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Cuerdas y D-branas en espacio-

tiempos curvos

En esta tesis estudiamos el modelo AdS3 Wess-Zumino-Novikov-Witten. Calculamos la Ex-

pansión en Producto de Operadores de campos primarios y de sus imágenes bajo el automor-

fismo de flujo espectral en todos los sectores del modelo considerado como una rotación de Wick

del modelo coset H+
3 . Argumentamos que las simetŕıas afines del álgebra requieren un truncado

que determina la clausura de las reglas de fusión del espacio de Hilbert. Estos resultados son

luego utilizados para discutir la factorización de las funciones de cuatro puntos con la ayuda del

formalismo conocido como bootstrap.

También realizamos un estudio de las propiedades modulares del modelo. Los caracteres

sobre el toro Eucĺıdeo divergen de una manera poco controlable. La regularización propuesta

en la literatura es poco satisfactoria pues elimina información del espectro y se pierde aśı la

relación uno a uno entre caracteres y representaciones del álgebra de simetŕıa que forman el

espectro. Proponemos estudiar entonces los caracteres definidos sobre el toro Lorentziano los

cuales están perfectamente definidos sobre el espacio de funcionales lineales, recuperando aśı la

biyección entre caracteres y representaciones. Luego obtenemos las transformaciones modulares

generalizadas y las utilizamos para estudiar la conexión con los correladores que determinan

los acoplamientos a las branas simétricas en tal espacio de fondo, obteniendo que en los casos

particulares de branas puntuales o dS2 branas se recuperan resultados t́ıpicos de Teoŕıas de

Campos Conformes Racionales como soluciones tipo Cardy o fórmulas tipo Verlinde.

Palabras claves: teoŕıa de cuerdas, teoŕıas conformes no racionales, D-branas, AdS3, reglas
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de fusión, transformaciones modulares.
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Strings and D-branes in curved

space-time

In this thesis we study the AdS3 Wess-Zumino-Novikov-Witten model. We compute the Op-

erator Product Expansion of primary fields as well as their images under the spectral flow

automorphism in all sectors of the model by considering it as a Wick rotation of the H+
3 coset

model. We argue that the symmetries of the affine algebra require a truncation which establishes

the closure of the fusion rules on the Hilbert space of the theory. These results are then used to

discuss the factorization of four point functions by applying the bootstrap approach.

We also study the modular properties of the model. Although the Euclidean partition func-

tion is modular invariant, the characters on the Euclidean torus diverge and the regularization

proposed in the literature removes information on the spectrum, so that the usual one to one

map between characters and representations of rational models is lost. Reconsidering the char-

acters defined on the Lorentzian torus and focusing on their structure as distributions, we obtain

expressions that recover those properties. We then study their generalized modular properties

and use them to discuss the relation between modular data and one point functions associated

to symmetric D-branes, generalizing some results from Rational Conformal Field Theories in

the particular cases of point like and dS2 branes, such as Cardy type solutions or Verlinde like

formulas.

Keywords: string theory, non rational conformal field theories, D-branes, AdS3, fusion rules,

modular transformations.
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Chapter 1

Introduction

String theory is one of the most ambitious projects in the field of high energy physics. Even

though it was originally conceived to explain quark confinement, its development forced the

opening of different roads and the extension of its original aims. Shortly after its beginning,

people realized every consistent string theory had a massless spin two particle in the spectrum,

a graviton. This opened a new possibility to reach a consistent theory of quantum gravity, with

extended objects to quantize instead of point-like particles, and so to reach the dream of every

theoretical physicist, i.e. a unified theory for all known interactions or a theory of everything.

This theory, yet under construction, is the best candidate to give a unified description of

all interactions, but also has the beauty of having offered important results going beyond the

theory itself. It gave rise to an amazing development of Conformal Field Theories (CFTs)

providing several tools to deal with two dimensional statistical models. The consistency of

the theory led to the idea of supersymmetry. The gauge/gravity duality, whose validity is not

restricted to that of string theory, has offered the first realization of the holographic principle,

leading not only to a theoretical frame relating gravitational theories with gauge theories in flat

space, but a powerful tool allowing to study non perturbative regions of superconformal, but

also of non conformal field theories or models with less supersymmetry or in different space-

time dimensions [1] than those proposed in the first example of this duality [2, 3], including

holographic renormalization group flows [4, 5, 6], rotating strings [7, 8, 9], applications to the
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study of baryonic symmetry breaking [10, 11], applications to cosmology [12, 13], applications

to holographic QCD [14, 15, 16, 17], to electroweak symmetry breaking [18], and non relativistic

quantum-mechanical systems [19, 20, 21, 22], among others.

Many years have passed since its birth and it appears frustrating not having found yet a

solid confirmation of the theory. There is not known way to reduce the theory to one which

exactly reproduces all aspects of the Standard Model, or which solves the cosmological constant

problem, among other drawbacks. But these puzzles must not be seen as a failure of the theory,

but as a consequence of the complexity of the problems to be solved. The knowledge of the

theory has increased considerably. There is a good understanding of the perturbative regime,

and the discovery of D−branes, extended dynamical objects on which the ends of open strings

live, has been crucial in the development of dualities that allow to explore non perturbative

regions of the theory.

One of the major challenges of the theory is to find a mechanism univocally leading to an

effective reduced theory with a solution phenomenologically contrastable with the real world.

Instead, one finds a large number of vacua, roughly 10500, a problem frequently named the

landscape of string theory [23].

There is no doubt that D-branes play a fundamental role in the resolution of these problems

and so a fundamental step consists in the study of branes in non trivial curved backgrounds.

A very powerful approach to explore string theories on non trivial curved backgrounds is

to consider vacua with a lot of symmetry. This was successfully reached by considering the

space-time to be given by the group manifold of a continuous compact group, G. In such a case

the worldsheet theory is a Rational Conformal Field Theory (RCFT), i.e. it contains a finite

number of primary states. To date these theories can be solved exactly by using only algebraic

tools [24, 25, 26]. The situation is very different in the non compact case, as a consequence of

the presence of a continuous spectrum of states (see for instance [27] for a review). This thesis

is devoted to the study of the worldsheet of string theory on a three dimensional anti de Sitter

(AdS3) space time. This theory is very interesting because it is one of the simplest models to

test string theory in curved non compact backgrounds and with a non trivial timelike direction,
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it can be used to learn more on the not well known non RCFT, but also because of its relevance

in the AdS/CFT correspondence.

Most of the studies regarding the AdS/CFT duality were explored only within the super-

gravity approximation. An example where the correspondence was successfully explored beyond

the supergravity approximation is string theory in PP waves backgrounds [28, 29] with RR

fields, obtained by taking the Penrose limit of AdS. Another accessible background is AdS3 with

Neveu Schwarz (NS) antisymmetric field, appearing within backgrounds like AdS3 × S3 ×M4,

with M4 = T 4 or K3 (obtained as the near horizon limit of the D1 − D5 brane setup in the

background R6 ×M4) [30, 31, 32, 33, 34, 35].

The worldsheet of the bosonic string propagating on AdS3 is described by the Wess Zu-

mino Novikov Witten (WZNW) model associated to the universal cover of the SL(2,R) group,

˜SL(2,R) but for short we will refer to this as the AdS3 WZNW model in order to avoid confusion

with the WZNW model on the single cover of SL(2,R). So it is expected to be exactly solvable.

The studies on this model started within the seminal work of O‘Raifeartaigh, Balog, Forgacs and

Wipf [36] on the SU(1, 1) WZNW model more than twenty years ago, but it was necessary to

wait for more than ten years until the work of Maldacena and Ooguri [37] correctly defined the

spectrum, which is considerably more involved that those of RCFT. It consists of long strings

with continuous energy spectrum arising from the principal continuous representation of sl(2)

and its spectral flow images, and short strings with discrete physical spectrum resulting from

the highest-weight discrete representations and their spectral flow images.

By extending the result of Evans, Gaberdiel and Perry [38] to nontrivial spectral flow sec-

tors, a no ghost theorem for this spectrum was proved in [37] and verified in [39] through the

computation of the one-loop partition function on a Euclidean AdS3 background at finite tem-

perature. Amplitudes of string theory in AdS3 on the sphere were computed in [40], analytically

continuing the expressions obtained for the Euclidean H+
3 = SL(2,C)

SU(2) (gauged) WZNW model in

[41, 42]. Some subtleties of the analytic continuation relating the H+
3 and AdS3 models were

clarified in [40] and this allowed to construct, in particular, the four-point functions of unflowed

short strings. Integrating over the moduli space of the worldsheet, it was shown that the string
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amplitude can be expressed as a sum of products of three-point functions with intermediate

physical states, i.e. the structure of the factorization agrees with the Hilbert space of the theory.

A step up towards a proof of consistency and unitarity of the theory involves the construction

of four-point functions including states in different representations and the verification that only

unitary states corresponding to long and short strings in agreement with the spectral flow

selection rules are produced in the intermediate channels. To achieve this goal, the analytic and

algebraic structure of the AdS3 WZNW model should be explored further.

Most of the important progress achieved is based on the better understood Euclidean H+
3

model. The absence of singular vectors and the lack of chiral factorization in the relevant current

algebra representations obstruct the use of the powerful techniques from rational conformal field

theories. Nevertheless, a generalized conformal bootstrap approach was successfully applied in

[41, 42] to the H+
3 model on the punctured sphere, allowing to discuss the factorization of four-

point functions. In principle, this method offers the possibility to unambiguously determine

any n > 3−point function in terms of two- and three-point functions once the operator product

expansions of two operators and the structure constants are known.

We carried out some initial steps along the development of this thesis [43], by examining the

role of the spectral flow symmetry on the analytic continuation of the operator product expansion

from H+
3 to the relevant representations of SL(2,R) and on the factorization properties of four-

point functions. These results give fusion rules establishing the closure of the Hilbert space and

the unitarity of the full interacting string theory.

In RCFT, a practical derivation of the fusion rules (i.e. of the representations contained in

the Operator algebra) can be performed through the Verlinde theorem [44], often formulated

as the statement that the S matrix of modular transformations diagonalizes the fusion rules.

Moreover, besides leading to a Verlinde formula, the S matrix allows a classification of modular

invariants and a systematic study of boundary states for symmetric branes. It is interesting

to explore whether analogous of these properties can be found in the AdS3 WZNW model.

However, the relations among fusion algebra, boundary states and modular transformations are

difficult to identify and have not been very convenient in non compact models [45]. In general,
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the characters have an intricate behavior under the modular group [46]-[48] and, as is often the

case in theories with discrete and continuous representations, these mix under S transformations.

In the forthcoming chapters we will discuss these subjects based on our previous results [49].

This thesis is organized as follows, in Chapter 2 we review the geometry, symmetries, and give

some basis functions of AdS3 and related spaces which are the basic objects in the minisuperspace

limit. Chapter 3 is devoted to introduce the WZNW models. We begin with a short introduction

on general WZNW models and then present the AdS3 WZNW model, and related ones like

H+
3 and the

SL(2,R)k/U(1)×U(1)−k

ZNk

models. In Chapter 4 we discuss interactions in the model.

We consider two and three point functions of the Euclidean H+
3 model, and assuming they are

related to those of the AdS3 model [40], we compute the Operator Product Expansion (OPE) for

primary fields as well as for their images under spectral flows in all the sectors of the theory. After

discussing the extension to descendant fields, we show that the spectral flow symmetry requires a

truncation of the fusion rules determining the closure of the operator algebra on the Hilbert space

of the theory. In Chapter 5 we consider the factorization of four-point functions and study some

of its properties. Chapter 6 is devoted to the characters of the relevant representations of the

AdS3 WZNW model. Since the standard Euclidean characters diverge and lack good modular

properties, extended characters were originally introduced in [50] (see also [51])1. A different

approach was followed in [37] where the standard characters were computed on the Lorentzian

torus and it was shown that the modular invariant partition function of theH+
3 model obtained in

[55] is recovered after performing analytic continuation and discarding contact terms. However,

this trivial regularization removes information on the spectrum and the usual one to one map

between characters and representations of rational models is lost. With the aim of overcoming

these problems, we review (and redefine) the characters on the Lorentzian torus, focusing on

their structure as distributions and compute the full set of generalized modular transformations

in Chapter 7.

In order to explore the properties of the modular S matrix, in Chapter 8 we consider the

maximally symmetric D-branes of the model. We explicitly construct the Ishibashi states and

show that the coefficients of the boundary states turn out to be determined from the generalized

1Similar problems in non-compact coset models have also been considered in [52]-[54]
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S matrix, suggesting that a Verlinde-like formula could give some information on the spectrum

of open strings attached to certain D-branes. Furthermore, we show that a generalized Ver-

linde formula reproduces the fusion rules of the finite dimensional degenerate representations of

sl(2,R) appearing in the boundary spectrum of the point-like D-branes.

In chapter 9 we give a summary of the thesis and discuss the actual status and future

challenges and perspectives regarding open problems. We also list the original contributions to

the subject presented along the thesis.

Some basic facts about CFTs are reviewed in appendix A, some technical details of the

calculations are included in appendices B, D and E and a discussion of the moduli space of the

Lorentzian torus is found in appendix C.
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Chapter 2

Geometric aspects of maximally

symmetric spaces

Before introducing the AdS3 WZNW model, it is instructive to spend some pages reviewing

some aspects of the geometry of maximally symmetric spaces and the minisuperspace limit in

AdS3 and related models.

2.1 Geometry and symmetries

Along the bulk of the thesis the reader will find discussions concerning different types of geome-

tries such as hyperbolic, Anti de Sitter or de Sitter spaces, so a good point to begin with is by

defining all these geometries.

2.1.1 Maximally symmetric spaces

Maximally symmetric spaces are defined as those metric spaces with maximal number of isome-

tries in a given spacetime dimension1. Due to this important property such geometries were

extensively studied in the literature. Here we will give a short breviatum. For a deeper study

of the subject we redirect the reader to [56].

1In the concrete case of D spacetime dimensions these spaces admit D(D + 1)/2 linear independent Killing
vectors.
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Every D dimensional maximally symmetric space has constant curvature and can be realized

as a pseudosphere embedded in a D+1 dimensional flat space.

To be more precise, let
(
X0, X1, . . . , XD

)
represent the Cartesian coordinates of a particular

point in such a flat space, the symmetric spaces can be realized as the hypersurfaces constrained

by

ǫR2 = XµXµ, (2.1.1)

where the indices are lowered with the background metric

ηµν = diag (ǫ0, ǫ1, . . . , ǫD) (2.1.2)

and the ǫ’s are signs. R is frecuently called the radius of the space because of the similarity with

the radius of a sphere, but it must not be confused with the Ricci curvature scalar, R, which is

given by

R =
ǫD(D − 1)

R2
. (2.1.3)

We are specially interested in Euclidean or Lorentzian (one timelike direction) D dimensional

spaces, so we fix ǫ1 = · · · = ǫD−1 = 1.

The cases of interest for us are anti de Sitter, Hyperbolic and de Sitter spaces.

Anti de Sitter space: AdSD

This geometry corresponds to the case where ǫ0 = ǫD = ǫ = −1. The space has Lorentzian

signature and SO(D − 1, 2) isometry group. The time like direction is compact.

The particular case D = 3 will be of special interest for us.

Notice that the topology of AdS3 coincides with that of the SL(2,R) group manifold as can

8



be checked from the following parametrization of this group

g = R−1



X0 +X1 X2 +X3

X2 −X3 X0 −X1


 , Xµ ∈ R. (2.1.4)

This relation is intimately linked to the fact that the SO(2, 2) isometry group is locally

isomorphic to SL(2)⊗ SL(2).

For obvious reasons we will decompactify the time-like direction when discussing physical

applications. And from now on we will denote this space as AdS3, which is nothing but the

group manifold of the universal covering of SL(2,R), i.e. ˜SL(2,R).

Another useful coordinate system, frequently used in the literature, is the so called global or

cylindrical coordinate system (ρ, θ, τ), related to the previous one via

X0 + iX3 = eiτ cosh ρ,

X1 + iX2 = eiθ sinh ρ. (2.1.5)

Hyperbolic space: HD

This geometry is realized when ǫ = ǫ0 = −ǫD = −1. It has Euclidean signature, SO(D, 1)

isometry and decomposes in two disconnected branches, the upper sheet (X0 ≥ R) denoted by

H+
D and the lower one (X0 ≤ −R) denoted by H−

D.

For the special case of D = 3, this space has the topology of the group coset manifold of the

subset of hermitian matrices of unit determinant in SL(2,C), i.e. SL(2,C)/SU(2). The subspace

H+
3 can be interpreted as a Euclidean Wick rotation of AdS3, in fact it can be parametrized

with the analytic continuation τ → iτ of the cylindrical coordinate system of AdS3 so breaking

the periodicity of the time-like direction.

Another useful coordinate system is the one defined by the complex variables (φ, γ, γ̄), where

γ = eτ+iθ tanh ρ,

γ̄ = eτ−iθ tanh ρ,
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eφ = e−τ cosh ρ. (2.1.6)

In terms of these coordinate, the elements of the coset are parametrized by

h =




eφ eφ γ̄

eφ γ eφγγ̄ + e−φ


 (2.1.7)

and the coset structure is manifest when h is written as h = v v†, with

v =




eφ/2 0

eφ/2 γ e−φ/2


 . (2.1.8)

Clearly h is invariant under v → v u, with u ∈ SU(2) and this explicit realization of the coset

structure is the reason why these coordinates are implemented when constructing the H+
3 model

by gauging the SU(2) subgroup of the SL(2,C) WZNW model.

de Sitter space: dSD

In this case only ǫ0 = −1. The space has Lorentzian signature, SO(D, 1) isometry group and

its topology coincides with the group manifold of unimodular antihermitian matrices

g = R−1



i
(
X0 +X1

) (
X2 + iX3

)

−
(
X2 − iX3

)
i
(
X0 −X1

)


 , Xµ ∈ R. (2.1.9)

Other geometries (not discussed in the thesis) are the (Euclidean) D-dimensional sphere with

SO(D+1) isometry group (ǫµ = 1, ∀µ) and the “two time” pseudosphere with SO(D − 1, 2)

isometry corresponding to ǫ0 = ǫD = −ǫ = −1.

2.2 Basis functions

In this section we describe some of the basis functions for H+
3 , SL(2,R) and AdS3, where by

abuse of notation we refer to SL(2,R) as the group manifold of the single cover of SL(2,R). The
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fact that both H+
3 and SL(2,R) admit matricial representations makes the study of functions

over these spaces much easier than in the AdS3 case where such representations are not present.

Let us begin with SL(2,R), and the parametrization (2.1.5), then the elements of the group,

g are written as

g(ρ, θ, τ) =



cosh ρ cos τ + sinh ρ cos θ cosh ρ sin τ + sinh ρ sin θ

sinh ρ sin θ − cosh ρ sin θ cosh ρ cos τ − sinh ρ cos θ


 (2.2.1)

As we commented in the previous section, AdS3 is obtained by decompactifying τ . If we write

τ = 2π(q+ λ), where q ∈ Z, λ ∈ [0, 1), the elements G(ρ, θ, τ) of AdS3 admit a parametrization

in terms of SL(2,R)

G = (g, q), g ∈ SL(2,R), q ∈ Z (2.2.2)

The AdS3 product is built from the one in the single cover as

GG′ = (g, q)(g′, q′) = (gg′, q + q′ + F (g) + F (g′)− F (gg′)) (2.2.3)

Notice that both SL(2,R) and the universal cover carry a natural left and right multiplication

by themselves. For instance, for AdS3 we have (GL, GR) · G = GLGGR and this will be the

symmetry of the model under consideration (see section 3.1).

The geometric symmetry group of SL(2,R) is SL(2,R)×SL(2,R)
Z2

, where Z2 is the center of the

group. In the case of AdS3 the symmetry group is AdS3×AdS3
Z

, where the center is isomorphic to Z.

Indeed, it can be easily checked, from (2.2.3), that it is given by the subgroup {(±id, q), q ∈ Z},

which is the subgroup freely generated by the element (−id, 0).

A useful parametrization for H+
3 , different from the ones considered in the previous section

is given by

h(ρ, θ, τ̃) =



eτ̃ cosh ρ eiθ sinh ρ

e−iθ sinh ρ e−τ̃ cosh ρ


 (2.2.4)
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Notice that the product of two matrices in H+
3 , h1 and h2 with θ1 6= θ2 is outside of the

hyperbolic space. This is a not surprising because H+
3 is not a group, but the group coset

SL(2,C)/SU(2). In this case the left and right action take the element out of the space and the

geometric symmetry group acts as k · h = khk†, with k ∈ SL(2,C). So it is given by SL(2,C)
Z2

.

2.2.1 Continuous basis

As we commented at the beginning of this section, the fact that H+
3 and SL(2,R) admit matrix

representations simplifies matters.

A useful basis for H+
3 is the well known x-basis,

φj(x, x̄|h) = 2j + 1

π

∣∣∣(x̄ 1)h
(x
1
)∣∣∣

2j
, (2.2.5)

whit x, x̄ ∈ C. These functions have simple behavior under symmetry transformations. If k is

parametrized by k† =



a b

c d


 then

φj(x, x̄|khk†) = |cx+ d|4jφj(k · x, x̄ · k†|h), (2.2.6)

where

k · x =
ax+ b

cx+ d
(2.2.7)

It was shown [57] that a complete basis of functions in the Hyperbolic space is generated by

φj(x, x̄|h), with j ∈ −1
2 + iR+.

Functions with j and j′ = −j − 1 are related by the reflection symmetry

φ−j−1(x, x̄|h) = R(−1− j)

π

∫
d2y|x− y|4jφj(y, ȳ|h) (2.2.8)
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where the reflection R(j) is such that

R(j)R(−j − 1) = −(2j + 1)2. (2.2.9)

A continuous basis for SL(2,R) is given by the so called t-basis

φj,η(tL, tR|g) =
2j + 1

π

∣∣∣∣(1 − tL)g

(
tR
1

)∣∣∣∣
2j

sgn2η
[
(1 − tL)g

(
tR
1

)]
(2.2.10)

The parity η ∈ {0, 12}, and the symmetry group acts as

φj,η(tL, tR|g−1
L ggR) = |(cRtR + dR)(cLtL + dL)|2j sgn2η [(cRtR + dR)(cLtL + dL)]

× φj,η(gL · tL, gR · tR|g), (2.2.11)

where

g · t = at+ b

ct+ d
. (2.2.12)

A complete basis of functions is known to be {φj,η(tL, tR|g); j ∈ −1
2 + iR+, tL, tR ∈ R ,

η ∈ {0, 12} } ∪ {φj,η(tL, tR|g); j ∈ −1− 1
2N, tL, tR ∈ R, η = j mod 1}

The situation is subtler in AdS3 where the correct behavior under symmetry transformations

was found in [58]

φj,α(tL, tR|G−1
L GGR) = |(cRtR + dR)(cLtL + dL)|2j e2πiα[N(GL|tL)−N(GR|tR)]

× φj,α(GL · tL, GR · tR|G), (2.2.13)

with α ∈ [0, 1), G · t ≡ g · t, g being the SL(2,R) projection of G ∈ AdS3. N(G|t) is a function

with the following properties

N(G′G|t) = N(G′|Gt) +N(G|t)
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N( (id, q) |t) = q. (2.2.14)

For instance N(G|t) can be taken as the number of times G′ ·t crosses infinity when G′ moves

from (id, 0) to G. A function satisfying (2.2.13) was found in [59] and is given by

φj,α(tL, tR|G) =
2j + 1

π
e2πiα n(G|tL,tR)

∣∣∣∣(1,−tL)g
(

tR
1

)∣∣∣∣
2j

, (2.2.15)

where n is the function defined such that n(G|tL, tR) − 1
2sgn(tL, tR) gives the number of times

G′ · t crosses tR as G′ moves from (id, 0) to G.

2.2.2 Discrete basis

The continuous x and t basis have simple properties under symmetry transformations. But as

g in (2.2.1) and h in (2.2.4) are not related by Wick rotation, neither the continuous functions

defined above are related by Wick rotation.

So it is useful to introduce another type of basis, the so called “m-basis”. These are sets

of functions parametrized by discrete parameters m, m̄, which even though not having a simple

behavior under symmetry transformations have a simple connection via Wick rotation.

The m-basis of H+
3 can be defined as a kind of Fourier transformation of the x-basis

φjmm̄(h) ≡
∫
d2x xj+mx̄j+m̄φj(x, x̄|h). (2.2.16)

The combinations m − m̄ and m + m̄ are proportional to the momentum numbers along the

compact θ-direction and the non-compact τ direction respectively, which implies the decompo-

sition

m =
n+ p

2

m̄ =
−n+ p

2
, (2.2.17)

with n ∈ Z, p ∈ iR. Notice that m− m̄ ∈ Z ensures the monodromy in (2.2.16).
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The explicit computation of (2.2.16) gives

φjmm̄ = −4
Γ(1 + j + |n|+p

2 )Γ(1 + j + |n|−p
2 )

Γ(|n|+ 1)Γ(1 + 2j)
epτ̃−inθ sinh|n| ρ cosh−p ρ

× F (1 + j +
|n| − p

2
, −j + |n| − p

2
, |n|+ 1;− sinh2 ρ) (2.2.18)

The reflection property (2.2.8) translates in the m-basis to

φjmm̄ = Rj
mm̄ φ−j−1

mm̄ , (2.2.19)

where

Rj
m,m̄ =

Γ(−2j − 1)Γ(j + 1 +m)Γ(j + 1− m̄)

Γ(2j + 1)Γ(−j +m)Γ(−j − m̄)
(2.2.20)

We take the m-basis of the Lorentzian models as the Wick rotation τ̃ → iτ of the basis above

and by abuse of notation we use the same name, i.e. φjm,m̄. The first difference of the Wick

rotated functions is that p must be real in order to ensure the (delta function) normalization.

If we introduce the parameter α ∈ [0, 1) such that m, m̄ ∈ α+Z, the change of basis between

m and t-basis is

φjm,m̄(G) = cj,α
∫ ∞

−∞
dtL(1 + t2L)

j

(
1 + itL
1− itL

)m

×
∫ ∞

−∞
dtR(1 + t2R)

j

(
1− itR
1 + itR

)m̄

φ−1−j,α(tL, tR|G), (2.2.21)

where

cj,α = − 4−2−2j sin 2πj

sinπ(j − α) sinπ(j + α)
. (2.2.22)

All the functions introduced in this section have a relevant role in the field theory description

as they describe what is known as the minisuperspace limit of the WZNW models associated

with SL(2,R), AdS3 or their Euclidean rotation, the H+
3 space. In such a limit these functions
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represent the zero mode contribution of the primary fields. A thorough study of the minisu-

perspace limit of the H+
3 coset model and the AdS3 WZNW model was presented in [57] and

[59] respectively. The basis functions discussed in this section were proved to be a complete set

of functions in each space. These functions not necesarily belong to the squared integrable set

but form an orthogonal basis in the same sense that {eik x|k ∈ R} is a complete basis over the

space of real functions. The completeness of the continuous and discrete basis of functions on

H+
3 was proved in [57], and as commented in [59] the proof of the completeness of the discrete

basis of AdS3 follows from the results of [60] where a plancherel formula for AdS3 was proved.

The completeness of the continuous basis is a consequence of the integral relation (2.2.21). And

finally the completeness of the basis functions for SL(2,R) follows from the observation that

these are nothing but the functions of AdS3 with 2π periodicity on τ .
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Chapter 3

AdS3 WZNW Model

In this chapter we present the AdS3 WZNW model and other coset models related to the former

by Wick rotations. In next section we present a brief introduction on nongauged and gauged

WZNW models, with the aim of introducing some basics tools, setting the notation and to

present the formulae we will be using along the thesis. Then we turn to a description of the

AdS3 WZNWmodel, theH+
3 or SL(2,C)/SU(2) Coset model and the Coset

SL(2,R)k/U(1)×U(1)−k

ZNk

model.

3.1 WZNW models

WZNW models are CFTs with a Lie group symmetry, where the spectrum is built over repre-

sentations of the affine algebra. These theories have the peculiarity of being defined with an

action, a feature that usually does not occur in CFT’s.

Sigma models defined with semisimple group manifolds as target space constitute a natural

starting point to construct a theory with the properties mentioned above. Nevertheless, even

though these theories are classically scale invariant, the β function of the renormalization group

is nonzero and so the effective theory becomes massive and a scale anomaly emerges at the

quantum level.

This observation is sufficient to realize that this is not the theory we are looking for. Another

indication follows from the fact that the conserved currents do not satisfy the factorization
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property of CFTs, i.e. they do not factorize in a holomorphic current and an antiholomorphic

one.

The requested theory is obtained when the sigma model action is supplemented with a

Wess-Zumino term. The WZNW action is [61, 62, 63]

SWZNW = Ssigma + SWZ

=
−k
16π

∫
d2x Tr′

(
∂µg−1∂µg

)

+
ik

24π

∫

B3

d3y ǫαβγ Tr
′
(
g̃−1∂αg̃ g̃−1∂β g̃ g̃−1∂γ g̃

)
(3.1.1)

where B3 is the space whose boundary is the compactification of the space on which we defined

the sigma model. The prime in the trace means a normalization in the trace such that in any

representation the generators of the Lie algebra satisfy

Tr′
(
ta tb

)
= 2δab. (3.1.2)

The field g(x) lives in a unitary representation of the semisimple group G in order to ensure

the sigma model action be real. g̃(y) is the extension to the three-dimensional space B3. The

coupling constant k, usually referred to as the level, must be quantized because B3 has the

topology of a sphere.

Even though the Wess-Zumino term is an integral over a three dimensional space, its variation

being a divergence can be written as an integral over the two dimensional boundary and the

solution to the Euler-Lagrange equation of the WZNW action is, after the change of variable

z = x0+ix1, z̄ = x0−ix1, g(z, z̄) = f(z)f̄(z̄) with independent holomorphic and antiholomorphic

functions. The conserved currents are

J(z) = k ∂g g−1,

J̄(z̄) = −k g−1∂̄g, (3.1.3)

where the notation ∂ ≡ ∂z, ∂̄ ≡ ∂z̄ was used. They are associated with the following invariance
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of the action

g(z, z̄) → Ω(z) g(z, z̄) Ω̄−1(z̄), (3.1.4)

with Ω(z), Ω̄(z̄) two arbitrary functions living on G so that the global symmetry G×G of the

sigma model was lifted to a local one by adding the Wess-Zumino term. The transformation

law of the currents is easily read out from (3.1.4) and (3.1.3) and the current algebra can be

determined using the Ward identities. It is found to be

Ja(z1)J
b(z2) ∼

−kδab
(z1 − z2)2

+
∑

c

ifabc
Jc(z2)

z1 − z2
, (3.1.5)

where ∼ means equal up to regular terms and Ja are the components of J in the ta basis. So

defining the Laurent modes as

Ja(z) =
∑

n∈Z

z−n−1Ja
n , (3.1.6)

the current algebra leads to the desired affine Lie algebra ĝ

[Ja
m, J

b
n] =

∑

c

ifabcJ
c
m+n − knδabδm+n,0 (3.1.7)

and similarly for the antiholomorphic sector. The OPE of holomorphic and antiholomorphic

currents has no singular terms implying that the modes commute with each other.

The classical energy momentum tensor is obtained from varying the action with respect to

the metric1.

T (z)classic = − 1

2k

∑

a

Ja(z)Ja(z). (3.1.8)

Fields are not free, so that this expression will be corrected at quantum level. If the product

1From now we will work only with the holomorphic sector, the antiholomorphic sector being analogous.
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of currents in (3.1.8) is replaced by a normal ordered product, namely

: A(z1)B(z2) :=
1

2πi

∮

z2

dz1
A(z1)B(z2)

z − w
, (3.1.9)

and the coefficient is left as a free parameter to be fixed by the requirement that the OPE

between two energy momentum tensors be as required by a CFT, i.e

T (z1)T (z2) ∼
c/2

(z1 − z2)4
+

2T (z2)

(z1 − z2)2
+
∂T (z2)

z1 − z2
, (3.1.10)

one finds the quantum corrected energy momentum tensor

T (z) =
−1

2(k − gc)

∑

a

: JaJa : (z), (3.1.11)

where gc is the dual coxeter number and the central charge is found to be

c =
k dimg

k − gc
. (3.1.12)

It is bounded from below

c ≥ Rank g, (3.1.13)

so that c ≥ 1.

This realization of the energy momentum tensor in terms of the currents is usually named

in the literature as the Sugawara construction.

After expanding T according to

T (z) =
∑

n∈Z

z−n−2Ln (3.1.14)

the Virasoro algebra is realized, namely

[Lm, Ln] = (n−m)Lm+n +
c

12
n(n2 − 1)δm+n,0. (3.1.15)
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The commutator between Virasoro and current modes is

[Lm, J
a
n ] = −nJa

m+n. (3.1.16)

Of course holomorphic and antiholomorphic modes commute with each other.

There is much more to say about WZNWmodels, like discussing the Knizhnik-Zamolodchikov

(KZ) equation, free field representations, the modular data, fusion rules and many other mat-

ters. We will only discuss the properties we need and at the appropriate time. We end this

short review with a few comments on primary fields.

In conformal field theory one defines primary fields, Φ(z, z̄), as those transforming covariantly

with respect to scale transformations and satisfying

T (z1)φ(z2, z̄2) ∼
∆

(z1 − z2)2
Φ(z2, z̄2) +

1

z1 − z2
∂z2Φ(z2, z̄2), (3.1.17)

where ∆ is the conformal dimension of Φ. So that

[Ln,Φ(z, z̄)] =
1

2πi

∮

z
dw wn+1T (w)Φ(z, z̄)

= ∆(n+ 1)zn Φ(z, z̄) + zn+1∂Φ(z, z̄), n ≥ −1 (3.1.18)

On the other hand, in the case of WZNW models primary fields are those transforming

covariantly under G(z)×G(z̄) and so satisfying the following OPE with the current

Ja(z1) Φµ,µ̄(z2, z̄2) ∼
−taµ Φµ,µ̄(z2, z̄2)

z1 − z2
, (3.1.19)

where µ, µ̄ denote the holomorphic and antiholomorphic representations of the field, and taµ is

the realization of the generator ta in such representation. These conditions translate into

Ja
0 |Φµ,µ̄ > = −taµ|Φµ,µ̄ >,

Ja
n|Φµ,µ̄ > = 0 , n > 0, (3.1.20)
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where |Φµ,µ̄ > represents the primary state Φµ,µ̄(0)|0 >.

As a consequence of the realization of the conformal symmetry via the Sugawara construction,

WZNW primaries are also conformal primaries. They satisfy

Ln|Φµ,µ̄ > = 0 , n > 0,

L0|Φµ,µ̄ > = ∆µ|Φµ,µ̄ >, (3.1.21)

where the conformal weight ∆µ is

∆µ =
− taµt

a
µ

2(k − gc)
, (3.1.22)

and taµt
a
µ is the quadratic Casimir.

