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Resumen

En esta tesis son estudiados desarrollos recientes en gravedad en tres dimensiones. Luego de una
descripción concisa de los hechos fundamentales de gravedad AdS3, principalmente dentro del
marco de AdS/CFT, se presentan los últimos intentos para calcular la función de partición de
dicha teoŕıa. En particular, presentamos en gran detalle una novedosa construcción de geometŕıas
con singularidades cónicas, tanto estáticas como rotantes. Estas geometŕıas daŕıan contribuciones
adicionales a la función de partición de gravedad en tres dimensiones.

Por otro lado, el rol de la factorización holomorfa es enfatizado con el propósito de motivar
la búsqueda de un dual gravitacional a una CFT holomorfa. Explicamos en detalle un posible
ejemplo de Li, Maloney, Song y Strominger llamado gravedad quiral, el cual está definido en un
punto especial de la gravedad topológicamente masiva con condiciones de contorno de Brown-
Henneaux. Comentamos los pros y contras de tal teoŕıa como un dual a una CFT holomorfa
y también consideramos la teoŕıa que aparece cuando se imponen condiciones de contorno más
relajadas, llamada gravedad logaŕıtmica, que sera dual a una CFT logaŕıtmica. En este contexto,
una solución exacta que obedece estas nuevas condiciones de borde, la cual fue encontrada por el
autor y colaboradores, es descrita.

Finalmente, formulamos en detalle una propuesta original para una nueva gravedad quiral, la
cual está definida en un punto especial de la teoŕıa de Mielke-Baekler con condiciones de contorno
de Brown-Henneaux. Aunque dicha dualidad pueda contenter soluciones con torsión, evita las
complicaciones de tener un zoológico de soluciones como es el caso de gravedad quiral: cualquier
solución en nuestra propuesta tiene curvatura y torsión constantes. La teoŕıa de Mielke-Baekler
genéricamente exhibe un álegbra asintótica dada por dos copias del álgebra de Virasoro. El análisis
canónico en el punto quiral donde nuestra propuesta reside es presentado y se muestra como la
mitad de los generadores de las simetŕıas asintóticas desaparecen y la carga central izquierda se
anula. Por esto, la quiralidad es manifiesta.

Esta tesis está parcialmente basada en resultados que el autor ha publicado en las referencias
[13, 14, 15, 24, 28, 35, 36].

Palabras clave: Gravedad en tres dimensiones; correspondencia AdS/CFT; teoŕıa de Chern-
Simons; gravedad cuántica; gravedad quiral.





Gravity in three dimensions and the AdS/CFT
correspondence

Abstract

In this thesis, recent developments on three-dimensional gravity are studied. After a concise
description of the fundamental facts on AdS3 gravity, mainly within the context of AdS/CFT,
recent attempts to compute the partition function of such theory are presented. In particular, we
present in great detail a novel construction of geometries with conical singularities, both static
and rotating. These are believed to give further contributions to the partition function of three-
dimensional gravity.

On the other hand, the rôle played by holomorphic factorization in the dual conformal theory
is emphasized in order to motivate the search for a gravitational dual to a holomorphic CFT.
We explain in detail one possible example given by Li, Maloney, Song and Strominger, called
chiral gravity, which is defined at a special point of topologically massive gravity with Brown-
Henneaux boundary conditions. We comment on the pros and cons of such theory as a dual
to a holomorphic CFT. We also consider the theory that appears when more relaxed boundary
conditions are imposed, dubbed log gravity, presumably being dual to a logarithmic CFT. In this
context, an exact solution obeying these new boundary conditions, which was found by the author
and collaborators, is described.

Finally, we formulate in detail an original proposal for another chiral gravitational theory which
is defined at a special point of Mielke-Baekler theory with Brown-Henneaux boundary conditions.
Although it may contain solutions with torsion, it avoids the complications of having a wild zoo of
solutions as chiral gravity does: Any solution in our proposal is of constant curvature and constant
torsion. Mielke-Baekler theory generically exhibits an asymptotic symmetry algebra that can be
cast in the form of two copies of the Virasoro algebra. The canonical analysis at the critical
point where our proposal takes place is presented and it is shown how half of the generators of
asymptotic symmetries disappear and the left central charge vanishes. Thus, chirality is manifest.

This thesis is partially based on results that the author has published in references [13, 14, 15,
24, 28, 35, 36].

Keywords: Three-dimensional gravity; AdS/CFT correspondence; Chern-Simons theory; quan-
tum gravity; chiral gravity.
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Introduction

Probably the most important pending task in the high energy theoretical physics community is the
unification of quantum physics with gravity. On one hand, it is hoped that once this is achieved,
ambitious questions such as what happens in the center of a black hole or how the universe evolved
from its origin will be satisfactorily answered. On the other hand, the self-building road to this
unification promotes the emergence of new powerful physical ideas and mathematical tools, with
diverse ramifications and possible uses. This is, without doubt, due to the fact that the task
of unification of all forces is incredibly difficult, and because of this, one needs to resort to all
kind of different approaches, most of them tested on physical models of partial resemblance to
our universe, usually referred to as toy models. Then, if successful, these approaches have to be
adapted to the physics of our world.

One such toy model is general relativity (GR) in three dimensions, i.e., the three-dimensional
analogue to the theory of gravity we believe best describes our known universe, but in one less
spatial dimension,

S =
1

16πG

∫

M
d3x

√−gR.

This is the most promising “non-stringy” working ground to achieve a quantum version of general
relativity 1. The reason for such a claim stems in the non-existence of gravitons in three dimen-
sions. In other words, every solution to Einstein equations looks locally the same. If one adds a
cosmological constant Λ,

S =
1

16πG

∫

M
d3x

√−g (R − 2Λ) ,

there appears a dimensionless quantity k ∼ 1/(
√
|Λ|G) which can be used for perturbation theory,

suggesting renormalizability of the theory. This is closely related to the fact, first discovered by
Achúcarro and Townsend, that the theory can be written as a Chern-Simons action for some
gauge group, depending on the sign of the cosmological constant [1, 2]. In this thesis we will only
consider the case of a negative cosmological constant Λ = −ℓ−2 and so the solutions of general
relativity will be locally Anti-de Sitter (AdS3). Actually, we will loosely refer to this theory as
AdS3 gravity.

In Chapter 1 we will review in more detail the absence of local degrees of freedom and the
relation to Chern-Simons theory. Also in that chapter, we will discuss a remarkable feature of
three-dimensional gravity found by Brown and Henneaux: for some asymptotic boundary con-
ditions, the canonical realization of asymptotic symmetries is isomorphic to two copies of the
Virasoro algebra with central charge,

c =
3ℓ

2G
,

1We will always use natural units where G plays the part of Planck length scale in three dimensions.
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which is the local conformal symmetry algebra of a quantum conformal field theory (CFT) in two
dimensions [3]. Even more, we will explain how at the level of the action the imposition of asymp-
totic conditions yields a two-dimensional CFT known as Liouville theory. Although this could
(unlikely) be a mere curiosity, we will see that, in the context of the AdS/CFT correspondence,
it has a natural interpretation.

The space of solutions of AdS3 gravity could seem at first sight everything but rich, given the
fact that any solution is locally AdS3. The parameterization of the space of solutions, for simple
topologies, will be briefly commented in the first chapter. But in particular, an interesting solution
does exist: Bañados, Teitelboim and Zanelli showed in 1992 that there exist black hole solutions
(called BTZ black holes) in three-dimensional gravity with a negative cosmological constant [4].
This can be so because these geometries are made from identifications on AdS space [5]. Actually,
there exist solutions that represent many BTZ black holes as well.

In the first lines of this introduction we mentioned that trying to answer difficult questions
usually brings to life new powerful tools to reach the goal. Such is the case of the AdS/CFT
correspondence, presented by Maldacena in the year of 1997 [6]. This is an idea that has spread
in a large variety of fields in physics, from cosmology to solid-state physics, proving its enormous
potential beyond doubt. This correspondence is a holographic statement, in the sense that it
relates physics on a given space to some other physics on a space of at least one dimension less
[7, 8]. Leaving technical details aside for a moment, let us just mention a few important facts about
this conjecture. The first thing to be mentioned is that it relates a gravitational theory in the ten
dimensions of AdS5 ×S5 to a CFT in 4 dimensions (it is often said that this CFT theory lives on
the boundary of AdS5, the latter often called “the bulk”). Besides, in the limit where the quantum
gravity theory (string theory) is purely classical, and where one deals with just a gravitational
theory, the CFT is a quantum field theory (QFT) with a large coupling constant. Conversely, when
the string theory exhibits non-negligible quantum effects, the CFT becomes weakly coupled. In
fact, this “strong-weak duality” is one of the most important features of Maldacena’s conjecture,
because it allows us to perform extremely difficult computations in a strongly coupled regime of
a QFT by just resorting to its dual description in terms of a weakly coupled theory, and thus
implementing perturbative methods. Another important aspect of Maldacena’s conjecture is that
local symmetries of the string theory turn out to match the global symmetries of the CFT, and
vice versa. This is worth to be mentioned because this can be thought of as if the local gauge
transformations in the boundary theory (the CFT) generate global gauge transformations for
the gravitational theory. Therefore, an “innocent” transformation in the QFT such as a gauge
transformation maps one solution to another in the gravitational theory on the bulk. This can be
inferred from the result of Brown and Henneaux previously mentioned in the particular case of
AdS3/CFT2, where the gravitational classical theory is AdS3 gravity with ℓ/G ≫ 1.

In more technical detail, Maldacena’s proposal claims that type IIB superstring theory in a
curved spacetime (namely five-dimensional Anti-de Sitter times a 5−sphere) is dual to N = 4
Super Yang-Mills Theory with gauge group SU(N) in the limit of large N living on a four-
dimensional Minkowski spacetime. Here, dual means that they describe the same physical system,
as will be explained at the beginning of Chapter 2. We will also see there the precise prescription
[9, 10] to extract physical information from the correspondence such as correlators in the CFT
by means of classical computations in the bulk. At the end of the chapter a technique called
holographic renormalization, which explains how to get the mean value of the CFT stress tensor
by “renormalizing” the gravitational action, will be described. In particular, this is useful for
computing conserved charges and the central charge.
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Research on three-dimensional gravity with a negative cosmological constant experienced a
boost in 2007 when, in the context of the AdS/CFT correspondence, Witten published a proposal
for a family of holomorphic extremal CFTs, parameterized by the discrete central charges (cR, cL),
that would be dual to AdS3 gravity for different discrete values of ℓ/G [11]. The idea comes from
looking at the Chern-Simons realization of gravity, with parity broken. The details will be made
explicit in the first section of Chapter 3. Let us mention here that the holomorphic nature of the
dual CFTs plus the requirement of being extremal (meaning that the lowest primary apart from
the identity has dimension k+1, with c = 24k and k ∈ Z) allows to uniquely identify the partition
function of the CFTs. The same year, Maloney and Witten computed, from the gravitational
side only, the partition function of Euclidean AdS3 gravity by summing all the contributions from
smooth manifolds with a unique conformal boundary of genus one [12]. Their result fails to be
equal to a partition function defined over a Hilbert space, and hence does not have a sensible
physical interpretation. Nevertheless, when used their result to construct the holomorphic piece
of a partition function of a holomorphic CFT, it is possible to reproduce the Bekenstein-Hawking
entropy and the phenomena of Hawking-Page phase transitions between thermal AdS3 and the
BTZ black hole. This will be presented in Chapter 3. We end this chapter by discussing a
paper from 2011 where some of the Brown-Henneaux states that enter in the partition function
of Maloney and Witten are showed to be of null norm, therefore having to be removed from the
spectrum [17]. The analysis, unfortunately, takes place only around AdS, so the consequences of
extending it to the perturbations around every other manifold that Maloney and Witten consider
is still an open issue.

Later on, in Chapter 4 we describe in detail work by the author and collaborators studying a
set of singular geometries representing spinning massive particles in AdS3 [13, 14, 15], which may
need to be included in the partition function to restore its physical interpretation. Not only their
construction by identifications - similar to those that make the BTZ black holes - is explained,
but also in what kind of gravitational theories these geometries could appear. Furthermore, their
stability is scrutinized in the context of super AdS3 gravity [1, 2, 16]. The existence of BPS
massive particles (with angular momentum and/or charge) supports the need for taking them
into account when computing the partition function.

Chapter 5 is entirely devoted to present a conjecture dubbed chiral gravity, and topics related
to it. Motivated by the work of Witten [11] and the nice holomorphic properties of the ad hoc
holomorphic partition function of Maloney and Witten [12], Li, Song and Strominger proposed in
2008 a gravitational theory in three dimensions that would be dual to a holomorphic CFT with
trivial left sector [18]. The gravitational theory they considered is topologically massive gravity
(TMG), introduced by Deser, Jackiw and Templeton in 1982 [19, 20], at the point µℓ = 1. Here µ
is the inverse of the coupling constant of the new term (that couples to pure gravity) in the TMG
action. TMG is a third-order theory with a massive graviton of negative energy that makes it
unstable. At the particular point µℓ = 1 in parameter space, the left central charge vanishes and
the massive graviton tends to the left, pure-gauge graviton, so it seems that stability is restored.
As shown soon after by Grumiller and Johansson [21], a new linear solution appears at the critical
point considered in [18], with negative energy and a more relaxed fall-off behavior at infinity than
that of Brown-Henneaux, opening the window to consider such logarithmic behavior at infinity.
This graviton is now known as the log graviton. If one would only consider solutions to the linear
equation at the critical point with Brown-Henneaux boundary conditions, then it turns out that
there is indeed such a solution that spoils chirality, having negative left-charge [22]. The stability
of chiral gravity, and thus its consistency, was a matter of intense debate within the high-energy
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theoretical physics community (we will give the appropriate references through Chapter 5).

Maloney, Song and Strominger later showed that, at second order in perturbation theory, any
linear solution with Brown-Henneaux asymptotics has left vanishing charge, and that the solution
in [22] does not actually satisfy the Brown-Henneaux boundary conditions at second order (so
it would not be the linearization of any exact solution) [23]. All of this was discussed at the
level of the linearized equations of motion. Considering the exact equations of motion of TMG
at the point µℓ = 1, it was shown by the author and collaborators [24] that there are indeed
solutions to the theory at the critical point that manifest the more-relaxed boundary conditions,
the log asymptotics of [21]. Even more, the charges of such solutions satisfy the extremal relation
ℓM = J . The upshot of this discussion is that chiral gravity is defined at present for Brown-
Henneaux boundary conditions, while TMG at µℓ = 1 with the more general fall-off asymptotics
is distinctively known as log gravity [21, 23, 25, 26]. In [23] they also computed the partition
function of chiral gravity in the Euclidean sector, and showed that, in fact, it gives a holomorphic
partition function with a sensible physical interpretation. Nevertheless, the non-existence of non-
Einstein geometries with Brown-Henneaux asymptotics was assumed, but now we know that this
hypothesis is not true 2, thanks to the solution reported in [27]. It was also assumed that there
are no chiral (i.e., right-moving) gravitons with negative energy, what still remains to be proven.

In the final chapter, we propose, based on [28], a new gravitational theory in three dimensions
that exhibits all the properties of [18] but by construction has no gravitons, since it comes from
a Chern-Simons theory. Even more, the spectrum of exact solutions is under control. Such a
theory is also defined at a particular point in parameter space of a more general theory: Mielke-
Baekler theory of gravity [29, 30], which is the most general, Lorentz-invariant, second-order
theory with torsion. Similarly as AdS3 gravity, it can also be written as a Chern-Simons theory,
thus manifesting its topological origin and the absence of gravitons. Also, for Brown-Henneaux
boundary conditions, the asymptotic symmetry algebra is represented by two copies of the Virasoro
algebra, with different left and right central extensions.

The exact solutions of Mielke-Baekler theory are geometries with constant curvature and tor-
sion, provided certain parameters of the theory do not match. But when they do match, then
the equations of motion degenerate into one equation and the constant quantity is a linear com-
bination of the curvature and torsion. The chiral gravity proposed by us is defined by starting
from the space of solutions of the general case, and taking the limit to the critical point. Then,
every solution of our chiral gravity has by construction constant curvature and torsion, satisfy the
extremal relation between mass and angular momentum, and, when Brown-Henneaux boundary
conditions are imposed, the algebra of asymptotic symmetries is only spanned by half the gener-
ators of the general theory (which is a manifestation of the chirality of the theory). Furthermore,
the left central charge vanishes. In addition, there is an arbitrariness on how the limit to the
critical point is taken which does not affect all the properties just listed. We will see that there is
a way of taking the limit where the torsion vanishes.

It is worth mentioning, in addition, another recent theory of gravity in three dimensions called
new massive gravity (NMG), although we will not comment about it further in the thesis except
briefly in Appendix G. This was defined by Bergshoeff, Hohm and Townsend in 2009 [31], and

2It is fair to say that the geometry presented in [27] suffers from having closed timelike curves, so wether
it should be considered in the physical spectrum or not is not clear. In any case, it is clear now that
there could be non-Einstein solutions that present the Brown-Henneaux asymptotic behavior and have no
pathologies.
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has the very nice property that although being a fourth-order theory, its linearization matches
the unitary Fierz-Pauli action for a massive spin-2 field. In contrast to TMG, NMG is parity-
invariant, so the left and right central charges coincide although they differ from the central charge
of AdS3 gravity. On the other hand, in resemblance to TMG, NMG supports very interesting
solutions, such as the BTZ black holes, warped AdS geometries [32], and AdS-waves [33, 34].
Some of these appear only at a special point in parameter space, and some also present weakened
asymptotic conditions as is the case with log gravity. There is no doubt that for higher-curvature
theories, there are in general points in parameter space where the equations of motion exhibit
some sort of degeneracy and new interesting solutions appear. One surprising example was shown
to exist by the author and collaborators in [35], where a black hole solution which is not even
asymptotically AdS (in any asymptotic sense) was presented. This solution exhibits a Lifshitz
asymptotic behavior, meaning that there is a scaling symmetry that discriminates between the
time coordinate and spatial coordinates. We have also shown that asymptotically Lifshitz black
holes appear in quadratic corrections in the curvature of general relativity in higher dimensions
[36]. This type of solutions are believed to describe holographically the physics of condensed
matter Lifshitz fixed points in one less dimension [37]. This is an interesting proposal but is
beyond the scope of this thesis.

The conventions we will use here are those of [38], and unless otherwise stated, Greek letters
µ, ν, . . . = 0, 1, 2 will be used for spacetime indices, while Latin letters like i, j, k = 1, 2 will
represent the spatial components and a, b, c = 0, 1, 2 will be used for the tangent space indices.
The antisymmetric symbol will satisfy ǫ012 = −1 = −ǫ012 and the determinant of the vielbein,
det e, will be positive.



Chapter 1

General relativity in 2+1 dimensions

In this chapter we will make an account of several “old” results concerning general relativity in
2+1 dimensions with a negative cosmological constant. A short but precise treatment of them
will make the way easier through the next chapters of this thesis and will also serve to motivate
the recent approaches for constructing a quantum version of AdS3 gravity.

1.1 Geometry of the solutions

General relativity in d + 1 dimensions with a cosmological constant has the following action,

S =
1

16πG

∫
dd+1x (R − 2Λ) , (1.1)

whose Euler-Lagrange equations of motion are,

Rµν − 1

2
Rgµν + Λgµν = 0, (1.2)

or simply,

Rµν =
2

d − 1
Λgµν . (1.3)

So far this is quite general and does not give much information about the Riemann tensor. But
in the particular case of three dimensions, the trace-free and conformally invariant part of the
Riemann tensor called Weyl tensor vanishes identically. This means that in three dimensions the
Riemman tensor can be algebraically expressed in terms of the Ricci tensor and scalar curvature.
Thus, for any metric satisfying the equations (1.3),

Rµνρσ = Λ(gµρgνσ − gνρgµσ), (1.4)

and so any solution of gravity in three dimensions is either locally Minkowski, de Sitter, or Anti-de
Sitter depending on Λ, which implies that there are no local degrees of freedom in three-dimensional
gravity.

We will from now on focus on the case of a negative cosmological constant Λ = −1/ℓ2. So,
the conclusion of the last paragraph is that any solution is locally diffeomorphic to AdS3 space.
This space can be defined in many ways, but a usual and actually useful way to do this is the

8
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following. Consider the space R
2,2 which is the manifold R

4 with a non-Riemannian metric of the
form

X · X = −(x0)2 + (x1)2 + (x2)2 − (x3)2, (1.5)

and then AdS3 is the hypersurface in R
2,2 such that,

AdS3 = {X ∈ R
2,2|X · X = −ℓ2}, (1.6)

with the induced metric coming from R
2,2. More than one global chart of AdS3 can be obtained

with clever parameterizations of this hypersurface and its metric can be described globally. For
example, with the following coordinates,

x0 = ℓ cosh ρ sin(t/ℓ),

x3 = ℓ cosh ρ cos(t/ℓ),

x1 = ℓ sinh ρ cos(φ),

x2 = ℓ sinh ρ sin(φ),

(1.7)

the metric becomes,
ds2 = ℓ2

(
− cosh2 ρd(t/ℓ)2 + sinh2 ρdφ2 + dρ2

)
, (1.8)

where ρ ∈ [0,∞), t ∈ [0, 2πℓ) and φ ∈ [0, 2π). This space actually has closed timelike curves, so
what it is common to do is to consider its universal covering by “unwrapping” the time coordinate:
t ∈ (−∞,∞). From now on we will always consider the universal covering although we will keep
on calling it just AdS3.

As we mentioned before, any solution has locally the form of (1.8), and so other solutions
have to differ in global aspects, such as the topology of the manifold. We will come back to the
description of different locally AdS3 spacetimes in forthcoming sections. For now, let us finish this
section by making some remarks on the six isometries of global AdS3: these are generated by the
action of the SO(2, 2) group which is isomorphic to SL(2, R) × SL(2, R). What we will see later
is that solutions that are not globally diffeomorphic to AdS3 have less isometries.

For further reading on the geometry of AdS3 see for example [39, 40].

1.2 Connection to Chern-Simons theory

In the year 1986 two major results considering the description of three-dimensional gravity with
a cosmological constant appeared. This and the following sections are devoted to explain them
briefly.

