{C})$, then w_{1} and w_{2} are false twins because H contains no bipartite claw. Therefore, we assume, without loss of generality, that each non-pendant vertex in $\mathrm{V}(\mathrm{H}) \backslash \mathrm{V}(\mathrm{C})$ is adjacent precisely to v_{1} and v_{3}. Thus, if there is some non-pendant vertex $w \in \mathrm{~V}(\mathrm{H}) \backslash V(\mathrm{C})$, then w is a false twin of v_{4} because H contains no bipartite claw and has no 5 -cycle. If C is chordless, then (i) holds. If C has two chords, then, as H contains no bipartite claw, $\mathrm{d}_{\mathrm{H}}\left(v_{3}\right)=\mathrm{d}_{\mathrm{H}}\left(v_{4}\right)=3$ and (iii) holds. Suppose that C has exactly one chord and assume, without loss of generality, that $v_{1} v_{3}$ is the only chord of C. As H has no 5-cycle and contains no bipartite claw, $\mathrm{d}_{\mathrm{H}}\left(v_{4}\right)=2$ and (ii) holds.

Lemma 4.22. Let H be a graph. Then, H is a fat caterpillar containing net but containing no A if and only if H has some edge-dominating triangle C such that each vertex in $\mathrm{V}(\mathrm{H}) \backslash \mathrm{V}(\mathrm{C})$ is pendant.

Proof. The 'if' part is clear. For the converse, suppose that H contains no bipartite claw. Since H contains net, there are six different vertices $v_{1}, v_{2}, v_{3}, x_{1}, x_{2}, x_{3}$ such that v_{1}, v_{2}, v_{3} are pairwise adjacent and v_{i} is adjacent to x_{i} for $i=1,2,3$. As H contains no bipartite claw and H is connected, $\mathrm{C}=\nu_{1} v_{2} v_{3} v_{1}$ is edge-dominating in H . In addition, as H contains no A, each vertex in $V(H) \backslash V(C)$ is pendant.

We close this sub-subsection with the following result that summarizes the structure of fat caterpillars.

Theorem 4.23. A graph H is a fat caterpillar if and only if exactly one of the following conditions holds:
(i) H is a linear concatenation of crowns, folds, rhombi, and K_{4} 's where the K_{4} links may occur only as the first and/or last links of the concatenation.
(ii) H is the circular concatenation edge $\&_{\mathfrak{p}_{1}}$ edge $\&_{\mathfrak{p}_{2}}$ edge $\& \mathfrak{p}_{3}$ edge $\&_{\mathfrak{p}_{4}} \circlearrowright$ for some nonnegative integers $p_{1}, p_{2}, p_{3}, p_{4}$ such that $p_{1}, p_{2} \geqslant 1$.
(iii) H is the circular concatenation edge $\&_{\mathfrak{p}_{1}}$ edge $\&_{\mathfrak{p}_{2}} m$-fold $\&_{\mathfrak{p}_{3}} \circlearrowright$ for some $m \geqslant 2$ and some nonnegative integers $p_{1}, p_{2}, p_{3}, p_{4}$ such that $p_{1}, p_{2} \geqslant 1$.
(iv) H is the circular concatenation edge $\&_{\mathfrak{p}_{1}}$ edge $\&_{\mathfrak{p}_{2}} m$-crown $\&_{\mathfrak{p}_{3}} \circlearrowright$ for some $m \geqslant 1$ and some nonnegative integers $p_{1}, p_{2}, p_{3}, p_{4}$ such that $p_{1}, p_{2} \geqslant 1$.
(v) H is the underlying graph of edge $\&_{\mathfrak{p}_{1}} \mathrm{~K}_{4} \&_{\boldsymbol{p}_{2}}$ edge for some nonnegative integers $\mathrm{p}_{1}, \mathrm{p}_{2}$.
(vi) H is the circular concatenation edge $\&_{\mathfrak{p}_{1}}$ edge $\&_{\mathfrak{p}_{2}}$ edge $\&_{\boldsymbol{p}_{3}} \circlearrowright$ for some positive integers p_{1}, p_{2}, p_{3}.

4.2.1.2 Structure theorem for graphs containing no bipartite claw

To prove our structure theorem, we need to prove first the following lemma.
Lemma 4.24. Let H be a connected graph containing no bipartite claw and having some cycle of length at least 5 . Assume further that the 5 -cycles of H are chordless and the 6 -cycles of H have no long chords and no three consecutive short chords. If $\mathrm{C}=\mathfrak{u}_{1} \mathfrak{u}_{2} \ldots \mathfrak{u}_{\mathcal{\ell}} \mathfrak{u}_{1}$ is a longest cycle of H , then C has no long chords and no three consecutive short chords and, for each vertex $v \in \mathrm{~V}(\mathrm{H}) \backslash \mathrm{V}(\mathrm{C})$, one of the following assertions holds:
(i) v is pendant and its only neighbor is not the midpoint of any short chord of C .
(ii) v has degree 2 and is a false twin of $\mathfrak{u}_{\mathfrak{j}}$ for some $\mathfrak{j} \in\{1,2, \ldots, \ell\}$.

As a result, H is a circular concatenation of crowns, folds, and rhombi.
Proof. C has length at least 5 by hypothesis and C is edge-dominating in H because H contains no bipartite claw. If C had a long chord, then C would have length at least 7 (because we are assuming that the 6 -cycles have no long chords) and, as a consequence, H would contain a bipartite claw. Hence, C has no long chords. If C had three consecutive short chords, then C would have length at least 7 (because we are assuming that the 5 -cycles are chordless and the 6 -cycles have no three consecutive short chords) and would imply that H contains a bipartite claw. This means that C has no three consecutive short chords.

Let $v \in \mathrm{~V}(\mathrm{H}) \backslash \mathrm{V}(\mathrm{C})$. As C is edge-dominating and H is connected, $\mathrm{d}_{\mathrm{H}}(v) \geqslant 1$. Assume first that v is pendant. If the only neighbor of v were the midpoint of some short chord of C, then C should have length at least 6 (because we are assuming that 5 cycles are chordless) and, therefore, H would contain a bipartite claw, a contradiction. Therefore, if v is pendant, then (i) holds. Assume now that v is non-pendant. As C is a longest cycle of H , no two consecutive vertex of C are adjacent to v. Moreover, as H contains no bipartite claw, v has no two neighbors at distance larger than 2 within C. This means that if v had at least three neighbors, then C would be a 6 -cycle and v would be adjacent to every second vertex of C , but then H would contain a bipartite claw. We conclude that v has exactly two neighbors and that this two neighbors are at distance 2 within C; i.e., $N_{H}(v)=\left\{u_{j-1}, u_{j+1}\right\}$ for some $j \in\{1, \ldots, \ell\}$ (from this point on, subindices should be understood modulo ℓ) and, due to the fact that H contains no bipartite claw and its 5 -cycles are chordless, u_{j} is a false twin of v. This proves that if v is not pendant, then (ii) holds.

It only remains to prove that H is a circular concatenation of crowns, folds, and rhombi. We claim that there is some $k \in\{1,2, \ldots, \ell\}$ such that \mathfrak{u}_{k} is neither the midpoint of any short chord of C nor a false twin of any vertex outside $V(C)$. Indeed, if no vertex of C is a false twin of a vertex outside $V(C)$, the existence of k is guaranteed by the fact that C has no three consecutive short chords. Suppose that, on the contrary, there is some $j \in\{1, \ldots, \ell\}$ such that u_{j} is a false twin of a vertex outside $V(C)$. Then, as C is a longest cycle of $H, \mathfrak{u}_{\mathfrak{j}-1}$ is not the midpoint of a short chord of C and $\mathfrak{u}_{\mathfrak{j}-1}$ is not the false twin of any vertex outside $V(C)$ because $d_{H}\left(u_{j-1}\right)>2$. Then, the claim holds by letting $k=\mathfrak{j}-1$. This concludes the proof of the claim.

Assume, without loss of generality, that u_{ℓ} is neither the midpoint of any short chord nor a false twin of any vertex outside $\mathrm{V}(\mathrm{C})$. Let $v_{1}, v_{2}, \ldots, v_{\mathrm{q}}$ be the pendant vertices of H incident to u_{ℓ}. We create a new vertex u_{0} and we add the edge $u_{0} u_{1}$ and the edges joining \mathfrak{u}_{0} to every false twin of \mathfrak{u}_{1} outside $V(C)$ (if any). If \mathfrak{u}_{ℓ} is adjacent to u_{2}, then we also add an edge joining u_{0} to u_{2}. Finally, we remove every edge joining u_{ℓ} to a neighbor of \mathfrak{u}_{0}. Let H^{\prime} be the graph that arises this way and let $\mathrm{P}^{\prime}=\mathfrak{u}_{0} \mathfrak{u}_{1} u_{2} \ldots \mathfrak{u}_{\ell}$. Clearly, H^{\prime} and P^{\prime} satisfy Lemma 4.18 by letting H^{\prime} and P^{\prime} play the roles of H and P , respectively. So, by Lemma 4.19 and its proof, H^{\prime} is the underlying graph of some $\Gamma_{1} \&_{p_{1}} \Gamma_{2} \&_{p_{2}} \& \cdots \&_{\mathfrak{p}_{n-1}} \Gamma_{n}$ where each Γ_{i} is a crown, a fold, or a rhombus, and each $p_{i} \geqslant 0$. (Indeed, no Γ_{i} is a K_{4} because no vertex $v \in V\left(H^{\prime}\right) \backslash V\left(\mathrm{P}^{\prime}\right)$ has degree 3.) Finally, H is the circular concatenation $\Gamma_{1} \&_{\mathfrak{p}_{1}} \Gamma_{2} \&_{\mathfrak{p}_{2}} \& \cdots \&_{\mathfrak{p}_{n-1}} \Gamma_{\mathrm{n}} \&_{\mathrm{q}} \circlearrowright$, where each link is a crown, a fold, or a rhombus.

The next theorem is the main result of this subsection and proves that, except for a few sporadic cases (assertions (i), (ii), and (iii) below), connected graphs containing no bipartite claw are linear and circular concatenations of basic two-terminal graphs
(assertion (iv)).
Theorem 4.25. Let H be a connected graph. Then, H contains no bipartite claw if and only if at least one of the following assertions holds:
(i) H is spanned by a 6-cycle having a long chord or three consecutive short chords.
(ii) H has a 5 -cycle C and a vertex $\mathrm{u} \in \mathrm{V}(\mathrm{C})$ such that: (1) each $\mathcal{v} \in \mathrm{V}(\mathrm{H}) \backslash \mathrm{V}(\mathrm{C})$ is a pendant vertex adjacent to u and (2) C has three consecutive short chords or u is the midpoint of a chord of C.
(iii) H has a complete set Q of size 4 and there are two vertices $q_{1}, q_{2} \in Q$ such that: (1) each $v \in \mathrm{~V}(\mathrm{H}) \backslash \mathrm{V}(\mathrm{Q})$ is a pendant vertex adjacent to q_{1} or q_{2} and (2) there is at least one pendant vertex adjacent to q_{i} for $i=1,2$.
(iv) H is a linear or circular concatenation of crowns, folds, rhombi, and K_{4} 's, where the K_{4} links may occur only in the case of linear concatenation and only as the first and/or last links of the concatenation.

Proof. Suppose that H contains no bipartite claw and we will prove that at least one of the assertions (i)-(iv) holds. Since H contains no bipartite claw and H is connected, every cycle of H of length at least 5 is edge-dominating in H .

If H contains a 6 -cycle C having a long chord or three consecutive short chords, then, as H contains no bipartite claw, H is spanned by C and assertion (i) holds. So, from now on, we assume, without loss of generality, that H contains no 6 -cycle having a long chord or three consecutive short chords.

Suppose now that H contains antenna. Then, H has some 5 -cycle $\mathrm{C}=v_{1} v_{2} v_{3} v_{4} v_{5} v_{1}$ and some vertex $v \in \mathrm{~V}(\mathrm{H}) \backslash \mathrm{V}(\mathrm{C})$ such that v is adjacent to v_{2} and v_{1} is adjacent to v_{3}. If v were adjacent to any vertex of C different from v_{2}, then H would have a 6 -cycle having a long chord, contradicting our assumption. If any vertex of C different from v_{2} were adjacent to some vertex outside $V(C)$ different from v, then H would contain a bipartite claw. Therefore, as H is connected and C is edge-dominating, each vertex $v \in \mathrm{~V}(\mathrm{H}) \backslash \mathrm{V}(\mathrm{C})$ is a pendant vertex adjacent to v_{2}. Thus, (ii) holds. So, from now on, we assume, without loss of generality, that H contains no antenna.

Suppose now H has a 5 -cycle C with three consecutive short chords. If there were any vertex $v \in \mathrm{~V}(\mathrm{H}) \backslash \mathrm{V}(\mathrm{C})$ adjacent to the two vertices v_{1} and v_{2} of C that are no midpoints of any of these three short chords, then H would have a 6 -cycle with three consecutive short chords, contradicting our assumption. Since H contains no antenna, the midpoints of the chords of C have neighbors in $V(C)$ only. Therefore, as C is edge-dominating, each $v \in \mathrm{~V}(\mathrm{H}) \backslash \mathrm{V}(\mathrm{C})$ is a pendant vertex adjacent to v_{1} or v_{2}. If there were two different vertices $\mathfrak{u}_{1}, u_{2} \in \mathrm{~V}(\mathrm{H}) \backslash \mathrm{V}(\mathrm{C})$ such that \mathfrak{u}_{i} is adjacent to v_{i} for
$\mathfrak{i}=1,2$, then H would contain a bipartite claw. Hence, without loss of generality, each $v \in \mathrm{~V}(\mathrm{H}) \backslash \mathrm{V}(\mathrm{C})$ is a pendant vertex adjacent to v_{1} and (ii) holds. From now on, we assume, without loss of generality that H has no 5-cycle with three consecutive short chords.

Suppose now that H has a 5 -cycle $\mathrm{C}=v_{1} v_{2} v_{3} v_{4} v_{5} v_{1}$ with at least three chords. Then, by hypothesis, C has exactly three chords and, without loss of generality, the chords of C are $v_{1} v_{3}, v_{1} v_{4}$, and $v_{3} v_{5}$. As C is edge-dominating and H contains no antenna, each vertex $v \in \mathrm{~V}(\mathrm{H}) \backslash \mathrm{V}(\mathrm{C})$ is adjacent to v_{1} and/or to v_{3} only. Then, $\mathrm{H}=$ rhombus $\&_{\mathfrak{p}_{1}} m$-crown $\&_{\mathfrak{p}_{2}} \circlearrowright$ for some $p_{1}, p_{2} \geqslant 0$ and some $m \geqslant 1$ and, in particular, (iv) holds. So, from now on, we assume, without loss of generality, that each 5-cycle of H has at most two chords.

Suppose that H has a 5 -cycle $\mathrm{C}=v_{1} v_{2} v_{3} v_{4} v_{5} v_{1}$ with two crossing chords. Without loss of generality, assume that $v_{2} v_{4}$ and $v_{3} v_{5}$ are the chords of C . As H contains no antenna, v_{3} and v_{4} have neighbors in $\mathrm{V}(\mathrm{C})$ only. Suppose that there is some vertex $v \in \mathrm{~V}(\mathrm{H}) \backslash \mathrm{V}(\mathrm{C})$ such that v is adjacent simultaneously to v_{1}, v_{2}, and v_{5}. Since H contains no bipartite claw, it follows that the only neighbors of v_{1} are v, v_{2}, and v_{5}, and the only vertex outside $V(C)$ adjacent simultaneously to v_{2} and v_{5} is v. So, since C is edgedominating, we conclude that $\mathrm{H}=$ rhombus $\&_{\mathfrak{p}_{1}}$ rhombus $\&_{\mathfrak{p}_{2}} \circlearrowright$ for some $p_{1}, \boldsymbol{p}_{2} \geqslant 0$ and, in particular, (iv) holds. So, without loss of generality, assume that there is no vertex outside $V(\mathrm{C})$ adjacent to v_{1}, v_{2}, and v_{5} simultaneously. Suppose now that there is some vertex $v \in \mathrm{~V}(\mathrm{H}) \backslash \mathrm{V}(\mathrm{C})$ which is adjacent to v_{2} and v_{5} and nonadjacent to v_{1}. Since H contains no bipartite claw, v_{1} has no neighbors apart from v_{2} and v_{5}. So, since C is edge-dominating, we conclude that $H=$ rhombus $\&_{\mathfrak{p}_{1}} m$-fold $\&_{\mathfrak{p}_{2}} \circlearrowright$ for some $p_{1}, p_{2} \geqslant 0$ and $m \geqslant 2$ and, in particular, (iv) holds. Finally, assume, without loss of generality, that there is no vertex $v \in \mathrm{~V}(\mathrm{H}) \backslash \mathrm{V}(\mathrm{C})$ adjacent to v_{2} and v_{5} simultaneously. Then, since C is edge-dominating, $H=$ rhombus $\& \mathfrak{p}_{1} m_{1}$-crown $\&_{\mathfrak{p}_{2}} m_{2}$-crown $\& \mathfrak{p}_{3} \circlearrowright$ for some $p_{1}, p_{2}, p_{3}, m_{1}, m_{2} \geqslant 0$ and (iv) holds.

Suppose that H has a 5 -cycle $\mathrm{C}=v_{1} v_{2} v_{3} v_{4} v_{5} v_{1}$ with two noncrossing chords. Without loss of generality, assume that $v_{1} v_{3}$ and $v_{1} v_{4}$ are the chords of C. Since H contains no antenna, vertices v_{2} and v_{5} have neighbors in $V(C)$ only. If there were a vertex outside $V(\mathrm{C})$ which were adjacent to v_{1}, v_{3}, and v_{4}, then H would have a 6 -cycle with a long chord, contradicting our assumption. Therefore, as C is edge-dominating, $\mathrm{H}=\mathfrak{m}_{1}$-crown $\& \mathfrak{p}_{1} \mathfrak{m}_{2}$-crown $\& \mathfrak{p}_{2} \mathfrak{m}_{3}$-crown $\& \mathfrak{p}_{3} \circlearrowright$ for some $\mathfrak{p}_{1}, p_{2}, p_{3}, \mathfrak{m}_{1} \geqslant 0$ and some $m_{2}, m_{3} \geqslant 1$ and (iv) holds. Therefore, from now on, we assume, without loss of generality, that each 5-cycle of H has at most one chord.

Suppose now that H has a 5 -cycle $\mathrm{C}=v_{1} v_{2} v_{3} v_{4} v_{5} v_{1}$ with exactly one chord. Without loss of generality, assume that the only chord is $v_{1} v_{3}$. Since H has no antenna, no vertex outside $V(C)$ is adjacent to v_{2}. If there were some vertex outside $V(C)$ adjacent
to at least three vertices of C , then H would have a 5 -cycle with at least two chords, contradicting our hypothesis. Suppose that there is some vertex $v \in \mathrm{~V}(\mathrm{H}) \backslash \mathrm{V}(\mathrm{C})$ which is adjacent to two nonconsecutive vertices of C different from v_{1} and v_{3}. Without loss of generality, assume that the two neighbors of v are v_{1} and v_{4}. Since H contains no bipartite claw, ν_{5} has no neighbors outside $V(C)$. As C is edge-dominating, we conclude that $H=m_{1}$-fold $\&_{\mathfrak{p}_{1}} \mathfrak{m}_{2}$-crown $\&_{\mathfrak{p}_{2}} \mathfrak{m}_{3}$-crown $\&_{\mathfrak{p}_{3}} \circlearrowright$ for some $\mathfrak{m}_{1} \geqslant$ $2, m_{2} \geqslant 1$, and some $m_{3}, p_{1}, p_{2}, p_{3} \geqslant 0$. If, on the contrary, there is no vertex in $\mathrm{V}(\mathrm{H}) \backslash \mathrm{V}(\mathrm{C})$ adjacent to two nonconsecutive vertices of C different from v_{1} and v_{3}, then $H=m_{1}$-crown $\&_{p_{1}} m_{2}$-crown $\&_{p_{2}} m_{3}$-crown $\&_{p_{3}} m_{4}$-crown $\&_{p_{4}} \circlearrowright$ for some $m_{1} \geqslant 1$ and some $m_{2}, m_{3}, m_{4}, p_{1}, p_{2}, p_{3}, p_{4} \geqslant 0$. In both cases, (iv) holds. Hence, from now on, we assume that every 5 -cycle of H is chordless.

As we are assuming that H has no 6 -cycle having a long chord or three consecutive short chords and that each 5 -cycle of H is chordless, if H has a cycle of length at least 5 , then, by Lemma 4.24, H is a circular concatenation of crowns, folds, and rhombi, which means that (iv) holds. So, we assume, without loss of generality, that each cycle of H has length at most 4 . But then, H is a fat caterpillar and assertion (iii) or (iv) holds by virtue of Theorem 4.23.

Conversely, if H satisfies one of the assertions (i)-(iii), then clearly H contains no bipartite claw. Finally, if H satisfies assertion (iv), then also H contains no biparite claw by reasoning as in the first part of the proof of Lemma 4.20.

Notice that, although those graphs satisfying (iii) are the underlying graphs of edge $\& \mathfrak{p}_{1} K_{4} \&{ }_{p_{2}}$ edge for positive integers p_{1}, p_{2}, we prefer to consider (iii) a sporadic case.

4.2.2 Edge-coloring graphs containing no bipartite claw

The chromatic index $\chi^{\prime}(\mathrm{H})$ of a graph H is the minimum number of colors needed to color all the edges of H so that no two incident edges receive the same color. Clearly, $\chi^{\prime}(\mathrm{H}) \geqslant \Delta(\mathrm{H})$. In fact, Vizing [122] proved that for every graph H either $\chi^{\prime}(\mathrm{H})=$ $\Delta(\mathrm{H})$ or $\chi^{\prime}(\mathrm{H})=\Delta(\mathrm{H})+1$. The problem of deciding whether a graph H satisfies $\chi^{\prime}(\mathrm{H})=\Delta(\mathrm{H})$ is NP-complete even for graphs having only vertices of degree 3 [74]. Interestingly, the problem of deciding whether or not $\chi^{\prime}(\mathrm{H})=\Delta(\mathrm{H})$ can be solved in linear time if H is contains no bipartite claw. Indeed, as H contains no bipartite claw as a minor, it has bounded tree-width [106], which means that $\chi^{\prime}(\mathrm{H})$ can determined via the algorithm devised in [129] (for the undefined notions see, e.g., Chapter 12 of [46]). In this subsection, we give a structural characterization of those graphs having no bipartite claw that satisfy $\chi^{\prime} \neq \Delta$.

We need to introduce some terminology related to edge-coloring. A major vertex of

Figure 4.6: Graphs $\mathrm{P}^{*}, \mathrm{SK}_{4}, \mathrm{~K}_{5}-e, \mathrm{~L}_{5}$, and SK_{5}
a graph is a vertex of maximum degree. If H is a graph, the core H_{Δ} of H is the subgraph of H induced by the major vertices of H . Graphs H for which $\chi^{\prime}(\mathrm{H})=\Delta(\mathrm{H})$ are Class 1, and otherwise they are Class 2. A graph H is critical if H is Class 2, connected, and $\chi^{\prime}(H-e)<\chi^{\prime}(H)$ for each $e \in E(H)$. Some graphs needed in what follows are introduced in Figure 4.6.

We rely on the following results.
Theorem 4.26 ([73]). If H is a connected Class 2 graph with $\Delta\left(\mathrm{H}_{\Delta}\right) \leqslant 2$, then the following conditions hold:
(i) H is critical.
(ii) $\delta\left(\mathrm{H}_{\Delta}\right)=2$.
(iii) $\delta(\mathrm{H})=\Delta(\mathrm{H})-1$, unless H is an odd chordless cycle.
(iv) Every vertex of H is adjacent to some major vertex of H .

Theorem 4.27 ([31]). Let H be a connected graph such that $\Delta\left(\mathrm{H}_{\Delta}\right) \leqslant 2$ and $\Delta(\mathrm{H})=3$. Then, H is Class 1, unless $\mathrm{H}=\mathrm{P}^{*}$.

Theorem 4.28 ([123]). If H is a graph of Class 2, then H contains a critical subgraph of maximum degree k for each k such that $2 \leqslant \mathrm{k} \leqslant \Delta(\mathrm{H})$.

Theorem 4.29 ([3]). There are no critical graphs having 4 or 6 vertices. The only critical graphs having 5 vertices are $\mathrm{C}_{5}, \mathrm{SK}_{4}$, and $\mathrm{K}_{5}-e$.

By exploiting our structure theorem for graphs containing no bipartite claw (Theorem 4.25) and the results above, we give a structural characterization of all connected Class 2 graphs within graphs containing no bipartite claw, as follows.

Theorem 4.30. Let H be a connected graph containing no bipartite claw. Then, $\chi^{\prime}(\mathrm{H})=$ $\Delta(\mathrm{H})$ if and only if none of the following statements holds:
(i) $\Delta(\mathrm{H})=2$ and H is an odd chordless cycle.
(ii) $\Delta(\mathrm{H})=3$ and H is the circular concatenation of a sequence of edges, triangles, and rhombi, where the number of edge links equals one plus the number of rhombus links.
(iii) $\Delta(\mathrm{H})=4$ and $\mathrm{H}=\mathrm{K}_{5}-e, \mathrm{~K}_{5}, \mathrm{~L}_{5}$, or SK_{5}.

Proof. Let H be a connected graph containing no bipartite claw and such that $\chi^{\prime}(\mathrm{H}) \neq$ $\Delta(\mathrm{H})$. We need to prove that H satisfies (i), (ii), or (iii). Since the result holds trivially if $\Delta(\mathrm{H}) \leqslant 2$, we assume, without loss of generality, that $\Delta(\mathrm{H}) \geqslant 3$. The proof splits into three cases.

Case 1. $\Delta\left(\mathrm{H}_{\Delta}\right) \leqslant 2$.
We claim that $\mathrm{H}=\mathrm{K}_{5}-e$. Since P^{*} contains a bipartite claw, if $\Delta(\mathrm{H})=3$ then H would be Class 1 by Theorem 4.27, contradicting the hypothesis. Thus, $\Delta(\mathrm{H}) \geqslant 4$. By Theorem 4.26, $\delta\left(\mathrm{H}_{\Delta}\right)=2$ and $\delta(\mathrm{H})=\Delta(\mathrm{H})-1 \geqslant 3$. Suppose, by the way of contradiction, that assertion (iv) of Theorem 4.25 holds for H. Since the vertices of H that are not concatenation vertices have degree at most 3 , all major vertices of H are concatenation vertices. Since $\delta\left(\mathrm{H}_{\Delta}\right)=2, \mathrm{H}$ is necessarily a circular concatenation of crowns. Finally, since $\delta(\mathrm{H}) \geqslant 3$, each of the crowns of the concatenation is an edge and H has no pendant vertices; i.e., H is a chordless cycle, contradicting $\Delta(\mathrm{H}) \geqslant 4$. This contradiction proves that assertion (iv) of Theorem 4.25 does not hold for H . Thus, assertion (i), (ii), or (iii) of Theorem 4.25 holds for H . As $\delta(\mathrm{H}) \geqslant 3$, H has no pendant vertices and necessarily $|\mathrm{V}(\mathrm{H})|=5$ or 6 . So, since H is critical and $\Delta(H) \geqslant 4$, it follows from Theorem 4.29 that $\mathrm{H}=\mathrm{K}_{5}-e$, as claimed.

Case 2. $\Delta\left(\mathrm{H}_{\Delta}\right) \geqslant 3$ and $\Delta(\mathrm{H}) \geqslant 4$.
Suppose that H has a 6 -cycle C having a long chord. This implies that C is spanning in H because H is connected and contains no bipartite claw. In particular, $|V(H)| \leqslant 6$. Then, as we are assuming that $\Delta(\mathrm{H}) \geqslant 4$, Theorems 4.28 and 4.29 imply that H contains $\mathrm{K}_{5}-e$ and $\Delta(\mathrm{H})=4$. Therefore, as H has a spanning 6 -cycle, H arises from $\mathrm{K}_{5}-e$ by adding one vertex adjacent precisely to the two vertices of degree 3 of the $K_{5}-e$; i.e., $\mathrm{H}=\mathrm{SK}_{5}$. So, for the remaining of this case, we assume that H has no 6 -cycle having a long chord.

As $\Delta\left(\mathrm{H}_{\Delta}\right) \geqslant 3$, there is some major vertex w_{0} of H that is adjacent in H to three other major vertices w_{1}, w_{2}, w_{3} of H. Let $W=\left\{w_{0}, w_{1}, w_{2}, w_{3}\right\}$.