But the reader has to bear in mind that the inverse is not always true. A Virasoro primary

can be a WZNW descendant.

3.1.1 Gauged WZNW models

We now consider the construction of Coset or Gauged WZNW models. These are constructed

from two WZNW models where the first group is a subgroup of the second one. Contrary to

what happens in WZNW models (see (3.1.13)), these theories are less restrictive as there are

no bounds for the central charge2. Moreover it is expected that this framework provides a full

classification of all RCFT [24].

As we saw above a WZNW model with group G is invariant under G(z)×G(z̄), thus it has

a global symmetry G × G. Given two subgroups H± ∈ G it is sometimes possible to obtain a

theory with local H−(z, z̄)×H+(z, z̄) symmetry.

The gauged action was obtained in [64]. This is given by

S(g,A) = Ssigma(g,A) + SWZ(g,A), (3.1.23)

2The central charge of the Coset is the difference of the central charges of both WZNW models.
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where

Ssigma(g,A) =
−k
16π

∫
Tr′

(
g−1Dg ∧ ∗g−1Dg

)
,

SWZ(g,A) = SWZ(g) +
ik

16π

∫

Σ
Tr′

(
A− ∧ dgg−1 +A+ ∧ g−1dg +A+g

−1 ∧ A− Lg
)
, (3.1.24)

D denotes the covariant derivative Dg = dg+A−g−gA+ and A± are the gauge fields associated

to H± respectively. It was found that (3.1.23) is invariant under local transformation (ξL/R =

ξa(z, z̄)ta,L/R)

δg = ξ−g − gξ+ (3.1.25)

when the gauge fields transform as

δA± = −dξ± + [ξ±,A±], (3.1.26)

and H± are anomaly free subgroups, i.e. their Lie algebra generators (ta,±) satisfy [64]

Tr (ta,−tb,− − ta,+tb,+) = 0 (3.1.27)

The origin of this unusual restriction can be traced back to the fact that the SWZ is a three

dimensional term which defines a two dimensional theory and the standard machinery imple-

mented to gauge a field theory fails.3

3.2 AdS3 WZNW and related models

3.2.1 The spectrum

The spectrum of the AdS3 WZNW model is built with representations of the affine ŝl(2) algebra,

but which are the representations to consider is a subtle question.

The representations of the affine algebra are generated from those of the global sl(2) alge-

3Of course the standard approach perfectly works for Ssigma, i.e. replacing a derivative with a covariant
derivative gives a gauge invariant expression.
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bra by freely acting with the current modes Ja
n , J̄

a
n, a = 3,±, n ∈ Z, obeying the following

commutation relations

[J3
n, J

3
m] = −k

2
nδn+m,0 ,

[J3
n, J

±
m] = ±J±

n+m ,

[J+
n , J

−
m] = −2J3

n+m + knδn+m,0 , (3.2.1)

with level k ∈ R>2.

In the first attempts to define a consistent spectrum for the worldsheet theory of string

theory on SL(2,R) and AdS3 [36, 38][65]-[69] only representations with L0 bounded from below

were considered. These decompose into direct products of the normalizable continuous, highest

and lowest weight discrete representations.

The principal continuous representations Cα
j × Cα

j contain the states |j, α,m, m̄ > with,

α ∈ [0, 1),m, m̄ ∈ α+Z and they are unitary as long as j ∈ −1
2+iR

+. The lowest weight principal

discrete representations D+
j × D+

j contain the states |j,m, m̄ > with j ∈ R, m, m̄ ∈ −j + Z≥0.

The highest weight principal discrete representations D−
j × D−

j contain the states |j,m, m̄ >

with j ∈ R, m, m̄ ∈ j − Z≥0. Both highest and lowest weight representations are unitary when

the spin j is constrained as j < 0 .

The spectrum is supplemented by adding the affine descendants of the global representations

defined above, i.e. D̂±
j ×D̂±

j and Ĉα
j ×Ĉα

j . Even though these representations are not unitary for

j < 0, a no ghost theorem has been proved in [38] for −k
2 < j < 0 guaranteeing the spectrum is

unitary when the theory is supplemented with a unitary CFT such that the full central charge

be c = 26 and the Virasoro constraint is imposed.

This spectrum raised the problem that it leads to a non-modular invariant partition function.

And it also raises two puzzles: an upper limit in the string mass spectrum and the absence of

states corresponding to the long strings, which were expected to exist from the results of [70, 71].

These problems were all solved when it was realized in [37] that the spectrum must be

extended to include representations with L0 not bounded from below. These representations

are nothing but the spectral flow images of the representations considered above. The no ghost
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theorem for the new representations requires the new bounds −k−1
2 < j < −1

2 to hold [37].4

The spectral flow transformation is generated by the operators Uw, Ūw̄, defined by their

action on the SL(2,R) currents J3, J± as





J̃3(z) = UwJ
3(z)U−w = J3(z)− k

2
w
z ,

J̃±(z) = UwJ
±(z)U−w = z±wJ±(z) ,

(3.2.2)

where U−w = U−1
w and similarly for the antiholomorphic sector.

It is not hard to see that such a transformation leaves the algebra (3.2.1) invariant. The

right and left spectral flow numbers w, w̄ are independent in the single cover of SL(2,R) where

w̄−w is the winding number around the compact closed timelike direction. But in the universal

covering, they are forced to be equal, w = w̄ ∈ Z. Using the Sugawara construction, the action

of Uw, Ūw̄ on the Virasoro generators is found to be

L̃n = U−wLnUw = Ln + wJ3
n − k

4
w2δn,0 . (3.2.3)

The conformal weights are easily read as

∆j = ∆̃j + wm− k

4
w2δn,0 , ∆̃j = −j(j + 1)

k − 2
. (3.2.4)

We define the nontrivial spectral flow representations as the discrete and continuous repre-

sentations considered above but with respect to J̃a. So that even though L̃0 is bounded from

below, this is clearly not the case for L0 (see (3.2.3)). This implies that unlike in the compact

SU(2) case, different amounts of spectral flow give inequivalent representations of the current

algebra of SL(2,R).

We will use the notation |j, w,m, m̄ >= UwŪw|j,m, m̄ >. The action of the currents on the

4The bound j < − 1
2
already appears in the semiclassical limit. Indeed it is not hard to see that the wave

functions in AdS3 are squared integrable iff j < − 1
2
.
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spectral flowed states is

J3
0 |j, w,m, m̄ > = (m+

k

2
w)|j, w,m, m̄ >

J3
n|j, w,m, m̄ > = 0 , n = 1, 2, . . .

J+
n |j, w,m = −j, m̄ > = 0 , n = w,w + 1, . . .

J−
n |j, w,m = j, m̄ > = 0 , n = −w,−w + 1, . . . (3.2.5)

Let us end this presentation about the spectrum by noting that there is an overcounting when

considering the spectral flow images of the representations above. In fact the spectral flow image

of highest and lowest weight representations are related via the identification D̂+,w
j ≡ D̂−,w+1

− k
2
−j

.

The reader can easily check from (3.2.2) and (3.2.3) that they have the same spectrum. So, in

what follows we will only consider continuous and lowest weight discrete representations and

their images under spectral flow.

The spectrum of the H+
3 model is simpler. It was determined in [55] and it is built from

the principal continuous representations, but contrary to the AdS3 case, it does not factorize

between holomorphic and antiholomorphic representations5. The Virasoro primary states are

parametrized by |j,m, m̄ >, with j ∈ −1
2 + iR+ and m, m̄ are given by (2.2.17).

3.2.2 Primary fields

The interpretation of the Lorentzian field theory is subtle and it is instructive to begin with

a discussion on the sigma model whose target space is a Euclidean rotation of AdS3, with a

non-zero NS-NS 2 form field Bµν . This is the H+
3 model, constructed by gauging the SL(2,C)

WZNW model with an SU(2) right action [55]. A thorough study of the model was presented

in [41, 42]. The Lagrangian formulation was developed in [55] and it follows from

L =
k

π
(∂φ∂φ+ e2φ∂γ∂γ) . (3.2.6)

5It is important to note that even though the representations of the spectrum, and so the fields, do not factorize
in holomorphic-antiholomorphic sectors, the correlation functions do.
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The relevance of this model relies in that it is used to compute the correlation functions of

the Lorentzian AdS3 model. The Euclidean action (3.2.6) is real valued and positive definite

and normalizable fields have positive conformal weights, so that Euclidean path integrals are

expected to be well defined. As a consequence of the B field, the Euclidean action is not invariant

under Euclidean time inversion and so the Lorentzian action is not real and the theory is not

unitary.

Normalizable operators in the H+
3 model, Φj(x, x; z, z), x, z ∈ C, are labeled by the spin j

of a principal continuous representation of SL(2,C). These are primary operators with respect

to the Virasoro generators (but not with respect to the sl(2) ones) and can be semiclassically

identified with the expression

Φj(x, x; z, z) =
2j + 1

π

(
(γ − x)(γ − x)eφ + e−φ

)2j
. (3.2.7)

The variables x, x̄ allow to build a continuous representation where the generators of the sl(2)

algebra are differential operators. But as is discussed in [72], these variables have a very impor-

tant interpretation in string theory as the coordinates of the operators in the dual CFT living

in the boundary of H+
3 .

These fields satisfy the following OPE with the holomorphic SL(2,C) currents

Ja(z)Φj(x, x; z
′, z′) ∼ DaΦj(x, x; z

′, z′)

z − z′
, a = ±, 3 , (3.2.8)

where D− = ∂x , D
3 = x∂x− j ,D+ = x2∂x−2jx and similarly with the antiholomorphic modes,

and they have conformal weight ∆̃j as defined in (3.2.4). The asymptotic φ → ∞ expansion,

given by

Φj(x, x|z, z) ∼: e2(−1−j)φ(z) : δ2 (γ(z)− x) +B(j) : e2jφ(z) : |γ(z)− x|4j , (3.2.9)

fixes a normalization and determines the relation between Φj and Φ−1−j as

Φj(x, x|z, z) = B(j)

∫

C

d2x′|x− x′|4jΦ−1−j(x
′, x′; z, z) , (3.2.10)
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which explicitly realizes the equivalence between representations with “spin” j and j′ = −1− j.

The reflection coefficient B(j) is given by

B(j) =
k − 2

π

ν1+2j

γ
(
−1+2j

k−2

) , ν = π
Γ
(
1− 1

k−2

)

Γ
(
1 + 1

k−2

) , γ(x) =
Γ(x)

Γ(1− x)
. (3.2.11)

As the path integral of the Lorentzian theory is ill defined, the correlation functions are

defined via analytic continuation from those of the H+
3 model. Even those involving fields in

non trivial spectral flow sectors, absent in the Euclidean model, can be obtained from the latter

by certain formal manipulations [40]. Then, as it is clear from section 2.2 we will need to Fourier

transform these expressions to the m-basis in order to obtain fields which can be interpreted as

fields of the AdS3 model after analytic continuation. This transformation is exactly the same

carried out for the basis functions of section 2.2.2, i.e.

Φj
m,m(z, z) =

∫
d2x xj+m xj+m Φ−1−j(x, x; z, z) , (3.2.12)

where m = n+is
2 , m = −n+is

2 , n ∈ Z, s ∈ R. The fields Φj
m,m have the following OPE with the

chiral currents

J±(z)Φj
m,m(z′, z′) ∼ ∓j +m

z − z′
Φj
m±1,m(z′, z′) ,

J3(z)Φj
m,m(z′, z′) ∼ m

z − z′
Φj
m,m(z′, z′) , (3.2.13)

and the relation between Φj
m,m and Φ−1−j

m,m is given by

Φj
m,m(z, z) = B(−1− j)c−1−j

m,m Φ−1−j
m,m (z, z) (3.2.14)

which generalized the reflection relation of the superspace limit (2.2.19). The reflection coefficient
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cjm,m̄ is defined as

cjm,m̄ =
−π
1 + 2j

Γ(1 + 2j) Γ(−j +m) Γ(−j −m)

Γ(−1− 2j)Γ(1 + j +m)Γ(1 + j −m)
. (3.2.15)

We take the fields of the AdS3 WZNW model as the Wick rotated from those of the H+
3

coset but we will use the same notation, with the difference that now the quantum numbers are

in agreement with the representations appearing in the former model.

An affine primary state in the unflowed sector is mapped by the automorphism (3.2.2) to a

highest/lowest-weight state of the global sl(2) algebra. We denote these fields in the spectral

flow sector w as Φj,w
m,m. Their explicit expressions will not be needed below. It is only necessary

to know that they verify the following OPE with the currents:

J3(z)Φj,w
m,m(z′, z′) ∼ m+ k

2w

z − z′
Φj,w
m,m(z′, z′) ,

J±(z)Φj,w
m,m(z′, z′) ∼ ∓j +m

(z − z′)±w
Φj,w
m±1,m(z′, z′) + · · · (3.2.16)

m −m ∈ Z, m +m ∈ R and dots denote we only write down the leading singular term in the

OPE. Its conformal weight is given by ∆j as defined in (3.2.4).

These fields satisfy the same reflection relation as those of the w = 0 sector (3.2.14),

Φj,w
m,m(z, z) = B(−1− j)c−1−j

m,m Φ−1−j,w
m,m (z, z) . (3.2.17)

Let us end this section presenting a model constructed from the axial coset SL(2,R)/U(1)A,

which also admits an analytic continuation to the AdS3 model. It was shown that such a model

has some advantages with respect to the H+
3 model in that the spectrum is similar to that

of AdS3 and it was shown that the correlation functions [40] and the partition function [37]

obtained from the hyperbolic model can be exactly reproduced with this new construction [73]

using path integral techniques. It was also used to compute one point functions associated with
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symmetric and symmetry breaking D-branes ( see [74] and section 8.3 for the case of maximally

symmetric D-branes).

The construction rests on the observation that, after doing a T duality in the timelike

direction, the N -th cover of SL(2,R), i.e. SL(2,R)Nk , is given by the orbifold

SL(2,R)k/U(1)× U(1)−k

ZNk
. (3.2.18)

Because now the timelike direction is a free compact boson, the analytic continuation to

Euclidean space is simply obtained by replacing U(1)−k → U(1)R2k. Thus, one can construct

arbitrary correlation functions in AdS3 from those in the cigar and the free compact boson

theories, after taking the limits N → ∞, R2 → −1. The effect of the orbifold is to produce

new (twisted) sectors. These can be read in the following modification of the left and right

momentum modes in the coset and the free boson models, respectively,

(n+ kω, n− kω)√
2k

−→
(
n+ kω − γ

N , n− kω + γ
N

)
√
2k

, γ ∈ ZkN ,

(
ñ+R2kω̃, ñ−R2kω̃

)

R
√
2k

−→

(
n+ kNp+R2kω̃ + R2γ

N , n+ kNp−R2kω̃ − R2γ
N

)

R
√
2k

,

(3.2.19)

with p ∈ Z and ω, ω̃ being the winding numbers in the cigar and U(1) respectively. In the

N -th cover, k has to be an integer, but in the universal covering, the theory can be defined for

arbitrary real level k > 2 [74].

The vertex operators for the orbifold theory are the product of the vertices in each space,

namely

V j
nωγpω̃(z, z̄) = Φ

sl(2)/u(1)

j,n,ω− γ
kN

(z, z̄) Φ
u(1)

n+kNp,ω̃+ γ
kN

(z, z̄) . (3.2.20)

In the universal covering, the discrete momentum γ
kN becomes a continuous parameter λ ∈ [0, 1),
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the J3
0 , J̄

3
0 quantum numbers read

M = −n
2
+
k

2
(ω̃ + λ), M̄ =

n

2
+
k

2
(ω̃ + λ), (3.2.21)

and the spectral flow number is given by

w = ω + ω̃. (3.2.22)
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Chapter 4

Operator algebra

The OPE in non RCFTs, as for instance in the case of WZNW (or gauged WZNW) models

with non compact groups, is much subtler than those of RCFT. The structure constants can

be determined by the usage of null states as commented in section A.3 and generalizing the

bootstrap approach of [75] complementing this with the KZ equation (in the case of WZNW)

models. So that these new approaches are analytic rather than algebraic as in the RCFT case.

We begin this chapter presenting a brief review of the OPE in the H+
3 Coset model. Then

we turn to the construction of the Operator Algebra in AdS3 WZNW model by an appropriate

Wick rotation of that of the H+
3 model and by adding the non preserving spectral flow structure

constants.

4.1 Operator algebra in H
+
3

In the case of H+
3 the degenerate (reducible) representations of sl(2) are not included in the

spectrum and this is the reason why the conjecture that the correlation functions are analytic

in their parameters is so important. Two and three point functions of the hyperbolic model was

determined by Teschner in [41, 42].

The following operator product expansion for any product Φj1Φj2 in the H+
3 model was

32



determined in loc. cit.:

Φj2(x2|z2)Φj1(x1|z1) =

∫

P+

dj3 C(−j1,−j2,−j3) |z2 − z1|−∆̃12

∫

C

d2x3|x1 − x2|2j12

×|x1 − x3|2j13 |x2 − x3|2j23Φ−1−j3(x3|z1) + descendants. (4.1.1)

Here, the integration contour is P+ = −1
2 + iR+, the structure constants C(j1, j2, j3) are given

by

C(j1, j2, j3) = − G(1− j1 − j2 − j3)G(−j12)G(−j13)G(−j23)
2π2νj1+j2+j3−1γ

(
k−1
k−2

)
G(−1)G(1− 2j1)G(1− 2j2)G(1− 2j3)

, (4.1.2)

with G(j) = (k − 2)
j(1−j−k)
2(k−2) Γ2(−j|1, k − 2) Γ2(k − 1 + j|1, k − 2), Γ2(x|1, w) being the Barnes

double Gamma function, ∆̃12 = ∆̃(j1) + ∆̃(j2)− ∆̃(j3) and j12 = j1 + j2 − j3, etc.

The OPE (4.1.1) holds for a range of values of j1, j2 given by

|Re(j±21)| <
1

2
, j+21 = j2 + j1 + 1 , j−21 = j2 − j1 . (4.1.3)

This is the maximal region in which j1, j2 may vary such that none of the poles of the integrand

hits the contour of integration over j3. However, as long as the imaginary parts of j±21 do not

vanish, J. Teschner [42] showed that (4.1.1) admits an analytic continuation to generic complex

values of j1, j2, defined by deforming the contour P+. The deformed contour is given by the

sum of the original one plus a finite number of circles around the poles leading to a finite sum of

residue contributions to the OPE. When j±21 are real one can give them a small imaginary part

which is sent to zero after deforming the contour.
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4.2 Operator algebra in AdS3

4.2.1 Correlation functions in AdS3

Following [40],[76]-[79] we assume that correlation functions of primary fields in the AdS3 WZNW

model are those of H+
3 with ji,mi,mi taking values in representations of ˜SL(2,R). The spectral

flow operation is straightforwardly performed in the m−basis where the only change in the

w−conserving expectation values of fields Φj,w
m,m in different w sectors is in the powers of the

coordinates zi, zi. Correlation functions may violate w−conservation according to the following

spectral flow selection rules established in [40]

−Nt + 2 ≤
Nt∑

i=1

wi ≤ Nc − 2 , at least one state in Ĉα,w
j ⊗ Ĉα,w

j , (4.2.1)

−Nd + 1 ≤
Nt∑

i=1

wi ≤ − 1 , all states in D̂+,w
j ⊗ D̂+,w

j , (4.2.2)

with Nt = Nc+Nd and Nc, Nd are the total numbers of operators in Ĉα,w
j ⊗Ĉα,w

j and D̂+,w
j ⊗D̂+,w

j ,

respectively.

The spectral flow preserving two-point function is given by

〈Φj,w
m,m(z, z)Φj′,−w

m′,m′(z
′, z′)〉 = δ2(m+m′) (z − z′)−2∆(j)(z − z′)−2∆(j)

×
[
δ(j + j′ + 1) +B(−1− j)c−1−j

m,m δ(j − j′)
]
, (4.2.3)

where ∆(j) = ∆̃(j)−wm− k
4w

2 = − j(j+1)
k−2 −wm− k

4w
2, B(j) and cjm,m̄ were defined in (3.2.11)

and (3.2.15) respectively

For states in discrete series it is convenient to work with spectral flow images of both lowest-

and highest-weight representations related by the identification D̂+,w
j ≡ D̂−,w+1

− k
2
−j

, which deter-

mines the range of values for the spin

−k − 1

2
< j < −1

2
, (4.2.4)

and allows to obtain the (±1) unit spectral flow two-point functions from (4.2.3).
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Spectral flow conserving three-point functions are the following:

〈
3∏

i=1

Φji,wi

mi,mi
(zi, zi)

〉
= δ2(

∑
mi)C(1 + ji)W



j1 , j2 , j3

m1,m2,m3



∏

i<j

z
−∆ij

ij z
−∆ij

ij , (4.2.5)

where zij = zi − zj and C(ji) is given by (4.1.2). The function W is

W



j1 , j2 , j3

m1,m2,m3


 =

∫
d2x1 d

2x2 x
j1+m1
1 xj1+m1

1 xj2+m2
2 xj2+m2

2

× |1− x1|−2j13−2|1− x2|−2j23−2|x1 − x2|−2j12−2 , (4.2.6)

and we omit the obvious m−dependence in the arguments to lighten the notation. This integral

was computed in [80].

The one unit spectral flow three-point function [40] is given by 1

〈
3∏

i=1

Φji,wi

mi,mi
(zi, zi)

〉
= δ2(

∑
mi ±

k

2
)

C̃(1 + ji)W̃




j1 , j2 , j3

±m1,±m2,±m3




γ(j1 + j2 + j3 + 3− k
2 )

∏

i<j

z
−∆ij

ij z
−∆ij

ij , (4.2.7)

where
∑

iwi = ±1, the ± signs corresponding to the ± signs in the r.h.s.,

C̃(ji) ∼ B(−j1)C
(
k

2
− j1, j2, j3

)
, (4.2.8)

up to k−dependent, j−independent factors and

W̃



j1 , j2 , j3

m1,m2,m3


 =

Γ(1 + j1 +m1)

Γ(−j1 −m1)

Γ(1 + j2 +m2)

Γ(−j2 −m2)

Γ(1 + j3 +m3)

Γ(−j3 −m3)
. (4.2.9)

For discrete states, this expression is related to the
∑

iwi = ±2 three-point function through

D̂+,w
j ≡ D̂−,w+1

− k
2
−j

.

1For an independent calculation of three-point functions using the free field approach see [81]
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4.2.2 Operator Product Expansion in AdS3

A non-trivial check on the OPE (4.1.1) and structure constants (4.1.2) of the H+
3 WZNW model

is that the well-known fusion rules of degenerate representations [82] are exactly recovered by

analytically continuing ji, i = 1, 2 [41]. On the other hand, it was argued in [40]-[42], [76]-[79] that

correlation functions in the H+
3 and AdS3 WZNW models are related by analytic continuation

and moreover, the k → ∞ limit of the OPE of unflowed fields computed along these lines in

[76, 77] exhibits complete agreement with the classical tensor products of representations of

SL(2,R) [83]. It seems then natural to conjecture that the OPE of all fields in the spectrum

of the AdS3 WZNW model can be obtained from (4.1.1) analytically continuing j1, j2 from the

range (4.1.3).

However, the spectral flowed fields do not belong to the spectrum of the H+
3 model and

moreover, the spectral flow symmetry transforms primaries into descendants. Thus, a better

knowledge of these representations seems necessary in order to obtain the fusion rules in the

AdS3 model and these cannot be simply obtained by a straight forward analytic continuation.

Nevertheless, we will show that the OPE and fusion rules obtained from the H+
3 model by

analytic continuation and by taking into account the w−violating structure constants in addition

to (4.1.2) require a truncation imposed by the spectral flow symmetry and once it is carried out

the OPE and fusion rules close in the spectrum of the theory and satisfy many consistency

checks. For instance, the selection rules of arbitrary correlation functions with fields in any

representation of the model and the appropriate semiclassical limit are reproduced. In this

section we explore this possibility in order to get the OPE of primary fields and their spectral

flow images in the AdS3 WZNW model.

To deal with highest/lowest-weight and spectral flow representations it is convenient to work

in the m−basis. We have to keep in mind that when j is real, new divergences appear in

the transformation from the x−basis and this must be performed for certain values of mi,mi,

i = 1, 2. Indeed, to transform the OPE (4.1.1) to the m−basis using (3.2.12), the integrals over

x1, x2 in the r.h.s. must be interchanged with the integral over j3 and this process does not

commute in general if there are divergences. However, restricting j1, j2 to the range (4.1.3), one
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can check that the integrals commute and are regular when |mi| < 1
2 and |mi| < 1

2 , i = 1, 2, 3,

where m3 = m1 + m2,m3 = m1 + m2. For other values of mi,mi the OPE must be defined,

as usual, by analytic continuation of the parameters. Therefore, after performing the x1, x2

integrals, the OPE (4.1.1) in the m−basis is found to be

Φj1
m1,m1

(z1, z1)Φ
j2
m2,m2

(z2, z2)
∣∣∣
w=0

=

∫

P
dj3 |z12|−2∆̃12 Qw=0



j1 , j2, j3

m1,m2,m3


Φj3

m3,m3
(z1, z2)

+ descendants, (4.2.10)

where we have defined

Qw=0



j1 , j2, j3

m1,m2,m3


 = C(1 + j1, 1 + j2,−j3)W



j1, j2,−1− j3

m1,m2,−m3


 . (4.2.11)

It is easy to see that the integrand is symmetric under j3 → −1− j3 using the identity [77]

W



j1 , j2 , j3

m1,m2,m3




W



j1, j2,−1− j3

m1 , m2 , m3




=
C(1 + j1, 1 + j2,−j3)
C(1 + j1, 1 + j2, 1 + j3)

B(−1− j3)c
−1−j3
m3,m3

, (4.2.12)

and as a consequence of (3.2.14). In the x−basis, every pole in (4.1.1) appears duplicated, one

over the real axis and another one below, and the j3 → −1 − j3 symmetry implies that the

integral may be equivalently performed either over Im j3 > 0 or over Im j3 < 0 [42]. In the

m−basis, the (j1, j2)−dependent poles are also duplicated but the m−dependent poles are not.

The j3 → −1− j3 symmetry is still present, as we discussed above, because of poles and zeros in

the normalization of Φj
m,m. The integral must be extended to the full axis P = −1

2 + iR before

performing the analytic continuation in m1, m2 because the m−dependent poles fall on the real

axis.

Since the w−conserving structure constants of operators Φj,w
m,m ∈ Cα,w

j or D+,w
j in different
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w sectors do not change in the m−basis 2, the OPE (4.2.10) should also hold for fields obtained

by spectral flowing primaries to arbitrary w sectors, as long as they satisfy w1 + w2 = w3. But

this OPE only reproduces the w-preserving three-point functions, which are the ones directly

obtained from H+
3 . The full OPE requires to additionally take into account the spectral flow

non-preserving structure constants and to consider the following OPE 3

Φj1,w1
m1,m1

(z1, z1)Φ
j2,w2
m2,m2

(z2, z2) =
1∑

w=−1

∫

P
dj3 Q

wz−∆12
12 z−∆12

12 Φj3,w3
m3,m3

(z2, z2) + · · · , (4.2.13)

with w = w3 − w1 − w2, m3 = m1 +m2 − k
2w, m3 = m1 +m2 − k

2w, and

Qw=±1(ji;mi,mi) = W̃




j1 , j2 , j3

∓m1,∓m2,±m3




C̃(ji + 1)

B(−1− j3)c
−j3−1
m3,m3

γ(j1 + j2 + j3 + 3− k
2 )

∼ Γ(±m3 − j3)

Γ(1 + j3 ∓m3)

2∏

a=1

Γ(1 + ja ∓ma)

Γ(−ja ±ma)

C(k2 − 1− j1, 1 + j2, 1 + j3)

γ(j1 + j2 + j3 + 3− k
2 )

.

(4.2.14)

For completeness, according to the spectral flow selection rules (4.2.2), we should also include

terms with w = ±2 in the sum. However, we shall show in the next section that these do not

affect the results of the OPE. The integrand is also symmetric under j3 → −1− j3. This follows

from (4.2.12) and the analogous identity

W̃



j1 , j2 , j3

m1,m2,m3




W̃



j1, j2,−1− j3

m1 , m2 , m3




=
C̃(1 + j1, 1 + j2,−j3)γ(j1 + j2 + j3 + 3− k

2 )

C̃(1 + j1, 1 + j2, 1 + j3)γ(j1 + j2 − j3 + 2− k
2 )
B(−1− j3)c

−1−j3
m3,m3

, (4.2.15)

together with the reflection relation (3.2.17). The dots in (4.2.13) stand for spectral flow images

2 We denote the series containing the highest/lowest-weight states obtained by spectral flowing primaries as
Cα,w
j ,D+,w

j .
3A similar expression was proposed in [84] and some supporting evidence was presented from the relation

between the H+
3 model and Liouville theory.

38



of current algebra descendants with the same J3
0 eigenvalues m3,m3. This expression is valid for

j1, j2 in the range (4.1.3) and the restrictions on m1,m2 depend on Qw. The maximal regions in

which they may vary such that none of the poles hit the contour of integration are, min{m1 +

m2,m1 +m2} < 1
2 and max{m1 +m2,m1 +m2} > −1

2 for Qw=0, min {m1 +m2,m1 +m2} <

−k−1
2 for Qw=−1 and max {m1 +m2,m1 +m2} > k−1

2 for Qw=+1. So that the bounds for Qw=1

and Qw=−1 ensure the convergence for the contributions from Qw=0. For other values of j1, j2

and m1,m2 the OPE must be defined by analytic continuation. In the rest of this section we

perform this continuation.

To specifically display the contributions to (4.2.13) we have to study the analytic structure

of Qw. We first consider the simpler case w = ±1 and we refer to the terms proportional to

Qw=±1 as spectral flow non-preserving contributions to the OPE. Then, we investigate Qw=0

and obtain the spectral flow preserving contributions.

4.2.3 Spectral flow non-preserving contributions

Let us study the analytic structure of Qw=±1 in (4.2.14). The m-independent poles arising from

the last factor are the same for both w = ±1 sectors and are explicitly given by

j3 = ±j−21 +
k

2
− 1 + p+ q(k − 2) , j3 = ±j−21 −

k

2
− p− q(k − 2) ,

j3 = ±j+21 +
k

2
− 1 + p+ q(k − 2) , j3 = ±j+21 −

k

2
− p− q(k − 2) , (4.2.16)

with p, q = 0, 1, 2, . . . The m-dependent poles, instead, vary according to the spectral flow

sector. However they are connected through (m,m) ↔ (−m,−m) and thus going from w = −1

to w = +1 involves the change D−, wi

ji
⊗D−, wi

ji
↔ D+, wi

ji
⊗D+, wi

ji
. Therefore we concentrate on

the contributions from w = −1.

By abuse of notation, from now on we denote the states by the representations they belong to

and we write only the holomorphic sector for short, e.g. when Φji,wi

mi,mi
∈ D+,wi

ji
⊗D+,wi

ji
, i = 1, 2,

we write the set of all possible operator products Φj1,w1
m1,m1

Φj2,w2
m2,m2

for generic quantum numbers

within these representations as D+,w1
j1

×D+,w2
j2

.

Let us study the OPE of fields in all different combinations of representations. First consider
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the case Φwi,ji
mi,mi

∈ Cαi,wi

ji
⊗ Cαi,wi

ji
, i = 1, 2, i.e.

• Cα1, w1
j1

× Cα2, w2
j2

The pole structure of Qw=−1 is represented in Figure 1.a) for min {m1 +m2, m1 +m2} <

−k−1
2 . Recalling that m3 = m1 + m2 + k

2 , then min {m3,m3} < 1
2 , and therefore the poles

from the factor Γ(−j3−m3)
Γ(1+j3+m3)

are to the right of the integration contour. Moreover, given that

all m−independent poles are to the right of the axis k
2 − 1 or to the left of −k

2 , we conclude

that the OPE Cα1,w1
j1

× Cα2,w2
j2

receives no spectral flow violating contributions from discrete

representations when min{m1 +m2,m1 +m2} < −k−1
2 .

P
−k

2

k
2
− 1

j1 + j2 + k
2

−j1 + j2 + k
2
− 1

−j1 − j2 + k
2
− 2

−min{m3, m3}

−j1 − j2 −
k
2
− 1

j1 − j2 −
k
2

j1 + j2 −
k
2

+ 1

−j1 + j2 −
k
2

j1 − j2 + k
2
− 1

a)

Re {j}

P
−k

2

k
2
− 1

j1 + j2 + k
2

−j1 + j2 + k
2
− 1

−j1 − j2 + k
2
− 2−j1 − j2 −

k
2
− 1

j1 − j2 −
k
2

j1 + j2 −
k
2

+ 1

−j1 + j2 −
k
2

j1 − j2 + k
2
− 1

−min{m3, m3}

b)

Re {j}

Figure 1: Case Cα1,w1

j1
× Cα2,w2

j2
. The solid line indicates the integration contour P = − 1

2
+ iR in the j3

complex plane. The dots above or below the real axis represent the (j1, j2)-dependent poles and those on the

real axis correspond to the m−dependent poles. The crosses are the positions of the first poles in the series. a)

When m1 + m2 < − k−1
2

or m1 + m2 < − k−1
2

, there are no poles crossing the contour of integration. b) When

m1 + m2 > − k−1
2

and m1 + m2 > − k−1
2

, poles from the factor Γ(−j3−m3)
Γ(1+j3+m3)

cross the contour, indicating the

contribution to the OPE from states in discrete representations.

Some poles cross the integration contour when min {m1 +m2, m1 +m2} > −k−1
2 . They are

sketched in Figure 1.b) and indicate contributions from the discrete series D+,w3=w1+w2−1
j3

with

j3 = −min {m3,m3}+ n, n = 0, 1, 2, . . . , and such that j3 < −1
2 . Since Q

w=±1 does not vanish

for j3 = −1
2 + iR and m3 not correlated with j3, there are terms from Cα3,w3=w1+w2−1

j3
in this

OPE as well. Therefore we get
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Cα1, w1
j1

× Cα2, w2
j2

∣∣∣
|w|=1

=
∑

j3<− 1
2

D+, w3=w1+w2−1
j3

+
∑

j3<− 1
2

D−, w3=w1+w2+1
j3

+
∑

w=−1,1

∫

P
dj3 Cα3, w3=w1+w2+w

j3
+ · · · , (4.2.17)

where ||w|=1 denotes that only spectral flow non-preserving contributions are displayed in the

right-hand side.

