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Buenos Aires, Marzo de 2012





iii

On the Pricing of Variance Derivatives through Efficient Monte Carlo Methods

In this thesis, financial contracts on realized variance are studied. Efficient Monte Carlo

method for their valuation is developed under a general model in which asset returns

are random shocks modulated by a stochastic volatility process. Realized variance is the

sum of squared daily returns, depending on the sequence of squared shocks to the asset

and the realized path of the volatility process. The derivative price is represented as a

high dimensional integral over the fundamental sources of randomness. We identify a

low dimensional manifold, defined by the sum of squared shocks to the asset and the path

average of the modulating variance process, that drives the uncertainty in realized variance.

We compute the contract price by combining precise integration over this low dimensional

manifold, implemented as fine stratification or deterministic quadrature, with conditional

Monte Carlo sampling on the remaining dimensions. Focusing computational effort on the

low dimensional manifold leads to an estimator with lower variance than standard Monte

Carlo. We derive, under an independence assumption, approximate theoretical results

that quantify this effect for a class of nonlinear payoffs. We verify numerically that for the

Hull-White and Heston models the algorithm performs significantly better than standard

Monte Carlo for fixed computational budgets.

Keywords: Stochastic Volatility, Variance Derivatives, Stratification, Conditional Monte

Carlo.
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Sobre la Valuación de Derivados de Varianza a través de métodos de Monte

Carlo eficientes

En esta tesis, se estudian contratos financieros sobre varianza realizada. Un método efi-

ciente de Monte Carlo es desarrollado bajo un modelo general en el que los retornos del

activo considerado vienen dados por cambios aleatorios modulados por un proceso de

volatilidad estocástica. La varianza realizada es la suma de los cuadrados de los retornos

diarios, que dependen de la secuencia de la serie de cambios en el activo y del camino

realizado por el proceso de volatilidad. El precio del derivado se ve representado como

una integral en un elevado número de dimensiones sobre las fuentes fundamentales de

incertidumbre. Identificamos una variedad de baja dimensión, definida por la suma de

los cuadrados de los cambios en el activo y la volatilidad, que son los que conducen la

estocasticidad en el proceso de varianza realizada. El precio del contrato es calculado por

medio de una combinación de integración detemińıstica sobre esta variedad de baja di-

mensión (implmentado a través de una estratificación precisa o cuadratura), junto con un

sampleo de Monte Carlo Condicional en las restantes dimensiones. Concentrar el esfuerzo

computacional en la variedad de baja dimensión conduce a un estimador con menor var-

ianza que en un Monte Carlo estándar. Bajo un supuesto de independencia, obtenemos

resultados teóricos aproximados que cuantifican este efecto para una clase de funciones

de pago no lineales. Verificamos numéricamente que para los modelos de Hull-White y

Heston, el algoritmo funciona significativamente mejor que un Monte Carlo tradicional

dado un costo computacional fijo.

Palabras claves: Volatilidad estocástica, Derivados de varianza, Estratificación, Monte

Carlo condicional.
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Chapter 1

Introduction

1.1 Why variance derivatives

A central theme in finance is risk, and variance or volatility are widely accepted as the

standard ways to measure it. Formally, the volatility is the annualized standard deviation

of the stock’s returns over the period of interest. In the early 1970’s Black and Scholes

made a crucial breakthrough regarding risk management: the pricing of vanilla options on

a stock. However, their model had the limitation of assuming constant volatility, a fact not

satisfied in real world markets. In fact, it does not even fluctuates deterministically over

time but stochastically. Since then, many issues regarding volatility have been addressed

and studied in several manners.

It is because of this stochasticity of volatility and the need of having an insight into its

future level that investors have managed to trade volatility using as vehicles delta-hedged

options. But as it is well known, this strategy shows imperfections in many aspects, such

as market frictions, impossibility of continuous hedge (trading in the underlying), and lack

of a continuum of option strikes. To overcome these difficulties, financial contracts whose

value depend on future variance or volatility have been created. Here we study variance

and volatility swaps and swaptions, motivated by recent strong growth in the market for

this kind of financial contracts. The first two contracts are forward contracts on future

realized variance or volatility. Both instruments provide an easy way for investors to gain

exposure to the future level of variance. Variance swaps are now very actively traded

on stock indices (and sometimes on individual stocks). They are also traded, but less

commonly, in other asset classes such as FX. There are futures and options contracts on

the CBOE VIX index which are now also very actively traded. The VIX index is the

market price of a portfolio of vanilla options which (as we will show) replicates future

1



INTRODUCTION 2

realized variance. The prices of vanilla options, variance swaps, VIX futures and VIX

options are all closely linked - both practically and theoretically. It becomes clear then,

that in order to effectively trade these contracts, we need to study them adequately.

1.2 Related work

In order to position our contribution relative to existing work on variance derivatives and

Monte Carlo, we briefly comment on the literature in the field.

Much work has been done in recent years on variance and volatility derivatives. Derman

et al.[DDK] explain the theory and main properties of these derivatives. They derived

an analytical formula for theoretical fair value in the presence of realistic volatility skews,

and pointed out that volatility swaps can be replicated by dynamically trading the more

straightforward variance swap. Carr and Lee [CL05] extend several known results to

arbitrary functions of realized variance under zero-correlation hypothesis. In their work,

no assumptions are made regarding the dynamics of volatility.

As discussed in the review by Carr and Lee [CL09], most of the literature assumes that

the realized variance is recorded continuously in time. Notable exceptions are Broadie and

Jain [BJ08], Windcliff et al. [WFV], Carr and Lee [CL10] and Keller-Ressel and Muhle-

Karbe [KM] which preserve the fact that, in practice, realized variance is defined in terms

of discrete time returns or logarithmic increments.

Because discrete and continuous expected variance are equal, a linear payoff in realized

variance has the same price under both discrete and continuous settings, consistent with

Broadie and Jain [BJ08] for more general models. However, for volatility swaps and

variance options, with nonlinear payoffs in realized variance, the values do not agree.

The approach in Carr and Lee [CL10] values variance swaps under a general time changed

Levy process. This is a nonparametric approach, which is desirable from a practitioner’s

point of view because it eliminates model risk, but is restricted to a specific payoff. Our

numerical method can be used for an arbitrary European payoff on discretely realized

variance, under a wide class of stochastic volatility models. As a disadvantage, it requires

knowledge of the parameters of the model. We consider a Monte Carlo algorithm to be a

complement to analytical techniques, recognizing that both approaches have advantages

and disadvantages, and that in practice any pricing problem is likely to be solved in several

different ways.

We achieve variance reduction in the estimation of a high dimensional expectation by

integrating, or stratifying, along a low dimensional manifold followed by conditional Monte
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Carlo. Our work is close in spirit to the stratification approach by Glasserman et al. [GHS]

focused on path dependent derivatives, and to Glasserman et al. [GHS0], in which radial

stratification, similar to the integration over the norm of a vector of Gaussian shocks that

we propose, is used in a Value-at-Risk application for portfolios of options. Related work

on variance reduction for stochastic volatility models includes Ben Ameur et al. [BLL],

but this is not tailored to discrete variance contracts.

The literature also shows some examples of the combination of Monte Carlo and numerical

integration in Conditional Monte Carlo. For example, in Hull-White [HW], pricing under a

stochastic volatility model is implemented by simulation of the variance process and closed

form pricing conditional on the path of realized volatility. This technique is discussed in

the review by Boyle et al. [BBG] but our approach is different in the sense that we first

perform numerical integration, and then run many conditional Monte Carlo simulations.

Some continuous time stochastic volatility models, including the Heston [H] model, can be

simulated exactly by techniques developed by Broadie and Kaya [BK08] and Glasserman

and Kim [GK]. Exact simulation of discrete returns of the asset price can be used to

compute discretely realized variance. These methods, however, are restricted to specific

models, and not driven by Gaussian shocks. The emphasis in Broadie and Kaya [BK08]

and Glasserman and Kim [GK] is in finding a discrete simulation rule that preserves the

exact law of the continuous time model. We explore a different question. We assume a

continuous time model driven by Gaussian shocks, adopt the Euler scheme with smallest

bias as prescribed by Lord et al. [LKD], and develop an algorithm that generates samples

for the discrete approximation leading to an estimator with less variance than a standard

Monte Carlo implementation. The Euler scheme is helped by the very small time step

implied by the daily recording frequency in the contract, but we are not concerned here

with the exact matching of an Euler scheme to a continuous time model. Our approach is

that of a market participant that is aware that an Euler scheme differs in its law from the

continuous time dynamics, yet consistently uses the same Euler discretization for pricing

complex contracts and in the calibration to vanilla options. This use is effectively replacing

the continuous time model by its discrete counterpart, which is a common practice in the

financial industry. In this setting, we aim to develop a method that efficiently prices the

uncertainty that arises from the contractual discreteness of realized variance.
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1.3 Our contribution

Our research can be divided in two parts: one more theoretical part in which we extend the

treatment of [CL05] to allow for stochastic interest rates with arbitrary correlation with

the underlying asset price and a second part in which numerical methods are performed.

A few papers have explored variance derivatives under stochastic interest rates. Merener

[Me] has priced and hedged generalized variance swaps on forward swap rates under the

assumption of perfect correlation between the underlying swap rate on which variance is

recorded and the short rate used to reinvest dynamically accrued gains. Hölfert and Torne

[HT] explored equity variance swaps under stochastic interest rates and derived bounds

on the price under the assumption of a correlation input between the asset price and the

interest rate.

We assume, however, that the instantaneous volatility process is independent from the

interest rate and the asset price itself. We find that the stochasticity of interest rates has

two effects: discounting and drift of S. By assuming that the correlation between the

volatility process and the interest rate is independent we are able to compute a contract

price that is independent of the properties of the interest rate. In particular, it is indepen-

dent of its volatility, and of the correlation between the asset price and the interest rate.

But even under this assumption, we find that hedging is not trivial, and highly sensitive

to the volatility of the interest rate.

In the second part of the thesis, we develop an efficient Monte Carlo method for the valu-

ation of derivative contracts on realized variance. Following market practice, we focus on

discretely realized variance, defined as the sum of squared daily returns over n consecutive

days. In absence of arbitrage, the contract price equals the expected discounted random

payoff, in symbols,

C(t) = P (t, T )EQ(g(w)|Ft),

where g : R → R is a payoff function, the expectation is taken with respect to a risk-neutral

probability measure Q, and P (t, T ) is a discount factor. For example, the valuation of a

variance swap corresponds to a linear g, a volatility swap is associated to a square root

function g and a European call option takes g(ω) = max{ω −K, 0}. The initial length of

most traded contracts on realized variance is of several months.

We focus on realized variance ω, defined as the sum of squared daily returns over n

consecutive days. Actual contracts in the market are written in terms of the very closely

related sum of squared daily increments of the logarithm of the asset price, a feature
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that we preserve in our numerical experiments. Each return is random, therefore the

expectation of interest can be expressed as a high dimensional integral.

We assume in this paper that asset returns are generated by a random shocks modulated

by an autonomous, but possibly correlated, stochastic volatility process. The class of

models we consider includes, as special cases, the Hull-White [HW], Heston [H], and

SABR [HKL] models among others. We focus on realized variance based on discrete time

returns because we show, through an example, that this contractual property is important

in the valuation of relatively short dated contracts. We approximate the returns in discrete

time implied by the continuous time models through Euler discretizations [KPl] driven by

Gaussian shocks. In our general setting realized variance generally depends on the joint

realization of the shocks to the asset price and the path of the variance process. This dual

dependence typically rules out a closed form expression for the price of an arbitrary payoff

of realized variance. Numerical methods are the natural tool for this problem.

Computing the expectation by a standard Monte Carlo simulation of all the shocks driv-

ing the payoff leads to a price estimator with potentially large variance. Alternatively,

computing the expectation through deterministic integration is unfeasible due to the high

dimensionality of the problem. We develop a numerical method that exploits a structural

property of payoffs that depend on realized variance. We identify a two dimensional man-

ifold, defined by the sum of squared shocks to the asset price and the average level of

the variance process over the life of the contract, that largely drives the uncertainty in

realized variance. We use this fact to propose a numerical algorithm that combines precise

numerical integration over this low dimensional manifold, implemented as finely stratified

Monte Carlo or deterministic quadrature, with repeated Monte Carlo simulation condi-

tional on the values of the variables at the low dimensional manifold. Allocating extensive

computational effort to eliminating the noise associated with the low dimensional manifold

leads to a price estimator with significantly lower variance than a straightforward Monte

Carlo simulation for the same computational budget.

Assuming that shocks to the asset price and the stochastic volatility process are indepen-

dent we obtain an approximate theoretical result that quantifies the variance reduction in

our algorithm for a class of nonlinear payoffs, relative to standard Monte Carlo. We find

that the residual variance of our estimator, which is zero for constant stochastic volatil-

ity process, can be expressed in general in terms of the distance between the modulating

variance process and a constant.

We adapt our method to handle correlation between the asset price and the stochastic

variance process by conditioning on the component of the linearized average variance
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process that is orthogonal to the asset price shocks. We present numerical evidence of

the performance of our method, in their quadrature and stratification implementations, in

experiments with realistic parameters under the Hull-White [HW] and Heston [H] models.

We find that the variance reduction is significant when comparing our implementations

against standard Monte Carlo for fixed computational budgets. We also find that efficiency

gains are higher for models with lower correlation between the asset and the modulating

variance processes.

1.4 Structure of the thesis

This thesis is structured as follows:

Chapter 2 introduces some background material and results in the literature, such as con-

tingent claims, market completeness, arbitrage, risk-neutral valuation and Black-Scholes

model.

No proof of any of these results is included as they are considered standard.

Chapter 3 reads about general theoretical properties of variance derivatives. Section 1

describes the general setting we propose for the variables involved. Section 2 makes a

comparison between the two class of variances, continuous and discrete. In Section 3 vari-

ance contracts are defined and discussed. Section 4 shows a theoretical way of replicating

continuously realized variance through options and forward. In Section 4 we present our

original contribution, which consists in extending the main results of Carr-Lee theory

([CL05]) to a context of stochastic interest rates.

In Chapter 4 we explain all the Monte Carlo tools we implemented for our algorithm.

Section 1 briefly describes the goal of Monte Carlo. Simulation efficiency and how to

measure it is discussed in Section 2. In Section 3 we focus on the variance reduction

techniques used: Conditional Monte Carlo and Stratification. The chapter is closed with

an original characterization of the optimal stratification direction of a general quadratic

form.

The last chapter, the most important of this essay, reads about numerical simulations. Sec-

tion 5.1 introduces the class of discrete time models with autonomous stochastic volatility.

We assume that the models are driven by Gaussian shocks but we let actual returns be

nonlinear transformations of the shocks, therefore possibly heavy tailed. Section 5.2 dis-

cusses the properties of an estimator of an expectation constructed as the combination of

deterministic integration and conditional random sampling. We apply this to our problem

in Section 5.3.2 by presenting and justifying our choice of conditioning variables tailored
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to decrease the noise of the estimator of realized variance. The detailed implementation

of the algorithm is discussed in Section 5.3, and tested in realistic examples in Section 5.4.

An original characterization of a density function involved in the algorithm is given.

Our conclusions are included after Chapter 5.

Also, an appendix with some technical elements about the Mellin transform are included

apart to give the reading more fluency.





Chapter 2

Preliminary Notions

Throughout this work, several concepts of stochastic processes will be needed. In this

chapter we give a summarized review of the fundamental concepts and results that will

be central in our subsequent study. As the aim of this essay is the pricing of those assets

known as derivatives, we can say that the most relevant result here is the Fundamental

Theorem of Asset Pricing. This theorem will give us the key characterization of the value

of the instruments under study. The description presented in this chapter is essentially

based on books of stochastic processes. Proofs and further details on the subject may be

found, for example, in Klebaner [Kl] and Björk [Bj].

2.1 Some background material on stochastic processes

Fields of Events and Filtration

Define by Ft the set of information available to investors at time t, which consists of stock

prices before and at time t. At time t investors know which part of the sample space Ω

contains the true state of the world. Ft is called a field or algebra of sets.

Definition 2.1 (Field) A family of sets F is called a field if it satisfies:

1. ∅,Ω ∈ F

2. Given A,B ∈ F , then A ∪B,A ∩B,A \B ∈ F .

A generalization of the previous concept is the Σ-field, which is a field closed with respect

to countable unions and countable intersections of its members.

9
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Definition 2.2 (Σ-fields) A collection F of subsets of Ω is called a Σ-field if it satisfies

1. ∅,Ω ∈ F

2. A ∈ F =⇒ Ac ∈ F

3. A1, A2, . . . , An, . . . ∈ F =⇒ ⋃∞
i=1Ai ∈ F

Any subset B of Ω that belongs to F is called a measurable set.

The concept of filtration is used to model a flow of information. As time passes, an

observer knows more and more detailed information. In the case of the price of stock, it

describes how the information about prices is revealed to investors.

Definition 2.3 (Filtration) A filtration F = (Ft)t≥0 is a family of Σ-fields such that

F0 ⊂ Fs ⊂ Ft, for s ≤ t.

F specifies how the information is revealed in time. The property that a filtration is

increasing corresponds to the fact the information is not forgotten.

If we have a set Ω, a Σ-field of subsets of Ω,F , a probability P defined on elements of F ,

and a filtration F such that

F0 ⊆ Ft ⊆ ... ⊆ FT = F ,

then (Ω,F ,F, P ) is called a filtered probability space.

In an abuse of notation we will drop F and simply write (Ω,F , P ).

Σ-field Generated by a Random Variable

The Σ-field generated by a random variable X is the smallest Σ-field containing sets of

the form {ω : X(ω) ∈ A}, for any set A in the Borel Σ-field B. It will be denoted by FX ,

FX or Σ(X).

Stochastic Processes

Definition 2.4 A stochastic process is a collection of random variables (X(t))t≥0. For

any fixed t,X(t) is a random variable on (Ω,FT ). A stochastic process is called adapted

to filtration F if for all t ≥ 0, X(t) is a random variable on Ft, that is, if X(t) is Ft-

measurable.
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A stochastic process is adapted if for any t, Ft contains all the information about X(t)

(and may contain extra information).

Definition 2.5 (Martingale) A stochastic process Mt is a martingale with respect to the

filtered probability space (Ω,F , P ) if it satisfies the following properties:

1. Mt is adapted to the filtration, i.e., Mt is Ft-measurable for any t > 0,

2. E(|Mt|) <∞ for any t ≥ 0,

3. For any t ≤ s, we have E(Mt|Fs) =Ms.

A standard notation for the conditional expectation of a Ft-measurable process is Et(·) :=
E(·|Ft).

The main process in the calculus of continuous processes is the brownian motion. It serves

as a basic model for the cumulative effect of pure noise.

Definition 2.6 (Brownian motion) A brownian motion W (t) is a stochastic process sat-

isfying the following conditions

1. W starts at 0, i.e. W (0) = 0

2. W (t) is almost surely continuous

3. W (t) has independent increments W (t) − W (s) ∼ N (0, t − s). That is, W (t) −
W (s),W (t′)−W (s′) are independent, with 0 ≤ s ≤ t ≤ s′ ≤ t′.

Property 3 above determines all the finite-dimensional distributions and it is possible to

show that all of them are Gaussian. We don’t prove here that a brownian motion exists,

it can be found in many books on stochastic processes, and one construction is outlined

in [Kl], Section 5.7.

Definition 2.7 (Multivariate brownian motion) We define the N -dimensional brownian

motion in as a random vector W(t) = (W 1(t),W 2(t), ...,WN (t)) with all coordinatesW i(t)

being independent one-dimensional brownian motions.
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2.1.1 Girsanov Theorem

Change of Measure

When we wish to compare two measures P and P ∗, we don’t want either of them sim-

ply to throw information away; since when they are positive they can be related by the

Radon-Nikodym derivative. This motivates the following definition of equivalence of two

measures.