The first of these results was presented by Achúcarro and Townsend [1], who showed that the
supersymmetric extension of gravity in 2+1 dimensions can be written as a Chern-Simons theory
(CS)1 for the supersymmetric group OSp(p|2; R) × OSp(q|2; R), with N = p + q supersymme-
tries. From then on, this was called the AdS supergroup. Their result can be briefly explained
following Witten’s posterior work [2] (see also the lectures by Zanelli for an excellent review on
Chern-Simons supergravities and conventions [41]). We will just consider here the case where

1For a detailed introduction on differential geometry and the geometry of Chern-Simons theory see
Appendices B and C, respectively.
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all the non-gravitational fields are turned off and one is led then with just pure gravity in three
dimensions. Then, the gauge group is SO(2, 2) which is locally isomorphic to SL(2, R)×SL(2, R)
or to SO(2, 1) × SO(2, 1).

First note that the action (1.1) can be written in first order formalism as 2,

S = − 1

16πG

∫
ǫabc

(
ea ∧ Rbc +

1

3ℓ2
ea ∧ eb ∧ ec

)
, (1.9)

where ea (a = 0, 1, 2) is the vielbein and Rab is (the ab component of) the curvature associated to
the spin connection ωab. The equations of motion derived from the first-order action (1.9) are,

T a = dea + ǫa
bcω

b ∧ ec = 0

Rab = dωab + ωa
c ∧ ωcb = − 1

ℓ2
ea ∧ eb, (1.10)

where the first one is obtained by varying with respect to the spin connection and the second
one to the vielbien. They imply that the connection is the Levi-Civita connection and that the
manifold is of constant negative curvature, such as the usual Einstein equations. Then, by using
the dual spin connection ωa = 1/2 ǫa

bcω
bc one can construct two sl(2, R) gauge fields AR and AL

as,

AR = w +
1

ℓ
e = Aa

RJ+
a , AL = w − 1

ℓ
e = Aa

LJ−
a , (1.11)

where {J±
a }a=0,1,2 are the generators of two copies of the algebra sl(2, R) (see Appendix A). The

2+1 gravity action (1.9) becomes,

S =
ℓ

16πG
ICS[AL] − ℓ

16πG
ICS[AR], (1.12)

with the Chern-Simons action being 3,

ICS[A] =

∫
tr

(
A ∧ dA +

2

3
A ∧ A ∧ A

)
. (1.13)

Then, at least at the level of the actions, Einstein gravity in three dimensions with a cosmological
constant and Chern-Simons theory for the SO(2, 2) group are equal. This also applies for vanishing
or positive cosmological constant with the groups ISO(2, 1) and SO(3, 1) respectively, but we will
always stick to the case of a negative cosmological constant. The equations of motion coming
from the Chern-Simons action (1.13) are F+ = dA+ + A+ ∧ A+ = 0 and the same for the minus
copy, which can be read,

F± = (Ra ± 1

ℓ
T a +

1

2ℓ2
ǫa

bce
b ∧ ec)J±

a = 0, (1.14)

where Ra = 1/2 ǫa
bcR

bc. So, these equations reproduce precisely equations (1.10).

2Here it is used that ǫabce
a ∧ eb ∧ ec = −6

√−gd3x.
3We are considering the algebra of the SL(2, R)×SL(2, R) group, which allows actually for two different

traces. The one used here is given by 〈J+
a , J+

b 〉 = 〈J−

a , J−

b 〉 = 1

2
ηab and 〈J+

a , J−

b 〉 = 0, which is the same
trace of the two-dimensional representation for each copy. The other trace gives the “exotic Chern-Simons
action” [11].
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Now, a few points to be noted are called for. First of all, the equivalence of the actions (1.9)
and (1.13) is valid modulo a boundary term of the form

∫
boundary(ωa ∧ ea). Of course, the Euler-

Lagrange equations are invariant under a total derivative in the Lagrangian, so this boundary
term is not much of an issue, at least classically. A more important point comes from the fact
that, in general, solutions of the Chern-Simons theory in three dimensions are flat connections
(F = 0), one of which is locally the trivial one A = 0. This solution translates into a vanishing
vielbein and therefore a non-invertible one. This cannot be allowed in a gravitational theory since
it forbids to construct a volume form for the manifold as ∝ tr(e∧ e∧ e). Related to this, there are
more issues in the claim that AdS3 gravity is equivalent to Chern-Simons theory [42], although
we will not comment on these. It is just enough for our purposes to state that these two theories
can be regarded as equivalent in a somewhat weak sense: they describe the same dynamics only
perturbatively around a physically meaningful gravitational solution. With physically meaningful
we mean a metric that can be constructed from an invertible vielbein. Although weak, this
equivalence can be a good place to grasp some of the features of quantum gravity in AdS3.
For example, when trying to quantize the Chern-Simons action by means of the path integral
formalism, it turns out, thanks to its topological nature, that the levels in the action (in (1.13)
this is k = ℓ/16πG) must be quantized, for groups that are contractible to a compact subgroup,
such as SL(2, R) [11] (we will come back to this point in Section 3.1). Therefore, Chern-Simons
theory suggests that the quantum version of AdS3 gravity must have the ratio ℓ/G quantized. We
will see that there are more reasons to believe this is the case from the AdS/CFT correspondence.

1.3 Asymptotic symmetries

The other important result within three-dimensional gravity that appeared 1986, this time by the
hand of Brown and Henneaux, concerned the asymptotic boundary conditions and global charges
of the theory. To present their work, we will follow their original paper [3].

In the Hamiltonian formulation of general relativity [38] the Hamiltonian is written as a
combination of constraints Hµ, modulo a surface term J [ξ],

H[ξ] =

∫
d2xξµHµ + J [ξ], (1.15)

where ξ are the allowed asymptotic symmetries and J [ξ] (from now on the charges) are such that
the variation of H[ξ] with respect to the canonical variables is well defined for any ξ [43]4.

An asymptotic symmetry is a vector field such that the infinitesimal diffeomorphism that
generates leaves invariant certain boundary conditions. In the case of AdS3 gravity, Brown and
Henneaux proposed to consider all the metrics that in a patch close to ρ → ∞, in the coordinates
of (1.8), behave as,

hρρ = O(e−2ρ), hρt = O(e−2ρ), hρφ = O(e−2ρ),

htt = O(1), htφ = O(1), hφφ = O(1),
(1.16)

where hµν is a perturbation with respect to (1.8) near the boundary and the dependence on the
t and φ coordinates is arbitrary. The asymptotic symmetries are the solutions to the equations,

Lξ(g + h) = h, (1.17)

4Note that the surface terms J [ξ] are only defined up to a constant
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which means that the vectors ξ transform locally AdS3 metrics with the fall of conditions of
(1.16) into themselves (generically changing the dependence on the coordinates t and φ as well as
sub-sub-leading terms). In fact, the solutions to (1.17) are,

ξρ = −1
2 (U ′(u) + V ′(v)) ,

ξu = U(u) + 2e−2ρV ′′(u),

ξv = V (v) + 2e−2ρU ′′(v),

(1.18)

where u = t/ℓ+ φ and v = t/ℓ−φ are light-cone coordinates at the boundary and U(u) and V (v)
are arbitrary periodic functions. Because of this, the asymptotic symmetries can be expanded in
(two) Fourier modes ξu

n and ξv
n and then the Hamiltonian charges H[ξ] can be evaluated for each

of these modes:

H[ξu
n] := Ln, H[ξv

n] := L̄n. (1.19)

Hamiltonian charges generate, via the Poisson bracket, infinitesimal variations on the canonical
variables. The following step in [3] is to find the algebra with the Dirac bracket of the global
charges H[ξ] ≈ J [ξ] on the surface of constrains. Actually, it will be interesting to see the algebra
generated by the “Fourier modes” Ln and L̄n defined in (1.19).

To compute the Poisson bracket between two generators H[ξ] and H[η], Brown and Henneaux
used a theorem earlier proved by themselves that states that this Poisson bracket is itself a well-
defined generator [44], so it can be written as,

{H[ξ], H[η]} = H[ζ] + K[ξ, η], (1.20)

where K is a central extension independent of the canonical variables. Then, they showed that
ζ = [ξ, η] asymptotically and so the algebra of the generators H[ξ] form a central extension of the
algebra of asymptotic symmetries. What is left to show is that this central extension is non-trivial,
meaning that the extra term K in (1.20) cannot be absorbed by a redefinition of the generators.
To achieve this, in [3], the authors interpret5 the Dirac bracket {J [ξ], J [η]}DB as an infinitesimal
change of the charge J [ξ] under the deformation generated by J [η], so,

δηJ [ξ] = {J [ξ], J [η]}DB = {H[ξ], H[η]}|on−shell. (1.21)

Then, by virtue of equation (1.20), one gets,

δηJ [ξ] = J [[ξ, η]] + K[ξ, η]. (1.22)

Now, by evaluating this expression on global AdS3 at t = 0, and demanding that for this spacetime
the charges J [ξ] vanish6, δηJ [ξ] = K[ξ, η] where the l.h.s is the charge evaluated at the surface

5Notice that the phase space of this theory has dimension zero, since there are no degrees of freedom, so
there is no way of proving equation (1.21) since once the constraints are imposed, the canonical variables,
if exist, are defined on the boundary so one should somehow define the “remaining dynamics” at the
boundary. The expression (1.21) can be regarded as a way of doing so.

6Remember that the charges J [ξ] where defined up to a constant, so one needs to fix them for some
geometry in order to get rid of this ambiguity.
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deformed by η. Brown and Henneaux evaluated this explicitly for every mode Ln and L̄n and got
that these satisfy two copies of the Virasoro algebra,

[Ln, Lm]DB = (n − m)Ln+m + c
12n(n2 − 1)δm+n,

[
L̄n, L̄m

]
DB

= (n − m)L̄n+m + c
12n(n2 − 1)δm+n,

[
Ln, L̄m

]
DB

= 0,

(1.23)

where

c =
3ℓ

2G
. (1.24)

This proves that the algebra of charges in 2+1 gravity with a negative cosmological constant is
given by two copies of the Virasoro algebra with equal central charge given by (1.24).

1.4 Boundary dynamics

In this section we will explain a result by Coussaert, Henneaux and van Driel, which states that
the dynamics of AdS3 gravity can be classically described by Liouville field theory [45] (see also
[46] for further details including the supersymmetric case).

Assuming the classical equivalence between three-dimensional gravity and Chern-Simons the-
ory, these authors start from the action (1.12), which in Hamiltonian form, assuming a manifold
of the form R × Σ, each of the two terms read 7,

ICS [A] =

∫

R×Σ
dtdrdφ tr

(
ȦrAφ − ȦφAr + 2A0Frφ

)
, (1.25)

where the coordinates are the ones in (1.6) with r = ℓ sinh ρ. If there is a boundary in Σ, then
there also appears a boundary term of the form

∫
R×∂Σ A0Aφ which can be compensated by adding

the same term with opposite sign in the initial action (since it is a boundary term, it does not
change the equations of motion). From (1.25) one learns that A0 is a Lagrange multiplier and the
constraint is

Frφ|Σ ≈ 0. (1.26)

In [48] it was first shown that when imposing this constraint in the action (1.25), what is left is
a Wess-Zumino-Witten (WZW) theory [49] induced on the boundary depending on the topology
of Σ. We review this fact following the logical steps in [45], where the simplest case Σ = D2, the
two-dimensional disk, is considered. The difference between [48] and [45] is that while the former
uses the (AR)0 = (AL)0 = 0 boundary condition, the latter uses the Brown-Henneaux asymptotic
conditions (1.16) adapted for the gauge connections,

AR ≃
(

dr
2r O(1/r)

rdx+ −dr
2r

)
, AL ≃

(
−dr

2r rdx−

O(1/r) dr
2r

)
, (1.27)

to leading order. The light-cone coordinates are again x+ = u = t/ℓ+φ and x− = v = t/ℓ−φ. For
specific details on the boundary conditions adapted for the Chern-Simons fields it is advisable to

7In [45] there are some typos and it is actually better to follow the careful computations in [47].
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see [47], although beware that the label of the sl(2, R) generators + and − seems to be interchanged
with respect to the ones used in [45].

Conditions (1.27) have two important features: i) the light-cone components (AR)− and (AL)+

are set to zero asymptotically and ii) (AR)
(−)
+ and (AL)

(+)
− are not functions of the light-cone

coordinates, where the superscripts (±) indicate sl(2, R) algebra indices 8. Also, usual gauge
conditions used in the WZW-related literature will be imposed:

(AR)
(3)
+ = (AL)

(3)
− = 0, (1.28)

which are, of course, compatible with the boundary conditions (1.27).

From Chern-Simons to Wess-Zumino-Witten

In order to make the action (1.25) an extremum with respect to an arbitrary variation of the
gauge field, one has to add a boundary term of the form,

∫

R×∂Σ
dtdφ trA2

φ. (1.29)

From now on, the theory we are considering is defined by the sum of two actions, one left and one
right, each of these given by the sum of (1.25) and (1.29).

The constraint (1.26) is easily solved on the disk by9,

Ar = U∂rU
−1, Aφ = U∂φU−1, (1.30)

where U(t, r, φ) is a well-defined map R×Σ → SL(2, R). The case is the same for the other Chern-
Simons field. Substituting solution (1.30) into the action with the boundary term included, we
have,

I[U ] =

∫

R×∂Σ
tr

[
U∂tU

−1 U∂φU−1 −
(
U∂φU−1

)2
]
dtdφ

+
1

3

∫

R×Σ
ǫµνρ tr

(
U∂µU−1 U∂νU

−1 U∂ρU
−1

)
d3x. (1.31)

This action is known as the chiral WZW model and actually only depends on the boundary values
of U . This is because the variation of the second term, Γ[U ], is a total derivative. Calling UR

and UL the group elements for each Chern-Simons action, then it is shown in [45] that the group
element V = U−1

R UL is the field whose dynamics are governed by the sum of the two Chern-Simons
terms, which actually gives rise to a non-chiral WZW theory. Thus, Brown-Henneaux boundary
conditions, when applied to the Chern-Simons formulation of three-dimensional gravity, leave us
with the usual WZW action,

IWZW [g] =

∫
dtdφ tr(V ∂+V −1 V ∂−V −1) + Γ[V ]. (1.32)

8In (1.27) we are using the sl(2, R) algebra generators shown in Appendix A.
9Here U∂µU−1 = ∂µ

~f · X, where U = exp(~f · X), ~f is a function from the manifold to the real vector
space of same dimension as the algebra and X is an arbitrary linear combination of the generators of the
algebra.
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The next step in [45] is to show that when imposing the remaining asymptotic conditions ii),
plus the gauge fixing at the boundary (1.28), the action becomes the Liouville action. We will
delay the discussion about the WZW theory for Chapter 6. Let us just mention here a neat way
to define the currents associated to the WZW model for the case at hand following [47]. From the
group elements,

gR := UR exp(−ρt3), gL := UL exp(ρt3), (1.33)

the currents are,

Ja
R = k lim

ρ→∞
tr

(
tagR∂φg−1

R

)
, Ja

L = k lim
ρ→∞

tr
(
tagL∂φg−1

L

)
, (1.34)

where ta are the generators of the sl(2, R) algebra and k is the level of one Chern-Simons term
and then the action reads,

S =
k

4π
I[AR] − k

4π
I[AL]. (1.35)

This expression is equivalent to (1.12) with k = ℓ/(16πG) when one takes a different representation
of the algebra from the one used in (1.12). This will be explained in detail in Section 3.1. Currents
(1.34) are well defined and the boundary conditions (1.27) translate into,

J−
R = k, J3

R = 0; J+
L = −k, J3

L = 0. (1.36)

Meanwhile, J+
R and J−

L are arbitrary functions of the light-cone coordinates on the boundary. In
[47], the right-side constraints of (1.36) are imposed after quantization using a BRST approach
and it is seen that J−

R = k is sufficient to get rid of the ghost degrees of freedom, while J3
R = 0 is a

gauge fixing term, as we already mentioned. After quantization, the authors of [47] put together
both Chern-Simons actions.

On the other hand, constraints (1.36) are imposed at the level of the action in [45], once the
field g ∈ SL(2, R) is parameterized as,

g =

(
1 α
0 1

)(
exp(1

2Φ) 0
0 exp(−1

2Φ)

) (
1 0
β 1

)
. (1.37)

Then, plugging this into the WZW action (1.32) and imposing the constraints (1.36) on Φ and
the momenta10 ∂−β and ∂+α, one arrives to the Liouville action,

SLiouville[Φ] ∼
∫

R×∂Σ
dtdφ

(
1

2
∂+Φ∂−Φ + 2 exp(Φ)

)
, (1.38)

with a pre factor depending on the level k. The main point is that, at the level of the action,
one can reduce the Chern-Simons theory to Liouville theory by means of the Brown-Henneaux
boundary conditions. This is not trivial, since many features of a theory depend on the equations
of motion but are not present in the action11. Being Liouville theory a two-dimensional CFT,
it has two copies of the Virasoro algebra as generators of local conformal symmetries, which are
the residual symmetries of the Kac-Moody symmetries of WZW theory after imposing further

10To implement the constraints on the momenta one needs to add a particular boundary term (for fixed
time) to the action. See [50] for details.

11Actually this fact is realized in Liouville theory: the action is not Weyl invariant, although the theory
is conformally invariant! [51].
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constraints. Thus, the result described in this section reproduces, from a different and highly non-
trivial procedure, the outcome of Brown and Henneaux paper discussed in the previous section and
even more it manifestly shows the underlying CFT at the boundary. However, Liouville theory
seems to give only an effective collective description of the dual CFT, since the equivalence Chern-
Simons ↔ Liouville showed in [45] only works at the classical level. Furthermore, the effective
central charge of Liouville theory is ceff = 1 instead of c = 3ℓ/2G, and so this says that we are
dealing with only one degree of freedom (the Liouville field) collecting the whole dynamics of the
microscopic dual theory [52].

1.5 ADM formulation and the space of solutions

Three-dimensional gravity has no local degrees of freedom, and for negative cosmological constant
every solution must be locally AdS3. These facts do not imply that the space of solutions, the
phase space, consists of only one element, namely AdS3. As will be explicitly shown in the next
section, there are black hole solutions, suggesting that the phase space of AdS3 gravity could be
much more interesting than what we may naively expect. But first, let us see in this section what
we can learn about the phase space of the theory from the ADM formalism [53]. The key point in
the analysis is that the space of solutions is in one-to-one correspondence with the space of initial
conditions. Thus, by parameterizing any possible initial condition for the initial metric gij and
its conjugate momenta πij , the hole space of solutions is described.

To apply the ADM formalism let us assume that we are dealing with manifolds with the
topology M ≈ R×Σ, where the real line is identified with time and Σ is a two-dimensional surface
where the initial conditions live. If Σ is non-compact then the analysis is quite more involved, but
a better understanding has seemingly been reached recently by Scarinci and Krasnov [54]. For
simplicity, we will focus only in the case of compact initial surfaces and follow the book of Carlip
on three-dimensional gravity [55], just giving the main idea, leaving details aside.

The ADM decomposition of the three-dimensional metric reads,

ds2 = −N2dt2 + gij(dxi + N idt)(dxj + N jdt), (1.39)

where N is the lapse function, N i are the shift functions (in three dimensions there are only two)
and gij are the components of the metric on the spatial surfaces Σt, for some t. The Hamiltonian
of three-dimensional gravity, using this decomposition, reads,

H =

∫

Σ
d2x

(
NH + NiHi

)
, (1.40)

with the Hamiltonian and momentum constraints being,

H =
1√

det g

(
πijπ

ij − (πijg
ij)2

)
−

√
det g (R − 2Λ) ≈ 0, (1.41)

Hi = −2∇jπ
ij ≈ 0, (1.42)

where every object is two-dimensional and constructed from gij . From (1.40), we see that the
Hamiltonian vanishes when the constraints are imposed, as we already mentioned in Section
1.3. We also mentioned in that opportunity that surface terms arise in the expression of the
Hamiltonian, as well. Those are not important in this discussion, since we are interested in solving
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the constraints (1.41) and (1.42), and in this way being able to discern which initial conditions
are allowed.

Two crucial facts allow to (implicitly) solve the constraints in three-dimensional gravity (see
[56] for more details in what follows). First, the fact that any metric in a compact surface Σ is
conformal to a metric with constant intrinsic curvature σ, where σ = 1 for the two-sphere, σ = 0
for the torus, and σ = −1 for any surface of genus g ≥ 2. So,

gij = e2λg̃ij , (1.43)

up to diffeomorphisms on Σ, where g̃ij are the components of a metric of constant curvature σ
which fixes the function λ. The second fact, due to Fischer and Tromba [57], is that the space of
constant curvature metrics on Σ modulo diffeomorphisms (connected to the identity) is a finite
dimensional space diffeomorphic to the Teichmüller space of Σ, T (Σ), which is also diffeomorphic
to R

6g−6, for genus g > 1, and to the upper-half complex plane for genus 1. Therefore, a point in
T (Σ) uniquely identifies a metric g̃ of constant curvature σ and all its diffeomorphic images 12.
On the other hand, it turns out that, using the constraints (1.41) and (1.42), the traceless and
transverse part pij of the momenta πij is the only one that survives and plays the rôle of conjugate
momenta to the coordinates {mα} in T (Σ). The function λ defined in (1.43) is obtained 13 from
the Hamiltonian constraint in terms of the canonical variables,

λ = λ(m, p, T ), (1.44)

where T is the York time-slicing [55]. Then, the reduced Hamiltonian reads,

Hred(m, p, T ) =

∫

ΣT

d2x
√

det g̃ e2λ(m,p,T ). (1.45)

The lapse and shift functions can be obtained from Einstein equations once gij and πij are found.
In general, the reduced Hamiltonian (1.45) has a complicated form, involving for example a square
root of p2 in the case of genus 1 [58], so its quantization does not seem straightforward.

1.6 The BTZ black hole

Until 1992, it was generally believed that AdS3 gravity had solutions which were only global AdS3

or manifolds with singularities 14, but any attempt to quantize it would give no information about
the quantum physics of black holes. This view changed with the work of Bañados, Teitelboim
and Zanelli [4], were they presented a spinning black hole solution of 2+1 general relativity with
Λ < 0. Less than a year later, together with Henneaux, they described in detail the geometry of
these black hole manifolds in [5], which we shall closely follow to summarize their analysis.

First of all, let us present the metric of the solution in “Schwarzschild coordinates”,

ds2 = −
(

r2

ℓ2
− M

)
dt2 +

(
r2

ℓ2
− M +

J2

4r2

)−1

dr2 − J drdφ + r2dφ2, (1.46)

12Actually, one should further impose constraints that make equivalent geometries related by “large dif-
feomorphisms”, namely diffeomporphisms that are not connected to the identity. This takes the Teichmüler
space and gives the moduli space.