• Cα1, w1
j1

× D±, w2
j2

To analyze this case, we need to perform the analytic continuation for j2 away from −1
2+is2.

When is2 is continued to the real interval (−k−2
2 , 0), the series of m−independent poles changes

as shown in Figure 2. It is easy to see that these poles do not cross the contour of integration. For

instance, Re
{
j1 + j2 +

k
2

}
> 0, Re

{
j1 − j2 +

k
2 − 1

}
> k

2 − 1, etc. Similarly as in the previous

case, only poles from Γ(−j3−m3)
Γ(1+j3+m3)

can cross the contour, but due to the factor Γ(1+j2+m2)
Γ(−j2−m2)

there

are contributions from the discrete series just for Φj2,w2
m2,m2

∈ D−,w2
j2

⊗D−,w2
j2

. Therefore we get

Cα1, w1
j1

× D±, w2
j2

∣∣∣
|w|=1

=

∫

P
dj3 Cα3, w3=w1+w2±1

j3
+

∑

j3<− 1
2

D∓, w3=w1+w2±1
j3

+ · · · . (4.2.18)

P
−k

2

k
2
− 1

−min{m3, m3}

s1+ǫ2

s1

s1−ǫ2

−s1+ǫ2

−s1−ǫ2

−s1

j1 + j2 + k
2

−j1 + j2 + k
2
− 1

−j1 − j2 + k
2
− 2

j1 − j2 + k
2
− 1

j1 + j2 −
k
2

+ 1

j1 − j2 −
k
2

−j1 + j2 −
k
2

−j1 − j2 −
k
2
− 1

Re {j}

Figure 2: Case Cα1,w1

j1
× D±,w2

j2
. Only m−dependent poles can cross the contour of integration. This occurs

when both m1 +m2 and m1 +m2 are larger than − k−1
2

. We have given j2 an infinitesimal imaginary part, ǫ2, to

better display the (j1, j2)-dependent series of poles.
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• D±, w1
j1

× D±, w2
j2

and D±, w1
j1

× D∓, w2
j2

Let us first analytically continue both j1 and j2 to the interval (−k−1
2 , −1

2), which is shown

in Figure 3. The correct way to do this is to consider that both j1 and j2 have an infinitesimal

imaginary part, ǫ1 and ǫ2 respectively, which is sent to zero after computing the integral.

The m−independent poles cross the contour of integration only when j1 + j2 < −k+1
2 .

However, due to the factors Γ(1+j1+m1)
Γ(−j1−m1)

Γ(1+j2+m2)
Γ(−j2−m2)

in Qw=−1, the contributions from these poles

only survive when the quantum numbers of both Φj1,w1
m1,m1

and Φj2,w2
m2,m2

are in D−,wi

ji
⊗D−,wi

ji
, i =

1, 2. In this case, the poles at j3 = j1+ j2+
k
2 +n give contributions from D−,w3=w1+w2−1

j3
. This

may be seen noticing that j3 = m1+m2+
k
2 +n3 = m1+m2+

k
2 +n3, with n3 = n+n1+n2 and

n3 = n+n1+n2, or using m3 = m1+m2+
k
2 , m3 = m1+m2+

k
2 , so that j3 = m3+n3 = m3+n3.

Instead, the contributions from the poles at j3 = −j1 − j2 − k
2 − 1 − n seem to cancel due to

the factor Γ(−j3−m3)
Γ(1+j3+m3)

. However, these zeros are canceled because the operator diverges. In fact,

using (3.2.17) and relabeling j3 → −1 − j3, it is straightforward to recover exactly the same

contribution from the poles at j3 = j1+j2+
k
2+n. Obviously, this was expected as a consequence

of the symmetry j3 ↔ −1− j3 of the integrand in (4.2.13).

P
−k

2

k
2
− 1

−j1 + j2 −
k
2

−j1 + j2 + k
2
− 1

ǫ−

−ǫ−

−ǫ+

ǫ+

j1 − j2 + k
2
− 1

j1 + j2 + k
2j1 + j2 −

k
2

+ 1

j1 − j2 −
k
2

−j1 − j2 + k
2
− 2

−min{m3, m3}

−j1 − j2 −
k
2
− 1

a)

Re {j}

P
−k

2

k
2
− 1

j1 + j2 −
k
2

+ 1

−j1 + j2 −
k
2

−j1 − j2 −
k
2
− 1

j1 − j2 + k
2
− 1

j1 + j2 + k
2

j1 − j2 −
k
2

−j1 − j2 + k
2
− 2

−j1 + j2 + k
2
− 1−min{m3, m3}

−ǫ+

ǫ−

−ǫ−

ǫ+

b)

Re {j}

Figure 3: Case Dw1

j1
×Dw2

j2
. Bothm−dependent andm−independent poles can cross the contour of integration.

There are two possibilities: 1) D−,w1

j1
× D−,w2

j2
. When j1 + j2 < − k+1

2
, only m−independent poles can cross the

contour, as shown in Figure 3.a) and when j1+ j2 > − k−1
2

, only m−dependent poles can cross as shown in Figure

3.b). 2) D∓,w1

j1
×D±,w2

j2
. Both m−dependent and m−independent poles can cross the contour but only the former

survive after taking the limit ǫ+, ǫ− → 0, where ǫ± = ǫ1 ± ǫ2.

Finally, the m−dependent poles give contributions from D+,w3=w1+w2−1
j3

. Actually, when
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min {m3,m3} > 1
2 some of the m−dependent poles cross the contour. Using m−conservation it

is not difficult to check that these contributions fall inside the range (4.2.4).

Let us continue the analysis, considering the OPE D∓,w1
j1

× D±,w2
j2

. For instance, take the

limiting case j1 = m1+n1+ iǫ1 and j2 = −m2+n2+ iǫ2 with ǫ1, ǫ2 → 0. The factor Γ(1+j2+m2)
Γ(−j2−m2)

vanishes as a simple zero. However, some poles from the series j3 = j2 − j1 − k
2 − n will overlap

with the m−dependent poles. But because the m−independent simple poles are outside the

contour of integration, in the limit ǫi → 0 they may cancel the simple zeros. The way to

compute this limit is determined by the definition of the three-point function. We assume that

a finite and nonzero term remains in the limit 4.

Including the contributions from continuous representations, we get the following results:

D±, w1
j1

× D±, w2
j2

∣∣∣
|w|=1

=

∫

P+

dj3 Cα3, w3=w1+w2±1
j3

+
∑

−j1−j2−
k
2
≤j3<− 1

2

D∓, w3=w1+w2±1
j3

+
∑

j1+j2+
k
2
≤j3<− 1

2

D±, w3=w1+w2±1
j3

+ · · · . (4.2.19)

D+, w1
j1

× D−, w2
j2

∣∣∣
|w|=1

=
∑

j3<j2−j1−
k
2

D−,w3=w1+w2+1
j3

+
∑

j3<j1−j2−
k
2

D+,w3=w1+w2−1
j3

+ · · ·

(4.2.20)

4.2.4 Spectral flow preserving contributions

The analytic structure of Qw=0(ji;mi,mi) in (4.2.11) was studied in [77]. Here we present the

analysis mainly to discuss some subtleties which are crucial to perform the analytic continuation

4In the limit ǫ1, ǫ2 → 0, Res(Qw=−1) ∼ ǫ2
ǫ2−ǫ1

. The same ambiguity appears in the three-point function

including Φj1,w1

m1,m1
∈ D−,w1

j1
⊗D−,w1

j1
, Φj2,w2

m2,m2
∈ D+,w2

j2
⊗D+,w2

j2
, with n1 ≤ n2 such that j3 = j1−j2− k

2
−Zn≥0. The

resolution of this ambiguity requires an interpretation of the divergences. The w−selection rules allow to assume
that a finite term survives in the limit. For instance, consider a generic three-point function 〈D−,w1

j1
D+,w2

j2
D+,w3

j3
〉

with w1 + w2 + w3 = −1. According to (4.2.2) this is non-vanishing (for certain values of ji, not determined
from the w−selection rules). Indeed, the divergence from the δ2(

∑
i mi − k

2
) in (4.2.7) cancels the zero from

Γ(−j3 −m3) and then the pole in C̃(1 + ji) ∼ 1
ǫ2−ǫ1

must cancel the zero from Γ(1+j2+m2)
Γ(−j2−m2)

∼ ǫ2, leaving a finite
and non vanishing contribution.
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of mi,mi, i = 1, 2. Although our treatment of the m−dependent poles differs from that followed

in [77], we show in this section that the results coincide.

The function C(1 + ji) has zeros at ji =
j−1
2 , i = 1, 2, 3 and poles at j = −j1 − j2 − j3 − 2,

−1−j1−j2+j3, −1−j1−j3+j2, or −1−j2−j3+j1 where j := p+q(k−2),−(p+1)−(q+1)(k−2),

p, q = 0, 1, 2, · · · . To explore the behavior of the function W , we use the expression [77]

W



j1 , j2 , j3

m1,m2,m3


 = (i/2)2

[
C12P

12
+ C21P

21
]
, (4.2.21)

with (i/2)2P 12 = s(j1 +m1)s(j2 +m2)C
31 − s(j2 +m2)s(m1 − j2 + j3)C

13 ,

C12 =
Γ(−N)Γ(1 + j3 −m3)

Γ(−j3 −m3)
G




−m3 − j3, −j13, 1 +m2 + j2

−m3 − j1 + j2 + 1, m2 − j1 − j3


 ,

C31 =
Γ(1 + j3 +m3)Γ(1 + j3 −m3)

Γ(1 +N)
G




1 +N, 1 + j1 +m1, 1−m2 + j2

j3 + j2 +m1 + 2, j1 + j3 −m2 + 2


 ,

G



a, b, c

e, f


 =

Γ(a)Γ(b)Γ(c)

Γ(e)Γ(f)
F



a, b, c

e, f


 =

∞∑

n=0

1

n!

Γ(a+ n)Γ(b+ n)Γ(c+ n)

Γ(e+ n)Γ(f + n)Γ(n+ 1)
, (4.2.22)

and N = 1 + j1 + j2 + j3, s(x) = sin(πx). P
ab
(C

ab
) is obtained from P ab (Cab) by replacing

(mi → mi) and P ba (Cba) from P ab (Cab) by changing (j1,m1 ↔ j2,m2) and F



a, b, c

e, f


 =

3F2(a, b, c; e, f ; 1). An equivalent expression for W which will be useful below is the following

[77]

W



j1 , j2 , j3

m1,m2,m3


 = D1C

12C
12

+D2C
21C

21
+D3[C

12C
21

+ C21C
12
] , (4.2.23)
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where

D1 =
s(j2 +m2)s(j13)

s(j1 −m1)s(j2 −m2)s(j3 +m3)
[s(j1 +m1)s(j1 −m1)s(j2 +m2)

−s(j2 −m2)s(j2 − j3 −m1)s(j2 + j3 −m1)] ,

D2 = D1(j1,m1 ↔ j2,m2) ,

D3 = −s(j13)s(j23)s(j1 +m1)s(j2 +m2)s(j1 + j2 +m3)

s(j1 −m1)s(j2 −m2)s(j3 +m3)
. (4.2.24)

Studying the analytic structure of Qw=0 is a difficult task as a consequence of the complicated

form of W . The analysis greatly simplifies when analytically continuing the quantum numbers

of one operator to those of a discrete representation. Indeed, when j1 = −m1 +n1 = −m1 +n1,

and n1, n1 = 0, 1, 2, · · · , W
[

j1 , j2 , j3

m1,m2,m3

]
reduces to W1 = D1C

12C
12

[77], i.e.

W1



j1 , j2 , j3

m1,m2,m3


 =

(−)m3−m3+n1π2γ(−N)

γ(−2j1)γ(1 + j12)γ(1 + j13)

Γ(1 + j3 −m3)Γ(1 + j3 −m3)

Γ(1 + j3 −m3 − n1)Γ(1 + j3 −m3 − n1)

×
∏

i=2,3

Γ(1 + ji +mi)

Γ(−ji −mi)
F




−n1,−j12, 1 + j23

−2j1, 1 + j3 −m3 − n1


F




−n1,−j12, 1 + j23

−2j1, 1 + j3 −m3 − n1


 .

(4.2.25)

It is easy to see that

Γ(1 + j3 −m3)

Γ(1 + j3 −m3 − n1)
F




−n1,−j12, 1 + j23

−2j1, 1 + j3 −m3 − n1


 =

n1∑

n=0

(−)nn1!

n!(n1 − n)!

Γ(n− j12)

Γ(−j12)
Γ(n+ 1 + j23)

Γ(1 + j23)

Γ(−2j1)

Γ(n− 2j1)

Γ(1 + j3 −m3)

Γ(n+ 1 + j3 −m3 − n1)
.(4.2.26)

Recall that the OPE involves the function W

[
j1 , j2 , j3

m1,m2,−m3

]
and then the change (m3,m3) →

(−m3,−m3) is required in the above expressions to analyze Qw=0. Thus, for generic 2ji /∈ Z,

the poles and zeros of Qw=0(ji;mi,mi) are contained in
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C(1 + ji)
γ(−1− j1 − j2 − j3)

γ(1 + j12)γ(1 + j13)

Γ(1 +m2 + j2)Γ(−m3 − j3)

Γ(−m2 − j2)Γ(1 +m3 + j3)
, (4.2.27)

plus possible additional zeros in (4.2.26) and its antiholomorphic equivalent expression (see

appendix B). The (j1, j2)−dependent poles in (4.2.27) are at j3 = ±j±21 + p + (q + 1)(k − 2),

±j±21 − (p + 1) − q(k − 2), ∓j±21 + p + q(k − 2), ∓j±21 − (p + 1) − (q + 1)(k − 2). There are also

zeros at 1 + 2ji = p+ q(k − 2), −(p+ 1)− (q + 1)(k − 2), i = 1, 2, 3.

Let us first consider Φw1,j1
m1,m1

∈ D+,w1
j1

⊗D+,w1
j1

and note that when Φw1,j1
m1,m1

∈ D−,w1
j1

⊗D−,w1
j1

the OPE follows directly using the symmetry of the spectral flow conserving two- and three-point

functions under (mi,mi) ↔ (−mi,−mi), ∀ i = 1, 2, 3.5

• D±, w1
j1

× Cα2, w2
j2

Consider j1 = −m1 + n1 + iǫ1 with ni ∈ Z≥0 and ǫ1 an infinitesimal positive number, and

j2 = −1
2 + is2 not correlated with m2. In this case, W

[
j1 , j2 , j3

m1,m2,m3

]
≈W1

[
j1 , j2 , j3

m1,m2,m3

]
.

The m−independent poles are to the right or to the left of the contour of integration as

sketched in Figure 4.a). If min {m3,m3} < 1
2 , none of the m−dependent poles cross the contour,

implying that only continuous series contribute to the spectral flow conserving terms of the OPE

D+,w1
j1

× Cα2,w2
j2

. On the other hand if min {m3,m3} > 1
2 , this OPE also receives contributions

from D+,w3=w1+w2
j3

. Note that when j1 ≈ m1 + n1, W

[
j1 , j2 , j3

m1,m2,m3

]
≈ W1

[
j1 , j2 , j3

−m1,−m2,−m3

]
, which

implies that the spectral flow conserving terms in the OPE D−,w1
j1

×Cα2,w2
j2

contain contributions

from the continuous representations as well as from D−,w3
j3

when max {m3,m3} < −1
2 . So we

find

D±, w1
j1

× Cα2, w2
j2

∣∣∣
w=0

=

∫

P
dj3 Cα3, w3=w1+w2

j3
+

∑

j3<−1/2

D±, w3=w1+w2
j3

+ · · · . (4.2.28)

• D±, w1
j1

⊗ D∓, w2
j2

and D∓, w1
j1

⊗ D∓, w2
j2

When j2 is continued to (−k−1
2 + iǫ2,−1

2 + iǫ2), ǫ2 being an infinitesimal positive number,

5 This symmetry follows directly from the integral expression for W

[
j1 , j2 , j3
m1,m2,m3

]
performing the change of

variables (xi, xi) → (x−1
i , x−1

i ) in (4.2.6).
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W is again well approximated by W1 as long as j2 6= −m2+n2+ iǫ2,−m2+n2+ iǫ2. Otherwise,

one also has to consider W2 ≡ D2C
21C

21
, but the result coincides exactly with the one obtained

using W1, so we restrict to this. Two m−independent series of poles may cross the contour of

integration: j3 = j1 − j2 − 1 − p − q(k − 2) and j3 = j2 − j1 + p + q(k − 2), both with q = 0.

The former has j3 > −1
2 and the latter, j3 < −1

2 . The m−dependent poles in Qw=0 arise from

Γ(−j3−m3)
Γ(1+j3+m3)

. When j2 = −m2+n2+iǫ2, because of the factor Γ(−j2−m2)
−1, only m−dependent

poles give contributions from discrete series. To see this, consider the m−independent poles at

j3 = j1+j2−p−q(k−2). These are outside the contour of integration and in the limit ǫ1, ǫ2 → 0

some of them may overlap with the m−dependent ones. Again, one may argue that this limit

leaves a finite and non-vanishing factor.

P
−k

2

k
2
− 1

−min {m3, m3}

j1 + j2 + k − 1

−j1 − j2 − k

j1 + j2

−s2

s2+ǫ1

s2

−s2+ǫ1

−s2−ǫ1

s2−ǫ1

a)

−j1 + j2

j1 − j2 + k − 2

−j1 + j2 − k + 1

j1 − j2 − 1

−j1 − j2 − 1

Re {j}

P
−k

2

k
2
− 1

j1 + j2 + k − 1

−j1 + j2

−j1 + j2 − k + 1

j1 − j2 − 1

j1 − j2 + k − 2

−j1 − j2 − k −j1 − j2 − 1

j1 + j2

ǫ+

ǫ−

−ǫ−

−ǫ+

b)

−min {m3, m3}
Re {j}

Figure 4: Analytic continuation of Qw=0 for (j1, j2)-values away from the axis − 1
2
+iR, using W1 instead of W.

In 4.a) j2 = − 1
2
+ is2 and only m−dependent poles can cross the contour of integration. In 4.b) − k−1

2
< j2 < − 1

2

was considered. While m−independent poles only cross the contour when j2 < j1, m−dependent poles can cross

independently of the values of j1, j2, but they are annihilated unless j2 > j1.

When j2 = m2 + n2 + iǫ2, at first sight there are no zeros. If j2 − j1 < −1
2 , some poles with

q = 0 in the series j3 = j2− j1+p+ q(k−2) and j3 = j1− j2−1−p− q(k−2) cross the contour,

as shown in Figure 4.b). Using the relation between ji and mi and m−conservation, it follows

that the former poles can be rewritten as j3 = m3 + n3 = m3 + n3, where n3 = n2 − n1 + p and

n3 = n2 − n1 + p. Obviously, if n2 ≥ n1 and n2 ≥ n1 all the residues picked up by the contour

deformation imply contributions to the OPE from D−,w3=w1+w2
j3

. When n2 < n1 or n2 < n1,

only those values of p for which both n3 and n3 are non-negative integers remain after taking
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the limit ǫ1, ǫ2 → 0. This is because of extra zeros appearing in W1 which are not explicit in

(4.2.25) (see appendix B). Using the results in the Appendix and the identity (3.2.17) it is

straightforward to see that the latter series of poles give the same contributions.

The poles at j3 = −min {m3,m3}+ n3 may cross the contour. If this happens they overlap

with the m−independent poles. But there are double zeros canceling these contributions.

If j2−j1 > −1
2 , only m−dependent poles may cross the contour. But they give contributions

only if they do not overlap with the poles at j3 = j1 − j2 − 1− n, again because of the presence

of double zeros. Therefore, these contributions remain only for j3 ≥ j1 − j2.

Putting all together we get

D+, w1
j1

× D−, w2
j2

∣∣∣
w=0

=

∫

P
dj3 Cα3, w3=w1+w2

j3
+

∑

j2−j1≤j3<− 1
2

D−, w3=w1+w2
j3

+
∑

j1−j2≤j3<− 1
2

D+, w3=w1+w2
j3

+ · · · , (4.2.29)

D±, w1
j1

× D±, w2
j2

∣∣∣
w=0

=
∑

j3≤j1+j2

D±, w3=w1+w2
j3

+ · · · . (4.2.30)

• Cα1, w1
j1

× Cα2, w2
j2

The zero and pole structure of Qw=0 is given by

Qw=0(ji;mi,mi) ∼ C(1 + ji)
γ(−N)

s(m3 + j3)
G




m3 − j3, −j13, 1 +m2 + j2

m3 − j1 + j2 + 1, m2 − j1 − j3




×




s(m1 + j1)G




1 +N, 1 +m1 + j1, 1−m2 + j2

2 +m1 + j2 + j3, 2−m2 + j1 + j3




− s(m1 − j2 + j3)G




1 +N, 1 +m2 + j2, 1−m1 + j1

2 +m2 + j1 + j3, 2−m1 + j2 + j3








+ (j1,m1,m1) ↔ (j2,m2,m2) .

G

[
a, b, c

e, f

]
has simple poles at a, b, c = 0,−1,−2, . . . as well as at u = e + f − a − b − c =

0,−1,−2, . . . , if a, b, c 6= 0,−1,−2, · · · . The pole structure of Qw=0 is much subtler when
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ji = −1
2+isi, i = 1, 2 as the naive poles cancel because of the presence of hidden zeros. Actually,

the correct behavior of Qw=0, must be of the form [43]

Qw=0 ∼ Γ(−j3 −m3)Γ(−j3 +m3)

Γ(1 + j3 −m3)Γ(1 + j3 +m3)
, (4.2.31)

for generic j1, j2 and for m1,m2 not correlated with them, up to regular and non-vanishing

contributions for j3 = ±m3 + n3 = ±m3 + n3, with n3, n3 ∈ Z. No other m-dependent pole

series appears and the m-independent pole series do not cross the integration contour

We may now analyze the OPE Cα1, w1
j1

× Cα2, w2
j2

. A sum over continuous representa-

tions appears because Qw=0 does not vanish for j3 ∈ −1
2 + iR. On the other hand, the ex-

pression (4.2.31) shows that there are no contributions from discrete representations provided

min {m1 +m2,m1 +m2} < 1
2 and max {m1 +m2,m1 +m2} > −1

2 . Obviously both bounds

cannot be violated at the same time. When the first one is violated, operators belonging to

spectral flow images of lowest-weight representations contribute to the OPE. On the contrary,

when the second bound is not satisfied, operators in spectral flow images of highest-weight

representations appear in the OPE.

Therefore, we conclude that the w−conserving contributions to the OPE of two continuous

representations are the following:

Cα1, w1
j1

× Cα2, w2
j2

∣∣∣
w=0

∼
∫

P
dj3 Cα3, w3=w1+w2

j3
+

∑

j3<− 1
2

D+, w3=w1+w2
j3

+
∑

j3<− 1
2

D−, w3=w1+w2
j3

,

(4.2.32)

up to descendants. Note that, in a particular OPE with mi,mi fixed, only one of the discrete

series contributes, depending on the signs of m3,m3.

Collecting all the results, the OPE for primary fields and their spectral flow images in the

spectrum of the AdS3 WZNW model are the following:

D±, w1
j1

× D±, w2
j2

=
∑

j3≤j1+j2

D±, w3=w1+w2
j3

+
∑

−j1−j2−
k
2
≤j3<− 1

2

D∓, w3=w1+w2±1
j3
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+
∑

j1+j2+
k
2
≤j3<− 1

2

D±, w3=w1+w2±1
j3

+

∫

P
dj3 Cα3, w3=w1+w2±1

j3
+ · · · .

(4.2.33)

D+, w1
j1

× D−, w2
j2

=
∑

j1−j2≤j3<− 1
2

D+, w3=w1+w2
j3

+
∑

j2−j1≤j3<− 1
2

D−, w3=w1+w2
j3

+

+
∑

j3≤j2−j1−
k
2

D−, w3=w1+w2+1
j3

+
∑

j3≤j1−j2−
k
2

D+, w3=w1+w2−1
j3

+

∫

P
dj3 Cα3, w3=w1+w2

j3
+ · · · , (4.2.34)

D±, w1
j1

× Cα2, w2
j2

=
1∑

w=0

∫

P
dj3 Cα3, w3=w1+w2±w

j3
+
∑

j3<− 1
2

D±, w3=w1+w2
j3

+
∑

j3<− 1
2

D∓,w3=w1=w2±1
j3

+ · · · , (4.2.35)

Cα1, w1
j1

× Cα2, w2
j2

=
1∑

w=0

∑

j3<− 1
2

(
D+, w3=w1+w2−w

j3
+ D−, w3=w1+w2+w

j3

)

+
1∑

w=−1

∫

P
dj3 Cα3, w3=w1+w2+w

j3
+ · · · . (4.2.36)

Satoh’s prescription

In order to analyze these results, let us first restrict to the spectral flow conserving contributions

and for the particular case of wi = 0, i = 1, 2. In this case, exactly the same results were obtained

in [77] using the following prescription for the OPE of w = 0 primary fields Φj1
m1,m1

Φj2
m2,m2

6:

Φj1
m1,m1

(z1, z1)Φ
j2
m2,m2

(z2, z2)
∼

z1→z2

∑

j3

|z12|−2∆̃12Qw=0(ji;mi,mi)Φ
j3
m1+m2,m1+m2

(z2, z2), (4.2.37)

6 See [76] for previous work involving highest-weight representations.
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where Qw=0 was obtained using the standard procedure, i.e. multiplying both sides of (4.2.37)

by a fourth field in the w = 0 sector and taking expectation values. The formal symbol
∑

j3

denotes integration over D±
j3

and Cα3
j3
, namely

∑

j3

=

∫

P+

dj3 + δD±
j3

∮

C
dj3 . (4.2.38)

The integration over P+ stands for summation over Cα
j . The contour integral along C encloses

the poles from D±
j3

and δD±
j3

means that j3 is picked up from the poles in Qw=0 by the contour C

only when it belongs to a discrete representation. The range of j3 is Re j3 ≤ −1
2 and Im j3 ≥ 0,

consistently with the argument which determined Qw=0 because
∑

j3
picks up only one term in

(4.2.3). This prescription to deal with the j−dependent m−independent poles was shown to be

compatible with the one suggested in [42] for the H+
3 model. The strategy designed in (4.2.38)

for the treatment of m−dependent poles, which were absent in [42], aimed to reproducing the

classical tensor product of representations of SL(2,R) in the limit k → ∞. This proposal for

the OPE includes in addition the requirement that poles with divergent residues should not be

picked up.

In this section, we have followed a different path. We have treated the j− and m−dependent

poles alike. However, although the equivalence between both prescriptions is not obvious a

priori, we obtained the same results for the OPE of unflowed primary fields 7. Indeed, notice

that poles in Qw=0 at values of quantum numbers in Cα
j or D±

j3
would not contribute to the OPE

determined by (4.2.13) if they do not cross the contour P, unlike to (4.2.37). On the other hand,

contributions from operators in other representations, i.e. neither in Cα
j nor in D±

j3
, could have

appeared in (4.2.33)−(4.2.36), but they did not. Moreover, by a careful analysis of the analytic

structure of Qw=0 we have shown that there are no double poles, so that the regularization

proposed in [77] is not really necessary. 8.

7More generally, it can be shown that a generalization of the ansatz (4.2.37) for fields Φj1,w1

m1,m1
Φj2,w2

m2,m2
, by

adding the contributions from terms proportional to Qw=±1 and replacing δ
D

±

j3

by δ
D

±,w3
j3

, leads to the same

results (4.2.33)−(4.2.36).
8This is very important because the double poles discussed in [77] would lead to inconsistencies in the analytic

continuation of the OPE from H+
3 that we have performed in this chapter. In particular, they would give

divergent contributions to the OPE D+
j ×D−

j and, in addition, this OPE would be incompatible with D−
j ×D+

j ,
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In the case w1 = w2 = 0, k → ∞, the w−conserving contributions to the OPE of rep-

resentations of the zero modes in (4.2.33)−(4.2.36) reproduce the classical tensor products of

representations of SL(2,R) obtained in [83]. Continuous series appear twice in the product of

two continuous representations due to the existence of two linearly independent Clebsh-Gordan

coefficients. As noted in [77], this is in agreement with the fact that both terms C12 and C21

in (4.2.21) contribute to Qw=0 in the fusion of two continuous series. Moreover, it was also ob-

served that the analysis can be applied for finite k without modifications. The results are given

by replacing D±
j , Cα

j in (4.2.33)−(4.2.36) by the corresponding affine representations D̂±
j , Ĉα

j . It

is easy to see that this OPE of unflowed fields in the spectrum of the AdS3 WZNW model is not

closed, i.e. it gets contributions from discrete representations with j3 < −k−1
2 . When spectral

flow is turned on, incorporating all the relevant representations of the theory and the complete

set of structure constants as we have done in this section, the OPE still does not close, namely

there are contributions from discrete representations outside the range (4.2.4). In particular,

this feature of the OPE of fields in discrete representations differs from the results in [40] where

the factorization limit of the four-point function of w = 0 short strings was shown to be in

accord with the Hilbert space of the string dual theory.

In the following section we will show how the spectral flow symmetry imposes a truncation of

the OPE (4.2.33)−(4.2.36) which guaranties the closure in the physical spectrum of the model.

4.2.5 Truncation of the operator algebra and fusion rules

The analysis of the previous section involved primary operators and their spectral flow images.

Then, the OPE (4.2.33)-(4.2.36) explicitly includes some descendant fields. Assuming the ap-

pearance of spectral flow images of primary states in the fusion rules indicates that there are

also contributions from descendants not obtained by spectral flowing primaries but descendants

with the same J3
0 eigenvalue. As we commented in section A.2, the presence of a descendant

in the OPE requires the presence of the Virasoro primary associated to it, so the inclusion of

descendants implies the replacement of D±,w
j , Cα,w

j by D̂±,w
j , Ĉα,w

j in (4.2.33)-(4.2.36), we will

show that this observation implies some interesting conclusions.

in contradiction with expectations from the symmetries of the function W .
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For instance, consider the spectral flow non-preserving terms in the OPE D−,w1
j1

× D−,w2
j2

,

(4.2.33). If they are extended to the affine series, using the spectral flow symmetry they may

be identified as

∑

− k−1
2

<j̃3≤j1+j2

D̂+, w3=w1+w2−1

− k
2
−j̃3

≡
∑

− k−1
2

<j3≤j1+j2

D̂−, w3=w1+w2
j3

. (4.2.39)

This reproduces the spectral flow conserving terms in the first sum in (4.2.33). However, there

is an important difference: here j3 is automatically restricted to the region (4.2.4).

Analogously, applying the spectral flow symmetry to the discrete series contributing to the

OPE D+,w1
j1

×D−,w2
j2

∣∣∣
|w|=1

in (4.2.20) leads to contributions from
∑

j2−j1≤j3

D̂−, w3=w1+w2
j3

as well

as from
∑

j1−j2≤j3

D̂+, w3=w1+w2
j3

, which were found among the spectral flow conserving terms with

the extra condition j3 < −1
2 .

In order to see further implications of the spectral flow symmetry on the OPE (4.2.33)-

(4.2.36), let us now consider operator products of descendants. Take the OPE D̂+,w1=0
j1

⊗D̂−,w2=1
j2

9. Equation (4.2.34) gives spectral flow conserving contributions from D̂−,w3=1
j3

, for certain

mi,mi, i = 1, 2, with j3 verifying (4.2.4). Using the spectral flow symmetry, one might infer that

the contributions from D̂+,w3=0
j3

to the OPE D̂+,w1=0
j1

⊗D̂+,w2=0
j2

in (4.2.33) would also be within

the region (4.2.4). On the contrary, we found terms in D̂+,w3=0
j3

with j3 < −k−1
2 . Moreover,

using the spectral flow symmetry again, these terms can be identified with contributions from

D̂−,w3=1
j3

with j3 > −1
2 to the OPE D̂+,w1=0

j1
⊗D̂−,w2=1

j2
, in contradiction with our previous result.

Similar puzzles are found identifying
∑

j3<− 1
2

D̂+, w3=w1+w2−1
j3

=
∑

− k−1
2

<j3

D̂−, w3=w1+w2
j3

in (4.2.35),

which gives some of the spectral flow conserving contributions. It is interesting to note that only

the states within the region (4.2.4) contribute in both cases, explicitly j3 = j1 + α2 + n, with

n ∈ Z such that −k−1
2 < j3 < −1

2 . It is also important to stress the following observation. For

given j1,m1 and j2,m2 the spectral flow conserving part of the OPE (4.2.35) receives contri-

butions from states with j̃3, m̃3 verifying j̃3 = m̃3 + ñ3 with ñ3 = 0, 1, · · · , ñmax
3 , ñmax

3 being

9We use the tensor product symbol ⊗ to denote the OPE of fields in representations of the current algebra, to
distinguish it from that of highest/lowest-weight fields.
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the maximum integer such that j̃3 < −1
2 . On the other hand, the spectral flow non-conserving

terms get contributions from j3 = −m3 + n3 with n3 = 0, 1, 2, . . . , nmax
3 and here nmax

3 is the

maximal non-negative integer such that j3 < −1
2 . So, identifying both series implies considering

j̃3 = −k
2 − j3 and now nmax

3 (which is the same as before) has to be the maximal non-negative

integer for which j̃3 > −k−1
2 . There is just one operator appearing in both contributions to

the OPE. It has ñ3 = 0 in the former and n3 = 0 in the latter. This is a consequence of the

relation Φj,w=0
m=m=−j = ν

k
2−1

(k−2)
1

B(−1−j′)Φ
j′,w′=1
m′=m′=j′

with j′ = −k
2 − j [40]. One can check that the

w−conserving three-point functions containing Φj,w=0
m=m=−j reduce to the w−non-conserving ones

involving Φj′,w′=1
m′=m′=j′

. This result can be generalized for arbitrary w sectors in the m−basis, i.e.

Φj,w
m=m=−j ∼ Φj′,w′=w+1

m′=m′=j′
up to a regular normalization for j in the region (4.2.4). For instance,

one can reduce a spectral flow conserving three-point function including Φj,w
m=m=−j to a one unit

violating amplitude containing Φj′,w+1
m′=m′=j′

using the identity

C(1 + j1, 1 + j2, 1 + j3) =
νk−2γ(k − 2− j23)γ(2− k − 2j1)C(k + j1 − 1, 1 + j2, 1 + j3)

(k − 2)γ(1 + 2j1)γ(−N)γ(−j12)γ(−j13)
,(4.2.40)

which is a consequence of the relation G(j) = (k − 2)1+2jγ(−j)G(j − k + 2).