Definition 2.8 Two measures P and P ∗ are said to be equivalent if they operate on the

same sample space, and if A is any event in the sample space, then

P (A) > 0 ⇐⇒ P ∗(A) > 0.

In other words, P is absolutely continuous with respect to P ∗; and P ∗ is absolutely con-

tinuous with respect to P .

Theorem 2.9 (Girsanov theorem for the brownian motion) Let W(t) be a m-dimensional

brownian motion with respect to the filtered probability space (Ω,F , P ). Let X(t) ∈ R
n be

the stochastic process

dX(t) = a(t, ω)dt+ b(t, ω)dW(t) (2.1)

where a(t, ω) ∈ R
n and b(t, ω) ∈ R

n×m. Assume there exists processes λt ∈ R
m and

µt ∈ R
n such that

b(t, ω)λt(ω) = a(t, ω)− µt(ω), ω ∈ Ω. (2.2)

Let

Mt(ω) = e−
∫ t

0 〈λs(ω),dWs〉− 1
2

∫ t

0 〈λs(ω),λs(ω)〉ds, (2.3)

where 〈, 〉 represents the scalar product in R
m. Suppose that Mt is a martingale with

respect to (Ω,F , P ). Let P ∗ be another measure equivalent to P , such that

dP ∗(ω) =Mt(ω)dP (ω), i.e.
dP ∗(ω)
dP (ω)

=Mt(ω). (2.4)

In this case, Mt is called the Radon-Nikodym derivative of P ∗ with respect to P . Then,

P ∗ is a probability measure on F and the process

W̃(t) =

∫ t

0
λs(ω)ds+W(t); t ≤ T, (2.5)
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is a Brownian Motion with respect to the filtered probability space (Ω,F , P ∗) and the

process X(t) has the following representation in terms of W̃(t)

dX(t) = µt(X(t))dt+ b(t,X(t))dW̃(t).

Theorem 2.9 basically says that the properties of stochastic processes do not drastically

change with the change of their drift. In fact, by changing the drift of a process, one

changes also its probability law. The new probability measure is equivalent to the first

one and the Radon-Nikodym derivative can be explicitly expressed as done in the theorem.

In this thesis, the process λs will often be quoted as the market price of risk. A proof of

Theorem 2.9 can be found in [Øk].

2.2 Concepts and definitions of asset pricing

Consider a financial market consisting of N exogenously given risky traded assets, being

denoted by

S(t) =




S1(t)
...

SN (t)


 .

We also assume that there exists a risk-free asset with price process S0(t), which we

proceed to define.

Definition 2.10 (Risk-free asset) The price process B is the price of a risk-free asset if

it has the dynamics

dB(t) = r(t)B(t)dt, (2.6)

where r(t) is any adapted process.

The defining property of a risk-free asset is thus that it has no driving dW term. We see

that we also can write the B-dynamics as

dB(t)

dt
= r(t)B(t),

so the B-process is given by the expression

B(t) = B(0)e
∫ t

0 r(s)ds.
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A natural interpretation of a riskless asset is that it corresponds to a bank with the

(possibly stochastic) short rate of interest r. An important special case appears when r is

a deterministic constant, in which case we can interpret B as the price of a bond. This

riskless asset will be our numeraire.

We assume that the stock price Si follows the dynamics

dS(t) = S(t)µ(t, S(t))dt+ S(t)σ(t, S(t))dW̃ (t), (2.7)

where W̃ is a brownian motion and µ and σ are given deterministic functions. The reason

for the notation W̃ , instead of the simpler W , will become clear below. The function σ is

known as the volatility of S, while µ is the local mean rate of return of S.

Definition 2.11 (Portfolio strategy) Let an N -dimensional price process {S(t); t ≥ 0}
be given. A portfolio strategy (most often simply called a portfolio) is any FS

t -adapted

N -dimensional process {h(t); t ≥ 0}.
The portfolio h is said to be Markovian if it is of the form

h(t) = h(t, S(t)),

for some function h : R+ ×R
N −→ R

N .

Definition 2.12 (Value process) The value process V h corresponding to the portfolio h is

given by

V h(t) =
N∑

i=1

hi(t)Si(t). (2.8)

Definition 2.13 (Self-financing portfolio) A portfolio h is called self-financing if the value

process V h satisfies the condition

dV h(t) =
n∑

i=1

hi(t)dSi(t) = h(t) · dS(t) (2.9)

Definition 2.14 (Arbitrage opportunity) An Arbitrage opportunity is a self-financing port-

folio h that satisfies the following conditions:

V h(0) = 0

P (Vh(T ) ≥ 0) = 1

P (Vh(T ) > 0) > 0.
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2.2.1 Contingent claims

We take as given the model of a financial market defined by equations (2.6)-(2.7), and

we now approach the main problem to be studied in this thesis, namely, the pricing of

financial derivatives. Later we will give a mathematical definition, but let us at once

present the single most important derivative: the European call option.

Definition 2.15 (Call/Put option) A Call/Put option is a contract that gives at time 0

the holder the right (but not the obligation) to buy/sell an asset at time T called maturity

and at a fix amount K called the strike.

Another very important derivative in the financial industry is given by the following

Definition 2.16 A forward contract is an agreement which gives at time 0 the investor

the right to buy or sell an asset at time T called maturity and at a fixed amount F called

strike.

Note that the exercise priceK and the time of maturity T are determined at the time when

the option is written, which for us typically will be at t = 0. A European put option is an

option which in the same way gives the holder the right to sell a share of the underlying

asset at a predetermined strike price. For an American call option the right to buy a share

of the underlying asset can be exercised at any time before the given time of maturity.

The common factor of all these contracts is that they all are completely defined in terms

of the underlying asset S, which makes it natural to call them derivative instruments or

contingent claims. We will now give the formal definition of a contingent claim.

Definition 2.17 (Contingent claim) Consider a financial market with vector price process

S. A contingent claim with date of maturity (exercise date) T , also called a T -claim, is

any stochastic variable X ∈ FS
T . A contingent claim X is called a simple claim if it is of

the form X = Ψ(S(T )). The function Ψ is called the contract function.

The interpretation of this definition is that a contingent claim is a contract, which stipu-

lates that the holder of the contract will obtain X units of currency (which can be positive

or negative) at the time of maturity T . The requirement that X ∈ FS
T simply means

that, at time T , it will actually be possible to determine the amount of money to be paid

out. We see that the European call is a simple contingent claim, for which the contract

function is given by

Ψ(x) = max(x−K, 0).
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It is well known that the absence of arbitrage opportunities is essentially equivalent to

the existence of a martingale measure Q, equivalent to the initial probability measure P ,

under which the discounted prices process is an Ft-adapted martingale. Any equivalent

martingale measure Q is characterized by a continuous version of its density process with

respect to P , which can be written from the integral form of martingale representation.

2.2.2 Completeness

Definition 2.18 A claim X is called attainable if there exists an admissible strategy V

replicating the claim, that is, V (t) satisfies (2.9), V (t) ≥ 0 and V (T ) = X .

If all the claims in the market are attainable, and if we knew how to price them, then we

can price any claim. This leads to the following definition.

Definition 2.19 Market models in which any claim is attainable are called complete.

In the next section we will show a result that characterizes complete models in terms of the

martingale measure. The proof can be found in Harrison-Kreps ([HK]) and Harrison-Pliska

([HP]).

2.3 Risk Neutral Valuation

Let us agree to denote the objective probability measure which governs our real model

(2.6)-(2.7) by the letter P . Thus we say that the P -dynamics of the S-process are those

of (2.7). We now define another probability measure Q under which the S-process has a

different probability distribution. This is done by defining the Q-dynamics of S as

dS(t) = S(t)r(t, S(t))dt+ S(t)σ(t, S(t))dW (t), (2.10)

where W is a Q-Wiener process.

Theorem 2.20 (Risk Neutral Valuation) Assuming r is constant, the arbitrage free price

of the claim Ψ(S(T )) is given by Π(t,Ψ) = F (t, S(t)), with F given by the formula

F (t, S(t)) = e−r(T−t)
E
Q
t,s(Ψ(S(T ))), (2.11)

where the Q-dynamics of S are those of (2.10).
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There is a natural economic interpretation of the formula (2.11). We see that the price of

the derivative, given today’s date t and today’s stock price S(t), is computed by taking the

expectation of the final payment EQ
t,s[Ψ(S(T ))] and then discounting this expected value to

present value using the discount factor e−r(T−t). The important point to note is that when

we take the expected value we are not doing this using the objective probability measure

P . Instead we shall use the Q-measure defined in (2.10). This Q-measure is sometimes

called the risk neutral measure but most often it is called the martingale measure, and this

will be our terminology. The reason for the name is that under Q the normalized process

S(t)/B(t) turns out to be a Q-martingale.

Definition 2.21 A probability measure Q on FT is called an equivalent martingale mea-

sure for the numeraire S0, and the time interval [0, T ], if it has the following properties:

• Q is equivalent to P on FT

• All price processes S0, S1, ..., SN are martingales under Q on the time interval [0, T ].

From an informal point of view, the main result of the entire arbitrage theory is the

following not very precisely formulated Theorem.

Theorem 2.22 (First Fundamental Theorem) The market model is free of arbitrage

if and only if there exists a martingale measure, i.e., a measure Q ∼ P such that the

processes
S1(t)

S0(t)
, . . . ,

SN (t)

S0(t)

are martingales under Q.

For the case when the numeraire is the money account we have an alternative characteri-

zation of a martingale measure. The proof is a simple application of the Itô formula.

Proposition 2.23 If the numeraire S0 is the money account, i.e.

S0(t) = e
∫ t

0 r(s)ds,

where r is the (possibly stochastic) short rate, and if we assume that all processes are

Wiener driven, then a measure Q ∼ P is a martingale measure if and only if all assets

S0, S1, . . . , SN have the short rate as their local rates of return, i.e., if the Q-dynamics are

of the form

dSi(t) = r(t)Si(t)dt+ σi(t)Si(t)dW
Q, (2.12)

where WQ is a (multidimensional) Q-Wiener process.
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Theorem 2.24 (Second Fundamental Theorem) Assume that the market is arbitrage free

and consider a fixed numeraire asset S0. Then the market is complete if and only if the

martingale measure Q, corresponding to the numeraire S0, is unique.

To avoid arbitrage, the value of an attainable claim at time t < T must be the same as

that of the replicating portfolio at t.

Theorem 2.25 (Pricing by No-arbitrage) The arbitrage free price process for the T -claim

X is given by

Π(t,X ) = S0(t)E
Q

[ X
S0(T )

∣∣∣∣Ft

]
, (2.13)

where Q is the (not necessarily unique) martingale measure for the a priori given market

S0, S1, ..., SN , with S0 as the numeraire.

Note that different choices of Q will generically give rise to different price processes. In

particular, we note that if we assume that if S0 is the money account

S0(t) = S0e
∫ t

0 r(u)du,

where r is the short rate, then (2.13) reduces to the familiar risk neutral valuation formula.

Theorem 2.26 (Risk Neutral Valuation Formula) Assuming the existence of a short rate,

the pricing formula takes the form

Π(t,X ) = E
Q

[
e−

∫ T

t
r(u)duX

∣∣∣∣Ft

]
(2.14)

where Q is a (not necessarily unique) martingale measure with the money account as the

numeraire.

2.4 The Black-Scholes model

The Black-Scholes model is the most widely used continuous time pricing model for options

in the financial industry. The assumptions of the Black-Scholes model are:

• the volatility is constant in time and can be accurately estimated

• the stock can be continuously traded

• the market moves continuously, is liquid and there are no transactions costs.
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We assume that the a priori given market consists of two assets, a riskless asset B and

a risky asset S that satisfy formulas (2.6) and (2.7) respectively, where, according to the

assumptions, µ (the asset drift) and σ (the asset volatility) are constants. This dynamics

in the stock price is called geometric brownian motion:

dS(t) = µS(t)dt+ σS(t)dW̃ (t). (2.15)

The previous equation has an explicit solution. Using Ito formula for f(x) := ln(x), we

find that

S(t) = S(0)e(µ−
1
2
σ2)t+σW̃ (t). (2.16)

The Equivalent Martingale Measure (EMM) Q makes S(t)e−rt into a martingale. By

Theorems 2.22 and 2.24 it exists and is unique. It is obtained by letting µ
σdt+ σdW̃ (t) =

r
σdt+σdW for a Q-brownian motionW (t). In this case, the market price of risk introduced

in Theorem 2.9 is λt =
µ−r
σ .

Thus, under the equivalent martingale measure Q, S(T ) has a lognormal distribution,

LN ((r − σ2)T + σ2

2 T + ln(S(0)), σ2T ). The price of a claim X at time T is given by

C(t) = e−r(T−t)
E
Q(X|Ft). (2.17)

If X = g(S(T )), then by the Markov property of S(t),

C(t) = E
Q(g(S(T ))|Ft) = E

Q(g(S(T ))|S(t)).

Using (2.16), the conditional distribution under Q given Ft is obtained from the equation

S(T ) = S(t)e(r−
σ2

2
)(T−t)+σ(W̃ (T )−W̃ (t)),

and is lognormal

LN
(
(r − σ2

2
)(T − t) + ln(S(0)), σ2(T − t)

)
.

A call option pays X = (S(T )−K)+ at time T . To find its price at time t = 0, according

to (2.17), we must calculate E
Q[(S(T ) − K)+], where expectation E is taken under the

arbitrage-free probability Q. In the Black-Scholes model the Q-distribution of S(T ) is a

lognormal. The price at time t of the European call option on stock with strike K and

maturity T is given by (Theorem 2.13)

C(t) = e−r(T−t)
E
Q[(S(T )−K)+|Ft

]
.
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From the lognormality of S, it can be shown that C(t) is given by the Black-Scholes

formula

C(t) = S(t)Φ(d+)−Ke−r(T−t)Φ(d−), (2.18)

where

d± =
ln S(t)

K + (r ± 1
2σ

2)(T − t)

σ
√
T − t

, (2.19)

and

Φ(x) =

∫ x

−∞

1√
2π
e−

u2

2 du,

is the normal distribution function.

Pricing of Claims by a PDE

Let X be a claim of the form X = g(S(T )). Since the stock price satisfies SDE (2.10) with

r and σ taken to be constants, by the Markov property of S(t) it follows from (2.17) that

the price of X at time t is

C(t) = e−r(T−t)
E

Q((g(T )−K)+|Ft

)
= e−r(T−t)

E
Q((g(T )−K)+|S(t)

)
. (2.20)

By the Feynman-Kac formula (see Theorem 6.8 in [Kl]),

C(x, t) = e−r(T−t)
E
Q((g(T )−K)+|S(t) = x

)

solves the following partial differential equation (PDE)

−rC(t, x) + ∂C

∂t
(t, x) + rx

∂C

∂x
+

1

2
σ2x2

∂2C

∂x2
(t, x) = 0, (2.21)

with terminal conditions

C(T, x) = g(x), x ≥ 0,

where r is the risk free interest rate, C is the price function of the option, T is the

maturity time and g(x) the payoff of the claim at time T when the stock price is x. If

g(x) = (x−K)+, the solution to this partial differential equation for the price at time t of

a European call option with strike price K is given by the so called Black-Scholes formula

(2.18).



PRELIMINARY NOTIONS 21

Extension of Black-Scholes model: deterministic volatility option model

Let σ(t) > 0 be a continuous positive function. Define the Black-Scholes-Merton option

price formula

FBS(x, t, ν,K, r) := Ke−r(T−t)
(
xδA(x, t, ν) + δB(x, t, ν)

)
(2.22)

on t ≤ T , where δA(x, T, ν) := 1{x>K}, δB(x, T, ν) := −1{x>K} and

δA(x, t, ν) := Φ

(
log x
√
ν
t,T

+

√
ν
t,T

2

)
, δB(x, t, ν) := −Φ

(
log x
√
ν
t,T

−
√
ν
t,T

2

)
,

for t < T , where νt,T :=
∫ T
t σ2(u)du andK is a fixed parameter. The function FBS(x, t, ν,K, r)

is continuous in x and on t < T is C1 in t and analytic in x. Note also that −1 ≤ δB ≤
0 ≤ δA ≤ 1 and FBS(x, T, ν,K, r) = K(x − 1)+. We recover formula (2.18) by taking

x = S(t)

Ke−r(T−t) , ν = σ.

Implied volatility

An implied volatility σIt is the volatility implied in the market prices C of the derivatives

in a particular pricing model (for instance, the Black-Scholes model). It is the volatility

that, replaced in the formula of the option price C, yields the exact value of the option.

We give a precise definition below.

Definition 2.27 (Implied volatility) Denote by Cm the observed market price of an option

with strike K and expiration T . The implied volatility σIt (K,T ) is defined as the value

of the volatility parameter in the Black-Scholes (2.22) formula that matches the observed

price, namely

FBS
(
S(t), t, σIt (K,T ),K, r

)
= Cm

t (K,T ).

Remark Usually, to calculate the implied volatility σI , we consider the price of an option

C as a function f(σ, ·) of the volatility and other parameters. Therefore, we can as well

consider the volatility σ as a function g(C, ·) of the option price C, and so there exists

at most one value of the volatility which leads to a particular value of the option. The

implied volatility σI is this value and therefore is the (numerical) solution to the equation

f(σ, ·) = C, with unknown σ.





Chapter 3

Variance and Volatility Derivatives

In this chapter, definitions of the main variance derivatives are introduced, together with a

description of their underlying process: realized variance. We also discuss similarities and

differences between the continuous and discrete versions of this process. Several standard

properties of realized variance are introduced, all of them valid in a world where the risk-

free interest rate is constant. An extension to this properties is shown when this rate

is assumed to be stochastic. We would like to make clear here that all the treatment

performed is merely theoretical, having precluded frictions and limitations of practical

financial nature.

3.1 General Setting

A basic assumption here will be that the stock price evolves continuously in time without

jumps. This is an assumption for the Black-Scholes model and yet according to the Black-

Scholes model, a typical process for the stock price is the risk neutral geometric brownian

motion (i.e., Geometric brownian motion under the equivalent martingale measure). The

general framework studied here, that includes stochastic volatility, is

dSt
St

= µ(t, St, Vt)dt+ σ(t, Vt)
(√

1− ρ2(t, St, Vt)dW̃
1
t + ρ(t, St, Vt)dW̃

2
t

)
, (3.1)

dVt = η(t, Vt)dt+ γ(t, Vt)dW̃
2
t , (3.2)

where {St, 0 ≤ t ≥ T} is the price process of a primitive asset supposed to pay no dividends,

{σt = σ(Vt), 0 ≤ t ≥ T} is the volatility process, and {ρt = ρ(t, St, Vt), 0 ≤ t ≥ T} is the

23
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correlation process between the asset price and its volatility taking values in the interval

(−1, 1). W̃ = (W̃ 1, W̃ 2) is a two-dimensional brownian motion in a filtered probability

space (Ω,F , P ).
Here, we assume that the drift µ and the continuously-sampled volatility are arbitrary

functions of time and other parameters. For simplicity of presentation, we assume the

stock pays no dividends; allowing for dividends does not significantly alter the derivation.