Suppose, by the way of contradiction, that $\left|N_{H}\left(w_{i}\right) \backslash W\right| \geqslant 2$ for each $\mathfrak{i}=1,2,3$. If $\left|\left(\mathrm{N}_{\mathrm{H}}\left(w_{1}\right) \cup \mathrm{N}_{\mathrm{H}}\left(w_{2}\right) \cup \mathrm{N}_{\mathrm{H}}\left(w_{3}\right)\right) \backslash W\right| \geqslant 3$, then, by Hall's Theorem, H would contain a bipartite claw, a contradiction. We conclude that there are two vertices $x_{1}, x_{2} \in$ $\mathrm{V}(\mathrm{H}) \backslash W$ such that $x_{1} \neq x_{2}$ and $N_{H}\left(w_{i}\right) \backslash W=\left\{x_{1}, x_{2}\right\}$ for each $i=1,2,3$. Then, $w_{0} w_{1} x_{1} w_{2} x_{2} w_{3} w_{0}$ is a 6 -cycle having three long chords, a contradiction. As this contradiction arose from assuming that $\left|N_{H}\left(w_{i}\right) \backslash W\right| \geqslant 2$ for each $i=1,2,3$, there is some $j \in\{1,2,3\}$ such that $\left|N_{H}\left(w_{j}\right) \backslash W\right| \leqslant 1$ and, in particular, $\Delta(H)=4$.

Suppose now that $\left|\left(\mathrm{N}_{\mathrm{H}}\left(w_{1}\right) \cup \mathrm{N}_{\mathrm{H}}\left(w_{2}\right) \cup \mathrm{N}_{\mathrm{H}}\left(w_{3}\right)\right) \backslash W\right| \geqslant 2$. Then, by Hall's Theorem and by symmetry, we assume, without loss of generality, that there are two
different vertices $x_{1}, x_{2} \in V(H) \backslash W$ such that x_{i} is adjacent to w_{i}, for $i=1,2$, and $\left|\mathrm{N}_{\mathrm{H}}\left(w_{3}\right) \backslash W\right| \leqslant 1$. As w_{3} is a major vertex, w_{3} is necessarily adjacent to w_{1} and w_{2}. As $\Delta(\mathrm{H})=4$ and H contains no bipartite claw, for each of w_{0} and w_{3}, its only neighbor outside W is either x_{1} or x_{2}. By symmetry, we assume, without loss of generality, that $\mathrm{N}_{\mathrm{H}}\left[w_{3}\right]=W \cup\left\{x_{1}\right\}$. Then, as H contains no bipartite claw and has no 6 -cycle having a long chord, $\mathrm{N}_{\mathrm{H}}\left[w_{0}\right]=\mathrm{W} \cup\left\{\mathrm{x}_{1}\right\}, \mathrm{N}_{\mathrm{H}}\left[w_{1}\right]=\mathrm{W} \cup\left\{\mathrm{x}_{1}\right\}, \mathrm{N}_{\mathrm{H}}\left[w_{2}\right]=\mathrm{W} \cup\left\{\mathrm{x}_{2}\right\}$, $\mathrm{N}_{\mathrm{H}}\left(\mathrm{x}_{1}\right)=\left\{w_{0}, w_{1}, w_{3}\right\}$, and $\mathrm{N}_{\mathrm{H}}\left(\mathrm{x}_{2}\right)=\left\{w_{2}\right\}$. We conclude that $\mathrm{H}=\mathrm{L}_{5}$.

Finally, suppose that $\left|\left(N_{H}\left(w_{1}\right) \cup N_{H}\left(w_{2}\right) \cup N_{H}\left(w_{3}\right)\right) \backslash W\right|=1$ and, consequently, $\mathrm{N}_{\mathrm{H}}\left[w_{1}\right]=\mathrm{N}_{\mathrm{H}}\left[w_{2}\right]=\mathrm{N}_{\mathrm{H}}\left[w_{3}\right]=\mathrm{W} \cup\{x\}$ for some $x \in \mathrm{~V}(\mathrm{H}) \backslash W$. If w_{0} is adjacent to x, then $H=K_{5}$. If, on the contrary, the neighbor of w_{0} outside W is $x^{\prime} \neq x$, then, as H contains no bipartite claw and has no 6-cycle having a long chord, $\mathrm{H}=\mathrm{L}_{5}$.

Case 3. $\Delta\left(\mathrm{H}_{\Delta}\right) \geqslant 3$ and $\Delta(\mathrm{H})=3$.
As $\Delta(\mathrm{H})=3$, (iii) of Theorem 4.25 does not hold. Suppose, by the way of contradiction, that (i) or (ii) of Theorem 4.25 holds for H . Then, $|\mathrm{V}(\mathrm{H})|=5$ or 6 and, by Theorems 4.28 and $4.29, \mathrm{H}$ contains a SK_{4}. Therefore, as H contains no bipartite claw, H is connected, and $\Delta(\mathrm{H})=3$, it follows that either $\mathrm{H}=\mathrm{SK}_{4}$ or H arises from SK_{4} by adding a pendant vertex adjacent to the vertex of degree 2 of the SK_{4}, contradicting the assumption that (i) or (ii) of Theorem 4.25 holds. We conclude that, necessarily, H is a linear or circular concatenation as described in (iv) of Theorem 4.25. As $\Delta(\mathrm{H})=3$, no link of the linear or circular concatenation is an m-crown for any $m \geqslant 3$ or an m fold for any $m \geqslant 4$. Moreover, if any of the links in the linear or circular concatenation were a 2 -crown, 3 -fold, or K_{4}, then H would be precisely the underlying graph of a 2-crown, 3-fold, or K_{4}, and H would be Class 1, a contradiction. Therefore, H is a linear or circular concatenation of edges, triangles, squares, and rhombi. As $\Delta(H)=3$, if any link of the concatenation is a triangle, square, or rhombus, then its adjacent links in the concatenation are edges. Then, it is clear that there is a 3-edge-coloring of H if and only if there is a coloring of only the edge links of H such that:
(1) Each two edge links that are adjacent to the same triangle link are colored with different colors.
(2) Each two edge links that are adjacent to the same rhombus link are colored with the same color.
(3) Each two adjacent edge links are colored with different colors.

So, if H is a linear concatenation, a greedy coloring of the edge links following the order of their occurrence in the linear concatenation and following rules (1)-(3) above, ends up successfully, implying that H has a 3-edge-coloring, a contradiction with the fact that H is Class 2. So, H is a circular concatenation. Suppose, by the
way of contradiction, that some link of the circular concatenation is a square. Then, $H=$ edge $\&_{\mathfrak{p}_{1}} \Gamma_{2} \&_{p_{2}} \cdots \&_{\mathfrak{p}_{n-1}}$ edge $\&$ square \circlearrowright and, as H is not 3-edge-colorable, edge $\&_{1}$ edge $\&_{\mathfrak{p}_{1}} \& \Gamma_{1} \&_{\mathfrak{p}_{1}} \Gamma_{2} \&_{\mathfrak{p}_{2}} \cdots \&_{\mathfrak{p}_{n-1}}$ edge $\&_{1}$ edge is a linear concatenation of edges, triangle, squares, and rhombi that is no 3 -edge-colorable, a contradiction to what we have just shown. This contradiction proves that H is a circular concatenation of edges, triangles, and rhombi only.

We will now prove that if H is a circular concatenation of edges, triangles, and rhombi such that $\Delta\left(\mathrm{H}_{\Delta}\right) \geqslant 3$ and $\Delta(\mathrm{H})=3$, then H is Class 2 if and only if H has exactly one more edge links than rhombus links. As $\Delta\left(\mathrm{H}_{\Delta}\right) \geqslant 3, \mathrm{H}$ has at last one rhombus link. So, without loss of generality, $\mathrm{H}=$ edge $\&_{\mathfrak{p}_{1}} \Gamma_{2} \&_{\mathfrak{p}_{2}} \cdots \&_{\mathfrak{p}_{n-1}}$ edge $\&$ rhombus \& \circlearrowright. Notice that H is Class 2 if and only if there is no 3-edge-coloring of the edge links of $\mathrm{H}^{\prime}=$ edge $\&_{\mathfrak{p}_{1}} \Gamma_{2} \&_{\mathfrak{p}_{2}} \cdots \&_{\mathfrak{p}_{n-1}}$ edge satisfying rules (1)-(3) above and such that the first and the last link of H^{\prime} are colored with the same color. Moreover, H^{\prime} is not 3 -edgecolorable satisfying rules (1)-(3) above if and only if the graph $\mathrm{H}^{\prime \prime}$, that arises from H^{\prime} by contracting each triangle link to a vertex and contracting each pair formed by a rhombus link followed by an edge also to a vertex, consists of precisely two edges; i.e., H^{\prime} has two more edge links than rhombus links. We conclude that H has exactly one more edge links than rhombus links; i.e., (ii) holds. This completes Case 3 and the proof of the 'only if' part of the theorem.

Notice also that we have just proved that if (ii) holds for H, then by the analysis in Case 3, H is Class 2 . As a result, the ' if ' part of the theorem is also proved because, if (i) or (iii) holds for H , then H is clearly Class 2 .

Corollary 4.31. The critical graphs containing no bipartite claw are the odd cycles, $\mathrm{K}_{5}-\mathrm{e}$, and those graphs H satisfying $\Delta(\mathrm{H})=3$ that are circular concatenations of edges, triangles, and rhombi having exactly one more edge links than rhombus links and without pendant edges.

4.2.3 Matching-perfect graphs

As mentioned in the beginning of this section, in order to prove Theorems 4.16 and 4.17, it suffices to prove the theorem below, which is the main result of this subsection.

Theorem 4.32. Let H be a connected graph containing no bipartite claw and such that the length of each cycle of H is at most 4 or is a multiple of 3. Then, $\alpha_{\mathrm{m}}(\mathrm{H})=\tau_{\mathrm{m}}(\mathrm{H})$.

To prove that $\alpha_{\mathrm{m}}(\mathrm{H})=\tau_{\mathrm{m}}(\mathrm{H})$ in Theorem 4.32, we combine upper bounds on $\tau_{\mathrm{m}}(\mathrm{H})$ with lower bounds on $\alpha_{\mathrm{m}}(\mathrm{H})$. For instance, the next lemma states a simple yet useful upper bound on $\tau_{m}(H)$.

Lemma 4.33. If H is a graph and v_{1} and v_{2} are two adjacent vertices of H , then the set of edges of H that are incident to v_{1} and/or to v_{2} is a matching-transversal of H . In particular, $\tau_{\mathrm{m}}(\mathrm{H}) \leqslant \mathrm{d}_{\mathrm{H}}\left(v_{1}\right)+\mathrm{d}_{\mathrm{H}}\left(v_{2}\right)-1$.

Proof. No matching M of H disjoint from $E_{H}\left(v_{1}\right) \cup E_{H}\left(v_{2}\right)$ is maximum because $M \cup$ $\left\{v_{1} v_{2}\right\}$ is a larger matching of H .

A partial k-edge-coloring of a graph H is a map $\phi: E(H) \rightarrow\{0,1,2, \ldots, k\}$ such that, for each pair of incident edges e_{1}, e_{2} of $H, \phi\left(e_{1}\right)=\phi\left(e_{2}\right)$ implies $\phi\left(e_{1}\right)=\phi\left(e_{2}\right)=0$. If $\phi(e) \neq 0, \mathrm{e}$ is said to be colored with color $\phi(e)$; otherwise, e is said to be uncolored. A k -edge-coloring of H is a partial k -edge-coloring that colors all edges of H . The color classes of a partial k-edge-coloring are the sets $\xi_{1}, \xi_{2}, \ldots, \xi_{k}$ where ξ_{j} is the set of edges of H colored by ϕ with color \mathfrak{j}, for each $j=1,2, \ldots, k$.

We complement the upper bounds on τ_{m} with lower bounds on α_{m} obtained with the help of a special kind of partial edge-colorings that we call profuse-colorings. A k-profuse-coloring of a graph H is a partial k-edge-coloring $\phi: E(H) \rightarrow\{0,1,2, \ldots, k\}$ such that, for each edge e of H (either colored or not), there are edges of H incident to e that are colored with at least $k-1$ different colors. We say that a k-profuse-coloring ϕ is maximal if, for each uncolored edge, there are edges incident to it that are colored with the k different colors (i.e., no uncolored edge can be colored while keeping the coloring a k-profuse-coloring). We now show that the maximum value of k for which a graph H has a k-profuse coloring is precisely $\alpha_{m}(H)$. Hence, in order to prove that $\alpha_{m}(H) \geqslant k$ it will suffice to exhibit a k-profuse-coloring of H.

Lemma 4.34. Let H be a graph. Then, the following assertions are equivalent:
(i) $\alpha_{m}(H) \geqslant k$.
(ii) H has a k-profuse-coloring.
(iii) H has a maximal k -profuse-coloring.

Indeed, the collection of color classes of a maximal k -profuse-coloring of H is a matchingindependent set of size k .

Proof. Let us prove first that (i) \Rightarrow (iii). Suppose that $\alpha_{m}(H) \geqslant k$. Then, there is a collection $\mathcal{M}=\left\{M_{1}, M_{2}, \ldots, M_{k}\right\}$ of k pairwise disjoint maximal matchings of H. Let $\phi_{\mathcal{M}}: E(H) \rightarrow\{0,1,2, \ldots, k\}$ be defined by

$$
\phi_{\mathcal{M}}(e)=i \text { if and only if } e \in M_{i}, \quad \text { for each } e \in E(H) \text { and each } i=1, \ldots, k .
$$

Notice that $\phi_{\mathcal{M}}(e)=0$ if and only if $e \notin M_{1} \cup M_{2} \cup \cdots \cup M_{k}$. We claim that $\phi_{\mathcal{M}}$ is a maximal k-profuse-coloring of H. Since each M_{i} is a matching, $\phi_{\mathcal{M}}$ is a partial edgecoloring of H. Let e be any edge of H. Assume first that $e \in M_{j}$ for some $j \in\{1,2, \ldots, k\}$. For each $i=1,2, \ldots, k$ and each $i \neq j$, the maximality of M_{i} implies that there is some edge e_{i} of H incident to e such that $\phi_{\mathcal{M}}\left(e_{i}\right)=i$. So, the set $\left\{e_{i}: i \neq j\right\}$ consists of
$k-1$ edges incident to e that are colored with $k-1$ different colors. Assume now that $e \notin M_{1} \cup M_{2} \cup \cdots \cup M_{k}$. For each each $i=1,2, \ldots, k$, the maximality of M_{i} implies that there is some edge e_{i} of H incident to e such that $\phi_{\mathcal{M}}\left(e_{i}\right)=i$. We conclude that $\phi_{\mathcal{M}}$ is a maximal k -profuse-coloring of H and (iii) holds.

We now prove that (ii) \Rightarrow (i). Suppose (ii) holds and let $\phi: E(H) \rightarrow\{0,1,2, \ldots, k\}$ be a k-profuse coloring of H. Then, for each $i=1,2, \ldots, k$, the color class $\xi_{i}=\phi^{-1}(i)$ is a matching of H. For each $i=1,2, \ldots, k$, let M_{i} be any maximal matching of H containing ξ_{i} and let e be any edge of H. As ϕ is a k-profuse-coloring, there are $k-1$ edges $e_{1}, e_{2}, \ldots, e_{k}$ of H incident to e such that $\phi\left(e_{1}\right), \phi\left(e_{2}\right), \ldots, \phi\left(e_{k-1}\right)$ are positive and pairwise different. So, as $e_{i} \in \xi_{\phi\left(e_{i}\right)}$ and $M_{\Phi\left(e_{i}\right)}$ is a matching containing $\xi_{\phi\left(e_{i}\right)}$, $e \notin M_{\Phi\left(e_{i}\right)}$ for each $i=1,2, \ldots, k-1$. This proves that each edge e of H belongs to at most one of $M_{1}, M_{2}, \ldots, M_{k}$. Thus, by construction, $\mathcal{M}=\left\{M_{1}, M_{2}, \ldots, M_{k}\right\}$ is a collection of k disjoint maximal matchings of H and $\alpha_{m}(H) \geqslant k$; i.e., (i) holds, as desired. Since (iii) trivially implies (ii), this completes the proof the equivalence among (i)-(iii). Finally, notice that if ϕ is maximal, then $M_{i}=\xi_{i}$ because each $e \in E(H) \backslash \xi_{i}$ is incident to some edge in ξ_{i}. Therefore, if ϕ is maximal, then $\left\{\xi_{1}, \ldots, \xi_{k}\right\}$ is a collection of k disjoint maximal matchings, proving the last assertion of Lemma 4.34.

We state the following immediate consequence of Lemma 4.34 for future reference.

Corollary 4.35. Let H be a graph and let ϕ be a maximal k -profuse-coloring of H . Then, every matching-transversal of H has at least one edge colored with color \mathfrak{i} for each $\mathfrak{i}=1,2, \ldots, k$.

More upper bounds on τ_{m} and lower bounds on α_{m} will be proved later in this subsection. Some of them depend on the degrees of what we call hubs. The hubs of a graph are the vertices of degree at least 3 . The minimum hub degree $\delta_{h}(H)$ of a graph H is the infimum of the degrees of the hubs of H. Notice that $\delta_{h}(H) \geqslant 3$ for any graph H and that $\delta_{h}(H)=+\infty$ if and only if H has no hubs. A hub is minimum if its degree is the minimum hub degree. An edge of a graph is hub-covered if at least one of its endpoints is a hub. A graph H is hub-covered if each of its edges is hub-covered. Equivalently, H is hub-covered if and only if its hub set is edge-dominating. A graph is hub-regular if all its hubs have the same degree. Equivalently, a graph H is hub-regular if and only if $\delta_{h}(\mathrm{H})=\Delta(\mathrm{H})$ or $\delta_{\mathrm{h}}(\mathrm{H})=+\infty$.

The proof of Theorem 4.32 splits into two parts. In Sub-subsection 4.2.3.1, we consider the case when H has some cycle of length greater than 4 (which is necessarily a cycle of length $3 k$ for some $k \geqslant 2$). Later, in Sub-subsection 4.2.3.2, we show how to deal with the case when H has no cycle of length greater than 4.

4.2.3.1 Graphs having some cycle of length $3 k$ for some $k \geqslant 2$

The main result of this sub-subsection is the theorem below, which is the restriction of Theorem 4.32 to graphs containing some cycle of length $3 k$ for some $k \geqslant 2$.

Theorem 4.36. Let H be a connected graph containing no bipartite claw and such that the length of each cycle of H is at most 4 or is a multiple of 3 . If H has some cycle of length 3 k for some $\mathrm{k} \geqslant 2$, then $\alpha_{\mathrm{m}}(\mathrm{H})=\tau_{\mathrm{m}}(\mathrm{H})$.

Theorem 4.36 will follow by considering separately the cases when the graph is hub-covered (Lemma 4.42) and when it is not hub-covered (Lemma 4.43).

From the structure lemma below, whose proof is immediate, it follows that if a graph H containing no bipartite claw is such that the length of each of its cycles is at most 4 or is a multiple of 3 and H contains a cycle of length $3 k$ for some $k \geqslant 2$, then H is triangle-free.

Lemma 4.37. Let H be a connected graph containing no bipartite claw such that the length of each cycle is at most 4 or is a multiple of 3 . If H contains some cycle C of length 3 k for some $k \geqslant 2$, then one of the following conditions holds:
(i) H arises from C_{6} by adding 1, 2, or 3 long chords.
(ii) C is chordless and each vertex $v \in \mathrm{~V}(\mathrm{H}) \backslash \mathrm{V}(\mathrm{C})$ is either: (1) a false twin of a vertex of C of degree 2 in H or (2) a pendant vertex adjacent to a vertex of C .

In particular, H is triangle-free.
We begin the case of hub-covered graphs with the following upper bound on τ_{m}.
Lemma 4.38. Let H be a triangle-free graph containing no bipartite claw. If v is any hub of H , then the set of edges of H incident to v is a matching-transversal of H . In particular, $\tau_{\mathrm{m}}(\mathrm{H}) \leqslant \delta_{\mathrm{h}}(\mathrm{H})$.

Proof. Let v be any minimum hub of H and let w_{1}, w_{2} and w_{3} be three of its neighbors in H. If $\mathrm{E}_{\mathrm{H}}(v)$ were not a matching-transversal of H , there would be a maximal matching M of H disjoint from $\mathrm{E}_{\mathrm{H}}(v)$. Then, for each $i=1,2,3$, there would be some $e_{i} \in M$ incident to w_{i} and non-incident to v. As H is triangle-free, w_{i} would be the only endpoint of e_{i} in $\left\{w_{1}, w_{2}, w_{3}\right\}$, for each $i=1,2,3$. But then, $\left\{v w_{1}, v w_{2}, v w_{3}, e_{1}, e_{2}, e_{3}\right\}$ would be the edge set of a bipartite claw contained in H , a contradiction. This contradiction proves that $\mathrm{E}_{\mathrm{H}}(v)$ is a matching-transversal of H and that $\tau_{\mathrm{m}}(\mathrm{H}) \leqslant \delta_{\mathrm{h}}(\mathrm{H})$.

The counterpart of the above upper bound on $\tau_{\mathrm{m}}(\mathrm{H})$ is the following lemma from which we deduce sufficient conditions for $\delta_{h}(H)$ being also a lower bound on $\alpha_{m}(H)$.

Lemma 4.39. Let H be a triangle-free graph containing no bipartite claw. Then, there exists a set F of hub-covered edges of H such that the graph $\mathrm{H}^{\prime}=\mathrm{H} \backslash \mathrm{F}$ is hub-regular and has the same hub set and the same minimum hub degree as H .

Proof. Let H be a counterexample to the lemma with minimum number of edges. If H were hub-regular, the lemma would hold by letting $F=\varnothing$. So, H is not hub-regular; i.e., $\Delta(\mathrm{H})>\delta_{h}(\mathrm{H})$. Let v be any hub of H that is not minimum.

We claim that v has some neighbor w in H which is not a minimum hub. Suppose, by the way of contradiction, that all the neighbors of v are minimum hubs. By construction, v has at least four neighbors $w_{1}, w_{2}, w_{3}, w_{4}$ and let $W=\left\{v, w_{1}, w_{2}, w_{3}, w_{4}\right\}$. As H is triangle-free and w_{i} is a hub, $\left|\mathrm{N}_{\mathrm{H}}\left(w_{i}\right) \backslash \mathrm{W}\right| \geqslant \delta_{\mathrm{h}}(\mathrm{H})-1$ for each $\mathfrak{i}=1,2,3$. Then, $\delta_{h}(H)=3$, since otherwise, Hall's Theorem would imply that v is the center of a bipartite claw contained in H. Similarly, Hall's Theorem forces $\mid\left(N_{H}\left(w_{1}\right) \cup N_{H}\left(w_{2}\right) \cup\right.$ $\left.\mathrm{N}_{\mathrm{H}}\left(w_{3}\right)\right) \backslash W \mid \leqslant 2$. So, $\delta_{\mathrm{h}}(\mathrm{H})=3$ and there are two different vertices x_{1}, x_{2} outside W such that $\mathrm{N}_{\mathrm{H}}\left(w_{1}\right)=\mathrm{N}_{\mathrm{H}}\left(w_{2}\right)=\mathrm{N}_{\mathrm{H}}\left(w_{3}\right)=\left\{v, x_{1}, x_{2}\right\}$ and, by symmetry, also $\mathrm{N}_{\mathrm{H}}\left(w_{4}\right)=\left\{v, x_{1}, x_{2}\right\}$. Then, H contains a bipartite claw, a contradiction. This contradiction proves that v has some neighbor w which is not a minimum hub, as claimed.

Let w be a neighbor of v which is not a minimum hub of H . Then, $v w$ is a hubcovered edge of H and $H_{1}=H \backslash\{v w\}$ has the same hub set and the same minimum hub degree as H . By minimality of the counterexample H, the lemma holds for H_{1}. Hence, there exists a set F_{1} of hub-covered edges of H_{1} such that $H^{\prime}=H_{1} \backslash F_{1}$ is hub-regular and has the same hub set and the same minimum hub-degree as H_{1}. By construction, $F=F_{1} \cup\{v w\}$ is a set of hub-covered edges of H such that $H^{\prime}=H \backslash F$ is hub-regular and H^{\prime} has the same hub set and the same minimum hub degree as H . So, the lemma holds for H , contradicting the choice of H . This contradiction proves the lemma.

Lemma 4.40. Let H be a triangle-free graph containing no bipartite claw. If H is hub-covered and has at least one edge, then $\alpha_{\mathrm{m}}(\mathrm{H}) \geqslant \delta_{\mathrm{h}}(\mathrm{H})$.

Proof. By Lemma 4.39, there exists a set F of hub-covered edges of H such that $\mathrm{H}^{\prime}=$ $\mathrm{H} \backslash \mathrm{F}$ is hub-regular and has the same hub set and the same minimum hub degree as H . Since H has at least one edge and H is hub-covered, H has at least one hub; i.e., $3 \leqslant \delta_{h}(H)<+\infty$. By construction, H^{\prime} is also hub-covered and $\Delta\left(H^{\prime}\right)=\delta_{h}\left(H^{\prime}\right)=$ $\delta_{h}(H) \geqslant 3$. Since H^{\prime} is a subgraph of H, H^{\prime} is also triangle-free and contains no bipartite claw. By Theorem 4.30, $\chi^{\prime}\left(\mathrm{H}^{\prime}\right)=\Delta\left(\mathrm{H}^{\prime}\right)$; i.e., there is an edge-coloring ϕ^{\prime} of H^{\prime} using $\Delta\left(H^{\prime}\right)=\delta_{h}(H)$ colors. Let $\phi: E(H) \rightarrow\left\{0,1,2, \ldots, \delta_{h}(H)\right\}$ be defined by $\phi(e)=\phi^{\prime}(e)$ for each $e \in E\left(H^{\prime}\right)$ and $\phi(e)=0$ for each $e \in E(H) \backslash E\left(H^{\prime}\right)$. Since H is hub-covered, ϕ is a $\delta_{h}(H)$-profuse-coloring of H by construction. Thus, by Lemma 4.34, $\alpha_{m}(H) \geqslant$ $\delta_{\mathrm{h}}(\mathrm{H})$.

From Lemmas 4.38 and 4.40, we can determine α_{m} and τ_{m} for all connected hubcovered triangle-free graphs containing no bipartite claw.

Lemma 4.41. If H is a connected hub-covered triangle-free graph containing no bipartite claw and having at least one edge, then $\alpha_{\mathrm{m}}(\mathrm{H})=\tau_{\mathrm{m}}(\mathrm{H})=\delta_{\mathrm{h}}(\mathrm{H})$.

By Lemma 4.37 and the above lemma, we settle Theorem 4.36 for hub-covered graphs, as follows.

Lemma 4.42. Let H be a connected graph containing no bipartite claw and such that the length of each cycle of H is at most 4 or is a multiple of 3. If H has a cycle of length 3 k for some $\mathrm{k} \geqslant 2$ and H is hub-covered, then $\alpha_{\mathrm{m}}(\mathrm{H})=\tau_{\mathrm{m}}(\mathrm{H})=\delta_{\mathrm{h}}(\mathrm{H})$.

Finally, we also settle Theorem 4.36 for graphs that are not hub-covered.
Lemma 4.43. Let H be a connected graph containing no bipartite claw and such that the length of each cycle of H is at most 4 or is a multiple of 3. If H has a cycle of length 3 k for some $\mathrm{k} \geqslant 2$ and H is not hub-covered, then $\alpha_{\mathrm{m}}(\mathrm{H})=\tau_{\mathrm{m}}(\mathrm{H})=3$.

Proof. As H is not hub-covered and has at least one edge, Lemma 4.33 implies $\tau_{\mathrm{m}}(\mathrm{H}) \leqslant$ 3. So, we just need to prove that $\alpha_{\mathrm{m}}(\mathrm{H}) \geqslant 3$. Since the length of C is a multiple of 3 , there is a 3-edge-coloring of $\mathrm{C}, \phi^{\prime}: \mathrm{E}(\mathrm{C}) \rightarrow\{1,2,3\}$ such that each three consecutive edges of C are colored with three different colors by ϕ^{\prime}. Let $\phi: E(H) \rightarrow\{0,1,2,3\}$ be defined by $\phi(e)=\phi^{\prime}(e)$ for each $e \in \mathrm{E}(\mathrm{C})$ and $\phi(e)=0$ for each $e \in \mathrm{E}(\mathrm{H}) \backslash \mathrm{E}(\mathrm{C})$. Since H is connected and contains no bipartite claw, C is edge-dominating in H and, consequently, ϕ is a 3-profuse-coloring of H. By virtue of Lemma 4.34, $\alpha_{m}(H) \geqslant 3$, as needed.