L0

D−,w=0

j3

D+,w=−1

−k

2
−j3

J3
0

Figure 5: Weight diagram of D̂−,w=0
j3

. The lines with arrows indicate the states in D−,w=0
j3

and D+,w=−1

− k
2
−j3

.

Consider a state in D̂+,w=0

j̃
, at level Ñ and weight m̃ = −j̃+ ñ. It follows from (3.2.2), (3.2.3) that after spectral

flowing by (−1) unit, this state maps to a state in D̂−,w=0
j , with j = − k

2
− j̃, level N = ñ and weight m = j − n,

with n = Ñ . For instance primary states in D̂+,w=0

− k
2
−j3

, denoted simply by D+,w=0

− k
2
−j3

, map to highest-weight states

in D̂−,w=0
j3

. So, only one state in D+,w=−1

− k
2
−j3

coincides with one in D−,w=0
j3

, namely that with ñ = 0.
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The OPE (4.2.35) was obtained for states in Cα,w
j and D±,w

j . When replacing operators in,

say D−,w
j by those in D̂−,w

j , the latter can be interpreted as having been obtained by performing

w units of spectral flow on primaries of D̂−,w=0
j or w − 1 units of spectral flow on primaries of

D+

− k
2
−j

, that is w units of spectral flow from D+,w=−1

− k
2
−j

, which in turn may be thought of as the

highest-weight field in D̂−,w=0
j (see figure 5). Only the spectral flowed primary of highest-weight

appears in both sets of contributions, i.e. the one with n3 = ñ3 = 0. This behavior was observed

in all other cases, namely, the same discrete series arising in the OPE from Qw=0 can be also

seen to arise from Qw=1 or Qw=−1, but only one operator appears in both simultaneously.

Thus, even if the calculations involved operators in the series D±,w
j and Cα,w

j , we collect here

the results for the fusion rules 10 assuming Φji,wi

mi,mi
(zi, zi) ∈ D̂±,wi

ji
or Ĉαi,wi

ji
, i = 1, 2, 3. Using

the spectral flow symmetry to identify D̂−,w
j = D̂+,w−1

− k
2
−j

, we obtain:

1. D̂+, w1
j1

⊗ D̂+, w2
j2

=

∫

P
dj3 Ĉα3, w3=w1+w2+1

j3
⊕

∑

− k−1
2

<j3≤j1+j2

D̂+, w3=w1+w2
j3

⊕
∑

j1+j2+
k
2
≤j3<− 1

2

D̂+, w3=w1+w2+1
j3

,

2. D̂+, w1
j1

⊗ Ĉα2, w2
j2

=
∑

− k−1
2

<j3<− 1
2

D̂+, w3=w1+w2
j3

⊕
1∑

w=0

∫

P
dj3 Ĉα3, w3=w1+w2+w

j3
,

3. Ĉα1, w1
j1

⊗ Ĉα2, w2
j2

=
0∑

w=−1

∑

− k−1
2

<j3<− 1
2

D̂+, w3=w1+w2+w
j3

⊕
1∑

w=−1

∫

P
dj3 Ĉα3, w3=w1+w2+w

j3
.

We have truncated the spin of the contributions from discrete representations following

the criterion that processes related through the identity D̂+,w
j ≡ D̂−,w+1

− k
2
−j

must be equal, i.e.

equivalent operator products should get the same contributions. Indeed, one finds contradictions

unless the OPE is truncated to keep j3 within the region (4.2.4). As we have seen through

some examples, extending the OPE (4.2.33)-(4.2.36) to representations of the current algebra,

discrepancies occur both when comparing w−conserving with non-conserving contributions as

well as when comparing w−conserving terms among themselves. So the truncation is imposed

by self-consistency.

10Actually, the fusion rules for two representations determine the exact decomposition of their tensor products.
These not only contain information on the conformal families appearing in the r.h.s of the OPE, but also on their
multiplicities. We shall not attempt to determine the latter here.
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A strong argument in support of the fusion rules 1.−3. is that only operators violating

the bound (4.2.4) must be discarded. Indeed, the cut amounts to keeping just contributions

from states in the spectrum11, i.e. it implies that the operator algebra is closed on the Hilbert

space of the theory. However, the spectrum involves irreducible representations and there are

no singular vectors to decouple states like in SU(2) [85] 12. So there is a yet to be discovered

physical mechanism decoupling states.

Nevertheless, the results listed in items 1.−3. above are supported by several consistency

checks. First, the limit k → ∞ contains the classical tensor products of representations of

SL(2,R) [83] when restricted to w = 0 fields. Second, as mentioned in the previous paragraph,

once the OPE is truncated to keep only contributions from the spectrum, one can verify full

consistency. In particular, the OPE D̂+,w1
j1

⊗ D̂+,w2
j2

is consistent with the results in [40] (see

the discussion in appendix 5.2.1). Finally, based on the spectral flow selection rules (4.2.1) and

(4.2.2), the following alternative analysis can be performed. Let us consider, for instance, the

operator product D̂+,w1
j1

⊗D̂+,w2
j2

. Applying equation (4.2.2) to correlators involving three discrete

states in D̂+,w
j requires either i) w3 = −w1−w2−1 or ii) w3 = −w1−w2−2. Therefore, together

with m conservation, i) implies that the three-point function < D̂+,w1
j1

D̂+,w2
j2

D̂+,w3=−w1−w2−1
j3

>

will not vanish as long as the OPE D̂+,w1
j1

⊗ D̂+,w2
j2

contains a state in D̂−,w=w1+w2+1
j3

, which is

equivalent to D̂+,w=w1+w2

j̃3
. Indeed, this contribution appeared above. Similarly, ii) implies that

in order for < D̂+,w1
j1

D̂+,w2
j2

D̂+,w3=−w1−w2−2
j3

> to be non-vanishing, the OPE D̂+,w1
j1

⊗D̂+,w2
j2

must

have contributions from D̂−,w3=w1+w2+2
j3

≡ D̂+,w3=w1+w2+1

j̃3
, which in fact were found. Finally,

when the third state involved in the three-point function is in the series Ĉα3,w3
j3

, equation (4.2.1)

leaves only one possibility, namely w3 = −w1 − w2 − 1, and thus the OPE must include terms

in Ĉα3,w3=w1+w2+1
j3

, which actually appear in the list above. Although this analysis based on

the spectral flow selection rules does not allow to determine either the range of j3−values or

the OPE coefficients, it is easy to check that the series content in 1.−3. is indeed completely

11It is important to stress that the truncation is not discarding contributions from the microstates associated to
the (j1, j2)−dependent poles that were found in [42]. Only m−dependent poles which are absent in the x−basis
present inconsistences with the spectral flow symmetry.

12 The spectral flow operators Φ
− k

2

± k
2
,± k

2

have null descendants. Even though they are excluded from the range

(4.2.4) they are necessary auxiliary fields to construct the states in spectral flow representations. Although the
physical mechanism is not clear to us, these operators might play a role in the decoupling.
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reproduced in this way.

As mentioned in the previous section, in principle w = ±2 three-point functions should

have been considered. However, the contributions from these terms are already contained in

our results. If they gave contributions from discrete representations outside the spectrum, they

should be truncated since the equivalent terms listed above do not include them. Contributions

from operators in D̂−,w3=w1+w2+2
j3

can only appear in case 1., namely D̂+,w1
j1

⊗ D̂+,w2
j2

, for j3 =

−k− j1− j2−n. These correspond to the terms denoted as Poles2 in [40], where they could not

be interpreted in terms of physical string states and were then truncated. See section 5.2.1 for

a detailed discussion.

In conclusion, the results presented in this section are in agreement with the spectral flow

selection pattern (4.2.1)-(4.2.2), they are consistent with the results in [40] and determine the

closure of the operator algebra when properly treating the spectral flow symmetry. The full

consistency of the OPE should follow from a proof of factorization and crossing symmetry of

the four-point functions, but closed expressions for these amplitudes are not known, even in the

simpler H+
3 model. In order to make some preliminary progress in this direction, in the next

chapter we discuss certain properties of the factorization of four-point amplitudes involving

states in different representations of the AdS3 WZNW model, constructed along the lines in

[42].
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Chapter 5

Factorization of four-point functions

In this chapter we discuss the issue of the factorization of four point functions in AdS3 and its

consistency with the OPE found in previous chapter. After discussing the factorization in the

Euclidean rotation of AdS3, the H
+
3 model we turn to the Lorentzian model.

Although a complete description of the contributions of descendant operators is not available

to complete the bootstrap program, in section 5.2 we display some interesting properties of the

amplitudes that can be useful to achieve a resolution of the theory. We will display a very odd

property of the factorization in the AdS3 WZNW model which follows from the assumption

that correlators are related through analytic continuation to those in H+
3 : Both, spectral flow

conserving and spectral flow non conserving channels seem to give the same numerical result.

This observation was later explicitly confirmed in some particular examples in the Coulomb-Gas

formalism [87]. Then, we perform a qualitative study of the contributions of primaries and flowed

primaries in the intermediate channels of the amplitudes and finally, we discuss the consistency

of the factorization with the spectral flow selection rules.

5.1 Factorization in H
+
3

A decomposition of the four-point function in the Euclidean H+
3 model was worked out in

[41, 42] using the OPE (4.1.1) for pairs of primary operators Φj1Φj2 and Φj3Φj4 . The s−channel

factorization was written as follows
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〈Φj1(x1|z1)Φj2(x2|z2)Φj3(x3|z3)Φj4(x4|z4)〉 = |z34|2(∆̃2+∆̃1−∆̃4−∆̃3)|z14|2(∆̃2+∆̃3−∆̃4−∆̃1)

× |z24|−4∆̃2 |z13|2(∆̃4−∆̃1−∆̃2−∆̃3)

∫

P+

dj A(ji, j) Gj(ji, z, z, xi, xi) |z|2(∆j−∆1−∆2). (5.1.1)

Here

A(ji, j) = C(−j1,−j2,−j)B(−j − 1)C(−j,−j3,−j4) (5.1.2)

and

Gj(ji, z, z, xi, xi) =
∞∑

n,n=0

znznD
(n)
x,j (ji, xi)D

n
x,j(ji, xi)Gj(ji, xi, xi) , (5.1.3)

where D
(n)
x,j (ji, xi) are differential operators containing the contributions from intermediate de-

scendant states and

Gj(ji, xi, xi) = |x12|2(j1+j2−j)|x34|2(j3+j4−j)

∫
d2xd2x′|x1 − x|2(j1+j−j2)|x2 − x|2(j2+j−j1)

× |x3 − x′|2(j3+j−j4)|x4 − x′|2(j4+j−j3)|x− x′|−4j−4 , (5.1.4)

which may be rewritten as

Gj(ji, xi, xi) =
π2

(2j + 1)2
|x34|2(j4+j3−j2−j1)|x24|4j2 |x14|2(j4+j1−j2−j3)|x13|2(j3+j2+j1−j4)

×
{
|Fj(ji, x)|2 +

γ(1 + j + j4 − j3)γ(1 + j + j3 − j4)

γ(2j + 1)γ(j1 − j2 − j)γ(j2 − j1 − j)
|F−1−j(ji, x)|2

}
,

with Fj(ji, x) ≡ xj1+j2−j
2F1(j1 − j2 − j, j4 − j3 − j;−2j;x) and x = x12x34

x13x24
.

The properties of (5.1.1) under j → −1 − j allow to extend the integration contour from

P+ to the full axis P = −1
2 + iR and rewrite it in a holomorphically factorized form. Crossing

symmetry follows from similar properties of a five-point function in Liouville theory to which

this model is closely relates and it amounts to establishing the consistency of the H+
3 WZNW

model [88].
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5.2 Analytic continuation to AdS3

Expression (5.1.1) is valid for external states Φj1 ,Φj2 in the range (4.1.3) and similarly for

Φj3 ,Φj4 . In particular, it holds for operators in continuous representations of the AdS3 WZNW

model. The analytic continuation to other values of ji was performed in [40]. In this process,

some poles in the integrand cross the integration contour and the four-point function is defined

as (5.1.1) plus the contributions of all these poles. This procedure allowed to analyze the

factorization of four-point functions of w = 0 short strings in the boundary conformal field

theory, obtained from primary states in discrete representations Dw=0
j ⊗ Dw=0

j , by integrating

over the world-sheet moduli. It is important to stress that the aim in [40] was to study the

factorization in the boundary conformal field theory with coordinates xi, xi, so the x−basis was

found convenient. The conformal blocks were expanded in powers of the cross ratios x, x and

then integrated over the worldsheet coordinates z, z. To study the factorization in the AdS3

WZNWmodel instead, we expand the conformal blocks in powers of z, z, and in order to consider

the various sectors, we find convenient to translate (5.1.1) to the m−basis.

To this purpose, one can verify that the integral over j commutes with the integrals over

xi, xi, i = 1, . . . , 4 and that it is regular for j±21 and j±43 in the range (4.1.3) and for all of

|m|, |m|, |mi|, |mi| < 1
2 , where we have introduced m = m1 +m2 = −m3 −m4, m = m1 +m2 =

−m3 −m4. Integrating in addition over x and x′ in (5.1.4), we get

〈
Φj1
m1,m1

Φj2
m2,m2

Φj3
m3,m3

Φj4
m4,m4

〉
= |z34|2(∆̃2+∆̃1−∆̃4−∆̃3)|z14|2(∆̃2+∆̃3−∆̃4−∆̃1)|z24|−4∆̃2

× |z13|2(∆̃4−∆̃1−∆̃2−∆̃3)

∫

P+

dj Aw=0
j (ji;mi,mi) |z|2(∆̃j−∆̃1−∆̃2) + · · · , (5.2.1)

where

Aw=0
j (ji;mi,mi) = δ(2)(m1 + · · ·+m4) C(1 + j1, 1 + j2, 1 + j) W




j1 , j2, j

m1,m2,−m




× 1

B(−1− j) c−1−j
m,m

C(1 + j3, 1 + j4, 1 + j) W



j3 , j4, j

m3,m4,m


 .(5.2.2)
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An alternative representation of (5.2.2) was found in [86] in terms of higher generalized hy-

pergeometric functions 4F3. This new identity among hypergeometric functions is an interesting

by-product of the present result.

The dots in (5.2.1) refer to higher powers of z, z corresponding to the integration of terms of

the form A
N,w=0
j |z|2(∆

(N)
j −∆̃1−∆̃2), where A

N,w=0
j , N = 1, 2, 3, . . . stand for contributions from

descendant operators at level N with conformal weights ∆
(N)
j = ∆̃j +N .

Notice that the symmetry under j ↔ −1− j in (5.2.2), which can be easily checked by using

the identity (4.2.12), allows to extend the integral to the full axis P = −1
2 + iR.

Given that correlation functions in the AdS3 WZNW model in the m−basis depend on

the sum of wi numbers, except for the powers of the coordinates zi, zi, if the Lorentzian

and Euclidean theories are simply related by analytic continuation, this result should hold,

in particular, for states in continuous representations in arbitrary spectral flow sectors (with

|mi|, |mi|, |m| < 1
2), as long as

∑
iwi = 0, i.e.

〈
Φj1,w1
m1,m1

Φj2,w2
m2,m2

Φj3,w3
m3,m3

Φj4,w4
m4,m4

〉
∑4

i=1 wi=0
= z∆2+∆1−∆4−∆3

34 z∆2+∆3−∆4−∆1
14 z∆4−∆1−∆2−∆3

13

× z−2∆2
24 × c.c. ×

∫

P
dj Aw=0

j (ji;mi,mi) z
∆j−∆1−∆2z∆j−∆1−∆2 + · · · , (5.2.3)

where ∆j = − j(j+1)
k−2 −m(w1+w2)− k

4 (w1+w2)
2 and c.c. stands for the obvious antiholomorphic

zi−dependence. For other values of j1, · · · , j4, m1, . . . ,m4 the integral may diverge and must

be defined by analytic continuation.

That a generic w−conserving four-point function involving primaries or highest/lowest-

weight states in Cα,w
j or D±,w

j should factorize as in (5.2.3), if the amplitude with four w = 0

states is given by (5.2.1), can be deduced from the relation [84]:

〈
n∏

i=1

Φji,wi

mi,mi
(zi, zi)

〉

∑n
i=1 wi=0

= κκ

〈
n∏

i=1

Φji,w̃i=0
mi,mi

(zi, zi)

〉
, (5.2.4)

where κ =
∏

i<j

z
−wimj−wjmi−

k
2
wiwj

ij , κ =
∏

i<j

z
−wimj−wjmi−

k
2
wiwj

ij , after Taylor expanding around
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z = 0 the r.h.s. of the following identity:

κ z∆̃2+∆̃1−∆̃4−∆̃3
34 z∆̃2+∆̃3−∆̃4−∆̃1

14 z−2∆̃2
24 z∆̃4−∆̃1−∆̃2−∆̃3

13 z∆̃j−∆̃1−∆̃2 =

z∆2+∆1−∆4−∆3
34 z∆2+∆3−∆4−∆1

14 z∆4−∆1−∆2−∆3
13 z−2∆2

24 z∆j−∆1−∆2 (1− z)−m2w3−m3w2−
k
2
w2w3 .

(5.2.5)

The conclusion is that, if the H+
3 and AdS3 models are simply related by analytic continua-

tion, then (5.2.3) and its analytic continuation should hold for generic w−conserving four-point

functions of fields in Cα,w
j or D±,w

j
1. However, expression (5.2.3) appears to be in contradic-

tion with the factorization ansatz and the OPE found in section 4.2.2 for the AdS3 WZNW

model, because it seems to contain just w−conserving channels. Actually, directly applying the

factorization ansatz based on the OPE (4.2.13) would give the following expression for both

w−conserving and violating four-point functions:

〈
Φj1,w1
m1,m1

Φj2,w2
m2,m2

Φj3,w3
m3,m3

Φj4,w4
m4,m4

〉
∼ z∆2+∆1−∆4−∆3

34 z∆2+∆3−∆4−∆1
14 z∆4−∆1−∆2−∆3

13 z−2∆2
24 × c.c.

× δ2(
4∑

i=1

mi +
k

2
wi)

1∑

w=−1

∫

P
dj QwQ−w−

∑4
i=1 wiB(−1− j)c−1−j

m,m z∆j−∆1−∆2z∆j−∆1−∆2 + · · ·

(5.2.6)

with m = m1 + m2 − k
2w = −m3 − m4 − k

2w, m = m1 + m2 − k
2w = −m3 − m4 − k

2w

and ∆j = − j(j+1)
k−2 − m(w1 + w2 + w) − k

4 (w1 + w2 + w)2 (similarly for ∆j). Actually, in the

m−basis, the starting point for the w−conserving four-point function would have been (5.2.3)

plus an analogous contribution involving one unit spectral flow three-point functions, i.e. (5.2.3)

rewritten in terms of Aw=1
j or Aw=−1

j instead of Aw=0
j , where

Aw=±1
j (ji;mi,mi) = δ(2)(

4∑

i=1

mi)
C̃(1 + j1, 1 + j2, 1 + j)

γ(j1 + j2 + j + 3− k
2 )
W̃




j1 , j2 , j

∓m1,∓m2,±m




× 1

B(−1− j)c−1−j
m,m

C̃(1 + j3, 1 + j4, 1 + j)

γ(j3 + j4 + j + 3− k
2 )
W̃




j3 , j4 , j

±m3,±m4,±m


 .(5.2.7)

1See section 5.3 for an alternative discussion directly in the m−basis, independent of the x−basis.
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But if correlation functions in this model are to be obtained from those in the H+
3 model [40]-

[42], [76]-[79], spectral flow conserving and non-conserving channels should give the same result

for the w−conserving four-point functions. This does not imply that Aw=0
j and Aw=±1

j carry the

same amount of information 2. In general, if both expressions for the four-point functions were

equivalent, one would expect that part of the information in Aw=0
j were contained in Aw=±1

j and

the rest in the contributions from descendants in A
N,w=±1
j .

A proof of this statement would require making explicit the higher order terms and possibly

some contour manipulations, which we shall not attempt. Nevertheless there are several indica-

tions supporting this claim. A similar proposition was advanced in [84] for the H+
3 model and

some evidence was given that these possibilities might not be exclusive, depending on which

correlator the OPE is inserted in. Furthermore, w = 1 long strings were found in the s−channel

factorization of the four-point amplitude of w = 0 short strings in [40] starting from the holo-

morphically factorized expression for (5.1.1), rewriting the integrand and moving the integration

contour. Moreover, in the m−basis, spectral flow non-conserving channels can be seen to appear

naturally from (5.2.3) in certain special cases, as we now show.

Identities among different expansions of four-point functions containing at least one field

in discrete representations can be generated using the spectral flow symmetry. In particular,

w−conserving four-point functions involving the fields Φj1,w1
m1=m1=−j1

and Φj3,w3
m3=m3=j3

coincide

(up to B(j1), B(j3) factors) with the w−conserving amplitudes involving Φ
j′1=− k

2
−j1,w′

1=w1+1

m′
1=m′

1=j′1

and Φ
j′3=− k

2
−j3,w′

3=w3−1

m′
3=m′

3=−j′3

3. This allows to expand the four-point amplitude in two alternative

ways, namely

∫

P
dj Aw=0

j (j1, j2, j3, j4;m1, . . . ,m3,m4) z
∆(j)−∆(j1)−∆(j2)z∆(j)−∆(j1)−∆(j2) + · · · (5.2.8)

2In other words, both expressions seem to give the same contribution in w−conserving four-point functions.
However one cannot always use either one of them. In particular, this is not expected to hold for w−violating
amplitudes.

3This is a consequence of the identities discussed in the paragraph containing equation (4.2.40) in the previous
section.
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or

β1,3

∫

P
dj Aw=0

j (j′1, j2, j
′
3, j4;m

′
1, . . . ,m

′
3,m4) z

∆′(j)−∆(j′1)−∆(j2)z∆
′
(j)−∆(j′1)−∆(j2) + · · · ,(5.2.9)

where β1,3 ≡ B(−1−j3)
B(−1−j′1)

and the dots refer to contributions from descendants and, in addition, to

residues at poles in Aw=0
j crossing P after analytic continuation of ji (i = 1, 3 and eventually

2, 4) to the region (4.2.4). Explicitly, Aw=0
j (j′1, j2, j

′
3, j4;m

′
1, . . . ,m

′
3,m4) is given by

C(1 + j′1, 1 + j2, 1 + j)C(1 + j′3, 1 + j4, 1 + j)
π3γ(2 + 2j)

B(−1− j)

γ(j − j′1 − j2)γ(j2 − j′1 − j)

γ(2 + j′1 + j2 + j)γ(−2j′1)

×γ(j − j′3 − j4)γ(j4 − j′3 − j)

γ(2 + j′3 + j4 + j)γ(−2j′3)

Γ(1 + j2 −m2)Γ(1 + j4 +m4)

Γ(−j2 +m2)Γ(−j4 −m4)

Γ(−j −m)Γ(1 + j −m)

Γ(1 + j +m)Γ(−j +m)
.

Using (4.2.40) and rewriting this expression in terms of ji,mi, the following equivalence can

be shown

(5.2.9) =

∫

P
dj Aw=1

j (j1, j2, j3, j4;m1, . . . ,m3,m4) z
∆(j)−∆(j1)−∆(j2)z∆(j)−∆(j1)−∆(j2) + · · · .(5.2.10)

Notice that not only the coefficient Aw=1
j but also the zi, zi dependence are as expected. In

fact, ∆(j′1) = ∆̃(j′1)−m′
1w

′
1 − k

4w
′
1
2 = ∆̃(j1)−m1w1 − k

4w
2
1 = ∆(j1) and ∆′(j) = ∆̃(j)− (m′

1 +

m2)(w
′
1 + w2) − k

4 (w
′
1 + w2)

2 = ∆̃(j1) − mw − k
4w

2 = ∆(j1), where m = m1 + m2 − k
2 and

w = w1 +w2 +1. Therefore, we have seen in a particular example that spectral flow conserving

and violating channels can give the same result for four-point functions. This is a nontrivial

result showing that the spectral flow symmetry allows to exhibit w−non-conserving channels

that are not equivalent to other w−conserving ones in expressions constructed as sums over

w−conserving exchanges.

In section 5.3 we show that the terms explicitly displayed in both (5.2.3) and (5.2.10) are

solutions of the Knizhnik-Zamolodchikov (KZ) equations. However, these equations do not give

enough information to confirm that the full expressions (5.2.3) and (5.2.10) are equivalent.

The factorization of four-point functions reproduces the field content of the OPE. Therefore,

the truncation imposed on the operator algebra by the spectral flow symmetry must be realized in
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physical amplitudes. Again, to confirm this would require more information on the contributions

from descendant fields and studying crossing symmetry. Here, we just illustrate this point with

one example. Take for instance the following four-point function 4:

〈
D+,w1=0

j1
D+,w2=−1

j2
D−,w3=0

j3
D−,w4=−1

j4

〉
, (5.2.11)

in the particular case with ni = 0, ∀i (where mi = ±ji ∓ ni) and j1 + j2 = j3 + j4 < −k−1
2 . The

OPE (4.2.33) implies one intermediate state in the s−channel in D+,w=−1
j , with j = j1+j2 = −m

as well as exchanges of states in D+,w=0
j if j1 + j2 = j3 + j4 < −k+1

2 with j = j1 + j2 +
k
2 + n,

n = 0, 1, 2, . . . such that j < −1
2 , and also of continuous states in Cα,w=0

j . The unique state

found in D+,w=−1
j is equivalent to the highest-weight state in D−,w=0

j̃
with j̃ = −k

2 − j > −1
2 .

This four-point function must coincide with the following one:

〈
D+,w1=0

j1
D−,w2=0

j̃2
D−,w3=0

j3
D+,w4=0

j̃4

〉
, (5.2.12)

where as usual j̃i = −k
2 − ji (notice that this holds without “hats” because ni = 0, ∀i). Now

j̃2 − j1 = j̃4 − j3 > −1
2 . Therefore, (4.2.34) implies that only states from Cα,w=0

j as well as from

D+,w=0
j with j = j1 − j̃2 + n = j1 + j2 +

k
2 + n propagate in the intermediate s−channel, the

latter requiring the extra condition j̃2 − j1 = j̃4 − j3 >
1
2 , i.e. j1 + j2 = j3 + j4 < −k+1

2 . The

important remark is that no intermediate states from D−,w=0

j̃
appear in the factorization. This

behavior was discussed in the previous chapter when studying the consequences of the spectral

flow symmetry on the OPE. However, we have considered this case carefully here because it

explicitly displays the fact that the same four-point function factorizes in two different ways

and the unique difference is an extra state violating the bounds (4.2.4). Recall that we are

only considering primaries and their spectral flow images. We expect that some consistency

requirements, such as crossing symmetry, will automatically realize the OPE displayed in the

previous chapter in physical amplitudes.

An indication in favor of the factorization of this non-rational CFT is that the expressions

4Here, as in the previous chapter, we denote the states by the representations they belong to and we omit the
antiholomorphic part for short.
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reproduce the spectral flow selection rules (4.2.1) and (4.2.2) for four-point functions in different

sectors. Indeed, let us analyze this feature in a four-point function involving only external

discrete states or their spectral flow images. The bounds (4.2.2) require −3 ≤∑4
i=1wi ≤ −1, in

agreement with the factorization of this amplitude in any channel. Indeed, consider for instance

〈
D̂+,w1

j1
D̂+,w2

j2
D̂+,w3

j3
D̂+,w4

j4

〉
. (5.2.13)

The OPE D̂+,w1
j1

⊗ D̂+,w2
j2

computed in the previous chapter (and similarly for j3, j4) requires

either w1 + w2 = −w3 − w4 − 1 or w1 + w2 = −w3 − w4 − 2 or w1 + w2 = −w3 − w4 − 3 for

discrete intermediate states and w1 + w2 = −w3 − w4 − 2 for continuous intermediate states.

And similarly in the other channels.

Repeating this analysis for four-point functions involving fields in different representations,

it is straightforward to conclude that the spectral flow selection rules for four-point functions in

different sectors can be obtained from those for two- and three-point functions, or equivalently

from the OPE found in chapter 4.

5.2.1 Relation to [40]

This section contains some comments about the relation between our work and [40]. For sim-

plicity, we use the conventions of the latter, related to ours by j → −j in the x−basis, up

to normalizations. The range of j for discrete representations is now 1
2 < j < k−1

2 and for

continuous representations, j = 1
2 + iR.

One of the aims of [40] was to study the factorization of four-point functions involving w = 0

short strings in the boundary conformal field theory. The x−basis seems appropriate for this

purpose since xi, xi can be interpreted as the coordinates of the boundary. Naturally, both the

OPE and the factorization look very different in the m− and x−basis. For instance, it is not

obvious how discrete series would appear in the OPE or factorization of fields in continuous

representations if they are to be obtained from the analogous expressions in the H+
3 model in

the x−basis. However, when discrete representations are involved, there are certain similarities.

Actually, in agreement with the fusion rules D̂+,w1
j1

⊗ D̂+,w2
j2

obtained in the previous chapter,
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w = 1 long strings and w = 0 short strings were found in the factorization studied in [40].

Conversely, it was interpreted that w = 1 short strings do not propagate in the intermediate

channels, while we found spectral flow non-preserving contributions of discrete representations in

the OPE. In this section we analyze this issue. We reexamine the three-point functions involving

two w = 0 strings and one w = 1 short string and certain divergences in the four-point functions

of w = 0 short strings, namely the so-called Poles2, which seem to break the factorization.

• Three-point functions involving one w = 1 short string and two w = 0 strings

The w−conserving two-point functions of short strings in the target space (w ≥ 0) are given

by

〈Φω,j
J,J̄

(x1, x1)Φ
ω,j
J,J̄

(x2, x2)〉 ∼ |2j − 1± (k − 2)ω|Γ(2j + p)Γ(2j + p̄)

Γ(2j)2p!p̄!

B(j)
x2J12 x̄

2J̄
12

, (5.2.14)

where B(j) = B(−j) and the upper (lower) sign holds for J = j + p+ k
2w (J = −j − p+ k

2w),

p, p being non-negative integers. Three-point functions of w = 0 string states are

〈Φj1(x1, x1)Φj2(x2, x2)Φj3(x3, x3)〉 = C(j1, j2, j3)
∏

i>j

|xij |−2jij , (5.2.15)

and for one w = 1 short string and two w = 0 strings they are given by (we omit the

x, x−dependence)

〈Φj1,ω=1
J1,J̄1

(x1, x1)Φj2(x2, x2)Φj3(x3, x3)〉 ∼
1

Γ(0)
B(j1)C

(
k

2
− j1, j2, j3

)
×

Γ(j2 + j3 − J1)

Γ(1− j2 − j3 + J̄1)

Γ(j1 + J1 − k
2 )

Γ(1− j1 − J̄1 +
k
2 )

1

γ(j1 + j2 + j3 − k
2 )
. (5.2.16)

The Γ(0)−1 factor is absent when the w = 1 operator is a long string state. This three-point

function was obtained in [40] from an equivalent expression in the m−basis. J1, J1 label the

global AdS3 representations and can be written in terms of parameters m1,m1 as J1 = ∓m1+
k
2 ,

J1 = ∓m1 +
k
2 , depending if the correlator involved the field Φj1,w1=∓1

m1,m1
.

As observed in [40], when J1 =
k
2 −j1−p, J1 =

k
2 −j1−p, the factor

Γ(j1+J1−
k
2
)

Γ(1−j1−J1+
k
2
)
cancels the

Γ(0) and the three-point function is finite and can be interpreted as a w−conserving amplitude.
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To see this, recall that if it was obtained from a w = −1 three-point function in the m−basis

and m1 = j1 + p, then

〈Φj1,w=1
J1,J̄1

(x1, x1)Φj2(x2, x2)Φj3(x3, x3)〉 ∼ (−)p+p̄B(j1)C
(
k

2
− j1, j2, j3

)
×

Γ(j2 + j3 + j1 − k
2 + p)

p!Γ(j2 + j3 + j1 − k
2 )

Γ(j2 + j3 + j1 − k
2 + p̄)

p̄!Γ(j2 + j3 + j1 − k
2 )

(5.2.17)

reduces to (5.2.15) when p = p = 0 and j1 → k
2 − j1, as expected from spectral flow symmetry.

Similarly, if w = +1 and m1 = −j1 − p, the same interpretation holds.

On the contrary, for w = −1 (w = +1) and m1 = −j1 − p (m1 = j1 + p), the Γ(j1 + J1 − k
2 )

does not cancel the factor Γ(0)−1 and then, it was concluded in [40] that the three-point function

vanishes in this case.

However, notice that if J1 = k
2 + j1 + n = j2 + j3 + p, J1 = k

2 + j1 + n = j2 + j3 + p,

n, n ∈ Z≥0, the r.h.s. of (5.2.16) can also be rewritten as the r.h.s. of (5.2.17), but now this

non-vanishing amplitude corresponds to a w = 1 three-point function which is not equivalent

to a w−conserving one. Indeed, (5.2.17) is regular as long as n < p (n < p) and when n ≥ p

(n ≥ p) there are divergences in C(k2 − j1, j2, j3) at j1 = j2 + j3 − k
2 − q with q = 0, 1, 2, · · · .

Using the spectral flow symmetry, the w = 1 short string can be identified with a w = 2 short

string with j̃1 =
k
2 − j1 = k − j2 − j3 + q, which correspond to the Poles2 in [40].

• Factorization of four-point functions of w = 0 short strings

The four-point amplitude of w = 0 short strings was extensively studied in [40]. The con-

formal blocks were rearranged as sums of products of positive powers of x times functions of

u = z/x. In order to perform the integral over the worldsheet before the j−integral, it was

necessary to change the j−integration contour from 1
2 + iR to k−1

2 + iR, and in this process two

types of sequences of poles were picked up, namely

Poles1 : j3 = j1 + j2 + n,

Poles2 : j3 = k − j1 − j2 + n,
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where n = 0, 1, 2, . . . . Only values of n for which j3 <
k−1
2 contribute to the factorization, so

Poles1 appear when j1+j2 <
k−1
2 and Poles2 when j1+j2 >

k+1
2 . The contributions from Poles1

were identified as two particle states of short strings in the boundary conformal field theory, but

no interpretation was found for Poles2 as s−channel exchange.

Recall that we found Poles1 among the w−conserving discrete contributions to the OPE

D+,wi

ji
×D+,wi

ji
(see (4.2.33)) and Poles2 in the w−violating terms with j̃3 =

k
2−j3 = j1+j2− k

2−n.

Therefore, it seems tempting to consider Poles2 as two particle states of w = 1 short strings in

the boundary conformal field theory. However, neither the powers of x, x nor the residues of

the poles in the four-point function studied in [40] allow this interpretation and thus the Poles2

had to be truncated. Clearly, more work is necessary to determine the four-point function and

understand the factorization.