13Existence and uniqueness of λ is guaranteed as far as the mean curvature of Σ, τ = gijπ
ij/

√
det g,

satisfies τ2 > 0 [56].
14Or even worst, manifolds with closed timelike curves [2].
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where M and J are the mass and angular momentum respectively, and must satisfy, for M > 0,
|J | ≤ Mℓ. The radius of the inner and outer horizons are,

r2
± =

Mℓ2

2



1 ±

[
1 −

(
J

Mℓ

)2
]1/2



 , (1.47)

which leads to,
ℓ2M = r2

+ + r2
−, ℓJ = 2r+r−. (1.48)

We will see later that this coordinate system does not cover the whole manifold, but only one
representative of the covering space of AdS3 from which it is constructed.

The geometry of these black holes comes from a clever identification of (a subset of) AdS3.
To see this in detail let us first show how to embed the BTZ manifold in R

2,2. Consider X =
(ȳ, x̄, x, y) ∈ R

2,2 and so AdS3 is the hypersurface,

−x̄2 − ȳ2 + x2 + y2 = −ℓ2. (1.49)

This metric submanifold has an SO(2, 2) isometry, i.e., the isometries of AdS3, and the elements
of the algebra of SO(2, 2) can be represented by vector fields,

JAB = xB∂A − xA∂B, (1.50)

where X = (x0, x1, x2, x3) = (ȳ, x̄, x, y). Any of these Killing vector fields generates a one-
paremeter subgroup of isometries of AdS3, by exponentiation,

P (ξ)n : (ȳ, x̄, x, y)|AdS3
→ e2πnξ(ȳ, x̄, x, y)|AdS3

, n ∈ Z, (1.51)

where ξ = ξABJAB. The identification is then achieved by identifying all points in the same orbit,

X ∼ P (ξ)n X, X ∈ AdS3, ∀n ∈ Z. (1.52)

Given the fact that the norm of a Killing vector field ξ along its orbits is constant, thus if it is
timelike in some region, i.e. ξ · ξ < 0, then there will be closed timelike curves in that region after
identification. Because of this, one needs to remove the region where ξ · ξ < 0 from the manifold.
What is left, before identifications, is then geodesically incomplete at the surface ξ · ξ = 0. Let us
call this space AdS′

3. Once the identifications are imposed, we are left with AdS′3/ ∼, which is still
geodesically incomplete, but the surface ξ · ξ = 0 will play the rôle of a typical singularity inside
a black hole, as it happens in the 3+1 case. Even more, the spacetime is everywhere smooth.

The specific Killing vector field that gives rise to the BTZ black hole with radii r+ and r− is,

ξ =
r+

ℓ
J12 −

r−
ℓ

J03, (1.53)

for r+ 6= r−. The extremal case is similar but its contruction invloves some subtleties; in this
thesis it will be simply thought of as the limit r− → r+. As mentioned earlier, the region where
ξ · ξ < 0 is first removed and then the identification is performed. According to [5], there are three
types of regions with ξ · ξ > 0:

Region I : r2
+ < ξ · ξ,

Region II : r2
− < ξ · ξ < r2

+,

Region III : ξ · ξ < r2
−.

(1.54)
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Due to the fact that one actually starts from the universal covering of AdS3, each of these regions
has infinite connected pieces. Selecting adjacent regions of each type (one of each), I, II and III,
there is a nice parameterization in terms of coordinates (t, r, φ). We give only one example for
Region I (see [5] for more details):

x̄ =
√

A(r) cosh φ̃(t, φ),

x =
√

A(r) sinh φ̃(t, φ),

y =
√

B(r) cosh t̃(t, φ),

ȳ =
√

B(r) sinh t̃(t, φ),

(1.55)

where,

A(r) = ℓ2

√
r2−r2

−

r2
+
−r2

−

, B(r) = ℓ2

√
r2−r2

+

r2
+
−r2

−

,

t̃(t, φ) = 1
ℓ

(
r+

t
ℓ − r−φ

)
, φ̃(t, φ) = 1

ℓ

(
−r− t

ℓ − r+φ
)
.

(1.56)

In these coordinates, the metric becomes exactly as (1.46), but with φ ∈ (−∞,∞). The Killing
vector field reads ξ = ∂φ, so the identification is just giving coordinate φ a period as (t, r, φ) ∼
(t, r, φ + 2π). This is actually the case for any of the Regions I, II, or III. The resulting manifold
is everywhere smooth and with constant curvature because the identification is properly discon-
tinuous (see Appendix B of [5]). In addition, the black hole has only two Killing vectors, ∂t and
∂φ, since every other isometry of AdS3 turns out to be ill-defined after the identification. The
Penrose diagram of the spinning BTZ black hole is depicted in Figure 1.1,

Figure 1.1: The Penrose diagram of the BTZ black hole with outer horizon r+ and inner
horizon r− is displayed.
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Since the BTZ black hole is included in the family of AdS3 metrics of Brown-Henneaux, the
mass and angular momentum can be calculated with the Hamiltonian charges of Section 1.3 with
respect to the vectors ∂t and ∂φ respectively, and they give,

J [∂t] = M, J [∂φ] = J. (1.57)

Taking into account what we discussed in the previous section, it is natural to ask what is
the initial condition for the BTZ black hole. Actually, the answer to this question gives rise to
even more surprising geometries, where many BTZ black holes coexist [59, 60, 61]. We will briefly
explain this in Appendix D.

Thermodynamics

The thermodynamical properties of the BTZ black hole are quite similar to those of the Kerr black
hole in 3+1 dimensions. First of all, its temperature can be computed from the surface gravity,
and gives,

T =
κ

2π
=

r2
+ − r2

−
2πℓ2r+

. (1.58)

Secondly, the entropy is easily obtained from the area law,

S =
A

4G
=

2πr+

4G
. (1.59)

The first law of thermodynamics is satisfied, with the energy being given by E = M/8G, as ex-
pected from the seminal work of Bardeen, Carter and Hawking [62]. All of these results can be
obtained by different methods ranging from the Euclidean path integral approach to the compu-
tation of quantum Hawking radiation or by the uses of holographic methods (like Cardy’s formula
for the entropy). See [63] for further comments and references.



Chapter 2

A review of some aspects of the
AdS/CFT correspondence

In this chapter we will make an account of some specific technology within the AdS/CFT corre-
spondence that will be used later on in this thesis. First of all the correspondence as originally
stated by Maldacena will be introduced. Then, we will briefly explain how to compute correlators
using the duality. Finally, the technique of holographic renormalization will be discussed.

2.1 Maldacena’s conjecture

The AdS/CFT correspondence, or Maldacena’s conjecture [6], relates two very different theories in
a precise way. In its best known version it claims that type IIB superstring theory (or supergravity)
in AdS5 × S5 spacetime is dual (i.e., in some way equivalent) to N = 4 Super Yang-Mills (SYM)
SU(N) gauge theory in four spacetime dimensions.

To be a little bit more precise, let us mention that in a non-Abelian gauge theory, as N = 4
SYM, there is a well defined regime called the ’t Hooft limit [64], that amounts to take the numbers
of colors to infinity, N → ∞, and the coupling constant to vanish, g

Y M
→ 0, while keeping the

so called ’t Hooft coupling constant λ = g2
Y M

N fixed. Taking this limit makes all the non-planar
Feynman diagrams give O(1/N) contributions when compared to the planar diagrams, which are
classified by the effective coupling λ. There is a well-known way to map Feynman diagrams to
Riemann surfaces. In the case of the planar diagrams, the surface is a sphere, so the ’t Hooft
limit is interpreted as only taking into account interactions on the sphere, or in stringy language,
tree-level string interactions: gs ∼ λ/N → 0. This is the first “duality” relation which involves
the YM coupling g

Y M
and the string coupling gs, gs = g2

Y M
.

There is another limit which is crucial for the AdS/CFT correspondence. Consider the Type
IIB string theory which has closed and open strings propagating in flat spacetime. The open
strings can be thought of as ending on D3-branes (called D-branes because Dirichlet boundary
conditions are imposed) and thus represent deformations (excitations) of that object. The crucial
limit is the low energy limit, E ≪ l−1

s , and then only massless modes are excited (here E is a typical
energy of the system and ls is the string length1). In the low energy regime, the closed string
massless excitations are described by type IIB supergravity in ten dimensions, while the open

1In string theory, there is only one dimensionful parameter, α′ = l2s .
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string massless excitations are described by N = 4 U(N) SYM in 3 + 1 dimensions. Integrating
out all the massive modes, one is led to Wilsonian action for the massless modes:

S = Sbulk + Sbrane + Sint. (2.1)

The action Sbulk is the effective action for the massless modes of the closed string, namely type IIB
supergravity plus some higher derivative corrections, Sbrane corresponds to the open string modes
so it is N = 4 SYM in four dimensions plus higher derivative corrections, and Sint captures the
interactions between the massless modes of closed and open strings. The coupling constant is given
by GN and has dimensions L8 in ten dimensions, so the effective dimensionless coupling constant
is GNE8 which goes to zero in the low energy limit (this limit is written as κ2 = 8πGN → 0).
The only thing that survives in the bulk part are the terms with no interaction: for the graviton,
the action is,

S ∼ 1

2κ2

∫ √
gR ∼

∫
(∂h)2 + κ(∂h)2h + . . . , (2.2)

where we have expanded as g = η+κh, and so in the κ → 0 limit the free part is the only one that
survives. This means that in the bulk we have free massless modes. The interacting action, Sint,
is proportional to κ, and thus vanishes. For the brane part, only the N = 4 SYM part survives.
In conclusion, one is led with two decoupled systems: a CFT on the 3−brane, N = 4 SYM with
gauge group U(N), and free closed strings in the ten-dimensional bulk. It is important to note
that this picture is only valid when perturbation theory makes sense: gsN ∼ λ ≪ 1.

A crucial point is that a similar decoupling limit for the D3-branes can be achieved from
another perspective. Consider the same situation, type IIB string theory, but now we want to
understand the low energy limit by regarding the D3-branes as gravitating objects. In other words,
previously we considered open and closed strings in flat spacetime, now we will consider closed
strings in a curved background generated by the D3-branes (which is where the open strings end).
This description is valid in the semiclassical limit, where the strings are like point particles in a
curved background, and so one should demand that ls ≪ R, where R is a typical length of the
spacetime.

The D3-branes curve the spacetime because they have mass and charge: they solve the equa-
tions of motion of the low energy limit of closed strings, type IIB supergravity with a constant
dilaton, eφ = gs. The metric and 5-form field strength are given by,

ds2 = f−1/2dx2
1,3 + f1/2(dr2 + dΩ2

5), (2.3)

F5 = (1 + ∗)dt ∧ dx1 ∧ dx2 ∧ dx3 ∧ df−1, (2.4)

f = 1 +
R4

r4
, R = 4πgsN

√
α′ (2.5)

Here, Ω2
5 is the metric of the S5 and R is the radius of both AdS5 and S5. The metric has a

Minkowski asymptotic region for r ≫ R and a throat for r ≃ R. The value of R is explained as
follows. First, for dimensional reasons, R has to be proportional to

√
α′. Then, gs appears due to

the appearance of a function of the dilaton in the equations of motion. Finally, 4πN is the proper
normalization for demanding that the flux of F5 in S5 is exactly N . Then,

R4 = 4πλl4s . (2.6)

Another way to see this is by saying R4 ∼ GNM ∼ GNNTD3, where the mass M per unit
volume of the stack of D3-branes is the number of branes, N , times their tension, TD3, which is
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1/gsl
4
s , according to their Born-Infeld description. Then, since GN ∼ l8sg

2
s (which comes from a

a renormalization of the action), we have R4 ∼ gsNl4s . We want to show that, in the low energy
regime and in the near-horizon limit r ≪ ls, the modes localized there cannot interact with those
far from the D3−branes, this leading to a decoupled description of closed strings, just as before.

The point is that in the low energy regime, modes far from the brane have long wavelengths
which are much greater than the AdS radius R and therefore they do not see the throat produced by
the D3−branes (which is of order R). On the other hand, if r ≪ ls, then ls ≪ l2s/r = α′/r := U−1.
Understanding the coordinate U as a fixed typical energy scale, the limit which is often referred
to in the literature, α′ → 0, is actually α′ ≪ U−2. Then, it is straightforward to see that the
harmonic function f goes to R4/r4 in this limit. The spacetime one is left with (in the near-
horizon limit) is AdS5×S5, and the strings living there cannot surpass the gravitational potential
to reach the asymptotic flat region. This can be also thought of as follows: fixing the distance r
to the branes and then decreasing α′ implies larger and larger energies U to get to r. Then, every
massless mode is excited near the throat, but they cannot propagate to the asymptotic flat region.
In conclusion, one has, in this semiclassical description, free gravity in the asymptotic region and
type IIB supergravity in AdS5 × S5. This is valid, as we said, when ls ≪ R, and so we can read
that 1 ≪ λ.

Maldacena conjectured [6] that since the physical system is the same, both descriptions should
be related, and since in both of them there is a decoupled free gravity sector, the correspondence
should be between N = 4 U(N) SYM in 3+1 dimensions and type IIB supergravity in AdS5×S5.
While the former is valid in the λ ≪ 1 regime, the latter is valid in the strong coupling regime
λ ≫ 1. This is why this correspondence is so useful: when the string theory is weakly coupled (no
quantum string excitations) the gauge theory is strongly coupled, and viceversa.

2.2 Computing correlators within AdS/CFT

In this section we would like to give the concise recipes to compute some (Euclidean) correlators
within the AdS/CFT correspondence.

Shortly after the appearance of [6], Witten [9] and independently Gubser, Klebanov and
Polyakov [10] , gave a concise prescription for computing correlators in the boundary theory by
means of a procedure based on fields with bulk dynamics. This procedure is defined in Euclidean
space and can be shortly expressed as:

δ

δΦ0(x1) . . . δΦ0(xn)
Zbulk[Φ0]|Φ0=0 = 〈O(x1) . . .O(xn)〉CFT, (2.7)

where Φ0 denotes the boundary values of the all the bulk fields denoted by Φ, Zbulk[Φ0] is the bulk
on-shell (superstring or supergravity) action which depends on these boundary values, and O are
a set of operators in the conformal conformal theory with the appropriate quantum numbers to
couple to the boundary values Φ0.

In order to be clear, let us consider a simple example [9]. Let φ be a free massless scalar field
on AdS5 (it could be the dilaton of type IIB string theory) and take the low-energy limit. The
saddle-point configuration is the one that gives the major contribution to the partition function
on the l.h.s. of (2.7). Consider the Klein-Gordon equation in the Euclidean Poincaré patch where
the AdS5 metric takes the form,

ds2 =
1

x2
0

(
(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2 + (dx4)2

)
. (2.8)



24

The solution to the Klein-Gordon equation of motion with boundary value φ0 is,

φ(x0, ~x) = C

∫
d4x′ x4

0

(x2
0 + |~x − ~x′|2)4 φ0(~x

′), (2.9)

where x0 = 0 is the locus of the boundary, ~x are the coordinates at the boundary where the CFT
lives, and C is a normalization constant. Then, we evaluate this solution in the action for the
scalar field:

I = 2C

∫
d4xd4x′φ0(~x)φ0(~x

′)
|~x − ~x′|8 . (2.10)

Clearly, taking two derivatives with respect to φ0 following (2.7), gives a 2−point function with the
behavior |~x−~x′|−2.∆, ∆ = 4, which is the expected one for a scalar operator of conformal weight2

4. Interesting enough, this behavior is known for λ ≪ 1, and the aforementioned prescription in
the supergravity regime predicts the same behavior for large coupling constant. This coincidence
is rare and characteristic of supersymmetry-preserving correlators.

2.3 Holographic renormalization

Two years after the appearance of Maldacena’s work [6], Balasubramanian and Kraus proposed
a way to define the (boundary) stress tensor of the dual CFT for asymptotically AdS spacetimes
[65]. Their approach is based on the classical quasi-local Brown-York stress tensor [66], with the
inclusion of a boundary term in the action to make it well-defined and finite for metrics with
AdS asymptotics. This procedure is now known as holographic renormalization. Although their
construction is valid in any dimension and for a large class of gravitational theories, in this section
we will restrict only to the case of pure three-dimensional gravity, since it captures all the basic
features needed for later purposes.

The idea in short is to follow the principles outlined in the previous section for computing
correlation functions, but in this case applied to determine the stress-energy tensor 1−point func-
tion, by varying the on-shell action with respect to the boundary metric γ 3. In other words, we
think of γ as the current that couples to the stress tensor of the dual CFT on the boundary. The
boundary stress tensor is defined as,

Tµν = − 2√−det γ

δS

δγµν
, (2.11)

where γµν is the µν-component of the boundary metric, and S is the improved gravitational action
evaluated on some specific solution. We say improved because one has to add a counterterm to
get rid of the ultraviolet divergence that arises when evaluating the action on, say, AdS3, because
of the boundary at infinity. This will be explicitly shown shortly. As we said, the AdS/CFT
interpretation of (2.11) is that it gives the mean value of the CFT stress tensor, 〈Tµν〉CFT . On
the other hand, one can understand (2.11) as giving the stress tensor of a two-dimensional field
theory defined over a surface with metric γ.

2For AdSd+1, the result is the same but with conformal weight d.
3To be precise, the boundary metric is only defined up to Weyl transformations, so one needs to think

of the boundary metric as a conformal class of metrics. We will speak of the boundary metric anyway to
keep the language simple.



CHAPTER 2. A REVIEW OF SOME ASPECTS OF THE ADS/CFT
CORRESPONDENCE 25

The action S is given by,

S =
1

16πG

∫

M
d3x

√
−det g (R − 2Λ) +

1

8πG

∫

∂M
d2x

(√
−det γK + Lct

)
, (2.12)

where K is the trace of the extrinsic curvature with components Kµν , and Lct is the lagrangian
of the counterterm that needs to be added in order to have a finite stress tensor at the boundary.
The term with the extrinsic curvature is the Gibbons-Hawking term needed to have a well-defined
variational principle for the action of general relativity. Analogously, for other gravitational the-
ories, one may need to include other terms that make the action have a well-defined functional
variation with respect to the metric.

From (2.12) the stress energy tensor (2.11) that is obtained reads,

Tµν =
1

8πG
(Kµν − Kγµν) − 2√−det γ

δ

δγµν

∫

∂M
d2xLct. (2.13)

By demanding that the counterterm only depends on local, diffeomorphism-invariant quantities,
and that the stress tensor is finite when taking the boundary to infinity (in particular evaluated
for AdS3), the only possibility is,

Lct =
1

ℓ

√
−det γ. (2.14)

Then, the boundary stress tensor for AdS3 gravity reads,

Tµν =
1

8πG

(
Kµν − Kγµν − 1

ℓ
γµν

)
. (2.15)

Charges

With the knowledge of (2.15) one can compute the charges of any asymptotically AdS3 Einstein
geometry, by using the Brown-York charge,

Q[ξ] =

∫

∂Σ
dx

√
σ (uµTµνξ

ν) , (2.16)

where the integral is performed over the spacelike surface ∂Σ at the boundary ∂M , u is a unit
timelike vector on ∂M normal to ∂Σ and ξ is an asymptotic symmetry. From expression (2.16),
the charges of the BTZ are precisely,

Q[∂t] =
M

8G
, Q[∂φ] =

J

8G
, (2.17)

in perfect agreement with the Hamiltonian charges (1.57) modulo the 1/8G factor which is a
matter of convention. Note that AdS3 in global coordinates has parameters M = −1 and J = 0,
so it has non-zero energy; but when using a non-global patch, like in (2.8), this corresponds to
parameters M = J = 0, which gives a vanishing energy. Of course, one needs to use a patch that
covers the entire boundary to get a truthful answer from (2.16), mainly because ξ needs to be
well-defined all over the boundary.
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Central charge

Now that we have a precise way to obtain the mean value of the stress tensor of the dual CFT, let
us try to extract information about this theory. For this, we can analyze how the boundary stress
tensor transforms when a Brown-Henneaux asymptotic diffeomorphism like (1.18) is performed.
The simplest way to accomplish this goal is the one pursued in [65], where they use the Poincaré
patch (which can be thought of as the limit r+ → 0 of the non-spinning BTZ black hole while
unwrapping the angular coordinate φ) since one is only interested in the local behavior of the
stress tensor. In Poincaré coordinates the boundary stress tensor (2.11) vanishes,

Tµν |Poincaré = 0. (2.18)

In particular, in light-cone coordinates u and v,

Tuu = Tvv = 0, Poincaré patch. (2.19)

Now, consider the Poincaré metric,

ds2 =
ℓ2

r2
dr2 − r2dudv, (2.20)

with 2r ∼ ℓ exp(ρ) near the boundary. If we perform a Brown-Henneaux transformation of the
form,

u → u + ξu,

v → v + ξv,

ρ → ρ + ξρ,

(2.21)

with the components of ξ given by (1.18), then the metric (2.20) gets modified to,

ds2 → ℓ2

r2
dr2 − r2dudv − ℓ2

2
(∂3

uU)du2 − ℓ2

2
(∂3

vV )dv2. (2.22)

Now, the stress tensor associated to this new metric is,

Tuu = − ℓ

16πG
∂3

uU, Tvv = − ℓ

16πG
∂3

vV, (2.23)

which means that the boundary stress tensor is not a tensor in the bulk, since it transforms
with a quantum anomalous term, which in CFT language is −(c/24π)∂3

uU and the same for the
left-moving sector. Thus, one can read of from these expressions the central charge being,

c =
3ℓ

2G
, (2.24)

coinciding with the one of Brown and Henneaux (1.24). It is not surprising that the boundary
stress tensor is not a tensor in the bulk and only at the boundary, since its definition is not
generally covariant: it is defined in terms of tensors at the boundary.

It is also possible to reproduce the central charge from another quantum effect: the conformal
anomaly,

Tµ
µ = − c

24π
R. (2.25)
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What is needed to do this is to reexpress the trace of the extrinsic curvature in the definition of the
boundary stress tensor (2.11) in terms of the 2-dimensional intrinsic curvature of the boundary
metric. To do this, the authors in [65] first evaluate the trace Tµ

µ in a particular background,

ds2 =
ℓ2

r2
dr2 + γµνdxµdxν , (2.26)

with arbitrary boundary metric γ and then use the Fefferman-Graham expansion [67] which gives
an asymptotic expansion on the radial coordinate of this metric using Einstein equations,

γ = r2γ(0) + γ(2) + . . . , (2.27)

with the property,

tr

[(
γ(0)

)−1
γ(2)

]
=

ℓ2r2

2
R. (2.28)

Then, the trace of the boundary stress tensor can be put in terms of the intrinsic curvature and
the central charge of the boundary theory, and (2.24) is reobtained by a different procedure.