Clearly, Lemmas 4.42 and 4.43 together imply Theorem 4.36.

4.2.3.2 Graphs having no cycle of length greater than 4

As Theorem 4.36 is now proved, to complete the proof of Theorem 4.32, it only remains to prove the theorem below, which is the main result of this sub-subsection.

Theorem 4.44. If H is a fat caterpillar, then $\alpha_{\mathrm{m}}(\mathrm{H})=\tau_{\mathrm{m}}(\mathrm{H})$.
To begin with, the next lemma provides several upper bounds on τ_{m}.
Lemma 4.45. Let H be a graph containing no bipartite claw and having no 5 -cycle and let v be a hub of H. Then:
(i) Ifv has degree at least 5 in H , then $\mathrm{E}_{\mathrm{H}}(v)$ is a matching-transversal of H and, in particular, $\tau_{\mathrm{m}}(\mathrm{H}) \leqslant \mathrm{d}_{\mathrm{H}}(v)$.
(ii) Suppose that v has degree 4 in H . Then, $\tau_{\mathrm{m}}(\mathrm{H}) \leqslant 5$. If $\mathrm{N}_{\mathrm{H}}(v)$ does not induce $2 \mathrm{~K}_{2}$ in H , then $\mathrm{E}_{\mathrm{H}}(v)$ is a matching-transversal of H and, in particular, $\tau_{\mathrm{m}}(\mathrm{H}) \leqslant 4$.
(iii) Suppose that v has degree 3 in H . Then, $\tau_{\mathrm{m}}(\mathrm{H}) \leqslant 5$. If $\mathrm{N}_{\mathrm{H}}(v)$ induces $3 \mathrm{~K}_{1}$ in H , then $\mathrm{E}_{\mathrm{H}}(v)$ is a matching-transversal of H and, in particular, $\tau_{\mathrm{m}}(\mathrm{H}) \leqslant 3$. If $\mathrm{N}_{\mathrm{H}}(v)$ induces $\mathrm{K}_{2} \cup \mathrm{~K}_{1}$ in H , then $\tau_{\mathrm{m}}(\mathrm{H}) \leqslant 4$.

Proof. If $\mathrm{E}_{H}(v)$ is a matching-transversal of H, then $\tau_{m}(H) \leqslant d_{H}(v)$ and there is nothing left to prove. Therefore, we assume, without loss of generality, that $\mathrm{E}_{\mathrm{H}}(v)$ is not a matching-transversal of H. Therefore, there exists a maximal matching M of H such that $M \cap E_{H}(v)=\varnothing$. Because of the maximality of M, for each neighbor w of v there is exactly one edge $e_{w} \in M$ that is incident to w. Notice that there could be two different neighbors w_{1} and w_{2} of v such that $e_{w_{1}}=e_{w_{2}}$.

We claim that $\left|\left\{e_{w} \mid w \in \mathrm{~N}_{\mathrm{H}}(v)\right\}\right| \leqslant 2$. Suppose, by the way of contradiction, that there are three different edges $e_{w_{1}}, e_{w_{2}}, e_{w_{3}}$ for some $w_{1}, w_{2}, w_{3} \in N_{H}(v)$. Then, v is the center of a bipartite claw contained in H with edge set $\left\{\nu w_{1}, e_{w_{1}}, \nu w_{2}, e_{w_{2}}, \nu w_{3}, e_{w_{3}}\right\}$, a contradiction. This contradiction proves the claim. Therefore, as each edge e_{w} is incident to at most two vertices of $\mathrm{N}_{\mathrm{H}}(v)$, in particular, $\mathrm{d}_{\mathrm{H}}(v) \leqslant 4$. So far, we have proved (i).

Suppose that $\mathrm{d}_{\mathrm{H}}(v)=3$ and let $\mathrm{N}_{\mathrm{H}}(v)=\left\{w_{1}, w_{2}, w_{3}\right\}$. Suppose, by the way of contradiction, that $\mathrm{E}_{\mathrm{H}}(v) \cup \mathrm{F}_{\mathrm{H}}(v)$ is not a matching-transversal of H . Then, there is some maximal matching M^{\prime} such that $M^{\prime} \cap\left(E_{H}(v) \cup F_{H}(v)\right)=\varnothing$. Because of the maximality of M^{\prime}, for each $i=1,2,3$, there is an edge $e_{w_{i}}^{\prime} \in M^{\prime}$. Then, v is the center of a bipartite claw whose edge set is $\left\{v w_{1}, e_{w_{1}}^{\prime}, v w_{2}, e_{w_{2}}^{\prime}, v w_{3}, e_{w_{3}}^{\prime}\right\}$, a contradiction. This contradiction proves that $\mathrm{E}_{\mathrm{H}}(v) \cup \mathrm{F}_{\mathrm{H}}(v)$ is a matching-transversal of H . In particular, $\tau_{\mathrm{m}}(\mathrm{H}) \leqslant 3+\left|\mathrm{F}_{\mathrm{H}}(v)\right|$. This proves (iii) when $\mathrm{N}_{\mathrm{H}}(v)$ is not a complete. So, assume that $N_{H}(v)$ is a complete. Since H has no 5-cycle, every vertex $x \in V(H) \backslash N_{H}[v]$ having at least one neighbor in $\mathrm{N}_{\mathrm{H}}(v)$, has exactly one neighbor in $\mathrm{N}_{\mathrm{H}}(v)$. So, since H contains no bipartite claw, there is at least one vertex in $N_{H}(v)$ that has degree 3 in H. Assume, without loss of generality, that w_{1} has degree 3 in H. Then, by Lemma 4.33, $\tau_{\mathrm{m}}(\mathrm{H}) \leqslant$ $\mathrm{d}_{\mathrm{H}}(v)+\mathrm{d}_{\mathrm{H}}\left(w_{1}\right)-1=5$. This completes the proof of (iii).

Finally, we consider the case $\mathrm{d}_{\mathrm{H}}(v)=4$. Since $\left|\left\{e_{w} \mid w \in \mathrm{~N}_{\mathrm{H}}(v)\right\}\right| \leqslant 2$ and each edge e_{w} is incident to at most two neighbors of v, we assume, without loss of generality, that $e_{w_{1}}=e_{w_{2}}=w_{1} w_{2}$ and $e_{w_{3}}=e_{w_{4}}=w_{3} w_{4}$. In particular, the graph induced by $\mathrm{N}_{\mathrm{H}}(v)$ contains $2 \mathrm{~K}_{2}$. Moreover, since H has no 5-cycle, $\mathrm{N}_{\mathrm{H}}(v)$ induces $2 \mathrm{~K}_{2}$. To complete the proof of (ii) it only remains to prove that $\tau_{m}(H) \leqslant 5$. Suppose, by the way of contradiction, that $\mathrm{E}_{\mathrm{H}}(v) \cup\left\{w_{1} w_{2}\right\}$ is not a matching-transversal. Then, there is maximal matching M^{\prime} of H such that $M^{\prime} \cap\left(E_{H}(v) \cup\left\{w_{1} w_{2}\right\}\right)=\varnothing$. Because of the maximality of M^{\prime}, for each $w \in N_{H}(v)$, there is some edge $e_{w}^{\prime} \in M^{\prime}$ incident to w. Since
$w_{1} w_{2} \notin M^{\prime}, e_{w_{1}} \neq e_{w_{2}}$. Since w_{3} is nonadjacent to w_{1} and $w_{2}, e_{w_{3}}$ is different from $e_{w_{1}}$ and $e_{w_{2}}$. We conclude that v is the center of a bipartite claw contained in H whose edge set $\left\{v w_{1}, e_{w_{1}}^{\prime}, v w_{2}, e_{w_{2}}^{\prime}, v w_{3}, e_{w_{3}}^{\prime}\right\}$. This contradiction proves that $\mathrm{E}_{\mathrm{H}}(v) \cup\left\{w_{1} w_{2}\right\}$ is a matching-transversal, which means that $\tau_{\mathrm{m}}(\mathrm{H}) \leqslant 5$. This completes the proof of (ii) and of the lemma.

We now prove a lower bound on α_{m} (Lemma 4.48), which is the last of the next three lemmas.

Lemma 4.46. Let H be a graph. If v is a vertex of H that is neither the center of a bipartite claw nor a vertex of a 5-cycle, at most two of the neighbors of v have degree at least 4 each.

Proof. Suppose, by the way of contradiction, that there exists some vertex v of H that is neither the center of a bipartite claw nor a vertex of 5 -cycle and such that v has three different neighbors w_{1}, w_{2}, w_{3} in H such that $d_{H}\left(w_{i}\right) \geqslant 4$ for each $i=1,2,3$. Since $\mathrm{d}_{\mathrm{H}}\left(w_{i}\right) \geqslant 4$ for each $\mathfrak{i}=1,2,3$, each w_{i} is adjacent to at least one vertex x_{i} different from v, w_{1}, w_{2}, w_{3}.

We claim that $\left\{w_{1}, w_{2}, w_{3}\right\}$ is a stable set of H. Suppose, by the way of contradiction, that $\left\{w_{1}, w_{2}, w_{3}\right\}$ is not a stable set of H. By symmetry, we assume, without loss of generality, that w_{1} is adjacent to w_{2}. Since there is no 5-cycle passing through v, x_{3} is different from x_{1} and x_{2}. Thus, $x_{1}=x_{2}$ and $N_{H}\left(w_{1}\right) \subseteq\left\{v, w_{2}, w_{3}, x_{1}\right\}$ because v is not the center of a bipartite claw. So, as $\mathrm{d}_{\mathrm{H}}\left(v_{1}\right) \geqslant 4$, necessarily w_{1} is adjacent to w_{3} and $w_{1} x_{1} w_{2} v w_{3} w_{1}$ is a 5 -cycle of H passing through v, which is a contradiction. This contradiction proves that $\left\{w_{1}, w_{2}, w_{3}\right\}$ is a stable set of H .

Since $\left\{w_{1}, w_{2}, w_{3}\right\}$ is a stable set and $\mathrm{d}_{\mathrm{H}}\left(w_{\mathrm{i}}\right) \geqslant 4$, there are three pairwise different vertices $x_{i 1}, x_{i 2}, x_{i 3} \in N_{H}\left(w_{i}\right) \backslash\left\{v, w_{1}, w_{2}, w_{3}\right\}$, for each $i=1,2,3$. By Hall's Theorem, there are some $j_{1}, j_{2}, j_{3} \in\{1,2,3\}$ such that $M=\left\{w_{1} x_{1 j_{1}}, w_{2} x_{2 j_{2}}, w_{3} x_{3 j_{3}}\right\}$ is a matching of H of size 3. Then, $\left\{v w_{1}, v w_{2}, \nu w_{3}\right\} \cup M$ is the edge set of a bipartite claw with center v, a contradiction. This contradiction completes the proof of the lemma.

Lemma 4.47. Let H be a graph containing no bipartite claw and having no 5-cycle. If $\delta_{\mathrm{h}}(\mathrm{H}) \geqslant$ 4 , then there exists a set F of hub-covered edges of H such that the graph $\mathrm{H}^{\prime}=\mathrm{H} \backslash \mathrm{F}$ is hubregular and has the same hub set and the same minimum hub degree as H .

Proof. Suppose, by the way of contradiction, that the lemma is false and let H be a counterexample to the lemma with minimum number of edges. If H were hub-regular, then the lemma would hold for H by letting $F=\varnothing$, a contradiction. Hence, H is not hub-regular; i.e., $\Delta(\mathrm{G})>\delta_{\mathrm{h}}(\mathrm{G})$. Let v be a hub of H that is not minimum. As $\delta_{h}(\mathrm{G}) \geqslant 4$, the vertex v has at least 5 neighbors. So, since H contains no bipartite claw and has no 5 -cycle, Lemma 4.46 implies that v has some neighbor w that is not a hub (because $\delta_{h}(H) \geqslant 4$). Then, since $v w$ is not incident to any minimum hub of
$\mathrm{H}, \mathrm{H}_{1}=\mathrm{H} \backslash\{v w\}$ has the same hub set and the same minimum hub degree as H. The proof ends exactly as the one of Lemma 4.39.

Lemma 4.48. Let H be a graph containing no bipartite claw and having no 5 -cycle. If H is hub-covered, has at least one edge, and $\delta_{h}(H) \geqslant 4$, then $\alpha_{m}(H) \geqslant \delta_{h}(H)$.

Proof. By Lemma 4.47, there exists a set F of hub-covered edges of H such that $\mathrm{H}^{\prime}=$ $\mathrm{H} \backslash \mathrm{F}$ is hub-regular and has the same hub set and the same minimum hub degree as H. As H is hub-covered and has at least one edge, $\delta_{h}(\mathrm{H})<+\infty$. Then, H^{\prime} is also hubcovered and $\Delta\left(H^{\prime}\right)=\delta_{h}\left(H^{\prime}\right)=\delta_{h}(H) \geqslant 4$. Since H^{\prime} is a subgraph of H, H^{\prime} contains no bipartite claw and has no 5-cycle. Therefore, by Theorem 4.30, $\chi^{\prime}\left(\mathrm{H}^{\prime}\right)=\Delta\left(\mathrm{H}^{\prime}\right)$; i.e., there is an edge-coloring ϕ^{\prime} of H^{\prime} using $\Delta\left(H^{\prime}\right)=\delta_{h}(H)$ colors. Let $\phi: E(H) \rightarrow$ $\left\{0,1,2, \ldots, \delta_{h}(H)\right\}$ be such that $\phi(e)=\phi^{\prime}(e)$ for each $e \in E\left(H^{\prime}\right)$ and $\phi(e)=0$ for each $e \in E(H) \backslash E\left(H^{\prime}\right)$. Since H is hub-covered, ϕ is a $\delta_{h}(H)$-profuse-coloring of H by construction. Thus, by Lemma 4.34, $\alpha_{m}(H) \geqslant \delta_{h}(H)$.

The next two lemmas settle Theorem 4.44 for fat caterpillars containing A or net.
Lemma 4.49. Let H be a fat caterpillar containing A . Then, $\alpha_{\mathrm{m}}(\mathrm{H})=\tau_{\mathrm{m}}(\mathrm{H})$. More precisely, there are some $\mathrm{C}=v_{1} v_{2} v_{3} v_{4} v_{1}$ and $x_{1}, x_{2} \in \mathrm{~V}(\mathrm{H}) \backslash \mathrm{V}(\mathrm{C})$ as in the statement of Lemma 4.21 and one of the following assertions holds:
(i) C is chordless and

$$
\alpha_{\mathrm{m}}(\mathrm{G})=\tau_{\mathrm{m}}(\mathrm{G})= \begin{cases}3 & \text { if } \mathrm{d}_{\mathrm{H}}\left(v_{3}\right)=\mathrm{d}_{\mathrm{H}}\left(v_{4}\right)=2 \\ \delta_{\mathrm{h}}(\mathrm{H}) & \text { otherwise. }\end{cases}
$$

(ii) $v_{1} v_{3}$ is the only chord of $\mathrm{C}, \mathrm{d}_{\mathrm{H}}\left(v_{4}\right)=2$, and

$$
\alpha_{\mathrm{m}}(\mathrm{G})=\tau_{\mathrm{m}}(\mathrm{G})= \begin{cases}4 & \text { if } \mathrm{d}_{\mathrm{H}}\left(v_{2}\right) \geqslant 4 \text { and } \delta_{\mathrm{h}}(\mathrm{H})=3 \\ \delta_{\mathrm{h}}(\mathrm{H}) & \text { otherwise. }\end{cases}
$$

(iii) C has two chords, $\mathrm{d}_{\mathrm{H}}\left(v_{3}\right)=\mathrm{d}_{\mathrm{H}}\left(v_{4}\right)=3$, and

$$
\alpha_{\mathrm{m}}(\mathrm{G})=\tau_{\mathrm{m}}(\mathrm{G})= \begin{cases}5 & \text { if each of } v_{1} \text { and } v_{2} \text { has degree at least } 5 \\ 4 & \text { otherwise } .\end{cases}
$$

Proof. Let $\mathrm{C}=v_{1} v_{2} v_{3} v_{4} v_{1}$ and $x_{1}, x_{2} \in \mathrm{~V}(\mathrm{H}) \backslash \mathrm{V}(\mathrm{C})$ as in the statement of Lemma 4.21. In particular, each non-pendant vertex in $V(\mathrm{H}) \backslash \mathrm{V}(\mathrm{C})$ is a false twin of v_{4} of degree 2. Notice that $\alpha_{\mathrm{m}}(\mathrm{H}) \geqslant 3$ because a 3-profuse-coloring of H arises by coloring the

Figure 4.7: Some profuse-colorings for the proof of Lemma 4.49
edges in $\mathrm{E}(\mathrm{C}) \cup\left\{v_{1} x_{1}, v_{2} x_{2}\right\}$ as in Figure 4.7(a) and leaving the remaining edges of H uncolored.

We claim that if $\delta_{h}(H) \geqslant 4$ then $\tau_{m}(H) \leqslant \delta_{h}(H)$. On the one hand, if some minimum hub of H is adjacent to some pendant vertex, then $\tau_{m}(H) \leqslant \delta_{h}(H)$ because of Lemma 4.33. On the other hand, if $\delta_{h}(H) \geqslant 4$ and the minimum hubs of H are adjacent to non-pendant vertices only, then v_{3} is the only minimum hub of H and Lemma 4.45 implies that $\tau_{\mathrm{m}}(\mathrm{H}) \leqslant \delta_{h}(\mathrm{H})$ because $\mathrm{d}_{\mathrm{H}}\left(v_{3}\right)=\delta_{\mathrm{h}}(\mathrm{H}) \geqslant 4$ and $\mathrm{N}_{\mathrm{H}}\left(v_{3}\right)$ does not induce $2 \mathrm{~K}_{2}$. Hence, the claim follows.

The proof splits into three cases corresponding to assertions (i)-(iii) of Lemma 4.21.
Case 1. C is chordless.
Suppose first that $d_{H}\left(v_{3}\right)=d_{H}\left(v_{4}\right)=2$ or $\delta_{h}(H)=3$. If $d_{H}\left(v_{3}\right)=d_{H}\left(v_{4}\right)=2$ or some vertex of degree 3 is adjacent to a pendant vertex, then $\alpha_{m}(H)=\tau_{m}(H)=3$ because $\tau_{\mathrm{m}}(\mathrm{H}) \leqslant 3$ by Lemma 4.33 and we have seen that $\alpha_{\mathrm{m}}(\mathrm{H}) \geqslant 3$. Otherwise, the only minimum hub is v_{3} and $N_{H}\left(v_{3}\right)$ induces $3 \mathrm{~K}_{1}$ which also leads to $\alpha_{m}(\mathrm{H})=$ $\tau_{\mathrm{m}}(\mathrm{H})=3$ because $\tau_{\mathrm{m}}(\mathrm{H}) \leqslant 3$ by Lemma 4.45 and we have seen that $\alpha_{\mathrm{m}}(\mathrm{H}) \geqslant 3$. So, if $\mathrm{d}_{\mathrm{H}}\left(v_{3}\right)=\mathrm{d}_{\mathrm{H}}\left(v_{4}\right)=2$ or $\delta_{\mathrm{h}}(\mathrm{H})=3$, then (i) holds.

Suppose now that neither $\mathrm{d}_{\mathrm{H}}\left(v_{3}\right)=\mathrm{d}_{\mathrm{H}}\left(v_{4}\right)=2$ nor $\delta_{h}(\mathrm{H})=3$ holds. Then, H is hub-covered and $\delta_{h}(H) \geqslant 4$ which implies that $\alpha_{m}(H)=\tau_{m}(H)=\delta_{h}(H)$ because $\alpha_{m}(H) \geqslant \delta_{h}(H)$ by Lemma 4.48 and $\tau_{m}(H) \leqslant \delta_{h}(H)$. So, also in this case, (i) holds.

Case 2. $v_{1} v_{3}$ is the only chord of C and $\mathrm{d}_{\mathrm{H}}\left(v_{4}\right)=2$.
Assume first that $\mathrm{d}_{\mathrm{H}}\left(v_{2}\right) \geqslant 4$ and $\delta_{\mathrm{h}}(\mathrm{H})=3$. Necessarily, $\mathrm{d}_{\mathrm{H}}\left(v_{3}\right)=3$. Hence, as $\mathrm{d}_{\mathrm{H}}\left(v_{4}\right)=2$, Lemma 4.33 implies that $\tau_{\mathrm{m}}(\mathrm{H}) \leqslant 4$. Let y_{2} be a neighbor of v_{2} outside $\mathrm{V}(\mathrm{C})$ different from x_{2}. Then, $\alpha_{\mathrm{m}}(\mathrm{H}) \geqslant 4$ because a 4 -profuse-coloring of H arises by coloring the subgraph of H induced by $\mathrm{V}(\mathrm{C}) \cup\left\{x_{1}, x_{2}, y_{2}\right\}$ as in Figure 4.7(b) and leaving the remaining edges of H uncolored. We have proved that, if $d_{H}\left(v_{2}\right) \geqslant 4$ and $\delta_{\mathrm{h}}(\mathrm{H})=3$, then $\alpha_{\mathrm{m}}(\mathrm{H})=\tau_{\mathrm{m}}(\mathrm{H})=4$ and, in particular, (ii) holds.

Assume now that, on the contrary, $\mathrm{d}_{\mathrm{H}}\left(v_{2}\right)=3$ or $\delta_{h}(\mathrm{H}) \geqslant 4$. If the former holds, then $\alpha_{\mathrm{m}}(\mathrm{H})=\tau_{\mathrm{m}}(\mathrm{H})=3=\delta_{\mathrm{h}}(\mathrm{H})$ because we know that $\alpha_{\mathrm{m}}(\mathrm{H}) \geqslant 3$ and Lemma 4.33 would imply that $\tau_{m}(H) \leqslant 3$. If the latter holds, then $\alpha_{m}(H)=\tau_{m}(H)=\delta_{h}(H)$ because H is hub-covered and Lemma 4.48 would imply that $\alpha_{m}(H) \geqslant \delta_{h}(H)$ and because we
have proved that $\tau_{m}(H) \leqslant \delta_{h}(H)$ whenever $\delta_{h}(H) \geqslant 4$. We conclude that if $d_{H}\left(v_{1}\right)=3$ or $\delta_{h}(H) \geqslant 4$, then $\alpha_{m}(H)=\tau_{m}(H)=\delta_{h}(H)$ and (ii) holds.

Case 3. C has two chords and $\mathrm{d}_{\mathrm{H}}\left(v_{3}\right)=\mathrm{d}_{\mathrm{H}}\left(v_{4}\right)=3$.
Assume v_{1} or v_{2} has degree 4. Then, Lemma 4.45 implies that $\tau_{m}(H) \leqslant 4$. In addition, a 4-profuse-coloring of H arises by coloring the edges of the subgraph of H induced by $V(C) \cup\left\{x_{1}, x_{2}\right\}$ as in Figure 4.7(c) and leaving all the remaining edges of H uncolored. In particular, $\alpha_{\mathrm{m}}(\mathrm{H}) \geqslant 4$. So, in this case, $\alpha_{\mathrm{m}}(\mathrm{H})=\tau_{\mathrm{m}}(\mathrm{H})=4$ and (iii) holds.

Assume now that each of v_{1} and v_{2} has degree at least 5 and, for each $i=1,2$, let y_{i} be a neighbor of v_{i} outside $V(C)$ different from x_{i}. As $d_{H}\left(v_{3}\right)=d_{H}\left(v_{4}\right)=3$, Lemma 4.33 implies that $\tau_{\mathrm{m}}(\mathrm{H}) \leqslant 5$. In addition, $\alpha_{\mathrm{m}}(\mathrm{H}) \geqslant 5$ because a 5 -profusecoloring of H arises by coloring the subgraph of H induced by $V(C) \cup\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$ as in Figure 4.7(d) and leaving the remaining edges of H uncolored. Hence, in this case, $\alpha_{\mathrm{m}}(\mathrm{H})=\tau_{\mathrm{m}}(\mathrm{H})=5$ and (iii) holds.

Lemma 4.50. Let H be a fat caterpillar containing net but containing no A . Then, H has some edge-dominating triangle C such that each $v \in \mathrm{~V}(\mathrm{H}) \backslash \mathrm{V}(\mathrm{C})$ is pendant and $\alpha_{\mathrm{m}}(\mathrm{H})=$ $\tau_{\mathrm{m}}(\mathrm{H})=\delta_{\mathrm{h}}(\mathrm{H})$.

Proof. That H has an edge-dominating cycle C such that each $v \in \mathrm{~V}(\mathrm{H}) \backslash \mathrm{V}(\mathrm{C})$ is pendant follows from Lemma 4.22. As the hubs of H are the vertices of C and each of them is adjacent to some pendant vertex, Lemma 4.33 implies that $\tau_{m}(H) \leqslant \delta_{h}(H)$. For the proof of the lemma to be complete, it suffices to show that $\alpha_{m}(H) \geqslant \delta_{h}(H)$. If $\delta_{h}(H) \geqslant 4$, then, as H is hub-covered, $\alpha_{m}(H) \geqslant \delta_{h}(H)$ by Lemma 4.48. Finally, if $\delta_{\mathrm{h}}(\mathrm{H})=3$, then $\alpha_{\mathrm{m}}(\mathrm{H}) \geqslant 3$ because a 3-profuse-coloring of H arises by 3-edgecoloring the net induced in H by $\left\{v_{1}, v_{2}, v_{3}, \mathfrak{u}_{1}, \mathfrak{u}_{2}, u_{3}\right\}$ and leaving the remaining edges of H uncolored.

In order to settle Theorem 4.44, it only remains to prove the next result.
Theorem 4.51. Let H be a fat caterpillar containing no A and no net. Then, for each $\mathrm{k} \geqslant 1$, $\alpha_{\mathrm{m}}(\mathrm{H}) \geqslant \mathrm{k}$ if and only if $\tau_{\mathrm{m}}(\mathrm{H}) \geqslant \mathrm{k}$.

By Lemma 4.20, fat caterpillars containing no \mathcal{A} and not net are certain linear concatenations of basic two-terminal graphs. To begin with, the following lemma, whose proof is straightforward, enumerates the values of α_{m} and τ_{m} for the underlying graphs of each of the basic two-terminal graphs.

Lemma 4.52. The underlying graphs of each of the basic two-terminal graphs satisfy $\alpha_{\mathrm{m}}=$ τ_{m}. Moreover:

- For the underlying graph of the edge, $\alpha_{\mathrm{m}}=\tau_{\mathrm{m}}=1$.
- For the underlying graph of the triangle, the rhombus, and the $\mathrm{K}_{4}, \alpha_{\mathrm{m}}=\tau_{\mathrm{m}}=3$.
- For the underlying graph of the m-crown, $\alpha_{m}=\tau_{m}=m+1$, for each $m \geqslant 2$.
- For the underlying graph of the m-fold, $\alpha_{m}=\tau_{m}=m$, for each $m \geqslant 2$.

Our proof of Theorem 4.51 is indirect. The theorem clearly holds for $k=1$. In the remaining of this sub-subsection, we deal separately with cases $k=2, k=3, k=4$, $k=5$, and finally $k \geqslant 6$. Case $k=2$ of Theorem 4.51 can be derived from Theorem 4.4, as follows.

Lemma 4.53. Let H be a fat caterpillar. Then, $\alpha_{\mathrm{m}}(\mathrm{H}) \geqslant 2$ if and only if $\tau_{\mathrm{m}}(\mathrm{H}) \geqslant 2$.
Proof. The 'only if' part is trivial. For the converse, suppose, by the way of contradiction, that $\tau_{m}(H) \geqslant 2$ but $\alpha_{m}(H) \leqslant 1$. So, if $G=\overline{L(H)}$, then $\tau_{c}(G) \geqslant 2$ and $\tau_{c}(G) \leqslant 1$. Hence, by Theorem 4.4, G contains an induced $Q_{2 n+1}$ for some $n \geqslant 1$. As G is the complement of a line graph, necessarily G contains an induced Q_{3} ($=3$-sun) and, as a result, H contains a bipartite claw, a contradiction. This contradiction proves the 'if' part and the lemma follows.

Case $k=3$ can be dealt as follows.