By Theorems (2.22) and (2.9), there exist an equivalent martingale measure Q character-

ized by

Mt =
dQ

dP

∣∣∣∣
Ft

= exp

(
−
∫ t

0
λudW̃

1
u −

∫ t

0
νdW̃ 2

u − 1

2

∫ t

0
λ2udu− 1

2

∫ t

0
ν2udu

)
, (3.3)

where (λ, ν) is adapted to Ft and satisfies the integrability condition
∫ T
0 λ2udu < ∞ and∫ T

0 ν2udu <∞ a.s. By the martingale property under Q of the discounted underlying asset

prices, we have:

(
λt

√
1− ρ2t + νtρt

)
σt = µt − r, 0 ≤ t ≤ T a.s. (3.4)

The processes λ and ν satisfying (3.4)(and the integrability condition) are interpreted as

the risk premia relative respectively to the two sources of uncertainty W̃ 1 and W̃ 2. Since

S is the only traded asset, the risk premia λ and ν are not fixed by the last relation,

which explains the non uniqueness of the martingale measure Q in this incomplete market

context. For each choice of the volatility risk premium process {νt, 0 ≤ t ≤ T}, the risk

premium process {λt, 0 ≤ t ≤ T} is fixed by (3.4) and we can define an admisible equivalent

martingale measure Q(ν) characterized by its density process {Mt(ν), 0 ≤ t ≤ T} with

respect to P . By Girsanov’s theorem, the process W(ν) = (W 1(ν),W 2(ν))⊤ defined by

W 1
t (ν) = W̃ 1

t +

∫ t

0
λudu, W 2

t (ν) = W̃ 2
t +

∫ t

0
νudu, (3.5)

is a two-dimensional brownian motion under Q(ν) adapted to the filtration {Ft, 0 ≤ t ≤
T}. The dynamics of the model under an admissible equivalent martingale measure Q(ν)

is described by:

dSt
St

= r(t, St)dt+ σ(Vt)
(√

1− ρ2(t, St, Vt)dW
1
t (ν) + ρ(t, St, Vt)dW

2
t (ν)

)
, (3.6)

where r is the risk-free interest rate.
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3.2 Discrete Variance vs. Continuous Variance

By realized variance from time 0 to time T , we understand the quadratic variation of

logS at time T . Under the general assumptions stated in the previous section, S has

an instantaneous volatility process σt and we can think of realized variance as the time

integral of σ2t from 0 to T .

Definition 3.1 Assume that the positive asset price S follows (3.6). The continuously

sampled realized variance of S from time 0 to time T is defined as

Vc(0, T ) =
1

T

∫ T

0
σ2t dt. (3.7)

Variance related contracts are written, in practice, in terms of discretely realized variance

with daily frequency. Continuously realized variance is popular in the academic literature

as an approximation for discretely realized variance. The advantage of this approximation

is that in an autonomous stochastic volatility model continuous realized variance does

not depend on the path of the underlying; it only depends on the path realized by the

instantaneous variance process.

The procedure for calculating discretely realized variance is specified in the derivatives

contract and includes details about the source and observation frequency of the price of the

underlying asset, the annualization factor to be used in moving to an annualized volatility

and the method for calculating the variance. Most traded contracts define realized variance

to be the sum of the squares of the daily returns of the stock annualized.

Definition 3.2 Let 0 = t0 < t1 < ... < tn = T be a partition of the time interval [0, T ]

into n equal segments of length ∆t. The discretely sample realized variance is defined as

Vn(0, T ) =
AF

n− 1

n−1∑

i=0

log2
(
Si+1

Si

)
. (3.8)

Here, Si is the price of the asset at the i-th observation time ti and AF is the annualization

factor, taken in general as n/T .

This definition of realized variance differs from the usual sample variance because the

sample average is not subtracted from each observation. Since the sample average is

approximately zero, the realized variance is close to the sample variance.
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Vn(0, T ) is an unbiased variance estimator for σt. It can be shown that (see [BL])

Vc(0, T ) = lim
n→∞

Vn(0, T ). (3.9)

However, substituting discretely realized variance by its continuous counterpart is an ap-

proximation of dubious quality in some cases. A simple example suffices to show the

difference between discrete and continuous variance. Consider a continuous time Black

model

dSt
St

=
√
V0dWt (3.10)

with constant variance parameter V0 = 0.09, which corresponds to 30% Black volatility

for the underlying S. This is a realistic level for V0 and it is typically chosen to match

the prices of simple options such as calls and puts on ST . We assume 252 trading days

per year. In this model, the continuously realized variance over n days is (n/252)V0 a.s.

Therefore, there is no uncertainty associated with continuously realized variance.

Discrete realized variance, however, is the sum of a finite number of independent squared

Gaussian variables, therefore distributed as a χ2 random variable with n degrees of free-

dom. Its mean is (n/252)V0, equal to the continuously realized variance, and its standard

deviation is V0/252
√
2n. For relatively small n, for example n = 20 days, this implies a

mean equal to 0.0071 and a standard deviation equal to 0.0023.

Because the expected value of discrete realized variance equals the value of continuous re-

alized variance, a linear payoff in realized variance has the same price under both discrete

and continuous settings. However, for volatility swaps and variance options, which have

payoffs that are non-linear in realized variance, the values do not agree. For example, con-

sider an at-the-money option on realized variance, with n = 20 and V0 = 0.09. The strike,

for either discrete or realized variance, is 0.0071. The standard deviation of continuous

realized variance is zero, therefore the price of an option on continuous variance is zero

as well. Yet the standard deviation of discrete realized variance is 0.0023, about 30% of

the value of the mean. This is a very valuable option. Because variance derivatives are

in practice written in terms of discrete variance this simple example shows that assuming

continuous variance might severely affect the quality of pricing for contracts relatively

close to expiration.

3.3 Variance Contracts

In this section we proceed to define and describe the main financial instruments under

consideration in this work: variance swaps, volatility swaps and swaptions. These are
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contracts whose values depend on the future level of variance of the underlying asset.

3.3.1 Variance Swap

In a few words, a variance swap is simply a forward contract with realized variance as

underlying.

Definition 3.3 A variance swap is a forward contract in which one counterpart agrees

to pay the other a notional amount, N , times the difference between a fixed level and a

realized level of variance. The fixed level is called the variance strike for variance swap.

In symbols, the payoff of a variance swap is

(Vn(0, T )−Kvar)×N, (3.11)

where Vn(0, T ) is the realized variance of stock return over the life of the contract, n is the

number of sampling dates, Kvar is the variance strike, and N is the notional amount of

the swap in dollars.

At expiration, the holder of a variance swap receives N dollars for every unit by which

the stock realized variance V exceeds the variance strike Kvar. N represents the amount

that the holder receives at maturity if the realized variance exceeds the strike Kvar by one

unit. The unit of N is dollar per unit variance point; for example, N = $30, 000/(variance

point).

3.3.2 Volatility Swap

Definition 3.4 A volatility swap is a forward contract on the future realized volatility of

the stock price. If Kvol denotes the strike of a volatility swap (typically quoted in units of

percent, e.g. 20%), its payoff is defined as

(
√
(Vn(0, T )−Kvol)×N (3.12)

where
√
(Vn(0, T ) is the realized stock volatility (quoted in annual terms) over the life of

the contract.

The volatility strike Kvol is typically quoted in units of percent (e.g., 20%). An investor

who is long a volatility swap with strike 20% and notional of $1 million would make a
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profit of (0.25-0.2)*1,000,000=$50,000. This contract is similar to a variance swap except

that the traded asset here is the volatility instead of the variance. The notional amount

N of the payoff is now in dollar per unit volatility point.

There is another type of volatility swap known as volatility-average swap, in which the

measure of the volatility is simply the average over time of the return on the stock price.

In discrete time that is
1

n− 1

n−1∑

i=1

(
Si − Si−1

Si−1

)
. (3.13)

In continuous time, we approximate this measure of volatility by

σR =
1

T

∫ T

0
σtdt. (3.14)

Here the strike is denoted Kvol−ave and the payoff of the contract is

(σR −Kvol−ave). (3.15)

As we will see later, the replication and pricing of volatility swaps are much more difficult

than those of the variance, since with a zero sample mean of returns, the stock price

dynamics provides an explicit formula for the realized variance but not for the realized

volatility.

3.3.3 Swaptions

In the same way we defined forward contracts on future realized variance and volatility,

we can also define option with this variable as the underlying. This instruments, the

swaptions, have a strike K and payoffs

CT = N ×max(Vc −K; 0), PT = N ×max(K − Vc; 0);

for volatility call and put respectively. Swaptions are more difficult to price than swaps.

The reason behind this lies in the fact that stock options have exposure not only to stock

price, but also to its volatility. In a similar manner, swaptions are also contaminated by

the volatility or variance of the stock and the volatility of this new variable as well. This is

a clear disadvantage of swaptions compared to swaps, which provide pure risk to volatility

only. They are also more difficult to price than European equity options, because, unlike

these, the payoff of variance options depends on realized variance Vc, which is not a traded

security in the market. From now on and for the rest of the work, the notional amount of

the swap will be $1 per unit traded asset point.
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3.4 Replicating and pricing variance swaps

Replication and pricing without an explicit model for volatility

Valuing a variance forward contract or swap is not different from valuing any other deriva-

tive security. Assume momentarily that the risk-free interest rate process r is constant.

Then, the present value of a forward contract C0 on future realized variance with strike

Kvar is by (2.14)

C0 = E
Q
0 [e

−rT (Vc −Kvar)].

Thus, for calculating variance swaps we only need to know E
Q
0 (Vc). Volatility swaps require

more work, due to the nonlinearity of the square root function. From Brockhaus-Long

approximation, we have

E(
√
Vc) ≈

√
E(Vc)−

Var(Vc)

8E(Vc)
3
2

, (3.16)

Then, for volatility swaps we need both E(Vc) and Var(Vc). The second term containing

the variance in (3.16) is the well known convexity adjustment.

No one knows with certainty the value of future volatility. In implied tree models, the so-

called local volatility consistent with all current options prices is extracted from the market

prices of traded stock options. You can then use simulation to calculate the fair variance

Kvar as the average of the experienced variance along each simulated path consistent with

the risk-neutral stock price evolution given of equation (3.6).

The above approach is good for valuing the contract, but it does not provide insight into

how to replicate it. The essence of the replication strategy is to devise a position that,

over the next instant of time, generates a payoff proportional to the incremental variance

of the stock during that time.

Denote the logarithmic returns process by

Xt := log(St/S0),

and write 〈X〉t for the quadratic variation of X till t (also known as the realized variance

of the returns on S). Under assumption (3.6),

〈X〉t :=
∫ t

0
σ2udu.

By applying Ito’s lemma to the function F (S) := log(S), we obtain the following SDE for

the process log(St/S0)

d(log(St)) =

(
µt −

1

2
σ2t

)
dt+ σtdWt, (3.17)
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where we have taken W =
√
1− ρ2W 1 + ρW 2.

Subtracting Equation (3.6) from Equation (3.17), we obtain

dSt
St

− d(log(St)) =
1

2
σ2t dt, (3.18)

in which all dependence on the drift has canceled. Integrating Equation (3.18) over all

times from 0 to T and dividing by T both hand sides, we obtain the continuously-sampled

variance

Vc =
1

T
〈X〉T =

1

T

∫ T

0
σ2t dt =

2

T

[ ∫ T

0

dSt
St

− log

(
ST
S0

)]
. (3.19)

Note that we have easily derived this expression because of the sample mean that was

assumed to be zero for the definition of the realized variance. By not assuming this, an

extra term would be added to the realized variance.

The mathematical identity (3.19) describes the replication strategy for variance. The first

term in the brackets can be thought of as the net outcome of continuous rebalancing a

stock position so that it is always instantaneously long 1/St shares of stock worth $1. The

second term represents a static short position in a contract which, at expiration, pays the

logarithm of the total return. This continuously rebalancing strategy captures the realized

variance of the stock from inception to expiration at time T . Note that no expectations or

averages have been taken. Equation (3.19) guarantees that variance can be captured no

matter which path the stock price takes, as long as it moves continuously. It also provides

another formula for the fair strike of a variance swap. Instead of averaging over future

variances, one can take risk neutral expectation to obtain the cost of replication directly,

so that

Kvar = E(Vc) =
2

T
E

(∫ T

0

dSt
St

− log
ST
S0

)
=

2

T

[
E

(∫ T

0

dSt
St

)
− E

(
log

ST
S0

)]
. (3.20)

The expectation E
( ∫ T

0
dSt

St

)
can be easily calculated from (3.6) as

E

(∫ T

0

dSt
St

)
= E

(∫ T

0
rdt

)
+ E

(∫ T

0
σtdWt

)
. (3.21)

As the Itô integral is a martingale, we have

E

(∫ T

0
σtdWt

)
= 0.

Thus,

E

(∫ T

0

dSt
St

)
= E

(∫ T

0
rdt

)
= rT.
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This result represents the fact that a shares position, continuously rebalanced to be worth

$1, has a forward price that grows at the riskless rate. Substituting in (3.20) we find that

Kvar = 2r − 2

T
E

(
log

ST
S0

)
. (3.22)

As there are no actively traded log contracts for the second term in Equation (3.22), one

must duplicate the log payoff, at all stock price levels at expiration, by decomposing its

shape into linear and curved components, and then duplicating each of these separately.

The linear component can be duplicated with a forward contract on the stock with delivery

time T . The remaining curved component, representing the quadratic and higher order

contributions, can be duplicated using standard options with all possible strike levels and

the same expiration time T . For practical reasons we want to duplicate the log payoff with

liquid options that is, with a combination of out-of-the-money calls for high stock values

and out-of-the-money puts for low stock values. We introduce a new arbitrary parameter

S∗ to define the boundary between calls and puts. The log payoff can then be rewritten

as

log
ST
S0

= log
ST
S∗

+ log
S∗
S0
. (3.23)

The last term is constant, but the first one is random. We will make use of the following

proposition to decompose the log payoff in terms of call and put options and forward

contracts. We attach its proof for the sake of completeness, but we stress it is not an

original result of this thesis.

Proposition 3.5 For any twice-differentiable function f : I ⊆ R −→ R and any S∗ ≥ 0,

we have

f(ST ) = f(S∗) + f ′(S∗)(ST − S∗) +
∫ S∗

0
f ′′(K)(K − ST )

+dK +

∫ ∞

S∗

f ′′(K)(ST −K)+dK.

(3.24)

Proof For the shifting property of the Dirac Delta function (see [RY]) , we have

f(ST ) =

∫ ∞

0
f(K)δ(ST −K)dK.

For any S∗ ≥ 0,

f(ST ) =

∫ S∗

0
f(K)δ(ST −K)dK +

∫ ∞

S∗

f(K)δ(ST −K)dK. (3.25)
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If H denotes the Heaviside function, defined as H(x) := I(0,+∞)(x), recall that H
′(x) =

δ(x), and integrating by parts (3.25), we get

f(ST ) = f(K)I(0,K)(ST )

∣∣∣∣
S∗

0

−
∫ S∗

0
f ′(K)I[0,K](ST )dK

+ f(K)I[K,+∞](ST )

∣∣∣∣
∞

S∗

−
∫ ∞

S∗

f ′(K)I(K,+∞)(ST )dK.

Once again using that (max(x, 0))′ = H(x) and integrating by parts, we arrive at

f(ST ) = f(S∗)I(0,S∗)(ST )− f ′(K)(K − ST )
+

∣∣∣∣
S∗

0

+

∫ S∗

0
f ′′(K)(K − ST )

+dK

+ f(S∗)I[S∗,) − f ′(K)(ST −K)+
∣∣∣∣
∞

S∗

+

∫ ∞

S∗

f ′′(K)(ST −K)+dK

= f(S∗) + f ′(S∗)[(ST − S∗)
+ − (S∗ − ST )

+]

+

∫ S∗

0
f ′′(K)(K − ST )

+dK +

∫ ∞

S∗

f ′′(K)(ST −K)+dK. (3.26)

We obtain the result by noting that (ST − S∗)+ − (S∗ − ST )
+ = ST − S∗ and replacing in

(3.26). �

Proposition 3.5 is very useful in quantitative finance. For example, if we apply it to the

left hand side of (3.23), we get

log(ST )− log(S∗) =
ST − S∗
S∗

−
∫ S∗

0

1

K2
(K − ST )

+dK −
∫ ∞

S∗

1

K2
(ST −K)+dK. (3.27)

Identity (3.27) represents the decomposition of a log payoff into a portfolio consisting of:

- a short position in forward contracts struck at S∗

- a long position in put options struck at K, for all strikes from 0 to S∗

- a similar long position in call options struck at K, for all strikes from S∗ to ∞.

All contracts expire at time T . Inserting (3.27) into (3.23), the fair value of future variance

can be related to the initial fair value of each term on the right hand side of Equation

(3.19). Using identity (3.27), we obtain

Kvar =
2

T

[
rT −E0

(
log

S∗
S0

+
ST − S0
S∗

−
∫ S∗

0

1

K2
(K − ST )

+dK −
∫ ∞

S∗

1

K2
(ST −K)+

)
dK

]
,

(3.28)
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or equivalently

Kvar =
2

T

[
rT −

(
log

S∗
S0

+ 1 +
E0(ST )

S∗
− (3.29)

−
∫ S∗

0

1

K2
E0[(K − ST )

+]dK −
∫ ∞

S∗

1

K2
E0[(ST −K)+]

)
dK

]
.

Under the equivalent martingale measure, the discounted stock price and options price are

martingales. Thus,

S0 = e−rT
E0(ST ), C0(K) = e−rT

E0[(ST−K)+], P0(K) = e−rT
E0[(K−ST )+], (3.30)

where P0(K), C0(K) are the premiums (prices at t = 0) of the put and call options

respectively struck at K with maturity T .

3.5 Extension to Stochastic Interest Rates

In this section we present a little but useful extension of the previous results under the

context of stochastic interest rates. As it is well known, the effect of stochastic interest

rates affects the evaluation of the contract mainly due to the correlation between the

stock and the rates, which is difficult to hedge. Here we propose an extension of Carr-

Lee ([CL05]) characterization and a way to hedge this correlation by means of Exchange

Options.

3.5.1 Carr-Lee approach

In their ground-breaking paper, Carr and Lee develop a technology to extend the previous

results for variance derivatives to arbitrary functions of realized variance under a zero-

correlation assumption between the volatility and the stock price processes. The core of

their methodology is the finding that a general function of variance (including volatility)

admits valuation and replication using portfolios of European options and stock. They

achieve this by showing that realized variance 〈X〉T satisfies an identity of the form

E
Q(h(〈X〉T )) = E

Q(G(ST )),

for a given payoff h and a suitable G. The expectation containing h is the price of the

contract on variance and the right-hand side is the price of a contract on a payoff dependent
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exclusively on stock price. Therefore, the value of a variance contract is expressed only in

terms of the prices observable in the market (the option market) and is fully independent

of the parameters of any model. Now we extend their essential results to the context of

stochastic interest rates.

General Assumptions

Throughout this section, we will base our analysis on the following

Assumption 3.6 On a filtered probability space (Ω,F , P ) satisfying the usual conditions,

there exists a (Ft, P )-brownian motion Wt and some Ft-adapted processes σt, rt such that:

• 〈X〉T < M, (X = log(S))

• σ and W are independent

• σ and r are independent

Given a general payoffG, the last assumption gives an interpretation of P (0, T )E[G(〈X〉T )]
as a price, because

E0

[
G(〈X〉T )e−

∫ T

0 r(u)du

]
= P (0, T )E0[G(〈X〉T )],

so the main challenge is to get the value of the last expectation. As in Carr and Lee

[CL05], we start with exponential payoffs, i.e., functions G of the form G(t) = eλt, which

serve as building blocks to create more general functions of 〈X〉T .

Proposition 3.7 (Extension of Proposition 16 of Carr-Lee) For each λ ∈ C and t ≤ T ,

Ete
λ〈X〉T = eλ〈X〉t

(
St
βt

)−p

Et

[(
ST
βT

)p]
, (3.31)

where p = 1
2 ±

√
1/4 + 2λ.

proof: Consider the process Yt =
St

βt
. By Itô’s rule,

dYt
Yt

=
dSt
St

− dβt
βt

= σtdWt

and in consequence Yt is a martingale. Note also that 〈log(Y )〉T = 〈X〉T .
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We apply a more general version of Hull-White’s [HW] conditioning argument. Conditional

on Fσ
T , the W is still a brownian motion, by independence. So conditional on Ft ∨ Fσ

T ,

log

(
YT
Yt

)
= −1

2
(〈X〉T − 〈X〉t) +

∫ T

t
σs dWs ∼ N

(
− 1

2
(〈X〉T − 〈X〉t), 〈X〉T − 〈X〉t

)
,

For each p ∈ C, therefore,

(
St
βt

)−p

Et

(
Sp
T

βpT

)
= Ete

p log(YT )−log(Yt) = Et

[
Et

(
e
p log(

YT
Yt

)
∣∣∣∣Fσ

T

)]

= Et

[
e
Et

(
p log(

YT
Yt

)
∣∣Fσ

T

)
+ 1

2
Vart

(
p log(

YT
Yt

)
∣∣Fσ

T

)]

= Et

[
e

1
2
(p2−p)(〈X〉T−〈X〉t)

]
,

so, with λ = 1
2(p

2 − p), we get the result. �

Corolary 3.8 For each positive integer n,

Et(〈X〉nT ) = Et

(
∂Gexp

∂λ

(
ST
βT

,
St
βt
, 〈X〉t, λ

)∣∣∣∣
λ=0

)
,

where Gexp(S, u, q, λ) := eλq
(
S
u

)p
. In particular, for n = 1, we have

E0(〈X〉T ) = E0

(
− 2XT + 2

ST
S0

− 2

)
.