5.3 Knizhnik-Zamolodchikov equation

5.3.1 KZ equations in the m−basis and the factorization ansatz

In this section we show some consistency conditions of the expressions used in the previous

section.

Let us start by considering the KZ equation for w−conserving n−point functions in the

m−basis, namely [84]

Ei κ−1

〈
n∏

ℓ=1

Φjℓ,wℓ

mℓ,mℓ
(zℓ, zℓ)

〉
= 0, (5.3.1)

where

Ei ≡ (k − 2)
∂

∂zi
+
∑

j 6=i

Qij

zji
, Qij = −2t3i t

3
j + t−i t

+
j + t+i t

−
j , (5.3.2)

ta are defined by J̃a
0 |j,m,m,w >= −ta|j,m,m,w >, |j,m,m,w > being the state corresponding

to the field Φj,w
m,m and κ was introduced in (5.2.4).

Since a generic w−conserving four-point function can be obtained from the expression in-
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volving four w = 0 fields, we concentrate on

〈
4∏

i=1

Φji,wi=0
mi,mi

(zi, zi)

〉
= |z34|2(∆̃2+∆̃1−∆̃4−∆̃3)|z14|2(∆̃2+∆̃3−∆̃4−∆̃1)|z13|2(∆̃4−∆̃1−∆̃2−∆̃3)

× |z24|−4∆̃2 Fj(z, z) ,

Fj(z, z) being a function of the cross ratios z, z, not determined by conformal symmetry. The

KZ equation (5.3.1) implies the following constraint

∂Fj(z, z)

∂z
=

1

k − 2

[
Q21

z
+

Q23

z − 1

]
Fj(z, z) . (5.3.3)

Assuming that Fj(z, z) has the following form

Fj(z, z) =
∞∑

N,N=0

∫
dj




A

(N,N)
j



j1 , j2 , j3 , j4

m1,m2, . . . ,m4


 z∆j−∆̃1−∆̃2+Nz∆j−∆̃1−∆̃2+N




, (5.3.4)

inserting it into (5.3.3) with ∆j = ∆̃j ≡ − j(1+j)
k−2 , then A

(0,0)
j



j1 , j2 , j3 , j4

m1,m2, . . . ,m4


 satisfies

{2m1m2 − j(1 + j) + j1(1 + j1) + j2(1 + j2)}A(0,0)
j



j1 , j2 , j3 , j4

m1,m2, . . . ,m4


 =

= (m1 − j1)(m2 + j2)A
(0,0)
j




j1 , j2 , j3 , j4

m1 + 1,m2 − 1, . . . ,m4




+ (m1 + j1)(m2 − j2)A
(0,0)
j




j1 , j2 , j3 , j4

m1 − 1,m2 + 1, . . . ,m4


 . (5.3.5)

The equations relating coefficients A
(N,N)
j with N,N 6= 0, are much more complicated be-

cause they mix terms with different values of mi,mi with terms at different levels N,N .

This equation does not have enough information to determine A
(0,0)
j completely. So we

just check that the expression found in (5.2.1) is consistent with an analysis performed directly

70



in the m−basis. Inserting A
(0,0)
j



j1 , j2 , j3 , j4

m1,m2, . . . ,m4


 = Aw=0

j (j1, . . . , j4;m1, . . . ,m4) into (5.3.5)

reproduces the same equation with A
(0,0)
j replaced by W (j1, j2, j;m1,m2,m). Because of the

complicated expressions known for W , we focus on the case in which one of the fields in the

four-point function is a discrete primary, namely Φj1,w1=0
m1,m1

∈ D+,w=0
j1

. In this case, using (4.2.25)

one can show that (5.3.5) is equivalent to

0 =

n1−1∑

n=0

(−)n



n1

n



[
j −m+

(m1 − j1)(1 + j1 +m1)

n1 + 1− n
+

(m2 − j2)(1 + j2 +m2)(n1 − n)

n+ 1 + j +m− n1

]

× Γ(n− j1 − j2 + j)

Γ(−j1 − j2 + j)

Γ(n+ 1 + j + j2 − j1)

Γ(1 + j + j2 − j1)

Γ(−2j1)

Γ(n− 2j1)

Γ(1 + j +m)

Γ(n− n1 + 1 + j +m)

− (−)n1 [m1(1−m1) + j1(1 + j1)]
Γ(n1 − j1 − j2 + j)

Γ(−j1 − j2 + j)

Γ(n1 + 1 + j + j2 − j1)

Γ(1 + j + j2 − j1)

Γ(−2j1)

Γ(n1 − 2j1)

where n1 = m1 + j1 and m = m1 +m2. Using m−conservation this can be rewritten as

0 =

n1−1∑

n=0

(−)n



n1

n



[
−n1− n+ 2j1

n1 + 1− n
+

(n− j1 − j2 + j)(n+ 1 + j2 + j − j1)

n+ 1 + j +m− n1

]

× Γ(n− j1 − j2 + j)

Γ(−j1 − j2 + j)

Γ(n+ 1 + j2 + j − j1)

Γ(1 + j2 + j − j1)

Γ(−2j1)

Γ(n− 2j1)

Γ(1 + j +m)

Γ(n− n1 + 1 + j +m)

− (−)n1 [m1(1−m1) + j1(1 + j1)]
Γ(n1 − j1 − j2 + j)

Γ(−j1 − j2 + j)

Γ(n1 + 1 + j2 + j − j1)

Γ(1 + j2 + j − j1)

Γ(−2j1)

Γ(n1 − 2j1)
.
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To see that this vanishes, it is sufficient to note that

n1−1∑

n=0

(−)n



n1

n



[
−n1− n+ 2j1

n1 + 1− n

]
Γ(n− j1 − j2 + j)

Γ(−j1 − j2 + j)

Γ(n+ 1 + j2 + j − j1)

Γ(1 + j2 + j − j1)

Γ(−2j1)

Γ(n− 2j1)

× Γ(1 + j +m)

Γ(n− n1 + 1 + j +m)

−(−)n1 [m1(1−m1) + j1(1 + j1)]
Γ(n1 − j1 − j2 + j)

Γ(−j1 − j2 + j)

Γ(n1 + 1 + j2 + j − j1)

Γ(1 + j2 + j − j1)

Γ(−2j1)

Γ(n1 − 2j1)

= −
n1−1∑

ñ=0

(−)ñ



n1

ñ



[
(ñ− j1 − j2 + j)(ñ+ 1 + j2 + j − j1)

ñ+ 1 + j +m− n1

]
Γ(ñ− j1 − j2 + j)

Γ(−j1 − j2 + j)

× Γ(ñ+ 1 + j2 + j − j1)

Γ(1 + j2 + j − j1)

Γ(−2j1)

Γ(ñ− 2j1)

Γ(1 + j +m)

Γ(ñ− n1 + 1 + j +m)
,

where ñ = n− 1.

Let us now discuss the other possible ansatz, namely (5.2.7). To see that Aw=1
j also verifies

the KZ equation, consider ∆j = − j(1+j)
k−2 −m− k

4 and m = m1 +m2 − k
2 in (5.3.3). In this case,

the equation to be satisfied by A
(0,0)
j , obtained by replacing (5.3.4) into (5.3.3), is the following:

{
2m1m2 − j(1 + j) + j1(1 + j1) + j2(1 + j2)− (k − 2)(m1 +m2 −

k

4
)

}
A

(0,0)
j



j1 , j2 , j3 , j4

m1,m2, . . . ,m4




= (m1 − j1)(m2 + j2)A
(0,0)
j




j1 , j2 , j3 , j4

m1 + 1,m2 − 1, . . . ,m4




+ (m1 + j1)(m2 − j2)A
(0,0)
j




j1 , j2 , j3 , j4

m1 − 1,m2 + 1, . . . ,m4




− (m2 − j2)(m3 + j3)A
(0,0)
j




j1 , j2 , j3 , j4

m1,m2 + 1,m3 − 1, . . . ,m4


 . (5.3.6)

It is not difficult to check that A
(0,0)
j



j1 , j2 , j3 , j4

m1,m2, . . . ,m4


 = Aw=1

j (j1, . . . , j4;m1, . . . ,m4) is a
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solution of this equation.

Obviously, Aw=−1
j is also a solution of (5.3.3) when ∆j = − j(1+j)

k−2 +m − k
4 and m = m1 +

m2 +
k
2 .

Here, we have considered the simple case of four w = 0 fields. However, these results can be

generalized for arbitrary w−conserving correlators using the identity (5.2.5).
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Chapter 6

Characters on the Lorentzian torus

The spectrum of a quantum model is built up by appropriately choosing a subset of the repre-

sentation spaces of the symmetry group. There are two quantities storing this information, the

characters associated to each representation and the partition function storing the information

of the full spectrum. Such a subset of representations is chosen by constraining the spectrum

with physical conditions, e.g. unitarity.

A consistent CFT must be well defined independently of the boundary conditions imposed on

the fields, which means that the theory can be defined in any Riemannian surface. Consistency

is guarantied by imposing modular invariance on the surface. The particular case with periodic

boundary conditions in the two directions gives place to a CFT defined on a torus topology and a

well defined CFT on this surface requires the partition function to be invariant under SL(2,Z),

the modular group of the torus. This is the reason why a standard method, used in CFTs

theories to determine the appropriate representations contained in the spectrum of the model is

looking for modular invariant quantities, which are then interpreted as the partition function. In

this chapter we will concentrate on the definition of characters of the Lorentzian AdS3 WZNW

model. The next chapter is devoted to discuss the issue of modular trnasformations.

The partition function of the AdS3 WZNW model was computed on the Lorentzian torus

in [37] because it diverges on the Euclidean signature torus, and it was shown that a modu-

lar invariant expression is obtained after analytic continuation of the modular parameters. In
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this chapter we rederive the characters of the relevant representations and stress some impor-

tant issues related to the regions of convergence of the expressions involved, focussing on their

structure as distributions.

The characters on the Lorentzian signature torus are defined from the standard expressions

as

χVL
(θ−, τ−, u−) = TrVL

e2πiτ−(L0−
c
24

)e2πiθ−J3
0 eπiu−K ,

χVR
(θ+, τ+, u+) = TrVR

e2πiτ+(L̄0−
c̄
24

)e2πiθ+J̄3
0 eπiu+K , (6.0.1)

where τ±, θ±, u± are independent real parameters, c = c̄ are the left- and right-moving central

charges and K is the central element of the affine algebra. The traces are taken over the left

and right representation modules of the Hilbert space of the theory, VL and VR, respectively.

The Euclidean version of (6.0.1) is obtained replacing the real parameters by complex ones. For

completeness, a description of the moduli space of the Lorentzian torus is presented in appendix

C.

In the remaining of this chapter we compute the complete set of characters of the relevant

representations making up the spectrum of the bulk AdS3 conformal field theory and of the finite

dimensional representations appearing in the open string spectrum of some brane solutions.

To lighten notation, from now on τ, θ, u will denote the real parameters τ−, θ−, u− and the

following compact notation will be used: χ±,w
j := χD̂±,w

j
, χα,w

j := χĈα,w
j

.

6.1 Discrete representations

The naive computation of the characters (6.0.1) for the discrete representations leads to θ and

τ dependent divergences. This is not a problem because the characters are typically not func-

tions but distributions. Indeed, similarly as the characters of the continuous representations,

which contain a series of delta functions [37], those of the discrete representations need also be

interpreted as distributions.

Let us consider the distributions constructed from the series defining the characters of the
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discrete representations. Shifting τ → τ + iξ1 and θ → θ + iξw2 in (6.0.1), where ξ1, ξ
w
2 are

two real non vanishing parameters, a regular distribution can be defined. Indeed, the deformed

characters of discrete representations in an arbitrary spectral flow sector w can be written in

terms of those of unflowed representations as

χ+,w
j,ξw2 ,ξ1

(θ, τ, u) = eiπku
∑

n

ǫn < n|U−we
2πi(τ+iξ1)(L0−

c
24

)e2πi(θ+iξw2 )J3
0Uw|n > ,

where |n > is a complete orthonormal basis in D̂+,0
j , with norm ǫn = ±1 (remember that this

model is not unitary unless the Virasoro constraint is imposed). Since Uw is unitary, Uw|n >

defines an orthonormal basis in D̂+,w
j and from (3.2.2) one can rewrite

χ+,w
j,ξw2 ,ξ1

= eiπkue−2πiτ k
4
w2
e2πiθ

k
2
w
∑

n

ǫn < n|e2πi(τ+iξ1)(L0−
c
24

)e2πi(θ−wτ+i(ξw2 −wξ1))J3
0 |n > .(6.1.1)

Choosing an orthonormal basis of eigenvectors of L0 and J3
0 , the following behavior of the sum

is easy to see

χ+,w
j,ξw2 ,ξ1

∼
∞∑

N,n=0

ρ(n,N) e2πi[(1+w)τ−θ+i((1+w)ξ1−ξw2 )]Ne2πi[θ−wτ+i(ξw2 −wξ1)]n ,

where ρ(n,N) gives the degeneracy of states. This expression requires the necessary condition





ξ1 > 0 ,

(1 + w)ξ1 > ξw2 > wξ1 ,
(6.1.2)

and it gives

χ+,w
j,ξw2 ,ξ1

= eiπkue−2πi(τ+iξ1)
k
4
w2
e2πi(θ+iξw2 ) k

2
w e

−
2πi(τ+iξ1)

k−2
(j+ 1

2
)2e−2πi(θ+iξw2 −w(τ+iξ1))(j+

1
2
)

iϑ11(θ + iξw2 − w(τ + iξ1), τ + iξ1)
. (6.1.3)

Analyzing expression (6.1.3) it is found that region (6.1.2) is free of poles and that the nearest

poles are located when the inequalities saturate. So that (6.1.2) are not only necessary but also

sufficient conditions.
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This character defines a regular distribution and, given that the series of regular distributions

are continuous with respect to the weak limit, this implies

χ+,w
j (θ, τ, u) = eiπku

e−
2πiτ
k−2

(j+ 1
2
−w k−2

2
)2e−2πiθ(j+ 1

2
−w k−2

2
)

iϑ11(θ + iǫw2 , τ + iǫ1)
, (6.1.4)

where we have used the identity

ϑ11 (θ + iǫw2 − w(τ + iǫ1), τ + iǫ1) = (−)we−πiτw2+2πiθwϑ11(θ + iǫw2 , τ + iǫ1) (6.1.5)

and the iǫ’s denote the usual i0 prescriptions, but constrained as the corresponding finite pa-

rameters in (6.1.2), which dictate how to avoid the poles of ϑ−1
11 at nτ ∈ Z, mτ + θ ∈ Z, for

n ∈ N,m ∈ Z. These poles are easily seen in the following alternative expression for the elliptic

theta function

1

ϑ11(θ + iǫw2 , τ + iǫ1)
=

−e−iπ
4
τ

sin [π (θ + iǫw2 )]

1∏∞
n=1

[
1− e2πin(τ+iǫ1)

]

× 1
∏∞

n=1

[
1− e2πi(nτ−θ+iǫn,w

3 )
] [

1− e2πi(nτ+θ+iǫn,w
4 )
] , (6.1.6)

with





ǫn,w3 = nǫ1 − ǫw2

ǫn,w4 = nǫ1 + ǫw2

, (6.1.7)

i.e., ǫn,w3 > 0 (< 0) for n ≥ 1 + w (n ≤ w) and ǫn,w4 > 0 (< 0) for n ≥ −w (n ≤ −1− w).

Notice that, in the weak limit, one can take ǫ1, ǫ
w
2 = 0 in the arguments of the exponential

terms in (6.1.4) because they are perfectly regular.

It is useful to rewrite (6.1.4) using the identity (D.0.1), which allows to change the signs of

ǫw2 , ǫ
n,w
3 and ǫn,w4 , in order to get the following expressions in terms of only one parameter, say

ǫw
′

2 , with arbitrary w′:

χ+,w<w′

j (θ, τ, u) = (−)weiπku
e−

2πiτ
k−2

(j+ 1
2
−w k−2

2
)2e−2πiθ(j+ 1

2
−w k−2

2
)

iϑ11(θ + iǫw
′

2 , τ + iǫ1)
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− (−)weiπku
e−

2πiτ
k−2

(j+ 1
2
−w k−2

2
)2e−2πiθ(j+ 1

2
−w k−2

2
)

η3(τ + iǫ1)

×
w′∑

n=1+w

(−)ne2iπτ
n2

2

∞∑

m=−∞

(−)mδ(θ − nτ +m) (6.1.8)

and

χ+,w>w′

j (θ, τ, 0) = (−)weiπku
e−

2πiτ
k−2

(j+ 1
2
−w k−2

2
)2e−2πiθ(j+ 1

2
−w k−2

2
)

iϑ11(θ + iǫw
′

2 , τ + iǫ1)

+ (−)weiπku
e−

2πiτ
k−2

(j+ 1
2
−w k−2

2
)2e−2πiθ(j+ 1

2
−w k−2

2
)

η3(τ + iǫ1)

×
w∑

n=1+w′

(−)ne2iπτ
n2

2

∞∑

m=−∞

(−)mδ(θ − nτ +m) . (6.1.9)

These expressions are in perfect agreement with the spectral flow symmetry, which implies

χ+,w
j (−θ, τ, u) = χ+,−w−1

− k
2
−j

(θ, τ, u). They lead to the following contribution to the partition

function

ZAdS3
D =

√
k − 2

2i(τ− − τ+)

eiπk(u−−u+)e
2πi k−2

4

(θ−−θ+)2

τ−−τ+

ϑ11(θ− + iǫ02, τ− + iǫ1)ϑ∗11(θ+ − iǫ02, τ+ − iǫ1)
+ . . . , (6.1.10)

where the ellipses stand for the contributions of the contact terms. This expression differs for-

mally from the equivalent one in [37], where no ǫ prescription or contact terms were considered.

Nevertheless, the ultimate goal in [37] was to reproduce the Euclidean partition function con-

tinuing the modular parameters away from the real axes and discarding contact terms such as

those of the characters of the continuous representations.

6.2 Continuous representations

A similar analysis can be performed for the characters of the continuous representations. Us-

ing (6.1.1), one can compute these characters in terms of those of the unflowed continuous
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representations. The result is

χα,w
j = eiπku

−2 sin[π(θ − wτ)]e−2πiτ k
4
w2
e2πiθ

k
2
we−

2πiτ
k−2

(j+ 1
2
)2e2πi(θ−wτ)α

ϑ11(θ − wτ, τ + iǫ1)

∞∑

n=−∞

e2πi(θ−wτ)n

= eiπku
e
2πiτ

(
s2

k−2
+ k

4
w2

)

η3(τ + iǫ1)

∞∑

m=−∞

e−2πim(α+ k
2
w)δ (θ − wτ +m) , (6.2.1)

where the following identity was used

∞∑

n=−∞

e2πixn =
∞∑

m=−∞

δ (x+m) . (6.2.2)

In previous attempts to find the modular S-transformation of the principal continuous series

(see for instance [45, 89]) the θ variable was turned off and so the factor
∑

m

e−2πimαδ(θ+m) ∼

δ(θ) was interpreted as the infinite volume of the target space and was factorized out in the

transformation. It is clear that the situation is much more involved because such a term has a

non trivial behavior under SL(2,Z). After a modular S transformation one finds δ
(
θ
τ

)
= |τ |δ(θ),

which prevents one from simply taking the limit θ = 0 discarding the δ function. The modular

transformation will differ from the θ 6= 0 case, and so it will not give the correct modular S

matrix (which must not depend on θ).

In this case, the characters are defined as the weak limit ǫ1, ǫ
w
2 → 0, with the constraints





ǫ1 > 0 ,

ǫw2 − wǫ1 = 0 ,
(6.2.3)

and they give the following contribution to the partition function:

ZAdS3
C =

√
2− k

8i(τ− − τ+)

eiπk(u−−u+)

η3(τ− + iǫ1)η∗3(τ+ − iǫ1)

×
∞∑

m,w=−∞

e−2πi k
4
w(θ−−θ+)δ(θ− − wτ− +m)δ(θ+ − wτ+ +m) . (6.2.4)
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6.3 Degenerate representations

Degenerate representations are not contained in the spectrum of the AdS3 WZNW model but

they play an important role in the description of the boundary CFT. Indeed, using worldsheet

duality, it was argued that they make up the Hilbert space of open string excitations of S2 branes

in the H+
3 model [89, 93]. For the analysis that we shall perform in the forthcoming chapters,

it is useful to note the relation among their characters and those of discrete and continuous

representations of the universal cover of SL(2,R) discussed above.

The finite dimensional degenerate representations are labeled by the spin j±rs defined by

1+ 2j±rs = ± (r + s(k − 2)), with r, s+1 = 1, 2, 3, . . . for the upper sign and r, s = 1, 2, 3, . . . for

the lower one. Here we consider J = j+r0, with characters given by

χJ(θ, τ, u) = −2eiπkue
−2πiτ

(2J+1)2

4(k−2) sin [πθ(2J + 1)]

ϑ11(θ + iǫ2, τ + iǫ1)
, (6.3.1)

where the ǫ’s are restricted to





ǫ1 > 0 ,

|ǫ2| < ǫ1 .
(6.3.2)

Extrapolating the values of the spins in the expressions obtained in the previous sections,

(6.3.1) can be rewritten as

χJ(θ, τ, u) = χ+,w=0
J (θ, τ, u) + χ+,w=−1

− k
2
−J

(θ, τ, u)− χ
α={J},w=0
J (θ, τ, u) , (6.3.3)

where {J} is the sawtooth function. Actually, this relation could have been guessed from a

simple inspection of the spectrum (see Figure 6). This can be seen as a non trivial check of

the characters defined above and, simultaneously, it shows the important role played by the i0

prescription in the definition of the characters of discrete representations. A naive computation

of these characters, ignoring the i0′s, would yield the (wrong) conclusion χJ = χ+,w=0
J +χ+,w=−1

− k
2
−J

.
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L0 L0 L0 L0

J3

0
J3

0
J3

0
J3

0

Figure 6: The weight diagram of the degenerate representations with spin J = j+r0 = r−1
2

, r = 1, 2, 3... can be

decomposed as the sum of the weight diagrams of the lowest and highest weight unflowed discrete representations

minus that of the continuous representation of spin J .
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Chapter 7

Modular properties

In this chapter we discuss the modular properties of the Lorentzian characters defined in the

previous chapter. Even though the Lorentzian torus is not modular invariant, the characters

transform as pseudovectors and the full modular S and T matrices can be rigorously defined.

It is shown that these satisfy the expected relations S2 = (ST )3 = C, C being the charge

conjugation matrix. In the next chapter we will explore if these modular matrices have a similar

role as the modular S matrices in the microscopic description of boundary CFTs.

7.1 Modular group of the torus

The modular transformation τ → aτ+b
cτ+d , with integer parameters a, b, c, d such that ad− bc = 1,

can be easily extended to include θ, u. Characters generating a representation space of the

modular group transform as [24]

χµ

(
θ

c τ + d
,
a τ + b

c τ + d
, u+

c θ2

2(c τ + d)

)
=
∑

ν

Mµ
νχν(θ, τ, u), (7.1.1)

M being the matrix associated to the group element. Insofar as τ and u are concerned, the sign of

all the parameters a, b, c, d may be simultaneously changed without affecting the transformation.

In models where the representations are self conjugate (e.g. the SU(2) WZNW model), the

invariance θ ↔ −θ allows to put θ = 0 and so the modular group is simply PSL(2, Z) = SL(2,Z)
Z2

.
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When this is not the case, the characters form a representation of SL(2,Z) which is freely

generated by T =



1 1

0 1


 and S =



0 −1

1 0


, where S2 is no longer the identity (as in SU(2))

but the charge conjugation matrix. In fact, S2 produces time and parity inversion on the torus

geometry and, by CPT invariance, it transforms a character into its conjugate.

7.2 The S matrix

Below we will find explicit expressions for generalized S transformations of the characters intro-

duced in the previous chapter, setting u = 0 for short, as1

χµ(
θ

τ
,−1

τ
, 0) = e−2πi k

4
θ2

τ

∑

ν

Sµ
νχν(θ, τ, 0) , (7.2.1)

and we will show that, unlike standard expressions, they contain a sign of τ factor. This

result can already be inferred from the S modular transformation of the partition function.

Indeed, ignoring the ǫ’s and the contact terms, one finds for the contributions from discrete

representations2

Z̃AdS3
D (τ ′−, θ

′
−, u

′
−; τ

′
+, θ

′
+, u

′
+) = sgn(τ− τ+) Z̃AdS3

D (τ−, θ−, u−; τ+, θ+, u+) , (7.2.2)

while the contributions from the continuous series verify

ZAdS3
C (τ ′−, θ

′
−, u

′
−; τ

′
+, θ

′
+, u

′
+) = sgn(τ− τ+) ZAdS3

C (τ−, θ−, u−; τ+, θ+, u+) , (7.2.3)

where the primes denote the S modular transformed parameters. This suggests that the block

Sdi
dj , di labeling discrete representations, is given by sgn(τ) Sdi

dj with Sdi
dj being unitary.

Moreover, since the characters of the continuous representations contain purely contact terms,

one expects that they close among themselves. This together with (7.2.3) suggest that the

1Some authors use the S̃ matrix generating χµ

(
− θ

τ
,− 1

τ
, u+ θ2

2τ

)
. This is given by S̃µ

ν = Sµ
ν+

, where ν+

labels the conjugate ν-representation.
2Z̃AdS3

D is the contribution to the partition function for θ and τ far from θ + nτ ∈ Z, ∀n ∈ Z.
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block Sci
cj , ci labeling continuous representations, is given by sgn(τ) Sci

cj with Sci
cj being

unitary. We will explicitly show these features of the generalized modular transformations in

the next section. In this sense, the characters of the AdS3 model on the Lorentzian torus are

pseudovectors with respect to the standard modular S transformations.

A naive treatment of the Lorentzian partition function as a Wick rotation of the Euclidean

path integral, would suggest the appearance of this sign after an S transformation from the

measure, when one takes into account the change in the metric (see appendix C). However,

it will be clear from the results of section 7.2.3, that the failure in the modular invariance of

ZAdS3
D is subtler than just the sign appearing in (7.2.2). Of course this is not a problem, the

Lorentzian partition functions are not modular invariant, the S transformation exchanges time

and space directions and this is generically not a symmetry. The relevant question is how to

perform the Wick rotation to a finite modular invariant quantity without lost on the information

of the spectrum.

7.2.1 The strategy

The modular S matrix is an interesting object in itself and proving its existence is a fundamental

step to ensure the consistency of a given CFT, but it also plays an important role in the

microscopic description of a string theory, e.g. in RCFT worldsheet it was proved the S matrix

defines the coupling (one point functions) to maximally symmetric D-branes and determines the

fusion rules of the theory. We will come back to these issues in the next chapter.

In order to present and to motivate the relevance of the modular transformation of the

characters defined in the previous chapter let us concentrate for a moment in the simplest

Lorentzian model, where the target space is the D-dimensional Minkowski spacetime.

Contrary to the AdS3 case, string theory in flat space can be consistently defined with

a Lorentzian target space and a Euclidean worldsheet. The representations building up the

worldsheet spectrum are labeled by the D-dimensional momentum kµ and the characters on the
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Euclidean torus are defined as (we set α′ = 1)

χk(τ) = V

D−1∏

µ=0

χµ(τ), (7.2.4)

where V is the volume of the space time and the normalized characters, χµ are defined by

χ0(τ) =
1

η(τ)
e−2πiτ

k20
2 ,

χj(τ) =
1

η(τ)
e2πiτ

k2j
2 , j = 1, . . . , D − 1. (7.2.5)

The partition function and the modular transformations are ill defined, so one makes a Wick

rotation to the Euclidean target space, where k0 → ik0. The rotated character, χE
k

has a well

defined modular S transformation given by

χE
k (−

1

τ
) =

∫
dDk′ Sk,k′ χE

k′(τ) , Sk,k′ = e2πik ·k′
. (7.2.6)

The partition function is modular invariant and the indices in the modular S matrix are in

a one to one relation with the representations of the original Lorentzian model.

The situation is completely different in the AdS3 model. Here the representations in the

Lorentzian and Euclidean models are completely different. The characters of H+
3 do not even

factorize in holomorphic and antiholomorphic factors and their Wick rotation has no information

on the AdS3 spectrum so that there is no reason to expect that the H+
3 modular S matrix has

some relation with the microscopic description of AdS3.

An interesting observation is that the S matrix of the Minkowski space can be obtained

without invoking the Euclidean rotation. In fact the characters on the Lorentzian torus are

given by (7.2.5) where now τ is a real parameter and the Dedekind function is now interpreted

as the distribution 1
η(τ+i0+)

. Even though these characters are not in a vector representation of

the modular group, their transformations are perfectly well defined (in a distributional sense)

and do not require Wick rotation or other regularization. They transform as pseudovectors as
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their transformations introduces a sgn(τ) factor. In fact by using

1

η(− 1
τ + i0+)

=
1

η(− 1
τ+i0+

)
=

esgn(τ)
iπ
4

√
|τ | η(τ + i0+)

, (7.2.7)

e−2πi 1
τ

λ2

2 = e−sgn(τ) iπ
4

√
|τ |
∫
dλ′ e2πiλλ

′
e2πiτ

λ′2

2 , (7.2.8)

it is found that

χk(−
1

τ
) = sgn(τ)

∫
dDk′ Sk,k′ χk′(τ) , Sk,k′ = i e2πik ·k′

. (7.2.9)

So, up to the sign(τ) factor and the i phase which can be interpreted as coming from the

Euclidean rotation dk0 → i dk0, we have obtained the modular S matrix of the model without

any reference to the Euclidean theory.

In the rest of the chapter we will generalize this procedure to the more involved AdS3 model

and we will find that the characters found in the previous chapter transform as pseudovectors

with respect to the modular group.

7.2.2 Continuous representations

The S transformed characters of continuous representations can be written as:

χα,w
j (

θ

τ
,−1

τ
, 0) =

e
−2πi

(
s2

k−2
+ k

4
w2

)
1
τ

(−iτ) 3
2 η3(τ + iǫ1)

∞∑

m=−∞

e2πim(α+
k
2
w)δ

(
θ

τ
+
w

τ
−m

)
, (7.2.10)

where (7.2.7) was used. After inserting equation (7.2.8) with the appropriate relabeling we find

χα,w
j (

θ

τ
,−1

τ
, 0) =

e−2πi k
4

θ2

τ

τ

∫ +∞

−∞
ds′ S̃s

s′ e
2πi
k−2

τs′2

η3(τ + iǫ1)

×
∞∑

m=−∞

e2πi
k
4
τm2

e2πimα δ

(
θ

τ
+
w

τ
−m

)
, (7.2.11)

with S̃s
s′ = i

√
2

k − 2
e−4πi ss′

k−2 .

86



From δ
(
θ
τ + w

τ −m
)
= |τ | δ (θ + w −mτ) and renaming variables, one gets

χα,w
j (

θ

τ
,−1

τ
, 0) = e−2πi k

4
θ2

τ sgn(τ)

×
∞∑

w′=−∞

∫ +∞

−∞
ds′S̃s

s′ e
2πiτ

(
s′2

k−2
+ k

4
w′2

)

η3(τ + iǫ1)
e2πiw

′αδ
(
θ − w′τ + w

)
. (7.2.12)

In order to reconstruct the character χα′,w′

j′ in the r.h.s., we use the identity

δ
(
θ − w′τ + w

)
=

∞∑

m′=−∞

∫ 1

0
dα′e2πi(wα′+ k

2
ww′)e−2πim′(α′+ k

2
w′)δ

(
θ − w′τ +m′

)
, (7.2.13)

and exchanging summation and integration3, (7.2.12) can be rewritten as

χα,w
j (

θ

τ
,−1

τ
, 0) = e−2πi k

4
θ2

τ sgn(τ)
∞∑

w′=−∞

∫ +∞

0
ds′

∫ 1

0
dα′ Ss,α,w

s′,α′,w′
χα′,w′

j′=− 1
2
+is′

(θ, τ, 0) ,

with

Ss,α,w
s′,α′,w′

= 2i

√
2

k − 2
cos

(
4π

ss′

k − 2

)
e2πi(wα′+w′α+ k

2
ww′) , (7.2.14)

which is symmetric and, as expected from (7.2.3), unitary, i.e.

∞∑

w′=−∞

∫ ∞

0
ds′
∫ 1

0
dα′Ss1,α1,w1

s′,α′,w′S†
s′,α′,w′

s2,α2,w2 = δ(s1 − s2)δ(α1 − α2)δw1,w2 . (7.2.15)

7.2.3 Discrete representations

The structure of the characters of the discrete representations is more involved than that of the

continuous ones. A priori, we expect that characters of both discrete and continuous represen-

tations appear in the generalized modular transformations. So, generically we can assume

χ+,w
j (

θ

τ
,−1

τ
, 0) = e−2πi k

4
θ2

τ sgn(τ)

∞∑

w′=−∞

{∫ − 1
2

− k−1
2

Sj,w
j′,w′

χ+,w′

j′ (θ, τ, 0)

3Here, summation and integration can be exchanged because, for a fixed w′, the series always reduces to a
finite sum when it is considered as a distribution acting on a test function.
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+

∫ 1

0
dα′

∫ ∞

0
ds′ Sj,w

s′,α′,w′
χα′,w′

j′=− 1
2
+is′

(θ, τ, 0)

}
.

Fortunately, it is easy to separate the contributions from discrete and continuous representations.

If one considers generic values of θ and τ far from θ + nτ ∈ Z for n ∈ Z, the contributions of

the continuous series in the r.h.s. can be neglected as well as all contact terms and ǫ’s. On the

other hand, if θ + nτ /∈ Z, ∀n ∈ Z then θ
τ − p 1

τ /∈ Z, ∀p ∈ Z and all contact terms and ǫ’s of the

l.h.s. can be neglected too. Thus, we obtain

χ+,w
j (

θ

τ
,−1

τ
, 0) =

(−)we
2πi
k−2

1
τ (j+

1
2
−w k−2

2 )
2

e−2πi θ
τ (j+

1
2
−w k−2

2 )

iϑ11(
θ
τ ,− 1

τ )

= (−)w+1 e
2πi
k−2

1
τ (j+

1
2
−(w+θ) k−2

2 )
2

e−2πi k
4

θ2

τ

i
√
iτϑ11(θ, τ)

, (7.2.16)

where the following identity was used for τ ∈ R:

ϑ11(
θ

τ
,−1

τ
) = sgn(τ) eπi

θ2

τ esgn(τ) iπ
4

√
|τ | ϑ11(θ, τ) . (7.2.17)

Inserting

e
2πi
k−2

1
τ (j+

1
2
−(w+θ) k−2

2 )
2

= esgn(τ) iπ
4

√
2|τ |
k − 2

∫ +∞

−∞
dλ′e

4πi
k−2

λ′(j+ 1
2
−(w+θ) k−2

2 )e−
2πi
k−2

τλ
′2

(7.2.18)

into (7.2.16), changing the integration variable to j′ + 1
2 − w′ k−2

2 and using (7.2.17), we get

χ+,w
j (

θ

τ
,−1

τ
, 0) = e−2πi k

4
θ2

τ sgn(τ)
∞∑

w′=−∞

∫ − 1
2

− k−1
2

dj′Sj,w
j′,w′

χ+,w′

j′ (θ, τ, 0), (7.2.19)

with

Sj,w
j′,w′

= (−)w+w′+1

√
2

k − 2
e

4πi
k−2(j

′+ 1
2
−w′ k−2

2 )(j+ 1
2
−w k−2

2 ) . (7.2.20)

Notice that this block of the S matrix is symmetric and, again as expected from (7.2.2), unitary4.