Lemma 4.54. Let H be a fat caterpillar containing no A and no net and having at least one edge. Then, $\alpha_{\mathrm{m}}(\mathrm{H}) \geqslant 3$ if and only if $\tau_{\mathrm{m}}(\mathrm{H}) \geqslant 3$. In fact, both inequalities hold if and only if H satisfies all of the following assertions:
(i) For each pair of adjacent vertices v_{1} and $v_{2}, \mathrm{~d}_{\mathrm{H}}\left(v_{1}\right)+\mathrm{d}_{\mathrm{H}}\left(v_{2}\right)-1 \geqslant 3$.
(ii) Each 4 -cycle of H has at most two vertices of degree 2 in H .
(iii) H is not the underlying graph of triangle $\&_{\mathrm{p}}$ triangle for any $\mathrm{p} \geqslant 0$.

Proof. Since $\alpha_{m}(H) \leqslant \tau_{m}(H)$, clearly $\alpha_{m}(H) \geqslant 3$ implies $\tau_{m}(H) \geqslant 3$. Suppose that $\tau_{\mathrm{m}}(\mathrm{H}) \geqslant 3$. Then, (i) holds because of Lemma 4.33. If there were some 4 -cycle $\mathrm{C}=$ $v_{1} v_{2} v_{3} v_{4} v_{1}$ such that $\mathrm{d}_{\mathrm{H}}\left(v_{1}\right)=\mathrm{d}_{\mathrm{H}}\left(v_{2}\right)=\mathrm{d}_{\mathrm{H}}\left(v_{3}\right)=2$, then $\left\{v_{1} v_{2}, v_{2} v_{3}\right\}$ would be a matching-transversal of H, contradicting $\tau_{\mathrm{m}}(H) \geqslant 3$. Similarly, if H were the underlying graph of triangle $\&_{p}$ triangle for some $p \geqslant 0$, then the two edges of H that are not incident to the concatenation vertex are a matching-transversal of H, another contradiction. These contradictions prove that (ii) and (iii) also hold.

To complete the proof of the lemma, let us assume that (i)-(iii) hold and we will prove that $\alpha_{m}(H) \geqslant 3$, or, equivalently, that H has a 3-profuse-coloring. As H is a fat caterpillar containing no A and no net, Lemma 4.20 implies that H is the underlying
graph of $\Gamma_{1} \&_{\mathfrak{p}_{1}} \Gamma_{2} \&_{\mathfrak{p}_{2}} \cdots \&_{\mathfrak{p}_{n-1}} \Gamma_{n}$ where each Γ_{i} is a basic two-terminal graph and each $p_{i} \geqslant 0$. If $n=1$, then H is the underlying graph of some two-terminal graph different from an edge and a square and H admits a 3-profuse-coloring by Lemma 4.52. So, assume that $n \geqslant 2$.

Case 1. H is the underlying graph of $\Gamma_{1} \& \Gamma_{2}$ where each of Γ_{1} and Γ_{2} is an edge or a triangle and $\mathrm{p} \geqslant 0$.

By (iii), assume, without loss of generality, that Γ_{1} is an edge. If Γ_{2} is also an edge, then (i) implies that $p \geqslant 1$ and clearly $\alpha_{m}(H) \geqslant 3$ because a 3-profuse-coloring of H arises by coloring with three different colors any three edges of H and leaving the remaining edges of H uncolored. If, on the contrary, Γ_{2} is a triangle, then also $\alpha_{m}(H) \geqslant$ 3 because a 3-profuse-coloring of H arises by coloring the edge of Γ_{1} and the two edges of Γ_{2} incident to the concatenation vertex with three different colors and leaving the remaining edges of H uncolored.

Case 2. H does not fulfils Case 1.
For each $i=1, \ldots, n$, let P_{i} be some shortest path in Γ_{i} joining its two terminal vertices. Then, $P=P_{1} P_{2} \ldots P_{n}$ is a chordless path in H and let $P=u_{0} u_{1} \ldots u_{\ell}$ where u_{0} is the source of Γ_{1} and \mathfrak{u}_{ℓ} is the sink of Γ_{n}. Consider a coloring of the edges of P with the colors 1, 2, and 3, such that any three consecutive edges of P receive three different colors. As P is edge-dominating, every edge of H is incident to at least two differently colored edges, except for the edges incident to \mathfrak{u}_{0} and \mathfrak{u}_{ℓ}. Assume without loss of generality that $\mathfrak{u}_{0} \mathfrak{u}_{1}$ is colored with color 1 and $u_{1} u_{2}$ with color 2 . We make the edges incident to u_{0} adjacent to at least two differently colored edges as follows:
(1) If there are at least two edges joining u_{0} to vertices outside P, we color two of these edges using colors 2 and 3 .
(2) If there is exactly one vertex u^{\prime} outside P adjacent to u_{0}, then Γ_{1} is a triangle or a rhombus (because (ii) ensures that Γ_{1} is not a square). In particular, \mathfrak{u}_{1} is also adjacent to \mathfrak{u}^{\prime} and we color $u_{1} u^{\prime}$ with color 3 .
(3) If there is no vertex outside P adjacent to u_{0}, then Γ_{1} is an edge and, by (i), u_{1} is adjacent to some vertex u^{\prime} outside P. We color $u_{1} u^{\prime}$ with color 3 .

Symmetrically, let x be the color of $\mathfrak{u}_{\ell-1} \mathfrak{u}_{\ell}, y$ be the color of $\mathfrak{u}_{\ell-2} \mathfrak{u}_{\ell-1}$, and $z \in$ $\{1,2,3\} \backslash\{x, y\}$. We make the edges incident to \mathfrak{u}_{ℓ} adjacent to at least two differently colored edges as follows:
(1^{\prime}) If there are at least two edges joining \mathfrak{u}_{ℓ} to vertices outside P, we color two of these edges using colors y and z.
(2^{\prime}) If there is exactly one vertex $\mathfrak{u}^{\prime \prime}$ outside P adjacent to \mathfrak{u}_{ℓ}, then $u^{\prime \prime}$ is adjacent to $\mathfrak{u}_{\ell-1}\left(\operatorname{as}\right.$ in (2)). If there were an edge incident to $\mathfrak{u}_{\ell-1}$ colored with color z, then, $n=2, \Gamma_{2}$ is a triangle, and either Γ_{1} is an triangle or an edge, contradicting the hypothesis. So, we color the edge $\mathfrak{u}_{\ell-1} u^{\prime \prime}$ with color z.
(3') If there is no vertex outside P adjacent to \mathfrak{u}_{ℓ}, then $\Gamma_{\mathfrak{n}}$ is an edge and $\mathfrak{u}_{\ell-1}$ is adjacent to some vertex $u^{\prime \prime}$ outside P (as in (3)). If there were some edge incident to $\mathfrak{u}_{\ell-1}$ colored with color z, then $n=2$ and Γ_{1} is an edge or a triangle, which would contradict our hypothesis because Γ_{2} is a triangle. So, we color $u_{\ell-1} u^{\prime \prime}$ with color z.

The resulting partial 3-edge-coloring is a 3-profuse-coloring of H because each edge of H is incident to at least two differently colored edges. Hence, $\alpha_{m}(H) \geqslant 3$, as needed.

For case $k=4$, we prove the following.
Lemma 4.55. Let H be a fat caterpillar containing no net and no A and having at least one edge. Then, $\alpha_{\mathrm{m}}(\mathrm{H}) \geqslant 4$ if and only if $\tau_{\mathrm{m}}(\mathrm{H}) \geqslant 4$. In fact, both inequalities hold if and only H satisfies all of the following conditions:
(i) For each pair of adjacent vertices v_{1} and $v_{2}, \mathrm{~d}_{\mathrm{H}}\left(v_{1}\right)+\mathrm{d}_{\mathrm{H}}\left(v_{2}\right)-1 \geqslant 4$.
(ii) No block of H is a complete of four vertices.
(iii) Each vertex of degree 3 that is not a cutpoint has only neighbors of degree at least 3 .
(iv) The neighborhood of each cutpoint of degree 3 induces $\mathrm{K}_{2} \cup \mathrm{~K}_{1}$ in H .

Proof. By Lemma 4.20, H is the underlying graph of some $\Gamma_{1} \&_{\mathfrak{p}_{1}} \Gamma_{2} \&_{\boldsymbol{p}_{2}} \cdots \&_{\mathfrak{p}_{n-1}} \Gamma_{\mathrm{n}}$ where each Γ_{i} is a basic two-terminal graph and each $p_{i} \geqslant 0$. For each $i=1,2, \ldots, n-1$, let v_{i} be the concatenation vertex of H that arises by identifying the sink of Γ_{i} with the source of Γ_{i+1} and let v_{0} be the source of Γ_{1} and v_{n} be the sink of Γ_{n}. Clearly, the cutpoints of H are the concatenation vertices $\nu_{1}, v_{2}, \ldots, v_{n-1}$ and the underlying graph of each Γ_{i} is a block of H.

Since $\alpha_{\mathrm{m}}(\mathrm{H}) \leqslant \tau_{\mathrm{m}}(\mathrm{H}), \alpha_{\mathrm{m}}(\mathrm{H}) \geqslant 4$ implies that $\tau_{\mathrm{m}}(\mathrm{H}) \geqslant 4$. Suppose now that H satisfies $\tau_{\mathrm{m}}(H) \geqslant 4$. Then, H satisfies (i) because of Lemma 4.33. If some block of H were a complete of size four, this block would have at least three vertices of degree 3 in H (because H contains no A and has no 5-cycle) and the edges of the K_{3} induced by these three vertices would be a matching-transversal of H . So, since $\tau_{\mathrm{m}}(\mathrm{H}) \geqslant 4, \mathrm{H}$ satisfies (ii). If there were a vertex v of H of degree 3 that were not a cutpoint and had a neighbor of degree less than 3 , then, up to symmetry, either: (1) v is a non-terminal vertex of Γ_{1} and Γ_{1} is a rhombus, or (2) v is the source of Γ_{1} and Γ_{1} is a 2-crown or a 3-fold.

If (1) holds, the edges of the triangle induced by $\mathrm{N}_{\mathrm{H}}\left[\nu_{0}\right]$ form a matching-transversal of H of size 3. If (2) holds, $\mathrm{E}_{\mathrm{H}}\left(v_{0}\right)$ is a matching-transversal of H of size 3. In either case, we reach a contradiction to $\tau_{\mathrm{m}}(\mathrm{H}) \geqslant 4$. This contradiction proves that H satisfies (iii). Finally, if v is a cutpoint of H of degree 3 , then $\mathrm{N}_{\mathrm{H}}(v)$ induces a disconnected graph with three vertices; i.e., $\mathrm{N}_{\mathrm{H}}(v)$ induces $3 \mathrm{~K}_{1}$ or $\mathrm{K}_{2} \cup \mathrm{~K}_{1}$. But, if $\mathrm{N}_{\mathrm{H}}(v)$ induces $3 \mathrm{~K}_{1}$, then, by Lemma $4.45, \tau_{\mathrm{m}}(\mathrm{H}) \leqslant 3$. This proves that H satisfies (iv). Altogether, we have proved that, if $\tau_{\mathrm{m}}(\mathrm{H}) \geqslant 4$, then H satisfies conditions (i)-(iv).

To complete the proof of the lemma, we assume that H satisfies conditions (i)-(iv) and we will prove that $\alpha_{m}(H) \geqslant 4$, or, equivalently, by Lemma 4.34 , that H has a 4 -profuse-coloring. To begin with, we prove the following claims about H .

Claim 1. Each of Γ_{1} and Γ_{n} is either an edge, m-crown for some $m \geqslant 3$, or m-fold for some $m \geqslant 4$.

Proof of the claim. Indeed, each of Γ_{1} and Γ_{n} is different from triangle and square because of (i), different from 2-crown, 3-fold, and rhombus because of (iii), and different from K_{4} because of (ii). As each of Γ_{1} and Γ_{n} is basic, the claim follows.

Claim 2. If there is a maximal 4-profuse-coloring ϕ of H and there are at least three edges of Γ_{j} incident to the same terminal vertex of Γ_{j}, then each terminal vertex of Γ_{j} is incident to four edges of H colored by ϕ.
Proof of the claim. Without loss of generality, assume that there are at least three edges of Γ_{j} incident to v_{j}. As Γ_{j} is basic, there are also at least three edges of Γ_{j} incident to v_{j-1} and Γ_{j} is either an m-crown for some $m \geqslant 2$ or an m-fold for some $m \geqslant 3$. So, if $\mathrm{d}_{\mathrm{H}}\left(v_{j}\right)=3$, then $\mathrm{j}=\mathrm{n}$ and either Γ_{n} would be a 2 -crown or a 3 -fold, contradicting Claim 1. Therefore, $\mathrm{d}_{\mathrm{H}}\left(v_{\mathrm{j}}\right) \geqslant 4$ and, symmetrically, $\mathrm{d}_{\mathrm{H}}\left(v_{j-1}\right) \geqslant 4$. In addition, neither $N_{H}\left(v_{j}\right)$ nor $N_{H}\left(v_{j-1}\right)$ induces $2 \mathrm{~K}_{2}$ in H and, by Lemma $4.45, \mathrm{E}_{\mathrm{H}}\left(v_{j}\right)$ and $\mathrm{E}_{\mathrm{H}}\left(v_{j-1}\right)$ are matching-transversals of H . Hence, by Corollary 4.35 , the maximality of ϕ implies that each of v_{j} and v_{j-1} is incident to four edges of H colored by ϕ.

Claim 3. If $n \geqslant 2, \Gamma_{n-1}$ and Γ_{n} are both edges, $p_{n-1}=2$, and there is some 4-profusecoloring of H , then either $\mathrm{n}=2$ or there is some 4 -profuse-coloring of H that colors at least two of the edges incident to v_{n-2}.
Proof of the claim. Suppose that $n \geqslant 3$ and we have to prove that there is a 4-profusecoloring of H that colors at least two edges incident to v_{n-2}. Let ϕ be a 4 -profusecoloring of H that maximizes the number of colored edges incident to v_{n-2} and, without loss of generality, assume that ϕ is maximal. Suppose, by the way of contradiction, that ϕ colors at most one edge incident to v_{n-2}. As ϕ is maximal, the four edges incident to v_{n-1} are colored by ϕ and, in particular, $v_{n-2} v_{n-1}$ is colored. So, by hypothesis, all edges incident to v_{n-2} different from $v_{n-2} v_{n-1}$ are uncolored. If there
were an edge joining v_{n-2} to some non-cutpoint vertex of H , then this edge would be uncolored and, at the same time, incident to at most three colored edges, contradicting the maximality of ϕ. Therefore, $\mathrm{p}_{\mathrm{n}-1}=0$ and $\Gamma_{\mathrm{n}-2}$ is an edge. As $v_{n-3} v_{n-2}$ is uncolored and $v_{n-2} v_{n-1}$ is the only colored edge incident to v_{n-2}, there are at least three colored edges incident to v_{n-3} such that each of them is colored differently from $v_{n-2} v_{n-1}$. If there were some pendant edge p incident to v_{n-3} and colored differently from $v_{n-2} v_{n-1}$, then, by coloring $v_{n-3} v_{n-2}$ with the color of p and uncoloring p, a new 4-profuse-coloring of H arises that colors at least two edges incident to v_{n-2}, a contradiction with the choice of ϕ. This contradiction shows that there are at least three colored edges of Γ_{n-2} incident to v_{n-3}. So, by Claim 2, v_{n-4} is incident to four colored edges. Let e be any of the colored edges incident to v_{n-3} but not to v_{n-4} such that e is colored differently from $v_{n-2} v_{n-1}$. Then, coloring $v_{n-3} v_{n-2}$ with the color of e and uncoloring e, a new 4 -profuse-coloring of H arises that colors two of the edges edges incident to v_{n-2}, contradicting the choice of ϕ. This contradiction arose from assuming that ϕ does not color at least two edges incident to v_{n-2}. So, the claim follows.

Claim 4. If H has a 4 -profuse-coloring, Γ_{1} is an edge, $\mathrm{n} \geqslant 2, \mathrm{p}_{1}=1$, and $\mathrm{N}_{\mathrm{H}}\left(v_{1}\right)$ induces $\mathrm{K}_{2} \cup 2 \mathrm{~K}_{1}$ in H , then there is a 4-profuse-coloring ϕ of H that colors the only edge of H joining two neighbors of v_{1}.
Proof of the claim. Let ϕ^{\prime} be a maximal 4-profuse-coloring of H and let e be the only edge of H joining two vertices in $\mathrm{N}_{\mathrm{H}}\left(v_{1}\right)$. As $\mathrm{d}_{\mathrm{H}}\left(v_{1}\right)=4$ and $\mathrm{N}_{\mathrm{H}}\left(v_{1}\right)$ does not induce $2 \mathrm{~K}_{2}$, Lemma 4.45 implies that $\mathrm{E}_{\boldsymbol{H}}\left(v_{1}\right)$ is a matching-transversal of H and the four edges incident to v_{1} are colored by ϕ^{\prime} because of the maximality of ϕ^{\prime} and because of Corollary 4.35. If ϕ^{\prime} colors e, the claim holds by letting $\phi=\phi^{\prime}$. So, suppose that e is not colored by ϕ^{\prime}. Then, the maximality of ϕ^{\prime} implies that e is incident to at least four other edges of H .

Suppose first that e is incident to exactly four edges of H ; i.e., either Γ_{2} is triangle and $d_{H}\left(v_{2}\right)=4$, or Γ_{2} is rhombus. Let w be an endpoint of e different from v_{2} and let $e^{\prime}=v_{1} w$. Let $e^{\prime \prime}$ be a pendant edge incident to v_{1} and colored differently from each of the colored edges incident to w. Notice that the maximality of ϕ, Lemma 4.33, and Corollary 4.35 imply that the four edges of H incident to e are colored by ϕ^{\prime} using four different colors. So, if we define $\phi: \mathrm{E}(\mathrm{H}) \rightarrow\{0,1,2,3,4\}$ to be as ϕ^{\prime} except that ϕ colors e and $e^{\prime \prime}$ with color $\phi^{\prime}\left(e^{\prime}\right)$ and e^{\prime} with color $\phi^{\prime}\left(e^{\prime \prime}\right)$, then ϕ is a 4-profuse-coloring of H that colors e, as claimed.

It only remains to consider the case when e is incident to more than four edges of H. Necessarily, Γ_{2} is a triangle and $\mathrm{d}_{\mathrm{H}}\left(v_{2}\right) \geqslant 5$. Let w be the non-terminal vertex of Γ_{2}. Suppose that there is some pendant edge p incident to v_{2} that is colored by ϕ^{\prime}. By permuting, if necessary, the colors of the edges of H incident to v_{1} that are different
from $v_{1} v_{2}$, we assume, without loss of generality, that $v_{1} w$ is colored differently from p. Then, by coloring e with the color of p and uncoloring p, a new 4 -profuse-coloring of H arises that colors e , as claimed. So, from now on, we assume, without loss of generality, that there is no pendant edge incident to v_{2} colored by ϕ^{\prime}. So, as $\mathrm{d}_{\mathrm{H}}\left(v_{2}\right) \geqslant 5$, Lemma 4.45 and Corollary 4.35 imply that there are four edges incident to v_{2} colored by ϕ^{\prime} and, necessarily, three of them are edges of Γ_{3}. By Claim 2, there are four colored edges incident to v_{3}. Therefore, if we let e^{\prime} be any edge of Γ_{3} incident to v_{2} but not to ν_{3} and colored by ϕ^{\prime} differently from $v_{1} w$, then by coloring e with the color of e^{\prime} and uncoloring e^{\prime}, a new 4 -profuse-coloring of H arises that colors e , as claimed.

Claim 5. If H has a 4-profuse-coloring, $\Gamma_{1}=$ edge, $n \geqslant 2$, and $p_{1} \geqslant 1$, then there is a 4 -profuse-coloring of H that colors at least two pendant edges incident to v_{1}.
Proof of the claim. Suppose, by the way of contradiction, that ϕ is a 4-profuse-coloring of H that maximizes the number of colored pendant edges incident to v_{1} and that, nevertheless, ϕ colors at most one pendant edge incident to v_{1}. Since $p_{1} \geqslant 1$, there is at least one uncolored pendant edge incident to v_{1}. Then, the maximality of ϕ means that there are four colored edges incident to v_{1}. As Γ_{1} is an edge and there is at most one colored pendant edge incident to v_{1}, there are at least three colored edges of Γ_{2} incident to v_{1}. Then, by Claim 2, there are four colored edges incident to v_{2}. Let e be any colored edge of Γ_{2} incident to v_{1} but not to v_{2} and let p be any of the uncolored pendant edges incident to v_{1}. If we color p with the color of e and uncolor e, a new 4 -profuse-coloring of H arises that colors one more pendant edge incident to v_{1} than ϕ, contradicting the choice of ϕ. This contradiction proves that the claim holds.

We turn back to the proof of the lemma. The proof proceeds by induction on the number of cutpoints of H . Clearly, the cutpoints of H are the $\mathrm{n}-1$ vertices v_{1}, \ldots, v_{n-1}. Consider first the case when H has no cutpoints; i.e., $\mathrm{n}=1$. Then, H is the underlying graph of Γ_{1} which, by Claim 1, is an edge, m-crown for some $n \geqslant 3$, or m-fold for some $m \geqslant 2$. If Γ_{1} were an edge, then $d_{\mathrm{H}}\left(v_{0}\right)+\mathrm{d}_{\mathrm{H}}\left(v_{1}\right)-1=1$, which contradicts (i). Therefore, if $n=1$, then H is m-crown for some $m \geqslant 3$ or m-fold for some $m \geqslant 4$ and, by Lemma $4.52, \alpha_{\mathrm{m}}(\mathrm{H}) \geqslant 4$.

Assume that $n \geqslant 2$ and that the lemma holds for graphs with less than $n-1$ cutpoints. Suppose that H has some cutpoint of degree 3; i.e., there is some $\mathrm{j} \in$ $\{1,2, \ldots, n-1\}$ such that v_{j} has degree 3 in H. By (iv), $N_{H}\left(v_{j}\right)$ induces $K_{2} \cup K_{1}$ in H. Therefore, $\mathrm{p}_{\mathrm{j}}=0$ and, by symmetry, assume, without loss of generality, that Γ_{j} is an edge and Γ_{j+1} is either a triangle or a rhombus. Let H_{1} be the graph that arises from H by first removing all vertices and edges from $\Gamma_{j+1}, \Gamma_{j+2}, \ldots, \Gamma_{n}$, except for the vertices of $N_{H}\left[v_{j}\right]$ and the edges incident to v_{j}, and, then, adding one pendant edge p incident to v_{j}. Notice that H_{1} can be regarded as the underlying graph of $\Gamma_{1} \&_{\mathfrak{p}_{1}} \Gamma_{2} \&_{\mathfrak{p}_{1}} \ldots \&_{\mathfrak{p}_{j-1}} \Gamma_{j} \&_{2}$ edge. Clearly, H_{1} satisfies (i)-(iv) and, by induction hy-
pothesis, there is a 4-profuse-coloring of H_{1}. By Claim 3, there is a 4-profuse-coloring ϕ_{1} of H_{1} that colors at least two of the edges of H_{1} incident to v_{j-1}. So, by permuting, if necessary, the pendant edges incident to v_{j} in H_{1}, we assume, without loss of generality, that ϕ_{1} colors some edge incident to v_{j-1} with color $\phi_{1}(p)$. Let H_{2} be the graph that arises from H by first removing all vertices an edges of $\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{j}$, except for the vertices of $\mathrm{N}_{\mathrm{H}}\left[v_{j}\right]$ and the edges incident to v_{j}, and, then, adding one pendant edge incident to v_{j}. The graph H_{2} can also be regarded as the underlying graph of edge $\&_{1} \Gamma_{j+1} \&_{\mathfrak{p}_{j+1}} \Gamma_{j+2} \&_{\mathfrak{p}_{j+2}} \cdots \&_{\mathfrak{p}_{n-1}} \Gamma_{\mathfrak{n}}$. By Claim 4, there is a maximal 4-profusecoloring ϕ_{2} of H_{2} that colors the only edge e joining two neighbors of v_{j}. By permuting, if necessary, the pendant edges incident to v_{j}, we assume, without loss of generality, that ϕ_{2} colors e differently from the edge of Γ_{j}. Moreover, by permuting, if necessary, the colors of ϕ_{2}, we assume without loss of generality, that ϕ_{1} and ϕ_{2} color the edge of Γ_{j} and each of the edges of Γ_{j+1} incident to v_{j} in exactly the same way. Thus, there is no edge of H where ϕ_{1} and ϕ_{2} differ and the partial edge-coloring ϕ that results by merging ϕ_{1} and ϕ_{2} is easily seen to be 4-profuse-coloring of H, as desired. Therefore, from now on, we assume, without loss of generality, that H has no cutpoint of degree 3.

Suppose now that there is some $j \in\{1,2, \ldots, n\}$ such that Γ_{j} is a rhombus. Let H_{1} be the graph that arises from H by removing all the vertices and edges from $\Gamma_{j}, \Gamma_{j+1}, \ldots, \Gamma_{n}$ except for the vertices of $N_{H}\left[v_{j-1}\right]$ and the edges incident to v_{j-1}, and let H_{2} the graph that arises from H by removing all vertices and edges from $\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{j}$ except for the vertices of $\mathrm{N}_{\mathrm{H}}\left[v_{j}\right]$ and the edges incident to v_{j}. Moreover, as H has no cutpoint of degree $3, \mathrm{~d}_{\mathrm{H}_{1}}\left(v_{j-1}\right) \geqslant 4$, from which it follows that H_{1} satisfies (i)-(iv) and, by induction hypothesis, H_{1} admits a 4 -profuse-coloring ϕ_{1}. Similarly, $\mathrm{d}_{\mathrm{H}_{2}}\left(v_{j+1}\right) \geqslant 4$ and H_{2} admits a 4-profuse-coloring ϕ_{2}. By Claim 5, we assume, without loss of generality, that ϕ_{i} colors both edges of Γ_{j} that belong to H_{i}, for $i=1,2$. By permuting, if necessary, the colors of ϕ_{2}, we assume, without loss of generality, that ϕ_{1} and ϕ_{2} color the four edges of Γ_{j} that belong to H_{1} or H_{2} using 4 different colors. Then, let $\phi: \mathrm{E}(\mathrm{H}) \rightarrow\{0,1,2,3,4\}$ defined as ϕ_{1} in $E\left(H_{1}\right)$, as ϕ_{2} in $E\left(H_{2}\right)$, and that leaves the only edge of Γ_{j} that belongs neither to H_{1} nor to H_{2} uncolored. Clearly, ϕ is a 4-profuse-coloring of H , as desired.

It only remains to consider the case when H has no cutpoins of degree 3 and no Γ_{j} is a rhombus; i.e., the case when $\delta_{h}(H) \geqslant 4$. Then, as (i) ensures that H is hub-covered and since H has at least one edge, Lemma 4.48 implies that $\alpha_{m}(H) \geqslant \delta_{h}(H) \geqslant 4$, which completes the proof of the lemma.

The following lemma settles case $k=5$.

Lemma 4.56. Let H be a fat caterpillar containing no \mathcal{A} and no net and having at least one edge. Then, $\alpha_{\mathrm{m}}(\mathrm{H}) \geqslant 5$ if and only if $\tau_{\mathrm{m}}(\mathrm{H}) \geqslant 5$. In fact, both inequalities hold if and only if

H satisfies all of the following assertions:
(i) For each pair of adjacent vertices v_{1} and $v_{2}, \mathrm{~d}_{\mathrm{H}}\left(v_{1}\right)+\mathrm{d}_{\mathrm{H}}\left(v_{2}\right)-1 \geqslant 5$.
(ii) No block of H is a complete of four vertices.
(iii) No cutpoint of H has degree 3 in H .
(iv) The neighborhood of each vertex of degree 4 induces $2 \mathrm{~K}_{2}$ in H .

Proof. Since $\alpha_{m}(H) \leqslant \tau_{m}(H), \alpha_{m}(H) \geqslant 5$ implies $\tau_{m}(H) \geqslant 5$. Suppose now that H satisfies $\tau_{\mathrm{m}}(\mathrm{H}) \geqslant 5$. Then, H satisfies (i) because of Lemma 4.33. If there were some block of H of size four, it would have at least three vertices of degree 3 in H (because H contains no A and has no 5-cycle) and the edges of the K_{3} induced by these three vertices would be a matching-transversal of H, contradicting $\tau_{m}(H) \geqslant 5$. So, H satisfies (ii). Since the neighborhood of a cutpoint induces a disconnected graph, if H had some cutpoint of degree 3 , then, by Lemma $4.45, \tau_{\mathrm{m}}(\mathrm{H}) \leqslant 4$. Hence, H satisfies (iii). Finally, Lemma 4.45 implies that H satisfies (iv). Hence, we have proved that if $\tau_{\mathrm{m}}(H) \geqslant 5$, then H satisfies (i)-(iv). To complete the proof of the lemma, we assume that H satisfies conditions (i)-(iv) and we will show that $\alpha_{\mathrm{m}}(\mathrm{H}) \geqslant 5$, or, equivalently, by Lemma 4.34, that H has a 5 -profuse-coloring.