Proof Just take n derivative of (3.31) with respect to λ and evaluate at λ = 0. Differenti-

ation through the expectations is justified by the boundedness of 〈X〉T and the analyticity

of the moment generating function of XT .

�

The mixing formula

To quantify the impact of correlation, Carr and Lee (Proposition 9) give a mixing formula

that (without assuming independence) expresses the value of any European-style payoff

as the expectation of the Black-Scholes formula for that payoff, evaluated at a random-

ized stock price and random volatility. The parameter ρ appears explicitly in the mixing
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formula’s randomized arguments, enabling them to examine the formula’s correlation-

sensitivity and to choose a function G such that E(G(ST )) has zero sensitivity to correla-

tion perturbations. To prove this formula, they use the argument due to Romano-Touzi,

but in a slightly more general setting, without assuming that instantaneous volatility fol-

lows a 1-factor diffusion. Here we extend their result to a framework of stochastic interest

rate by taking the quotient St/βt and conditioning on the volatility path. We obtain an

expression for a European option price as the expectation of the Black-Scholes formula,

with the volatility parameter replaced by the the square root of average future realized

variance 1
T−t

∫ T
t σ2udu and the spot price replaced by St/βt.

Proposition 3.9 Without assuming independence between σ and W , let

dSt = rtStdt+ σtSt
(√

1− ρ2dW 1
t + ρdW 2

t

)

where |ρ| ≤ 1, and W 1 and W 2 are Ft-brownian motions, and ρ and W 2 are adapted to

some filtration Ht ⊆ Ft, where HT and FW 1

T are independent. Then

EtF

(
ST
βT

)
= EtF

BS

(
St
βt
Mt,T (ρ), t, νt,T (1− ρ2), 1, 0

)
,

where

Mt,T (ρ) = e−
ρ2

2

∫ T

t
σ2
udu+ρ

∫ T

t
σudW 2

u and νt,T =

∫ T

t
σ2udu .

Proof Applying Itô’s rule,

d log(Yt) = d log(St)− d log(βt)

= −1

2
σ2t dt+ rtdt+ σt

(√
1− ρ2dW 1

t + ρdW 2
t

)
− rtdt

= −1− ρ2

2
σ2t dt−

ρ2

2
σ2t dt+ σt

(√
1− ρ2dW 1

t + ρdW 2
t

)
.

So conditional on HT ∨ Ft,

YT ∼ N
(
Xt + logMt,T (ρ)− νt,T

1− ρ2

2
, νt,T (1− ρ2)

)

Hence the time-t expectation of F (ST ) claim is

EtF (YT ) = Et(Et(F (YT )|HT )) = EtF
BS
(
YtMt,T (ρ), t, νt,T (1− ρ2), 1, 0

)
.

�

So far, we have shown that all the results are extensible as long as we evaluate the payoff in

St/βt. What is not clear is whether the resulting expression can be replicated. Fortunately,

the following financial instruments make this possible.
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3.5.2 Exchange Options

Definition 3.10 (Exchange Option) An exchange option (X-option) gives its owner the

right to exchange b units of one asset into a units of another asset at a specific point in

time, i.e., it is a claim that pays off

(aS1(T )− bS2(T ))
+.

Remark Let us assume momentarily that the interest rate r is constant and that the

underlying assets follow correlated (dW 1dW 2 = ρdt) geometric brownian motions under

the risk-neutral measure,

dSi = µiSidt+ σiSidW
i.

The time-t value of the exchange option is

FM (aS1(t), bS2(t), t, σq),

where FM is the Margrabe’s formula, given by

FM (S1, S2, t, σq) := S1e
(µ1−r)(T−t)Φ(d+)− S2e

(µ2−r)(T−t)Φ(d−), (3.32)

with

d± =
ln(S1/S2) + (µ1 − µ2 ± σ2q/2)(T − t)

σq
√
T − t

,

and

σq =
√
σ21 + σ22 − 2ρσ1σ2.

It is interesting to note that this formula is independent of the short rate if µ1 = µ2 = r.

This is because after risk adjustment, both underlying indexes increase at the same rate

and the drifts offset each other. In this case,

FM (S1, S2, t, σ) = FBS

(
S1

S2e−(µ2−µ1)(T−t)
, t, σq, S2, r − µ2

)
.

Formula (3.32) remains valid in a context of stochastic interest rate as long as the factors

that drive interest rates are independent of those driving the S assets, which is obviously

not our case.

Combining the mixing formula with the fact that the value of an X-option can be viewed

as the price of a European call option with zero interest rate, strike 1, we get

p = βtEtF (YT ) = βtEt

(
ST
βT

− 1

)+

= βtEtF
BS

(
St
βt
Mt,T (ρ), t, νt,T (1− ρ2), 1, 0

)
.
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3.5.3 Replication of exponential variance by means of Exchange Options

Following the line of reasoning in Carr and Lee, the price of a general European payoff

on realized variance can be decomposed as a weighted sum of contracts with exponential

payoffs on variance, each priced according to the previous proposition.

Under the assumptions in place, the value of the contract only depends on the volatility

process of St

βt
, which is a martingale with volatility process and initial value equal to those of

St. Therefore the price under consideration is independent of the properties of the interest

rate process. However, hedging performance, which depends on the nature of instruments

available for hedging, might depend on the properties of the interest rate process. The

pricing representation based on E0

[
(ST

βT
)p
]
is not immediately useful in hedging because

its interpretation as the price of a financial contract is not readily apparent. Fortunately,

we can replicate it as a position not in plain vanilla options but in X-options:

Proposition 3.11 The pricing factor E0

[(
ST
βT

)p]
can be replicated through a position

in p forward contracts plus a portfolio of Exchange Options on the assets ST and βT , with

notional equal to p(p− 1)Kp−2.

Proof Using Proposition 3.5 applied to the function f(t) := tp, we get

Y p
T = 1 + p(YT − 1) +

∫ 1

0
p(p− 1)Kp−2(K − YT )

+dK +

∫ ∞

1
p(p− 1)Kp−2(YT −K)+dK

Doing YT = ST /βT and taking expectation in this identity yields

E0

[(
ST
βT

)p]
= 1 + p(S0 − 1) +

∫ 1

0
p(p− 1)Kp−2

E0

[(
K − ST

βT

)+]
dK +

+

∫ ∞

1
p(p− 1)Kp−2

E0

[(
ST
βT

−K

)+]
dK

= 1 + p(S0 − 1) +

∫ 1

0
p(1− p)Kp−2

E0

[
(ST − βTK)+

βT

]
dK

+

∫ ∞

1
p(p− 1)Kp−2

E0

[
(ST −KβT )

+

βT

]
dK.

The expectation inside both integrals is the price of anX-option with S1(T ) = ST , S2(T ) =

βT , a = 1, b = K. �
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Then, if an X-option market between S and the bank account β is available, the infor-

mation in T -expiry option prices fully reveals the risk-neutral distribution not only of the

discounted price ST /βT , but also of variance 〈X〉T . Given the previous identity, all the

Carr-Lee framework is extensible to stochastic rates using the same techniques they use,

but evaluating the payoff in St/βt instead of St.

If exchange options of all strikes are available for hedging, then this can be accomplished

in a perfect manner. If not, some natural questions arise. How can we optimally hedge if

there are exchange options for only a few strikes, and a much finer grid for standard calls

and puts? In order to see this, compare the payoff delivered by an exchange option

(ST −KβT )
+

with the payoff delivered by a standard option

(ST −K)+.

Assuming that E[βT ] is known from the bond market, we can approximate an exchange

option by a standard call with fixed strike by taking a payoff of the form

(ST −KE[βT ])
+.

But if some exchange options are available, perhaps we should buy those in larger amount

than that indicated by the exact decomposition to guarantee that the correlation between

rates and the stock is hedged optimally, and buy less of the non-available strikes which

are approximately hedged by standard calls and puts.





Chapter 4

Monte Carlo Simulation: Variance

Reduction Techniques

The term “Monte Carlo” was apparently first used by Ulam and von Neumann as a

Los Alamos code word for the stochastic simulations they applied to build better atomic

bombs. Their methods, involving the laws of chance, were aptly named after the inter-

national gaming destination. Despite the widespread use of the methods, and numerous

descriptions of them in articles and monographs, it is virtually impossible to find a succint

definition of “Monte Carlo method” in the literature. Perhaps this is owing to the intu-

itive nature of the topic which spawns many definitions by way of specific examples. Some

authors prefer to use the term “stochastic simulation” for almost everything, reserving

“Monte Carlo” only for Monte Carlo Integration and Monte Carlo Tests (cf. Ripley 1987).

Others seem less concerned about blurring the distinction between simulation studies and

Monte Carlo methods. Be that as it may, a suitable definition can be good to have, if

for nothing other than to avoid the awkwardness of trying to define the Monte Carlo

method by appealing to a whole bevy of examples of it. In an attempt to fulfill this task,

a satisfactory definition of Monte Carlo would be, in our opinion, the one that reads as

the art of approximating an expectation by the sample mean of a function of simulated

random variables. We will find that this definition is broad enough to cover everything

that has been called Monte Carlo, and yet makes clear its essence in very familiar terms:

Monte Carlo is about invoking laws of large numbers to approximate expectations. While

most Monte Carlo simulations are done by computer today, there were many applications

of Monte Carlo methods using coin-flipping, card-drawing, or needle-tossing (rather than

computer generated pseudo-random numbers) as early as the turn of the century long

before the name Monte Carlo arose.

41
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4.1 The idea behind Monte Carlo and some basic results

Consider a (possibly multidimensional) random variable X having probability mass func-

tion or probability density function fX(x) which is greater than zero on a set of values X.

Then the expected value of a function g of X is

E(h(X)) =
∑

x∈Ω
h(x)fX(x) (4.1)

if X is discrete, and

E(h(X)) =

∫

Ω
h(x)fX(x)dx (4.2)

if X is continuous. Now, if we were to take an n-sample of X’s, (x1, ..., xn), and we

computed the mean of h(x) over the sample, then we would have the Monte Carlo estimate

h̃n(x) =
1

n

n∑

i=1

h(xi) (4.3)

of E(h(X)). We could, alternatively, speak of the random variable

h̃n(X) =
1

n

n∑

i=1

h(X) (4.4)

which we call the Monte Carlo estimator of E(h(X)). If E(h(X)) exists, then the weak

law of large numbers tells us that for any arbitrarily small ǫ

lim
n→∞

P (|h̃n(X)− E(h(X))| ≥ ǫ) = 0. (4.5)

This tells us that as n gets large, then there is small probability that h̃n(X) deviates much

from E(h(X)). For our purposes, the strong law of large numbers says much the same

thing (the important part being that so long as n is large enough, h̃n(x) arising from a

Monte Carlo experiment shall be close to E(h(X)), as desired). One other thing to note

at this point is that h̃n(X) is unbiased for E(h(X)):

E(h̃n(X)) = E

(
1

n

n∑

i=0

h(Xi)

)
=

1

n

n∑

i=0

E(h(Xi)) = E(h(X)). (4.6)

The preceding section comes to life and becomes useful when one realizes that many

quantities of interest may be cast as expectations. Most importantly for applications in

statistical genetics, it is possible to express all probabilities, integrals, and summations as

expectations.
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4.2 Simulation Efficiency

Suppose as usual that we wish to estimate θ := E[h(X)]. Then the standard simulation

algorithm is:

1. Generate X1, . . . , Xn

2. Estimate θ with θ̂n :=
∑n

i=1 Yj/n, Yj := h(Xj)

3. Approximate 100(1− α)% confidence intervals by

[
θ̂ − z1−α/2

σ̂n√
n
, θ̂ + z1−α/2

σ̂n√
n

]
,

where σ̂n is the usual estimate of Var(Y ) based on Y1, ..., Yn. One way to measure the

quality of the estimator, θ̂n, is by the half-width, HW , of the confidence interval. For a

fixed α, we have

HW = z1−α/2

√
Var(Y )

n
.

We would like HW to be small, but sometimes this is difficult to achieve. This may be

because Var(Y ) is too large, or too much computational effort is required to simulate each

Yj so that n is necessarily small, or some combination of the two. As a result, it is often

imperative to address the issue of simulation efficiency. There are a number of things we

can do:

1. Develop a good simulation algorithm

2. Program carefully to minimize storage requirements. For example we do not need

to store all the Yj ’s: we only need to keep track of
∑
Yj and

∑
Y 2
j to compute θ̂n

and approximate CI’s

3. Program carefully to minimize execution time

4. Decrease the variability of the simulation output that we use to estimate θ. The

techniques used to do this are usually called variance reduction techniques

In the next section we will study various variance reduction techniques, and assume that we

are doing items (1) to (3) as well as possible. Before proceeding to study these techniques,

however, we should first describe a measure of simulation efficiency.
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4.2.1 Measuring simulation efficiency

Suppose there are two random variables, W and Y , such that E[W ] = E[Y ] = θ. Then

we could choose to either simulate W1, . . .Wn or Y1, . . . , Yn in order to estimate θ. Let

Mω denote the method of estimating θ by simulating the Wi’s. My is similarly defined.

Which method is more efficient, Mω or My? To answer this, let nω and ny be the number

of samples of W and Y , respectively, that are needed to achieve a half-width, HW . Then

it is easy to see that

nω =

(
z1−α/2

HW

)2

Var(W )

ny =

(
z1−α/2

HW

)2

Var(Y ).

Let Eω and Ey denote the amount of computational effort required to produce one sample

of W and Y , respectively. Then the total effort expended by Mω to achieve a half-width

HW is

TEω =

(
z1−α/2

HW

)2

Var(W )Eω.

Similarly, the effort expended by My to achieve the same half-width HW , is given by

TEy =

(
z1−α/2

HW

)2

Var(W )Ey.

We say that Mω is more efficient than My if

TEω < TEy.

Note that TEω < TEy if and only if

Var(W )Eω < Var(Y )Ey. (4.7)

We will use the quantity Var(W )Eω as a measure of the efficiency of the simulator, Mω.

Note that expression (4.7) implies that we cannot conclude that one simulation algorithm,

Mω, is better than another, My, simply because Var(W ) < Var(Y ); we also need to take

Eω and Ey into consideration. However, it is often the case that we have two simulators

available to us, Mw and My, where Eω ≈ Ey and Var(W ) << Var(Y ). In such cases it is

clear that using Mω provides a substantial improvement over using My.
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4.3 Variance Reduction Techniques

Variance reduction is the search for alternative and more accurate estimators of a given

quantity. The possibility of variance reduction is what separates Monte Carlo from direct

simulation. Simple variance reduction methods often are remarkably effective and easy to

implement. It is good to think about them as you wait for a long Monte Carlo computa-

tion to finish. In some applications, such as rare event simulation and quantum chemistry,

they make practical what would be impossible otherwise. Most advanced Monte Carlo is

some kind of variance reduction. Among the many variance reduction techniques, which

may be used in combination, are control variates, partial integration, systematic sampling

and importance sampling. The method of control variates is useful when a crude ver-

sion of the problem can be solved explicitly. This is often the case in simple problems

(possibly the definition of “simple”) such pricing problems in quantitative finance where

the crude solvable version could be Black-Scholes. Partial integration, also called Rao

Blackwellization or Conditional Monte Carlo, lowers variance by replacing integrals over

some variables or over parts of space by their averages. Systematic sampling methods

range from the simplest, antithetic variates, to the slightly more sophisticated stratified

sampling, to quasi Monte Carlo integration. Importance sampling has appeared already

as sampling with a weight function. It also is the basis of reweighting and score function

strategies for sensitivity analysis. Methods for rare event sampling mostly use importance

functions, often suggested by the mathematical theory of large deviations.

Going back to our original notation, we have the random variable h̃n(X), a Monte Carlo

estimator of E(h(X)). Like all random variables, we may compute its variance (if it exists)

by the standard formula

Var(h̃n(X)) =
Var(h(X))

n
=

1

n

∫

Ω
[h(x)− E(h(X))]2fX(x)dx.

4.3.1 Conditional Monte Carlo

We will now consider the variance reduction technique known as conditional Monte Carlo.

The idea here is very simple: we use our knowledge about the system being studied to

reduce the variance of our estimator. As usual, suppose we wish to estimate θ = E[h(X)]

where X = (X1, ..., Xm). If we could compute θ analytically, then this would be equivalent

to solving an m-dimensional integral. However, maybe it is possible to evaluate part of

the integral analytically. If so, then we might be able to use simulation to estimate the

other part and thereby obtain a variance reduction. The vehicle that we use to do part of
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the integration analytically is the concept of conditional expectation. Before we describe

the method in detail, we will briefly review conditional expectations and variances.

Conditional Expectations and Variances

Let X and Z be random vectors, and let Y = h(X) be a random variable. Suppose we

set V = E(Y |Z). Then V is itself a random variable that depends on Z, so that we may

write V = g(Z) for some function, g(·). We also know that

E[V ] = E[E(Y |Z)] = E[Y ], (4.8)

so that if we are trying to estimate µ = E[Y ], one possibility would be to simulate V

instead of simulating Y . In order to decide which would be a better estimator of µ, it is

necessary to compare the variances of Y and E[Y |Z]. To do this, recall the conditional

variance formula:

Var(Y ) = E[(Var(Y |Z)] + Var[E(Y |Z)]. (4.9)

Now Var(Y |Z) is also a random variable that depends on Z, and since a variance is always

non-negative, it must follow that E[Var(Y |Z)] ≥ 0. But then (4.9) implies

Var(Y ) ≥ Var(E(Y |Z)), (4.10)

so we can conclude that V is a better estimator of µ than Y . To see this from another

perspective, suppose that to estimate µ we first have to simulate Z and then simulate Y

given Z. If we can compute E(Y |Z) exactly, then we can eliminate the additional noise

that comes from simulating Y given Z, thereby obtaining a variance reduction.

As a practical example, suppose (X,Y ) is a random vector with probability density f(x, y).

Let G(X,Y ) be a random variable and

G̃(x) = E(G(X,Y )|x) =
∫
ΩG(x, y)f(x, y)dy∫

Ω f(x, y)dy
.

A simple inequality shows that except in the trivial case where G already was independent

of y,

Var(G̃) < Var(G)

A more general version of the partial averaging method is that if G is a sub σ-algebra and

G̃ = E(G| G),

then we have

Var(G) = Var(G̃) + E
[
(G− G̃)2

]
,
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and thus

Var(G) < Var(G̃),

except in the trivial case that G is G-measurable. The conclusion is that if a problem

can be solved partially, if some of the integrals above can be computed explicitly, the

remaining problem is easier.

Finally, we point out that in order for the conditional expectation method to be worthwhile,

it must be the case that Y and Z are dependent.

The conditional Monte Carlo Simulation Algorithm

We want to estimate θ := E[g(X)] = E[Y ] using conditional Monte Carlo. To do so, we

must have another variable or vector, Z, that satisfies the following requirements:

1. Z can be easily simulated

2. V := g(Z) := E(Y |Z) can be computed exactly

This means that we can simulate a value of V by first simulating a value of Z and then

setting V = g(Z) = E(Y |Z). We then have the following algorithm for estimating µ. It

is also possible that other variance reduction methods could be used in conjunction with

conditioning. For example, it might be possible to use stratification.