4Changing e±iπ
4
√
τ by

√
iτ , the validity of (7.2.18) can be extended to the full lower half plane and that of
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While the identity (7.2.18), which is essential to reconstruct the discrete characters in the

r.h.s. of (7.2.19), only makes sense for Im τ ≤ 0, the characters are only well defined for Im

τ ≥ 0. Therefore, to determine the generalized S transformation, it is crucial that τ ∈ R.

Finding the block Sj,w
s′,α′,w′

mixing discrete with continuous representations is a much more

technical issue, which we discuss in appendix D. Here we simply display the result, namely

Sj,w
s′,α′,w′

= −i
√

2

k − 2
e−2πi(w′j−wα′−ww′ k

2 )

[
e

4π
k−2

s′(j+ 1
2)

1 + e−2πi(α′−is′)
+

e−
4π
k−2

s′(j+ 1
2)

1 + e−2πi(α′+is′)

]
. (7.2.22)

This block prevents the full S matrix from being unitary. Instead, we find S∗S = id. This

implies that the full partition function defined from the product of characters is not modular

invariant, not only due to the sign of the modular parameters. Actually, after a modular trans-

formation, the mixing block introduces terms where the left modes are in discrete representations

and the right ones in continuous series, and vice versa, as well as new terms containing left and

right continuous representations.

In section 7.4, we explicitly check that the blocks of the S matrix determined here have the

correct properties.

7.2.4 Degenerate representations

The modular properties discussed above can be used to write the S transformation of the

characters of the degenerate representations with 1 + 2J ∈ N as:

χJ(
θ

τ
,−1

τ
, 0) = e−2πi k

4
θ2

τ sgn(τ)
∞∑

w=−∞

{∫ − 1
2

− k−1
2

dj SJ
j,wχ+,w

j (θ, τ, 0)

+

∫ 1

0
dα

∫ − 1
2

− k−1
2

ds SJ
s,α,wχα,w

j=− 1
2
+is

(θ, τ, 0)

}
,

(7.2.17) can be extended to the upper half plane, giving

ϑ11(
θ

τ
,− 1

τ
) = −eπi θ2

τ

√
iτ ϑ11(θ, τ) . (7.2.21)

Nevertheless, one cannot cancel the
√
iτ terms and ignore the sign factor due to the different branches.
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where

SJ
j,w = 2i

√
2

k − 2
(−)w+1 sin

[
π

k − 2
(1 + 2j − w(k − 2)) (2J + 1)

]
, (7.2.23)

and

SJ
s,α,w = −i(−)2Jw

√
2

k − 2
e

4π
k−2

s(J+ 1
2
)

(
1 +

1

1 + e−2πi(α−is)
+

1

1 + e2πi(α+is)

)

+ (s↔ −s) . (7.2.24)

7.3 The T matrix

Together with the S matrix, the T matrix defines a basis over the space of modular transforma-

tions. Using

ϑ11(θ, τ + 1) = e
πi
4 ϑ11(θ, τ), η(τ + 1) = e

πi
12 η(τ) , (7.3.1)

the characters of the discrete and continuous representations transform respectively with

Tj,w
j′,w′

= δw,w′δ(j − j′)e−
2πi
k−2(j

′+ 1
2
−w′ k−2

2 )
2
−πi

4 (7.3.2)

and

Ts,α,w
s′,α′,w′

= δw,w′δ(α− α′)δ(s− s′)e
2πi

(
s2

k−2
− k

4
w2−wα− 1

8

)

, (7.3.3)

while the T transformation of the characters of the degenerate representations is given by

χJ(θ, τ + 1, 0) = e−
2πi
k−2(J+

1
2)

2

e−
πi
4 χJ(θ, τ, 0) . (7.3.4)
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7.4 Properties of the S and T matrices

The expressions (ST )3 and S2 must give the conjugation matrix, C. We have found above

that the characters of the AdS3 model do not expand a representation space for the modular

group since the generators depend on the sign of τ . Nevertheless, in terms of the τ inde-

pendent part of S, that we have denoted S, these identities read C = (ST )3 = sgn(τ + 1)

sgn( τ
τ+1)sgn(− 1

τ )(ST )3 = −(ST )3 and C = S2 = sgn(τ)sgn(− 1
τ )S2 = −S2.

As a consistency check on the expressions found above for S and T , an explicit computation

gives

−(ST )3j1,w1
j2,w2 = −S2

j1,w1
j2,w2 = δw1+w2+1, 0 δ

(
j1 + j2 +

k

2

)
, (7.4.1)

which corresponds to the conjugation matrix restricted to the discrete sector, since D̂+,w
j is

the conjugate representation of D̂−,−w
j , which in turn can be identified with D̂+,−w−1

− k
2
−j

using the

spectral flow symmetry. Similarly, for the block of continuous representations we get

−(ST )3s1,α1,w1

s2,α2,w2 = −S2
s1,α1,w1

s2,α2,w2 = δw1,−w2δ(s1 − s2)δ(α1 + α2 − 1) , (7.4.2)

which is again the charge conjugation matrix, since Ĉ1−α,−w
j is the conjugate representation of

Ĉα,w
j .

Of course, one also needs to show that the non diagonal terms vanish. The equalities

(ST )3s1,α1,w1
j2,w2 = S2

s1,α1,w1
j2,w2 = 0 are trivially satisfied as a consequence of Ss1,α1,w1

j2,w2 =

0. One can also show that (ST )3j1,w1
s2,α2,w2 = S2

j1,w1
s2,α2,w2=0, but this computation is more

involved, so the details are left to appendix D.
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Chapter 8

D-branes in AdS3

D-branes can be characterized by the one-point functions of the states in the bulk, living on the

upper half plane. In RCFT, these one-point functions can be determined from the entries of the

S matrix, a property that we will call a Cardy structure. This property is closely related to the

Verlinde formula and, a priori, there is no reason for it to hold in non RCFT. In this chapter

we explore the scope of this connexion for the AdS3 model.

D-branes in AdS3 and related models have been studied in several works (see for instance

[89]-[103] and references therein). Here, we shall restrict to the maximally symmetric D-branes

discussed in [90]. Because the Lorentzian AdS3 geometry is obtained by sewing an infinite

number of SL(2,R) group manifolds, these D-brane solutions can be trivially obtained from

those of SL(2,R). Their geometry was considered semiclassically in [90], where it was found

that solutions of the Dirac Born Infeld action stand for regular and twined conjugacy classes of

SL(2,R). The model also has symmetry breaking D-brane solutions, but in this case, the open

string spectrum is not a sum of sl(2) representations and then the one-point functions cannot

be determined by the S matrix.

We begin this chapter with a short introduction to Boundary Conformal Field Theories

(BCFT) and the geometry of D-branes in AdS3. A very comprehensive study about the (twined)

conjugacy classes of SL(2,R) and a semiclassical analysis of branes can be found in [90] and [91].

Both can be easily extended to the universal covering. Here, we review the analysis of the
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conjugacy classes in order to make the discussion self contained and discuss the extension to the

universal covering with the aim of obtaining the key relation (8.2.8) obtained in [49].

Third section is devoted to give a brief review of the one point functions computed in [74] and

to translate them to our conventions. Then we turn to the explicit construction of the Ishibashi

states for regular and twisted boundary gluing conditions which give rise to the maximally

symmetric D-branes. These conditions were solved in the past for the single cover of SL(2,R)

(see [92] for twisted gluing conditions) with different amounts of spectral flow in the left and right

sectors, namely wL = −wR, and therefore, these solutions are not contained in the spectrum of

the AdS3 model (with the obvious exception of w = 0 discrete and w = 0, α = 0, 12 continuous

representations).

We will show that the one-point functions of states in discrete representations coupled to

point-like and H2 branes exhibit a Cardy structure and we present a generalized Verlinde formula

giving the fusion rules of the degenerate representations with 1 + 2J ∈ N.

8.1 Boundary CFT

In this section we present a brief review on CFTs with boundaries in order to develop the

machinery to deal with D-branes on Conformal theories.

8.1.1 Closed String Sector

Bulk fields constitute the field content of the worldsheet theory describing closed strings. These

can be defined in CFT with and without boundaries. In both cases there is a correspondence

between states of the Hilbert space and fields of the CFT. Even though the fields differ in each

case the Hilbert space (HC = ⊕mmVm ⊗ Vm
1) is the same in both, the theory over the full

plane (P) and the one over the upper half plane (H). So that for a given state |mm >∈ HC the

state operator correspondence is

ϕm,m(z, z̄) = Φ(P )(|mm >; z, z̄),

1We assume the spectrum factorizes as a sum of representations, Vm and Vm of certain symmetry algebra
generated by chiral currents J(z) and J̄(z̄) respectively.
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φm,m(z, z̄) = Φ(H) (|mm >; z, z̄) , (8.1.1)

where ϕ(z, z̄) are well defined over the full complex plane and φ(z, z̄) is only required to be well

defined for Im z > 0. The condition of introducing a D-brane in the background defined by the

Bulk theory is to require that Bulk fields of the BCFT and those of the CFT without boundaries

(Bulk CFT) are equivalent, where equivalence means that both spectra coincide but also that

the OPE is the same in both theories.

The conformal symmetry requires

T (z) = T (z̄), z = z̄. (8.1.2)

It is important to stress that a given Bulk CFT may be connected with several BCFTs and

that there is no systematic approach to dealing with all possibilities.

In this short review we will restrict to the case of maximally symmetric D-branes, that is we

will consider boundary conditions preserving the maximal amount of symmetry of the parent

Bulk CFT. Assuming that the chiral fields J(z), J̄(z̄) can be analytically continued to the real

line we will look for an automorphism Ω, that we will denote as gluing map, such that

J(z) = ΩJ̄(z̄), z = z̄ (8.1.3)

Notice that this map, Ω, induces a map over the different sectors, j → w(j).2

One point functions

Ward identities of the chiral currents and the OPE of the bulk fields can be exploited to reduce

the computation of correlation functions with arbitrary number of points of bulk fields on the

disk to the calculus of one point functions.

2For instance in a theory with U(1) symmetry and Dirichlet gluing map Ω(J) = −J, ⇒ Ω(αn) = −αn. Then,
taking into account that α0|k >=

√
α′k|k >

Ω(α0)|k >= −α0|k >= −
√
α′k|k >= α0| − k >,

which induces the map w(k) = −k.
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The transformation properties of the bulk fields in the BCFT, φmm̄ (the indices label left

and right representations) with the modes Ln, n = ±1, 0 and the zero modes of the currents, J0

[J0, φmm(z, z̄)] = Xm
J φmm(z, z̄)− φmm(z, z̄)Xm

ΩJ̄ ,

[Ln, φmm(z, z̄)] = zn[z∂ +∆m(n+ 1)] φmm(z, z̄) + z̄n[z̄∂̄ + ∆̄m(n+ 1)] φmm(z, z̄) , (8.1.4)

determine the structure of the one point functions on the disk to be

〈φīi(z, z̄)〉α =
Aα

īi

|z − z̄|∆i+∆̄ī

, (8.1.5)

where Aα
mm : V0

m → V0
m, obey Xm

J Aα
mm = Aα

mmX
m
ΩJ̄

, which implies m = w(m+) ≡ mw is

a necessary condition for the one point function to be non vanishing. m+ is the conjugate

representation of m and Xm
J is the action of the zero mode J0 of the affine algebra over the

primaries i.e.

Xm
J := J0|V0

m
: V0

m → V0
m, (8.1.6)

The zero modes of the currents are irreducible in the subspaces V0
m, thus Schur’s lemma

implies

Aα
mm = Aα

m δm,mw Umm, (8.1.7)

where Umm intertwines between the zero modes of the algebra Xm
J and Xm

ΩJ̄
and is normalized

such that U∗
mmUmm = 1. α indexes different Boundary Theories appearing for a given gluing

map Ω.

We have found that one point functions for different boundary conditions associated to a

given Bulk Theory and the same gluing map Ω may differ just in a set of scalars Aα
m. Once this

set is known we will have completely solved the Boundary Theory (including the open string

sector that we have not considered yet).
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Boundary states

It is possible to store all the information of the couplings Aα
m in a unique object, the so called

boundary state.

The boundary state is a linear combination of coherent states known as Ishibashi states [105]

and the coefficients of this expansion are essentially the couplings Aα
m.

A way to introduce boundary states is by equaling Bulk fields in the upper half plane of the

Boundary theory and in the exterior of the unit disk in the Bulk theory.

Let z, z̄ be coordinates in the upper half and ζ, ζ̄ those of the exterior unit disk. They are

related through

ζ =
1− iz

1 + iz
; ζ̄ =

1 + iz̄

1− iz̄
. (8.1.8)

Thus if |0 > is the vacuum of the Bulk CFT, the boundary state |α > is defined via the identity

〈
Φ(H)(|ϕ >; z, z̄)

〉
α
=

(
dζ

dz

)h(dζ̄
dz̄

)h̄

< 0|Φ(P )(|ϕ >; ζ, ζ̄)|α > (8.1.9)

The boundary condition (8.1.3) of the BCFT at z = z̄ translates in the Bulk CFT as the

condition

[
J(ζ)− ζ̄2∆J (−)∆JΩJ̄(ζ̄)

]
|α >= 0, ζζ̄ = 1, (8.1.10)

where ∆J is the conformal weight of J . The constraint above can be rewritten in terms of the

Laurent modes as

[
Jn − (−)∆JΩJ̄−n

]
|α >Ω= 0, (8.1.11)

where the label Ω was written to make the gluing map considered explicit.

These constraints are linear and leave each representation invariant. Given an automorphism

Ω there exists a unique solution in each representation of the form (m,w(m+)) [105] and this is

given by a coherent state (or Ishibashi state) |m ≫Ω univocally defined up to a normalization
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which can be fixed such that

Ω ≪ m| q̃L
(P )
0 − c

24 |n≫Ω= δmn χ(q̃). (8.1.12)

From (8.1.13), (8.1.9) and (8.1.12) one can prove that the boundary states, |α >Ω are

|α >Ω=
∑

m

Aα
m+ |m≫Ω (8.1.13)

Open String Sector

World sheet duality changes open string channels and closed string channels when time and space

coordinates are exchanged. Thus the boundary partition function, Zαβ(q), q = e2πiτ , associated

with the Boundary spectrum with α and β boundary conditions3 (≡ One-loop vacuum open

string amplitude) must agree with the tree level amplitude of a boundary state emitted in the

brane α and reabsorbed in the brane β, i.e. it is interpreted as the probability that the boundary

state be emitted and reabsorbed in a time interval τ̃ = −1/τ 4

Zαβ(q) =< Θβ|q̃H(p) |α >, (8.1.14)

where Θ denotes the worldsheet CPT operator, defined such that

ΘAβ
m+ |m≫= (Aβ

m+)
∗|m+ ≫ . (8.1.15)

Using that the Hamiltonian in the Bulk CFT is H(P ) = 1
2(L0 + L̄0) − c

24 and the gluing

condition of the energy momentum tensor (8.1.2) imposes in the Bulk CFT the equation [Ln −

L̄−n]|α >= 0 it is found that

< Θβ|q̃H(p) |α >=
∑

m,n

(
ΘAβ

m+

)∗
≪ m|q̃L0−

c
24 |n≫ Aα

n+

3This is interpreted in string theory as the spectrum of open strings with one end in the brane α and the other
one in the brane β.

4Remember that the modular S matrix exchanges cycles a and b in the torus and so exchanges time and space
coordinates
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=
∑

m,n

Aβ
m+A

α
n+ ≪ m+|q̃L0−

c
24 |n≫=

∑

m

Aβ
m+A

α
m+χm+(q̃). (8.1.16)

Then

Zαβ(q) =
∑

m,n

Aβ
m+A

α
m+Sm+

nχn(q), (8.1.17)

with Sm+n being the modular S matrix.

Boundary conditions discussed here preserve part of the chiral symmetry, thus the boundary

spectrum must be decomposed as a sum over certain representations Vm. Let Nαβ
m be its

spectrum degeneracy, thus the Cardy condition [106]

Nαβ
n =

∑

m

Aβ
m+ Aα

m Sm+
n ∈ Z≥0, (8.1.18)

must be satisfied.

Cardy Solution

Let us consider a Bulk RCFT with modular invariant partition function

Z(q, q̄) =
∑

m

χm(q)χm(q̄), (8.1.19)

with m taking values in some given set M and m being paired with some given m, assuming

that5

mw ≡ m(j)+ = m. (8.1.20)

Cardy claimed [106] that the number of boundary theories coincide with the number of

representations in the boundary spectrum. In other words that there is a one to one map

between the labels α and the indices m ∈ M.

Then Cardy proposed that the one point function coefficients An
m (before Aα

m) are determined

5Remember that the condition mw = m was required in order to get non vanishing one point functions.
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by the entries of the modular S matrix

An
m =

Sn
m

√
S0m

, (8.1.21)

with 0 indexing the representation containing the identity field. The disk one point functions of

primary fields are

〈φm,mw(zz̄)〉n =
Sn

m

√
S0m

Ummw

|z − z̄|2∆m
, (8.1.22)

with Ujjw the unitary intertwiner operator previously defined.

The Cardy ansatz follows from the observation that such a solution naturally solves the

Cardy condition. Indeed, after inserting (8.1.21) in (8.1.18) one obtains

∑

q

An
q+ Am

q Sq+
k =

∑

q

Sn
q+ Sm

q Sq+
k

S0
q = Nmn+

k ∈ Z≥0 (8.1.23)

where the last equality is nothing but the famous Verline formula determining the fusion rules

(Nk
mn+) in RCFTs. It guaranties the ansatz satisfies the Cardy condition but does not prove that

it is a solution. It may happen that fusion rules do not reproduce the spectral decomposition

of the Boundary CFT or it may occur that Verlinde formula does not works, as in most Non

RCFTs. Nevertheless it has shown to be a powerful framework to solve Rational BCFTs.

8.2 Conjugacy classes in AdS3

As is well known [103], the world-volume of a symmetric D-brane on the G group manifold is

given by the (twined) conjugacy classes

Wω
g =

{
ω(h)gh−1, ∀h ∈ G

}
, (8.2.1)

where ω determines the gluing condition connecting left and right moving currents, ω(g) =

ω−1g ω. When ω is an inner automorphism, Wω
g can be seen as left group translations of the

99



regular conjugacy class (of the element ωg). So, one can restrict attention to the case ω = id.,

and in the case of SL(2,R) the conjugacy classes are simply given by the solution to (see (2.1.4))

tr g = 2
X0

ℓ
= 2C̃ . (8.2.2)

The geometry of the world-volume is then parametrized by the constant C̃ as

−X1
2 −X2

2 +X3
2 = ℓ2

(
1− C̃2

)
. (8.2.3)

Different geometries can be distinguished for C̃2 bigger, equal or smaller than one. The former

gives rise to a two dimensional de Sitter space, dS2, the latter to a two dimensional hyperbolic

space, H2, and the case |C̃| = 1 splits into three different geometries: the apex, the future and

the past of a light-cone.

A more convenient way to parametrize these solutions is given by the redefinition

C̃ = cosσ . (8.2.4)

For |C̃| > 1, σ = ir + πv, r ∈ R+, v ∈ Z2. The world-volumes are given by

cosh ρ cos t = ± cosh r . (8.2.5)

Each circular D-string is emitted and absorbed at the boundary in a time interval of width π

but does not reach the origin unless r = 0. Their lifetime is determined by v.

For |C̃| < 1, σ is real and

cosh ρ cos t = cosσ . (8.2.6)

If one restricts σ ∈ (0, π), there are two different solutions for each σ, for instance one with

t ∈ (−π
2 ,−σ] and another one with t ∈ [σ, π2 ). To distinguish between these two solutions we

can take σ = λ + πv, λ ∈ (−π, 0) , v ∈ Z2, such that t = arcos(cosσ/ cosh ρ), taking the
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branch where t = σ when it crosses over the origin. Because these solutions have Euclidean

signature, they are identified as instantons in AdS3. In fact, they represent constant time slices

in hyperbolic coordinates.

For |C̃| = 1, σ = 0 or π and

cosh ρ cos t = ±1 . (8.2.7)

For example, for C̃ = 1, this corresponds to a circular D-string at the boundary at t = −π/2

collapsing to the instantonic solution in ρ = 0 at t = 0, and then expanding again to a D-string

reaching the boundary at t = π/2.

All of these solutions are restricted to the single covering of SL(2,R). In the universal

covering, t is decompactified and the picture is periodically repeated. The general solutions

can be parametrized by a pair (σ, q), q ∈ Z, or equivalently, the range of σ can be extended to

σ = ir + qπ for dS2 branes, σ = λ + qπ for H2 branes or σ = qπ for point-like and light-cone

branes.

Preparing for the discussions on one-point functions and Cardy structure, it is interesting

to note that these parameters can be naturally identified with representations of the model. For

instance, one can label the D-brane solutions as

σ =
2π

k − 2

(
j +

1

2
− w

k − 2

2

)
, (8.2.8)

with j = −1
2 + is, s ∈ R+, w ∈ Z for dS2 branes, j ∈

(
−k−1

2 ,−1
2

)
, w ∈ Z for H2 branes and

finally σ = nπ, n ∈ Z for the point-like and light-cone D-brane solutions.

The appearance of the level k in a classical regime could seem awkward. However, it is useful

to recall that σ is just a parameter labeling the conjugacy classes, and the factor k − 2 can be

eliminated by simply redefining j through a change of variables. The important observation is

that this suggests σ labels the exact solutions, e.g the one-point functions at finite k will be

found to be parametrized exactly by (8.2.8) and in fact, in the semiclassical regime k → ∞, the

domain of σ does not change at all.
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When ω is an outer automorphism, one can take ω =



0 1

1 0


 up to group translations. In

this case, the twined conjugacy classes are given by

tr ωg = 2
X2

ℓ
= 2C . (8.2.9)

The world-volume geometry now describes an AdS2 space for all C since

X2
0 −X2

1 +X2
3 = ℓ2(1 + C2) . (8.2.10)

These are static open D-strings with endpoints fixed at the boundary. This is obvious in cylin-

drical coordinates, i.e.

sinh ρ sin θ = sinh r , (8.2.11)

where we have renamed C = sinh r. So, after decompactifying the time-like direction t, there is

no need to extend the domain of r.

Let us end this brief review with a word of caution. In this section we have reviewed the

twined conjugacy classes and, although branes wrap conjugacy classes, extra restrictions appear

when studying the semiclassical or exact solutions. In particular, it was found in [90] that r

becomes a positive quantized parameter at the semiclassical level.

8.3 One-point functions

In this section we summarize the results for one-point functions in maximally symmetric D-

branes, obtained by applying the method of [74]. The solution for one-point functions in H2

D-branes found in loc. cit. holds for integer level k. Here we work with an alternative expression,

equivalent to the one obtained in [74], but with a different extension for generic k ∈ R.
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8.3.1 One-point functions for point-like instanton branes

To obtain the one-point functions for the point-like branes, we simply take the ZkN orbifold

action on the product of the one-point functions associated to D0 branes in the cigar [101] and

to Neumann boundary conditions in the U(1) theories, respectively

〈
Φ
sl(2)/u(1)
j,n,ω (z, z̄)

〉D0

s

=
δn,0 (−)rω

|z − z̄|h
j
nr+h̄j

nr

Γ
(
−j + k

2ω
)
Γ
(
−j − k

2ω
)

Γ (−2j − 1)

×
(

k

k − 2

) 1
4
(
sin[πb2]

4π

) 1
2 sin[s(2j + 1)]

sin[πb2(2j + 1)]

Γ
(
1 + b2

)
ν1+j

Γ (1− b2(2j + 1))
, (8.3.1)

and
〈
Φ
u(1)
ñ,ω̃ (z, z̄)

〉N
x0

=
δñ,0e

iω̃x0

(√
k/2R

) 1
2

|z − z̄| k2 ω̃2
.

Here s = πrb2, r ∈ N, b2 = 1
k−2 , ν was defined in (3.2.11), N refers to Neumann boundary

conditions6 and x0 is the position of the D0 brane in the timelike direction. In the single covering

of SL(2,R), the only possibilities are x0 = 0 and π, which represent the center of the group Z2

(see [91]). But in the universal covering, one can take x0 = qπ with q ∈ Z (see section 8.2).

To compare these one-point functions with those obtained in section 8.4, it is convenient to

consider the conventions introduced in section 3.2.2 but with a different normalization in order

to explicitly realize the relation between the spectral flow image of highest and lowest weight

representations. The fields Φ̃j,w
m,m̄ represent the spectral flow images of the primary fields Φ̃j,0

m,m̄,

i.e they are in correspondence with highest or lowest weight states depending if w < 0 or w > 0,

and have J3
0 , J̄

3
0 eigenvalues M = m + k

2w, M̄ = m̄ + k
2w. They are related to the vertex

operators (3.2.20) as

Φ̃j,w
m,m̄(z, z̄) = (−)w

√
ν−

1
2
−jB(j) V −1−j

nωγpω̃(z, z̄) . (8.3.2)

When looking for w = 0 solutions, i.e. ω = −ω̃, one expects to reproduce the one-point

6In section 8.4 when explicitly constructing the coherent states we will consider Dirichlet gluing conditions.
Here we take Neumann boundary conditions because this is the T dual version in the time direction.
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functions of point-like D-branes in the H+
3 model, which forces x0 = rπ. So,

〈
Φ̃j,w
m,m̄(z, z̄)

〉
s

=
δm,m̄

|z − z̄|∆j+∆̄j

Γ (1 + j −m) Γ (1 + j +m)

Γ (2j + 1)

× i
√
k (−)w+1

2
5
4

sin[s ((2j + 1)− w(k − 2))]√
sin[ π

k−2 (2j + 1)]
, (8.3.3)

with the parameter s labeling the positions of the instanton solutions.

8.3.2 One point-functions for H2, dS2 and light-cone branes

All of the H2, dS2 and light-cone branes can be constructed from a D2-brane in the cigar and

taking Neumann boundary conditions in the U(1). They are simply related to each other by

analytic continuation of a parameter labeling the scale of the branes. Here, we discuss in detail

the case of the one-point functions of fields in discrete representations on H2 branes in order to

prepare the discussion for section 8.4. The approach developed in this section to construct the

one-point functions gives the correlators associated toH2 branes placed at the surfaceX3 = cons

rather than that at X0 = cons presented in section 8.2, so we have to translate these solutions

before comparing with the results of the previous section.

The one point-functions for the D2-branes in the cigar are given by [101]

〈
Φ
sl(2)/u(1)
j,n,ω (z, z̄)

〉D2

σ̃
=

1
2δn,0(−)ωe−iσ̃ω(k−2)

(
k−2
k

) 1
4

|z − z̄|h
j
nr+h̄j

nr

Γ (1 + 2j) Γ

(
1 +

1 + 2j

k − 2

)
ν

1
2
+j

×
(

Γ
(
−j + k

2ω
)

Γ
(
1 + j + k

2ω
)eiσ̃(1+2j) +

Γ
(
−j − k

2ω
)

Γ
(
1 + j − k

2ω
)e−iσ̃(1+2j)

)
.

Notice that this differs from the result in [101] by the ω dependent phase (−)ω e−iσ̃ω(k−2).7 The

7This phase that we added by hand is required by the spectral flow symmetry, when used to construct the

one-point functions for H2 branes, which demands
〈
Φ̃j,w

j,j

〉H2

=

〈
Φ̃

− k
2
−j,w−1

k
2
+j, k

2
+j

〉H2

, in our conventions. The one-

point function for D2 branes was constructed in [101] beginning from the parent H+
3 model and was found to

have some sign problems. We claim this phase cannot be deduced from the H+
3 model because of the absence

of spectral flowed states. It would be interesting to investigate the implications of this modification in the sign.
Unfortunately, this information cannot be obtained from the w independent semiclassical limit of the one-point
functions.
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position of the D-brane over the U(1) is again fixed by the one-point function of the H+
3 model.

We find

〈
Φ̃j,w
m,m̄(z, z̄)

〉H2,X3

σ̃
=

δm,m̄

|z − z̄|∆j+∆̄j

−1

2
5
4

√
i(k − 2)

1
4

π e−iσ̃w(k−2)

√
sin
[

π
k−2(2j + 1)

]

×
(
Γ (1 + j −m)

Γ (−j −m)
e−iσ̃(1+2j) +

Γ (1 + j +m)

Γ (−j +m)
eiσ̃(1+2j)

)
. (8.3.4)

For fields in discrete representations with m = −j+Z≥0 and j /∈ Z, only one factor survives

in the last line. Here σ̃ is a real parameter, determining the embedding of the brane in AdS3

as X3 = cosh ρ sin t = sin σ̃. So, in order to compare with the solutions discussed in section 8.2,

the identification σ̃ = σ + π
2 and the global shift in the time-like coordinate on the cylinder,

namely t→ t+ π
2 , must be perfomed. The latter simply adds a phase ei

π
2
(M+M̄) 8.

From the analysis of conjugacy classes, it is natural to relabel σ = π
k−2(2j

′ + 1)− w′π, with

j′ ∈ (−k−1
2 ,−1

2), w
′ ∈ Z 9, and

〈
Φ̃j,w
m,m̄(z, z̄)

〉H2,X0

σ(j′,w′)
=

δm,m̄

|z − z̄|∆j+∆̄j

Γ (1 + j +m) Γ (1 + j −m)

Γ (1 + 2j)

× −π
√
−i

2
5
4 (k − 2)

1
4

(−)we
4πi
k−2

(j′+ 1
2
−w′ k−2

2
)(j+ 1

2
−w k−2

2
)

√
sin
[

π
k−2(2j + 1)

] . (8.3.5)

8.3.3 One-point functions for AdS2 branes

For completeness, we display here the one-point functions for AdS2 branes obtained in [74], in

our conventions. These are constructed by gluing two one-point functions: one for a D1-brane

in the coset model and another one with Dirichlet boundary conditions in the U(1) model. The

result is

〈
Φ̃j,w
m,m̄(z, z̄)

〉AdS2

r
=

δw,0δm,−m̄e
−iπ

4 ein(θ0+x0)
(
k−2
2

) 1
4

|z − z̄|∆j+∆̄j

Γ (−1− 2j)

Γ (−j −m) Γ (−j +m)

8In fact, J3
0 + J̄3

0 gives the energy in AdS3 and so this combination is the generator of t translations.
9The one-point functions for dS2 branes are given by (8.3.4) with j′ ∈

{
− 1

2
+ iR+

}
and for light-cone branes,

they are given by σ = nπ, n ∈ Z.
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× cos

(
ir(j +

1

2
) +mπ

)
Γ

(
1− 1 + 2j

k − 2

)
ν−

1
2
−j , (8.3.6)

where θ0 is related to the angles (in cylindrical coordinates) to which the branes asymptote

when they get close to the boundary of AdS3, x0 is the location of the brane and r determines

their scale. From the geometrical point of view, r seems to be an arbitrary real number, but as

shown in [90], it becomes quantized at the semiclassical level.

8.4 Coherent states and relation to modular data

Boundary states play a fundamental role in understanding boundary conformal field theories.

They store all the information about possible D-brane solutions and their couplings to bulk

states. Following the ideas developed in section 8.1, one can study different gluing conditions

for the left and right current modes, consistent with the affine algebra [104] as well as with the

conformal symmetry via the Sugawara construction [105].

In the case of AdS3, much of the progress reached in this direction is based on the analytic

continuation from H+
3 [93]. Gluing conditions were imposed as differential equations applied

directly to find, with the help of certain sewing contraints, the one-point functions of maximally

symmetric D-branes. It would be interesting to get the one-point functions of the AdS3 model

without reference to other models, but the approach used so far cannot be easily extended. In

the first place, it was developed in the x-basis of the H+
3 model, which is not a good basis for the

representations of the universal covering of SL(2,R). Suitable bases instead are the m- or t-basis

[37, 59]. Moreover, there are still some open questions about the fusion rules of the AdS3 model

[43] which deserve further attention before analyzing the sewing constraints. Therefore, we will

not compute the one-point functions in this way, but will give the first step in this direction by

finding the explicit expressions for the Ishibashi states in the m-basis for all the representations

of the Hilbert space of the bulk theory.
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8.4.1 Coherent states for regular gluing conditions

Boundary states associated to dS2, H2, light-cone and point-like D-branes in AdS3 must satisfy

the following regular gluing conditions [92]

(
J3
n − J̄3

−n

)
|s〉 = 0,

(
J±
n + J̄∓

−n

)
|s〉 = 0, (8.4.1)

where s labels the members of the family of branes allowed by the gluing conditions.

These constraints are linear and leave each representation invariant, so that the boundary

states must be expanded as a sum of solutions in each representation. The solutions are coherent

states, usually called Ishibashi states [105].