By virtue of Lemma 4.20, H is the underlying graph of some $\Gamma_{1} \&_{\mathfrak{p}_{1}} \Gamma_{2} \&_{\mathfrak{p}_{2}} \cdots \&_{\mathfrak{p}_{n-1}} \Gamma_{n}$ where each Γ_{i} is a basic two-terminal graph and each $p_{i} \geqslant 0$. Clearly, the underlying graph of each Γ_{i} is a block of H. Therefore, because of (ii), none of $\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{n}$ is a K_{4}. For each $i=1,2, \ldots, n-1$, let v_{i} be the concatenation vertex of H that arises by identifying the sink of Γ_{i} with the source of Γ_{i+1}. Let v_{0} be the source of Γ_{1} and let v_{n} be the sink of Γ_{n}. We make the following claims.

Claim 1. Each of Γ_{1} and Γ_{n} is either an edge, m-crown for some $m \geqslant 4$, or m-fold for some $m \geqslant 5$.

Proof of the claim. Indeed, each of Γ_{1} and Γ_{n} is different from triangle, square, 2-crown, 3 -fold, and rhombus because of (i), different from 3-crown and 4-fold because of (iv), and different from K_{4} because of (ii). The claim follows.

Claim 2. If there is a maximal 5-profuse-coloring ϕ of H and there are at least three edges of Γ_{j} incident to the same terminal vertex of Γ_{j}, then each terminal vertex of Γ_{j} is incident to five edges of H colored by ϕ.
Proof of the claim. Without loss of generality, suppose that there are at least three edges of Γ_{j} incident to v_{j}. As Γ_{j} is basic, there are also at least three edges of Γ_{j} incident to v_{j-1} and Γ_{j} is either and m-crown for some $m \geqslant 2$ or an m-fold for some $m \geqslant 3$. If $\mathrm{d}_{\mathrm{H}}\left(v_{\mathrm{j}}\right)=3$, then $\mathfrak{j}=\mathrm{n}$ and Γ_{n} is either a 3-crown or a 4 -fold, contradicting Claim 1 .

So, $\mathrm{d}_{\mathrm{H}}\left(v_{\mathrm{j}}\right) \geqslant 4$ and, symmetrically, $\mathrm{d}_{\mathrm{H}}\left(v_{j-1}\right) \geqslant 4$. In addition, neither $\mathrm{N}_{\mathrm{H}}\left(v_{\mathrm{j}}\right)$ nor $\mathrm{N}_{\mathrm{H}}\left(v_{j-1}\right)$ induces $2 \mathrm{~K}_{2}$ and, by (iv), $\mathrm{d}_{\mathrm{H}}\left(v_{\mathrm{j}}\right) \geqslant 5$ and $\mathrm{d}_{\mathrm{H}}\left(v_{j-1}\right) \geqslant 5$. Hence, Lemma 4.45, Corollary 4.35 , and the maximality of ϕ imply that each of v_{j} and v_{j-1} is incident to five edges colored of H by ϕ, as claimed.

Claim 3. If H has a 5-profuse-coloring and Γ_{j} is a triangle of H , then there is a 5-profusecoloring of H that colors the three edges of Γ_{j}.
Proof of the claim. By the way of contradiction, assume that the claim is false. Hence, there is some link Γ_{j} that is a triangle and some 5-profuse-coloring ϕ of H that maximizes the number of colored edges of Γ_{j} such that, nevertheless, ϕ does not color the three edges of Γ_{j}. Without loss of generality, assume that ϕ is maximal. Let w be the non-terminal vertex of Γ_{j}. By Claim 1 and (iii), $\mathrm{d}_{\mathrm{H}}\left(v_{j-1}\right) \geqslant 4$ and $\mathrm{d}_{\mathrm{H}}\left(v_{j}\right) \geqslant 4$. Suppose, by the way of contradiction, that $\mathrm{d}_{\mathrm{H}}\left(v_{\mathrm{j}}\right)=4$. Then, Lemma 4.33 implies that the set of five edges $E_{H}\left(v_{j}\right) \cup E_{H}(w)$ is a matching-transversal of H and, by the maximality of ϕ and Corollary 4.35 , these five edges are colored by ϕ, contradicting the fact that not all the edges of Γ_{j} are colored. So, necessarily $\mathrm{d}_{\mathrm{H}}\left(v_{j}\right) \geqslant 5$ and, symmetrically, $\mathrm{d}_{\mathrm{H}}\left(v_{j-1}\right) \geqslant 5$. Let e be any uncolored edge of Γ_{j} and assume, without loss of generality, that e is incident to v_{j}. As $\mathrm{d}_{\mathrm{H}}\left(v_{j}\right) \geqslant 5$, there are five colored edges incident to v_{j} because of Lemma 4.45 , Corollary 4.35 , and the maximality of ϕ. If there were some pendant edge p incident to v_{j} and colored differently from $v_{j-1} w$ (if colored), then, by coloring e with the color of p and uncoloring p, a new 5-profuse-coloring of H that colors one more edge of Γ_{j} would arise, contradicting the choice of ϕ. This contradiction proves that among the colored edges incident to v_{j}, there are at least three of them that are edges of Γ_{j}. Therefore, by Claim 2, there are five colored edges incident to v_{j+1}. Symmetrically, if e were incident to v_{j-1}, then there would be five colored edges incident to v_{j-2}. Finally, let $c \in\{1,2,3,4,5\}$ different from the colors of the colored edges of Γ_{j} and different from the colors of $v_{j} v_{j+1}$ (if present and colored) and $v_{j-2} v_{j-1}$ (if present and colored). Let ϕ^{\prime} be the partial edge-coloring of H defined as ϕ except that ϕ^{\prime} colors e with color c and uncolors the edge of H incident to e colored by ϕ with color c. By construction, ϕ^{\prime} is a 5 -profuse-coloring of H and ϕ^{\prime} colors one more edge of Γ_{j} than ϕ, a contradiction with the choice of ϕ. This contradiction proves that ϕ colors all the edges of Γ_{j} and the claim holds.

Claim 4. If H has a 5 -profuse-coloring, Γ_{1} is an edge, $\mathrm{n} \geqslant 2$, and $\mathrm{p}_{1} \geqslant 1$, then there is a 5 -profuse-coloring ϕ of H that colors at least two pendant edges incident to v_{1}.
Proof of the claim. By the way of contradiction, suppose that there is 5-profuse-coloring ϕ of H that maximizes the number of colored pendant edges incident to v_{1} and that, nevertheless, ϕ colors at most one pendant edge incident to v_{1}. Without loss of generality, assume that ϕ is maximal. Since $p_{1} \geqslant 1$, there is still at least one uncolored
pendant edge incident to v_{1}. Then, the maximality of ϕ implies that there are five colored edges incident to v_{1} and, as there is at most one pendant colored edge incident to v_{1}, there are at least four colored edges of Γ_{2} incident to v_{1}. By Claim 2 , there are five colored edges incident to v_{2}. Let e be any of the colored edges of Γ_{2} incident to v_{1} but not to v_{2} and let p be any of the uncolored pendant edges incident to v_{1}. If we color p with the color of e and uncolor e, a new 5-profuse-coloring of H arises that colors one more pendant edge incident to v_{1} than ϕ, contradicting the choice of ϕ. This contradiction proves the claim.

We turn back to the proof of the lemma. The proof proceeds by induction on the number of cutpoints of H . Consider the case H has no cutpoints; i.e., $\mathfrak{n}=1$. Then H is the underlying graph of Γ_{1} which, by Claim 1 , is an edge, m-crown for some $m \geqslant 4$, or m-fold for some $m \geqslant 5$. If H were an edge, v_{0} and v_{1} would be two adjacent pendant vertices of H and $d_{H}\left(v_{0}\right)+d_{H}\left(v_{1}\right)-1=1$, which would contradict (i). So, H is m-crown for some $m \geqslant 4$ or m-fold for some $m \geqslant 5$ and, by Lemma $4.52, \alpha_{m}(H) \geqslant 5$.

Assume now that $n \geqslant 2$ and that the lemma holds for graphs with less than $n-1$ cutpoints. Suppose first that H has a cutpoint of degree 4 and let $j \in\{1,2,3, \ldots, n-1\}$ such that $\mathrm{d}_{\mathrm{H}}\left(v_{\mathrm{j}}\right)=4$. Because of (iv), $\mathrm{N}_{\mathrm{H}}\left(v_{\mathrm{j}}\right)$ induces $2 \mathrm{~K}_{2}$ in H . Therefore, $\mathrm{p}_{\mathrm{j}}=0$ and each of Γ_{j} and Γ_{j+1} is a triangle or a rhombus. If one of Γ_{j} and Γ_{j+1} is a triangle and the other is a rhombus, we assume, without loss of generality, that Γ_{j} is the one that is a triangle. Let H^{\prime} be the graph that arises from H by contracting $\Gamma_{\mathrm{j}+1}$ to a vertex. Then, H^{\prime} is the underlying graph of $\Gamma_{1} \&_{\mathfrak{p}_{1}} \Gamma_{2} \&_{\mathfrak{p}_{2}} \cdots \&_{\mathfrak{p}_{j-1}} \Gamma_{j} \&_{\mathfrak{p}_{j+1}} \Gamma_{j+2} \&_{\mathfrak{p}_{j+2}} \cdots \&_{\mathfrak{p}_{n-1}} \Gamma_{n}$ and H^{\prime} satisfies (i)-(iv). By induction hypothesis, H^{\prime} has a 5 -profuse-coloring ϕ^{\prime}. Without loss of generality, assume that ϕ^{\prime} is maximal. If Γ_{j} is a rhombus, the maximality of ϕ^{\prime} implies that ϕ^{\prime} colors all the edges of Γ_{j}. If, instead, Γ_{j} is a triangle, then Claim 3 allows us to assume that ϕ^{\prime} colors all the edges of Γ_{j}. Then, we define a new partial 5-edge-coloring $\phi: \mathrm{E}(\mathrm{H}) \rightarrow\{0,1,2,3,4,5\}$ as follows. Let ϕ coincide with ϕ^{\prime} in those edges of H that are neither of Γ_{j} nor of Γ_{j+1} and we define ϕ on the edges of Γ_{j} and Γ_{j+1} depending on how ϕ^{\prime} colors the edges of Γ_{j} as described in Figure 4.8, where $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, e$ is a permutation of the colors $1,2,3,4,5$. Clearly, ϕ is a 5 -profuse-coloring of H and $\alpha_{m}(H) \geqslant 5$, as desired. Therefore, from now on, we assume that $\mathrm{d}_{\mathrm{H}}\left(v_{i}\right) \geqslant 5$ for each $i=1,2, \ldots, n-1$.

Next, we assume that Γ_{j} is a rhombus for some j. As Claim 1 implies that neither Γ_{1} nor Γ_{n} is rhombus, $2 \leqslant j \leqslant n-1$. Let H_{1} be the graph that arises from H by removing all the vertices and edges of $\Gamma_{j}, \Gamma_{j+1}, \ldots, \Gamma_{n}$ except for the vertices of $N_{H}\left[v_{j-1}\right]$ and the edges incident to v_{j-1}. Let H_{2} be the graph that arises from H by removing all the vertices and edges of $\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{j}$ except the vertices of $N_{H}\left[v_{j}\right]$ and the edges incident to v_{j}. Then, we can regard H_{1} as the underlying graph of $\Gamma_{1} \&_{\mathfrak{p}_{1}} \Gamma_{2} \&_{p_{2}} \cdots \&_{\mathfrak{p}_{j-2}}$ $\Gamma_{\mathfrak{j}-1} \&_{\mathfrak{p}_{j-1}+1}$ edge and H_{2} as the underlying graph of edge $\&_{\mathfrak{p}_{\mathfrak{j}}+1} \Gamma_{\mathfrak{j}+1} \&_{\mathfrak{p}_{j+1}} \Gamma_{\mathfrak{j}+2} \&_{\mathfrak{p}_{j+2}}$

Figure 4.8: Rules for transforming ϕ^{\prime} into ϕ in the proof of Lemma 4.56. Here a, b, c, d, e represents any permutation of the colors 1,2,3,4,5 and rule (a), (b), or (c) apply depending on whether each of $\Gamma_{\mathfrak{j}}$ and $\Gamma_{\mathfrak{j}+1}$ is a triangle or a rhombus.
$\cdots \&_{\mathfrak{p}_{n-1}} \Gamma_{\mathrm{n}}$. Since we are assuming that $\mathrm{d}_{\mathrm{H}}\left(v_{\mathrm{j}-1}\right) \geqslant 5$ and $\mathrm{d}_{\mathrm{H}}\left(v_{\mathrm{j}}\right) \geqslant 5, \mathrm{H}_{1}$ and H_{2} satisfy conditions (i)-(iv). By induction hypothesis, there are 5-profuse colorings of H_{1} and H_{2}. By Claim 4, we can assume that the 5-profuse-colorings of H_{1} and H_{2} are such that the two edges of Γ_{j} incident to v_{j-1} are colored by the 5 -profuse-coloring of H_{1} and the two edges of Γ_{j} incident to v_{j} are colored by the 5 -profuse-coloring of H_{2}. By permuting, if necessary, the colors in the 5-profuse-coloring of H_{2}, we can assume that the four edges of Γ_{j} that are incident to some terminal vertex of Γ_{j} are colored by these profuse colorings using four different colors. So, a 5-profuse-coloring of H arises by merging the profuse-colorings of H_{1} and H_{2} and letting the edge joining the two non-terminal vertices of Γ_{j} uncolored. Thus, by Lemma 4.34, $\alpha_{m}(H) \geqslant 5$. So, from this point on, we assume that no Γ_{i} is a rhombus.

Because of (iii) and because we are assuming that no cutpoint of H has degree 4, each of the vertices $v_{1}, v_{2}, \ldots, v_{n-1}$ has either degree 2 or degree at least 5 . In addition, since each of Γ_{1} and Γ_{n} is either an edge, m-crown for some $m \geqslant 4$, or m-fold for some $m \geqslant 5$, each of v_{0} and v_{n} has degree 1 or at least 5 . Finally, since no Γ_{i} is rhombus or K_{4}, each vertex of H different from $v_{0}, v_{1}, \ldots, v_{n}$ has degree at most 2 . So, $\delta_{h}(H) \geqslant 5$. Since H has at least one edge and H is hub-covered (because of (i)), Lemma 4.48 implies that $\alpha_{\mathrm{m}}(\mathrm{H}) \geqslant \delta_{\mathrm{h}}(\mathrm{H}) \geqslant 5$, which completes the proof.

Finally, for the $k \geqslant 6$ we prove the following.
Lemma 4.57. Let H be a fat caterpillar containing no A and no net and having at least one edge. If $k \geqslant 6$, then the following assertions are equivalent:
(i) $\alpha_{m}(H) \geqslant k$.
(ii) $\tau_{\mathrm{m}}(\mathrm{H}) \geqslant \mathrm{k}$.
(iii) H is hub-covered and $\delta_{h}(\mathrm{H}) \geqslant \mathrm{k}$.

Proof. Clearly, (i) implies (ii) because $\alpha_{\mathrm{m}}(\mathrm{H}) \leqslant \tau_{\mathrm{m}}(\mathrm{H})$. As $k \geqslant 6$ and H has at least one edge, Lemma 4.48 shows that (iii) implies (i). For the proof to be complete, it suffices
to show that (ii) implies (iii). Suppose that $\tau_{m}(H) \geqslant k$. Since $k \geqslant 6, H$ is hub-covered because of Lemma 4.33. By virtue of Lemma 4.20, H is the underlying graph of some $\Gamma_{1} \&_{\mathfrak{p}_{1}} \Gamma_{2} \&_{\mathfrak{p}_{2}} \cdots \&_{\mathfrak{p}_{n-1}} \Gamma_{n}$ where each Γ_{i} is a basic two-terminal graph and each $p_{i} \geqslant 0$. If there were some $i \in\{1,2, \ldots, n\}$ such that Γ_{i} is a rhombus or K_{4}, then the two nonterminal vertices of Γ_{i} would be two adjacent vertices of degree 3 and Lemma 4.33 would imply that $\tau_{\mathrm{m}}(\mathrm{H}) \leqslant 5$, a contradiction. Therefore, each Γ_{i} is an m-crown for some $m \geqslant 0$ or an m-fold for some $m \geqslant 2$. Let v_{i} the vertex of H that arises by identifying the sink of Γ_{i} and the source of Γ_{i+1} and let v_{0} be the source of Γ_{1} and v_{n} be the sink of Γ_{n}. Then, each v_{i} has degree 2 in H or has a neighbor in H of degree 2 in H . Therefore, for each $\mathfrak{i}=1,2, \ldots, n$, either $d_{H}\left(v_{i}\right)=2$ or $d_{H}\left(v_{i}\right) \geqslant k-1$ because given any neighbor w of degree 2 of v_{i} the inequality $d_{H}\left(v_{i}\right)+1=d_{H}(w)+d_{H}\left(v_{i}\right)-1 \geqslant k$ must hold because of Lemma 4.33. Notice also that, since Γ_{1} is a crown or a fold, either $\mathrm{d}_{\mathrm{H}}\left(v_{0}\right)=1$ or $\mathrm{d}_{\mathrm{H}}\left(v_{0}\right) \geqslant \mathrm{k}$ because if v_{0} is not pendant then $\mathrm{E}_{\mathrm{H}}\left(v_{0}\right)$ is clearly a matching-transversal of H. Symmetrically, either $d_{H}\left(v_{n}\right)=1$ or $d_{H}\left(v_{n}\right) \geqslant k$. Finally, all vertices of H different from $v_{0}, v_{1}, \ldots, v_{n}$ are vertices of degree 2 because no block of H is a rhombus or K_{4}. We conclude that $\delta_{h}(H) \geqslant k-1$. Since $k-1 \geqslant 5$, Lemma 4.45 implies that $\tau_{m}(H) \leqslant \delta_{h}(H)$. Since we are assuming $\tau_{m}(H) \geqslant k, \delta_{h}(H) \geqslant k$. Thus, (ii) implies (iii) and the proof is complete.

As we have proved Lemmas 4.49 and 4.50 and all the cases of Theorem 4.51, now Theorem 4.44 follows. This, together with Theorem 4.36, imply Theorem 4.32, from which the main results of this section (Theorems 4.16 and 4.17) follow.

4.2.4 Recognition algorithm and computing the parameters

The reader acquainted with the theory of tree-width and second order logic may notice the following. Since forbidding the bipartite claw as a subgraph or as a minor are equivalent, graphs containing no bipartite claw have bounded tree-width [106] and have a linear-time recognition algorithm [14]. Moreover, as the characterization in Theorem 4.17 can be expressed in counting monadic-second order logic with edge set quantifications (see [39]), its validity can be verified in linear time within any graph class of bounded tree-width [27,38]. In particular, matching-perfect graphs can be recognized in linear time. Nevertheless, the resulting algorithm is not elementary. Instead, below we propose a very elementary linear-time recognition algorithm for matching-perfect graphs which relies on depth-first search only.

Let H be a graph. We denote by H_{1} the graph that arises from H by removing all vertices that are pendant in H . We denote by H_{2} some maximal induced subgraph of H having no vertices that are pendant in H and no two vertices that are false twins of degree 2 in H . Finally, we denote by H_{3} some maximal induced subgraph of H
having no two vertices that are false twins of degree 2 in H . We claim that there is an elementary linear-time algorithm that either computes H_{3} or determines that H contains a bipartite claw. Let us consider an algorithm that keeps a list $\mathrm{L}(v)$ for each vertex v of H and that stores at each vertex v of H a boolean variable indicating whether or not the vertex is marked for deletion. Initially, all the list are empty and no vertex is marked for deletion. The algorithm proceeds by visiting every vertex v of H and, for each neighbor $u \in N_{H}(v)$ that was not marked for deletion and such that $N_{H}(u)=$ $\{v, w\}$ for some $w \in \mathrm{~V}(\mathrm{H})$, we do the following: if w is already in the list of $\mathrm{L}(v)$, then we mark u for deletion, otherwise we add w to $\mathrm{L}(v)$. To make the algorithm lineartime, we stop whenever we attempt to add a third vertex to any of the lists $\mathrm{L}(v)$ as this means that v is the center of a bipartite claw. If all vertices of H are visited and no bipartite claw is detected, then we output as H_{3} the subgraph of H induced by those vertices not marked for deletion. The algorithm is clearly correct and linear-time. So, it follows that there is an elementary algorithm that either computes $\mathrm{H}_{1}, \mathrm{H}_{2}$, and H_{3} in linear time or detects that H contains a bipartite claw.

We now claim that there is also an elementary linear-time algorithm to decide whether a given graph is a fat caterpillar and, if affirmative, compute a matchingtransversal of minimum size. To begin with, we proceed as in the preceding paragraph in order to either compute $\mathrm{H}_{1}, \mathrm{H}_{2}$, and H_{3}, or detect that H contains a bipartite claw. If the latter occurs, we can be certain that H is not a fat caterpillar and stop. So, without loss of generality, assume that $\mathrm{H}_{1}, \mathrm{H}_{2}$, and H_{3} were successfully computed in linear time. If H_{1} is a triangle and each vertex of H_{1} has some neighbor in H outside H_{1}, then Lemma 4.50 implies that H is a fat caterpillar and the set of edges incident to any minimum hub of H is a matching-transversal of minimum size. Suppose now that H_{2} is spanned by a 4 -cycle C having at least two consecutive vertices adjacent in H to some vertex outside H_{2}. Let $\mathrm{C}=v_{1} v_{2} v_{3} v_{4} v_{1}$ where v_{1} and v_{2} are adjacent to some vertex outside H_{2} and v_{4} is the only vertex of H_{2} that may have false twins of degree 2 in H. In this case, it is straightforward to determine whether or not H is a fat caterpillar and, if affirmative, compute a matching-transversal of minimum size in linear time thanks to Lemma 4.49. Assume now that neither H_{1} is a triangle such that each vertex of H_{1} is adjacent in H to some vertex outside H_{1}, nor H_{2} is spanned by a 4-cycle having at least two consecutive vertices adjacent in H to vertices outside H_{2}. Then, by Lemmas 4.49 and $4.50, \mathrm{H}$ is a fat caterpillar if and only if H is a fat caterpillar containing no A and no net. Therefore, by Lemma 4.20, H is a fat caterpillar if and only if H is a linear concatenation of basic two-terminal graphs where the K_{4} links may occur only as the first and/or last links of the concatenation. So, H is a fat caterpillar if and only if H_{3} is a linear concatenation of edge, triangle, rhombus, and K_{4} links where the K_{4} links may occur only as the first/and or last link of the concatenation and no vertex
of a rhombus link has a false twin of degree 2 in H . Equivalently, H is a fat caterpillar if and only if H_{3} satisfies each of the following conditions:
(1) Each of the blocks of H_{3} is an edge, a triangle, a diamond, or a K_{4}
(2) Each block of H_{3} has at most two cutpoints
(3) The cutpoints of the diamond blocks are vertices of degree 2 in the diamond.
(4) Each K_{4} block has at most one cutpoint.
(5) Each cutpoint of H_{3} belongs to at most two blocks of H_{3} that are not pendant edges.
(6) No vertex of a diamond block of H_{3} of degree 2 in H has a false twin in H .

All these conditions can be easily verified in linear time once the blocks and the cutpoints of H_{3} are determined, which in its turn can be done in linear time by performing a depth-first search [112]. Finally, if all these conditions are met, H is a fat caterpillar containing no A and no net and a matching-transversal of H of minimum size can be determined in linear time as follows from the characterizations given in Lemmas 4.53 to 4.57 .

Suppose now that we need to determine whether a given graph H is matchingperfect and assume, without loss of generality, that H has more than 6 vertices. We begin by deciding whether H is a fat caterpillar as in the preceding discussion. If H is found to be a fat caterpillar, we are done because we know that H is matching-perfect and stop. Therefore, assume without loss of generality that H is not a fat caterpillar. Then, H is matching-perfect if and only if H is matching-perfect and contains a cycle of length $3 k$ for some $k \geqslant 2$. So, by Lemma 4.37, if H is matching-perfect, then H_{3} is a chordless cycle of length $3 k$ for some $k \geqslant 2$. Conversely, if H_{3} is a chordless cycle of length $3 k$ for some $k \geqslant 3$, clearly H is matching-perfect by Theorem 4.17. This shows that we can decide in linear time whether H is matching-perfect. Finally, if there is any edge $e=u v$ of H_{3} that is not hub-covered in H, then $\mathrm{E}_{\mathrm{H}}(u) \cup \mathrm{E}_{\mathrm{H}}(v)$ is a matchingtransversal of H of minimum size by Lemma 4.43; otherwise, if v is any minimum hub v of H , then $\mathrm{E}_{\mathrm{H}}(v)$ is a matching-transversal of H of minimum size by Lemma 4.42.

Theorem 4.58. There is a simple linear-time algorithm that decides whether a given graph H is matching-perfect and, if affirmative, computes a matching-transversal of H of minimum size within the same time bound.

In particular, if H is matching-perfect, we can also determine the common value of $\alpha_{m}(H)$ and $\tau_{m}(H)$ in linear time. We do not know if it is possible to also compute a matching-independent set of maximum size within the same time bound. Notice
however that the only non-constructive argument used in the proofs of Subsection 4.2.3 is the existence of optimal edge-colorings for some Class 1 graphs containing no bipartite claw. This meas that, using an algorithm such the as the one given in [129] to produce the necessary edge-colorings, our proofs in Subsection 4.2.3 can actually be turned into a procedure to compute a matching-independent set of maximum size for any given matching-perfect graph.

Let G be graph on n vertices which is the complement of a line graph. We can compute a root graph H of $\overline{\mathrm{G}}$ in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time by relying on [89, 107] and then decide whether G is clique-perfect by determining whether H is matching-perfect as above. Thus, we conclude the following.

Theorem 4.59. There is an $\mathrm{O}\left(\mathfrak{n}^{2}\right)$-time algorithm that given a graph G , which is the complement of a line graph, decides whether or not G is clique-perfect and, if affirmative, computes a minimum clique-transversal of G within the same time bound.

Notice that the bottleneck of the algorithm is computing a root graph H of $\overline{\mathrm{G}}$.

4.3 Clique-perfectness of gem-free circular-arc graphs

In [17], clique-perfect graphs were characterized within Helly circular-arc graphs (Theorem 4.5 on page 76). The problem of charactering which circular-arc graphs are clique-perfect is still open. In this section, we characterize clique-perfect graphs by minimal forbidden induced subgraphs within gem-free circular-arc graphs. In fact, we show that, within gem-free circular-arc graphs, being perfect, clique-perfect, coordinated, or hereditary K-perfect, are all equivalent.

Theorem 4.60. Let G be a gem-free circular-arc graph. Then, the following statements are equivalent:
(i) G is clique-perfect.
(ii) G is coordinated.
(iii) G is hereditary K-perfect.
(iv) G is perfect.
(v) G has no odd holes.

Proof. Along this proof, denote by $\mathcal{C}_{1}, \mathfrak{C}_{2}$, and \mathcal{C}_{3}, the families of minimally not cliqueperfect, minimally not coordinated, and minimally not hereditary K -perfect graphs, respectively, and let $\mathcal{C}=\mathfrak{C}_{1} \cup \mathfrak{C}_{2} \cup \mathfrak{C}_{3}$. Clearly, odd holes are in $\mathfrak{C}_{1} \cap \mathfrak{C}_{2} \cap \mathfrak{C}_{3}$. If we prove that the odd holes are the only graphs in \mathcal{C}, then the equivalence among
(i), (ii), (iii), and (v) follows. The equivalence between (iv) and (v) is an immediate consequence of the Strong Perfect Graph Theorem (Theorem 2.3).

Suppose, by the way of contradiction, that there exists a graph H in \mathcal{C} that is not an odd hole. As $\mathrm{H} \in \mathcal{C}_{1} \cup \mathcal{C}_{2} \cup \mathcal{C}_{3}, \mathrm{H}$ is not balanced. Hence, by Theorem 3.54, H has an odd hole or contains an induced 3-pyramid. If H had an odd hole, then the minimality of the graphs in $\mathcal{C}_{1}, \mathcal{C}_{2}$, and \mathcal{C}_{3} would imply that H is an odd hole, contradicting the hypothesis. Therefore, H contains an induced 3-pyramid. Let $P \subseteq V(H)$ such that P induces a 3-pyramid in H and let $\mathrm{W} \subseteq \mathrm{P}$ such that W induces a C_{4} in H .