The following algorithm implements this idea to estimate this expected value:

for i = 1 to n

• generate Zi

• compute g(Zi) = E(Y |Zi)

• set Vi = g(Zi)

• end for

• set θ̂n,cm = V̄n = 1
n

∑n
i=1 Vi

• set σ̂2n,cm = 1
n−1

∑n
i=1(Vi − V n)

2

It is also possible that other variance reduction methods could be used in conjunction

with conditioning. For example, it might be possible to use importance sampling or

stratification, which will be in fact our approach.
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4.3.2 Stratification

Stratified sampling1 refers broadly to any sampling mechanism that constrains the fraction

of observations drawn from specific subsets or strata of the sample space. Suppose that

our goal is to estimate E(Y ) with Y real-valued, and let A1, ..., AK a partition of the real

line. Then

E(Y ) =
K∑

i=1

P (Y ∈ Ai)E(Y |Y ∈ Ai) =
K∑

i=1

piE(Y |Y ∈ Ai), (4.11)

with pi = P (Y ∈ Ai). In a random sampling, we generate independent Y1, ..., Yn having

the same distribution as Y . The fraction of this sample falling in Ai will not in general

equal pi though it would approach pi as the sample size n increases. In stratified sampling,

we decide in advance what fraction of the samples should be drawn from each stratum

Ai; each observation drawn from this subset is constrained to have the distribution of Y

conditional on Y ∈ Ai.

The simplest case is proportional sampling, in which we ensure that the fraction of ob-

servations drawn from stratum Ai matches the theoretical probability pi = P (Y ∈ Ai).

If the total sample size is n, this entails generating ni = npi samples from Ai. For each

i = 1, . . . ,K, let the Yij , j = 1, . . . , ni be independent draws from the conditional distri-

bution of Y given Y ∈ Ai. An unbiased estimator of E(Y | Y ∈ Ai) is provided by the

sample mean (Yi1 + . . . + Yini
)/ni of observations from the ith stratum. It follows from

(4.11) that an unbiased estimator of E(Y ) is provided by

Ŷ =

K∑

i=1

pi ·
1

ni

ni∑

j=1

Yij =
1

n

K∑

i=1

ni∑

j=1

Yij . (4.12)

This estimator should be contrasted with the usual sample mean Ȳ = (Y1 + . . . + Yn)/n

of a random sample of size n. Compared with Ȳ , the stratified estimator Ŷ eliminates

sampling variability across strata without affecting sampling variability within strata.

From this introduction it should be clear that the use of stratified sampling involves

consideration of two issues:

• choosing the variable X, the strata A1, . . . , AK , and the allocation n1, . . . , nK

• generating samples from the distribution of (X,Y ) conditional on X ∈ Ai.

1For this section, we followed chapter 4, section 3 of [Gl].
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In addressing the first issue, we will see that stratified sampling is more effective when the

variability of Y within each stratum is small. For solutions to the second issue, examples

in Glasserman [Gl] can be consulted.

Output analysis

We turn back to the original problem we stated: the estimation of an expected value

through stratification. With the previous notation, let

µi = E(Yij) = E(Y |X ∈ Ai) (4.13)

σ2i = Var(Yij) = Var(Y |X ∈ Ai) (4.14)

Let pi = P (X ∈ Ai) denote the stratum probabilities. Fix an allocation n1, ..., nK with

all ni ≥ 1 and n1 + ... + nK = n. Let qi = ni/n denote the fraction of samples allocated

to the ith stratum. For any such allocation the estimator Y in (4.11) is unbiased because

E(Y ) =
K∑

i=1

pi ·
1

ni

ni∑

j=1

E(Yij) =

K∑

i=1

piµi = µ. (4.15)

The variance of Ŷ is given by

Var(Ŷ ) =

K∑

i=1

p2iVar

(
1

ni

ni∑

j=1

Yij

)
=

K∑

i=1

p2i
σ2i
ni

=
σ(q)2

n
, (4.16)

with

σ2(q) =
K∑

i=1

p2i
qi
σ2i . (4.17)

For each stratum Ai, the samples Yi1, Yi2,... are i.i.d. with mean µi and variance σ2i and

thus satisfy

1√
⌊nqi⌋

⌊nqi⌋∑

j=1

(Yij − µi)−−−−−→n→∞ N (0, σ2j ), (4.18)

with q1, ..., qK fixed. The centered and scaled estimator
√
n(Ŷ − µ) can be written as

√
n(Ŷ − µ) =

√
n

K∑

i=1

pi

(
1

⌊nqi⌋

⌊nqi⌋∑

j=1

(Yij − µi)

)

≈
K∑

i=1

pi√
qi

(
1

⌊nqi⌋

⌊nqi⌋∑

j=1

(Yij − µi)

)
,
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the approximation holding in the sense that the ratio of the two expressions approaches

1 as n → ∞. This shows that
√
n(Ŷ − µ) is asymptotically a linear combination of

independent normal variables (with mean 0 and variances σ2i ). It follows that

√
n(Ŷ − µ)−−−−−→ N (0, σ2j ),

with σ2(q) as defined in (4.17). This limit holds as the sample size n increases with the

number of strata K held fixed.

Optimal allocation

In the case of a proportional allocation of samples to strata, qi = pi and the variance

parameter σ2(q) simplifies to
K∑

i=1

p2i
qi
σ2i =

K∑

i=1

piσ
2
i . (4.19)

To compare this to the variance without stratification, observe that

E(Y 2) =
K∑

i=1

piE(Y
2|X ∈ Ai) =

K∑

i=1

pi(σ
2
i + µ2i ), (4.20)

so using µ =
∑K

i=1 piµi, we get

Var(Y ) = E(Y 2)− µ2 =
K∑

i=1

piσ
2
i

K∑

i=1

piµ
2
i −

( K∑

i=1

piµi

)2

. (4.21)

By Jensen’s inequality,
K∑

i=1

piµ
2
i ≥

( K∑

i=1

piµi

)2

, (4.22)

with strict inequality unless all µi are equal. Thus, comparing with (4.19), we conclude

that stratified sampling with a proportional allocation can only decrease variance.

Variance decomposition

The preceding discussion considers the allocation of samples to given data. In order to

consider the question of how strata should be selected in the first place, we now examine

what part of the variance of Y is removed through stratification of X. As before, let

A1, . . . , AK be strata for X. Let η ≡ η(X) ∈ {1, ...,K} denote the index of the stratum

containing X, so that X ∈ Aη. We can always write

Y = E(Y |η) + ε
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simply by defining the residual ǫ so that equality holds. Applying (4.9) with Z := η, we

find that

Var(Y ) = Var(E(Y |η)) + E(Var(Y |η)). (4.23)

As E(Y |η = i) = µi and P (η = i) = pi, the first term on the right hand side of (4.23) is

Var(E(Y |η)) =
K∑

i=1

piµ
2
i −

( K∑

i=1

piµi

)2

, (4.24)

from which we conclude that

Var(E(Y |η)) = E(Var(Y |η)) =
K∑

i=1

piσ
2
i ,

which is precisely the variance parameter in (4.19) for stratified sampling with proportional

allocation. This confirms that the variance parameter of the stratified estimator is the vari-

ance of the residual of Y after conditioning on η. Identity (4.24) shows that stratification

eliminates inter-stratum variability, leaving only intra-stratum variability. Another conse-

quence of it, is that further stratification results in further variance reduction. Suppose the

partition {Ã1, . . . , ÃM} refines the partition {A1, . . . , AK}, in the sense that the stratum

index η̃ of the new partition completely determines η. Then, E(Y |η) = E
(
E(Y |η)|η̃

)
and

Jensen’s inequality yields

Var(E(Y |η)) ≤ Var(E(Y |η̃)),

from which it follows that the residual variance from the refined strata cannot exceed the

residual variance from the original strata.

Stratifying a linear projection

Suppose that ξ ∼ N (µ,Σ) in R
d and that we want to generate ξ with X ≡ v⊤ξ stratified

for some fixed vector v ∈ R
d. Suppose the d × d matrix Σ has full rank. Without loss

of generality, we may take µ to be the zero vector. Also, stratifying X is equivalent to

stratify any multiple of X. Thus, by scaling v if necessary, we may assume that v⊤Σv = 1.

Then,

X = v⊤ξ ∼ N (0, v⊤Σv) = N (0, 1), (4.25)

so we can stratify X by the following method: take K equiprobable strata with propor-

tional allocation of the set [0, 1]. Let U1, ..., UK be independent Unif[0, 1] random variables

and set

Vi =
i− 1

K
+
Ui

K
, i = 1, ...,K.
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Then Φ−1(V1), . . . ,Φ
−1(VK) form a stratified sample from the standard normal.

The next step is to generate ξ conditional in the value of X. First observe that ξ and X

are jointly normal with

(
ξ

X

)
∼ N

(
0,

(
Σ Σv

v⊤Σ v⊤Σv

) )
(4.26)

Using the Conditioning Formula for a multivariate normal partitioned vector (see [Gl],

p.65), we find that

(ξ|X = x) ∼ N
(

Σv

v⊤Σv
x,Σ− Σvv⊤Σ

v⊤Σv

)
= N

(
Σvx,Σ− Σvv⊤Σ

)
. (4.27)

Observe that the conditional covariance matrix does not depend on x. This is important

because it means that only a single factorization is required for the conditional sampling.

Let A be any matrix for which AA⊤ = Σ and observe that

(A− Σvv⊤A)(A− Σvv⊤A)⊤ = AA⊤ −AA⊤vv⊤Σ− Σvv⊤AA⊤ +Σvv⊤Σvv⊤Σ

= Σ− Σvv⊤Σ,

again using that v⊤Σv = 1. Thus, we can use the matrix A− Σvv⊤A to sample from the

conditional distribution of ξ given X. The following algorithm generates K samples from

N (0,Σ) stratified along the direction determined by v:

for i = 1, ...,K

• generate U ∼ Unif[0, 1]

• set V = i−1+U
K

• set X = Φ−1(V )

• generate Z ∼ N (0, I) in R
d

• set ξ = ΣvX + (A− Σvv⊤A)Z

By construction, of the K values of X generated by this algorithm, exactly one will fall

in each of K equiprobable strata for the standard normal distribution. But observe that

under this construction,

v⊤ξ = v⊤ΣvX + v⊤(A− Σvv⊤A)Z = X.
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Thus, of the K values of ξ generated, exactly one has a projection v⊤ξ falling into each

of K equiprobable strata. In this sense, the algorithm generates samples from N (0,Σ)

stratified along the direction determined by v.

Further simplification is possible in stratifying a sample from the standard multivariate

normal distribution N (0, I). In this case, the construction above becomes

ξ = vX + (I − vv⊤)Z, X ∼ N (0, 1), Z ∼ N (0, I),

with v now normalized so that v⊤v = 1. Since X = v⊤ξ, by stratifying X we stratify the

projection of ξ onto v.

Optimal stratification direction

In estimating E(f(ξ)), with ξ ∼ N (µ,Σ), it would be convenient to know the direction

v for which v⊤ξ would produce the greatest reduction in variance. Finding this v is

rarely possible, but for some special sort of f this is the case. With no essential loss of

generality, we restrict our attention to the case E(f(Z)) with Z ∼ N (0, I). We know that

the residual variance after stratifying a linear combination v⊤Z is E(Var(f(Z)|η)), where
η is the random index of the stratum containing v⊤Z. If we use equiprobable strata and

let the strata grow (refining the previous set of strata) the residual variance converges to

E(Var(f(Z)|v⊤Z)) (see [GHS]). We will therefore compare alternative choices of v through

this limiting value.

If f(z) = b⊤z, it is evident that this optimal direction is given by v = b. For a quadratic

f , we have the following result:

Proposition 4.1 Let f(z) = b⊤z + 1
2(z

⊤Az), for b ∈ R
N and A ∈ R

N×N . Then the

optimal stratification direction is the solution to

arg max
{|v|=1}

[
(b⊤v)2 +

1

2
(v⊤Av)2

]
. (4.28)

Proof Because of (4.9), minimizing E(Var(f(Z)|v⊤Z)) over {|v| = 1} is equivalent to

maximizing Var(E(f(Z)|v⊤Z)) over the same set. Thus, the aim is to find v ∈ R
N ,

|v| = 1, that maximizes Var(E(f(Z)|v⊤Z)). This variance can be rewritten as

Var
(
E(b⊤Z|v⊤Z)

)
+

1

4
Var
(
E(Z⊤AZ|v⊤Z)

)
+ Cov

(
E(b⊤Z|v⊤Z),E(Z⊤AZ|v⊤Z)

)
. (4.29)
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The first term in the previous expression can be computed as follows: decompose Z as a

sum in the directions determined by v and ṽ ∈ 〈v〉⊥ (with |ṽ| = 1),

W = (v⊤Z)v + (ṽ⊤Z)v⊥,

multiply by b and take expectation conditional on v⊤Z,

E(b⊤Z|v⊤Z) = (v⊤Z)b⊤v + (b⊤ṽ)E(ṽ⊤Z) = (v⊤Z)b⊤v,

where the last equality holds because v′Z and ṽ⊤Z are independent standard normals.

Finally, take variance to get

Var(E(b⊤Z|v⊤Z)) = (b⊤v)2Var(v⊤Z) = (b⊤v)2|v|2 = (b⊤v)2. (4.30)

For the remaining terms, note that

E(Z⊤AZ|v⊤Z) = (v⊤Z)2v⊤Av + ṽ⊤Aṽ,

using again that v⊤Z and ṽ⊤Z are independent standard normals. Therefore,

Var(E(Z⊤AZ|v⊤Z)) = 2(v⊤Av)2, (4.31)

and

Cov(E(b⊤Z|v⊤Z),E(Z⊤AZ|v⊤Z)) = (b⊤v)E((v⊤Z)E(Z⊤AZ|v⊤Z))
= (b⊤v)(v⊤Av)E((v⊤Z)3) = 0.

Adding up (4.30) and (4.31), we obtain

Var(E(f(Z)|v⊤Z)) = (b⊤v)2 +
1

2
(v⊤Av)2 (4.32)

under |v| = 1. �

Remark If A is a symmetric matrix, then it has real eigenvalues λ1 ≥ λ2 . . . ≥ λd and

the second term of (4.32) is maximized by v1 if |λ1| ≥ |λd| and by vd if |λd| ≥ |λ1|, where
vi is the vector associated to λi. In other words, the optimal stratification direction is

an eigenvector of A associated with an eigenvalue of largest absolute value. The effect of

optimal stratification is to reduce variance from
∑

i λ
2
i to

∑
i λ

2
i −maxi λ

2
i .

Although simulation is unnecessary for the evaluation of E(f(Z)) in each of these examples,

a linear or quadratic function maybe useful as an approximation to a more general f and

thus as a guide in selecting stratification directions.



Chapter 5

Numerical simulation algorithm

for discrete variance derivatives

In this chapter, we build an algorithm that takes advantage of the fact that the value of

a variance derivative arises from the stochastic nature of realized variance. We apply the

tools in the previous chapter, combining conditional Monte Carlo with stratified sampling,

justifying the choice of our conditioning variables. We find that the variance reduction is

significant when comparing the method against naive Monte Carlo for identical computa-

tional budget. The algorithm has a deterministic error that arises from discrete numerical

integration but that is negligibly small in our implementation, and statistical error that

arises from the conditional random sampling.

5.1 Models

5.1.1 Continuous time models

Let Zt and Wt be independent standard brownian motions, and consider an underlying S

following

dSt = Strdt+ σ(St)
√
VtdZt

dVt = β(Vt)dt+ γ(Vt)
(
ρdZt +

√
1− ρ2dWt

)
, (5.1)

under the risk neutral measure and appropriate technical conditions for σ, β and γ. This

is a general stochastic volatility model in continuous time, with autonomous stochastic

55
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volatility. Some special cases of (5.1) include the model by Hull and White [HW],

dSt = Strdt+ St
√
VtdZt

dVt = µVtdt+ σVt
(
ρdzt +

√
1− ρ2dWt

)
, (5.2)

the model by Heston [H],

dSt = Strdt+ St
√
VtdZt

dVt = κ(θ − Vt)dt+ σ
√
Vt
(
ρdzt +

√
1− ρ2dWt

)
, (5.3)

and the SABR model [HKL], which is usually expressed in terms of the dynamics of the

underlying S and its instantaneous stochastic volatility σ

dSt = Strdt+ Sb
tσtdZt

dσt = ασt
(
ρdzt +

√
1− ρ2dWt

)
. (5.4)

The SABR model can be cast in the form of (5.1) by introducing Vt ≡ σ2t and applying

Ito’s Lemma.

5.1.2 Discrete time schemes

In this chapter we compute realized variance from discretely recorded observations of an

asset price process of the form (5.1). These recordings for the continuous time process are

approximated by an Euler discretization Ŝ, V̂ over a deterministic time grid t0 < t1 < ... <

tn, with ti+1 − ti = ∆ = 1/252. This grid coincides with the recording times prescribed

in the terms of the contract. The simplest formulation of the Euler scheme is a first order

expansion on S and V leading to

Ŝi+1 = Ŝi + Ŝir∆+ σ(Ŝi)
√
Vi
√
∆Zi+1

V̂i+1 = V̂i + β(V̂i)∆ + γ(V̂i)
√
∆
(
ρZi+1 +

√
1− ρ2Wi+1

)
, (5.5)

with Z1, ..., Zn and W1, ...,Wn the independent standard normal components of vectors

Z,W .

In some cases, for example in the Hull-White model (5.2), it is convenient to apply an

Euler rule to the logarithm of the variable of interest and then exponentiate to get

Ŝi+1 = Ŝie
(r−V̂i/2)∆+

√
V̂i

√
∆Zi+1

V̂i+1 = V̂ie
(µ−σ2/2)∆+σ

√
∆(ρZi+1+

√
1−ρ2Wi+1). (5.6)
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The Euler scheme in (5.5) does not preclude V̂ from becoming negative, which in the

Heston (5.3) model leads to a nonsensical solution because the evolution of S depends on

the square root of V . Alternative Euler schemes for stochastic volatility models have been

proposed in the literature and compared in Lord et al. [LKD]. The Euler scheme leading

to smallest bias in [LKD] is the full truncation scheme

Ŝi+1 = Ŝie
(r−V̂i/2)∆+

√
V̂i

√
∆Zi+1

Ṽi+1 = Ṽi + κ(θ −max{Ṽi, 0})∆ +

√
max{Ṽi, 0}

√
∆
(
ρZi+1 +

√
1− ρ2Wi+1

)

V̂i+1 = max{Ṽi+1, 0}. (5.7)

5.1.3 Realized Variance under discretization schemes

Our goal is to design an efficient numerical algorithm for the computation of the expecta-

tion of a function of discretely recorded variance. Recall from Definition (3.2) that this is

defined as

Vn(0, T ) :=
n

T (n− 1)

n−1∑

i=0

log

(
Si+1

Si

)2

, (5.8)

for recordings of the true continuous time process (5.1), which will be approximated in

this paper by an Euler rule. For the core of our analysis, the factor n
T (n−1) is completely

irrelevant, so we will just drop it. Moreover, for notational simplicity, in the remainder

of the chapter Si will denote a discretization scheme applied to (5.1). Under the simplest

Euler scheme (5.5), realized variance (5.8) can be expressed as a deterministic function of

the stochastic shocks

R(Z,W ) :=
n−1∑

i=0

log

(
1 + r∆+

σ(Si)

Si

√
Vi
√
∆Zi+1

)2

, (5.9)

where Vi is some function of Z and W specified by the choice of model and that we do

not need to write explicitly. According to Theorem 2.14, the price we must compute is

C = C(0) = P (0, T )EQ[g(R(Z,W ))], (5.10)

which is a high dimensional integral in terms of the Gaussian components of Z,W .
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5.2 Combining Integration with Random Sampling

5.2.1 The general setting

In this section we assume that exact integration over a low dimensional manifold of interest

is feasible, and introduce an algorithm to compute (5.10) by combining this integration

procedure with Monte Carlo simulation over the remaining dimensions. This idealized

algorithm is used to characterize the variance reduction achieved by the method. In later

sections, we will approximate the exact deterministic integration by one of two alter-

natives: deterministic but possibly biased quadrature, or random sampling under very

fine stratification. Numerical experiments will provide evidence of the variance reduction

achieved under these implementation alternatives.