Let us begin introducing the following notation which will be useful in the subsequent dis-

cussions. Let

|j, w, α; n,m〉 = |j, w, α〉 {|n〉 ⊗ |m〉}, |j, w,+; n,m〉 = |j, w,+〉 {|n〉 ⊗ |m〉}, (8.4.2)

denote orthonormal bases for Ĉα,w
j ⊗ Ĉα,w

j and D̂+,w
j ⊗ D̂+,w

j , respectively. They satisfy10

〈j, w, α; n,m|j′, w′, α′; n′,m′〉 = 〈j, w, α|j, w, α〉 × 〈n|n′〉 × 〈m|m′〉

= δ(s− s′)δw,w′δ(α− α′) ǫnδn,n′ ǫmδm,m′ ,

〈
j, w,+; n,m|j′, w′,+; n′,m′

〉
= 〈j, w,+|j, w,+〉

〈
n|n′

〉
〈m |m′〉

= δ(j − j′)δw,w′ ǫnδn,n′ ǫmδm,m′ , (8.4.3)

{|n >} is an orthonormal basis in Ĉα,w
j (or D̂+,w

j ) for which the expectation values of J3
n, J

±
n

are real numbers and ǫn = ±1 is its norm squared. It is constructed by the action of the affine

currents over the ket |j, w,m = α >= Uw|j,m = α > (|j, w,m = −j >).
10The separation between |j, w, α〉 or |j, w,+〉 and |n〉, |m〉 in different kets is simply a matter of useful notation

for calculus and does not denote tensor product.
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The Ishibashi states for continuous and discrete representations are found to be

|j, w, α ≫=
∑

n

ǫnV̄ |j, w, α; n, n〉 and |j, w,+ ≫=
∑

n

ǫnV̄ |j, w,+; n, n〉 , (8.4.4)

respectively, where V is defined as the linear operator satisfying

V
∏

I

JaI
nI

|j, w,m = −j〉 =
∏

I

ηaIbIJ
bI
nI

|j, w,m = −j〉 ,

V
∏

I

JaI
nI

|j, w,m = α〉 =
∏

I

ηaIbIJ
bI
nI

|j, w,m = α〉 , (8.4.5)

with a = 1, 2, 3, ηab = diag(−1,−1, 1) and the bar denotes action restricted to the antiholo-

morphic sector. It is easy to see that this defines a unitary operator. The proof that they are

solutions to (8.4.1) follows similar lines as those of [105]. As an example, let us consider an

arbitrary base state |j′, w′, α′; n′,m′ >:

< j′, w′, α′; n′,m′|J3
r − J̄3

−r|j, w, α≫=

δ(s− s′)δw,w′δ(α− α′)
∑

n

ǫn
〈
n′
∣∣ J3

n |n〉 〈m′|V̄ |n〉 − ǫn
〈
n′
∣∣ n〉 〈m′|J̄3

−nV̄ |n〉 =

δ(s− s′)δw,w′δ(α− α′)
∑

n

ǫn
〈
n′
∣∣ J3

n |n〉 〈n|V
∣∣m′
〉
− ǫn

〈
n′
∣∣ n〉 〈n|V J3

n

∣∣m′
〉
= 0 .

The normalization fixed above for the Ishibashi states implies

≪ j, w, α|eπiτ(L0+L̄0−
c
12)eπiθ(J

3
0+J̄3

0 )|j′, w′, α′ ≫ = δ(s− s′) δw,w′ δ(α− α′) χα,w
j (τ, θ),

≪ j, w,+|eπiτ(L0+L̄0−
c
12)eπiθ(J

3
0+J̄3

0 )|j′, w′,+ ≫ = δ(j − j′) δw,w′ χ+,w
j (τ, θ). (8.4.6)

8.4.2 Cardy structure and one-point functions for point-like branes

Assuming that after Wick rotation the open string partition function in AdS3 reproduces that

of the H+
3 model and a generalized Verlinde formula, we show in this section that the one-

point functions on localized branes in AdS3 previously found in [74] (and reviewed in section

8.3) can be recovered. We also verify that the one-point functions on point-like and H2 D-
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branes exhibit a Cardy structure. Usually, this structure is accompanied by a Verlinde formula

for the representations appearing in the boundary spectrum. In fact, the Cardy structure is a

natural solution to the Cardy condition when the Verlinde theorem holds. However, as we shall

discuss, the latter does not hold in the AdS3 WZNW model. The generalized Verlinde formula

proposed in appendix E reproduces the fusion rules of the degenerate representations, but it

gives contributions to the fusion rules of the discrete representations with an arbitrary amount

of spectral flow, thus contradicting the selection rules determined in [40]. Nevertheless, we find

a Cardy structure.

Boundary states

Worldsheet duality allows to write the one loop partition function for open strings ending on

point-like branes labeled by s1 and s2 as

e−2πi k
4

θ2

τ ZAdS3
s1s2

(θ, τ, 0) =
〈
Θs1| q̃H

(P )
z̃J

3
0 |s2

〉

=
∞∑

w=−∞

∫ − 1
2

− k−1
2

dj As1

(j,w)A
s2

(j+,w+)
χ+,w
j (θ̃, τ̃ , 0) + ccr ,

where Θ denotes the worldsheet CPT operator in the bulk theory, q̃ = e2πiτ̃ , z̃ = e2πiθ̃, τ̃ =

−1/τ , θ̃ = θ/τ , (j+, w+) refer to the labels of the (j, w)-conjugate representations, ccr denotes

the contributions of continuous representations and As

(j,w) are the Ishibashi coefficients of the

boundary states.

The open string partition function for the “spherical branes” of the H+
3 model was found in

[89] for θ = 0 and extended to the case θ 6= 0 in [101]. It reads

Z
H+

3
s1s2(θ, τ, 0) =

J1+J2∑

J3=|J1−J2|

χJ3(θ, τ, 0) , (8.4.7)

where si = π
k−2(1 + 2Ji) and 1 + 2Ji ∈ N. This reveals an open string spectrum of discrete

degenerate representations.

The Lorentzian partition function is expected to reproduce that of the H+
3 model after
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analytic continuation in θ and τ . Then, if we concentrate on the one-point functions of fields

in discrete representations, we only need to consider the case θ + nτ 6∈ Z. Thus, using the

generalized Verlinde formula (see appendix E for details), namely

J1+J2∑

J3=|J1−J2|

χJ3(θ, τ, 0) =

∞∑

w=−∞

∫ − 1
2

− k−1
2

dj
SJ1

j,wSJ2
j,w

S0j,w
e2πi

k
4

θ2

τ χ+,w
j (

θ

τ
,−1

τ
, 0) , (8.4.8)

we obtain the following expression for the coefficients of the boundary states:

As

(j,w) = f(j, w) (−)w
√

2

i

(
2

k − 2

) 1
4 sin [s (1 + 2j − w(k − 2))]√

sin
[

π
k−2 (1 + 2j)

] , (8.4.9)

defined up to a function f(j, w) satisfying

f(j, w) f(−k
2
− j,−w − 1) = 1. (8.4.10)

One-point functions

To find the one-point functions associated to these point-like branes, let us make use of the

definition (8.1.9) of the boundary states (see also [107])11:

〈
Φ(H) (|j, w,m, m̄〉 ; z, z̄)

〉
s

=

(
dξ

dz

)∆j
(
dξ̄

dz̄

)∆̄j

〈0|Φ(P )
(
|j, w,m, m̄〉 ; ξ, ξ̄

)
|s〉 , (8.4.11)

where Φ(H) (|j, w,m, m̄〉 ; z, z̄) (Φ(P )
(
|j, w,m, m̄〉 ; ξ, ξ̄

)
) is the bulk field of the boundary (bulk)

CFT corresponding to the state inside the brackets12, z, z̄ denote the coordinates of the upper

half plane and ξ, ξ̄ those of the exterior of the unit disc.

Conformal invariance forces the l.h.s. of (8.4.11) to be

〈
Φ(H) (|j, w,m, m̄〉 ; z, z̄)

〉
s

=
B(s)j,wm,m̄

|z − z̄|∆j+∆̄j
, (8.4.12)

11Strictly speaking, this identity is valid on a Euclidean worldsheet. However, it is appropriate to use it here
since we want to explore the relation of our results with those of the Euclidean model defined in [74] where the
coefficients of the one-point functions are assumed to coincide with those of the Lorentzian AdS3.

12Here |j, w,m, m̄ > is a shorthand notation for |j, w,m > ⊗|j, w, m̄ > and it must be distinguished from the
orthonormal basis introduced in section 8.4.1.
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where the z-independent factor B(s)j,wm,m̄ is not fixed by the conformal symmetry. The solution

(8.4.4), (8.4.5) implies

B(s)j,wm,m̄ = (−)j+mδm,m̄As

j,w , (8.4.13)

from which the spectral flow symmetry determines f = 1. 13

It is important to note that the normalization used here differs from the one usually con-

sidered in the literature. Our normalization is such that the spectral flow image of the primary

operator corresponding to the state |j, w,m, m̄ > is normalized to 1. In particular, it implies

the following operator product expansions

J3(ζ)Φ(P )
(
|j, w,m, m̄〉 ; ξ, ξ̄

)
=

m+ k
2w

ζ − ξ
Φ(P )

(
|j, w,m, m̄〉 ; ξ, ξ̄

)
+ . . .

J±(ζ)Φ(P )
(
|j, w,m, m̄〉 ; ξ, ξ̄

)
=

√
−j(1 + j) +m(m± 1)

(ζ − ξ)1±w Φ(P )
(
|j, w,m± 1, m̄〉 ; ξ, ξ̄

)

+ . . . (8.4.15)

Comparing with the OPE of Φ̃j,w
m,m̄

(
ξ, ξ̄
)
which coincides with (3.2.16) we obtain the following

relation, valid for m = m̄ ∈ −j + Z≥0,

Φ̃j,w
m,m̄(ξ, ξ̄) = Ω (−)j+mΓ (1 + j −m) Γ (1 + j +m)

Γ (1 + 2j)
Φ(P )

(
|j, w,m, m̄〉 ; ξ, ξ̄

)
, (8.4.16)

where Ω is the normalization of Φj,w
−j,−j . We find perfect agreement between the expressions

(8.4.13) and (8.3.3) for one-point functions, as long as Ω = −
√

−ik(k−2)
16 .

13In fact, the identification < Φ(H) (|j, w,m = m̄ = −j〉 ; z, z̄) > =< Φ(H) (|j′, w′,m′ = m̄′ = j′〉 ; z, z̄) > where
j′ = − k

2
− j, w′ = w + 1 together with (8.4.13) requires f(j, w) = f(− k

2
− j, w + 1) which implies

f(j, w) = f(j, w + 2) (8.4.14)

So it is sufficient to find f(j, 0) and f(j, 1). It is immediate from this constraint and (8.4.10) that f(j, 0)2 =
f(j, 1)2 = 1. But as f must be continuous in j, it must be j independent, f(j, w) = f(w) = ±1 (i.e. the same
sign for every w). To choose the upper or the lower sign is simply a matter of convention.
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8.4.3 Cardy structure in H2 branes

In section 8.3 we reviewed the results for the one-point functions in maximally symmetric D-

branes obtained by applying the method of [74]. From the one for fields in discrete representa-

tions on H2 branes we find the following Ishibashi coefficients (see (8.3.5) and (8.4.16))

Aσ′≡(j′,w′)
(j,w) =

π√
k

(
2

k − 2

) 3
4 (−)we

4πi
k−2

(j′+ 1
2
−w′ k−2

2
)(j+ 1

2
−w k−2

2
)

√
sin
[

π
k−2(2j + 1)

] ∼ (−)w
′ Sj,w

j′,w′

√
S0j,w

, (8.4.17)

which exhibit a clear compromise between microscopic and modular data. It gives the following

degeneracy in the open string spectrum

Nj1,w1 j2,w2
j3,w3 ∼ δD+,w

j

∞∑

m=−∞

δ

(
j2 + j3 − j1 − (w2 + w3 − w1)

k − 2

2
+m

)
,

where the divergent integral
∫ 1
0 dλ

e
−2πi(m+1

2)λ
2i sin(πλ) has been replaced by its principal value, 1

2 . δD+,w
j

is one when j is within the unitary bound and vanishes if it is not. ∼ means up to the factor

−i 2π2(−)w3

k(k−2) which would imply that either the one point function computed in [74] has a subtle

modification to ensure integer coefficients in the boundary spectrum or such a factor should be

supplemented by the contribution of other representations appearing in the boundary spectrum

(associated to open string) not contained in the AdS3 WZNW spectrum (associated to closed

strings) which transform under the modular group in terms of the spectral flow images of the

principal lowest weight representations.

Contrary to what happens in RCFT with maximally symmetric D-branes, the Boundary

CFT spectrum does not coincide with the fusion rules of the Bulk CFT. The consequence of

this observation is the failure of the Verlinde Theorem.
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8.4.4 Coherent states for twined gluing conditions

The gluing conditions defining the coherent states |j, w ≫ for AdS2 branes [92], frequently called

twisted boundary conditions, are

(
J3
n + J̄3

−n

)
|j, w ≫ = 0,

(
J±
n + J̄±

−n

)
|j, w ≫ = 0 . (8.4.18)

These constraints are highly restrictive. As we show below, coherent states satisfying these

conditions can only be found for representations where the holomorphic and antiholomorphic

sectors are conjugate of each other, i.e. only for w = 0, α = 0, 12 continuous representations in

the AdS3 model.

Let us assume |j, w ≫ is an Ishibashi state associated to the spectral flow image of a discrete

or continuous representation. The spectral flow transformation (3.2.2) allows to translate the

problem of solving (8.4.18) to that of solving

(
J3
n + J̄3

−n + kwδn,0
)
|j〉w = 0 ,

(
J±
n + J̄±

−n∓2w

)
|j〉w = 0 , (8.4.19)

where |j〉w = U−wŪ−w|j, w ≫ is in an unflowed representation14.

The special case n = 0 in (8.4.19) implies 2α + kw ∈ Z and −2j + kw ∈ Z for continuous

and discrete representations, respectively. In particular, for w = 0 continuous representations

there are two solutions with α = 0, 12 , given by

|j, 0, α ≫=
∑

n

ǫnŪ |j, w, α; n, n〉 , (8.4.20)

where the antilinear operator U is defined by

U
∏

I

JaI
nI

|j, w = 0,m = α〉 =
∏

I

−JaI
nI

|j, w = 0,m = −α〉 . (8.4.21)

14Notice that in the case w = −w̄ discussed in [92] for the single covering of SL(2,R), one gets (8.4.18) with
the unflowed |j >w,w̄ state replacing |j, w ≫ instead of (8.4.19). Then, once an Ishibashi state is found for
w = −w̄ = 0, the solutions for generic representations with w = −w̄ are trivially obtained applying the spectral
flow operation, and coherent states in arbitrary spectral flow sectors are found. This fails in AdS3 and thus the
discussion in loc. cit. does not apply here, except for w = 0 discrete or w = 0, α = 0, 1

2
continuous representations.
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It can be easily verified that this defines an antiunitary operator and it is exactly the same

Ishibashi state found in SU(2) [105].

To understand why there are no solutions in other modules, let us expand the hypothetical

Ishibashi state in the orthonormal base |j, w, ζ > {|n > ⊗|m >}, with ζ = α or + and |n >,

|m > eigenvectors of J3
0 , L0 and J̄3

0 , L̄0 respectively. The constraint that Ishibashi states are

annihilated by L0 − L̄0 forces |n >, |m > to be at the same level. But taking into account that

all modules at a given level are highest or lowest weight representations of the zero modes of

the currents (with the only exception of w = 0 continuous representations) and the fact that

the eigenvalues of the highest (lowest) weight operators decrease (increase) after descending a

finite number of levels, the first equation in (8.4.18) with n = 0 has no solution below certain

level. This implies that below that level there are no contributions to the Ishibashi states and

so, using for instance the constraint (Ja
1 + J̄a

−1)|j, w ≫= 0, it is easy to show by induction that

no level contributes to the coherent states.

The coherent states defined above are normalized as

≪ j, 0, α|eπiτ(L0+L̄0−
c
12)eπiθ(J

3
0−J̄3

0 )|j′, 0, α′ ≫ = δ(s− s′)δ(α− α′) χα,0
j (τ, θ), (8.4.22)

for α = 0, 12 . The fact that it is only possible to construct Ishibashi states associated to w = 0

continuous representations is again in agreement with the one-point functions found in [74] and

the conjecture in [99] that only states in these representations couple to AdS2 branes.
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Chapter 9

Conclusions and perspectives

Now it is time to summarize and to discuss the results obtained during the doctoral activity and

to indicate possible directions to continue these investigations.

String theory in anti de Sitter spaces has occupied a central place in the last twenty years.

The initial motivation was to learn more about string theory with Lorentzian target space with

a non trivial timelike direction. Indeed this is one of the simplest theories, if not the simplest,

with this property and it took not too much time to realize the complexity and richness of the

model still under study. A few years later from the initial investigations by O’Raifeartaigh et

al [36], the Maldacena conjecture taught us that string theory with target AdS spaces are not

only interesting models to learn more about string theory with the aim of applying it to more

realistic scenarios, but it is also an incredible tool which allows us to analyze non perturbative

regimes of gauge theories, with applications from quark gluon plasma and quantum gravity of

black holes to condensed matter systems.

In this thesis we have concentrated on some aspects of the worldsheet theory of strings in

AdS3. This is described by a WZNW model with non compact group which implies that the

Conformal Field Theory is non Rational. RCFT was extensively studied in the literature and

was completely solved but unfortunately the situation is much more involved in the case of non

RCFT where many of the properties which helped in the resolution of the former do not hold,

e.g. the conformal blocks cannot be solved from purely algebraic methods, because the fact that
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three point functions do not vanish does not necessarily imply that the conjugate of the third

field will be in the fusion rules of the first two. The proofs of the factorization and crossing

symmetry of four point functions are of considerable complexity. The spectrum contains sectors

where L0 is not bounded from below, and some properties like the Cardy formula, determining

the one point functions of the Boundary CFT, and the Verlinde Theorem, which determines the

fusion rules of the Bulk CFT and the Open string spectrum of the Boundary CFT, do not work

any more.

Some non RCFTs, like Liouville theory and the H+
3 model were successfully solved, both

the Bulk and the Boundary CFTs. Instead, even though much is known today about the AdS3

WZNW model, its spectrum was completely determined, there is great confidence on the one

point functions of maximally symmetric and some symmetry breaking D-branes and on the

structure constants, it has not been completely solved as the crossing symmetry has not yet

been established.

We made the following contributions to the the resolution of the AdS3 WZNW model.

We determined the operator algebra as presented in chapter 4. Performing the analytic

continuation of the expressions in the Euclidean H+
3 model proposed in [41, 42] and adding

spectral flow structure constants, we obtained the OPE of spectral flow images of primary fields

in the Lorentzian theory. We have argued that the spectral flow symmetry forces a truncation in

order to avoid contradictions and we have shown that the consistent cut amounts to the closure

of the operator algebra on the Hilbert space of the theory as only operators outside the physical

spectrum must be discarded and moreover, every physical state contributing to a given OPE is

also found to appear in all possible equivalent operator products. The fusion rules obtained in

this way are consistent with results in [40], deduced from the factorization of four-point functions

of w = 0 short strings in the boundary conformal field theory, and contain in addition operator

products involving states in continuous representations. A discussion of the relation between

our results and some conclusions in [40] can also be found in chapter 4. Several consistency

checks have been performed in this chapter and the OPE displayed in items 1. to 3. of section

4.2.5 can then be taken to stand on solid foundations.
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Given that scattering amplitudes of states of string theory on AdS3 should be obtained from

correlation functions in the AdS3 WZNW model, our results constitute a step forward towards

the construction of the scattering S-matrix in string theory on Lorentzian AdS3 and to learn

more about the dual conformal field theory on the boundary through AdS/CFT, in the spirit

of [40]. Indeed an important application of our results would be to construct the S-matrix of

long strings in AdS3 which describes scatterings in the CFT defined on the Lorentzian two-

dimensional boundary. In particular, the OPE of fields in spectral flow non trivial continuous

representations obtained here sustains the expectations in [40] that short and long strings should

appear as poles in the scattering of asymptotic states of long strings.

The full consistency of the fusion rules should follow from a proof of factorization and crossing

symmetry of the four-point functions. An analysis of the factorization of amplitudes involving

states in different sectors of the theory was presented in chapter 5. As an interesting check we

have shown that using the factorization ansatz and OPE obtained in the previous chapter we

can reproduce the spectral flow selection rules of four and higher point functions determined in

[40]. We illustrated in one example that the amplitudes must factorize as expected in order to

avoid inconsistencies, i.e. only states according to the fusion rules determined in chapter 4 must

propagate in the intermediate channels.

In chapter 6 we have computed the characters of the relevant representations of the AdS3

model on the Lorentzian torus and we showed that contrary to other proposals these seem to

preserve full information on the spectrum. The price to pay is that characters have now a

subtler definition as distributional objects. In the following chapter we studied their modular

transformations. We fully determined the generalized S matrix, which depends on the sign of τ ,

and showed that real modular parameters are crucial to find the modular maps, which implies

that if one employs the standard method for Lorentzian models and Wick rotate the characters,

these not only loose information on the spectrum but also do not transform properly under

modular transformations.

We have seen that the characters of continuous representations transform among themselves

under S while both kinds of characters appear in the S transformation of the characters of
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discrete representations. An important consequence of this fact is that the Lorentzian partition

function is not modular invariant (and the departure from modular invariance is not just the

sign appearing in (7.2.2)). The analytic continuation to obtain the Euclidean partition func-

tion (which must be invariant) is not fully satisfactory. Following the road of [37] and simply

discarding the contact terms, one recovers the partition function of the H+
3 model obtained

in [55]. But even though modular invariant, this expression has poor information about the

spectrum. Not only the characters of the continuous representations vanish in all spectral flow

sectors but also those of the discrete representations are only well defined in different regions of

the moduli space, depending on the spectral flow sector, so that it makes no mathematical sense

to sum them in order to find the modular S transformation. An alternative approach was fol-

lowed in [73], where an expression for the partition function was found starting from that of the

SL(2,R)/U(1) coset computed in [116] and using path integral techniques. Although formally

divergent, it is modular invariant and allows to read the spectrum of the model1. It was shown

that the partition function obtained in [55, 37] is recovered after some formal manipulations.

In the following chapter we computed the full set of Ishibashi states for all the gluing maps

leading to maximally symmetric D-branes and to all the representations of the spectrum. The

treatment of the boundary states presented here differs from previous works in related models.

While we have expressed them as a sum over Ishibashi states, in other related models such

as H+
3 [93], Liouville [117] or the Euclidean black hole [101], the boundary states have been

expanded, instead, in terms of primary states and their descendants. The coefficients in the

latter expansions directly give the one-point functions of the primary fields. For instance, in

the H+
3 model, the gluing conditions were imposed in [93] not over the Ishibashi states but over

the one-point functions. One of the reasons why this approach seems more suitable for H+
3 is

the observation that the expectation values used to fix the normalization of the Ishibashi states

diverge in the hyperbolic model. As we have seen, this is not the case in AdS3. Another difficulty

in applying the standard techniques to H+
3 models comes form the fact that the spectrum does

not factorize as holomorphic times antiholomorphic sectors.

We found that there is a one to one map between the representation of the models and the

1The spectrum was also obtained from a computation of the Free Energy in [39].
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family of maximally symmetric D-branes. Thanks to this observation we then showed that the

one-point functions of fields in discrete representations coupled to point-like and toH2 branes are

determined by the generalized modular S matrix, as usual in RCFT. We also found a generalized

Verlinde formula which gives the fusion rules of the degenerate representations of sl(2) appearing

in the spectrum of open strings attached to the point-like D-branes of the model.

There are some natural directions to follow in the future. The most important and most

difficult one is to prove the crossing symmetry of four point functions. We hope that this will

resolve the problem of the breaking of analyticity and that it can be used to put the fusion rules

on a firmer mathematical ground.

Another interesting line of investigation is to better understand how the information is lost

in the procedure implemented in [73] when reproducing the H+
3 partition function and to explore

if it is possible to find an analytic continuation of the Lorentzian partition function computed

here leading to the integral expression obtained in loc.cit. (or an equivalent one), in a controlled

way in which the knowledge on the spectrum is not removed.

The Verlinde like formula was shown to hold for generic θ, τ far from θ+nτ ∈ Z. It would be

interesting to study the extension to generic θ, τ which requires to consider the S matrix block

(7.2.24). Furthermore, one could also study the modular transformations of the characters

of other degenerate representations and their spectral flow images and explore the validity of

generalized Verlinde formulas in these cases. It will be very interesting to also compute the

boundary spectrum of H2, dS2, light cone and point like D-branes independently of the H+
3 and

the coset model. This can shed light on the puzzle which arises when considering the open/closed

duality which gives negative degeneracies in the open string spectrum of the H2 branes.

The original contributions discussed along this thesis are based on the author’s publications

[43, 49]. Other investigations performed during the doctoral period were published in [108, 109].

In [108] we discussed the stability of certain systems of branes with non vanishing background

gauge fields in a flat target space. In [109] we performed a dimensional reduction of Double Field

Theory (DFT) [110, 111, 112] and we found that it reproduces the four dimensional bosonic

electric sector of gauged N = 4 supergravity [113]. We showed that the standard NS-NS (non)-
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geometric fluxes (H, ω, Q, R) can be identified with the gaugings of the effective action, and

that the string d-dimensional background can be decoded from the double twisted 2d-torus. The

fluxes obey the standard T-duality chain and satisfy Jacobi identities reproducing the results of

[114]. In this way, the higher dimensional origin of the string fluxes can be traced to the new

degrees of freedom of DFT. Thus, the formalism of DFT allows to describe effective field theories

in an intermediate stage between supergravity and the full quantum string theory description.

Even though this mechanism was successfully implemented in WZNW models [115], it seems

unnatural to introduce dual coordinates to winding because there are no non trivial cycles in

AdS3.
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Appendix A

Basic facts on CFTs

A.1 Correlation functions

Correlation functions play a central role in any Quantum Field Theory, as they are the physical

objects that connect the theory with measured quantities. Computing correlators in non trivial

curved spaces usually involve arduous calculations, but fortunately in many situations the sym-

metries of the specific model one is analyzing can be exploited to help in the computations. For

instance, the global conformal symmetry completely fixes the coordinate dependence of two and

three point functions and it determines that of four point functions up to functions of the an-

harmonic ratios, which are coordinate combinations invariant under the global conformal group.

There are two linearly independent ratios in generic spacetime dimension, e.g. we may consider

x =
x12 · x34

x13 · x24
, y =

x12 · x34

x23 · x14
, (A.1.1)

where the notation xij = xi − xj was used.

As is well known, in the particular case of two dimensional CFT there is an enhancement

of the symmetry group. The conformal algebra is now a local symmetry and it is generated by

all Virasoro generators Ln (n ∈ Z) in contrast with the global conformal symmetry of higher

dimensional theories generated by {L−1, L0, L1}. If one replaces the two dimensional vectors

xi by complex coordinates xi, x̄i one rapidly realizes that the conformal group is nothing else
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than the group of holomorphic and antiholomorphic maps. In this basis the global invariant

combinations are the analogous of (A.1.1) replacing the vectors by the complex variables and the

dot product by complex multiplication. An important difference holding in the two dimensional

case is that only one of the anharmonic ratios is linearly independent because four points require

an extra constraint to lie in the same plane. Indeed it is easily found that y = x
1−x and ȳ = x̄

1−x̄ .

Even in the simplest non trivial correlators, the three point functions, their coefficients Cmnp

(see (A.1.4)) are not fixed by conformal symmetry. Dynamical inputs are required, like crossing

symmetry as well as the full local conformal symmetry, not just the global one, to completely

determine them, as will be clear in section A.3. Genus zero correlation functions of arbitrary

higher order can be written in a factorized form when the operator algebra and the three point

function coefficients are known and so the theory is said to be completely solved [75].

Let us consider an arbitrary two point function of primary fields φm. As is well known,

global conformal symmetry fixes it to be

< φm(z1, z̄1)φn(z2, z̄2) >=





0 , ∆m 6= ∆n or ∆̄m 6= ∆̄n,

Cmn

z2∆12 z̄2∆̄12
, ∆m = ∆n = ∆, ∆̄m = ∆̄n = ∆̄.

(A.1.2)

Cmn is simply the normalization of the primary states defined as the asymptotic states

generated by the primary fields, i.e

|∆n > = φn(0, 0)|0 > ,

< ∆n| = lim
z,z̄→∞

z2∆n z̄2∆̄n < 0|φn(z, z̄) . (A.1.3)

Since correlators are invariant under field permutations, Cmn must be symmetric and so it is

always possible to find a basis where Cmn is diagonalizable and, if desired, simply a Kronecker

delta 1 when the fields are properly normalized. In order to avoid confusion, the reader has to

bear in mind that (for historical reasons) this will not be the convention we will be using when

we refer to the AdS3 WZNW model. In order to change to a self conjugate basis we need the

field redefinition, φ±m = (δm
n ± Cmn)φn, C being the charge conjugation matrix, followed by the

1Or a combination of Kronecker and Dirac delta functions in the case of continuous conformal families.
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appropriate normalization.

Concerning higher point correlation functions, global conformal symmetry forces three point

functions of primary fields to be

< φm(z1, z̄1)φn(z2, z̄2)φp(z3, z̄3) >=
Cmnp

∏
i<j z

∆ij

ij z̄
∆̄ij

ij

, (A.1.4)

where ∆ij = ∆i+∆j−∆k, k 6= i, j. Cmnp, not determined by global conformal symmetry, is the

so called three point function coefficient determining the structure constants. As commented

above the coordinate dependence of the four point function is not completely fixed. These are

given by

< φm1(z1, z̄1) . . . φm4(z4, z̄4) >=
G21

34(z, z̄)
∏

i<j z
∆i+∆j−

∆
3

ij z̄
∆̄i+∆̄j−

∆̄
3

ij

, (A.1.5)

where z is the anharmonic ratio defined as x in (A.1.1) and ∆ =
∑4

i=1∆i.

It is interesting to note that global conformal transformations can be used to fixed z1 →

∞, z2 = 1, z4 = 0 and so z3 = z. So that the knowledge of the correlation function in these

points completely fixes the four point function with primary fields inserted in any other points.

Indeed f(z, z̄), which completely determines the correlator, can be alternatively defined as

G21
34(z, z̄) = lim

z′1,z̄
′
1→∞

z′1
2∆1 z̄′1

2∆̄1 < φm1(z
′
1, z̄

′
1)φm2(1, 1)φm3(z, z̄)φm4(0, 0) > . (A.1.6)

A.2 Operator Product Expansion

Scale invariance requires that the Operator Product Expansion (OPE) must have the following

structure

φm1(z, z̄)φm2(0, 0) =
∑

p

∑

{k,k̄}

C
p{k,k̄}
12 z∆p−∆1−∆2+K z̄∆̄p−∆̄1−∆̄2+K̄φ{k,k̄}p (0, 0) (A.2.1)
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whereK =
∑
ki and {ki} denotes an arbitrary collection of non negative integers {k1, k2, . . . kN},

such that φ
{k,k̄}
p (z, z̄) denotes the descendant field

φ{k,k̄}p (z, z̄) = L−k1 . . . L−kN L̄−k̄1
. . . L̄−k̄N̄

φp(z, z̄) (A.2.2)

So the operator algebra is determined when all the conformal weights, ∆p, and OPE coeffi-

cients, C
p{k,k̄}
12 , are known.

In order to get more information on the later, let us consider the asymptotic behavior of the

following particular three point function of primary fields

< ∆r|φm1(z, z̄)|∆m2 > = limw,w̄→∞w
2∆r w̄2∆̄r < φr(w, w̄)φm1(z, z̄)φm2(0, 0) >

=
Crm1m2

z∆1+∆2−∆r z̄∆̄1+∆̄2−∆̄r
(A.2.3)

Then, after inserting the OPE (A.2.1) and using the orthogonality in the Verma module we

conclude

Cp
12 ≡ C

p,{0,0}
12 = Cpm1m2 (A.2.4)

so that the leading contribution in the operator algebra is simply given by the three point

function of primary fields.2

Following similar steps with insertion of descendant fields, one can determine the other

coefficients. The correlations with descendant fields are obtained form those of the primaries by

repeatedly applying Virasoro generators, and they are non vanishing only if the correlator with

highest weight is not vanishing. So, it is natural to propose the factorization ansatz

C
p,{k,k̄}
12 = Cp

12 β
p{k}
12 β̄

p{k̄}
12 . (A.2.6)

2In the convention we will use for primary fields of the AdS3 WZNW model, the fields will not be self conjugate
and so (A.2.4) must be replaced by

Cp
12 ≡ C

p,{0,0}
12 = Cp∗m1m2

, (A.2.5)

where p∗ denotes the representation conjugate to the one labeled by p.
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The coefficients β
p{k}
12 can be recursively determined as functions of conformal weights and

the central charge. Let us show how it works.

Of course, by definition, β
{0}
12 = 1. To find the other coefficients, notice that

φ1(z, z̄)|∆2, ∆̄2 > = φ1(z, z̄)φ2(0, 0)|0 >

=
∑

p

z∆p−∆1−∆2 z̄∆̄p−∆̄1−∆̄2 |z,∆p > |z̄, ∆̄p >, (A.2.7)

where

|z,∆p > =
∑

{k}

zkβ
p{k}
12 L−k1 . . . L−kN |∆p >

≡
∞∑

N=0

zN |N,∆p > (A.2.8)

Applying the Virasoro mode Ln (n > 0) on (A.2.7) and using the commutator of Virasoro modes

with primary fields (3.1.18)

Lnφ1(z, z̄)|∆2, ∆̄2 > = [Ln, φ1(z, z̄)]|∆2, ∆̄2 >

=
[
zn+1∂z + zn(n+ 1)∆1

]
φ1(z, z̄)|∆2, ∆̄2 > (A.2.9)

one obtains

Ln|N,∆p > = 0 , N = 1, 2, . . . , n− 1

Ln|N,∆p > = (n∆1 +∆p −∆2 +N − n)|N − n,∆p >, N = n, n+ 1, . . . .(A.2.10)

The first, non trivial, case is |N = 1,∆p >= β
p{1}
12 L−1|∆p >, satisfying

L1|1,∆p > = (∆p +∆1 −∆2)|∆p >

= β
p{1}
12 [L1, L−1]|∆p >

= 2∆pβ
p{1}
12 |∆p > (A.2.11)
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from which

β
p{1}
12 =

∆p +∆1 −∆2

2∆p
. (A.2.12)

At the next level, |2,∆p >= β
p{1,1}
12 L2

−1|∆p > +β
p{2}
12 L−2|∆p >. Now, acting with L1, and

L2 on |2,∆p > and using the relations

[L1, L
2
−1] = 4L−1L0 + 2L−1 ,

[L1, L−2] = 3L−1 ,

[L2, L
2
−1] = 6L−1L1 + 6L0 ,

[L2, L−2] = 4L0 +
c

12
, (A.2.13)

one finds

β
p{1,1}
12 =

18∆p(∆p + 2∆1 −∆2)− 3(∆p +∆1 −∆2 + 1)(∆p +∆1 −∆2)(4∆p +
c
2)

6∆p

[
18∆p + (4∆p +

c
2)(2 + 4∆p)

] ,

β
p{2}
12 =

(2 + 4∆p)(∆p + 2∆1 −∆2) + 3(∆p +∆1 −∆2 + 1)(∆p +∆1 −∆2)

18∆p + (4∆p +
c
2)(2 + 4∆p)

. (A.2.14)

At level N , one has P (N) different coefficients β
p{k}
12 , but this is exactly the number of ways

|N,∆p > can be brought to zero level by acting with Virasoro modes, Ln, n = 1, 2, . . . , N . The

number of unknowns equals the number of equations and so the problem admits solution.