Chapter 3

General relativity in 2+1 dimensions
reconsidered

3.1 Witten’s holographic proposal of 2007

In 2007, Edward Witten proposed a map between 2+1 general relativity with a negative cosmo-
logical constant for different values of ℓ/G and a family of particular CFTs [11], in the spirit of
the AdS/CFT correspondence.

First of all, he claimed that the definition of a quantum version of AdS3 gravity with fixed
ℓ/G should be given in terms of the dual two-dimensional CFT. So his work [11] is devoted to
find such CFTs, by taking hints both from the spectrum of the family of BTZ black holes as well
as from the perturbative equivalence between gravity and Chern-Simons theory.

The plan then is to vary the value of the central charge (actually there will be two of these, as
will be explained shortly), c = 3ℓ/2G, and for each value define a two-dimensional CFT dual to the
gravitational theory. But an immediate issue arises. Indeed, Zamolodchikov’s c-theorem, states
that the central charge must be constant in any family of CFTs parameterized by a continuous
parameter. Thus, the central charge, which parameterizes the members of the CFTs Witten
is looking for, must take discrete values. Otherwise, the central charge would be continuously
parameterizing the family of CFTs but at the same time it would not be constant. The ratio ℓ/G
must thereby take discrete values in order for Witten’s proposal to make sense. In Zamolodchikov’s
theorem, it is assumed that there is an SL(2, R)×SL(2, R)-invariant vacuum, which semiclassicaly
would correspond to global AdS3.

Hints from Chern-Simons theory

The quantization of the central charge will be motivated by the topological quantization of the
level in front of the Chern-Simons action. As was reviewed in Section 1.2, the gravitational
action can be written in terms of one Chern-Simons action for the SO(2, 2) group or by a linear

28
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combination of two Chern-Simons actions for the SO(2, 1) × SO(2, 1) group 1,

I =
k

4π
ICS(AL) − k

4π
ICS(AR). (3.1)

Here, k = ℓ/16G is the level. If one considers different non-vanishing 2 levels for the left and right
sectors, kL and kR, then at the classical level the space of solutions remains the same, and so the
theory is the same. This means that the action now takes the form,

I =
kL

4π
ICS(AL) − kR

4π
ICS(AR), (3.2)

with kL + kR = ℓ/8G to recover the Einstein-Hilbert action. The remaining part, proportional to
kR − kL, has a term with the Chern-Simons 3-form for the spin connection ω and a term of the
form

∫
ea ∧ T a. Despite this, it is important to stress out that the equations of motion remain

the same, so the torsion vanishes.

Let us review the quantization of the level of a Chern-Simons theory just for the case of the
SO(2, 1) group,

I =
k

4π

∫

W
tr

(
A ∧ dA +

2

3
A ∧ A ∧ A

)
, (3.3)

where A is a connection for the group. This is actually the case only if the bundle is trivial. If not,
then A is only a local section in the bundle. To give A a global meaning (as a global section of the
line bundle), one can pick an extension of W in one more dimension, to get a four-manifold M
such that ∂M = W , and extend the line bundle where A is defined to four dimensions, although
there is no unique way of doing this (but this can always be done). Then the action is,

IM =
k

4π

∫

M
tr (F ∧ F ) , (3.4)

where F = dA + A ∧ A is the curvature. If we pick another extension to, say, a four-manifold
M ′, then we can repeat the above procedure and compare both presumable equivalent actions by
gluing the four-manifolds M and M ′ along the boundary to form a manifold Y without boundary,
with action

IM − IM ′ =
k

4π

∫

Y
tr (F ∧ F ) . (3.5)

If A would be a connection for the U(1) gauge group, then this integral would give πkc1, where
c1 ∈ Z is the first Chern-class of the bundle. Then, by demanding that the action be defined
modulo 2π times an integer (so the path integral makes sense), we would get that k/2 is an
integer. But in our case we have the group SO(2, 1) instead of U(1). The fact that helps finishing
the train of thoughts is that SO(2, 1) is contractible onto its maximal compact subgroup SO(2)
which is isomorphic to U(1). So the quantization in the case of U(1) translates into the case
we are interested in, which is SO(2, 1). The only detail left aside is that we must pick a trace
for the SO(2, 1) theory, and this gives an additional factor 2, which translates in the condition

1In [11] the trace is taken over the three-dimensional representation of the group SO(2, 1), which means
that for each copy tr(JaJb) = −2ηab, this gives an extra factor of -4 when compared to the two-dimensional
trace used in [2] and in Section 1.2.

2The case where one of the levels vanishes will be the key point in Chaper 6.
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that k should be an integer 3. If we consider two actions like in (3.2), with different levels, the
quantization condition reads,

kL, kR ∈ Z. (3.6)

Then, given the fact that for kR = kL = ℓ/16πG we have cL = cR = 3ℓ/2G, it reads that in this
case (cL, cR) = (24kL, 24kR). Then, for the case with different left- and right-moving levels the
left central charge should depend only on the left level and the same for the right sector, so one
expects the same relation,

(cL, cR) = (24kL, 24kR), kL, kR ∈ Z. (3.7)

Holomorphic factorization

In the previous subsection we have seen that Chern-Simons theory suggests that the left and right
central charges satisfy (3.7). Now we will see what should be demanded from the two-dimensional
CFTs to have such a quantization of the central charges.

The ground state of a CFT in two dimensions with left- and right-moving sectors has energy
(−cL/24,−cR/24). Then, modular invariance imposes the condition that the difference of these
energies is an integer, which would mean, according to the dictionary (3.7), that kL − kR is an
integer. Since both kL and kR are integers, their difference is integral.

Now, if holomorphic factorization is imposed for the partition function on the torus,

Z(τ) = tr
(
e2πiτL0

)
tr

(
e−2πiτ̄ L̄0

)
, (3.8)

with τ being the modulus, each factor in the partition function is holomorphic if the ground state
energies −cL/24 and −cR/24 are integers. That is, both cL and cR are integer multiples of 24, i.e.,
relation (3.7) must hold. Thus, we conclude that holomorphic factorization is a good requirement
to achieve the condition (3.7) hinted from Chern-Simons theory for the group SO(2, 1)×SO(2, 1).
This also points into the direction that this was the correct group to consider and not any of its
coverings.

Spectrum

Another important request for the CFTs is that they do not have a Kac-Moody algebra enhancing
the conformal algebra. This is because any of these additional fields would have to be interpreted
as interacting with the gravitational fields, and then one would not be treating the case of pure
gravity. So, having said this, the question to answer is what kind of requirement should these
CFTs fulfill in order to guarantee there are no Kac-Moody fields? Witten’s proposal is that a
reasonable thing to ask is that there is no primary field of lower dimension than k+1, and that the
lowest dimension of some primary should be exactly k +1. This determines the partition function
uniquely. This CFTs are called extremal, and it is not known if they exist for generic integer k.

Taking into account the result of Brown and Henneaux, interpreted as the existence of non-
trivial Virasoro symmetries around asymptotically AdS3 solutions, the way Witten infers the
spectrum of the CFT is the following. The vacuum would represent AdS3 spacetime, primaries

3If we would use the group SL(2, R) which covers twice the group SO(2, 1) we would get 4k ∈ Z. See
[11] for further details.



CHAPTER 3. GENERAL RELATIVITY IN 2+1 DIMENSIONS RECONSIDERED 31

of dimension k + 1 or greater would create BTZ black holes (since they are the ones with de-
fined energy L0 ≥ 1), while the Virasoro operators would give other quantum excitations. The
semiclassical limit would correspond to k → ∞, since this means ℓ ≫ G.

Partition functions

Now, we focus on the task of motivating the partition functions on the torus for each k, only
looking at the holomorphic factor. As we commented before, the vacuum state has an energy
L0 = −c/24 = −k, so its contribution to the partition function is q−k, where q = e2πiτ and τ is
the modulus of the torus. Then, “close” to the vacuum we have the Brown-Henneaux excitations
that come from applying the operators L−n to the vacuum, with n > 1 (i.e., the descendants of
the vacuum). The partition function taking into account the vacuum plus these excitations, is

Z0(q) = q−k
∞∏

n=2

1

1 − qn
. (3.9)

This is not modular invariant. But modular invariance should be restored when one sums all
the contributions from the other primaries and its descendants. Then, in [11] Witten made the
assumption that any primary that would create a BTZ black hole has L0 ≥ 1, and thus the
corresponding contributions to the partition function are of order q:

Z(q) = q−k
∞∏

n=2

1

1 − qn
+ O(q). (3.10)

This result has the great advantage (and that is why the assumption L0 ≥ 1 is important) that
modular-invariant partition functions of this form are unique. In fact, Witten finally gets the
following partition functions expressed in powers of q,

Z1(q) = q−1 + 196884q + . . . ,

Z2(q) = q−2 + 1 + 49287520q + . . . ,

Zk(q) = q−k + . . . + (∼ number of states at L0 = 1) q + . . . ,

(3.11)

where by “∼ number of states at L0 = 1” we mean the number of primaries with L0 = 1 put
together in some representation of the symmetry group of the CFT (which are the ones we are
interested in), minus some descendants that may have just that energy (but those contributions
are generically negligible). So for example, it is conjectured that there is a unique extremal CFT,
with a monster group symmetry, constructed by Frenkel, Lepowsky and Meurman [68], for the case
k = 1. This is the one that Witten takes as the dual of gravity at c = 24. Its degeneracy for L0 = 1
is 196884 (although one state is not a primary) which gives an entropy of ln 196883 ∼= 12.19 which
compared to the Beckenstein-Hawking entropy 4π is not that close. The agreement is improved
for larger k, as one should expect for the proposal to make sense.

Leaving aside the many assumptions in Witten’s proposal and taking it seriously, then one
should be really concerned by the fact that there are no known holomorphic extremal CFTs for
k ≥ 1. Even more, soon after [11] appeared, Gaiotto showed that there are no extremal CFTs
with c = 48 and with Monster symmetry [69]. Furthermore, Gaberdiel and Keller gave strong
evidence [70], but no proof, that there shall not exist extremal CFTs for k ≥ 42, which would be
fatal for the proposal since the semiclassical limit would not exist.
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3.2 The partition function of Maloney and Witten

Maloney and Witten undertook the task of summing explicitly all the contributions corresponding
to classical configurations to the partition function, in the Euclidean sector [12]. Their idea was
to fix the boundary topology to a torus with given modulus parameter τ , and fill it with smooth
Euclidean geometries. They classified these geometries, considered also the Brown-Henneaux
contributions and summed all up. The resulting partition function, however, cannot be given a
physical meaning, as will be explained shortly. Even so, by demanding this partition function to
be holomorphically factorized, interesting results can be reached.

Classical geometries

Maloney and Witten started by classifying all the Euclidean geometries that are locally AdS3 with
some restrictions. The first condition these geometries should obey is that their boundary Σ must
be conformal to a torus of parameter τ = (θ+iβ)/2π. They also ask for Σ to be the only boundary
of the three-manifold M . The locally AdS3 manifold is constructed by discrete identifications on
AdS3: M = AdS3/Γ, where Γ is a discrete subgroup of the isometry group SO(3, 1) 4. Actually,
one has to substract from AdS3 the points where Γ does not act discretely (if any). Anyway, in
[12] the authors studied the different ways in which Γ can act on Σ, demanding that Σ has genus
1. There are basically two possibilities: either having cusp geometries or not (see Section 2.1 of
[12] for further details). Giving the fact that cusp geometries have actually two boundaries, the
conformal one and the one where the cusp is located, these are ruled out. Then, one is led with a
set of manifolds, which could have conical singularities or not. Maloney and Witten also discard
manifolds with conical singularities with the justification that these are interpreted as massive
particles and they want to consider the most minimalistic theory (if exists) of pure gravity.

The set of manifolds they end up with can be finally labeled by two co-prime numbers c, d. In
brief, the construction goes as follows. The discrete group Γ is isomorphic to Z and is generated
by an SL(2, C) matrix of the form,

W =

(
q 0
0 q−1

)
, (3.12)

with |q| < 1. Then, Σ is {z ∈ C − {0}} modulo the action of Γ, where W acts on the complex
plane as,

w → w + τ, τ =
log q

2πi
, (3.13)

with z = exp(2πiw) and then w ∼ w + 1. This generates a torus in the complex plane. But the
modulus of the torus is defined up to an SL(2, Z) transformation:

τ → aτ + b

cτ + d
. (3.14)

Then, for any choice of a, b, c, d one obtains an admissible manifold, although there may be two
or more choices that give the same manifold. Only two of the integers a, b, c, d are relevant, since
for example by fixing c and d, then a and b can be obtained from the relation ad − bc = 1 and
the shift (a, b) → (a, b) + t(c, d), t ∈ Z, which leaves q invariant. So, as already mentioned, the

4Note that since we are treating the Euclidean case here, the isometries of global AdS3 are no longer
those of SO(2, 2) but SO(3, 1).
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manifolds are labeled by a pair of co-prime integers c and d and are referred to as Mc,d. Given a
fixed τ there is a modular transformation that takes any manifold Mc,d to any other. These are
diffeomorphisms that are not connected to the identity, i.e., large diffeomorphisms.

The simplest of these manifolds is M0,1, thermal AdS3, which is obtained from Euclidean
AdS3,

ds2 = cosh2 ρdt2 + dρ2 + sinh2 ρdφ2, (3.15)

with −∞ < t < ∞, 0 ≤ φ < 2π, 0 ≤ ρ < ∞, and then identifying,

φ + it ∼ φ + it + 2π ∼ φ + it + 2πτ. (3.16)

In this case the coordinate φ is the one contractible in the bulk. If one performs a (c, d) = (1, 0)
transformation this means τ → −1/τ and then the identification is,

φ + it ∼ φ + it + 2π ∼ φ + it − 2π/τ. (3.17)

To reobtain an expression like (3.16) one should replace φ+it → (φ+it)/τ and then the contractible
coordinate is a combination of φ and t, as it happens in the Euclidean BTZ black hole. Thus, M1,0

is the Euclidean version of the BTZ black hole. In general, Mc,d are referred to as SL(2, Z) black
holes. It is not likely that these black holes have a physically meaningful Lorentzian continuation.
For this reason, it cannot be assured that the Euclidean partition function is the partition function
of standard (Lorentzian) pure AdS3 gravity. But given the fact there are many examples where the
Euclidean approach leads to the correct thermodynamical quantities of a gravitational solution,
it is worth exploring this approach.

Partition function

The task now is to compute the genus-one partition function of pure (Euclidean) AdS3 gravity.
Let Zc,d(τ) be the contribution of the Mc,d geometry at fixed τ . Since all the geometries are
related by a modular transformation,

Zc,d(τ) = Z0,1

(
aτ + b

cτ + d

)
, (3.18)

one needs to compute only the contribution of one geometry, say M0,1, and then proceed to sum
over the modular group:

Z(τ) =
∑

c,d

Z0,1

(
aτ + b

cτ + d

)
. (3.19)

The sum is over the co-prime integers c and d. Formally, this partition function is modular
invariant by construction. But in practice, one has to show that it converges, and if it does not,
then modular invariance is generically lost.

We see from (3.19) that an important step is to compute the contribution Z0,1 to the partition
function. This is,

Z0,1(τ) = tr (−βH + iθJ) , (3.20)

with the trace taken over a Hilbert space of fluctuations over AdS3, and H and J are two com-

muting operators in this Hilbert space. If one considers only the classical contribution Z
(0)
0,1 (τ)



34

of thermal AdS3 by evaluating the Einstein-Hilbert action with the Gibbons-Hawking term, one
gets,

Z
(0)
0,1 (τ) = |q|−2k, (3.21)

with k = ℓ/16G. From an AdS/CFT correspondence point of view this is understood by the same
arguments of the previous section. If there is a CFT dual to pure gravity, then it is natural to
identify H = L0 + L̄0 and J = L0 − L̄0. Accepting that M0,1 should be thought of as the ground
state, it has L0 = L̄0 = −c/24 which reproduces (3.21).

According to Maloney and Witten [12], the analysis of Brown-Henneaux [3] shows that there
are actually more states that need to be taken into account in the partition function of the M0,1

geometry. From the AdS/CFT point of view, these correspond to descendants of the vacuum, as
was discussed in the previous section. But from a purely gravitational side, one has to analyze
the phase space of solutions taking into account the Brown-Henneaux diffeomorphisms. The way
they do it is by considering the phase space M as the space of classical solutions that obey the
Brown-Henneaux conditions (1.16), modulo diffeomorphisms that vanish fast enough at infinity
(“fast enough” ends up meaning that they act as isometries at infinity). This can be thought of
as the homogeneous space G/H, where G is the conformal group with central charge c = 3ℓ/2G;

G = d̂iffS1 × d̂iffS1 (3.22)

To see this, recall the two periodic functions that generate the asymptotic symmetries in (1.18).
The subgroup H of G is the group that leaves a solution fixed under its action, so if the solution
is, as in this case, M0,1, then H is the isometry group SL(2, R) × SL(2, R). Quantization of a
homogeneous space G/H should give a Hilbert space and since there is an H−invariant point,
the Hilbert space should have an eigenstate of the action of H (do not confuse here the subgroup
H with the Hamiltonian mentioned at the beginning of this subsection). It turns out that the

representation of the Virasoro group d̂iffS1 that gives this Hilbert space in which L0 is bounded
from below and with an invariant SL(2, R) element is uniquely determined by the central charge
c = 24k. It is precisely the one discussed in the previous section and familiar from two-dimensional
CFT:

∞∏

n=2

Lan
−n|Ω〉, an ∈ N, (3.23)

where |Ω〉 is the vacuum satisfying,

(Ln + kδn,0) |Ω〉 = 0, n ≥ −1. (3.24)

The energy of the states (3.23) is

E = −k +
∞∑

n=2

nan. (3.25)

Then, the same lines of the previous section follow and the partition function for the M0,1 geometry
with the addition of its Brown-Henneaux states is,

Z0,1(τ) = |q|−2k
∞∏

n=2

1

|1 − qn|2 . (3.26)
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Note that this is one-loop exact, and can be seen as follows: First recall that in perturbation
theory, an effective action is defined as summarizing all the loop contributions,

Z = exp(−gIeff), (3.27)

where g is the coupling parameter that is used for perturbation theory and in our case g = k. This
effective action contains a classical piece plus quantum corrections which go as inverse powers of
k,

Ieff = Iclassical +
∞∑

r=1

k−rIr. (3.28)

Then, one needs to compare this expression with (3.26), and one sees that there is only one factor
that goes like exp(∝ k), giving the classical contribution, the rest being a one-loop correction.
Therefore, the perturbative analysis around Z0,1 is one-loop exact.

In [12], the sum (3.19) is performed using (3.26) and it turns out to be divergent, so a regu-
larization procedure is proposed and the result is a partition function which cannot be written as
a sum of exponential functions with positive integral coefficients. The most likely reason for this
failure is that there are more geometries to consider in order for the partition function to make
physical sense. For example one could consider massive particles propagating in AdS3, which
are solutions to the theory of pure gravity (if one removes the points of the worldline from the
manifold) or the one with a gauge coupling to a point-like source [13]. We will comment on this
in the next section.

Despite their non-physical result, Maloney and Witten went on a little further and proposed
a holomorphically factorized partition function of the form,

Z =




∑

γ∈W
q−k

∞∏

n=2

1

1 − qn

∣∣∣
γ







∑

γ′∈W
q̄−k

∞∏

n=2

1

1 − q̄n

∣∣∣
γ′


 , (3.29)

where W is the space of geometries Mc,d and q̄ is the complex conjugate of q. Clearly this proposal
is based on the partition function (3.19) together with (3.26), but with a different sum for the
holomorphic and anti-holomorphic factors to make the whole expression (3.29) holomorphically
factorized. With this new partition function, Maloney and Witten compute the microcanonical
entropy of the BTZ black hole and get the usual Bekenstein-Hawking entropy plus logarithmic
corrections in the horizon area [12]. They also show a sort of Hawking-Page phase transition
between thermal AdS and the BTZ black hole for k → ∞. These results, which are expected to
be reproduced in a sensible quantum theory of gravity in three dimensions, depend strongly on
the holomorphic form of (3.29). Then, this holomorphic feature, although seemingly not present
in pure AdS3 gravity, could be an important ingredient to ask for in other toy models of gravity
in three dimensions. This will be the main motivation for the remaining chapters, where we will
describe some new theories of gravity in three dimensions where the left and right sectors are
disentangled.

3.3 Null states contributions in the partition function

In 2011, Castro, Hartman and Maloney published an interesting work where they reconsider the
states that should be summed up to construct the partition function of gravitational theories,
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and in particular in pure AdS3 gravity [17]. They claim that when c < 1, there is at least one
non-zero state that is taken into account which has actually vanishing norm, and thus cannot be
part of the physical spectrum. In this section let us explain the analysis in [17] for the case of
pure three-dimensional gravity.

Castro et. al. consider small fluctuations around AdS3, δg, and in particular those given by
infinitesimal diffeomorphisms δξg, generated by a Brown-Henneaux vector field ξ. They introduce
a product in the space of fluctuations in terms of the symplectic current ω (do not confuse with
the spin connection),

(δ1g, δ2g) :=

∫

Σ
ω(g, δ1g

∗, δ2g), (3.30)

where Σ is an initial hypersurface. In the case at hand, g is AdS3, and in [17] they are implicitly
assuming that definition (3.30) is i) convergent and ii) independent of Σ, both depending strongly
on the boundary conditions. It is believed that the Brown-Henneaux boundary conditions make
definition (3.30) well defined.

On the other hand, from the geometrical formulation of Hamiltonian mechanics it is suggestive
to make the following identification [80],

δJ [ξ] :=

∫

Σ
ω(g, δg, δξg), (3.31)

which states that the variation of the charge J [ξ] of the metric g can be computed from the
symplectic current ω evaluated at the solution g and at both variations δg and δξg. The expression
(3.31) comes from the definition of a Hamiltonian function in the geometrical formulation of
mechanics: given a symplectic manifold (M, Ω) and a vector field X on it, this field is said to be
Hamiltonian if there exists a function H on M such that iXΩ = dH. Conversely, a function H
is said to be Hamiltonian if there exists a vector field X such that iXΩ = dH. Vector X gives
the evolution of the Hamiltonian system defined by the symplectic manifold and H. In (3.31) the
manifold is the set of metric solutions, the symplectic structure is Ω =

∫
ω, the vector fields are

the perturbations δg which are tangent to the space of solutions, and the exterior derivative is δ
(see [81] for a nice and simple introduction of this).