We claim that $V(H) \backslash W$ is complete to W in H. Indeed, let $w_{1} w_{2} w_{3} w_{4} w_{1}$ be the hole induced by the vertices of W in H and let $P \backslash W=\left\{u_{1}, u_{2}\right\}$. Let v be an arbitrary vertex of $\mathrm{V}(\mathrm{H}) \backslash W$. If $v \in \mathrm{P} \backslash W$, then v is complete to W by construction. So, without loss of generality, suppose that $v \in \mathrm{~V}(\mathrm{H}) \backslash \mathrm{P}$. Let $k=\left|\mathrm{N}_{\mathrm{H}}(v) \cap \mathrm{W}\right|$. By Lemma 2.8 and symmetry, we can assume, without loss of generality, that $\mathrm{N}_{\mathrm{H}}(v) \cap \mathrm{W}=\left\{u_{i}: 1 \leqslant\right.$ $i \leqslant k\}$. If $k=0$ or $k=1,\left\{u_{1}, w_{2}, u_{2}, w_{4}, v\right\}$ would induce $C_{4} \cup K_{1}$ in H, which is not a circular-arc graph, a contradiction. If $k=2$ or $k=3,\left\{v, w_{2}, u_{1}, w_{4}, w_{1}\right\}$ would induce a gem in H, another contradiction. We conclude that $k=4$, which proves that $V(H) \backslash P$ is complete to W in H , as claimed.

Since H is gem-free, $H-W$ is P_{4}-free. Since H is $K_{2,3}$-free, $H-W$ is $3 K_{1}$-free. So, $\overline{\mathrm{H}-\mathrm{W}}$ is a P_{4}-free bipartite graph and, as we saw in the proof of Corollary 3.16, this means that each component of $\overline{\mathrm{H}-W}$ is a complete bipartite graph. Since $\overline{\mathrm{H}}[\mathrm{W}]=$ $\overline{\mathrm{C}_{4}}=2 \mathrm{~K}_{2}$ and W is anticomplete to $\mathrm{V}(\mathrm{H}) \backslash \mathrm{W}$ in $\overline{\mathrm{H}}, \overline{\mathrm{H}}$ is the disjoint union of at least three complete bipartite graphs.

We claim that $\mathrm{H} \notin \mathcal{C}_{1}$. In fact, as H has disconnected complement, let H_{1} and H_{2} be two graphs having at least one vertex each such that $\mathrm{H}=\mathrm{H}_{1}+\mathrm{H}_{2}$. Then, as noted in $[85,87], \alpha_{c}(H)=\min \left\{\alpha_{c}\left(H_{1}\right), \alpha_{c}\left(H_{2}\right)\right\}$ and $\tau_{c}(H)=\min \left\{\tau_{c}\left(H_{1}\right), \tau_{c}\left(H_{2}\right)\right\}$. So, if $H \in \mathcal{C}_{1}$, the minimality of H would ensure that $\alpha_{c}\left(H_{i}\right)=\tau_{c}\left(H_{i}\right)$ for each $i=1,2$ and the conclusion would be that $\alpha_{c}(H)=\tau_{c}(H)$, contradicting $H \in \mathcal{C}_{1}$. This proves the claim.

So, necessarily, $H \in \mathcal{C}_{2} \cup \mathcal{C}_{3}$; i.e., H is minimally not coordinated or minimally not hereditary K-perfect. In particular, $\gamma_{c}(H) \neq \Delta_{c}(H)$ or $K(H)$ is imperfect and, in either case, H has no universal vertices; i.e., each component of $\overline{\mathrm{H}}$ has at least two vertices. Let $\bar{H}_{1}, \bar{H}_{2}, \ldots, \bar{H}_{t}$ be the components of $\overline{\mathrm{H}}$ and, for each $i=1,2, \ldots, t$, let $\left\{A_{i}^{1}, A_{i}^{2}\right\}$ be the bipartition of the complete bipartite graph \bar{H}_{i}. Then, the cliques of H are of the form $A_{1}^{j_{1}} \cup A_{2}^{j_{2}} \cup \cdots \cup A_{t}^{j_{t}}$ where $j_{1}, \ldots, j_{t} \in\{1,2\}$. Notice that $\gamma_{c}(H)=2^{t-1}$ and $\Delta_{c}(H)=2^{t-1}$ (indeed, each vertex of H belongs to $2^{\mathrm{t}-1}$ cliques of H), which contradicts the fact that $H \in \mathcal{C}_{2}$, and that $K(H)=\overline{2^{t} K_{2}}$ which is a cograph and, in particular, perfect, which contradicts $\mathrm{H} \in \mathcal{C}_{3}$, as desired.

Chapter 5

Graphs having the Kőnig property and edge-perfect graphs

This chapter is organized as follows.

- In Section 5.1, we give some background about graphs having the Kőnig property and about edge-perfect graphs.
- In Section 5.2, we prove a characterization of graphs having the Kőnig property in terms of forbidden strongly splitting subgraphs, which is a strengthened version of a characterization due to Korach, Nguyen, and Peis [82] by forbidden configurations: (1) First, we show that one of their forbidden configurations is redundant and can be omitted; (2) then, we reformulate the resulting characterization in terms of forbidden subgraphs; (3) finally, we strengthen the formulation by restricting the way in which the forbidden subgraphs may occur.
- In Section 5.3, we use our characterization of graphs having the Kőnig property in order to prove a characterization of edge-perfect graphs by forbidden edgesubgraphs.

The results of this chapter appeared in [49].

5.1 Background

5.1.1 Graphs having the Kőnig property

Recall from the Introduction that a graph G has the Kônig property is its matching number $v(\mathrm{G})$ equals its transversal number $\tau(\mathrm{G})$. This means that Kőnig's matching theorem [77] can be regarded as asserting that bipartite graphs have the Kőnig

Figure 5.1: C_{3}, barbell, and K_{4}
property. Graphs having the Kőnig property have received considerable attention [28, 44, 81, $82,86,90,93,94,99,103,111]$. The study of graphs having the Kőnig property from a structural point of view has its origins in the works of Sterboul [111] and Deming [44] who, independently, gave the first structural characterization for these graphs. In [51], Edmonds devised the first polynomial-time algorithm for maximum matching in general graphs, for which he introduced the notions of blossoms, stems, and flowers. Let G be a graph and let M be a matching of G. An M-blossom is an odd cycle of length $2 k+1$ for some $k \geqslant 1$ such that k of its edges are edges of M. An M-stem is either an exposed vertex or an even M-alternating path having an M-unsaturated vertex in one end and an edge of M in the other; the M-unsaturated vertex and the vertex at the other end are called, respectively, the root and the tip of the stem. An M -flower consists of a blossom and a stem whose only common vertex are the base of the blossom and the tip of the stem. In [111], Sterboul defined an M-posy to consist of two (not necessarily disjoint) blossoms joined by an odd M-alternating path that starts and ends in edges of M and whose endpoints are the bases of the two blossoms. He observes that if an M-posy exists, one M-posy can be found whose only vertex of each blossom belonging to the path is its base. The characterization is as follows.

Theorem 5.1 ([44, 111]). Let G be a graph. The following assertions are equivalent:
(i) G has the Kônig property (i.e., $\tau(\mathrm{G})=\nu(\mathrm{G})$).
(ii) For every maximum matching M, there exists an M-flower or an M-posy.
(iii) For some maximum matching M , there is an M -flower or an M -posy.

Deming [44] continues the analysis and also devises a polynomial-time algorithm for recognizing graphs having the Kőnig property and, if affirmative, computing a maximum independent set. Nevertheless, the fact that the two blossoms that define an M-posy may intersect does not give a simple forbidden subgraph characterization of graph having the Kőnig property.

In [93], Lovász proved a characterization of graphs having the Kőnig property, restricted to graphs having a perfect matching by means of what he called nice subgraphs. An even subdivision of an edge $u v$ consists in replacing the edge $u v$ by two new vertices w_{1} and w_{2} together with three edges $u w_{1}, w_{1} w_{2}$, and $w_{2} v$. An even subdivision of

Figure 5.2: Forbidden configurations for graphs having the Kőnig property
a graph G is either the graph G itself or any of the graphs that arise from G by successive application of even subdivisions. A subgraph H of a graph G is nice if $G-V(H)$ has a perfect matching. The aforementioned characterization is stated below. For the barbell graph, see Figure 5.1.

Theorem 5.2 ([93]). A graph with a perfect matching has the König property if and only if it has no even subdivision of barbell or K_{4} as a nice subgraph.

In [82], Korach, Nguyen, and Peis extended Lovász's result to a characterization of all graphs having the Kőnig property by, what we call, forbidden configurations. A configuration of a graph G is an ordered pair $\xi=(S, M)$ where S is a subgraph of G, M is a maximum matching of G, and S belongs to one of the four families of graphs represented in Figure 5.2, where dashed edges stand for M-alternating paths starting and ending in edges of M, solid edges stand for M-alternating paths starting and ending in edges not belonging to M, and the vertex v is M-unsaturated. The graph S is said the underlying graph of ξ. The characterization by Korach et al. by forbidden configurations is the following.

Theorem 5.3 ([82]). A graph has the Kônig property if and only if it has none of the configurations in Figure 5.2.

Notice that if we require that each induced subgraph of a graph G have the Kőnig property, then G should be bipartite because the chordless odd cycles do not have the Kőnig property. Recall from the Introduction that, instead, edge-perfect graphs are those graphs such that the Kőnig property holds for each of their 'edge subgraphs'. If F is any set of edges, we will denote by $V(F)$ the set of endpoints of the edges belonging to F; i.e., $V(F)=\bigcup_{e \in F} e$ by regarding each edge e as the set of its endpoints. With this notation, the edge-subgraphs of a graph G are the induced subgraphs $G-V(F)$ for some $F \subseteq E(G)$. Clearly, edge-perfect graphs form a superclass of the class of bipartite graphs and a subclass of the class of graphs having the Kőnig property. Moreover, both inclusions are proper, as shown by the paw (which is edge-perfect but not bipartite) and the graph that arises from C_{6} by adding a short chord (which has the Kőnig property but is not edge-perfect).

If C is a chordless odd cycle of a graph G, let a savior of C be a vertex v of $V(G) \backslash V(C)$ such that $\mathrm{N}_{\mathrm{G}}(v) \subseteq \mathrm{V}(\mathrm{C})$. Let a two-twin pair be a pair of false twins of degree 2 and let $\mathcal{N}(\mathrm{G})$ be the family of the neighborhoods of the vertices in each two-twin pair; i.e., $\mathcal{N}(G)=\left\{N_{G}(v): v\right.$ has degree 2 and has a false twin in $\left.G\right\}$. Finally, let G_{P} be the edge-subgraph of G that arises by removing the endpoints of all the pendant edges of G. In [47] and [48], edge-perfect graphs were characterized by the presence of saviors and by the absence in G_{p} of chordless odd cycles with forbidden pairs.

Theorem $5.4([47,48])$. A graph G is edge-perfect if and only if each chordless odd cycle of G has a savior that is either a pendant vertex or belongs to some two-twin pair or, equivalently, if and only if G_{P} has no chordless odd cycle containing at most one vertex from each pair in $\mathcal{N}(\mathrm{G})$.

These characterizations were used to identify some graph classes within which there are polynomial-time recognition algorithms for edge-perfect graphs [47] and to prove that the problem of recognizing edge-perfect graphs is NP-hard in general [48]. Originally, edge-perfect graphs were defined in [53] in connection with packing and covering games introduced in [45]. In fact, in [48], based on the NP-hardness of the recognition of edge-perfect graphs, it is deduced that the recognition of matrices defining totally balanced packing games is NP-hard, answering a question raised in [45]. This is in contrast with the case of matrices defining totally balanced covering games, which can be recognized in polynomial time [121].

5.2 The Kőnig property in terms of forbidden subgraphs

We will first show that it is not possible to extend Theorem 5.2 to a characterization of all graph having the Kőnig property by forbidden nice subgraphs. That is, we cannot drop the hypothesis that G has a perfect matching by adding some extra forbidden nice subgraphs. It is not possible to do so because, while the relation "is a nice subgraph of" is clearly transitive, the Kőnig property is not always inherited by the nice subgraphs (as the example given in Figure 5.3 shows). Suppose, by the way of contradiction, that it were possible to characterize the whole class of graphs having the Kőnig property by forbidden nice subgraphs. Consider Figure 5.3, where a graph is displayed on the left and a nice subgraph of it on the right. Since the graph on the right does not have the Kőnig property, it should have some nice subgraph Φ which is forbidden in the characterization whose existence we are assuming. Then, by transitivity, the forbidden nice subgraph Φ would also be a nice subgraph of the graph on the left, which would contradict the fact that the graph on the left does have the Kőnig property. This contradiction proves that Theorem 5.2 cannot be extended to a

Figure 5.3: The Kônig property is not always inherited by the nice subgraphs. The graph on the left has the König property while its bold edges correspond to a nice subgraph of it (depicted also on the right) that does not have the König property.
characterization by forbidden nice subgraphs of all graphs having the Kônig property. Instead, our approach towards obtaining a similar result holding for all graphs will be to replace nice subgraphs by splitting subgraphs (to be defined after Lemma 5.5) and later by strongly splitting subgraphs (to be defined on page 133).

Let G be a graph and let X be a subset of $V(G)$. We say that X is a splitting set of G if and only if there is some maximum matching M of G such that no edge of M joins a vertex of X to a vertex of $G-X$. If so, we say that M is split by X. The next lemma gives a sufficient condition for a subgraph of a graph having the Kőnig property to also have the Kőnig property.

Lemma 5.5. Let G be a graph having the Kőnig property and let H be a subgraph of G . If $\mathrm{V}(\mathrm{H})$ is a splitting set of G and $v(\mathrm{H})=v(\mathrm{G}[\mathrm{V}(\mathrm{H})])$, then H also has the Kőnig property.

Proof. Suppose that $\mathrm{V}(\mathrm{H})$ is a splitting set of G and $v(\mathrm{H})=v(\mathrm{G}[\mathrm{V}(\mathrm{H})])$. Let M be a maximum matching of G split by $V(H)$;i.e., there is no edge of M joining a vertex of H to a vertex of $G-V(H)$. Let M_{H} be the set of edges of M joining two vertices of $V(H)$ and let $M_{G-V(H)}$ be the set of edges of M joining two vertices of $G-V(H)$. Since M is a maximum matching of G and M is split by $V(H), M_{H}$ is a maximum matching of $\mathrm{G}[\mathrm{V}(\mathrm{H})]$. Since $v(\mathrm{H})=v(\mathrm{G}[\mathrm{V}(\mathrm{H})])$, there is maximum matching M_{H}^{\prime} of H such that $\left|M_{H}^{\prime}\right|=\left|M_{H}\right|$. Therefore, $M^{\prime}=M_{H}^{\prime} \cup M_{G-V(H)}$ is a maximum matching of G. Then,

$$
\begin{equation*}
\nu(\mathrm{G})=v(\mathrm{H})+\nu(\mathrm{G}-\mathrm{V}(\mathrm{H})) \leqslant \tau(\mathrm{H})+\tau(\mathrm{G}-\mathrm{V}(\mathrm{H})) \leqslant \tau(\mathrm{G}) . \tag{5.1}
\end{equation*}
$$

Since G has the Kőnig property, both inequalities in (5.1) hold with equality and, necessarily, $\nu(\mathrm{H})=\tau(\mathrm{H})$ and $\nu(\mathrm{G}-\mathrm{V}(\mathrm{H}))=\tau(\mathrm{G}-\mathrm{V}(\mathrm{H}))$. This proves that H has the Kőnig property.

The above lemma leads us to introduce the notion of splitting subgraphs as follows. Let G be a graph and let H be a subgraph of G . We will say that H is a splitting subgraph of G if and only if $V(H)$ is a splitting set of G and H has a perfect or near-perfect matching. Notice that if H has a perfect or near-perfect matching, $v(\mathrm{H})=v(\mathrm{G}[\mathrm{V}(\mathrm{H})])$ holds trivially. Therefore, we have the following corollary of Lemma 5.5 showing that,
contrary to the case of nice subgraphs, the Kőnig property is always inherited by the splitting subgraphs.

Corollary 5.6. If a graph has the Kőnig property, then each of its splitting subgraphs has the König property.

Notice that if G has a perfect matching, then H is a splitting subgraph of G if and only if H has a perfect matching and H is a nice subgraph of G . Since all the graphs involved in Theorem 5.2 have perfect matchings, the result still holds if we replace 'nice subgraphs' by 'splitting subgraphs':

Theorem 5.2 in terms of splitting subgraphs ([93]). A graph with a perfect matching has the Kőnig property if and only if it has no even subdivision of barbell or K_{4} as a splitting subgraph.

We will show that, contrary to the case of nice subgraphs, the whole class of graph having the Kőnig property can be characterized by means of splitting subgraphs. That is, when Theorem 5.2 is reformulated in terms of forbidden splitting subgraphs as above, the hypothesis that G has a perfect matching can be dropped by simply adding some extra forbidden splitting subgraphs. The characterization of the graphs having the Kőnig property by forbidden splitting subgraphs will follow from the characterization by Korach et al. (Theorem 5.3). To begin with, the lemma below shows that it is not essential to forbid the flower configurations in Theorem 5.3 because forbidding triangular configurations prevents both triangular and flower configurations from occurring.

Lemma 5.7. If a graph has a flower configuration, then it also has a triangular configuration.
Proof. Assume that a graph G has some flower configuration $\xi=(S, M)$. Let v be the M-unsaturated vertex of S and let w be the vertex of S of degree 3 in S. Let P be the path of S joining v to w and let C be the only cycle of S. Notice that $M^{\prime}=M \triangle E(P)$ is also a maximum matching of G because P is an M-alternating even path of G and v is M-unsaturated. Therefore, $\left(C, M^{\prime}\right)$ is a triangular configuration of G, which completes the proof.

Next we observe that the occurrence of the three remaining configurations coincides with the occurrence of their underlying graphs as splitting subgraphs.

Lemma 5.8. Let G be a graph and let S be a subgraph of G . Then, S is the underlying graph of a triangular, triangular pair, or tetrahedral configuration of G if and only if S is a splitting subgraph of G which is an even subdivision of C_{3}, barbell, or K_{4}, respectively.

Proof. Assume that there is some splitting subgraph S of G which is an even subdivision of C_{3}, barbell, or K_{4}. By definition, $V(S)$ is a splitting set of G; i.e., there is a maximum matching M of G such that no edge of M joins a vertex of S with a vertex of $G-V(S)$. Let M_{S} be the set of edges of M that join two vertices of S and let $M_{G-V(S)}$ be the set of edges of M that join two vertices of $G-V(S)$. By construction, M_{S} is a maximum matching of $G[V(S)]$. Since S is an even subdivision of C_{3}, barbell, or K_{4}, there is a perfect or near-perfect matching R_{S} of S. Notice that R_{S} is unique up to isomorphisms of S. As S is a spanning subgraph of $G[V(S)],\left|R_{S}\right|=\left|M_{S}\right|$. Then, $M^{\prime}=R_{S} \cup M_{G-V(S)}$ is a maximum matching of G. By construction, $\left(S, M^{\prime}\right)$ is a triangular, triangular pair, or tetrahedral configuration of G depending on whether S is an even subdivision of C_{3}, barbell, or K_{4}, respectively.

Conversely, assume that S is the underlying graph of a triangular, triangular pair, or tetrahedral configuration $\xi=(S, M)$ of G. By definition, $V(S)$ is a splitting set of G and S has a perfect or near-perfect matching. Thus, S is a splitting subgraph of G. We conclude that S is a splitting subgraph of G which is an even subdivision of C_{3}, barbell, or K_{4} depending on whether ξ is a triangular, triangular pair, or tetrahedral configuration, respectively.

Therefore, the characterization by Korach et al. can be reformulated in terms of splitting subgraphs:

Theorem 5.3 in terms of splitting subgraphs. A graph has the Kőnig property if and only if it has no even subdivision of any of the graphs in Figure 5.1 as a splitting subgraph.

Notice that the above statement is precisely a characterization of the whole class of graphs having the Kőnig property in terms of splitting subgraphs of the kind that we were looking for. Indeed, it arises from the reformulation of Theorem 5.2 in terms of forbidden splitting subgraphs by dropping the hypothesis that G has a perfect matching and adding the even subdivisions of C_{3} as the extra forbidden splitting subgraphs.

Finally, we will prove Theorem 5.9, which is a strengthened characterization of graphs with the Kőnig property obtained by restricting the way in which the forbidden subgraphs may occur. For the purpose of formulating our characterization, we introduce the notion of strongly splitting subgraphs as follows. Let G be a graph. A subset X of $V(G)$ is a strongly splitting set if there is a maximum matching M of G such that no edge of M joins a vertex of X to a vertex of $G-X$ and no vertex of X is adjacent to any M -unsaturated vertex of $\mathrm{G}-\mathrm{X}$. A subgraph H of G is a strongly splitting subgraph if $V(H)$ is a strongly splitting set of G and H has a perfect or near-perfect matching.

Clearly, strongly splitting sets are splitting sets, and strongly splitting subgraphs are splitting subgraphs. Moreover, the notion of strongly splitting subgraph is indeed
more restrictive than that of splitting subgraph. For instance, K_{5} has K_{4} as splitting subgraph but not as strongly splitting subgraph. More generally, if H has a perfect matching, then $\mathrm{H}+\mathrm{K}_{1}$ has H as splitting subgraph but not as strongly splitting subgraph.

The theorem below is the main result of this section and shows that the forbidden splitting subgraphs for the class of graphs having the Kőnig property can be forced to occur as strongly splitting subgraphs.

Theorem 5.9. A graph has the König property if and only if it has no even subdivision of any of the graphs in Figure 5.1 as a strongly splitting subgraph.

Proof. Since strongly splitting subgraphs are splitting subgraphs, Corollary 5.6 implies that if G has the Kőnig property then no strongly splitting subgraph of G is an even subdivision of any of the graphs in Figure 5.1. Therefore, it suffices to prove that if G does not have the Kőnig property then G has a strongly splitting subgraph which is an even subdivision of one of the graphs in Figure 5.1.

Suppose that G does not have the Kőnig property. By Theorem 5.3 and Lemma 5.7, G has a triangular, triangular pair, or tetrahedral configuration $\xi=(S, M)$. Denote by U the set of M-unsaturated vertices of $G-V(S)$.

Case 1. $\xi=(\mathrm{S}, \mathrm{M})$ is a triangular configuration.
Let v be the M-unsaturated vertex of S and suppose, by the way of contradiction, that there is a vertex $s \in V(S)$ adjacent to some vertex $u \in U$. Since M is maximum and u is M-unsaturated, s is M-saturated. In particular, $s \neq v$. Since S is a chordless odd cycle, there is exactly one even path P in S joining s to v. By construction, $u \mathrm{P}$ is an M-alternating path joining the M-unsaturated vertices u and v; i.e., $u P$ is an M augmenting path, a contradiction with the fact that M is maximum. This contradiction proves that there is no edge joining a vertex of S and a vertex of U. We conclude that if G has a triangular configuration $\xi=(S, M)$ then S is a strongly splitting subgraph of G which is an even subdivision of C_{3}. From now on, we assume, without loss of generality, that G has no triangular configuration.

Case 2. $\xi=(S, M)$ is a triangular pair configuration.
Suppose, by the way of contradiction, that there is a vertex $s \in \mathrm{~V}(\mathrm{~S})$ adjacent to some vertex $u \in U$. Let w_{1} and w_{2} be the two vertices of S of degree 3 in S. Let P be the path in S joining w_{1} to w_{2} and let C^{i} be the cycle of S through w_{i} for $i=1,2$. If $s \in V(P)$, let Q be the subpath of P that joins s to w_{1} and, by symmetry, we can assume that Q is odd. If, on the contrary, $s \in \mathrm{~V}(\mathrm{~S}) \backslash \mathrm{V}(\mathrm{P})$, we can assume without loss of generality that $s \in \mathrm{~V}\left(\mathrm{C}^{2}\right) \backslash\left\{w_{2}\right\}$ and let Q be the odd path in S joining s to w_{1} (which exists because C^{2} is odd). In both cases, $u Q$ is an M-alternating even path of G where
u is not saturated by M. Therefore, $M^{\prime}=M \triangle E(u Q)$ is a maximum matching of G and $\left(C^{1}, M^{\prime}\right)$ is a triangular configuration of G , a contradiction. This contradiction proves that there is no edge joining a vertex of S and a vertex of U. We conclude that if G has a triangular pair configuration $\xi=(S, M)$ and G has no triangular configuration, then S is a strongly splitting subgraph of G which is an even subdivision of barbell.

Case 3. $\xi=(S, M)$ is a tetrahedral configuration.
Let $w_{1}, w_{2}, w_{3}, w_{4}$ be the set of vertices of S of degree 3 in S. For each $i, j \in\{1,2,3,4\}$ such that $\mathfrak{i} \neq \mathfrak{j}$, let $P^{i, j}$ be the path of S joining w_{i} to w_{j} but not passing through w_{k} for any $k \neq i, j$. Without loss of generality, we assume that the vertices $w_{1}, w_{2}, w_{3}, w_{4}$ are labeled in such a way that the path $\mathrm{P}^{i, i+1}$ starts and ends in edges not belonging to M for each $i=1,2,3,4$ (superindices should be understood modulo 4). For each pairwise different $i, j, k \in\{1,2,3,4\}$, let $C^{i, j, k}$ be the cycle of S passing through w_{i}, w_{j}, and w_{k} but not passing through w_{ℓ} where $\ell \neq i, j, k$. Suppose, by the way of contradiction, that there is a vertex $s \in \mathrm{~V}(\mathrm{~S})$ that is adjacent to some vertex $u \in \mathrm{U}$. By symmetry, we can assume that $s \in V\left(\mathrm{P}^{1,2}\right)$ or $s \in V\left(\mathrm{P}^{1,3}\right)$. Suppose first that $s \in \mathrm{~V}\left(\mathrm{P}^{1,2}\right)$. Since $P^{1,2}$ is odd, there is an even subpath Q of $P^{1,2}$ joining s to w_{j} for $j=1$ or $j=2$. (Eventually P is the empty path starting and ending in w_{j}.) Without loss of generality, assume that Q joins s to w_{1}. Since $u Q^{1,3}$ is an M-alternating even path and u is M unsaturated, $M^{\prime}=M \triangle E\left(u Q^{1,3}\right)$ is a maximum matching of G and $\left(C^{2,3,4}, M^{\prime}\right)$ is a triangular configuration of G, a contradiction. Necessarily, $s \in V\left(P^{1,3}\right)$. Since $P^{1,3}$ is odd, there is an odd subpath Q of P joining s to w_{1} or w_{3}. Without loss of generality assume that Q joins s to w_{1}. Since $u Q$ is an M-alternating even path and u is M unsaturated, $M^{\prime}=M \triangle E(u Q)$ is a maximum matching of G and $\left(C^{1,2,4}, M^{\prime}\right)$ is a triangular configuration of G , a contradiction. This contradiction proves that there is no edge between $V(S)$ and U. We conclude that if G has a tetrahedral configuration (S, M) and G has no triangular configuration, then S is a strongly splitting subgraph of G which is an even subdivision of K_{4}.

We proved that if G does not have the Kőnig property then G has a strongly splitting subgraph which is an even subdivision of C_{3}, barbell, or K_{4}, which concludes the proof.

Notice that if G is a graph having a perfect matching and H is a strongly splitting subgraph of G, then H is a nice subgraph of G and H has a perfect matching. In addition, the even subdivisions of C_{3} clearly do not have perfect matchings (because they have an odd number of vertices). Therefore, for graphs with a perfect matching, Theorem 5.9 reduces precisely to Lovász's characterization (Theorem 5.2).

The aim of our characterization is not to address the recognition problem, which was already addressed in [44]. Instead, the usefulness of our characterization is on the
structural side: given that a graph does not have the Kőnig property, our result ensures that an even subdivision of C_{3}, barbell, or K_{4} occurs as a strongly splitting subgraph. As an example of this, in the next section, we use Theorem 5.9 to derive a characterization of edge-perfect graphs by forbidden edge-subgraphs.

5.3 Edge-perfectness and forbidden edge-subgraphs

Notice that the class of edge-perfect graphs is not closed by taking induced subgraphs. Indeed, the paw is edge-perfect but contains an induced C_{3} which is not edge-perfect. This simple example shows that the class of edge-perfect graphs cannot be characterized by forbidden induced subgraphs. Instead, we will characterize edge-perfect graphs by forbidden edge-subgraphs. Before turning into the proof of the characterization, we observe the following two facts.