For proper context, we begin by considering the implementation of a simple Monte Carlo

estimator for the expectation of a function of realized variance. This is straightforward

(we omit the trivial discount factor): first generate M independent paths, each formed by

an independent realization of the vectors Z and W , and then form an estimator as

Ĉ =
1

M

M∑

j=1

g(R(Zj ,W j)). (5.11)

The fact that the estimator Ĉ is unbiased, in the sense that

E
(
Ĉ
)
= E

(
g(R(Z,W ))

)
,

with variance

Var(Ĉ) =
Var(g(R(Z,W )))

M
, (5.12)

are standard properties of Monte Carlo explained in the previous chapter.

An alternative way of computing (5.10) is as a deterministic integral over the 2n-dimensional

space spanned by the Gaussian vectors Z and W . The joint distribution of independent

Gaussian Z and W is known in closed form then we can write

C =

∫

z1,...,zn,w1,...,wn

g(R(z, w))

n∏

j=1

Φ(zj)Φ(wj)dzjdwj , (5.13)

with Φ(u) the univariate standard normal density. The result of (5.13) is the exact price

of interest, but (5.13) is an integral over a high dimensional space. Except for a very

restrictive class of payoffs and models, (5.13) can not be solved analytically. And its
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numerical solution as a deterministic integral suffers from the curse of dimensionality,

becoming too expensive beyond dimension 3 or 4. The method we develop in this work

lies essentially between (5.11) and (5.13) in the sense that integration is performed over a

few dimensions that substantially contribute to the noise of the price estimator, and Monte

Carlo samples are generated conditional on the values of variables on the low dimensional

manifold.

Let π be a vector-valued random variable with components π1, ...πp defined by the action

of deterministic functions of R2n −→ R on the Gaussian vectors Z,W . We propose to

combine integration over the values of the components of π with Monte Carlo sampling

conditional on π. The corresponding estimator is

Ĉ =

∫
1

M(u)

M(u)∑

j=1

g(R(Zj ,W j))η(u)du, (5.14)

where η is the probability density associated to π and the vectors {Zj ,W j} are sampled

conditional on π = u and independently over j. The estimator (5.14) is unbiased. By the

independence of samples the variance of Ĉ is

Var(Ĉ) =

∫
Var

(
1

M(u)

M(u)∑

j=1

g(R(Zj ,W j))η(u)

∣∣∣∣π = u

)
du, (5.15)

and then

Var(Ĉ) =

∫
η(u)2

M(u)
Var(g(R(Zj ,W j))|π = u)du. (5.16)

As shown in the discussion about stratification in Chapter 2, it is convenient to make a

proportional allocation of paths by taking M(u) = Mη(u), (which can be done because

we assume that η(u) is known). Then (5.16) becomes

Var(Ĉ) =
E(Var(g(R(Z,W ))|Fπ))

M
, (5.17)

for the variance of the estimator based on the combination of deterministic integration

and conditional Monte Carlo. It is informative to compare (5.17) with the variance of

standard Monte Carlo estimator (5.12). By the variance decomposition formula (4.9) it

always holds that

Var[g(R(Z,W ))] = Var[E(g(R(Z,W ))|Fπ)] + E[Var(g(R(Z,W ))|Fπ)]. (5.18)

The left side of (5.18) is independent of Fπ and equal toM times (5.12). The two terms on

the right are nonnegative and the second term coincides with M times (5.17). Therefore,
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for a total number of paths M , our Monte Carlo method with proportional allocation can

never increase variance relative to the unconditional case, regardless of the specific choice

of π. In practice, however, we want to decrease the variance of an estimator subject to

a finite computational budget. Therefore, conditioning on a bad choice of π might not be

useful if the increase in computational time associated to the deterministic integration is

larger than the speed gain associated to the decrease in the variance of the estimator.

These observations indicate that a successful implementation of (5.14) should attempt to

identify π1, ..., πp such that:

• The dimension of the conditioning set, p, is small enough to permit fast numerical

integration.

• A practical method to sampleW and Z conditional on π is available (see conditional

Monte Carlo algorithm in Chapter 2)

• The choice of π1, ..., πp leads to E(Var(g(R(Z,W ))|Fπ)) much smaller than

Var(g(R(Z,W ))) to achieve significant variance reduction.

Before showing our choice of conditioning variables we introduce some notation. Let

|V |1 :=
∑n−1

i=0 Vi, denote the 1-norm of the instantaneous variance process over a path,

and |V |2 :=
∑n−1

i=0 V
2
i . Let |Z|22 :=

∑n−1
i=0 Z

2
i+1 be the 2-norm of the shocks to the asset

price.

5.2.2 Monte Carlo conditional on |Z|22 and |V |1

For this section, we keep the following assumptions in effect:

Assumption 5.1 For a model (5.1) and an associated Euler scheme we assume that:

• V is independent of Z.

• The function σ in (5.1) is linear.

We are assuming that the variance process is not only autonomous but also independent

of shocks to the process S. A linear σ is a feature of the original versions of the Heston

[H] and Hull and White [HW]. These assumptions are needed only in this Section, and

are not required for the implementation of the numerical algorithm.
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In order to identify a good choice of conditioning variables we do a linear expansion of

(5.9)

R(Z,W ) ≈
n−1∑

i=0

r2∆2 + 2
σ(Si)

Si

√
Vir∆

3/2Zi+1 +

(
σ(Si)

Si

)2

Vi∆Z
2
i+1, (5.19)

and notice that, for realistic parameters (r = 0.05, σ(Si)
Si

√
Vi = 0.3,∆ = 1/252), the terms

above are of orders 10−8, 10−6, and 10−3. Therefore discrete realized variance is essentially

R̂(Z,W ) ≡
n−1∑

i=0

(
σ(Si)

Si

)2

Vi∆Z
2
i+1. (5.20)

Close inspection of (5.20) reveals that its value is strongly influenced by |Z|22.
As a conditioning variable is suitable if it captures the variability of R̂, it could be conve-

nient to take a look at Var(R̂). Since this parameter involves the first and second moments

of this variable, we proceed to compute them as explicitly as possible and organize the

results in the following

Lemma 5.2 Under Assumption 5.1, we have

E(R̂) = E(|V |1), (5.21)

E(R̂2) = 2E(|V |22) + E(|V |21), (5.22)

Var(R̂) = 2E(|V |22) + Var(|V |1), (5.23)

with Z ∼ N (0, In).

Proof The first moment is straightforward,

E(R̂) = E

( n−1∑

i=0

ViZ
2
i+1

)
=

n−1∑

i=0

E(Vi)E(Z
2
i+1) = E

( n−1∑

i=0

Vi

)
= E(|V |1),

and for the second moment we do

E(R̂2) = E

( n−1∑

i=0

Z4
i+1V

2
i +

n−1∑

i=0

Z2
i+1ViZ

2
j+1Vj

)

= 3

n−1∑

i=0

E(V 2
i ) +

∑

i 6=j

E(ViVj) = 2E(|V |22) + E(|V |21).

From (5.21), (5.22) and the definition of variance, we get

Var(R̂) = E(R̂2)−E(R̂)2= 2E(|V |22) + E(|V |21)−E(|V |1)2= 2E(|V |22) + Var(|V |1),

which proves (5.23). �
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Formula (5.23) gives us a key about what other variable to choose for conditioning: fixing

|V |1 would imply Var(|V |1) = 0, meaning a variance reduction arising from the removal

of the second term. In fact, as was already mentioned, efficiency of conditioning relies on

selecting variables that best capture the variability of R̂, and in our case, that variability

(quantified by Var(R̂)) is highly explained by Var(|V |1).

Consider now the variance reduction achieved by performing Monte Carlo conditional on

π = {π1, π2} = {|Z|22, |V |1}. To the extent that significant variability of (5.20) is explained

by |Z|22 and |V |1,
E(Var(g(R̂)|Fπ)), (5.24)

should be small relative to Var(g(R̂)). For example, in the special case with linear g, linear

σ(S) in (5.1), and Vi = V0 ∀ i < n, it is clear that E(Var(g(R̂)|Fπ)) = 0. By the closeness

of (5.9) and (5.20), small (5.24) implies that E(Var(g(R̂)|Fπ)) is also small, as needed for

effective variance reduction for exact realized variance (5.9). We stress that the actual

computational algorithm will use (5.9), therefore will involve no approximation. We will

only use (5.20) to gain intuition about the algorithm and to derive a theoretical result

that approximately quantifies the variance reduction achieved by the method.

Taking π = {|Z|22, |V |1} as conditioning set is successful in eliminating variance because

it contains two main sources of stochasticity in R̂. We make this statement precise by

deriving, under the previous assumptions, a result that quantifies the variance reduction

achieved by the method.

Proposition 5.3 Assume Z ∼ N (0, In) and V autonomous and independent of Z. Let

Fπ := F
|Z|,|V |

:= Σ(|Z|2, |V |1). Then, we have

E(R̂|Fπ) =
|Z|22|V |1

n
(5.25)

Var(R̂|Fπ) = 2E

(
|V |22 −

1

n
|V |21

)
. (5.26)

In particular, the variance reduction achieved after conditioning is

Var(E(R̂|Fπ) = Var(|V |1) +
2

n
E(|V |21).

Proof: For (5.25), let F
|Z|

:= Σ(|Z|2) and F
|Z|,V

:= Σ(|Z|2, V ).
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Note that as Z1, ..., Zn are i.i.d., E
(
Z2
i

∣∣F
|Z|

)
= E

(
Z2
i

∣∣|Z|22
)
=

|Z|22
n for all 1 ≤ i ≤ n. Using

independence of Z and V together with the law of iterated expectations we get

E(R̂|Fπ) = E

(
E

( n−1∑

i=0

ViZ
2
i+1

∣∣∣∣F|Z|,V

)∣∣∣∣ Fπ

)
= E

( n−1∑

i=0

ViE
(
Z2
i+1

∣∣F
|Z|,V

)∣∣∣∣Fπ

)

= E

( n−1∑

i=0

Vi
|Z|22
n

∣∣∣∣Fπ

)
=

|Z|22
n

E

( n−1∑

i=0

Vi

∣∣∣∣Fπ

)
=

|Z|22
n

|V |1.

as F
|Z|

⊆ Fπ ⊆ F
|Z|,V

and Vi is F|Z|,V
-measurable.

For the last equality, we invoke (4.9) to write

E(Var(R̂)|Fπ)) = −Var(E(R̂|Fπ))) + Var(R̂). (5.27)

By (5.25) it holds that

Var
(
E(R̂|Fπ)

)
= Var

(
|Z|22

|V |1
n

)

=
1

n2
(E(|V |21)E(|Z|42)− E(|V |1)2E(|Z|22)2)

=
1

n2
((n(n− 1) + 3n)E(|V |21)− n2E(|V |1)2

= Var(|V |1) +
2

n
E(|V |21), (5.28)

therefore, subtracting this from (5.23) we get that (5.27) becomes

E(Var((R̂)|Fπ)) = − 2

n
E(|V |21) + 2E(|V |22). (5.29)

�

Proposition 5.3 will be used next to derive a result on the magnitude of variance reduction

obtained by conditioning on |Z|22 and |V |1. We stress that the effect of conditioning in

these variables results in a variance reduction term greater than Var(|V |1).

So far, we have dealt only with “forward” payoffs, i.e., payoffs of the form g(x) = kx. In

order to extend our analysis to more general payoffs, we will make the following assump-

tion:

Assumption 5.4 For a constant A and a function ǫ : R → R, the payoff function g(x)

satisfies any of the following two conditions:

g(x) = A+ x− ǫ(x), for nondecreasing g(x) and ǫ(x),

g(x) = A− x− ǫ(x), for nonincreasing g(x) and ǫ(x).
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Remark The class of payoff functions g(x) that satisfy Assumption 5.4 includes the

payoff of a call option with strike K, which can be written as

max{x−K, 0} = x− ǫ(x), for ǫ(x) = min{x,K},

and the payoff of a put option, which can be written as

max{K − x, 0} = K − x− ǫ(x), for ǫ(x) = −max{x−K, 0}.

Motivated by (5.18), define residual variance as

Vres =
E(Var(g(R̂(Z,W ))|Fπ))

Var(g(R̂(Z,W )))
(5.30)

This is the proportion of the variance of standard Monte Carlo that survives after per-

forming deterministic integration on the low dimensional manifold. Our next goal is to

get a bound on Vres for this class of payoffs. To achieve it, we need the following lemma:

Lemma 5.5 The inequality

Cov (f(X), g(X)) ≥ 0 (5.31)

holds for any two increasing functions f, g : J −→ R for which f(X) and g(X) have a

finite second moment.

Proof: See [S]. �

Theorem 5.6 Under Assumption 5.1 and Assumption 5.4, the residual variance after

integrating on π = {|Z|22, |V |1} satisfies:

Vres ≤
2E(|V |22 − 1

N |V |21)
Var(g(R̂(Z,W )))

=
Var(R̂(Z,W ))− Var(|Z|22 |V |1

n )

Var(g(R̂(Z,W )))
. (5.32)

Proof: Under Assumption 5.4 it holds that

Var(R̂(Z,W )|Fπ) = Var(g(R̂(Z,W ))|Fπ) + Var(ǫ(R̂(Z,W ))|Fπ)

+ 2Cov
(
g(R̂(Z,W )), ǫ(R̂(Z,W ))|Fπ

)
, (5.33)

and the covariance term is nonnegative, as shown by Lemma (5.5), since g and ǫ are both

nondecreasing or nonincreasing. Therefore

Var(g(R̂(Z,W ))|Fπ) ≤ Var(R̂(Z,W )|Fπ), (5.34)



NUMERICAL SIMULATION ALGORITHM 65

implying that

E(Var(g(R̂(Z,W ))|Fπ)) ≤ E(Var(R̂(Z,W )|Fπ)). (5.35)

We bound residual variance (5.30) using (5.26) and (5.35) to get

Vres ≤
E(Var(R̂(Z,W ))|Fπ))

Var(g(R̂(Z,W )))
=

2E(|V |22 − 1
n |V |21)

Var(g(R̂(Z,W )))
, (5.36)

which proves the first inequality in (5.32). For the last equality in (5.32) we use (5.18)

and (5.36) to write

Vres ≤ Var(R̂(Z,W )))− Var(E(R̂(Z,W ))|Fπ)

Var(g(R̂(Z,W )))

=
Var(R̂(Z,W ))− Var

(
|Z|22 |V |1

n

)

Var(g(R̂(Z,W )))
. (5.37)

�

Remark The first inequality in (5.32) has a geometrical interpretation. The quantity

inside the expectation in the numerator is the square of the Euclidean distance of a point

V ∈ R
n to the subspace L = {(x1, ..., xn) ∈ R

n : x1 = x2 = ... = xn}. Therefore the

residual variance is zero only if the discrete time process V is a constant a.s. Moreover, by

continuity (the expression is a polynomial over the coordinates of V ), it is clear that the

closer the process is to a constant in a pathwise sense, the greater the variance reduction.

It is also useful in practice to quantify variance reduction in terms of the distributional

properties of the process V , as in the following result.

Theorem 5.7 Let Assumption 5.1 and Assumption 5.4 hold. Let µi and σ
2
i be the mean

and variance of Vi for i = 1, ..., n, and set µmax ≡ max{µ0, ..., µn−1},
µmin ≡ min{µ0, ..., µn−1}, σmax ≡ max{σ0, ..., σn−1}.
Then,

Vres ≤ n
µ2max − µ2min + σ2max

Var(g(R(Z,W )))
. (5.38)
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Proof: From the inequality in (5.32) residual variance is

Vres ≤ 2E(|V |22 − 1
n |V |21)

Var(g(R(Z,W )))

=
2(E(|V |22)− 1

n(Var(|V |21) + E(|V |1)2))
Var(g(R(Z,W )))

≤ 2(
∑n−1

i=0 µ
2
i + σ2i − 1

n(
∑n−1

i=0 µi)
2)

Var(g(R(Z,W )))

≤ 2N(µ2max + σ2max − µ2min)

Var(g(R(Z,W )))
. (5.39)

�

Residual variance in (5.38) is nonzero due to the fact that the process V is not a constant.

In moment terms, this is due to a trend in V , represented in (5.38) by µ2max − µ2min, and

to uncertainty in V , represented by σ2max.

We have shown in this Section that, under Assumption 5.1 and Assumption 5.4, the

combination of integration on the squared norm of Z and the path average of V followed by

conditional Monte Carlo leads to quantifiable and possibly significant variance reduction.

However, the implementation of this algorithm requires in practice the knowledge of the

distribution of the path average of V , which in general is not known. In order to address

this issue we consider an alternative set of conditioning variables.

Conditioning on |Z|22 · |V |1

In order to interpret Theorem 5.6, consider the random variable U := |Z|22 |V |1
n . Theorem

5.6 states in the last equality in (5.32) that the efficiency of the proposed method in

reducing variance depends on how close the second moment of U is to the second moment

of R̂.

Note that by (5.25), it obviously holds that E(R̂|FU ) = U . This says that U is also a

suitable choice for conditioning and will be in fact a key variable in our algorithm. The

density function of this new random variable U can be easily derived in terms of the

density functions of X and Y .

In general, if X,Y are two independent random variables with densities φX , φY respec-

tively, with P (X > 0) = 1 (as it is the case, since |Z|22 ∼ χ2
n), then the cumulative

probability function ΦU can be written as

ΦU (u) =

∫ ∞

0
φU |X(u|x)φX(x)dx. (5.40)
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To obtain the expression of φU |X(u|x), we calculate the CDF ΦU |X(u|x) and then take

derivative. For this, we write (assuming x > 0)

ΦU |X(u|x) = P (U ≤ u|X = x) = P (XY ≤ u|X = x)

= P (xY ≤ u) = P

(
Y ≤ u

x

)
= ΦY

(
u

x

)
,

giving

φU |X(u|x) = ∂

∂u
ΦY

(
u

x

)
=

1

x
φY

(
u

x

)
. (5.41)

Substituting in (5.40), we get

φU (u) =

∫ ∞

0

φY
(
u
x

)
φX(x)

x
dx =: (φX ∗ φY )(u). (5.42)

Formula (5.42) can be interpreted as a “multiplicative” convolution between φX , φY . The

algorithm that employs U as conditioning variable requires the density of U = XY , where

X ∼ χ2
ν . For reasons that will be clear in the following section and for the purpose of

testing such algorithm and its efficiency, we will take Y ∼ N (0, 1). For such a pair,

the density functions are given by φY (t) =
1√
2π
e−t2/2 and φX(t) = 1

Γ(ν)e
−t/2tν−1I

(0,∞)
(t),

leading to a fully explicit expression of φU in terms of φX , φY , namely

φU (u) =
1√

2πΓ(ν)

∫ ∞

0
e−

u2

2x2
−x

2 xν−1dx. (5.43)

The evaluation of this integral is a non-trivial task. A characterization of it in terms of

hypergeometric functions will be given later by means of Mellin Transform techniques.

5.2.3 Monte Carlo conditional on |Z|22 and v
⊤
W

We propose to combine deterministic integration and Monte Carlo in an estimator of the

form (5.14), now taking π̂ := {|Z|22, v⊤W} as conditioning variables. Assumption 5.1 and

Assumption 5.4 still hold. The new conditioning variable, v⊤W , is a linear combination

of shocks W with weights defined by v ∈ R
n, chosen to be close to the path average

of V in a suitable sense, therefore preserving a substantial part of the efficiency gains

achieved by taking the path average of V as conditioning variable. Yet, by being a linear

combination of shocks W , this new conditioning variable has a well known Gaussian

distribution that facilitates integration. Moreover, the components of W are normally



NUMERICAL SIMULATION ALGORITHM 68

distributed even after conditioning on a linear combination of them, therefore conditional

sampling is straightforward.