Now, calling boundary graviton ξ to the infinitesimal diffeomorphism generated by ξ and using
both (3.30) and (3.31), we have,

||ξ||2 = δξ∗J [ξ]. (3.32)

But a charge J [ξ] generates diffeomorphisms on-shell by the Dirac bracket. Then, using this fact,

||ξ||2 = {J [ξ∗], J [ξ]}DB. (3.33)

This bracket has already been presented: it is given by the Virasoro algebra, thanks to the analysis
of Brown and Henneaux introduced in Section 1.3. Again, by defining Ln := J [ξn], where ξn is the
n−th Fourier mode of the vector ξ in the light-cone coordinate u (see the lines after (1.18)), and
the same for the coordinate v, one gets two copies of Virasoro algebra (1.23) with central charge
c = 3ℓ/2G. In short, Castro et. al. found a simple way of computing the norm of the boundary
gravitons by resorting to the analysis of Brown and Henneaux.

The state of zero energy and angular momentum is AdS3 and is represented by |0〉. It is
therefore annihilated by L0 and L̄0. Because it is also assumed to be the lowest energy state, it
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must be annihilated by all the Virasoro modes Ln and L̄n for n > 0. In other words, AdS3 is a
weight-zero primary. According to [17], single-particle states are then obtained as 5,

L−n|0〉, n > 1, (3.34)

while multi-particle states are constructed as,

L−n1
. . . L−nk

|0〉, ni > 0. (3.35)

Then, single particle states have norm given by (3.33) and multi-particle states are given the same
kind of norm:

||χ||2 := 〈0|[χ∗, χ]|0〉, (3.36)

where χ represents a multi-particle state. The authors of [17] define conjugation of the Virasoto
mode Ln with respect to (3.33) and gives L∗

−n = Ln, although strictly speaking one should use
the product (3.30) to do so.

The question is if there are boundary gravitons of null norm and the answer depends on the
central charge: only if c < 1 a null state appears. For example, for c = 1/2, the multi-particle
state χ−6|0〉, with,

χ−6 = L−6 +
22

9
L−4L−2 −

31

36
L2
−3 −

16

27
L3
−2, (3.37)

has zero norm. Generically, the states with zero norm are multi-particle states. Whether these
null states are of physical relevance or just a mathematical artifact will not be totally clear until
a better understanding of the quantum version of pure AdS3 gravity is reached. If the analysis of
Castro et. al. is correct, then for fixed central charge (less than one) there may be many null states
that must be removed from the spectrum. Sadly, this fact would only remove microstates instead
of adding them to reach a huge number that would make up the entropy of a three-dimensional
black hole.

To finish this section, let us briefly comment on the partition functions found in [17] for three-
dimensional gravity. We have seen that when taking into account the full Verma module (with
the exception of L−1|0〉) the result of the contribution to the partition function of AdS3 is (3.26).
According to [17], this seems to be correct for c > 1, but for c < 1 there are more states to
subsract from the spectrum. In general, the partition function associated to states close to AdS3

will be the vacuum character of a minimal model CFT [82].

5The state that comes from applying L−1 to AdS3 has zero norm since this mode is generated by an
isometry of AdS3.
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Massive particles

We have seen in the previous section that taking into account some smooth AdS3 geometries, the
partition function of AdS3 gravity is not what one would call the partition function of a quantum
theory. It is clear that if the quantum version of three-dimensional (Euclidean) gravity exists,
then it is likely that one should consider other geometries that could contribute to the partition
function. One class of these geometries has conical singularities, which describe massive point-
particles sailing through AdS3. In this section we will describe their Lorentzian geometry, how
they can be constructed by identifications (similar to the ones of the BTZ black holes), and also
how they can be embedded in a supersymmetric Chern-Simons gravity (see [41] for a review on
these gravitational theories) with a coupling to a (Dirac delta) source that makes explicit the
interpretation of the solutions as point particles. What follows is based on some original work by
the author together with collaborators [13, 14, 15] and is developed in the context of Chern-Simons
AdS3 gravity, as reviewed in Section 1.2.

4.1 Static 0-brane in brief

Let us start by constructing what we will call a static 0-brane, having in mind generalizations to
higher-dimensional extended objects. Using the parameterization of R

2,2,

x0 = A cos φ03 , x1 = B cos φ12 ,

x3 = A sinφ03 , x2 = B sin φ12 ,
(4.1)

the AdS3 space corresponds to the surface,

x · x = −(x0)2 − (x3)2 + (x1)2 + (x2)2 = B2 − A2 = −ℓ2 . (4.2)

The AdS3 metric then reads,

ds2 =
ℓ2 dB2

B2 + ℓ2
−

(
B2 + ℓ2

)
dφ2

03 + B2dφ2
12 . (4.3)

Note that by unwrapping φ03, the global covering of AdS3 in polar coordinates is obtained and
closed timelike curves are eliminated. The static 0-brane can be constructed as a topological
defect in the (1-2)-plane by introducing a deficit in the φ12 angle,

φ12 = a0 φ0 , φ0 ≃ φ0 + 2π , 0 < a0 ≤ 1 . (4.4)

38
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The periodicity of φ12 is thus 2πa0. The metric, with this identification, reads

ds2
0 =

dr2

r2

ℓ2
+ a2

0

−
(

a2
0 +

r2

ℓ2

)
dt20 + r2dφ2

0 , (4.5)

where r = a0B and t0 = ℓ φ03/a0. Compared with the BTZ static black hole (1.46), the parameter
−a2

0 = M is seen to play the rôle of the (negative) mass. The spacetime geometry given by (4.5)
has constant Riemann curvature and vanishing torsion everywhere, except at r = 0. On the other
hand, the conical singularity at r = 0 is the locus of the static 0-brane, where infinite curvature
is concentrated. This Dirac delta distribution has support in the center of the rφ-plane, that is
the (1-2)-plane in the ambient space R

2,2, and we shall call it the 2-manifold Σ12. Including the
singular point, the AdS curvature, F = dA + A ∧ A, can then be written as F = j, where the
source is given by the current 2-form

j = −2πa0 δ(Σ12)J12 . (4.6)

This is the source that would correspond to a massive particle sitting at the center of the Σ12

plane with mass −a2
0. We have defined the Dirac delta distribution 2-form that is coordinate-

independent,

δ(Σ12) = δ(x1)δ(x2) dx1 ∧ dx2 =
1

2π
δ(r) dr ∧ dφ . (4.7)

Of course, we have not yet justified that F = j is the equation of motion that has to be satisfied.
We will postpone this for later when we discuss the coupling to the Chern-Simons AdS3 gravity
and the stability of these solutions. For now, let us take at face value that the equation we want
to solve is precisely F = j.

4.2 Spinning 0-brane

In the non-extremal case, the massive spinning 0-brane can be obtained from the global AdS
metric (4.3) by an identification produced by a linear combination of the Killing vectors ∂φ03

and
∂φ12

. This procedure closely follows the one described in [5] to construct the BTZ black hole.
Consider two simultaneous angular deficits in the x0x3- and x1x2-planes in R

2,2,

φ03 ∼ φ03 + 2πb , φ12 ∼ φ12 + 2πa . (4.8)

The choice of real constants a and b is not unique since these parameters can be shifted by
integers. We choose a, b ∈ (0, 1] and note that a = b = 1 means that there is no angular deficit.
This identification in R

2,2 corresponds to an identification in AdS3 space by some angle φ, what
can be made explicit by redefining the coordinates as

φ03 = bφ +
u1t

ℓ
, φ12 = aφ +

u2t

ℓ
, (4.9)

where φ is periodic with period 2π. The transformation is invertible if au1 − bu2 6= 0. Then,
φ ≃ φ + 2π induces the following identification in R

2,2,

xA ∼




cos 2πb 0 0 − sin 2πb
0 cos 2πa − sin 2πa 0
0 sin 2πa cos 2πa 0

sin 2πb 0 0 cos 2πb


 xA , (4.10)
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or, in an infinitesimal form,

xA ∼ xA + ξA , ξA =
(
−2πb x3,−2πa x2, 2πa x1, 2πb x0

)
. (4.11)

The identification is produced by the Killing vector,

ξ = ξA∂A = 2πa J12 − 2πb J03 ,

= 2πa ∂φ12
+ 2πb ∂φ03

, (4.12)

where JAB = xA∂B − xB∂A are generators of rotations in R
2,2 (as in (1.50)), and,

∂φ12
=

∂xA

∂φ12
∂A = J12 , ∂φ03

=
∂xA

∂φ03
∂A = −J03 . (4.13)

According to the classification given in [5], this Killing vector is of the type Ic when a 6= b (a, b 6= 0),
and of type IIb when a = b 6= 0. Thus, this geometry belongs to a sector topologically different
from the BTZ black hole, produced by identifications of type Ib (r+ 6= r−, r± 6= 0) and type IIa

(r+ = r− 6= 0).
Using the ortho-normality of the tangent vectors, ∂A · ∂B = ηAB, with η the metric of R

2,2,
the norm of the Killing vector ξ reads,

‖ξ‖2 = (2π)2
[(

a2 − b2
)
B2 − b2ℓ2

]
, (4.14)

which is valid for any a and b. However, notice that if a2 ≤ b2, the norm ‖ξ‖2 is a timelike vector,
and since it identifies different points in our geometry, it would lead to closed timelike curves.
Therefore, we assume a2 > b2,

‖ξ‖2 = (2π)2
(
a2 − b2

) (
B2 − B2

∗
)

, B∗ =
bℓ√

a2 − b2
. (4.15)

After implementing the identification φ ∼ φ + 2π, the metric (4.3) becomes

ds2 =
ℓ2dB2

B2 + ℓ2
+ (a2 − b2)(B2 − B2

∗)dφ2

−
(

u2
1 − u2

2

ℓ2
B2 + u2

1

)
dt2 − 2

(
au2 − bu1

ℓ
B − u1bℓ

)
dφ dt . (4.16)

In sum, the metric (4.16) is obtained from global AdS by the identification (4.10) which means
simultaneous identifications of the embedding angles φ03 and φ12. Alternatively, this metric with
u1 = a and u2 = b can be re-interpreted as the static 0-brane with angular defect a0, whose spin
is introduced by boosting the azimuthal angle φ with the velocity 0 ≤ v < 1, similarly to the
construction in [71] for the spinning charged black hole.

Indeed, if b2 < a2, we can always write a2 − b2 ≡ a2
0 > 0, where a0 ∈ (0, 1], and parameterize

the constants a and b in terms of a hyperbolic angle Ξ, as a = a0 cosh Ξ and b = a0 sinh Ξ. Then,
Ξ can be re-interpreted as the rapidity of some Lorentz transformation with velocity v = tanh Ξ,
0 ≤ v < 1, so that the original angular deficits are related to the boost velocity as,

a =
a0√

1 − v2
, b =

va0√
1 − v2

. (4.17)



CHAPTER 4. MASSIVE PARTICLES 41

Now, the relations (4.9) with u1 = a and u2 = b are equivalent to a single Lorentz boost (t0, φ0) →
(t, φ) acting on the static 0-brane 1,

t =
t0 − ℓvφ0√

1 − v2
, φ =

φ0 − v
ℓ t0√

1 − v2
. (4.18)

Note that this interpretation is possible only for b2 < a2 (v 6= 1), which means that the brane is
not extremal, and allows for the identification in the (t, φ)-plane as (t, φ) ∼ (t, φ + 2π). The limit
v = 0 recovers the static brane (a = a0, b = 0). Thus, b is related to the angular momentum of
the brane.

Although the original static metric describes a manifold with a conical singularity, the addition
of angular momentum makes the manifold regular, its curvature being constant everywhere, similar
to the case in [72]. This spacetime, however, has a causal horizon, the surface B = B∗, where the
norm of the Killing vector field (4.15) vanishes. The component gφφ = ‖ξ‖2 of the metric also
vanishes there, though its positivity should guarantee that φ is an angle.

In the exterior region, B > B∗, the vector field ξ is space-like and the causal structure is
well-defined. In the interior region, B < B∗, ξ becomes timelike allowing closed timelike curves.
This region of spacetime can be removed by introducing a new radial coordinate r, such that
gφφ = r2 is always non-negative, or

B2 =
r2

a2
0

+ B2
∗ , (4.19)

where the above transformation is valid for B ≥ B∗. The removed region corresponds to 0 < B <
B∗ (gφφ < 0), and then the boundary gφφ = r2 = 0 is shrunk to a point in the r-φ plane. Note
that the identification B = B∗ as a single point in the r-φ plane is not produced by a Killing
vector. The region of interest, B > B∗, excludes the original singularity where the static 0-brane
lays (B = 0). In spite of this, in what follows we shall show that there is a singular behavior at
r = 0 due to the identification of this circle (at fixed time) with a point. If this identification
had not been performed, the resulting spacetime would have been regular, but with a geometry
similar to the one of the spinning BTZ black hole at r = 0 (see Appendix B of [5]).

Once the region with closed timelike curves has been removed, the metric can be recast into
the ADM form,

ds2 = −N2dt2 +
dr2

N2
+ r2

(
dφ + Nφ dt

)2
, (4.20)

where the lapse and shift functions are,

N2 = a2 + b2 +
r2

ℓ2
+

ℓ2a2b2

r2
, Nφ = −abℓ

r2
. (4.21)

Note that, with this parameterization, the metric is well-defined in the limit a2 = b2, although
the extremal case is obtained by a different identification in AdS space [73].

Even though the Lagrangian governing the dynamics of this 0-brane has not been introduced,
the existence of a non-trivial angular momentum can be established by calculating the angular

1Actually, one should say that it is global AdS3 the one which is boosted in order to later impose the
periodic identification φ ∼ φ+2π, since the 0−brane already comes from a precise identification on φ0. We
will not make this distinction again, since it seems more clear the picture of a boosted 0−brane, although
not mathematically accurate.
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velocity, Ω = −gφt/gφφ, at the circle r = Const,

Ω = −Nφ =
ℓab

r2
6= 0 . (4.22)

The geometry of this asymptotically locally AdS spacetime is an analytic continuation of the
2 + 1 black hole, where the parameters a, b are continuations of the horizons r±. By comparison
with the 2+1-black hole, the real parameters a and b can be related to the mass, M , and angular
momentum, J , of the BTZ solution (1.46) as,

a ± b =

√
−M ± J

ℓ
. (4.23)

Thus, the metric (4.20) describes a BTZ-like 0-brane with a negative mass parameter, M =

−(a2 + b2) < 0, boosted with respect to the static brane as M = 1+v2

1−v2 M0. The parameter b 6= 0
is related to the angular momentum, J = 2abℓ.

4.3 Sources for a spinning 0-brane

Let us summarize what we have done so far. An identification by a Killing vector of the pseudo-
sphere x · x = −ℓ2 embedded in R

2,2 amounts to a single identification by ξ = 2π(a∂12 + b∂03) in
AdS3. The resulting manifold M

′ =AdS3/ξ is described by the metric (4.16). Since the identifi-
cation is made by an isometry and is properly discontinuous, except at B = 0, M

′ has constant
curvature for B > 0 and thus there is no curvature singularity. This manifold, however, contains
closed timelike curves in the region B < B∗ (r < 0). Therefore, in order to have a causally
well-defined spacetime, the region B < B∗ must be removed by cutting along the surface B = B∗,
defined by ‖ξ‖ = 0. Then all points that satisfy B = B∗ at fixed time are identified, producing a
new manifold, M, which has a naked singularity at B = B∗.

Another way of constructing the same geometry is the following. Take the AdS3 spacetime
(4.3) and remove a portion of space B < B∗ (for some arbitrary B∗). Then identify the points of
the resulting space with (4.10), where now a and b satisfy the relation with B∗ given by (4.15).
In this way, no closed timelike curves are produced since the region where they would appear was
already cut out from space, and also there is no singularity. Now, the origin of the manifold is
actually the circle B = B∗ (r = 0) for fixed time, so by identifying all those points –which is not
done by a Killing vector– a curvature singularity appears at the origin. The question we want to
analyze is what happens with the Chern-Simons curvature F at the point r = 0 of M after this
last identification.

The position of the source responsible for the singularity in spacetime is determined by the
surface where the norm of the Killing vector vanishes. In the case at hand, we thus expect a source
with a Dirac delta-like distribution of the form δ(||ξ||) ∼ δ(r). As shown below, this is indeed the
case and there are no stronger singularities on the manifold, such as δ(r)/r, or ∂rδ(r), etc.

In general, the singularity appears because the 1-form dφ is not exact on the whole manifold
M. Namely, at r = 0, where φ is not defined, it is not true that ddφ = 0. Thus, we shall assume
that ddφ = ∆(r) dr ∧ dφ, where ∆(r) is some distribution that can be thought of as zero when
r 6= 0 and infinite when r = 0. The static 0-brane, for example, has ∆(r) = δ(r). The same
should be expected for the spinning case, as will be confirmed below.
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In order to identify the source and nature of the singularity, one can construct the AdS
connection using the vielbein and the spin-connection for the metric (4.16) in the region of interest
B > B∗ (r > 0),

A =
∂rB dr√
B2 + ℓ2

J13 +
1

ℓ

[
B (bJ01 + aJ23) +

√
B2 + ℓ2 (bJ03 − aJ12)

]
dφ

+
1

ℓ2

[
B (aJ01 + bJ23) +

√
B2 + ℓ2 (aJ03 − bJ12)

]
dt . (4.24)

Then, the curvature is,

F =


1

ℓ

√
r2 + ℓ2a2

a2 − b2
(b J03 − a J12) +

1

ℓ

√
r2 + ℓ2b2

a2 − b2
(a J23 + b J01)


∆(r) dr ∧ dφ . (4.25)

This form of F vanishes everywhere, with the possible exception at r = 0. It has been claimed
that spinning branes require derivatives of the Dirac delta function (or δ(r)/r) [74, 75]. Those
arguments rely on the condition of vanishing torsion everywhere but, as discussed below, this
requirement is not met by the present solution. In fact, as can be observed from (4.25), the
torsional parts (along J03 and J23) have the same singular behavior as the curvature terms (along
J01 and J12). Thus, the configurations analyzed in [74, 75], not obtained by identifications,
correspond to different solutions if compared to the ones considered here.

First let us note that the functional dependence on r in [. . .] in equation (4.25) is regular
at r = 0. Then, requiring that the static 0-brane is recovered in the limit b → 0 implies that
∆(r) = δ(r) and leads to the source j = F where,

j =
1√

a2 − b2

[
ab (J03 + J23) + b2 J01 − a2 J12

]
δ(r) dr ∧ dφ . (4.26)

Clearly, this form of the source reproduces the static limit, but not the extremal one. The
distribution ∆(r) can be calculated directly using the definition of the Riemann curvature, i.e.,
by parallel transport of a Lorentz vector V a along an infinitesimal contour around the point r = 0.
In this way, the Riemannian curvature piece of the source can be evaluated (see Appendix E),
with the result,

jcurvature =
2π√

a2 − b2

(
b2J01 − a2J12

)
δ(r) dr ∧ dφ

2π
. (4.27)

The torsional piece of the source (along the generators Ja3) cannot be obtained by the same
parallel transport. The remaining components, along the generators Ja3 in (4.26), correspond to
the torsional part of the source,

jtorsion =
2πab√
a2 − b2

(J03 + J23) δ(r) dr ∧ dφ

2π
. (4.28)

It is then plain to see that the source carries no singularities stronger than δ(r).

The above method to calculate j is not easily generalized to higher dimensions because it
computes directly only the Riemann curvature and the number of differential equations that need
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to be solved grows with the dimension. The most precise way to signal the presence of the source
is to use the fact that F is locally flat, so the AdS connection has the form,

A = g−1dg , (4.29)

where g is a group element of AdS3, i.e., of SO(2, 2). By solving this equation in g with the AdS
connection given by (4.24), we obtain

g(t, B, φ) = g0 e−φ12J12eφ03J03ep(B) J13 , (4.30)

where φ12 = aφ + bt/ℓ, φ03 = bφ + at/ℓ, we denote,

p(B) = sinh−1(B/ℓ), (4.31)

and g0 is a constant element of the AdS group.
A non-trivial holonomy appears because g is not single-valued. Indeed, the holonomy g|φ=2π g−1|φ=0

is generated by the Killing vector (4.12) as e−ξ, up to a conjugation by a constant group element
g0. The result does not depend on the value of the coordinates B and t.

In order to actually calculate the curvature, one can look at the quantity
∮
C∗ A, where C∗ is a

small circle of radius B & B∗ around the causal horizon at constant t. We obtain,
∮

C∗

A = −1

ℓ
(A∗ J12 − B∗ J23)

∮

C∗

dφ12 +
1

ℓ
(B∗ J01 + A∗ J03)

∮

C∗

dφ03

= −2πa

ℓ
(A∗ J12 − B∗ J23) +

2πb

ℓ
(B∗ J01 + A∗ J03) , (4.32)

where A∗ =
√

B2∗ + ℓ2. On the other hand, if Σ∗ is a surface whose boundary is C∗, in a similar
fashion it can be shown that

∫
Σ∗

A ∧ A = 0, so that,

∫

Σ∗

F =

∫

Σ∗

dA =

∮

C∗

A . (4.33)

Note that a non-trivial result in the AdS curvature comes from F = g−1ddg ≈ ddφ 6= 0. Thus,
due to the holonomy centered at ‖ξ‖ = 0, or B = B∗ (r = 0) in the Bφ-plane, we have,

∫

Σ∗

F =
2π√

a2 − b2

(
abJ03 + ab J23 + b2 J01 − a2 J12

)
. (4.34)

Then, from (4.25), ∆(r) = δ(r), and from j = F the source reads,

j =
2π√

a2 − b2

[
−a2J12 + b2J01 + ab (J03 + J23)

]
δ(r) dr ∧ dφ

2π
, (4.35)

in perfect agreement with the result obtained before by other method. Note that had we not
identified every point of constant t and B = B∗, then we would have only computed the holonomy
associated with C∗, but this would not be the curvature at B = B∗ since this would not be a point
but a circle at fixed t. Also note that when b = 0, this current reproduces the static brane result,
jstatic = −2πa J12 δ(r) dr ∧ dφ

2π . Furthermore, when a = 0, the source simply vanishes. (Vanishing
a and b are physically equivalent to a = b = 1 in our choice of the range of these parameters.)