Lemma 5.10. If F is an edge-subgraph of H and H is an edge-subgraph of G , then F is an edge-subgraph of G .

Proof. Let E_{1} be a set of edges of H such that $\mathrm{H}-\mathrm{V}\left(\mathrm{E}_{1}\right)=\mathrm{F}$ and let E_{2} be a set of edges of G such that $G-V\left(E_{2}\right)=H$. Then, $G-V\left(E_{1} \cup E_{2}\right)=F$ where $E_{1} \cup E_{2}$ is a set of edges of G because H is a subgraph of G .

Lemma 5.11. Let G be a graph. If G has an odd cycle whose vertex set induces an edgesubgraph of G , then G has an edge-subgraph which is a chordless odd cycle.

Proof. Suppose that G has an odd cycle whose vertex set induces an edge-subgraph of G and let C be the shortest such odd cycle. It suffices to prove that C is chordless. Suppose, by the way of contradiction, that C has some chord $e=x y$. Since C is odd, its vertices can be labeled in such a way that $\mathrm{C}=v_{1} v_{2} \ldots v_{2 \mathrm{k}+1} v_{1}$, where $v_{1}=\mathrm{x}$ and $v_{2 p+1}=y$ for some $p \in\{1,2,3, \ldots, k-1\}$. Now $C^{\prime}=v_{1} v_{2} v_{3} \ldots v_{2 p+1} v_{1}$ is an odd cycle of G and $G\left[V\left(C^{\prime}\right)\right]$ is an edge-subgraph of $G[V(C)]$ because $G\left[V\left(C^{\prime}\right)\right]=G[V(C)]-$ $V\left(\left\{x_{j} x_{j+1} \mid 2 p+2 \leqslant j \leqslant 2 k\right\}\right)$. Since $G\left[V\left(C^{\prime}\right)\right]$ is an edge-subgraph of $G[V(C)]$ and $\mathrm{G}[\mathrm{V}(\mathrm{C})]$ is an edge-subgraph of G , by Lemma 5.10, $\mathrm{G}\left[\mathrm{V}\left(\mathrm{C}^{\prime}\right)\right]$ is an edge-subgraph of G. Therefore, C^{\prime} is an odd cycle of G that induces an edge-subgraph of G and C^{\prime} is shorter than C , a contradiction with the choice of C . This contradiction arose by assuming that C had some chord. So, $\mathrm{G}[\mathrm{V}(\mathrm{C})]$ is an edge-subgraph of G which is a chordless odd cycle, which completes the proof.

The chordless odd cycles and K_{4} are not edge-perfect because they do not even have the Kőnig property. Therefore, these graphs cannot be edge-subgraphs of any edge-perfect graph. The following result shows that, conversely, if a graph without
isolated vertices is not edge-perfect, it is because it contains a chordless odd cycle or K_{4} as an edge-subgraph.

Theorem 5.12. A graph with no isolated vertices is edge-perfect if and only if it has neither a chordless odd cycle nor K_{4} as an edge-subgraph.

Proof. As we have just discussed, if a graph is edge-perfect then no edge-subgraph of it can be a chordless odd odd cycle or K_{4}. Conversely, let G be a graph with no isolated vertices that is not edge-perfect. Then, G has at least one edge-subgraph that does not have the Kőnig property. Let H be an edge-subgraph of G with minimum number of vertices that does not have the Kőnig property. As H does not have the Kőnig property, there is some component H^{\prime} of H that does not have the Kőnig property. In particular, H^{\prime} consists of at least two vertices.

We claim that H^{\prime} is the only component of H having at least two vertices. Suppose, by the way of contradiction, that H has some other component $\mathrm{H}^{\prime \prime}$ having at least two vertices. If $E_{H^{\prime \prime}}$ is the set of edges of H joining vertices of $H^{\prime \prime}$, then $H-V\left(E_{H^{\prime \prime}}\right)=$ $\mathrm{H}-\mathrm{V}\left(\mathrm{H}^{\prime \prime}\right)$ is an edge-subgraph of H that does not have the Kőnig property because one of its components is still H^{\prime}. By Lemma $5.10, \mathrm{H}-\mathrm{V}\left(\mathrm{H}^{\prime \prime}\right)$ is also an edge-subgraph of G. Since $H-V\left(H^{\prime \prime}\right)$ does not have the Kőnig property and has less vertices than H, this contradicts the minimality of H . This contradiction shows that H^{\prime} is the only component of H having at least two vertices.

We now show that the fact that G has no isolated vertices implies that H is connected; i.e., $H=H^{\prime}$. Indeed, since G has no isolated vertices, for each isolated vertex v of H (i.e., $v \in \mathrm{~V}(\mathrm{H}) \backslash V\left(\mathrm{H}^{\prime}\right)$) there is some edge $e_{v} \in \mathrm{E}(\mathrm{G})$ that is incident to v. If e_{v} were incident to some vertex of H^{\prime} then e_{v} would be an edge of H, which would contradict the fact that v does not belong to the component H^{\prime} of H . Therefore, e_{v} is not incident to any vertex of H^{\prime} for any $v \in V(H) \backslash V\left(H^{\prime}\right)$. Since H is an edge-subgraph of G, there is some $\mathrm{E}_{\mathrm{H}} \subseteq \mathrm{E}(\mathrm{G})$ such that $\mathrm{G}-\mathrm{V}\left(\mathrm{E}_{\mathrm{H}}\right)=\mathrm{H}$. So, if $\mathrm{E}_{\mathrm{I}}=\left\{e_{v}: v \in \mathrm{~V}(\mathrm{H}) \backslash \mathrm{V}\left(\mathrm{H}^{\prime}\right)\right\}$ then $G-V\left(E_{H} \cup E_{I}\right)=H^{\prime}$, which proves that H^{\prime} is an edge-subgraph of G. Since H^{\prime} does not have the Kőnig property, the minimality of H implies that $\mathrm{H}=\mathrm{H}^{\prime}$, as claimed.

Since H does not have the Kőnig property, Theorem 5.9 ensures that there is a strongly splitting subgraph S of H which is an even subdivision of C_{3}, barbell, or K_{4}. We claim that $\mathrm{H}[\mathrm{V}(\mathrm{S})]$ is an edge-subgraph of H . Indeed, since S is a strongly splitting subgraph of H, there is a maximum matching M of H such that no edge of M joins a vertex of S with a vertex of $H-V(S)$ and such that no vertex of S is adjacent to an M-unsaturated vertex of $H-V(S)$. Let E_{1} be the set of edges of M joining two vertices of $H-V(S)$, and let E_{2} be the set of edges of H incident to some M-unsaturated vertex of $H-V(S)$. Since H is connected, for each M-unsaturated vertex of $H-V(S)$ there is at least one edge incident to it in E_{2}. Also notice that since S is strongly splitting
subgraph, no edge of E_{2} is incident to a vertex of S. We conclude that $H[V(S)]=$ $H-V\left(E_{1} \cup E_{2}\right)$, which shows that $H[V(S)]$ is an edge-subgraph of H, as claimed.

Finally, we claim that H has a chordless odd cycle or K_{4} as an edge-subgraph.
Case 1. S is an even subdivision of C_{3}.
Then, S is an odd cycle of H whose vertex set induces an edge-subgraph of H . By Lemma 5.11, H has an edge-subgraph which is a chordless odd cycle, as claimed.

Case 2. S is an even subdivision of barbell.
Let w_{1} and w_{2} be the vertices of S of degree 3 in S, let C^{i} be the cycle of S through w_{i} for $\mathfrak{i}=1,2$ and let P be the path of S joining w_{1} to w_{2}. Let $P=x_{1} x_{2} x_{3} \ldots x_{2 k+1}$ where $x_{1}=w_{1}$ and $x_{2 k+1}=w_{2}$. Let $E_{3}=E\left(C^{2}\right)$ and let $E_{4}=\left\{x_{j} x_{j+1} \mid 2 \leqslant j \leqslant\right.$ $2 \mathrm{k}\}$. Then, $\mathrm{H}\left[\mathrm{V}\left(\mathrm{C}^{1}\right)\right]$ is an edge-subgraph of $\mathrm{H}[\mathrm{V}(\mathrm{S})]$ because $\mathrm{H}\left[\mathrm{V}\left(\mathrm{C}^{1}\right)\right]=\mathrm{H}[\mathrm{V}(\mathrm{S})]-$ $V\left(E_{3} \cup E_{4}\right)$. Since $H[V(S)]$ is an edge-subgraph of H, by Lemma 5.10, $H\left[V\left(C^{1}\right)\right]$ is an edge-subgraph of H . Thus, C^{1} is an odd cycle of H whose vertex set induces an edgesubgraph of H and, by Lemma $5.11, \mathrm{H}$ has an edge-subgraph which is a chordless odd cycle, as claimed.

Case 3. S is an even subdivision of K_{4}.

Let W be the set of vertices of S of degree 3 in S. For each $w, w^{\prime} \in W$, let $P^{w, w^{\prime}}$ be the path in S joining w to w^{\prime} and not passing through any vertex of $W \backslash\left\{w, w^{\prime}\right\}$. If $p^{w, w^{\prime}}$ has length 1 for each $w, w^{\prime} \in W$, then $S=H[V(S)]$ is an edge-subgraph of H which is a K_{4}, and the claim holds. Therefore, we assume without loss of generality that there are two vertices $w_{1}, w_{2} \in W$ such that $P^{w_{1}, w_{2}}$ has length greater than 1 . Let w_{3} and w_{4} be the remaining two vertices of W. Let C be the cycle of S through w_{2}, w_{3}, and w_{4}, but not through w_{1}. For each $i=2,3,4$, let $P^{w_{1} w_{i}}=y_{1}^{i} y_{2}^{i} y_{3}^{i} \ldots y_{2 k_{i}+1}^{i}$ where $y_{1}^{i}=w_{1}$ and $y_{2 k_{i}+1}^{i}=w_{i}$ and let $F_{i}=\left\{y_{j}^{i} y_{j+1}^{i} \mid 1 \leqslant j \leqslant 2 k_{i}-1\right\}$. Notice that $\mathrm{H}[\mathrm{V}(\mathrm{C})]$ is an edge-subgraph of $H[V(S)]$ because $H[V(C)]=H[V(S)]-V\left(F_{2} \cup F_{3} \cup F_{4}\right)$. Since $\mathrm{H}[\mathrm{V}(\mathrm{S})]$ is an edge-subgraph of H , by Lemma $5.10, \mathrm{H}[\mathrm{V}(\mathrm{C})]$ is an edge-subgraph of H and, by Lemma 5.11, H has an edge-subgraph which is a chordless odd cycle, as claimed.

Thus, we proved that H has a chordless odd cycle or K_{4} as an edge-subgraph. Since H is an edge-subgraph of G , Lemma 5.10 implies that G has a chordless odd cycle or K_{4} as edge-subgraphs, which completes the proof.

We would like to draw attention to the role played by our characterization of graphs having the Kônig property (Theorem 5.9) in the above proof. Indeed, the fact that S is a strongly splitting subgraph of H was key in the proof of the claim that $\mathrm{H}[\mathrm{V}(\mathrm{S})]$ is an edge-subgraph of H , because it guarantees that there is no M-unsaturated vertex
of S such that each edge incident to it were also incident to some vertex of S and, in particular, no edge of E_{2} is incident to a vertex of S.

Finally, we present the characterization of edge-perfectness by forbidden edgesubgraphs also for graphs that may have isolated vertices. Notice that when taking an edge-subgraph H of a graph G, the isolated vertices of G are never removed. Therefore, H has at least as many isolated vertices as G . That explains why in the theorem below we must forbid edge-subgraphs with an arbitrary number of isolated vertices.

Theorem 5.13. A graph is edge-perfect if and only it has neither $\mathrm{K}_{4} \cup \mathrm{t} \mathrm{K}_{1}$ nor $\mathrm{C}_{2 \mathrm{k}+1} \cup \mathrm{tK}_{1}$ as an edge-subgraph for any $\mathrm{k} \geqslant 1$ and any $\mathrm{t} \geqslant 0$.

Proof. If G is edge-perfect then all its edge-subgraphs have the Kőnig property and, in particular, G has neither $K_{4} \cup t K_{1}$ nor $C_{2 k+1} \cup t K_{1}$ as an edge-subgraph for any $k \geqslant 1$ and any $t \geqslant 0$.

Conversely, assume that G is not edge-perfect. Let t be the number of isolated vertices of G. Then, the graph G^{\prime} that arises from G by removing its t isolated vertices is also not edge-perfect. By Theorem 5.13, G^{\prime} has K_{4} or $\mathrm{C}_{2 \mathrm{k}+1}$ for some $k \geqslant 1$ as an edge-subgraph. So, G has $K_{4} \cup t K_{1}$ or $C_{2 k+1} \cup t K_{1}$ for some $k \geqslant 1$ as an edgesubgraph.

Chapter 6

Final remarks

In Chapter 3, we studied the problem of characterizing balanced graphs by minimal forbidden induced subgraphs within different graph classes. The main results of the chapter are summarized in Table 6.1.

Sections 3.4 to 3.6 were devoted to address the problem when restricted to the classes of complements of bipartite graphs, line graphs of multigraphs, and complements of line graphs of multigraphs, and to show that balanced graphs are recognizable in linear time within each of these graph classes. We observed that the characterization of balanced graphs within line graphs leads naturally to the characterization within line graphs of multigraphs because adding true twins preserves balancedness. Nevertheless, the same does not hold for complements of line graphs of multigraphs because adding false twins does not always preserve balancedness. Indeed, for each multigraph H in Figure 3.2, light lines are those that correspond to vertices in $\overline{\mathrm{L}(\mathrm{H})}$ for which adding a false twin may destroy balancedness. It would be interesting to have a general criterion to decide when a false twin of a vertex can be added to a graph while preserving balancedness. Such a result would have somewhat simplified our proof of the characterization of balancedness within complements of line graphs of multigraphs. In order to be able to characterize balanced graphs within larger graph classes, we may need to develop more convenient tools to prove balancedness of graphs. For instance, although the proofs in Subsection 3.6.4 are very similar among themselves, each of them had to be addressed separately. A natural step towards generalizing our results within line graphs of multigraphs and their complements would be to attempt to characterize balanced graphs within claw-free graphs and their complements. The decomposition of claw-free graphs proposed in [35] could prove useful in such an attempt.

In Sections 3.7 to 3.9, we considered the problem of characterizing balanced graphs by minimal forbidden subgraphs within three subclasses of the class of circular-arc

Graph class	Minimal forbidden induced subgraphs for balancedness	Reference
complements of bipartite graphs	1-pyramid, 2-pyramid, and 3-pyramid	Theorem 3.15
line graphs of multigraphs	odd holes, 3 -sun, 1-pyramid, and 3-pyramid	Theorem 3.23
complement of line graphs of multigraphs	3-sun, 2-pyramid, 3-pyramid, $\mathrm{C}_{5}, \overline{\mathrm{C}_{7}}, \mathrm{U}_{7}$, and V_{7}.	Theorem 3.29
\{net, $\mathrm{U}_{4}, \mathrm{~S}_{4}$ \}-free circular-arc graphs (contains all Helly circular-arc graphs)	odd holes, pyramids, $\overline{\mathrm{C}_{7}}$ $V_{p}^{2 t+1}, D^{2 t+1}$, and $X_{p}^{2 t+1}$	Corollary 3.49
claw-free circular-arc graphs (contains all proper circular-arc graphs)	odd holes, pyramids, and $\overline{\mathrm{C}_{7}}$	Theorem 3.52
gem-free circular-arc graphs	odd holes and 3-pyramid	Theorem 3.54

Table 6.1: Minimal forbidden induced subgraphs for balancedness within the graph classes studied in Chapter 3
graphs, including a superclass of each of two of the most studied subclasses of circulararc graphs: the class of Helly circular-arc graphs and the class of proper circular-arc graphs. Interestingly, a careful reading of the proof of Theorem 3.44 reveals that the hypothesis that the graph is a Helly circular-arc graph (and not merely a circulararc graph) is only used in the proofs of Claim 1 and Claim 2, and in the latter case only for $t=2$. So, along the proof we indeed identified all circular-arc graphs that are minimally not balanced and whose unbalanced cycles have length at least 7 and have only short chords. Therefore, a possible road towards extending the proof of Theorem 3.44 to the entire class of circular-arc graphs could be that of finding some property of the chords of the unbalanced cycles within circular-arc graphs in general that could serve as a substitute for Claim 1. A different approach would be to take Theorem 3.47 as a starting point and study the balancedness of circular-arc graphs containing net, U_{4}, or S_{4} as induced subgraph. We managed to do so when restricting ourselves to claw-free and gem-free graphs. A better understanding of the structure of circular-arc graphs would be of help to overcome these restrictions. The complete characterization of balanced graphs by minimal forbidden induced subgraphs within circular-arc graphs in general, remains unknown. The sun S_{5} is an example of circulararc graph that is minimally not balanced but that does not belong to any of the classes of circular-arc graphs discussed in Chapter 3. We do not know if there are further

Graph class	Minimal forbidden induced subgraphs for clique-perfectness	Reference
complements of line graphs	3-sun and $\overline{\mathrm{C}_{\mathrm{k}}}$ for each $\mathrm{k} \geqslant 5$ that is not a multiple of 3	Theorem 4.16
gem-free circular-arc graphs	odd holes	Theorem 4.60

Table 6.2: Minimal forbidden induced subgraphs for clique-perfectness within the graph classes studied in Chapter 4
examples of such graphs. Notice that the complete suns S_{t} with t odd and $t \geqslant 7$ are not circular-arc graphs. We remark that the problem of characterizing balanced graphs by minimal forbidden induced subgraphs remains unsolved even within chordal graphs.

In Chapter 4, we considered the problem of characterizing clique-perfect by minimal forbidden induced subgraphs. The main results are summarized in Table 6.2.

We devoted Section 4.2 to characterizing clique-perfect graphs by minimal forbidden induced subgraphs within complements of line graphs and showed that cliqueperfect graphs can be recognized in $O\left(n^{2}\right)$ time within the same class, where n is the number of vertices of the input graph. Similarly to the case of balanced graphs, the characterization of clique-perfect graphs within line graphs proved in [16] (stated here as Theorem 4.15) extends naturally to complements of line graphs because adding true twins preserves clique-perfectness. Nevertheless, as adding false twins does not always preserve clique-perfectness, from our characterization within complement of line graphs it does not immediately follow a characterization of clique-perfect graphs within complements of line graphs of multigraphs. In general, the problem of characterizing clique-perfect graphs within claw-free graphs and their complements remains unsolved. A different partial answer was given in [16], where clique-perfect graphs were characterized within claw-free hereditary clique-Helly graphs. In Subsection 4.2.1, we gave a structure theorem for graphs containing no bipartite-claw, which are precisely those graphs whose line graphs are net-free. It would be interesting to study to which extent a characterization of the same type can be formulated for some superclass of net-free line graphs.

In Section 4.3, we proved that clique-perfect graphs coincide with perfect graphs within gem-free circular-arc graphs. This means that clique-perfect graphs can be recognized in polynomial time within gem-free circular-arc graphs. In [17], a minimal forbidden induced subgraph characterization of clique-perfect graphs within Helly circular-arc graphs was given (see Theorem 4.5). It is easy to see that the approach used in Section 3.7 to extend Theorem 3.44 to Corollary 3.49, works also for extending the characterization of clique-perfect graphs within Helly circular-arc graphs in

Graph class	Forbidden subgraphs	Reference
graphs having the Kőnig property	even subdivisions of C_{3}, barbell, and K_{4} as strongly splitting subgraphs	Theorem 5.9
edge-perfect graphs	$\mathrm{K}_{4} \cup \mathrm{tK}_{1}$ and $\mathrm{C}_{2 k+1} \cup t \mathrm{~K}_{1}$	

Table 6.3: Main results of Chapter 5

Theorem 4.5 to a characterization of clique-perfect graphs within $\left\{\right.$ net, $\left.\mathrm{U}_{4}, \mathrm{~S}_{4}\right\}$-free \cap \{1-pyramid,2-pyramid,3-pyramid\}-free circular-arc graphs. Nevertheless, characterizing clique-perfect graphs by forbidden induced subgraphs within all \{net, $\left.\mathrm{U}_{4}, \mathrm{~S}_{4}\right\}$-free circular-arc graphs seems more difficult. The characterization of clique-perfect graphs by forbidden induced subgraphs is open even within proper circular-arc graphs. For coordinated graphs, the characterization remains unresolved even within both Helly circular-arc graphs and proper circular-arc graphs. It is not hard to see that the results in [17] imply a characterization of hereditary K-perfect graphs within Helly circulararc graphs. As circular-arc graphs are a natural generalization of interval graphs and interval graphs are known to have perfect clique graph [70], we feel that it would be interesting to study hereditary K-perfect graphs further within circular-arc graphs like, for instance, proper circular-arc graphs.

The problem of determining the complexity of the recognition problem of cliqueperfect graphs remains open in general. Neither it is known to be polynomial-time solvable nor was it shown to belong to any class of problems considered to be hard.

In Chapter 5, we studied the problem of characterizing graphs having the Kőnig property and edge-perfect graphs by means of certain types of forbidden subgraphs. In Section 5.2, we proved a characterization of graphs having the Kőnig property by means of strongly splitting subgraphs. In Section 5.3, we used this result to prove a characterization of edge-perfect graphs by forbidden edge-subgraphs. Edge-perfect graphs are those graphs whose edge-subgraphs have the Kőnig property. It would be interesting to know if a simple characterization as the one we proved for the edgeperfect graphs is also possible for those graphs whose edge-subgraphs are Class 1 (i.e., satisfy the edge-coloring property for edges). The results of Chapter 5 are summarized in Table 6.3.