The argument that led to (5.34) in the proof of Theorem 5.6 continues to hold for a

different conditioning set, therefore we have that

E(Var(g(R̂(Z,W ))|Fπ̂)) ≤ E(Var(R̂(Z,W )|Fπ̂)). (5.44)

The aim is to find v with |v|2 = 1, such that by using v⊤W as conditioning vari-

able the residual variance is small. Taking advantage of (5.44) we choose to minimize

E(Var(R̂(Z,W )|Fπ̂)) which, by (5.18), is equivalent to maximize Var(E(R̂|Fπ̂)). We are

looking for

arg max
{|v|2=1}

Var

(
E

(N−1∑

i=0

Vi(W )Z2
i+1

∣∣∣∣ |Z|22 , v⊤W
))

. (5.45)

Solving (5.45) is a daunting task because, in principle, each Vi arising from an Euler rule

on (5.1) is a nonlinear function of W . However, for relatively small n, which is indeed the

setting of importance for this paper, the behavior of the coefficients of (5.1) as functions

of V suggests linearizing Vi as a function of the underlying shocks W to get

arg max
{|v|=1}

Var

(
E

( n−1∑

i=0

(V0 + biwW )Z2
i+1

∣∣∣∣ |Z|22, v⊤W
))

,

where biw ≡ ∇wVi
∣∣
w=0

. By independence of Z and W we obtain

arg max
{|v|=1}

Var

(
Y (Z)E

( n−1∑

i=0

bi
′

wW

∣∣∣∣v
⊤W

))
,

for Y a generic function of Z. Recalling that E
(
E
(∑n−1

i=0 b
i′
wW

∣∣v⊤W
))

= 0, we get

arg max
{|v|=1}

E

(
E
2

( n−1∑

i=0

bi
′

wW |v⊤W
))

. (5.46)

Let b ≡ ∇w

(∑n−1
i=0 Vi

)∣∣
w=0

. Then (5.46) is equivalent to

arg max
{|v|=1}

Var
(
E
(
b⊤W |v⊤W

))
, (5.47)

and its solution is attained at v = b
|b|2 .
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The derivation above indicates that, in order to reduce variance by conditioning on v⊤W ,

the optimal vector of weights is proportional to the gradient of the path average of V . It

is in this sense that the optimal linear combination is close to the exact path average |V |1.
The optimality rule in (5.47) is very similar to the optimal stratification direction in

Glasserman et al. [GHS]. This analogy led us to consider an alternative optimal v defined

as the solution of

arg max
{|v|=1}

Var
(
E(b⊤W +

1

2
(W⊤H i

fW )|v⊤W )
)
, (5.48)

which keeps terms up to order two in the expansion of Vi in powers of W , f is defined

by f(W ) = |V |1 and H i
f is the Hessian of f . The solution to (5.48) is characterized by

Proposition (4.1) in the previous chapter. In our numerical experiments we found that

including second order terms does not lead to significant variance reduction and that it

has a cost in terms of overhead for the algorithm. For this reason we advocate adopting

the weights given by the gradient of |V |1. We follow this prescription in the rest of the

thesis.

Example 5.8

Computation of optimal integration direction for the Hull-White model

We solve (4.28) through the Lagrange’s multiplier method. For symmetricA, the derivative

with respect to vi of the function to maximize is

bi(b
⊤v) + 2(v⊤Av)((ADv)i + (ASv)i),

where AD + AS + A⊤
S = A, AD being the diagonal matrix of the diagonal elements of A.

Hence, the multiplier equations read

bi(b
⊤v) + (2(AD − λI)v)i + (v⊤Av)(ASv)i = 0 (i = 1, 2, ..., n). (5.49)

Consider the Hull-White model (5.2) with ρ = 0 (the case of ρ 6= 0 follows exactly along

the same lines). The Euler discretization of the logarithm of V leads to

|V |1 = V0(1 + e(µ−
1
2
σ2)∆+σ

√
∆W1 + e2(µ−

1
2
σ2)∆+(σ

√
∆t)(W1+W2) + ...

+ e(N−1)(µ− 1
2
σ2)∆+σ

√
∆(W1+...+Wn−1)),
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which leads to

∂wi
|V |1 = (σ

√
∆)

n−1∑

k=i

ek(µ−
1
2
σ2)∆+(σ

√
∆)(W1+...+Wk),

∇i|V |1
∣∣
w=0

= (σ
√
∆)

(
e(µ−

1
2
σ2)∆n − 1

e(µ−
1
2
σ2)∆ − 1

− ei(µ−
1
2
σ2)∆ − 1

e(µ−
1
2
σ2)∆ − 1

)

= (σ
√
∆)

(
e(µ−

1
2
σ2)∆n − e(µ−

1
2
σ2)∆i

e(µ−
1
2
σ2)∆ − 1

)
.

A similar computation shows that,

∂wiwj
|V |1 = b2

n−1∑

k=max(i,j)

e(µ−
1
2
σ2)∆k+(σ

√
∆)(W1+...+Wk),

therefore the {i, j} entry of the Hessian of f at W = 0 becomes

(σ2∆)

(
e(µ−

1
2
σ2)∆n − e(µ−

1
2
σ2)∆max(i,j)

e(µ−
1
2
σ2)∆ − 1

)
.

Numeric implementation becomes necessary at this stage to solve (5.49).

5.3 Implementation of the Algorithm

We describe in this Section the implementation of the algorithm discussed in Section

5.2. The theoretical results quantifying variance reduction derived in Section 5.2 were

obtained under Assumption 5.1 and Assumption 5.4, which are not needed for the practical

implementation of the algorithm. In particular, we lift in this Section the requirement of

independent Z and V therefore allowing for nonzero ρ in (5.1). By analogy to the solution

of (5.47) we implement the method on a low dimensional manifold spanned by |Z|22 and

v⊤W where v = ∇w|V (Z,W )|1 evaluated at Z = 0,W = 0. We do not claim that

this conditioning variable remains optimal in the correlated case, but we stress that it is

conveniently tractable and that introduces no bias in the algorithm.

The initial step of the algorithm is the computation of v, as shown explicitly in Example

5.8. Then, the vector v is used in two alternative numerical implementations of the

integration over the low dimensional manifold.

In the last part of this section, we give a characterization of density of U .
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5.3.1 The Algorithm through quadrature

• Integrate over |Z|22 and v⊤W by quadrature. For the standard normal distribution

of v⊤W we take 40 equally spaced steps on the real line, ranging from -4 to 4. For

the χ2
n distribution of |Z|22 we take 30 equally spaced steps on the positive real half

line, ranging from 0 to 15
√
n. Compute the probability of each cell as the product

of the corresponding densities at a corner of the cell times the size of the cell.

• Generate N samples of the vector Z, conditional on its norm, writing Z =
√
R ξ

|ξ|2 ,

where ξ ∼ N (0, I). The number of paths, N , is proportional to the probability of

the cell.

• Generate N samples of the vector W , conditional on the value of v⊤W , using the

fact that if ξ ∼ N (0,Σ) in R
d with Y = v⊤ξ stratified for some v ∈ R

d, then (ξ|Y =

y) ∼ N (Σvy,Σ − Σvv⊤Σ). Consequently, sample W as W = vv⊤W + (I − vv⊤)Λ,

where Λ ∼ N (0, In) and |v| = 1.

• Compute the realized variance and derivative payoff for each sample of {Z,W},
take simple average over samples and probability weighted average over the two

dimensional grid for the manifold spanned by |Z|22 and v⊤W .

Remark An alternative algorithm using the conditioning variable U can be developed.

Instead of integrating over |Z|2 and v⊤W , we could only perform quadrature over U , the

product of both variables. We thereafter can sample R conditional on U . The distribution

of R conditional on U is characterized analytically as

ΦR|U (x|u) =
1

φU (u)

∫ x

−∞

φY
(
u
t

)
φR(t)

t
dt,

where φU is given by (5.43)(see Theorem 5.9 below) and φY is the normal density function.

5.3.2 The Algorithm through stratification

• We stratify |Z|22 and v⊤W by inversion, as explained in the discussion of stratification

techniques in Chapter 4. We partition the square [0, 1]×[0, 1] through a cartesian grid

with 90× 90 equally sized cells. Within each cell we sample a uniformly distributed

two dimensional vector {u1, u2}. Samples of |Z|22 and v⊤W are obtained by the

application of the inverse χ2
n and standard normal distributions on {u1, u2}.
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• In each cell, sample a vector Z, conditional on its norm, writing Z = |Z|2 ξ
|ξ|2 , where

ξ ∼ N(0, I).

• Sample W in the same manner as in the third step of the algorithm by quadrature.

• Compute realized variance and the derivative payoff for each sample of {Z,W}, and
take simple average over the stratification grid for the manifold spanned by |Z|22 and

v⊤W .

5.3.3 Characterization of the density of the product of a normal and a

chi square random variables

The following theorem characterizes integral (5.43) as a series in u. For the sake of

space and organization, we leave its detailed proof in the Appendix, together with a brief

introduction to the Mellin transform.

Theorem 5.9 Let X,Y be to independent random variables such that X ∼ χ2
ν , Y ∼

N (0, 1), with ν ∈ N even. Then, the density function of U := XY is given by

fU (u) = S1(u) + S2(u) + S3(u) + S4(u) + S5(u), (5.50)

where

S1(u) = 2ν−1

ν
2
−1∑

k=0

Γ
(
ν − 2k − 1

)(−1)ku2k

23kk!
, (5.51)

S2(u) = 2−
ν+3
2 uν−1Γ

(
1− ν

2

)
0F2

(
1

2
,
1 + ν

2
;
u2

25

)
, (5.52)

S3(u) = (−1)
ν
2
−1

(
u2

25

) ν
2

ln

(
u2

25

)
Γ
(
− 1

2

)

Γ
(
ν
2 + 1

) 0F3

(
1, 1 +

ν

2
,
3

2
;−u

2

25

)
, (5.53)

S4(u) = (−1)
ν
2

∞∑

k=0

2Γ(−k − 1
2)ψ(k +

ν
2 + 1)

(k + ν
2 )!k!

(
u2

25

)k

, (5.54)

S5(u) = (−1)
ν
2

∞∑

k=0

γνk
(k + ν

2 )!k!

(
u2

25

)k

, (5.55)

with γνk = ψ(−k − 1
2)Γ
(
− k − 1

2

)
−∑

ν
2
−1

m=0
1

k+ ν
2
−m and ψ(z) := Γ′(z)

Γ(z) .

Proof See appendix. �
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5.4 Numerical results

In this Section we run numerical tests for the algorithms proposed in Section 5.3. Algo-

rithms are implemented in MATLAB, and tests are performed on a desktop PC running

Windows XP Professional with an Intel Core 2 Duo CPU with 2.80 GHz and 1.87 GB of

RAM. We have discussed two implementations: a possibly biased scheme based on inte-

gration by quadrature and a stratification scheme that is unbiased by construction. We

also implement a standard Monte Carlo for comparison purposes. We run experiments

for the discretized Hull-White and Heston models and investigate the presence of bias,

and efficiency in reducing variance. Bias is defined as the absolute difference between

the standard and quadrature Monte Carlo estimates for some function of interest. In the

few cases in which the standard errors are larger than this difference, we conservatively

bound the bias by the sum of standard errors although this is not an almost-sure bound.

The reduction in variance is quantified as the square of the ratio of standard errors from

competing methods.

5.4.1 Hull-White model

We first report results for an Euler discretization of the logarithm of S and V in the

Hull-White model (5.6).

Our first set of results are very long computations designed to generate estimates with

standard errors low enough to identify the bias present in quadrature Monte Carlo due to

the discretization of the low dimensional integral. We use 10 million paths for standard

Monte Carlo and a total of 1 millon paths for quadrature Monte Carlo proportionally

allocated over the integration manifold. The computations for options with n = 10 days

to expiry take about 820 seconds under standard Monte Carlo, and about 120 seconds

for quadrature Monte Carlo. These computational costs become 2360 and 370 seconds

respectively, in computations for n = 50 days. The out of the money calls are struck one

standard deviation above expected future variance. All runs begin from V0 = 0.04, which

corresponds to a 20% initial volatility.

We report in Table 5.1 the mean and standard error of standard Monte Carlo and quadra-

ture Monte Carlo estimators in a variety of experiments. For n = 10 we show moments

for almost zero volatility of variance (σ = 0.001), and economically very large volatility of

variance (σ = 1) which corresponds to a 100% annual volatility of variance. This is a very

highly stochastic volatility regime. The first moment is virtually identical in both cases:

a higher σ widens the distribution of realized variance but does not change its expected
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Parameters Function Standard MC Quadrature MC Bias Rel. Bias

n=10, σ = 0.001 E[R] 15.869 (0.002) 15.8734 (0.0002) 0.004 0.0003

n=10, σ = 0.001 Var[R] 50.46 (0.03) 50.469 (0.005) < 0.03 < 0.0006

n=10, σ = 0.001 ATM Call 2.788 (0.002) 2.7961 (0.0002) 0.008 0.003

n=10, σ = 0.001 OTM Call 0.810 (0.001) 0.8046 ( 0.0001) 0.005 0.007

n=10, σ = 1.0 E[R] 15.876 (0.002) 15.8733 (0.0006) 0.003 0.0002

n=10, σ = 1.0 Var[R] 54.27 (0.03) 54.25 (0.01) < 0.04 < 0.0007

n=10, σ = 1.0 ATM Call 2.876 (0.002) 2.8739 (0.0006) < 0.003 < 0.001

n=10, σ = 1.0 OTM Call 0.854 (0.001) 0.8530 (0.0003) 0.001 0.001

n=50, σ = 0.001 E[R] 79.379 (0.006) 79.3662 (0.0004) 0.013 0.0002

n=50, σ = 0.001 Var[R] 253.0 (0.1) 252.24 (0.01) 0.8 0.003

n=50, σ = 0.001 ATM Call 6.301 (0.003) 6.2946 (0.0003) 0.007 0.001

n=50, σ = 0.001 OTM Call 1.553 (0.001) 1.5401 (0.0003) 0.013 0.009

n=50, σ = 1.0 E[R] 79.352 (0.008) 79.364 (0.003) 0.012 0.0002

n=50, σ = 1.0 Var[R] 704.5 (0.5) 702.9 (0.4) 1.6 0.002

n=50, σ = 1.0 ATM Call 10.211 (0.006) 10.208 (0.003) < 0.009 < 0.001

n=50, σ = 1.0 OTM Call 3.049 (0.003) 3.050 (0.003) < 0.006 < 0.002

Table 5.1: Long computations to quantify bias in quadrature Monte Carlo for the Hull-

White model
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value. Notably, from σ = 0.001 to σ = 1, the variance only increases from 50.46 to 54.27.

This is due to the fact that, for relatively small n, most of the variance of variance comes

from the finite number of shocks in the construction of realized variance, because in only

ten days the variance process does not depart much from its initial value V0. Therefore

R is close to a sum of equally weighted random Gaussian shocks, and the variance of R
for σ = 1.0 is largely that already present in the case of σ = 0.001. This suggests that

integration by quadrature or fine stratification on |Z|22 will be helpful in reducing variance

for small n.

For n = 50, Table 5.1 shows that the variance of R is 253 for σ = 0.001 and 704.5 for

σ = 1. A larger number of days increases the relative importance of large σ because V

has more time to diffuse away from V0 and also because, as n increases, the variance of a

χ2
n random variable decreases relative to its mean. This suggests that precise integration

on the path average of V will be helpful in reducing variance for larger n.

The last column in Table 5.1 displays the relative bias associated with quadrature Monte

Carlo for the Hull-White model. The bid-ask spread in the VIX index in the market in

recent years was, according to Carr and Wu [CW], about one percentage volatility point.

A conservatively large value for the VIX index is 50%, only surpassed on a few days during

the 2008 crisis. This implies that relative bid-ask spreads are rarely smaller than 0.02.

Moreover, the algorithms in this paper are to be used for more exotic contracts on realized

variance, therefore with relative bid-ask spreads wider than 0.02. The relative biases we

report in Table 5.1 are smaller than 0.02, suggesting that the algorithm is sufficiently

accurate for practical use.

The next set of results, in Table 5.2, show the variance reduction achieved by quadrature

Monte Carlo over standard Monte Carlo in terms of the square of the ratio of standard

errors. A theoretical result (5.18) guarantees that, for same number of paths and pro-

portional allocation, the variance of conditional Monte Carlo can not be larger than the

variance of standard Monte Carlo. However, this result is silent about the additional com-

putational cost required by quadrature Monte Carlo. A fair comparison is achieved by

running both methods for the same computational budget.

We use a total of 7500 paths with proportional allocation for quadrature Monte Carlo

and 12000 paths for standard Monte Carlo. With these parameters the computational

costs of quadrature Monte Carlo match those of standard Monte Carlo, with 1 second for

contracts with n = 10 days to expiration and 3 seconds for n = 50. These are plausible

computational times for a financial industry setting.

We price ATM calls on variance, with strike at E[R] and OTM calls and puts on variance.

We run a set of experiments with σ = 0.1, which corresponds to a 10% volatility of
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Parameters Payoff Standard MC Quadrature MC Var. Red.

n=10, σ = 0.1 OTM Put 0.726 (0.01) 0.7459 (0.0005) 400

n=10, σ = 0.1 ATM Call 2.858 (0.05) 2.796 (0.002) 625

n=10, σ = 0.1 OTM Call 0.818 (0.03) 0.802 (0.002) 225

n=10, σ = 1.0 OTM Put 0.763 (0.01) 0.751 (0.002) 25

n=10, σ = 1.0 ATM Call 2.855 (0.05) 2.874 (0.007) 51

n=10, σ = 1.0 OTM Call 0.861 (0.03) 0.854 (0.006) 25

n=50, σ = 0.1 OTM Put 1.176 (0.03) 1.1621 (0.002) 225

n=50, σ = 0.1 ATM Call 6.411 (0.09) 6.374 (0.005) 324

n=50, σ = 0.1 OTM Call 1.384 (0.04) 1.344 (0.004) 100

n=50, σ = 1.0 OTM Put 2.594 (0.05) 2.611 (0.01) 25

n=50, σ = 1.0 ATM Call 10.259 (0.2) 10.212 (0.03) 44

n=50, σ = 1.0 OTM Call 3.049 (0.1) 3.048 (0.02) 25

Table 5.2: Variance reduction by quadrature for the Hull-White model.

variance, or a mildly stochastic volatility regime, and a second set of runs with σ = 1.0

which corresponds to very high volatility of volatility.

Results in Table 5.2 show that the variance reduction achieved by the method is particu-

larly high for short term contracts with mild stochasticity in the variance process, as it can

be expected from integrating on |Z|22. Higher volatility of volatility, or a longer duration,

tend to decrease the reduction in variance, but in all cases this remains significant.

Results in Table 5.3 show the variance reduction achieved for the same set of experiments

by the stratified Monte Carlo implementation for the Hull-White model. We use 90× 90

strata with 1 path per stratum. The pattern of efficiency gains is similar to that present

in Table 5.2 in terms of its dependence on n and σ, with the alternative implementations

being close to each other in performance for the case of highly stochastic volatility.

Experiments in Tables 5.2 and 5.3 are performed with a Hull-White model with zero

correlation between the shocks to the asset price and the shocks to the variance process.