In the next section, we show that three-dimensional spinning 0-branes can be stable.
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4.4 BPS spinning 0-branes

AdS 0-branes can be constructed in any gravity theory with negative cosmological constant where
global AdS is an exact solution. In order to study their stability, one needs to know about the
dynamics of the theory and analyze fluctuations around the solution. We thus need to provide
a bulk Lagrangian, which we shall take to be CS AdS supergravity. This is a gauge theory
whose supergroup is OSp(p1|2) × OSp(p2|2), and it contains N = p1 + p2 supersymmetries [1].
Apart from the vielbein and spin-connection (1.11), the super AdS connection contains additional
bosonic components, that we call the bosonic CS matter.

Besides the Chern-Simons Lagrangian, we couple a term like [76, 77],

Isource =

∫

M
tr(A ∧ j), (4.36)

which results in the equation of motion,
F = j. (4.37)

This is why in the previous sections we were building a geometry with a curvature proportional
to a Dirac delta distribution. This assured that the solution is sourced by a point-like object.

A static 0-brane without bosonic CS matter is possibly unstable since it breaks all super-
symmetries. Inclusion of U(1) matter can stabilize the brane and turn it into a BPS state by
preserving some supersymmetries in an extremal, charged, static case. Here we show that an
extremal spinning 0-brane can be a BPS state even without bosonic matter, as first found in
[78] in the special case of p1 = p2 = 1. In general, the number of preserved supersymmetries is
determined by the number of Killing spinors ǫ±I , each component ‘+’ or ‘−’ transforming as a
vector in OSp(p|2), labeled by the indices I = 1, . . . , p.

To find these spinors, we will make use of the static case analyzed in detail in [13], because both
cases (spinning and static) have locally the same form (the details of the analysis on the stability
of the static 0−brane are shown in Appendix F). Thus, in the background of an uncharged 0-brane
and with a suitable representation of the generators, the Killing spinor equation for each copy of
OSp(p|2) has the form,

D±(A)ǫ±I =

[
d −

(
1

4
ǫa

bc ωbc ± 1

2ℓ
ea

)
Γa

]
ǫ±I = 0 , (4.38)

where Γa are three-dimensional matrices satisfying the Clifford algebra (we consider only one of the
two inequivalent representations of Γ-matrices, c = 1 [73, 79]). The vielbein and spin-connection
are given in (4.24). Then, a general solution for the Killing spinor is [13],

ǫ±I = e±
1

2
p(B)Γ1e±

1

2
(φ12−φ03)Γ0χ±

I , (4.39)

where p(B) is defined in (4.31) and χ±
I is a constant spinor fulfilling the chirality projection,

Γ0 χ±
I = iχ±

I . (4.40)

This Killing spinor is also globally well-defined if it satisfies periodic or anti-periodic boundary
conditions for φ ≃ φ+2π, i.e., φ12 ≃ φ12+2πa and φ03 ≃ φ03+2πb. In consequence, ǫ±I (φ + 2π) =
±ǫ±I (φ) implies the extremality condition,

a − b = n ∈ Z . (4.41)
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When b = 0 (static case), the only possibility to have this condition satisfied is for global AdS
(a = 1). For the spinning 0-brane, a, b ∈ (0, 1), the BPS configuration can exist even without
additional bosonic matter, because the angular momentum plays the role of a U(1) field. This is
an accident of three dimensions only, where the metric admits the limit a → b, even though the
brane constructions for a = b and a 6= b differ [73].

These BPS states preserve N/2 supersymmetries; a half is projected out by the condition
(4.40). The result can be generalized to include charged 0-branes, as well.

Everything in this chapter can be generalized to higher dimensions. We showed in [13, 14] that
static codimension-two branes can be constructed in a similar fashion, resorting to identifications
of AdS space. Some of these, when charged under the corresponding AdS supergroup, are shown to
be stable configurations. This was proven by solving the Killing spinor equations. In the particular
case of BPS 2-branes in five dimensions we showed that the Bogomol’nyi bound is saturated for
some specific geometries. The introduction of angular momentum in higher dimensions makes the
construction of codimension-two branes quite more involved. This was studied in detail in [15],
where it was shown that different intersecting BPS branes with one or more angular momenta can
be constructed.



Chapter 5

The chiral gravity conjecture

5.1 Chiral gravity

In this section we will describe a conjecture proposed by Li, Song and Strominger in 2008 [18], in
which there is a gravitational theory that admits AdS3 solutions, and its dual would be a chiral
CFT, with only right-moving Virasoro modes. This is in the spirit of Witten’s idea of a holomor-
phically factorized theory. Remember that in section 3.2 we saw that holomorphic factorization
allowed for computing the Bekenstein-Hawking temperature and Hawking-Page phase transition
from the holomorphic partition function. In the present case, in addition, the left sector would be
trivial and the partition function would only have one holomorphic factor. This conjecture was
dubbed chiral gravity.

To explain it in detail, we will need to introduce the particular gravitational theory in which
the conjecture relies upon. It has AdS3 as a possible vacuum and is called topologically massive
gravity. This was introduced in the ’82 by Deser, Jackiw and Templeton [19], and we describe it
next.

Topologically massive gravity

Topologically massive gravity (TMG) [19, 20] with a negative cosmological constant, which we
review here within the context of [18], is defined by the following action,

S =
1

16πG

∫

M
d3x

√−g

(
R +

2

ℓ2

)
+

1

32πGµ

∫

M
d3xǫλµνΓρ

λσ

(
∂µΓσ

ρν +
2

3
Γγ

µρΓ
σ
νγ

)
, (5.1)

where µ is a coupling constant with mass units. This action is not parity invariant and is
diffeomorphism-invariant modulo a boundary term, so the equations of motion are actually ex-
pressed by tensors,

Rµν − 1

2
Rgµν − 1

ℓ2
gµν +

1

µ
Cµν = 0, (5.2)

where Cµν is the Cotton tensor, given by

Cµν = ε αβ
(µ ∇αRβν). (5.3)

This is a theory of gravity with third-order derivatives in the metric, which makes it much more
complicated that general relativity. Nevertheless, it shares some important features with its

47
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Gµ → ∞ cousin. For example, it admits as solutions every solution of AdS3 gravity, since for
any locally AdS3 geometry, the Cotton tensor vanishes identically 1. In particular, the spectrum
of BTZ black holes are present as well as the Brown-Henneaux excitations, although a careful
revision of the charges is called for, since the constraints of the theory are modified due to the
Chern-Simons term in (5.1). For instance, this term induces a gravitational anomaly [83] and the
central charges must obey cL − cR = −3/µG, and then assuming cL + cR = 3ℓ/G,

cL =
3ℓ

2G

(
1 − 1

µℓ

)
, cR =

3ℓ

2G

(
1 +

1

µℓ

)
. (5.4)

This can also be seen from a precise analysis à la Brown-Henneaux of the canonical realization of
the asymptotic symmetries in TMG [84] with Brown-Henneaux boundary conditions (although a
more-relaxed set of boundary conditions can be imposed and will be discussed later).

It is important to mention, for future reference, that the theory can also be defined by a first
order action, in a similar way as (1.9),

STMG = − 1

16πG

∫

Σ3

ǫabc Rab ∧ ec − Λ

16πG

∫

Σ3

1

3
ǫabc ea ∧ eb ∧ ec

+
1

16πGµ

∫

Σ3

(ωa ∧ dωa +
1

3
ǫabcω

a ∧ ωb ∧ ωc) +
1

16πGµ

∫

Σ3

λa ∧ T a , (5.5)

where the torsion 2-form T a = 1
2T a

µν dxµ ∧ dxν is defined by,

T a = dea + ωab ∧ eb .

The first two terms in the gravitational action (5.5) correspond to the Einstein-Hilbert and the
cosmological terms, with Newton constant G and cosmological constant Λ = −ℓ−2. The third
contribution in (5.5) is the so-called exotic gravitational Chern-Simons term, which is purely made
of the spin connection ω. Also, there is a fourth term in the action, which includes the torsion
and a Lagrange multiplier with Lorentz-components λa. The Lagrange multiplier is actually a
vector-valued 1-form λa = λa

µ dxµ, whose inclusion in the action implements the constraint of
vanishing torsion T a = 0. The theory has a mass scale µ, which turns out to be the mass of the
gravitons of the theory [19, 20].

The equations of motion coming from the action above are,

ǫabc

(
Rbc +

1

l2
eb ∧ ec

)
− 1

µ
Dλa = 0 , (5.6)

Ra +
1

2
ǫabcλ

b ∧ ec = T a , (5.7)

T a = 0 , (5.8)

where the 2-form Dλa = dλa+ωab∧λb is the covariant derivative of the Lagrange multiplier. These
equations correspond to varying action (5.5) with respect to the dreibein, the spin connection,

1This can be seen from the definition of the Cotton tensor (5.3) or from the fact that any locally AdS3

metric is conformally flat (as is understood from a stereographic projection [60]) and this also makes the
Cotton tensor to vanish identically. In other words, the Cotton tensor in three dimensions (5.3) plays the
part of the Weyl tensor.
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and the Lagrange multiplier, respectively. Notice that this is different from what happens in
three-dimensional general relativity, where the equation of motion T a = 0 comes from varying the
Einstein-Hilbert action with respect to the spin connection instead. For a concise review of TMG
in the first order formalism we refer to the recent papers [85, 86].

Using equation (5.8) above, one may write the set of field equations as follows,

ǫabc

(
Rbc +

1

l2
eb ∧ ec

)
− 1

µ
Dλa = 0 , (5.9)

Ra +
1

2
ǫabcλ

b ∧ ec = 0 , (5.10)

and from (5.10), which is an algebraic equation, one solves for λ and replace it back in (5.10) to
obtain the Cotton tensor made of Dλ. This defines TMG in the form we know it [19, 20].

A major difference of TMG with respect to pure gravity, as already mentioned, is that it is a
third-order theory with solutions that may not be locally AdS3. In particular, this hints towards
the appearance of gravitons, in contrast to general relativity in three dimensions. Indeed, apart
from the two usual pure-gauge gravitons, there is one degree of freedom: a propagating massive
graviton of mass µ. The energy of this graviton is actually negative for µℓ > 1 [18]. In contrast,
the energy of the BTZ black holes is positive when µℓ > 1, so they are unstable under the massive
graviton perturbation. At the special value µℓ = 1 peculiar things occur and this is the case where
chiral gravity takes place.

Chirality at µℓ = 1

In 2008, Li, Song and Strominger considered the particular scenario where µℓ = 1, for the action
(5.1) of TMG. They proposed that there is a dual description given by a holomorphic CFT, based
on several hints coming from the gravitational side which will be described in this subsection.
They called this conjecture chiral gravity.

As was discussed in the previous subsection, the central charges of TMG, both from a holo-
graphic point of view [83] or from the algebra of asymptotic symmetries [84], receive a correction
and are given by (5.4). In the case at hand, with µℓ = 1, the left central charge vanishes,

cL = 0, cR =
3ℓ

G
, µℓ = 1. (5.11)

This is the first hint in the direction to a holomorphic CFT on the boundary [18]. Nevertheless,
it is important to check that the left Virasoro modes have actually a trivial action on physical
quantities, which is actually the case, as we will see shortly.

On the other hand, in a generic point of parameter space, BTZ black holes have mass and
angular momentum given by,

H[∂t] := M TMG = M +
1

µℓ2
J, H[∂φ] := JTMG = J +

1

µ
M, (5.12)

so in chiral gravity [18],
JTMG = ℓMTMG, µℓ = 1. (5.13)

This means that every BTZ black hole satisfies the extremality condition on its conserved charges
when µℓ = 1. From a holographic point of view, if we identify a BTZ with a primary state in the
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CFT, then this means that this state has conformal weights (h, 0), i.e., it is purely right-moving.
Again, this hints towards a holomorphic CFT with no left sector.

Now we go a little bit deeper and analyze the spectrum of gravitons close to AdS3. This
was done in detail in [18] and we simply review their results. As usual, by considering a metric
perturbation around AdS3 as g = ḡ +h and then fixing the gauge, in [18] arrive to the third-order
linear equation,

DLDRDMh = 0, (5.14)

where, (
DL/R

) ν

µ
:= δν

µ ± ℓǫ αν
µ ∇̄α,

(
DM

) ν

µ
:= δν

µ +
1

µ
ǫ αν
µ ∇̄α. (5.15)

These operators are mutually commuting, so equation (5.14) has three linearly independent so-
lutions: the left/right pure-gauge gravitons of AdS3 gravity, hL/R, which are annihilated by the
operators DL or DR, and a massive graviton hM which satisfies DMhM = 0. In [18] the different
linear solutions are constructed and is shown that they obey the Brown-Henneaux boundary con-
ditions (1.16). They also show that the solution of the massive graviton tends to the solution for
the left graviton when µℓ → 1, as can be anticipated from the form of the operators (5.15). This
gives the authors of [18] a reason to claim that since there are no longer massive gravitons (since
they are equivalent to the pure-gauge left gravitons), the theory at µℓ = 1 is stable, in contrast
for what happens for µℓ > 1.

Actually, at the chiral point, there appears a new massive graviton, which satisfies
(
DM

)2
hM =

0 and DMhlog 6= 0, and is linearly independent of the left and right gravitons. But a main
difference is present in this new graviton, it has a fall-off behavior at infinity weaker than that of
the Brown-Henneaux conditions [21]. Actually, its behavior near the boundary is logarithmic in
the coordinate 2r = ℓeρ, for ρ → ∞. This fact led the authors of [21] to call this graviton the
log graviton, hlog. They further showed that this mode has negative energy, thus making chiral
gravity as defined in [18] unstable, and that the existence of the log graviton fits in what would
be the gravitational dual of a logarithmic CFT. Next section will be devoted to this logarithmic
mode and the dual log CFT.

If one wants to impose the stricter boundary conditions of Brown-Henneaux, then the discus-
sion about the stability of chiral gravity becomes even more interesting, since there actually is a
linearized mode that satisfies these boundary conditions [22]. Of course, it is not an eigenmode
of the L0 or L̄0 operators, but it can be constructed from the log graviton as,

Xµν = (L̄−1ψ
log)µν + Lζ ḡµν , Re ψlog = hlog, (5.16)

where ζ is the generator of a diffeomorphism such that,

ζt, ζφ = constant × e−i(v+2u)−4ρ[y(t, ρ) + O(1)]. (5.17)

This mode, dubbed the GKP mode, has negative energy, as the log graviton does, so it would also
spoil the stability of chiral gravity. The stability of chiral gravity was a matter of intense debate
from the appearance of [18]. See [22, 25, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97] for some of the
relevant discussions. We will come back to this in Section 5.4.

The discussion about chiral gravity was mainly about its spectrum, as it is crucial to establish
the consistency of the whole construction. Consequently, the field content of the theory was
analyzed in extent, both at the linearized level and at the level of exact solutions. On the one
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hand, in what regards to linearized solutions, the discussion is summarized in [23], where it was
understood that at µl = 1 two different set of boundary conditions are admissible: the one
proposed by Brown and Henneaux in [3], and the weakened version proposed by Grumiller and
Johansson in [21, 25, 94]; and depending on which of these asymptotics is chosen, the resulting
theory happens to exhibit different properties. In particular, the boundary conditions proposed
in [21, 25, 94] permit asymptotic behaviors like,

gtt ≃ −r2

ℓ2
+ O(log(r)) , gφt ≃ O(log(r)) ,

grr ≃ ℓ2

r2
+ O(r−4) , gφφ ≃ r2 + O(log(r)) ,

(5.18)

which are certainly weaker than (1.16), taking r = ℓeρ close to the boundary.
An important point is wether the logarithmic asymptotics of the linearized solution of [21] can

be actually realized in an exact solution of the theory. The answer is positive, since in [24] we
showed that there is actually a geometry that exhibits the logarithmic fall-off at infinity and that
solves the equations (5.2) when µℓ = 1. This solution will be reviewed in the Section 5.3.

But first, let us mention another way to notice that TMG exhibits special features at µℓ = 1
with an exact solution describing pp-waves in AdS3 [33, 34]. Consider the exact solution,

ds2 = −r2F (u, r)du2 − 2r2du dv +
l2

r2
dr2 , (5.19)

which corresponds to a non-linear solution of the equations of motion (5.2) whose physical inter-
pretation is that of a pp-wave sailing the AdS3 spacetime. AdS3 spacetime written in Poincaré
coordinates corresponds to F (u, r) = 0, with u = t/ℓ + φ and v = t/ℓ − φ, so that the front of
the wave corresponds to the surfaces u = v = const. The function F (u, r) gives the profile of
the wave, which takes the form F (u, r) = (r/ℓ)µℓ−1 f(u). This function satisfies the scalar wave
equation on AdS3, namely (¤−m2

eff)F (u, r) = 0, where ¤ stands for the D’Alembert operator in
AdS3, and the effective mass meff is given by m2

eff = µ2(1− µ−2ℓ−2). That is, the profile function
F (u, r) behaves as a scalar mode of the space on which the non-linear wave solution is propagat-
ing. Then, one immediately notices that in the limit µℓ → 1 such scalar mode becomes massless.
One can also verify that non-linear solutions (5.19) develop a logarithmic falling-off behavior at
the boundary; namely, solutions like ∼ log(r/ℓ) arise at µℓ = 1.

5.2 Log Gravity

As already mentioned, the spectrum of TMG at µℓ = 1 is not that simple, and solutions with
a weaker fall-off behavior at infinity than that of Brown-Henneaux may arise (see the discussion
before (5.18)). In this section we will focus in the first example of this type of (linear) solution,
which was found by Grumiller and Johansson [21] short after the initial proposal of [18]: the
aforementioned log graviton and the dual log CFT.

The log graviton hlog, as was explained before, is a solution of the linearized equations of
TMG (5.14) at µℓ = 1 that satisfies DMDMhlog = 0 and DMhlog 6= 0. Not only this, but it has
the logarithmic asymptotic behavior discussed previously and carries negative energy [21]. Let
us briefly comment on the logarithmic properties of this graviton. First, let ψ represent primary
fields of weight (h, h̄) (with respect to the sl(2, R) × sl(2, R) algebra generators) and then take
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Re ψ = h, where h represents the solutions of (5.14) (do not confuse with the weight h of the
primaries). ψ satisfies the same linear equations as the gravitons of [18]. The log graviton is
obtained by taking the following limit,

ψlog := lim
µℓ→1

ψM − ψL

µℓ − 1
= f(t, φ)ψL, (5.20)

with f(t, φ) = −it − ln cosh ρ. In terms of the action of sl(2, R) × sl(2, R) algebra generators, we
have,

L0ψ
log = 2ψlog +

1

2
ψL, L̄0ψ

log =
1

2
ψL, L1ψ

log = L̄1ψ
log = 0. (5.21)

So we see that ψlog does not have well defined weights. The representation of the generators L0

and L̄0 in terms of their action on ψlog and ψL gives,

L0 =

(
2 1/2
0 2

)
, L̄0 =

(
0 1/2
0 0

)
, (5.22)

which is the typical Jordan normal form for two logarithmic partners in a log CFT [21]. So the
terminology log graviton is further justified, not only because its asymptotics, but also because
ψlog plays the role of logarithmic partner of ψL.

Even more, in [26] is shown that the 2-point and 3-point correlators between the dual oper-
ators to the left and log gravitons satisfy the relations that make up a log CFT (with vanishing
left central charge). To be more precise, let us call OL and Olog the left flux of the stress-energy
tensor and its log companion. Thinking of them as the dual operators to the left and log gravi-
tons respectively and using the typical rules of the AdS/CFT correspondence to obtain n−point
functions, in [26, 98] obtain,

〈OL(z)OL(0)〉 = 0,

〈OL(z)Olog(0)〉 = bL

2z4 ,

〈Olog(z)Olog(0)〉 = − bL ln(m2
L|z|2)

z4 ,

(5.23)

where bL = −3ℓ/G plays the role of an anomalous central charge and mL is an arbitrary constant
that can be set to one by a redefinition of the operator Olog. Similar but more cumbersome and
qualitative expressions are obtained for the 3-point functions.

5.3 A logarithmic rotating solution

We had already mentioned the possibility of considering logarithmic boundary conditions, but
these where mainly discussed at the linearized level. Wether the spectrum of TMG at µℓ = 1
contains exact (as opposed to linear) solutions exhibiting such asymptotic behavior is a non-trivial
and important question. In [24] the author together with collaborators showed that there are in
fact solutions of this type and we describe them in this section.

At the chiral point ℓµ = 1 one finds a vacuum solution of TMG, whose metric reads,

ds2 = −N2(r)dt2 +
dr2

N2(r)
+ r2(Nφ(r)dt − dφ)2 + N2

k (r)(dt − ℓdφ)2, (5.24)
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where,

N2(r) =
r2

ℓ2
− κ2M +

κ4M2ℓ2

4r2
, Nφ(r) =

κ2Mℓ

2r2
, (5.25)

and,
N2

k (r) = k log((r2 − κ2Mℓ2/2)/r2
0), (5.26)

where k 2 and r0 are two real arbitrary constants, and κ2 = 8πG. Metric (5.24) represents an
exact solution of topologically massive gravity that emerges at the chiral point. The Cotton tensor
associated to this solution is proportional to k, so it is a genuine solution of TMG in the sense
that it does not solve Einstein equations, except for the particular case k = 0 where the metric
becomes the extremal BTZ black hole. For all values of k the metric is clearly circularly symmetric
and static, and thus compatible with SO(2) × R symmetry.

In its ADM form, the metric reads,

ds2 = −N 2
⊥(r)dt2 +

dr2

N2(r)
+ R2(r)(dφ −Nφ(r)dt)2, (5.27)

where we have defined,

N 2
⊥(r) = N2(r) − r2N2

φ(r) − N2
k (r) + R2(r)N 2

φ (r), (5.28)

and,
R2(r) = r2 + ℓ2N2

k (r), Nφ(r) = R−2(r)(r2Nφ(r) + ℓN2
k (r)). (5.29)

Metric (5.24) is actually nicely behaved. Despite the abstruse form of the off-diagonal com-
ponent gφt, the determinant of the metric is det g = −r2, and the metric is Lorentzian for all
values of the radial coordinate r. The metric seems to present a horizon at r2 = κ2Mℓ2/2. Nev-
ertheless, for k 6= 0 the metric in its form (5.24) is not defined for r2 ≤ κ2Mℓ2/2 (for k = 0
region r2 < κ2Mℓ2/2 would correspond to the interior of the BTZ black hole). Let us analyze
this aspect together with the geodesic structure in more detail: At r2 = κ2Mℓ2/2, function N2

k

diverges while N2 vanishes. Then, by analyzing the geodesic equation for massive particles, one
observes that the divergence of N2

k contributes to the radial effective potential with a term like
∼ −(k/r2) log(r2 − κ2Mℓ2/2). This means that, for k > 0, massive particles are scattered back
when they approach r2 = κ2Mℓ2/2, and this means that, at least for positive k, the “horizon is
not actually there”. In fact, for k > 0 the circle r2 = κ2Mℓ2/2 turns out to be located at infinite
geodesic distance from any point. For k < 0 the geodesic distance to a point at r2 = κ2Mℓ2/2
turns out to be finite. However, by taking a look at the angular component of the geodesic
equation one realizes that the trajectories of massive particles wind indefinitely around the circle
defined by r2 = κ2Mℓ2/2 and thus these geodesics cannot be extended across this circle [99].