Bibliography

[1] R. Anstee and M. Farber. Characterizations of totally balanced matrices. Journal of Algorithms, 5(2):215-230, 1984.
[2] V. Balachandran, P. Nagavamsi, and C. Pandu Rangan. Clique transversal and clique independence on comparability graphs. Information Processing Letters, 58(4):181-184, 1996.
[3] L. W. Beineke and S. Fiorini. On small graphs critical with respect to edge colourings. Discrete Mathematics, 16(2):109-121, 1976.
[4] C. Berge. Two theorems in graph theory. Proceedings of the National Academy of Sciences, 43(9):842-844, 1957.
[5] C. Berge. Färbung von Graphen, deren sämtliche beziehungsweise, deren ungerade Kreise starr sind [In German: Coloring of graphs, all cycles or all odd cycles of which are rigid]. Wissenschaftliche Zeitschrift der Martin-LutherUniversität Halle-Wittenberg, Mathematisch-Naturwissenschaftliche Reihe, 10:114115, 1961.
[6] C. Berge. Some classes of perfect graphs. In Six papers on graph theory, pages 1-21. Research and Training School, Indian Statistical Institute, Calcutta, 1963.
[7] C. Berge. Sur certains hypergraphes généralisant les graphes bipartis [In French: On some hypergraphs generalizing bipartite graphs]. In P. Erdős, A. Rényi, and V. T. Sós, editors, Combinatorial theory and its applications I. Proceedings of the Colloquium on Combinatorial Theory and its Applications held at Balatonfüred, Hungary, August 24-29, 1969, volume 4 of Colloquia Mathematica Societatis János Bolyai, pages 119-133. North-Holland, Amsterdam, 1970.
[8] C. Berge. Balanced matrices. Mathematical Programming, 2(1):19-31, 1972.
[9] C. Berge. Hypergraphs: combinatorics of finite sets, volume 45 of North-Holland Mathematical Library. North-Holland, Amsterdam, 1989.
[10] C. Berge. Minimax relations for the partial q-colorings of a graph. Discrete Mathematics, 74(1-2):3-14, 1989.
[11] C. Berge and V. Chvátal. Introduction. In Topics on Perfect Graphs, volume 88 of North-Holland Mathematics Studies, pages vii-xiv. Noth-Holland, Amsterdam, 1984.
[12] C. Berge and M. Las Vergnas. Sur un théorème du type König pour hypergraphes [In French: On a theorem of König type for hypergraphs]. Annals of the New York Academy of Sciences, 175:32-40, 1970.
[13] Z. Blázsik, M. Hujter, A. Pluhár, and Z. Tuza. Graphs with no induced C_{4} and 2K ${ }_{2}$. Discrete Mathematics, 115(1-3):51-55, 1993.
[14] H. L. Bodlaender. A linear time algorithm for finding tree-decompositions of small treewidth. Technical report RUU-CS-92-27, Utrecht University, Utrecht, The Netherlands, 1992.
[15] F. Bonomo. On subclasses and variations of perfect graphs. PhD thesis, Departmento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina, 2005.
[16] F. Bonomo, M. Chudnovsky, and G. Durán. Partial characterizations of cliqueperfect graphs I: Subclasses of claw-free graphs. Discrete Applied Mathematics, 156(7):1058-1082, 2008.
[17] F. Bonomo, M. Chudnovsky, and G. Durán. Partial characterizations of cliqueperfect graphs II: Diamond-free and Helly circular-arc graphs. Discrete Mathematics, 309(11):3485-3499, 2009.
[18] F. Bonomo, G. Durán, L. N. Grippo, and M. D. Safe. Partial characterizations of circular-arc graphs. Journal of Graph Theory, 61(4):289-306, 2009.
[19] F. Bonomo, G. Durán, and M. Groshaus. Coordinated graphs and clique graphs of clique-Helly perfect graphs. Utilitas Mathematica, 72:175-191, 2007.
[20] F. Bonomo, G. Durán, M. Groshaus, and J. L. Szwarcfiter. On clique-perfect and K-perfect graphs. Ars Combinatoria, 80:97-112, 2006.
[21] F. Bonomo, G. Durán, M. C. Lin, and J. L. Szwarcfiter. On balanced graphs. Mathematical Programming, Series B, 105(2-3):233-250, 2006.
[22] F. Bonomo, G. Durán, M. D. Safe, and A. K. Wagler. On minimal forbidden subgraph characterizations of balanced graphs. Electronic Notes in Discrete Mathematics, 35:41-46, 2009.
[23] F. Bonomo, G. Durán, M. D. Safe, and A. K. Wagler. Balancedness of some subclasses of circular-arc graphs. Electronic Notes in Discrete Mathematics, 36:11211128, 2010.
[24] F. Bonomo, G. Durán, M. D. Safe, and A. K. Wagler. Clique-perfectness of complements of line graphs. Electronic Notes in Discrete Mathematics, 37:327-332, 2011.
[25] F. Bonomo, G. Durán, F. Soulignac, and G. Sueiro. Partial characterizations of clique-perfect and coordinated graphs: Superclasses of triangle-free graphs. Discrete Applied Mathematics, 157(17):3511-3518, 2009.
[26] F. Bonomo, G. Durán, F. Soulignac, and G. Sueiro. Partial characterizations of coordinated graphs: line graphs and complements of forests. Mathematical Methods of Operations Research, 69(2):251-270, 2009.
[27] R. B. Borie, R. Gary Parker, and C. A. Tovey. Automatic generation of lineartime algorithms from predicate calculus descriptions of problems on recursively constructed graph families. Algorithmica, 7(1):555-581, 1992.
[28] J.-M. Bourjolly and W. R. Pulleyblank. König-Egerváry graphs, 2-bicritical graphs and fractional matchings. Discrete Applied Mathematics, 24(1-3):63-82, 1989.
[29] A. Brandstädt, V. D. Chepoi, F. F. Dragan, and V. Voloshin. Dually chordal graphs. SIAM Journal on Discrete Mathematics, 11(3):437-455, 1998.
[30] A. Brandstädt and F. F. Dragan. On linear and circular structure of (claw, net)free graphs. Discrete Applied Mathematics, 129(2-3):285-303, 2003.
[31] D. Cariolaro and G. Cariolaro. Colouring the petals of a graph. The Electronic Journal of Combinatorics, 10:\#R6, 2003.
[32] G. Chang, M. Farber, and Z. Tuza. Algorithmic aspects of neighborhood numbers. SIAM Journal on Discrete Mathematics, 6(1):24-29, 1993.
[33] M. Chudnovsky, G. P. Cornuéjols, X. Liu, P. D. Seymour, and K. Vušković. Recognizing Berge graphs. Combinatorica, 25(2):143-186, 2005.
[34] M. Chudnovsky, N. Robertson, P. D. Seymour, and R. Thomas. The strong perfect graph theorem. Annals of Mathematics, 164(1):51-229, 2006.
[35] M. Chudnovsky and P. D. Seymour. The structure of claw-free graphs. In B. S. Webb, editor, Surveys in Combinatorics, 2005, volume 327 of London Mathematical Society Lecture Note Series, pages 153-171. Cambridge University Press, Cambridge, 2005.
[36] V. Chvátal. On certain polytopes associated with graphs. Journal of Combinatorial Theory, Series B, 18(2):138-154, 1975.
[37] M. Conforti, G. P. Cornuéjols, and R. Rao. Decomposition of balanced matrices. Journal of Combinatorial Theory, Series B, 77(2):292-406, 1999.
[38] B. Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Information and Computation, 85(1):12-75, 1990.
[39] B. Courcelle and J. Engelfriet. Graph Structure and Monadic Second-order Logic, a Language Theoretic Approach. To be published by Cambridge University Press, 2012.
[40] A. Cournier and M. Habib. A new linear algorithm for modular decomposition. In S. Tison, editor, Trees in Algebra and Programming - CAAP'94, 19th International Colloquium, Edinburgh, U.K., April 11-13, 1994, Proceedings, volume 787 of Lecture Notes in Computer Science, pages 68-84. Springer, Berlin, 1994.
[41] E. Dahlhaus, J. Gustedt, and R. M. McConnell. Efficient and practical algorithms for sequential modular decomposition. Journal of Algorithms, 41(2):360387, 2001.
[42] E. Dahlhaus, P. D. Manuel, and M. Miller. Maximum h-colourable subgraph problem in balanced graphs. Information Processing Letters, 65(6):301-303, 1998.
[43] D. de Werra. On line perfect graphs. Mathematical Programming, 15(1):236-238, 1978.
[44] R. W. Deming. Independence numbers of graphs-an extension of the KoenigEgervary theorem. Discrete Mathematics, 27(1):23-33, 1979.
[45] X. Deng, T. Ibaraki, and H. Nagamochi. Algorithmic aspects of the core of combinatorial optimization games. Mathematics of Operations Research, 24(3):751-766, 1999.
[46] R. Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics. SpringerVerlag, Heidelberg, fourth edition, 2010.
[47] M. P. Dobson, V. A. Leoni, and G. L. Nasini. Recognizing edge-perfect graphs: some polynomial instances. In 8th Cologne-Twente Workshop on Graphs and Combinatorial Optimization - CTW09, Proceedings of the Conference, held in Paris, France, June 2-4, 2009, pages 153-156, 2009.
[48] M. P. Dobson, V. A. Leoni, and G. L. Nasini. The computational complexity of the Edge-Perfect Graph and the Totally Balanced Packing Game recognition problems. Electronic Notes in Discrete Mathematics, 36:551-558, 2010.
[49] M. C. Dourado, G. Durán, L. Faria, L. N. Grippo, and M. D. Safe. Forbidden subgraphs and the Kőnig property. Electronic Notes in Discrete Mathematics, 37:333338, 2011.
[50] G. Durán, M. C. Lin, and J. L. Szwarcfiter. On clique-transversals and cliqueindependent sets. Annals of Operations Research, 116(1):71-77, 2002.
[51] J. Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17:449467, 1965.
[52] J. Egerváry. Matrixok kombinatorikus tulajdonságairól [In Hungarian: Combinatorial properties of matrices]. Matematikai és Fizikai Lapok, 38:16-28, 1931.
[53] M. S. Escalante, V. A. Leoni, and G. L. Nasini. A graph theoretical model for total balancedness of combinatorial games. Submitted, 2009.
[54] M. Farber. Characterizations of strongly chordal graphs. Discrete Mathematics, 43(2-3):173-189, 1983.
[55] S. Földes and P. L. Hammer. Split graphs. Technical Report CORR 76-3, University of Waterloo, Waterloo, Canada, March 1976.
[56] D. R. Fulkerson. Blocking and anti-blocking pairs of polyhedra. Mathematical Programming, 1(1):168-194, 1971.
[57] D. R. Fulkerson and O. A. Gross. Incidence matrices and interval graphs. Pacific Journal of Mathematics, 15(3):835-855, 1965.
[58] D. R. Fulkerson, A. J. Hoffman, and R. Oppenheim. On balanced matrices. In M. Balinski, editor, Pivoting and Extensions: In honor of A.W. Tucker, volume 1 of Mathematical Programming Study, pages 120-133. North-Holland, Amsterdam, 1974.
[59] T. Gallai. Transitiv orientierbare Graphen [In German: Transitively orientable graphs]. Acta Mathematica Academiae Scientiarum Hungaricae, 18(1-2):25-66, 1967.
[60] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman and Company, San Francisco, 1979.
[61] F. Gavril. Algorithms on circular-arc graphs. Networks, 4:357-369, 1974.
[62] P. Gilmore and A. Hoffman. A characterization of comparability graphs and of interval graphs. Canadian Journal of Mathematics, 16:639-548, 1964.
[63] M. C. Golumbic. Trivially perfect graphs. Discrete Mathematics, 24(1):105-107, 1978.
[64] V. Guruswami and C. Pandu Rangan. Algorithmic aspects of clique-transversal and clique-independent sets. Discrete Applied Mathematics, 100(3):183-202, 2000.
[65] A. Hajnal and J. Surányi. Über die Auflösung von Graphen in vollständige Teilgraphen [In German: On the partition of graphs into complete subgraphs]. Annales Universitatis Scientiarium Budapestinensis de Rolando Eôtvős Nominatae Sectio Mathematica, 1:113-121, 1958.
[66] P. Hall. On representatives of subsets. Journal of the London Mathematical Society, 10(1):26-30, 1935.
[67] P. L. Hammer. Difference graphs. Discrete Applied Mathematics, 28(1):35-44, 1990.
[68] F. Harary and A. J. Schwenk. Trees with Hamiltonian square. Mathematika, 18(1):138-140, 1971.
[69] F. Harary and A. J. Schwenk. The number of caterpillars. Discrete Mathematics, 6(4):359-365, 1973.
[70] B. Hedman. Clique graphs of time graphs. Journal of Combinatorial Theory, Series B, 37(3):270-278, 1984.
[71] P. Heggernes and D. Kratsch. Linear-time certifying recognition algorithms and forbidden induced subgraphs. Nord. J. Comput., 14(1-2):87-108, 2007.
[72] E. Helly. Über Mengen konvexer Körper mit gemeinschaftlichen Punkten [In German: On sets of convex bodies with common points]. Jahresbericht der Deutschen Mathematiker-Vereinigung, 32:175-176, 1923.
[73] A. J. W. Hilton and C. Zhao. The chromatic index of a graph whose core has maximum degree two. Discrete Mathematics, 101(1-3):135-147, 1992.
[74] I. Hoyler. The NP-completeness of Edge-Coloring. SIAM Journal on Computing, 10(4):718-720, 1981.
[75] B. L. Joeris, M. C. Lin, R. M. McConnell, J. P. Spinrad, and J. L. Szwarcfiter. Linear-time recognition of Helly circular-arc models and graphs. Algorithmica, 59(2):215-239, 2011.
[76] D. Kőnig. Über Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre [In German: On graphs and its applications to determinant theory and set theory]. Mathematische Annalen, 77(4):453-465, 1916.
[77] D. Kőnig. Graphok és matrixok [In Hungarian: Graphs and matrices]. Matematikai és Fizikai Lapok, 38:116-119, 1931.
[78] A. King. Claw-free graphs and two conjectures on omega, Delta, and chi. PhD thesis, School of Computer Science, McGill University, Montreal, Cadana, 2009.
[79] V. Klee. What are the intersection graphs of arcs in a circle? American Mathematical Monthly, 76(7):810-813, 1969.
[80] T. Kloks, D. Kratsch, and H. Müller. Dominoes. In E. W. Mayr, G. Schmidt, and G. Tinhofer, editors, Graph-Theoretic Concepts in Computer Science, 20th International Workshop, WG '94 Herrsching, Germany, June 16-18, 1994, Proceedings, volume 903 of Lecture Notes in Computer Science, pages 106-120. Springer, Berlin, 1995.
[81] E. Korach. Flowers and trees in a ballet of K_{4}, or a finite basis characterization of non-Kőnig-Egerváry graphs. Technical Report 115, IBM-Israel Scientific Center, Haifa, Israel, 1982.
[82] E. Korach, T. Nguyen, and B. Peis. Subgraph characterization of red/blue-split graph and Kőnig-Egerváry graphs. In Proceedings of the Seventeenth Annual ACMSIAM Symposium on Discrete Algorithms, held in Miami, Florida, USA, January 2224, 2006, pages 842-850. ACM, New York, 2006.
[83] A. Korenchendler, 2007. Personal communication.
[84] A. Lakshmanan S. and A. Vijayakumar. On the clique-transversal number of a graph. Manuscript, 2006.
[85] A. Lakshmanan S. and A. Vijayakumar. The $\langle t\rangle$-property of some classes of graphs. Discrete Mathematics, 309(1):259-263, 2009.
[86] C. Larson. The critical independence number and an independence decomposition. European Journal of Combinatorics, 32(2):294-300, 2011.
[87] C.-M. Lee and M.-S. Chang. Distance-hereditary graphs are clique-perfect. Discrete Applied Mathematics, 154(3):525-536, 2006.
[88] J. Lehel and Z. Tuza. Neighborhood perfect graphs. Discrete Mathematics, 61(1):93-101, 1986.
[89] P. G. H. Lehot. An optimal algorithm to detect a line graph and output its root graph. Journal of the ACM, 21(4):569-575, 1974.
[90] V. Levit and E. Mandrescu. Well-covered and König-Egerváry graphs. Congressus Numerantium, 130:209-218, 1998.
[91] M. C. Lin and J. L. Szwarcfiter. Faster recognition of clique-Helly and hereditary clique-Helly graphs. Information Processing Letters, 3(1):40-43, 2007.
[92] L. Lovász. Normal hypergraphs and the perfect graph conjecture. Discrete Mathematics, 2(3):253-267, 1972.
[93] L. Lovász. Ear-decompositions of matching-covered graphs. Combinatorica, 3(1):105-117, 1983.
[94] L. Lovász and M. D. Plummer. Matching Theory. North-Holland, 1986.
[95] V. V. Lozin. E-svobodnye dvudol'nye grafy [In Russian: E-free bipartite graphs]. Diskretnyj Analiz i Issledovanie Operacij, Serija 1, 7(1):49-66, 2000.
[96] C. L. Lucchesi, C. Picinin de Mello, and J. L. Szwarcfiter. On clique-complete graphs. Discrete Mathematics, 183(1-3):247-254, 1998.
[97] F. Maffray. Kernels in perfect line-graphs. Journal of Combinatorial Theory, Series B, 55(1):1-8, 1992.
[98] F. Maffray and M. Preissmann. Linear recognition of pseudo-split graphs. Discrete Applied Mathematics, 52(3):307-312, 1994.
[99] P. Mark Kayll. König-Egerváry graphs are non-Edmonds. Graphs and Combinatorics, 26(5):721-726, 2010.
[100] R. M. McConnell. Linear-time recognition of circular-arc graphs. Algorithmica, 37(2):93-147, 2003.
[101] R. M. McConnell and J. P. Spinrad. Modular decomposition and transitive orientation. Discrete Mathematics, 201(1-3):189-241, 1999.
[102] J. Mycielski. Sur le coloriage des graphs [In French: On the coloring of graphs]. Colloquium Mathematicum, 3(2):161-162, 1955.
[103] B. Peis. Structure Analysis of Some Generalizations of Matchings and Matroids Under Algorithmic Aspects. PhD thesis, Zentrum für Angewandte Informatik, Universität zu Köln, Cologne, Germany, 2006.
[104] E. Prisner. Hereditary clique-Helly graphs. The Journal of Combinatorial Mathematics and Combinatorial Computing, 14:216-220, 1993.
[105] E. Prisner. Graphs with few cliques. In Y. Alavi and A. Schwenk, editors, Graph Theory, Combinatorics, and Algorithms, Proceedings of the Seventh Quadrennial International Conference on the Theory and Applications of Graphs, held at Kalamazoo, Michigan, USA, June 1-5, 1992, volume 2, pages 945-956. Wiley, New York, 1995.
[106] N. Robertson and P. D. Seymour. Graph minors. I. Excluding a forest. Journal of Combinatorial Theory, Series B, 35(1):39-61, 1983.
[107] N. D. Roussopoulos. A $\max \{m, n\}$ algorithm for determining the graph H from its line graph G. Information Processing Letters, 2(4):108-112, 1973.
[108] D. Seinsche. On a property of the class of n-colorable graphs. Journal of Combinatorial Theory, Series B, 16(2):191-193, 1974.
[109] F. Soulignac and G. Sueiro. Exponential families of minimally non-coordinated graphs. Revista de la Unión Matemática Argentina, 50(1):75-85, 2009.
[110] F. Soulignac and G. Sueiro. NP-hardness of the recognition of coordinated graphs. Annals of Operations Research, 169(1):17-34, 2009.
[111] F. Sterboul. A characterization of the graphs in which the transversal number equals the matching number. Journal of Combinatorial Theory, Series B, 27(2):228229, 1979.
[112] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing, 1(2):146-160, 1972.
[113] M. Tedder, D. Corneil1, M. Habib, and C. Paul. Simpler linear-time modular decomposition via recursive factorizing permutations. In L. Aceto, I. Damgård, L. A. Goldberg, M. M. Halldórsson, A. Ingólfsdóttir, and I. Walukiewicz, editors, Automata, Languages and Programming, 35th International Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part I, volume 5125 of Lecture Notes in Computer Science. Springer, Berlin, 2008.
[114] L. E. Trotter. Line perfect graphs. Mathematical Programming, 12(1):255-259, 1977.
[115] W. T. Trotter and J. I. Moore. Characterization problems for graphs, partially ordered sets, lattices, and families of sets. Discrete Mathematics, 16(4):361-381, 1976.
[116] S. Tsukiyama, M. Idle, H. Ariyoshi, and Y. Shirakawa. A new algorithm for generating all the maximal independent sets. SIAM Journal on Computing, 6(3):505517, 1977.
[117] A. Tucker. Matrix characterizations of circular-arc graphs. Pacific Journal of Mathematics, 39(2):535-545, 1971.
[118] A. Tucker. Structure theorems for some circular-arc graphs. Discrete Mathematics, 7(1-2):167-195, 1974.
[119] A. Tucker. Coloring a family of circular arcs. SIAM Journal on Applied Mathematics, 29(3):493-502, 1975.
[120] A. Tucker. An efficient test for circular-arc graphs. SIAM Journal on Computing, 9(1):1-24, 1980.
[121] S. van Velzen. Simple combinatorial optimisation cost games. Discussion Paper 2005-118, Center for Economic Research, Tilburg University, Tilburg, The Netherlands, 2005.
[122] V. G. Vizing. Ob ocenke hromatičeskogo klassa p-grafa [In Russian: On an estimate of the chromatic class of a p-graph]. Diskretnyj Analiz, 3:25-30, 1964.
[123] V. G. Vizing. Kritičeskie grafy s dannym hromatičeskim klassom [In Russian: Critical graphs with given chromatic class]. Diskretnyj Analiz, 5:9-17, 1965.
[124] E. S. Wolk. The comparability graph of a tree. Proceedings of the American Mathematical Society, 13(5):789-795, 1962.
[125] E. S. Wolk. A note on "The comparability graph of a tree". Proceedings of the American Mathematical Society, 16(1):17-20, 1965.
[126] J.-H. Yan, J.-J. Chen, and G. J. Chang. Quasi-threshold graphs. Discrete Applied Mathematics, 69(3):247-255, 1996.
[127] M. Yannakakis. The complexity of the partial order dimension problem. SIAM Journal on Algebraic and Discrete Methods, 3(3):351-358, 1982.
[128] G. Zambelli. A polynomial recognition algorithm for balanced matrices. Journal of Combinatorial Theory, Series B, 95(1):49-67, 2005.
[129] X. Zhou, S. Nakano, and T. Nishizeki. Edge-coloring partial k-trees. Journal of Algorithms, 21(3):598-617, 1996.

Glossary of notation

$|S| \quad$ size of a set $S, 9$
$X \triangle Y \quad$ symmetric difference of the sets X and $Y, 9$
$\overline{\mathrm{G}} \quad$ complement of G, 9
$G+\nu w \quad$ graph G plus the edge $v w, 9$
$G-v \quad$ graph G minus the vertex $v, 9$
G - W graph G minus the vertex set $\mathrm{W}, 9$
$G-e \quad$ graph G minus the edge $e, 9$
$G \backslash F \quad$ graph G minus the edge set $F, 9$
G[W] subgraph of G induced by $W, 9$
$G_{1}+G_{2} \quad$ join of G_{1} and $G_{2}, 11$
$H_{1} \cup H_{2} \quad$ disjoint union of the graphs or multigraphs H_{1} and $H_{2}, 13$
tH
disjoint union of t copies of a graph or hypergraph $H, 13$
$\mathrm{G}_{1} \triangle_{A B} G_{2}$ merging of t -blooms A and B of G_{1} and $G_{2}, 31$
$\widehat{H} \quad$ underlying graph of the multigraph $H, 13$
$\Gamma_{1} \&_{p} \Gamma_{2} \quad p$-concatenation of two-terminal graphs Γ_{1} and $\Gamma_{2}, 83$
$\Gamma \&_{p} \circlearrowright \quad p$-closure of a two-terminal graph $\Gamma, 83$
$\alpha(G) \quad$ stability number of $G, 4$
$\alpha_{c}(G) \quad$ clique-independence number of G, 5
$\alpha_{m}(G) \quad$ matching-independence number of $G, 82$
$\delta(\mathrm{G}) \quad$ minimum degree of $\mathrm{G}, 10$
$\delta_{h}(G) \quad$ minimum hub degree of $G, 101$
$\Delta(\mathrm{G}) \quad$ maximum degree of $\mathrm{G}, 10$
$\Delta(\mathcal{F}) \quad$ maximum degree of a family \mathcal{F} of sets, 77
$\Delta_{\mathrm{C}}(\mathrm{G}) \quad$ maximum clique-degree of $\mathrm{G}, 77$
$\mathrm{G}_{\Delta} \quad$ core of $\mathrm{G}, 96$
$\gamma(\mathcal{F}) \quad$ chromatic index of a family \mathcal{F} of sets, 77
$\gamma_{c}(G) \quad$ clique-chromatic index of G,77
$\theta(\mathrm{G}) \quad$ clique covering number, 4

$\nu(\mathrm{G})$	matching number of G, 4
$\tau(\mathrm{G})$	transversal number of G, 4
$\tau_{c}(\mathrm{G})$	clique-transversal number of G, 5
$\tau_{\mathrm{m}}(\mathrm{G})$	matching-transversal number of G, 82
$\chi(\mathrm{G})$	chromatic number of G, 3
$\chi^{\prime}(\mathrm{G})$	chromatic index of G, 95
ω (G)	clique number of G, 3
$\overline{\mathrm{G}}^{\text {bip }}$	bipartite complement of G, 30
C_{n}	chordless cycle on n vertices, 10
$\mathrm{d}_{\mathrm{G}}(v)$	degree of v in G, 10
$\widehat{d}_{\mathrm{H}}(v)$	underlying degree of v in a multigraph $\mathrm{H}, 13$
$\mathrm{E}_{\mathrm{G}}(v)$	set of edges incident to v in G, 10
K_{n}	complete graph on n vertices, 10
$\mathrm{L}(\mathrm{R})$	line graph of a graph or multigraph $\mathrm{R}, 13$
L(H)	line graph (or representative graph) of a multigraph $\mathrm{H}, 80$
$\mathrm{N}_{\mathrm{G}}(v)$	neighborhood of v in G, 10
$\mathrm{N}_{\mathrm{G}}[\nu]$	closed neighborhood of v in G, 10
$\mathrm{N}_{\mathrm{G}}(\mathrm{W})$	common neighborhood of the set of vertices W in G, 10
$\mathrm{N}_{\mathrm{G}}(\mathrm{e})$	common neighborhood of the edge e in G, 10
P_{n}	chordless path on n vertices, 10
\mathcal{P} (G)	pruned graph of G, 49
$\mathcal{R}(\mathrm{G})$	representative graph of G, 36
W_{n}	wheel on n vertices, 10

Index

0-, 1-, 2-, 3-pyramid, 2
1-, 2-braid, 13
3-sun, 2
6-pan, 12

A (graph), 12
$\mathcal{A}_{1}, \mathcal{A}_{2}, \mathcal{A}_{3}, 37$
adjacent links, 84
alternating path, 12
anchor, 15
antenna, 12
anticomplete to each other, 10
antihole, 11
augmenting path, 12
$\mathcal{B}_{1}, \mathcal{B}_{2}, \ldots, \mathcal{B}_{16}, 39$
$\mathcal{B}_{16}^{\prime}, 50$
balanced graph, 1, 20
balanced hypergraph, 80
balanced matrix, 1, 20
barbell, 128
basic two-terminal graph, 83
bicoloring, 52
of a submatrix of a matching-matrix, 52
bipartite claw, 12
bipartite complement, 29
bipartite graph, 2, 11
bipartition, 11
block, 11
-bloom, 31
braid, 12, 13
bridge, 11
bull, 12
$C_{2}, 13$
caterpillar graph, 85
center of a bipartite claw, 12
chain graph, 30
chord, 10
chordless path or cycle, 10
chromatic index, 77, 95
chromatic number, 3
circular concatenation, 84
circular-arc graph, 2, 15
circular-arc model, 15
Class 1, 96
Class 2, 96
claw, 12
clique, 1,10
clique covering number, 4
clique graph, 78
clique hypergraph, 79
clique number, 3
clique-chromatic index, 77
clique-complete graph, 75
clique-distinguishable vertices, 23
clique-Helly graph, 14
clique-independence number, 5
clique-independent set, 5
clique-matrix, 1, 10
clique-perfect graph, 5, 74
clique-transversal number, 5
clique-transversal set, 5
closed neighborhood, 10
closure, 83
cograph, 16
color class, 100
common neighborhood, 10
complete bipartite graph, 11
complete graph, 10
complete set, 10
complete sun, 21
complete to each other, 10
component, 11
of a multigraph, 13
concatenation, 83
concatenation vertices, 84
configuration, 129
connected graph, 11
connected multigraph, 13
consecutive short chords, 10
contain a graph, 11
contain a multigraph, 13
contain an induced graph, 11
contract, 9
coordinated graph, 77
core, 96
critical graph, 96
crossing chord, 11
crown, 83
cutpoint, 11
cycle, 10
n-cycle, 10
of a multigraph, 13
$D^{2 t+1}, 59$
degree, 10
diamond, 12
disjoint union, 13
distance, 10
dominating, 11
domino, 15
dual edge-coloring property, 79
dual hypergraph, 79
dual Kőnig property, 79
dually chordal graph, 5

E (graph), 12
edge (two-terminal graph), 84
edge-coloring, 100
edge-coloring property, 77, 79
edge-dominating, 11
edge-perfect graph, 6, 129
edge-subgraph, 6, 129
edge-vertex incidence matrix, 9
edges of a path or cycle, 10
endpoint of a path, 10
even cycle, 11
even subdivision, 128
extended odd sun, 2,21
false twins, 10
fat caterpillar graph, 85
flower, 128
fold, 83
forbidden configuration, 129
forbidden induced subgraph, 11
forest, 11
fractional set covering polytope, 1
fractional set packing polytope, 1
-free, 11
$\mathrm{G}_{2}, 15$
$\mathrm{G}_{3}, 15$
$\mathrm{G}_{5}, 15$
$\mathrm{G}_{6}, 15$
G9, 15
gem, 12
generalized sun, 74
graph having the Kőnig property, 6, 127
Hall's theorem, 12
Hamiltonian cycle, 11
Helly circular-arc graph, 15
Helly circular-arc model, 15
Helly property, 14, 80
hereditary, 11
hereditary K-perfect graph, 78
hereditary clique-Helly graph, 1
hole, 11
hub, 101
hub-covered edge, 101
hub-covered graph, 101
hub-regular graph, 101
hyperedge, 79
hyperedge-vertex incidence matrix, 79
hypergraph, 79
ideal matrix, 1
identify, 31
improper edge, 74
incident edges, 13
indifference graph, 30
induced subgraph, 9
integral polytope, 1
intersection graph, 2
interval graph, 2
isolated vertex, 10
join, 11
K-perfect graph, 78
$\mathrm{K}_{2,3}, 15$
K_{4} (two-terminal graph), 84
$\mathrm{K}_{5}-\mathrm{e}, 96$
kite, 12
Kőnig property, 4, 79
graph having the Kőnig property, 6, 127

Kőnig's edge-coloring theorem, 77
Kőnig's matching theorem, 4
Kőnig-Egerváry graph, 6
L-balanced multigraph, 36
L-clique, 31
L5, 96
length, 10
line graph, 2, 13
of a hypergraph, 80
of a multigraph, 13
linear concatenation, 84
link, 84
long chord, 11
M-alternating path, 12
M-augmenting path, 12
m-crown, 84
M-flower, 128
m-fold, 84
M-posy, 128
M-saturated vertex, 11
M-stem, 128
M-unsaturated vertex, 12
major vertex, 95
matching, 11
of a multigraph, 13
matching number, 4
matching-distinguishable edges, 38
matching-independence number, 82
matching-independent set, 82
matching-matrix, 36
matching-perfect graph, 82
matching-transversal number, 82
matching-transversal set, 82
maximal matching, 12,13
maximal profuse-coloring, 100
maximum clique-degree, 77
maximum degree, 10
of the family of sets, 77
maximum matching, 12
midpoint of a chord, 10
midpoint of a short chord, 10
minimal forbidden induced subgraph, 11
minimally not \mathcal{G} graph, 11
minimum degree, 10
minimum hub, 101
minimum hub degree, 101
module, 16
multiple edge, 41
multiple of a graph, 67
multitree, 13
$\mathrm{N}_{1}, 78$
near-perfect matching, 12
neighborhood, 10
neighborhood node, 16
net, 12
nice subgraph, 6, 129
non-proper edge, 74
nonseparable graph, 11
nontrivial component, 11
nornal hypergraph, 80
obstacle, 64
odd cycle, 11
odd generalized sun, 74
odd sun, 21

P*,96
parallel node, 16
partial edge-coloring, 100
partial hypergraph, 80
path, 10
n-path, 10
of a multigraph, 13
paw, 12
pendant edge, 10
pendant vertex, 10
of a multigraph, 13
perfect graph, 1, 3
Perfect Graph Theorem, 4
perfect matching, 12
perfect matrix, 1
posy, 128
profuse-coloring, 100
proper circular-arc graph, 66
proper cycle, 74
proper induced subgraph, 9
pruned graph, 48
pseudo-split graph, 21
pyramid graphs, 12
representative graph, 36
of a hypergraph, 80
rhombus, 84
root graph, 13
saturated vertex, 11
savior, 130
series node, 16
short chord, 10
simple edge, 41
sink, 83
$\mathrm{SK}_{4}, 96$
SK ${ }_{5}, 96$
source, 83
spanning subgraph, 9
split by, 131
split graph, 21
splitting set, 131
splitting subgraph, 131
square, 84
stability number, 4
stable set, 10
star, 31
stem, 128
strong module, 16
Strong Perfect Graph Theorem, 1
strongly chordal graph, 2
strongly splitting set, 133
strongly splitting subgraph, 133
subgraph, 9
submultigraph, 13
sun, 21
t-bloom, 31
t-generalized sun, 74
t-sun, 21
totally balanced matrix, 2
touching
at, 9
subgraphs, 9
submultigraphs, 13
transversal number, 4
tree, 11
triad, 31
triangle, 10
triangle (two-terminal graph), 84
trivial component, 11
trivial module, 16
trivially perfect graph, 23
true twins, 10
twin edges, 50
twin vertices, 10
two-terminal graph, 83
two-twin pair, 130
$\mathrm{U}_{4}, 12$
$\mathrm{U}_{7}, 12$
unbalanced cycle, 20
uncolored edge, 100
underlying graph
of a configuration, 129
of a multigraph, 13
of a two-terminal graph, 83
universal vertex, 10
unsaturated vertex, 12
$V_{p}^{2 t+1}, 59$
$\mathrm{V}_{7}, 12$
$W_{4}, 12$
$X_{p}^{2 t+1}, 59$

[^0]: Cita tipo APA:
 Safe, Martín Darío. (201ו). Sobre caracterizaciones estructurales de clases de grafos relacionadas con los grafos perfectos y la propiedad de König. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires.

 Cita tipo Chicago:
 Safe, Martín Darío. "Sobre caracterizaciones estructurales de clases de grafos relacionadas con los grafos perfectos y la propiedad de König". Facultad de Ciencias Exactas y Naturales.
 Universidad de Buenos Aires. 2011.