In Table 5.4 we quantify the effect of nonzero correlation in the variance reduction achieved

by the quadrature and stratified Monte Carlo methods. We see that the variance reduction

is significant for low values of the correlation parameter ρ. As expected, high correlation

diminishes the effectiveness of the algorithms proposed in this paper because the projection

of the path average of V on the space spanned by W becomes significantly different from

the true path average.
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Parameters Payoff Standard MC Stratified MC Var. Red.

n=10, σ = 0.1 OTM Put 0.726 (0.01) 0.734 (0.001) 100

n=10, σ = 0.1 ATM Call 2.858 (0.05) 2.786 (0.007) 51

n=10, σ = 0.1 OTM Call 0.818 (0.03) 0.801 (0.006) 25

n=10, σ = 1.0 OTM Put 0.763 (0.01) 0.750 (0.002) 25

n=10, σ = 1.0 ATM Call 2.855 (0.05) 2.871 (0.009) 31

n=10, σ = 1.0 OTM Call 0.861 (0.03) 0.852 (0.007) 18

4 n=50, σ = 0.1 OTM Put 1.176 (0.03) 1.158 (0.005) 36

n=50, σ = 0.1 ATM Call 6.411 (0.09) 6.371 (0.01) 81

n=50, σ = 0.1 OTM Call 1.384 (0.04) 1.347 (0.009) 20

n=50, σ = 1.0 OTM Put 2.594 (0.05) 2.608 (0.01) 25

n=50, σ = 1.0 ATM Call 10.259 (0.2) 10.215 (0.03) 44

n=50, σ = 1.0 OTM Call 3.049 (0.1) 3.066 (0.03) 11

Table 5.3: Variance reduction by stratification for the Hull-White model.

It is also noticeable that the quadrature implementation performs better than the strat-

ification implementation for low values of σ but the methods are similar in performance

for high σ.

5.4.2 Heston model

We first quantify bias due to the quadrature implementation of the Heston model dis-

cretized by (5.7). We use 10 million paths for standard Monte Carlo and a total of 1

millon paths with proportional allocation for quadrature Monte Carlo. Results are shown

for contracts with n = 20 days to expiration. Computations take about 1260 seconds

under standard Monte Carlo, and about 175 seconds for quadrature Monte Carlo. The

results in Table 5.5 show that, for the experiments considered, the relative bias under the

Heston model implemented with the quadrature Monte Carlo algorithm is much smaller

than the relative bid-ask spread of 0.02 that is relevant for practical purposes.

Results in Table 5.6 and Table 5.7 show the variance reduction achieved for computational

budgets of 1.5 seconds, and n = 20 days under quadrature and stratification implementa-

tions respectively. We use a total of 7500 paths for the quadrature implementation, 90×90

strata for stratified Monte Carlo, and 12000 paths for standard Monte Carlo.

The initial variance is V0 = 0.06, significantly above the mean variance θ = 0.04. We take

ρ = 0 and consider two cases: one with σ = 0.2, which corresponds to a roughly 100% per



NUMERICAL SIMULATION ALGORITHM 78

Parameters Var. Red. Quadrature MC Var. Red. Stratified MC

n=10, σ = 0.1, ρ = 0.00 625 51

n=10, σ = 0.1, ρ = 0.25 178 64

n=10, σ = 0.1, ρ = 0.75 100 33

n=10, σ = 1.0, ρ = 0.00 51 31

n=10, σ = 1.0, ρ = 0.25 31 51

n=10, σ = 1.0, ρ = 0.75 6 6

n=50, σ = 0.1, ρ = 0.00 324 81

n=50, σ = 0.1, ρ = 0.25 127 81

n=50, σ = 0.1, ρ = 0.75 20 20

n=50, σ = 1.0, ρ = 0.00 44 44

n=50, σ = 1.0, ρ = 0.25 11 11

n=50, σ = 1.0, ρ = 0.75 4 4

Table 5.4: The effect of correlation on variance reduction for ATM call options under the

Hull-White model.

Parameters Function Standard MC Quadrature MC Bias Rel. Bias

σ = 0.2, κ = 10 E[R] 42.855 (0.004) 42.851 (0.001) 0.004 0.0001

σ = 0.2, κ = 10 Var[R] 209.09 (0.1) 209.08 (0.06) < 0.2 < 0.001

σ = 0.2, κ = 10 ATM Call 5.687 (0.003) 5.689 (0.001) < 0.004 < 0.001

σ = 0.2, κ = 10 OTM Call 1.579 (0.002) 1.578 ( 0.001) < 0.003 < 0.002

σ = 0.001, κ = 20 E[R] 39.841 (0.004) 39.835 (0.001) 0.006 0.0002

σ = 0.001, κ = 20 Var[R] 160.34 (0.08) 160.31 (0.03) < 0.11 < 0.006

σ = 0.001, κ = 20 ATM Call 5.003 (0.003) 4.998 (0.003) 0.005 0.001

σ = 0.001, κ = 20 OTM Call 1.347 (0.001) 1.348 ( 0.003) < 0.004 < 0.003

Table 5.5: Long computations to quantify bias in quadrature Monte Carlo for the Heston

model.
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Parameters Payoff Standard MC Quadrature MC Var. Red.

σ = 0.2, κ = 10 OTM Put 1.399 (0.03) 1.427 (0.006) 25

σ = 0.2, κ = 10 ATM Call 5.578 (0.09) 5.688 (0.01) 41

σ = 0.2, κ = 10 OTM Call 1.571 (0.05) 1.578 (0.01) 25

σ = 0.001, κ = 20 OTM Put 1.243 (0.03) 1.251 (0.004) 56

σ = 0.001, κ = 20 ATM Call 4.957 (0.08) 5.001 (0.01) 64

σ = 0.001, κ = 20 OTM Call 1.371 (0.04) 1.348 (0.008) 25

Table 5.6: Variance reduction through quadrature under the Heston model.

Parameters Payoff Standard MC Stratified MC Var. Red.

σ = 0.2, κ = 10 OTM Put 1.399 (0.03) 1.428 (0.006) 25

σ = 0.2, κ = 10 ATM Call 5.578 (0.09) 5.685 (0.02) 41

σ = 0.2, κ = 10 OTM Call 1.571 (0.05) 1.574 (0.01) 25

σ = 0.001, κ = 20 OTM Put 1.243 (0.03) 1.254 (0.004) 56

σ = 0.001, κ = 20 ATM Call 4.957 (0.08) 5.000 (0.02) 16

σ = 0.001, κ = 20 OTM Call 1.371 (0.04) 1.344 (0.01) 16

Table 5.7: Variance reduction through stratification under the Heston model.

year volatility of variance in (5.3) and mild mean reversion, and a second case with very

low volatility of variance and higher mean reversion rate. In the first case the variability

of V is due to its stochasticity, and in the second case the path of V is very close to

deterministic but trending, therefore also far from constant. The variance reduction is

significant for all experiments relative to standard Monte Carlo, and similar in magnitude

for alternative implementations.





Conclusions

We have developed an efficient Monte Carlo algorithm for the computation of the expec-

tation of an arbitrary function of discretely realized variance. We have assumed a wide

class of stochastic volatility models, discretized through appropriate Euler schemes. The

Monte Carlo algorithm combines integration by quadrature, or stratification, over a two

dimensional manifold that approximately spans the squared norm of the shocks to the

underlying asset and the path average of the modulating variance process. Conditional on

these variables, or their linear approximations, exact discrete realized variance is randomly

sampled. The combination of low dimensional integration and random sampling leads to

a significant reduction in the variance of the estimator of interest. We show examples of

the effectiveness of our method through the pricing of options on realized variance. The

implementation based on stratification is exact, and the one that relies on quadrature

shows a bias that is economically small in current applications.

A main theme in this work is the tension between the variance reduction that is achieved by

partial integration with the increase in computational cost that such integration demands.

We found advantageous to consider alternative choices of variables. For example, Theorem

5.6 indicates that |Z|22 and the path average of V reduce conditional variance because the

variability of their product captures a significant portion of the variability of R. This

suggests conditioning on a single variable distributed as the product of a χ2 random

variable and an independent Gaussian random variable, to be interpreted as the product

of |Z|22 and a shock along the optimal stratification direction for the path average of V . We

showed that the density of this type of random can be computed through an application

of the Mellin transform and a series expansion.
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Appendix: The Mellin transform and its applica-
tion to the evaluation of integrals

A.1 The Mellin transform

In this appendix we make a description of the Mellin transform and we use it to characterize

the density function of a product of a chi square and a standard normal random variables.

The Mellin transform is extremely useful for certain applications, including solving Laplace

equation in polar coordinates, as well as for estimating integrals. We will first present the

definition and some of its main properties and then show an application of it to obtain

a series expansion of the density of the product of two random variables with specific

distributions. For a deeper treatment on the subject, we recommend [Fk].

Definition 5.10 Let f denote a complex-valued function of the real, positive variable x.

The Mellin transform of f , Mf , is defined as

Mf(z) :=

∫ ∞

0
xz−1f(x)dx. (5.56)

The new complex variable z must be restricted to those values for which the integral

converges. In general, we have convergence at x = 0 only if Re(z) is larger than a certain

value and at x = ∞ if Re(z) is smaller than a certain value. This is readily understood

from simple general results on the convergence of improper integrals. Thus, if the Mellin

transform of f (as defined in 5.56) exists at all, it exists in a vertical strip in the complex z-

plane. In some cases, the strip reduces to a half plane. Furthermore, under mild conditions

on f , it can be shown that Mf is an analytic function of z in that strip.

For a pair of functions g, h : R≥0 −→ C, the integral

(g∗h)(u) :=
∫ ∞

0
t−1g

(
u

t

)
h(t)dt.

is called the Mellin convolution of g and h.

The Fourier or Laplace transform of the product of two functions is given by the convo-

lution of the individual transforms (where convolution is defined differently for the two

transforms). The corresponding statement for the Mellin transform is

M(g∗h)(z) = Mg(z) · Mh(z). (5.57)
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Formula (5.57) forms the core of the Mellin-transform method.

We will see later that, in terms of probability theory, formula (5.57) says that the transform

of the density of a product of two random variables (one of which is supported in (0,∞))

is the product of their transformed densities.

A.1.1 Relation with Fourier transform and Inverse Mellin transform

Let

F(f)(x) =

∫ ∞

−∞
f(t)eitxdt (5.58)

denotes the Fourier transform of f . Then, the identity

Mf(x) = F(f ◦ g)(−ix),

holds, with g(t) = et.

Combining (5.58), with the Fourier or Laplace inversion formula it can be shown that the

inversion formula for the Mellin transform (or more briefly, the inverse Mellin transform)

is

f(x) =
1

2πi

∫ c+i∞

c−i∞
x−zMf(z)dz, (5.59)

where the integration path is a vertical line in the complex z-plane, lying within the strip

of analyticity. This formula uniquely determines f(x) from Mf(z).

A.1.2 Meijer G-function and generalized hypergeometric series

The Meijer G-function is an integral of the type

Gmn
pq

(
x

∣∣∣∣
α1,α2,...,αn

β1,β2,...,βq

)
:=

1

2πi

∫ c+i∞

c−i∞

∏m
i=1 Γ(αj + z)

∏n
j=m+1 Γ(1− αj − z)

∏p
j=1 Γ(βj + z)

∏q
j=p+1 Γ(1− βj − z)

x−zdz,

and is a special type of what is called Mellin-Barnes integral, in which all coefficients A

of the factors Γ(a+Az) and Γ(a+Az)−1 are 1 or −1. Here, the parameters m,n, p, q are

integers with 0 ≤ m ≤ q and 0 ≤ n ≤ p.

The generalized hypergeometric series of order (p, q) is defined as a power series in z and

is denoted by pFq (α11, α2, ..., αp;β1, β2, ..., βq; z). The expressions for the power-series
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coefficients involve the p numbers α and the q numbers β(p, q = 0, 1, ...), called upper and

lower parameters, respectively. The precise definition is

pFq(α1, α2, ..., αp;β1, β2, ..., βq; z) =

∞∑

n=0

(α1)n(α2)n...(αp)n
(β1)n(β2)n...(βq)n

zn

n!
,

where (z)n = Γ(z+n)
Γ(z) is the Pochhammer symbol and all lower parameters are assumed

different from negative integer or zero. Every pFq has a G-function representation, so that

the G-function is a generalization of the pFq. Both pFq and G possess a vast number of

properties.

Numerical computation of pFq and G

There now exist packaged routines for the numerical calculation of pFq and G. Such

routines should greatly enhance the use of pFq and G in engineering applications. For

instance, Mathematica 5.0 can numerically compute both pFq and G. Matlab 7.0 can

handle pFq, but not G. For numerical computation, today’s packaged routines do not rely

exclusively on the definitions, but rather on the numerous properties mentioned above.

When numerical results are of primary concern, it is today often sufficient to express the

quantity of interest in terms of pFq or G and to use the aforementioned routines as black

boxes.

A.2 Proof of Theorem 5.9

If X ∼ χ2
ν and Y ∼ N (0, 1), then, φX(t) = 1

2νΓ(ν)e
−t/2tν−1I

(0,∞)
(t) and φY (t) =

1√
2π
e−t2/2.

Using transform tables (see [B] or [A]), we find

MφX(s) = 2s+ν−1Γ(s+ ν − 1), MφY (s) = 2
s
2
−1Γ

(
s

2

)
,

Apply formula (5.57) together with (5.59) to obtain a complex-integral representation of

φ(u):

φ(u) =
1

8πi

∫ c+i∞

c−i∞
Γ

(
z

2

)
Γ(z + ν − 1)2

3
2
z+νu−zdz

=
22ν−5

π
3
2 i

∫ c+i∞

c−i∞
Γ

(
z

2

)
Γ

(
z + ν − 1

2

)
Γ

(
z + ν

2

)
(2−

5
2u)−zdz, (5.60)
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which becomes a Mellin-Barnes integral after the the application of the duplication formula

Γ(2z) =
1

2
√
π
22zΓ(z)Γ(z +

1

2
).

Also, from the residue theorem, we can express φ as

φ(u) =
22ν−5

π
3
2 i

∑

j

Res

(
Γ

(
z

2

)
Γ

(
z + ν − 1

2

)
Γ

(
z + ν

2

)
(2−

5
2u)−z,−j

)
, (5.61)

Identifying φ with a G-function, we obtain

φ(u) =
22ν−3

√
π
G30

00

(
− u2

25

∣∣∣∣
0 ν−1

2
ν
2
)
,

but as this expression is not very revealing, we will try to write φ in terms of the hyperge-

ometric functions. Let’s take a look at the integrand in (5.60). The first factor contributes

to the integrand a semi-infinite lattice of poles in every even integer. The second factor

has simple poles in z = 2k − 1 for every integer k < −ν, and the third factor has simple

poles for z = 2k, k ≤ −ν/2. The final conclusion is that the integrand has simple poles

for every integer k > −ν and every odd integer, and double poles for every even integer

k ≤ −ν.

Factor Γ( z2) Γ( z2 + ν
2 ) Γ( z2 + ν−1

2 )

N or D N N N

...

-6 P P

-5 P

-4 P P

-3 P

-2 P

-1

0 P

If a gamma function is in the numerator N (or denominator D), it contributes a pole P (or

zero Z) at the location specified. Ellipses (...) at right (or left) indicates that a particular

Pole/Zero lattice continues indefinitely to the right (or left).

This property suggests decomposing φ in three convenient sums, namely

φ(u) =

ν−2
2∑

k=0

Res
(
F (z),−2k

)
+

∞∑

k= ν
2

Res
(
F (z),−2k + 1

)
+

∞∑

k= ν
2

Res
(
F (z),−2k

)
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=: S1 + S2 + S3.

Now, we compute explicitly each sum using the formula for poles of multiple order. With

the aim of the duplication formula, we find

S1(u) =
22ν−4

√
π

ν−2
2∑

k=0

Γ
(
− k +

ν − 1

2

)
Γ
(
− k +

ν

2

)(−1)ku2k

25kk!

= 2ν−1

ν−2
2∑

k=0

Γ
(
− 2k + ν − 1

)(−1)ku2k

23kk!
. (5.62)

Let’s take a look at the second term. For general ν, and to the left of the integration

path, there are one semi-infinite lattices of simple poles. Closing the contour at left and

calculating the residues, one obtains an expression involving two power series

S2 =
∞∑

k=0

Res

(
F (z),−2k + 1− 2

ν

2

)

=
22ν−4

√
π

∞∑

k=0

Γ

(
− k +

1− ν

2

)
Γ

(
− k +

1

2

)
(−1)ku2k+ν−1

25k−
5
2
− 5

2
νk!

=
2−

ν+3
2√
π
uν−1

∞∑

k=0

Γ(1−ν
2 )Γ(12)

(12)k(
1+ν
2 )k

(−1)ku2k

25kk!

= 2−
ν+3
2 uν−1Γ

(
1− ν

2

)
0F2

(
1

2
,
1 + ν

2
;
u2

25

)
,

where we have used the identity Γ(z − n) = (−1)n Γ(z)
(1−z)n

.

The terms in S3 are residues at double poles in the integrand of the Mellin Barnes integral,

which makes ln(u) appear in the series. Again, we rewrite S3 as

S3 =

∞∑

k=0

Res

(
β(z),−2k − ν

)
,

β(z) = (2−5u2)−
z
2Γ
(
z
2

)2
Γ
(
z
2 + ν−1

2

)∏ν/2−1
m=0

(
z
2 +m

)
, and we use that (see [Fk], p.16)

Res
(
Γ(z)2g(z)x−z, z = −n

)
=

xn

(n!)2

(
g′(−n) + 2

Γ′(n+ 1)

Γ(n+ 1)
g(−n)− g(−n) lnx

)
, (5.63)

together with the relation Res(F ( z2),−2j) = 2Res(F (z),−j). Identity (5.63) shows that

S3 decomposes into three series, one for each of the terms that appear in the sum. Let’s

call these series S3,1, S3,2, S3,3 respectively. At this point we note that only the series

multiplying lnx (S3,3) can be identified with a pFq. In this simple case, we take
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g(z) = Γ
(
z + ν−1

2

)∏ ν
2
−1

m=0

(
z +m

)
, and so we have

g(−k − ν

2
) = (−1)

ν
2Γ(−k − 1

2
)
(k + ν

2 )!

k!
= (−1)

ν
2
+kΓ(−1

2)Γ(
ν
2 + 1)(ν2 + 1)k

(32)k(1)k
,

which implies

S3,3 =

(
u2

25

)ν
2

ln

(
u2

25

) ∞∑

k=0

Γ
(
− k − 1

2

)

((k + ν
2 )!)

2

ν
2
−1∏

m=0

(
−k− ν

2
+m

)(
u2

25

)k

= (−1)
ν
2
−1

(
u2

25

) ν
2

ln

(
u2

25

) ∞∑

k=0

Γ
(−1

2

)
Γ(ν2 + 1)(ν2 + 1)k

(32)k(1)k((
ν
2 + 1)kΓ(

ν
2 + 1))2

(−u2

25

)k

k!

= (−1)
ν
2
−1

(
u2

25

) ν
2

ln

(
u2

25

)
Γ
(
− 1

2

)

Γ
(
ν
2 + 1

) 0F3

(
1, 1 +

ν

2
,
3

2
;−u

2

25

)
, (5.64)

(5.65)

and

S3,2 = (−1)
ν
2

∞∑

k=0

2Γ(−k − 1
2)ψ(k +

ν
2 + 1)

(k + ν
2 )!k!

(
u2

25

)k

.

For S3,1, note that

g′(z) = Γ′(z +
ν − 1

2
)p(z) + Γ(z +

ν − 1

2
)p′(z) = p(z)

[
Γ′(z + ν − 1

2

)
+

ν
2
−1∑

m=0

1

z +m

]
,

giving

g′
(
− k − ν

2

)
= (−1)

ν
2
(k + ν

2 )!

k!

[
Γ′(− k − 1

2

)
−

ν
2
−1∑

m=0

1

k + ν
2 −m

]

= (−1)
ν
2
(k + ν

2 )!

k!

[
ψ(−k − 1

2
)Γ
(
− k − 1

2

)
−

ν
2
−1∑

m=0

1

k + ν
2 −m

]
. (5.66)

Inserting all this in (5.63), we get the claimed characterization.

�
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