From (5.24) we also notice that gtt vanishes at r2 = κ2Mℓ2 + kl2 log((r2 − κ2Mℓ2/2)/r2
0), and

this always happens if k ≤ 0. In particular, we know that for the extremal BTZ (i.e. k = 0) the
radius r = κ2Mℓ2 defines its ergosphere [5]. For k > 0, however, metric function gtt only vanishes
if the parameters satisfy

κ2M ≥ 2k(1 − log(ℓ2k/r2
0)). (5.30)

For instance, let us consider the case M = 0, for which the metric (5.24) takes the simple form

ds2 =
ℓ2

r2
dr2 +

r2

ℓ2
(dφ2−dt2)+k log(

r2

ℓ2
)(dt−dφ)2 =

ℓ2

r2
dr2 +

r2

ℓ2
dx+dx−+k log(

r2

ℓ2
)(dx−)2, (5.31)

2Do not confuse this k with the level of the Chern-Simons actions that appeared before several times.
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where we defined x± = φ ± t, we absorbed a factor ℓ in φ, and fixed r0. From this expression
we observe that if k < 0 the component gtt vanishes at r2 = −2|k|ℓ2 log(r/r0), and that gφφ may
also vanish depending on r0. On the other hand, if k > 0 then the component gφφ vanishes at
r2 = −2kℓ2 log(r/r0), and gtt may also vanish.

Now, let us move on and discuss the asymptotic behavior of (5.24). In the large r limit, metric
(5.24) takes the asymptotic form,

gtt = −r2

ℓ2
+ O(log(r)) + O(1), grr =

ℓ2

r2
+ O(r−4), (5.32)

gφφ = r2 + O(log(r)) + O(1), gφt = O(log(r)) + O(1). (5.33)

We observe from this large r expansion that this solution is not asymptotically AdS3 according
to the definition given by Brown and Henneaux in [3]. Nevertheless, (5.24) does still obey the
weakened AdS3 asymptotic (5.18) proposed by Grumiller and Johansson in [21, 25, 94]. These
weakened boundary conditions were discussed within the context of chiral gravity, and these were
shown to be consistent with conformal asymptotic symmetry. In turn, this would permit to define
a consistent stress-tensor in the boundary. Our solution can be thought of as a realization of the
boundary conditions of [21, 25, 94].

Conserved charges and boundary terms

Because the off-diagonal term in (5.24) grows logarithmically ∼ 2k log(r) at large distance 3, it
turns out that metric (5.24) is not asymptotically AdS3 in the sense of [3]. However, we can still
proceed to compute conserved charges of this solution by holographic methods. After all, the
solution is still asymptotically AdS3 in the sense of the boundary conditions recently proposed in
[21, 25, 94]. Then, we can resort to the method of defining an effective stress-tensor induced on
the boundary ∂M , as in the case of asymptotically locally AdS3 solutions [65] (see also the seminal
paper [66]). We will use what we saw in Section 2.3 for the case of TMG and the logarithmic
solution of [24].

Consider the action with the boundary term,

IG =
1

2κ2

∫

M
d3x

√−g

(
R +

2

ℓ2

)
+

1

κ2

∫

∂M
d2y

√−γK

+
1

4κ2µ

∫

M
d3xǫλµνΓρ

λσ

(
∂µΓσ

νρ +
2

3
Γσ

µτΓ
τ
νρ

)
, (5.34)

where K =trK = Ki
i is the trace of the extrinsic curvature Kij . Here, we see the Gibbons-

Hawking term B appears. This action can be expressed in terms of Gaussian coordinates ds2 =
dη2 + γijdxidxj , with Kij = 1

2∂ηγij . This reads [83, 21],

IG =
1

2κ2

∫

M
d2y dη

√−γ(R(2) + K2 − tr(K2) +
2

ℓ2
) +

+
1

4κ2µ

∫

M
d2y dη ǫij(−2Kℓ

i ∂ηKjl + Γl
in∂ηΓ

n
jl

+ 2Kn
k Γl

inΓk
jl + K l

n∂jΓ
n
il + Γl

jn∂iK
n
l ), (5.35)

3It is worth pointing out that this logarithmic next-to-leading order is not the one considered in [100, 101];
c.f. the leading behaviour of gφt.
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where trK2 = Kj
i K

i
j . In this expression, the Gibbons-Hawking term does not appear because it

cancels against a total derivative coming from the bulk contribution. Expression (5.35) turns out
to be an action for the metric γij , which corresponds to the induced metric in the boundary. The
stress-tensor T ij associated to the boundary manifold [66] is then obtained by varying (5.35) with
respect to γij and evaluating it on-shell; namely, δIG = 1

2

∫
∂M d2x

√−γT ijδγij . The conserved
charges computed with this stress-tensor (see (5.38) below) diverge and then it is necessary to
regularize the action by adding an appropriate counter-term [83, 65]. Such counter-term turns
out to be a cosmological constant term in the boundary; namely

∆IG = − 1

ℓ8πG

∫
d2y

√−γ, (5.36)

which only depends on geometric quantities of the boundary, not affecting the equations of motion
in the bulk.

Including the counter-term (5.36), and in the case of asymptotically AdS3 spaces, the boundary
stress-tensor takes the form,

2κ2T ij = 2(Kij − γijtrK − 1

ℓ
γij) +

1

µ
ǫk(i(γj)l∂ηKkl + 2∂ηK

j)
k ). (5.37)

This expression can be used to compute conserved charges associated to isometries on the
boundary ∂M . One is mainly concerned with the conserved charges that are associated to Killing
vectors ∂t and ∂φ, which correspond to the mass and the angular momentum respectively. To
define the charges it is convenient to make use of the ADM formalism adapted to the boundary
∂M . As we saw in Section 2.3 the charges can be computed as [66],

Q[ξ] =

∫
dsξiujTij , (5.38)

where ds is the volume element of the constant-t surfaces at the boundary, u is a unit vector
orthogonal to the constant-t surfaces, and ξ is the Killing vector that generates the isometry
in ∂M. The Brown-York charges (5.38) are supposed to be related to the ones of Regge and
Teitelboim (1.15) J [ξ].

To see how it works, let us consider the BTZ solution. It is straightforward to compute the
mass and the angular momentum of (1.46) following the recipe described above. The mass and
the angular momentum of BTZ black hole in TMG are then given by

MBTZ = M +
J

ℓ2µ
, JBTZ = J +

M

µ
, (5.39)

respectively. It is well known [102, 83] that this result differs from the charges of the same
solution for GR, which are recovered if 1/µ = 0. In particular, these values for the mass and
angular momentum in TMG imply that at the chiral point µ = 1/ℓ all the BTZ black holes in
TMG fulfill the relation JBTZ = ℓMBTZ = ℓM + J . More specifically, if J = −ℓM at the chiral
point both the mass and the angular momentum vanish.

Then, we can use the same idea to compute the mass and angular momentum of (5.24). It
yields

M(k) =
3k

4G
, J(k) = −3ℓk

4G
. (5.40)
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This is consistent with the fact that (5.24) is a perturbation of the extremal BTZ black hole
with J = −ℓM at the chiral point µ = 1/ℓ. Recall that BTZ black holes with bare parameters
obeying J = −ℓM in chiral gravity have zero mass and zero angular momentum, and then we
interpret it as the ground state for (5.24). Notice that, as long as Newton constant is positive,
the BTZ black hole in TMG have positive mass, and our solution (5.24) has also positive mass
for k > 0. Conversely, if we adopt the wrong sign for Newton constant (what amounts to change
G → −G in (5.1) but keeping GM unchanged) then the BTZ black hole turns out to have negative
mass, while (5.24) has positive mass for k < 0.

Before concluding this section, let us mention that at the point ℓµ = −1 one also finds a
vacuum solution of TMG with the form

ds2 = −N2(r)dt2 +
dr2

N2(r)
+ r2(Nφ(r)dt + dφ)2 + N2

k (r)(r2 − κ2Mℓ2/2)(dt + ℓdφ)2. (5.41)

Unlike solution (5.24), this metric tends to that of the extremal BTZ black hole when r
approaches the horizon r2 = κ2Mℓ2/2. The off-diagonal term in (5.41), however, grows in more
drastic way, behaving like ∼ 2kr2 log r at large distances.

Also, a charged solution at the chiral point exists, and it has a form like (5.24) and (5.41)
with its charge associated to k. The electromagnetic field comes both from an Abelian Yang-Mills
term and a Chern-Simons term F ∧ A.

5.4 Refined chiral gravity conjecture

The heated discussion on the consistency at the linearized level of the holographic proposal called
chiral gravity cooled down when Maloney, Song and Strominger reconsidered the effect that comes
from taking into account different boundary conditions [23]. Their work starts with a study of
the linearized solutions to TMG at the chiral point µℓ = 1 and then they compute the Euclidean
partition function. Let us in this section summarize this.

First of all, in [23], they redefine chiral gravity as TMG at the chiral point with Brown-
Henneaux boundary conditions. By doing this, any logarithmic solution is left out from the
spectrum of chiral gravity by definition. Then, it remains to see if this boundary conditions are
consistent with chirality, in the sense that once imposed, every left generator vanishes on-shell
(and thus generates vanishing Dirac brackets on the physical space). This is what Maloney et.
al. showed in [23]. They considered the covariant formalism of Barnich and Brandt for conserved
charges in gauge theories [103, 104], where the expression for the charges is 4,

Q[ξ] = − 1

16πG

∮

∂Σ
∗F , (5.42)

where F is a two-form called superpotential and for TMG was computed in [106]. What is
important to say is that it comes from a perturbation of the equations of motion, E(1), and
depends on an asymptotic Killing vector field, ξ, as,

ξµE(1)
µν dxν = ∗d ∗ F . (5.43)

4For further details on this formalism and references see the PhD thesis of G. Compère [105].
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Note that this formalism only uses the linearized equations of motion as opposed to the Hamilto-
nian formalism. Nevertheless, the charges computed using the covariant formalism match those
obtained from the Hamiltonian formalism [107].

The explicit expression for the charges of TMG at the chiral point is,

Q[ξ] =
1

32πGℓ

∮

∂Σ
dφ

[
V (x−)

(
−2∂2

ρh−− + 4∂ρh−− + 2∂ρh−+ − 4h−+ +
e2ρ

4
hρρ

)

+ U(x+)

(
8h++ − 8∂ρh++ + 2∂2

ρh++ + 2∂ρh−+ − 4h−+ +
e2ρ

4
hρρ

)]
, (5.44)

where we have used the same coordinates and notation of Section 1.3, with u = x+ and v = x−,
but so far the Brown-Henneaux boundary conditions (1.18) have not been imposed. If they are
actually considered 5, then

Q[ξ] =
1

4πℓG

∮

∂Σ
dφ U(x+)h++, for chiral gravity, (5.45)

so it is evident that any left-moving asymptotic diffeomorphism (U(x+) = 0) has vanishing charge,
and chirality is manifest.

It turns out that the boundary charge (5.42) depends on the second-order perturbation to the
metric, h(2), while the bulk charge, obtained from integrating by parts the former, depends on the
first-order perturbation (quadratically). The GKP graviton, mentioned when discussing the first
attempt to define chiral gravity, respects the Brown-Henneaux boundary conditions to first order
in the metric perturbation and has a left bulk charge given by,

EGKP
L = − ℓ

12G
< 0, bulk computation, (5.46)

where its first-order perturbation was used. Since the result for the charge must be the same
when computed with the boundary expression and this expression depends on the second-order
perturbation, it must be that the second-order perturbation does not obey the Brown-Henneaux
boundary conditions. Indeed, in [23] was explicitly shown that,

h
(2)GKP
−− =

ℓ2ρ

3
+ . . . , (5.47)

which violates the Brown-Henneaux boundary conditions. So, the GKP mode is ruled out from
the linearized spectrum of the theory and stability is almost assured. What would need to be
proven still, is that there is no linearized chiral solution with right negative energy. So far, there
is no proof of this claim. What is clear from the analysis in [23], is that any linearized solution
needs to be studied at least to second order.

What was also shown in [23] is that any linearized solution to chiral gravity, understood as
any solution to the linearized equations of motion of TMG at µℓ = 1 and with Brown-Henneaux
boundary conditions to all-order in the metric perturbation, is also a solution of the linearized
Einstein equations. This hints towards the thought that any exact solution to chiral gravity is a
solution of pure gravity, meaning that the Brown-Henneaux boundary conditions would be strong
enough to match the space of solutions of both theories. Also, in [23] they showed that the
only stationary and axially symmetric exact solution of chiral gravity is the BTZ black hole, thus
reinforcing the idea that the space of exact solutions of chiral gravity and pure gravity is the same.
Maloney et. al. assumed this claim to compute the partition function of chiral gravity.

5An asymptotic constraint, 2∂ρh−+ − 4h−+ + e2ρ

4
hρρ = 0, needs also to be considered to get (5.45).
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Partition function

The partition function of chiral gravity obtained in [23] stems on the same procedure as that of
[12], which was explained in Section 3.2. Here we will only point out some specific assumptions
needed to do such calculation.

The Euclidean form of the TMG equations of motion is,

Gµν + iℓCµν = 0, (5.48)

where the i appears in the second term due to the non-invariance under parity transformations of
the Chern-Simons term in (5.1) and the Wick rotation t → tE = it. Since the tensors appearing in
(5.48) are precisely those of the Lorentzian theory, any real Euclidean metric will have real Einstein
tensor and real Cotton tensor. This implies that both terms in (5.48) must vanish separately. If the
assumption in [23] that any solution of chiral gravity has vanishing Cotton tensor and real analytic
continuation, then one only needs to compute the partition function with the contributions from
Einstein geometries. Even more, since the linearized Hilbert space is only right-moving, there is
only one holomorphic sector to take into account. Also, by assuming that every linearized solution
is obtained by descendants of the highest-weight representation of the right-Virasoro algebra, the
whole program of Maloney and Witten discussed in Section (3.2) applies. The absence of the left
sector turns out to give a sensible partition function of the form 6,

Z(τ) =
∞∑

∆=−k

N(∆)q∆. (5.49)

Although we now know that there are in fact solutions of chiral gravity which are not Einstein
geometries [27] 7, the result of Maloney, Song, Strominger is very interesting. It means that if
there was a theory with only one copy of Virasoro generators and the same space of solutions as
pure gravity, then its partition function would be that computed by Maloney and collaborators
in [23]. Such a theory will be defined and study in the following chapter.

6See [12, 23] for the detailed derivation of expression (5.49).
7The geometry found by de Buyl et. al. suffers from having closed timelike curves, which may be a

good reason to leave it out from the spectrum of chiral gravity. In any case, the assumption in [23] is not
generally true and geometries without pathologies and that would contradict such an assumption could
exist.



Chapter 6

A chiral gravity with torsion

This chapter is devoted to present a new proposal by the author of this thesis and collaborators, for
a chiral theory of gravity in three dimensions [28]. The proposal takes place in a similar theory as
TMG, not being parity invariant thanks to a Chern-Simons term for the spin connection, but with
an important difference: it is a Chern-Simons theory in three dimensions, called Mielke-Baekler
theory [30, 108]. As such, any linear analysis is trivial and thus the question of instabilities due
to negative-energy massive gravitons does not apply. Also, the space of solutions, by definition of
the proposal, is under control. This is the main advantage of the theory we will present now.

6.1 Mielke-Baekler theory of gravity

A different construction from that of the original proposal in [18] for a chiral theory of gravity in
three dimensions is possible. In order to give a detailed account of this proposal, we need first to
describe the theory from where it comes, which is that of considering the three-dimensional case of
the Lovelock-Cartan theories constructed in [29], also known as Mielke-Baekler theory [30]. The
action of the theory can be written as follows,

SMB =
1

16πG
S1 +

Λ

16πG
S2 +

1

16πGµ
S3 +

m

16πG
S4 , (6.1)

where the four terms are,

S1 = 2

∫

Σ3

ea ∧ Ra , S2 = −1

3

∫

Σ3

ǫabc ea ∧ eb ∧ ec , (6.2)

S3 =

∫

Σ3

(ωa ∧ dωa +
1

3
ǫabc ωa ∧ ωb ∧ ωc) , S4 =

∫

Σ3

ea ∧ T a . (6.3)

Here, again, we see that in addition to the Einstein-Hilbert action, S1, and the cosmological
constant term, S2, we have the exotic Chern-Simons gravitational term, S3, together with the term
S4 that involves the torsion explicitly. In fact, there are actually two stages at which one introduces
torsion here: first, this is done by treating the (SO(2, 1)-components of the) dreibein, ea, and
the spin connection, ωa, as independent fields, following in this way the standard formulation
à la Einstein-Cartan. In the case of general relativity, the Palatini formulation teaches us that
considering ea and ωa as independent variables does not introduce any substantial difference
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for the classical theory, as the Einstein equations are recovered by varying the Einstein-Hilbert
action with respect to ea, while the vanishing torsion constraint follows from varying the action
with respect to ωa. However, when the exotic gravitational Chern-Simons term is present in the
action, the fact of treating ea and ωa as independent geometrical entities does make an important
difference.

A second stage at which one introduces torsion in the theory is by adding the term S4 when
writing the action. Such term includes the torsion explicitly, and, in contrast to (5.5), it does
not involve a Lagrange multiplier that fixes the torsion to zero but it couples the torsion to the
dreibein directly. The term S4 is dubbed ‘translational Chern-Simons term’ and, as it happens
with the exotic Chern-Simons term S3, it can be also associated to a topological invariant in four
dimensions: While S3 is thought of as the term whose (dimensionally extended) exterior derivative
gives the Pontryagin 4-form density Rab ∧ Rab in four dimensions, the exterior derivative of the
translational term S4 gives the Nieh-Yan 4-form density T a ∧Ta − ea ∧ eb ∧Rab, [109, 110]. In this
sense, all the terms involved in the action (6.1) are of the same sort [41]. Mielke-Baekler theory
is the most general, second-order, Lorentz-invariant theory of gravity in three-dimensions with
torsion.

The equations of motion coming from (6.1) are

Ra − Λ

2
ǫ a

bc eb ∧ ec + m T a = 0 , (6.4)

T a +
1

µ
Ra +

m

2
ǫ a

bc eb ∧ ec = 0 . (6.5)

The first one comes from varying SMB with respect to the dreibein, while the second one comes
from varying it with respect to the spin connection. One actually sees that in the case m = 1/µ = 0
the theory agrees with Einstein gravity, for which Rab ∼ ea ∧ eb and T a = 0. In the special case
m = µ with Λ = −m2, the two equations of motion (6.4) and (6.5) coincide and the theory exhibits
a degeneracy. We will analyze this special case in Section 5. In the generic case, the theory has four
coupling constants, which provide three dimensionless ratios, and the four characteristic length
scales G,

√
Λ, µ−1, and m−1.

Generic case

The two equations of motion (6.4)-(6.5) are independent equations provided m 6= µ; so let us
consider such case first. Rearranging these equations, one finds,

Ra =
µ

2

Λ + m2

µ − m
ǫ a

bc eb ∧ ec , (6.6)

T a =
1

2

mµ + Λ

m − µ
ǫ a

bc eb ∧ ec . (6.7)

These equations, provided m 6= µ, express the fact that the solutions of the theory have constant
curvature and constant torsion. From (6.6)-(6.7) one immediately identifies two special cases.
When mµ = −Λ (m 6= µ), equation (6.7) implies that torsion vanishes, and thus (6.6) becomes
Einstein equations. A second special case is m2 = −Λ (m 6= µ), where it is the spacetime curvature
what vanishes; this is usually called the teleparallel theory.
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Even though equation (6.6) implies that the solutions of the theory have to be of constant
curvature, the space has torsion, so that the affine connection is not necessarily a Levi-Civita
connection. Then, seeing whether the solutions of the theory actually correspond to Einstein
manifolds or not requires a little bit more of analysis: To actually see this, it is convenient to
write the spin connection ωa as the sum of a torsionless contribution ω̃a and the contorsion ∆ωa;
namely,

ωa = ω̃a + ∆ωa , (6.8)

where ω̃a is indeed the Levi-Civita connection. Then, from (6.7) one obtains,

∆ωa =
1

2

mµ + Λ

m − µ
ea , (6.9)

and from (6.6) one finally gets,

R̃ab = dω̃ab + ω̃a
c ∧ ω̃cb = − 1

2l2
ea ∧ eb , (6.10)

which expresses that solutions are indeed Einstein manifolds, where the effective cosmological
constant is given by,

l−2 =
1

4

(
mµ + Λ

m − µ

)2

+
Λµ + m2µ

m − µ
. (6.11)

In the case m = 1/µ = 0 one finds l−2 = −Λ = ℓ−2.

6.2 Black holes and torsion

Mielke-Baekler theory admits asymptotically AdS3 black holes as exact solutions. In fact, it can
be seen that equations of motion (6.4)-(6.5) are satisfied by the BTZ metric (1.46), provided
the space also presents torsion [111]. The presence of non-vanishing torsion, however, does not
represent an actual “hair” since the strength of T a is fixed by (6.7) and so there is no additional
parameter to characterize the geometry. Then, the only two parameters of the black hole solutions
are still M and J , and for the Mielke-Baekler theory, the mass and angular momentum of the
black hole being related to the coupling constants in the following way [111],

M = M

(
1 +

1

2

mµ + Λ

mµ − µ2
+

J

Ml2µ

)
, J = J

(
1 +

1

2

mµ + Λ

mµ − µ2
+

M

Jµ

)
. (6.12)

The ADM values of general relativity are recovered in the case m = 1/µ = 0.
Black hole thermodynamics is also affected by the presence of torsion. The entropy of the

BTZ black holes in Mielke-Baekler theory can be computed from the Euclidean action [112] or
the Cardy formula [113], and is given by,

SBH =
πr+

2G

(
1 +

1

2

mµ + Λ

mµ − µ2
− 1

µl

r−
r+

)
, (6.13)

While the first term in (6.13) reproduces the Bekenstein-Hawking area law, contributions propor-
tional to 1/µ give deviations from the result of general relativity. It will be discussed below how
the black hole entropy (6.13) is recovered from CFT methods through holography.
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6.3 Central charges

In this section, we focus on the computation of the central charges corresponding to the asymptotic
algebra. Seen from the holographic point of view, these central charges turn out to be those of
the dual conformal field theory. To calculate these central charges it is convenient to discuss first
the Chern-Simons formulation of the theory (6.1).