Notice that knowledge of Cmnp and the β
p{k}
12 coefficients determines the three point functions

containing arbitrary descendant fields.

The knowledge of the coefficients of the three point functions of primary fields, Cmnp, as well

as the knowledge of the conformal weights, ∆n, and the central charge, c, completely determines

the operator algebra, and with it any higher order correlation function can be written, at least

in a factorized form, in terms of three point functions. In this sense the theory is completely

determined once the central charge, conformal weights and three point function coefficients of
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primary fields are known. We will come back to this issue in section A.3.

In the case of a WZNW model, the coefficients of the correlation functions also depend on

parameters labeling states of representations of the algebra. Nevertheless, new constraints must

be satisfied. For instance, from the invariance of the correlation functions under the action of

the group G of the WZNW model the following Ward identity must be satisfied

n∑

i=1

tai < φm1(z1) . . . φmn(zn) >= 0, (A.2.15)

where the index i in tai denotes action on φmi
. E.g. invariance under the action of t3 in WZNW

models with sl(2) symmetry requires the sum of the eigenvalues of J3
0 to vanish in any correlation

function.

The combination of the Ward identities with the Sugawara construction gives rise to a partial

differential equation to be satisfied by the correlators. It plays a fundamental role in WZNW

models and is usually referred to as the Knizhnik-Zamolodchikov (KZ) equation:


∂zi +

1

k + gc

∑

j 6=i

∑
a t

a
i ⊗ taj
zij


 < φm1(z1) . . . φmn(zn) >= 0. (A.2.16)

We will use it when considering the factorization of four point functions (see section 5.3 ).

The reason why this is particularly important in the case of four point functions is because in

this case the partial differential equation becomes an ordinary differential equation, since only

one degree of freedom (the anharmonic ratio) is not fixed by global conformal symmetry.

Extra constraints follow with the introduction of null states in the correlators. Let us suppose

that the descendant field generated by the action of certain chain of generators on a primary field

is a null vector. The correlation function with such a null field vanishes but by using the Wick

theorem such a correlator can be expressed in terms of correlators where the currents act on the

other primary fields giving rise to differential equations for the correlators. In fact, the usage of

the fusion relations in four point functions with degenerate fields (i.e, primary fields with null

descendants) was the key to solve the structure constants of the Liouville theory [118, 119] as
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well as the ones of the H+
3 model [41].

A.3 The bootstrap approach

As we commented in section A.1, coordinates in 4-point functions can be set to (∞, 1, x, 0), x

being the anharmonic ratio defined in (A.1.1). Notice that G21
34(x, x̄) defined in last section can

also be written as

G21
34(x, x̄) =< ∆1, ∆̄1|φ2(1, 1)φ3(x, x̄)|∆4, ∆̄4 > (A.3.1)

After inserting the operator algebra (A.2.1) one ends with

G21
34(x, x̄) =

∑

p

Cp
34C

p
12A

21
34(p|x, x̄), (A.3.2)

where we introduced the partial waves, A21
34(p|x, x̄)

A21
34(p|x, x̄) =

∑

p

(Cp
12)

−1x∆p−∆3−∆4 x̄∆̄p−∆̄3−∆̄4 < ∆1, ∆̄1|φ2(1, 1)ψp(x, x̄|0, 0)|0 >

= F21
34 (p|x) F̄21

34 (p|x̄), (A.3.3)

wherein

ψp(x, x̄|0, 0) =
∑

{k,k̄}

β
p{k}
34 β̄

p{k̄}
34 xK x̄K̄φ{k,k̄}p (0, 0), (A.3.4)

the conformal blocks are given by

F21
34 (p|x) = x∆p−∆3−∆4

∑

{k}

β
p{k}
34 xK

< ∆1|φ2(1)L−k1 . . . L−kN |∆p >

< ∆1|φ2(1)|∆p >
(A.3.5)

and similarly for the antiholomorphic ones.

As will be clear below the purpose of factorizing four point functions as in (A.3.2) is because

the conformal blocks are completely determined when conformal weights and the central charge
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are known.

The general explicit expression for conformal blocks is not known. Just in a few cases, (e.g.

minimal models) one has a closed expression. The strategy is to expand it in power series

F21
34 (p|x) = x∆p−∆3−∆4

∞∑

ℓ=0

Fℓx
ℓ, (A.3.6)

where obviously F0 = 1. The next coefficient, F1 is

F1 = β
p{1}
34

< ∆1|φ2(1)L−1|∆p >

< ∆1|φ2(1)|∆p >

=
(∆p +∆2 −∆1)(∆p +∆3 −∆4)

2∆p
, (A.3.7)

where β
p{1}
12 was computed in (A.2.12) and the commutator of a primary with a Virasoro mode

(see (3.1.18) ) was used.

The situation becomes rapidly tedious for higher coefficients. For instance F2 is an involved

combination of conformal weights and the central charge, which is three lines long.

The invariance of correlation functions under field permutations imposes a series of relations

over conformal blocks. For instance, after the conformal transformation z → z−1 one ends with

∑

p

Cp
21 C

p
34 F21

34 (p|x) F̄21
34 (p|x̄) =

∑

q

Cq
24 C

q
31 F24

31

(
q|x−1

)
F̄24
31

(
q|x̄−1

)
. (A.3.8)

On the other hand, after z → 1− z, one finds

∑

p

Cp
21 C

p
34 F21

34 (p|x) F̄21
34 (p|x̄) =

∑

q

Cq
41 C

q
32 F41

32 (p|1− x) F̄41
32 (p|1− x̄). (A.3.9)

These conditions are a realization of the crossing symmetry and are usually referred to as

the bootstrap equations, being the sole dynamical input required to solve the theory, as they can,

in principle, be exploited to find the three point function coefficients, Cmnp and the conformal

dimensions, ∆n.

Indeed, let us suppose that the conformal blocks are known for generic conformal weights,
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and suppose that the theory we are interested in has N conformal families, e.g. a RCFT, then

we have N3 (Cmnp) + N (∆n) unknowns. These have to be contrasted with the N4 conditions

which follow from a naive counting. There is no proof that the problem admits solution in

a generic case, but in many situations, e.g the minimal models, the bootstrap equations were

completely solved. This road to solve the three point function coefficients and the conformal

weights is usually denoted as the bootstrap aproach. This method was developed in the seminal

work [75] and the interested reader will find there the application to some interesting examples.
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Appendix B

Analytic structure of W1

The purpose of this appendix is to study the analytic structure of W1. In particular, we are

specially interested in possible zeros appearing in W1 which are not evident in the expression

(4.2.25), but are very important in our definition of the OPE.

Let us recall some useful identities relating different expressions for G



a, b, c

e, f


 [120],

G



a, b, c

e, f


 =

Γ(b)Γ(c)

Γ(e− a)Γ(f − a)
G



e− a, f − a, u

u+ b, u+ c


 , (B.0.1)

G



a, b, c

e, f


 =

Γ(b)Γ(c)Γ(u)

Γ(f − a)Γ(e− b)Γ(e− c)
G



a, e− b, e− c

e, a+ u


 , (B.0.2)

where u is defined as u = e+ f − a− b− c. Using the permutation symmetry among a, b, c and

e, f , which is evident from the series representation of the hypergeometric function 3F2, seven

new identities may be generated. In what follows we use these identities in order to obtain the

greatest possible amount of information on W1.

Consider for instance C12 defined in (4.2.22). Using (B.0.1), it can be rewritten for j1 =
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−m1 + n1, with n1 a non negative integer, as

C12 =
Γ(−N)Γ(−j13)Γ(−j12)Γ(1 + j2 +m2)

Γ(−j3 −m3)

×
n1∑

n=0



n1

n




(−)n

Γ(n− 2j1)

Γ(n− j12)

Γ(−j12)
Γ(n+ 1 + j23)

Γ(1 + j23)

Γ(1 + j3 −m3)

Γ(1 + j3 −m3 − n1 + n)
.(B.0.3)

Using (B.0.2) instead of (B.0.1), one finds an expression for C12 equal to (B.0.3) with j3 →

−1− j3.

There is a third expression in which C12 can be written as a finite sum for generic j2, j3. This

follows from (4.2.22), using the identity obtained from (B.0.2) with (e↔ f). This expression is

explicitly invariant under j3 → −1− j3.

Consider for instance (B.0.3). All quotients inside the sum are such that the arguments in the

Γ−functions of the denominator equal those in the numerator up to a positive integer, except for

the one with Γ(n−2j1) which is regular and non vanishing for Re j1 < −1
2 . Then, each quotient

is separately regular. Eventually, some of them may vanish, but not for all values of n. In

particular, for n = 0 the first two quotients equal one. The last factor may vanish for n = 0, but

for n = n1 it equals one. However, particular configurations of ji, mi may occur such that one of

the first two quotients vanishes for certain values of n, namely n = nmin, nmin + 1, . . . , n1, and

the last one vanishes for other special values, namely n = 0, 1, . . . , nmax. Thus, if nmax ≥ nmin,

all terms in the sum cancel and C12 vanishes as a simple zero. In fact, let us consider for instance

both 1 + j23 = −p3 and 1 + j3 −m3 = 1 + n3, with p3, n3 non negative integers. This requires

Φj2,w2
m2,m2

∈ D−,w2
j2

and j3 = j1 − j2 − 1− p3 = m3 + n1 − n2 − 1− p3, which impose p3 < n1 and

allow to rewrite the sum in (B.0.3) as

p3∑

n=0

1

n!

n1!

(n1 − n)!

p3!

(p3 − n)!

Γ(n− j12)

Γ(−j12)
1

Γ(n− 2j1)

n3!

Γ(1 + n3 − n1 + n)
. (B.0.4)

Finally, taking into account that 1+n3−n1+n = −n2−(p3−n) ≤ 0, for n = 0, 1, . . . , p3, the

sum vanishes as a simple zero. A similar analysis for j12 = p3 ≥ 0 and 1+ j3 −m3 = 1+ n3 ≥ 1

shows that no zeros appear in this case when Φj2,w2
m2,m2

is the spectral flow image of a primary
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field.

From the expression obtained for C12 by changing j3 → −1 − j3, one finds zeros again for

Φj2,w2
m2,m2

∈ D−,w2
j2

. These appear when both j3 = j2 − j1 + p3 and j3 = −m3 − 1 − n3 hold

simultaneously.

Finally, repeating the analysis for the sum in the third expression for C12, i.e. that explicitly

symmetric under j3 → −1− j3, one finds the same zeros as in the previous cases.

Let us now consider the analytic structure of W1 := D1C
12C12. Expression (4.2.25) together

with the discussions above allow to rewrite W1 as

W1(ji;mi,mi) =
(−)m3−m3+n1π2γ(−N)

γ(−2j1)γ(1 + j12)γ(1 + j13)

Γ(1 + j2 +m2)

Γ(−j2 −m2)

Γ(1 + j3 +m3)

Γ(−j3 −m3)
E12E12 , (B.0.5)

where E12 is given by Γ(−2j1) times (B.0.4). E12 has no poles but it may vanish for certain

special configurations if Φj2,w2
m2,m2

∈ D−,w2
j2

, namely n2 < n1 − p3 and j3 = m3 + n3 or j3 =

−m3 − 1 − n3, with n3 = 0, 1, 2, . . . , where p3 = −1 − j23 in the former and p3 = j13 in the

latter. The same result applies to E12, changing ni by ni. Obviously one might find, using other

identities, new zeros for special configurations. This could be a difficult task, because the series

does not reduce to a finite sum in general. Fortunately, it is not necessary for our purposes.
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Appendix C

The Lorentzian torus

In this appendix we present a description of the moduli space of the torus with Lorentzian

metric1. Although it can be easily obtained from the Euclidean case, we include it here for

completeness.

Consider the two dimensional torus with worldsheet coordinates σ1, σ2 obeying the identifi-

cations

(σ1, σ2) ∼= (σ1 + 2πn, σ2 + 2πm), n,m ∈ Z. (C.0.1)

By diffeomorphisms and Weyl transformations that leave invariant the periodicity, a general two

dimensional Lorentzian metric can be taken to the form

ds2 = (dσ1 + τ+dσ
2)(dσ1 + τ−dσ

2), (C.0.2)

where τ+, τ− are two real independent parameters. Recall that the metric of the Euclidean torus,

namely ds2 = |dσ1 + τdσ2|2, is degenerate for τ ∈ R since det g = (τ − τ∗)2. In contrast, here

it is degenerate for τ− = τ+.

The linear transformation

σ̃1 = σ1 + τ+σ2, σ̃2 = τ−σ2 , τ± =
τ− ± τ+

2
, (C.0.3)

1Tori in 1 + 1 dimensions have been considered previously in [121] - [124] in the context of string propagation
in time dependent backgrounds.
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takes (C.0.2) to the Minkowski metric. The new coordinates obey the periodicity conditions

(σ̃1, σ̃2) ∼= (σ̃1 + 2πn+ 2πmτ+, σ̃2 + 2πτ−m) , n,m ∈ Z , (C.0.4)

while the light-cone coordinates σ̃± = σ̃1 ± σ̃2, obey

σ̃± ∼= σ̃± + 2πn+ 2πmτ∓ . (C.0.5)

In the Euclidean case, there are in addition global transformations that cannot be smoothly

connected to the identity, generated by Dehn twists. A twist along the a cycle of a Lorentzian

torus preserves the metric (C.0.2) but changes the periodicity to

(σ̃1, σ̃2) ∼= (σ̃1 + 2πn+ 2πm(1 + τ+), σ̃2 + 2πm τ−) , n,m ∈ Z, (C.0.6)

or

σ̃± ∼= σ̃± + 2πn+ 2πm (τ∓ + 1) . (C.0.7)

Thus it gives a torus with modular parameters (τ ′+, τ
′
−) = (τ+ + 1, τ− + 1). A twist along the b

cycle leads to the following periodicity conditions

(σ̃1, σ̃2) ∼= (σ̃1 + 2πn(1 + τ+) + 2πm τ+, σ̃2 + 2πn τ− + 2πm τ−), n,m ∈ Z, (C.0.8)

or

σ̃± ∼= σ̃± + 2πn(1 + τ∓) + 2πm τ∓ . (C.0.9)

As in the Euclidean case, this is equivalent to a torus with (τ ′+, τ
′
−) = ( τ+

τ++1 ,
τ−

τ−+1) and confor-

mally flat metric. But there is a crucial difference. In the Euclidean case, the overall conformal

factor multiplying the flat metric is positive definite, namely 1
(1+τ)(1+τ∗) . On the contrary, in

the Lorentzian torus, the conformal factor 1
(1+τ−)(1+τ+) is not positive definite and so, it cannot

be generically eliminated through a Weyl transformation.

Defining the modular S transformation as Sτ± = − 1
τ±

, we can write τ ′± = τ±
1+τ±

= TST τ±,
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and then the problem can be reformulated in the following way. The T transformation works as

in the Euclidean case. Instead, under a modular S transformation, the torus defined by (C.0.1)

and (C.0.2) is equivalent to a torus with the same periodicities but with the following metric

(after diffeomorphisms and Weyl rescaling)

ds2 = sgn(τ−τ+)
(
dσ′1 + τ+dσ

′2
) (
dσ′1 + τ−dσ

′2
)
. (C.0.10)
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Appendix D

The mixing block of the S matrix

In this appendix we sketch the computation of the off-diagonal block of the S matrix mixing

the characters of continuous and discrete representations.

A useful identity

It is convenient to begin displaying a useful identity.

Let h(x; ǫ0) =
1

1−e2πi(x+iǫ0)
, with x ∈ R, be the distribution defined as the weak limit ǫ0 → 0

and G(x; ǫ1, ǫ2, ǫ3, . . . ) a generalized function having simple poles outside of the real line1, defined

as the weak limit ǫi → 0, i = 1, 2, 3, .... The non vanishing infinitesimals ǫi are allowed to depend

on the x coordinate and they all differ from each other in an open set around each simple pole.

Then, the following identity holds (in a distributional sense):

1

1− e2πi(x+iǫ0)
G(x; ǫ1, ǫ2, ǫ3, . . . ) =

1

1− e2πi(x+iǫ̃0)
G(x; ǫ1, ǫ2, ǫ3, . . . )

+
∑

x↓
i

δ(x− x↓i )G(x; ǫ1 − ǫ0, ǫ2 − ǫ0, ǫ3 − ǫ0, . . . )

−
∑

x↑
i

δ(x− x↑i )G(x; ǫ1 − ǫ0, ǫ2 − ǫ0, ǫ3 − ǫ0, . . . ), (D.0.1)

where ǫ̃0 is a new infinitesimal parameter, x↓i (x↑i ) is the real part of the pulled down (up) poles,

1G(x; 0, 0, 0, . . . ) not necessarily has only simple poles. In the most general case, it will have poles of arbitrary
order.
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i.e. those poles where ǫ0(x
↓
i ) < 0 < ǫ̃0(x

↓
i ) (ǫ̃0(x

↑
i ) < 0 < ǫ0(x

↑
i )). Of course, here x↓i , x

↑
i ∈ Z, but

(D.0.1) can be trivially generalized to other functionals having simple poles, the only change

being that the residue has to multiply each delta function.

The proof of this identity follows from multiplying (D.0.1) by an arbitrary test function

(f(x) ∈ C∞
0 ) and integrating over the real line.

As an example, let us consider the simplest case G = 1, ǫ0 = 0+, ǫ̃0 = 0−, where one recovers

the well known formula

1

1− e2πi(x+i0+)
=

1

1− e2πi(x+i0−)
−

∞∑

m=−∞

δ(x+m) . (D.0.2)

The mixing block

Let us first consider the modular transformation of the elliptic theta function

1

iϑ11(θ + iǫw2 , τ + iǫ1)
→ 1

iϑ11(
θ
τ + iǫw2 ,− 1

τ + iǫ1)
≡ 1

iϑ11(
θ+iǫ′2

w

τ+iǫ′1
,− 1

τ+iǫ′1
)

=
−sgn(τ)e−πi θ

2

τ e−sgn(τ)iπ
4

√
|τ |

1

ϑ11(θ + iǫ′2
w, τ + iǫ′1)

, (D.0.3)





ǫ′1 = τ2ǫ1 ,

ǫ′2
w = τ (ǫw2 + θǫ1) ,

(D.0.4)

and ǫ1, ǫ
w
2 satisfy (6.1.2). The identity (7.2.21) was used in the last line of (D.0.3) and the limits

ǫ′1, ǫ
′
2
w → 0 were taken where it is allowed.

Let us now concentrate on the last term in (D.0.3). It is explicitly given by (6.1.6), where

now the ǫ’s are replaced by ǫ′1, ǫ
′
3
n,w, ǫ′4

n,w satisfying ǫ′1 > 0,

ǫ′3
n,w





< 0 , θ − nτ ≤ −1− w

> 0 , θ − nτ ≥ −w
, ǫ′4

n,w





< 0 , θ + nτ ≥ −w

> 0 , θ + nτ ≤ −1− w
, τ < 0, (D.0.5)

ǫ′3
n,w





< 0 , θ − nτ ≥ −w

> 0 , θ − nτ ≤ −1− w
, ǫ′4

n,w





< 0 , θ + nτ ≥ −w

> 0 , θ + nτ ≤ −1− w
, τ > 0 . (D.0.6)
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By comparing with (6.1.7) and using (D.0.1), one finds, for instance in the case w < 0, τ < 0,

after a straightforward but tedious computation, the following identity:

1

iϑ11(θ + iǫ′2
w, τ + iǫ′1)

=
1

iϑ11(θ + iǫ2w, τ + iǫ1)

− 1

η3(τ + iǫ1)

[
e−iπθ

∞∑

n=0

−w−1∑

m=−∞

(−)neπiτn(1+n)δ(−θ + nτ +m)

+ eiπθ

(
−w−1∑

n=1

∞∑

m=w+1

−
∞∑

n=−w

w∑

m=−∞

)
(−)neπiτn(1+n)δ(θ + nτ +m)

]
.

Repeating the same analysis for the other cases one finds, for arbitrary w,

1

iϑ11(θ + iǫ′2
w, τ + iǫ′1)

=
1

iϑ11(θ + iǫ2w, τ + iǫ1)

+




w∑

n=−∞





∑w
m=−∞ δ(θ − nτ +m), τ < 0

∑∞
m=1+w δ(θ − nτ +m), τ > 0

−
∞∑

n=1+w





∑∞
m=1+w δ(θ − nτ +m), τ < 0

∑w
m=−∞ δ(θ − nτ +m), τ > 0



(−)n+me2iπτ

n2

2

η3(τ + iǫ1)

Using (7.2.18) and summing or subtracting delta function terms like in (6.1.8) and (6.1.9),

in order to construct the characters of discrete representations, one finds

χ+,w
j (

θ

τ
,−1

τ
, 0) = e−2πi k

4
θ2

τ sgn(τ)

×
{

∞∑

w′=−∞

∫ − 1
2

− k−1
2

dj′
√

2

k − 2
(−)w+w′+1e

4πi
k−2(j

′+ 1
2
−w′ k−2

2 )(j+ 1
2
−w k−2

2 )χ+,w′

j′ (θ, τ, 0)

+
∑

w′,n,m ∈ I(τ)

∫ − 1
2

− k−1
2

dj′
√

2

k − 2
(−)w+1e

4πi
k−2(j

′+ 1
2
−w′ k−2

2 )(j+ 1
2
−w k−2

2 )

× e−
2πi
k−2

τ(j′+ 1
2
−w′ k−2

2
)2e−2πiθ(j′+ 1

2
−w′ k−2

2
)

η3(τ + iǫ1)
(−)n+me2πiτ

n2

2 δ(θ − nτ +m)

}
,

where
∑

w′,n,m ∈ I(τ) is expected to reproduce the contribution from the continuous representa-
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tions and is explicitly given by

∑

w′,n,m ∈ I(τ)

≡ −
w−1∑

w′=−∞

w∑

n=1+w′

∞∑

m=−∞

+
∞∑

w′=1+w

w′∑

n=1+w

∞∑

m=−∞

+
∞∑

w′=−∞




w∑

n=−∞





∑w
m=−∞

∑∞
m=1+w

−
∞∑

n=1+w





∑∞
m=1+w

∑w
m=−∞




=
∞∑

w′=−∞




w′∑

n=−∞





∑w
m=−∞

∑∞
m=1+w

−
∞∑

n=1+w′





∑∞
m=1+w

∑w
m=−∞




=
∞∑

n=−∞




∞∑

w′=n





∑w
m=−∞

∑∞
m=1+w

−
n−1∑

w′=−∞





∑∞
m=1+w

∑w
m=−∞


 ,

where the upper lines inside the brackets hold for τ < 0 and the lower ones for τ > 0. In the last

line we have exchanged the order of summations. The sum over w′ together with the integral

over j′, the spin of the states in discrete representations, match together to give, after analytic

continuation, the integral over s′, the imaginary part of the spin of the states in the principal

continuous representations:

∞∑

w′=n

∫ − 1
2

− k−1
2

dj′e
4πi
k−2(j

′+ 1
2
−w′ k−2

2 )(j+ 1
2
−w k−2

2 )e−
2πi
k−2

τ(j′+ 1
2
−w′ k−2

2
)2e−2πiθ(j′+ 1

2
−w′ k−2

2
)

=

∫ 0

−∞
dλe

4πi
k−2(λ−n k−2

2 )(j+ 1
2
−w k−2

2 )e−
2πi
k−2

τ(λ−n k−2
2

)2e−2πiθ(λ−n k−2
2

)

=





i
∫∞
0 ds′ e

4πi
k−2(−is′−n k−2

2 )(j+ 1
2
−w k−2

2 )e−
2πi
k−2

τ(−is′−n k−2
2

)2e−2πiθ(−is′−n k−2
2

), τ < 0 ,

−i
∫∞
0 ds′ e

4πi
k−2(is

′−n k−2
2 )(j+ 1

2
−w k−2

2 ) e−
2πi
k−2

τ(is′−n k−2
2

)2 e−2πiθ(is′−n k−2
2

) , τ > 0 .

After a similar analysis for the terms in the sum
∑n−1

w′=−∞ and relabeling the dummy index

n→ w′, one finds the following contribution from the continuous series

∞∑

w′=−∞

i

√
2

k − 2

∫ ∞

0
ds′(−)w+w′+1

[
w∑

m=−∞

e
4πi
k−2(−is′−w′ k−2

2 )(j+ 1
2
−w k−2

2 )e−2πim( 1
2
+is′+w′ k−2

2 )
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−
∞∑

m=1+w

e
4πi
k−2(is

′−w′ k−2
2 )(j+ 1

2
−w k−2

2 )e−2πim( 1
2
−is′+w′ k−2

2 )

]
e
2πiτ

(
s′2

k−2
+ k

4
w′2

)

η3(τ + iǫ1)
δ(θ − w′τ +m)

Finally, using (7.2.13), with the appropriate relabeling and performing the sum overm (which

then simply reduces to a geometric series) one gets

∞∑

w′=−∞

∫ ∞

0
ds′
∫ 1

0
dα′Sj,w

s′,α′,w′
χα′,w′

s′ (θ, τ, 0), (D.0.7)

with

Sj,w
s′,α′,w′

= −i
√

2

k − 2
e−2πi(w′j−wα′−ww′ k

2 )

[
e

4π
k−2

s′(j+ 1
2)

1 + e−2πi(α′−is′)
+

e−
4π
k−2

s′(j+ 1
2)

1 + e−2πi(α′+is′)

]
. (D.0.8)

It is interesting to note that (repeated indices denote implicit sum)

Sj,w
s1,α1,w1 Ss1,α1,w1

s′,α′,w′
= − Sj,w

j1,w1 Sj1,w1
s′,α′,w′

=
(−)w+w′+1

2π

∞∑

m=−∞

[
1

1
2 + α′ − is′ −m

+
1

1
2 + α′ + is′ −m

]

× δ

(
j − α′ − (w + w′)

k − 2

2
+m

)
. (D.0.9)

The first line implies S2
j,w

s′,α′,w′
= 0.

To show that (ST )3j,ws′,α′,w′
= 0 is a bit more involved. This block is explicitly given by

Sj,w
s1,α1,w1

[
(TSTST )s1,α1,w1

s′,α′,w′
]
+ Sj,w

j1,w1

[
(TSTST )j1,w1

s′,α′,w′
]
. (D.0.10)

The first term above coincides with the first one in (D.0.9). This is a consequence of (7.4.2),

which implies (TSTST )s1,α1,w1

s′,α′,w′
= Ss1,α1,w1

s′,α′,w′
. So, in order for this block to vanish

it is sufficient to show that the term inside the second bracket is exactly the S matrix mixing

block.
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The factor inside the last bracket splits into the sum

Tj1,w1
j2,w2Sj2,w2

s3,α3,w3Ts3,α3,w3
s4,α4,w4Ss4,α4,w4

s5,α5,w5Ts5,α5,w5
s′,α′,w′

+ Tj1,w1
j2,w2Sj2,w2

j3,w3Tj3,w3
j4,w4Sj4,w4

s5,α5,w5Ts5,α5,w5
s′,α′,w′

. (D.0.11)

These terms are very difficult to compute separately because each one gives the integral of a

Gauss error function. So, we show here how the sums can be reorganized in order to cancel all the

intricate integrals when summing both terms and one ends with the mixing block Sj1,w1
s′,α′,w′

.

In fact, after some few steps, the first line can be expressed as

√
2

k − 2

∫ ∞

0
ds

{
S̃j1,w1

s2,α2,w2

[
0∑

w=−∞

e−iπ
4 e−

2πi
k−2 [−is−w k−2

2
−(j1+

1
2
)+is2]

2

e2πiw(α2+
1
2
−is2)

−
∞∑

w=1

e−iπ
4 e

2πi
k−2 [−is−w k−2

2
−(j1+

1
2
)+is2]

2

e2πiw(α2+
1
2
−is2)

]
+ (s2 → −s2)

}
, (D.0.12)

where we have introduced S̃j1,w1
s2,α2,w2 = −i

√
2

k − 2
e−2πi (w2j1−w1α2−w1w2

k
2 ) e

4πs2
k−2 (j1+

1
2).

On the other hand, the second line in (D.0.11) takes the form

∞∑

w=−∞

√
2

k − 2

∫ − 1
2

− k−1
2

dj ei
π
2 e−

2πi
k−2 [j+

1
2
−w k−2

2
−(j1+

1
2
)+is2]

2

e2πiw(α2+
1
2
−is2)

× S̃j1,w1
s2,α2,w2

1 + e−2πi(α2−is2)
+ (s2 → −s2) . (D.0.13)

Now notice that, for w ≤ −1, the integral over j can be replaced by an integral over −k−1
2 +is

minus an integral over −1
2 + is with s ∈ [−∞, 0]. For w ≥ 1, the original integral splits into the

same two integrals, but now with s ∈ [0,∞]. Adding these terms to (D.0.12) one ends, after

some extra contour deformations in the remaining integrals, with Ss′,α′,w′

j1,w1
and we can conclude

that (ST )3j,ws′,α′,w′
= 0.
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Appendix E

A generalized Verlinde formula

As is well known, the Verlinde theorem allows to compute the fusion coefficients in RCFT as:

Nµν
ρ =

∑

κ

Sµ
κSν

κ (Sρ
κ)−1

S0κ
, (E.0.1)

where the index “0” refers to the representation containing the identity field. In the case

of the fractional level admissible representations of the ŝl(2) affine Lie algebra, the negative

integer fusion coefficients obtained from (E.0.1) in [125] were interpreted as a consequence of

the identification j → −1 − j in [82]1, where it was also shown that fusions are not allowed

by the Verlinde formula if the fields involved are not highest- or lowest-weight. Applications to

other non RCFT were discussed in [45], where generalizations of the theorem were proposed for

certain representations in the Liouville theory, the H+
3 model and the SL(2,R)/U(1) coset.

In order to explore alternative expressions in the AdS3 model, let us consider the more

tractable finite dimensional degenerate representations. From the results for the characters

obtained in section 7.2.4, it is natural to propose the following generalization of the Verlinde

formula2

1Interestingly, it was shown in a recent detailed study of the ŝl(2)k= 1
2

model [126], that the origin of the

negative signs is the absence of spectral flow images of the admissible representations in the analysis of [82].
2A similar expression was obtained in [45] for the H+

3 model applying the Cardy ansatz.
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∑

J3

NJ1J2
J3 χJ3(θ, τ, 0) =

∞∑

w=−∞

∫ − 1
2

− k−1
2

dj
SJ1

j,wSJ2
j,w

S0j,w
e2πi

k
4

θ2

τ χ+,w
j (

θ

τ
,−1

τ
, 0) ,

(E.0.2)

which holds for generic (θ, τ) far from the points θ+nτ ∈ Z, ∀n ∈ Z. In order to prove it, notice

that, in the region of the parameters where we claim it holds, one can neglect the ǫ′s and contact

terms on both sides of the equation and show that the fusion coefficients NJ1J2
J3 coincide with

those obtained in the H+
3 model, namely

NJ1J2
J3 =





1 |J1 − J2| ≤ J3 ≤ J1 + J2,

0 otherwise .
(E.0.3)

Let us denote the r.h.s. of (E.0.2) as I(J1, J2) and rewrite it as (see (7.2.16))

I(J1, J2) =

√
2

k − 2

e
2πi
k−2(

k−2
2 )

2 θ2

τ

√
iτ iϑ11(θ, τ)

∫ ∞

−∞
dλ

e
2πi
k−2

λ2

τ e2πi
θ
τ
λ

e
πi

√
2

k−2
λ − e

−πi
√

2
k−2

λ

×
[
e

2πi
k−2

N1λ + e−
2πi
k−2

N1λ − e
2πi
k−2

N2λ − e−
2πi
k−2

N2λ
]
, (E.0.4)

where N1 = 2(J1 + J2 + 1) and N2 = 2(J1 − J2). Changing λ → −λ in the second and fourth

terms, we get

I(J1, J2) = I(N1)− I(N2) , I(Ni) = Ĩ(Ni, θ, τ) + Ĩ(Ni,−θ, τ) , (E.0.5)

with

Ĩ(Ni, θ, τ) =

√
2

k−2√
iτ iϑ11(θ, τ)

∫ ∞

−∞
dλ

e
2πi
k−2

1
τ (λ+θ k−2

2 )
2

e
πi

√
2

k−2
Niλ

e
πi

√
2

k−2
λ − e

−πi
√

2
k−2

λ
. (E.0.6)
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The divergent terms in this expression cancel in the sum (E.0.5).

Without loss of generality, let us assume J1 ≥ J2. To perform the λ-integral in (E.0.6), it is

convenient to split the cases with odd and even Ni. Writing Ni + 1 = 2mi, mi ∈ N, in the first

case we get

Ĩ(Ni, θ, τ) =

mi−1∑

L=0

e
−2πi
k−2

τL2

e−2πiθL

iϑ11(θ, τ)
− eπi

k−2
2

θ2

τ√
iτ iϑ11(θ, τ)

∫ ∞

−∞
dλ

eπi
λ2

τ e
2πi

√
k−2
2

θλ
τ

1− e
2πi

√
2

k−2
λ
, (E.0.7)

where the second term diverges. For even Ni, take Ni + 2 = 2ni with ni ∈ N, and then

Ĩ(Ni, θ, τ) =

ni−1∑

L=0

e
−2πi
k−2

τ(L− 1
2)

2

e−2πiθ(L− 1
2)

iϑ11(θ, τ)

− eπi
k−2
2

θ2

τ√
iτ iϑ11(θ, τ)

∫ ∞

−∞
dλ

eπi
λ2

τ e
2πi

√
k−2
2

θλ
τ e

−πi
√

2
k−2

λ

1− e
2πi

√
2

k−2
λ

, (E.0.8)

where again the second term diverges.

Notice that N1 and N2 are either both even or odd, and since the divergent term is the same

in I(N1) and I(N2), it cancels in the sum I(J1, J2). Thus, putting all together we get

I(J1, J2) =

J1+J2∑

J3=J1−J2

−e
−2πi

4(k−2)
τ(2J3+1)2

2 sin (πiθ(2J3 + 1))

ϑ11(θ, τ)
=

J1+J2∑

J3=J1−J2

χJ3(θ, τ, 0) . (E.0.9)

where we have defined J3 = L− 1
2 for odd N1 and N2 and J3 = L− 1 for even N1 and N2.

From a similar analysis of the case J2 > J1, we obtain (E.0.2) and (E.0.3).

In conclusion, consistently with the assumption that correlation functions of fields in de-

generate representations in the H+
3 and AdS3 models are related by analytic continuation, the

generalized Verlinde formula (E.0.2) reproduces the fusion rules of degenerate representations

previously obtained in the Euclidean model. However, even if it is not expected to reproduce

the fusion rules of continuous representations [82], applying it for discrete representations also

fails.
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