Chern-Simons formulation and Hamiltonian reduction

Mielke-Baekler theory admits to be expressed as a sum of two Chern-Simons actions [108, 114, 115],

SCS =
k

4π

∫
tr

(
A ∧ dA +

2

3
A ∧ A ∧ A

)
− k̂

4π

∫
tr

(
Â ∧ dÂ +

2

3
Â ∧ Â ∧ Â

)
, (6.14)

where the corresponding sl(2, R)−connections are given by,

Aa = ωa + λ ea , Âa = ωa + λ̂ ea , (6.15)

with coefficients,

λ = −1

2

mµ + Λ

m − µ
+

1

l
, λ̂ = −1

2

mµ + Λ

m − µ
− 1

l
; (6.16)

whereas the coupling constants read,

k =
l

4G

(
1 +

1

µl
+

1

2

mµ + Λ

mµ − µ2

)
, k̂ =

l

4G

(
1 − 1

µl
+

1

2

mµ + Λ

mµ − µ2

)
. (6.17)

The supra index in (6.15) is playing the rôle of an algebra index, to be contracted with the 3 + 3
generators of the sl(2, R) ⊕ sl(2, R) algebra 1. This is analogous to the standard Chern-Simons
realization of three-dimensional gravity of Section 1.2 and, in fact, in the case m = 1/µ = 0 the
realization of [1, 2] is recovered. Now, the equations of motion of the theory read,

F = 0, F̂ = 0 , (6.18)

where F and F̂ are the curvatures corresponding to the gauge fields A and Â respectively.

Having the theory written in its form (6.14), one can compute the central charges by following
the procedure originally introduced in [45, 46]. This amounts to implementing the constraints and
the Brown-Henneaux asymptotic boundary conditions at the level of the Chern-Simons actions,
by reducing them first to two chiral Wess-Zumino-Witten (WZW) actions, and then using the
asymptotic conditions again to reduce some degrees of freedom of the latter. This procedure was
reviewd in Section 1.4 and eventually gives the central charges of the boundary two-dimensional
conformal field theory through the Hamiltonian reduction of the WZW theory, as in [45, 46].
Nevertheless, despite the analysis here is very similar to that of three-dimensional Einstein gravity,
it is worth noticing that, in contrast to the case where no exotic Chern-Simons term is included,
the full action is not exactly the difference of two chiral WZW actions with the same level k = k̂.

1We are using the trace corresponding to the two-dimensional representation as in Section 1.2. In the
references sometimes the three-dimensional representation is used and this changes the value of the levels
by a factor 4, as was the case in Section 3.1.



CHAPTER 6. A CHIRAL GRAVITY WITH TORSION 63

The exotic term actually unbalances the two chiral contributions. In turn, Hamiltonian reduction
must be performed in each piece separately.

A consistent set of AdS3 boundary conditions for the theory with torsion, compatible with
those of Brown and Henneaux, are the ones proposed in [108, 116, 117]

e0
t ≃ r

l
+ O(1/r) , e0

r ≃ O(1/r4) , e0
φ ≃ O(1/r) ,

e1
t ≃ O(1/r2) , e1

r ≃ l

r
+ O(1/r3) , e1

φ ≃ O(1/r2) , (6.19)

e2
t ≃ O(1/r) , e2

r ≃ O(1/r4) , e2
φ ≃ r + O(1/r) .

From equation (6.7), one obtains the asymptotic behavior for the components of the spin connec-
tion; namely

ω0
t ≃ αr

2l
+ O(1) , ω0

r ≃ O(1/r4) , ω0
φ ≃ −r

l
+ O(1) ,

ω1
t ≃ O(1/r2) , ω1

r ≃ αl

2r
+ O(1/r3) , ω1

φ ≃ O(1/r2) , (6.20)

ω2
t ≃ − r

l2
+ O(1/r) , ω2

r ≃ O(1/r4) , ω2
φ ≃ αr

2
+ O(1/r) ,

where α = (mµ + Λ)/(m − µ).
Then, following the procedure developed in [45, 46] and explained in Section 1.4, one verifies

that implementing some of the asymptotic conditions (6.19)-(6.20) amounts to define a boundary
action, consisting of two copies of the chiral WZW model (see Section 1.4 together with [45, 46] for
details, and see also [47] for a very nice discussion). The WZW theory has SL(2, R)k ×SL(2, R)k̂
affine Kac-Moody symmetry, which is generated by the currents (1.34)2,

J i(z) =
∑

n∈Z

J i
n z−n−1 , J̄ i(z) =

∑

n∈Z

J̄ i
n z̄−n−1 , i = 1, 2, 3 ,

with the boundary variables z = t/ℓ + iφ, z̄ = t/ℓ − iφ. The modes obey the Kac-Moody current
algebra,

[J+
m, J−

n ] = −2J3
n+m − k

2
n δm+n,0 , [J3

m, J±
n ] = ±J±

n+m , [J3
m, J3

n] =
k

2
nδm+n,0 ,

with J±
n = J1

n±iJ2
n, where k is a central element; analogously for the anti-holomorphic counterpart

J̄ i
n with k̂. Then, Sugawara construction [82] gives the Virasoro generators in terms of the Kac-

Moody generators; namely,

Lm =
hij

k − 2

∑

n∈Z

J i
m−n J j

n , L̄m =
hij

k − 2

∑

n∈Z

J̄ i
m−n J̄ j

n , (6.21)

where hij is the Cartan-Killing bilinear form of sl(2, R) and the −2 in the denominator stands for
the Coxeter number of SL(2, R). Then, we have the stress-tensor,

T (z) =
∑

n∈Z

Ln z−n−2 , T (z̄) =
∑

n∈Z

L̄n z̄−n−2 , (6.22)

2In the standard WZW theory the currents are defined with a derivative with respect to the complex
variables z and z̄, as opposed to (1.34), and this is what we follow from now on.
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whose modes realize the Virasoro algebra,

[Lm, Ln] = (m − n)Lm+n +
k

4(k − 2)
m(m2 − 1) δm+n,0 , (6.23)

that gives the central charge c = 3k/(k−2), and analogously for the anti-holomorphic counterpart
replacing Ln by L̄n and k by k̂, yielding ĉ = 3k̂/(k̂−2). These are not yet the central charges of the
boundary CFT as it still remains to impose some of the boundary conditions (6.19)-(6.20). It is
possible to verify that implementing the whole set of asymptotic boundary conditions (6.19)-(6.20)
amounts to fixing the constraints J+(z) ≡ k and J̄+(z̄) ≡ k̂ (see Section 1.4 together with [47]).
This condition requires an improvement of the stress-tensor of the sort T (z) → T (z) + ∂J3(z),
as it demands the current J+(z) to be a dimension-zero field. This is equivalent to shifting
Ln → Ln − (n + 1)J3

n, and the same for L̄n, which results in a shifting of the value of the central
charges c and ĉ. The central charges now become cR = 3k/(k− 2) + 6k and cL = 3k̂/(k̂− 2) + 6k̂,
and for large k, k̂ one gets the standard result cR ≃ 6k and cL ≃ 6k̂. Then, one finds,

cL =
3l

2G

(
1 − 1

µl
+

1

2

mµ + Λ

mµ − µ2

)
, cR =

3l

2G

(
1 +

1

µl
+

1

2

mµ + Λ

mµ − µ2

)
, (6.24)

together with (6.11). One rapidly verifies that this result agrees with the ones obtained in the
literature [108, 114, 116, 117, 118].

It is important to point out that, even in the case m = 0, where the action of the theory
does not contain S4, these values for the central charges do not coincide with those of TMG. This
is because, as mentioned earlier, both theories differ not only because of the inclusion of S4 in
the action, but also because of the Lagrange multiplier in TMG that assures the vanishing of the
torsion. In fact, if m = 0, and taking (6.11) into account, one finds cL = (3/2Gµ)(

√
1 + µ2l2 −1),

cR = (3/2Gµ)(
√

1 + µ2l2 +1), which coincides with (5.4) only at first order in 1/µ. On the other
hand, if m 6= 0 and 1/µ = 0, the central charges above simply become cL = cR = 3l/(2G). This
does not imply that the value of m dissapears from the expressions since (6.11) depends on m
and, thus, when 1/µ = 0, the effective cosmological constant is given by −l−2 = Λ + m2. This
can be simply seen by taking a glance at the equations of motion and noticing that replacing
1/µ = 0 in (6.4)-(6.5) makes the curvature disappear from (6.5), while inducing at the same time
a redefinition of the cosmological constant in (6.4).

Quantization conditions

So, we have central charges (6.24). These are the central elements of the canonical realization of
the asymptotic AdS3 isometry algebra [118], and from the AdS/CFT conjecture point of view these
are the charges of the dual CFT. As was commented in Section 3.1, modular invariance of such
CFT demands (cL − cR)/24 = (8Gµ)−1 ∈ Z, giving a quantization condition for the parameters
in the action. Besides, even before resorting to the dual CFT description, one may argue that
the central charges have to be quantized. Indeed, quantization of the SL(2, R) Chern-Simons
coefficient imposes conditions on cR = 6k and cL = 6k̂ as well (see Section 3.1). For instance,
already in the case 1/µ = 0, one finds (16G

√
−Λ)−1 ∈ Z.

As Witten pointed out in [11], and was reviewed in Section 3.1, the quantization of the
central charge (and not only of the difference cL − cR) is also natural from the point of view of
the dual conformal field theory. This is because of the Zamolodchikov c-theorem [119], which
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states the impossibility of having a family of CFTs with an SL(2, R)×SL(2, R) invariant vacuum
parameterized by a continuous value of the central charge. In turn, consistency of the theory,
provided one assumes the AdS/CFT conjecture, demands the dimensionless ratios constructed by
the different coupling constants of the theory to take special values for the bulk theory to be well
defined at the quantum level.

Furthermore, one could also ask whether there is a way to understand these quantization
conditions from the point of view of the microscopic theory. To analyze this, one could think
of embedding the three-dimensional gravity action, including the exotic Chern-Simons term, in
a bigger consistent theory, like string theory. Even though a complete description of it has not
yet been accomplished (see [120] for an attempt), one can consider a toy example to see how it
would work. For instance, let us play around with the O(R4) M-theory terms, which are those
that supplement the eleven-dimensional supergravity action. Among such higher-curvature terms
one finds couplings between the 3-form A = Aµνρ dxµ ∧ dxν ∧ dxρ with the curvature tensor

Rab
µν = ea

αeb
βRαβ

µν .

One such term is of the form
∫
Σ11

A∧tr(R∧R)∧tr(R∧R), together with other terms (the trace
is taken over the indices in the tangent bundle a, b, ...). Then, one can think of a compactification
of the form3,

Σ11 = Σ3 × M4 × X4, (6.25)

with F = dA having flux on M4, and asking X4 to have non-trivial signature (non-vanishing
Pontryagin invariant). Integrating by parts the higher-order term written above, one finds a
contribution of the form,

−
∫

Σ3

(ωa ∧ dωa +
ǫabc

3
ωa ∧ ωb ∧ ωc)

∫

M4

F

∫

X4

Rab ∧ Rab, (6.26)

so that the exotic gravitational term appears here, being the effective three-dimensional coupling
(8πGµ)−1 ∼ σ(X4)N(M4), where σ(X4) is the signature of X4 and N(M4) is the flux of F . This
sketches how a (yet to be found) microscopic realization could yield the quantization condition
for cR − cL.

Black hole entropy

Now, before concluding the discussion on the central charges, let us consider a quick application
of the result (6.24). The values of the central charges derived above provide us with a tool to
compute the black hole entropy microscopically. This was discussed in [112, 113, 121] for the
case of the theory with torsion, and it follows the well-known procedure originally proposed by
Strominger in [122]. This amounts to considering the Cardy formula [123] of the dual CFT. In a
two-dimensional CFT, Cardy’s formula gives an asymptotic expression for the growing of density
of states for fixed L0 and L̄0. It follows from modular invariance and some general hypothesis
about the spectrum of the theory. The formula for the microcanonical entropy, representing the
logarithm of the number of degrees of freedom for given values of M and J , reads

SCFT = 2π

√
cL

12
(Ml − J ) + 2π

√
cR

12
(Ml + J ) , (6.27)

3This suggestion was actually given to G. Giribet by B.S. Acharya.
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where the conserved charges associated to Killing vectors ∂t and ∂φ, namely the mass and the
angular momentum, are identified with the Virasoro generators L0 +L0 and L0 −L0 respectively.
Resorting to equations (6.12), (1.47) and (6.24), one actually verifies that (6.27) exactly reproduces
the black hole entropy (6.13); see [112, 113, 121, 114, 115].

6.4 Chiral limit

In this section we present, based on the previous discussion of Mielke-Baekler theory, a limit
taken in the space of solutions which gives a sensible gravitational dual to a holomorphic CFT.
It possesses all the desired features of a chiral gravitational theory and the price to pay is the
non-vanishing torsion of the solutions.

Degeneracy in Mielke-Baekler theory

Now, let us consider the special case µ = m =
√
−Λ. As said before, in this case the equations of

motion (6.4) and (6.5) coincide and the Mielke-Baekler theory develops a kind of degeneracy as
the equations of motion only give,

Ra + µT a +
µ2

2
ǫa

bce
b ∧ ec = 0 . (6.28)

Certainly, this equation is not sufficiently restrictive unless one specifies additional information,
e.g. about the torsion. On the other hand, if µ = m equations (6.4) and (6.5) cannot be generically
written in the form (6.6) and (6.7). In fact, µ = m =

√
−Λ is a singular point of the theory. This is

why in order to analyze this point it is necessary to take the limit carefully proposing a consistent
prescription. A particular consistent way this limit can be taken is to actually consider the form
(6.6) and (6.7) for the equations of motion, namely,

Ra =
µ

2

Λ + m2

µ − m
ǫ a

bc eb ∧ ec , T a =
1

2

mµ + Λ

m − µ
ǫ a

bc eb ∧ ec , (6.29)

define 1−m/µ = ε, and then take the limit ε going to zero in such a way that the equations (6.29)
remain well defined. For this to be consistent one has to consider the limit 1 − m/µ = ε → 0
together with the limit Λ + m2 = O(ε) → 0. Then, if the torsion is set to zero, (6.28) would
require −1/l2 to coincide with the constant Λ appearing in the Lagrangian, and so one finds that
m + Λ/µ identically vanishes. In turn, the limit 1 − m/µ → 0 is consistent with (6.29) and one
eventually obtains,

Ra =
Λ

2
ǫ a

bc eb ∧ ec, T a = 0 ; (6.30)

that is, Einstein equations. In this limit one also finds that the central charges (6.24) become,

cL = 0 , cR =
3l

G
, (6.31)

with l−2 = −Λ. Finally, to take the analogy with the model of [18] one step further, one may
notice that, at this special point, all the black hole solutions of the theory fulfill the extremal
relation,

lM = J , (6.32)
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which can be seen from expressions (6.12). On the other hand, it seems clear that we could have
also taken the µ → m limit in such a way that the torsion would not vanish at the critical point,
obtaining, instead of (6.30), the following,

T a =
1

2
β ǫ a

bc eb ∧ ec, (6.33)

with arbitrary value β. In this case, the effective cosmological constant is given by,

−l−2 = Λ

(
1 +

β

2
√
−Λ

)2

, (6.34)

and then we end up having a non-vanishing torsion at the critical point. That is, the point
µ = m =

√
−Λ is a degenerate point of Mielke-Baekler theory and such degeneracy gets realized

by the ambiguity in the choice of β, which is fixed only after a particular prescription for the limit
is adopted. The most general limit which makes equations (6.29) well-defined along this procedure
is,

1 − µ

m
= ε, m +

Λ

µ
= −βε, ε → 0. (6.35)

This implies that,
Λ + m2 = −εm(m + β), (6.36)

and equation (6.28) is automatically satisfied for any β.
The choice β = 0 gives a theory similar to that pursued in [18]. Besides, it is clear from (6.28)

that at the degenerate point the theory neither gives information about the curvature nor about
the torsion, but about the combination Ra + µT a. Then, the only equation of motion written in
the Chern-Simons form turns out to be F = 0, which is a field equation for Aa = ωa +µ ea. Here,
it is worth emphasizing that, at m = µ =

√
−Λ, the theory defined by (6.28) and that defined by

(6.29) are not equivalent. In fact, while equations (6.29) in the limit m → µ →
√
−Λ still define

a theory with constant curvature and constant torsion, equation (6.28) only gives information
about the quantity Ra + µT a. It is (6.28), and not (6.29), the model that corresponds to a single
Chern-Simons field theory. The theory defined by (6.29) together with (6.35) is the one that
defines the chiral gravity with torsion and is a subset of the theory defined by (6.28).

The singular point, as we will shortly analyze in the next subsection within the canonical
formalism, gives a particular combination of the coupling constants for which some of the would
be degrees of freedom simply decouple (the situation here is a bit more cumbersome since these
theories have no local degrees of freedom on their own). If the microscopic Lagrangian of the
theory is fine tuned to those values that would lead to the critical point, one should simply
make a field redefinition from scratch and the theory becomes a Chern-Simons theory for a single
SL(2, R), whose geometrical meaning is unclear. However, whatever approach to this problem is
chosen, it seems more natural to embed the Mielke-Baekler Lagrangian into a bigger picture, so
that the singular point is eventually approached to from the generic non-degenerate situation. As
such, it is natural to give a prescription to reach the singular point that smoothly interpolates
with the generic case, where both the curvature and the torsion are constant. Still, there is some
freedom within this prescription, which is reflected in the parameter β in (6.33). The choice β = 0
is special in that it makes the theory closely reminiscent to chiral gravity [18].

To understand the indefinition in the parameter β, it is worth studying the map between
different geometries and how it behaves at the degenerate point: In Mielke-Baekler theory there
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is a natural way to establish a map between geometries which are solutions of the theory (6.1) for
different values of the coupling constants [124]. That is, one can perform a linear transformation
of the fields like,

ωa → ωa + β ea , ea → ea . (6.37)

and find that this transformation induces a transformation of the four coupling constants that
appear in the action. To give an example of how it works, it is sufficient to consider the Lagrangian
of the theory in the particular case in which its coupling constants satisfy the relation µm = −Λ.
In this case, a transformation like (6.37) generates the following transformation of the coupling
constants,

G → G̃ =
Gµ

µ + β
, (6.38)

µ → µ̃ = µ + β , (6.39)

m → m̃ =
mµ + 2µβ + β2

µ + β
, (6.40)

Λ → Λ̃ =
Λµ − 3mµβ − 3µβ2 − β3

µ + β
. (6.41)

The case we started with already satisfied the special condition µm = −Λ, and provided
it also satisfied µ = m one finds that the transformed coupling constants obey µ̃m̃ = −Λ̃ and
µ̃ = m̃ as well. That is, the special condition m2 = µ2 = −Λ appears to be a fixed point
of the β-transformation (6.37); in fact, after the transformation one finds µ̃2 = m̃2 = −Λ̃ =
(β + µ)2. And we see that this transformation generates (constant) torsion T a ∼ β ǫa

bce
b ∧ ec

from a configuration with vanishing torsion. The combination that remains invariant is, precisely,

Ra + µT a + µ2

2 ǫa
bce

b ∧ ec → Ra + µ̃T a + µ̃2

2 ǫa
bce

b ∧ ec, as in (6.28). This explains the degenerate
point appearing as a fixed point of (6.37).

Analogy with chiral gravity

Equations (6.30), (6.31) and (6.32) are actually evocative of what happens in chiral gravity. The
point µ = m =

√
−Λ corresponds to the point of the space of parameters where the Chern-Simons

coupling q̂ vanishes. In turn, the theory consists of a single Chern-Simons action (see [125] for a
brief comment about the relation between the singular point q̂ = 0 and the chiral point of [18]; cf.
[115]). When q̂ = 0 the left-handed degrees of freedom are left unspecified; however, we have just
argued that one could consistently demand the torsionless condition T a = 0 when approaching
the singularity, what would add an additional equation where the left-handed field is involved.

We have just identified a special (singular) point of Mielke-Baekler theory at which the theory
behaves pretty much like chiral gravity of [18]. That is, it gives a model of three-dimensional
gravity that fulfills the following properties:

a) Once suitable asymptotically AdS3 boundary conditions are imposed, the asymptotic sym-
metry group turns out to be generated by one (right-handed) Virasoro algebra with central
charge cR = 3l/G, while the central charge of the left-handed part cL vanishes.
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b) The theory can be written as a single SL(2, R) Chern-Simons term, as the other copy of
the bulk action decouples in the limit, being proportional to cL.

c) The BTZ black holes have mass M and angular momentum J that obey the relation
lM = J , no matter the values that the parameters M and J of the solution take.

d) The theory has no local degrees of freedom, as it corresponds to a special case of the Mielke-
Baekler theory.

e) If the limit µ → m →
√
−Λ is taken as in (6.35), where equations (6.29) are well defined,

all the solutions of the theory at the special point have constant curvature and torsion. If
the limit is defined with β = 0, we always have vanishing torsion and the space of solutions
is constituted by Einstein manifolds, i.e., locally AdS3 spaces.

Nevertheless, besides the resemblance between the chiral model obtained from the degenerate
case of Mielke-Baekler theory and the chiral gravity of [18], it is worth emphasizing that both
constructions are radically different. For instance, in what regards to the property e) listed above:
in the proposal of [18], there are non-Einstein solutions [27].

In the next subsection, we will analyze the canonical structure of the theory and how it changes
at the degenerate point.

Canonical analysis

In the previous section we discussed a degenerate point of the Mielke-Baekler theory of gravity
in AdS3 space and we proposed a prescription to approach this point in the space of parameters.
Now, let us briefly discuss the canonical structure of the theory. Our discussion will follow the
approach and notation of references [118, 126], but paying special attention to the analysis of the
constrained system in order not to miss the difference between the critical and the non-critical
cases.

The Hamiltonian analysis of the theory starts by slicing the three-dimensional spacetime mani-
fold, separating the temporal components from the spatial ones, and defining a configuration space.
The coordinates of this configuration space (henceforth denoted by q) are the components eµ

a and
ωµ

a . Explicitly we can write the canonical momenta associated to these as follows,

π0
a = 0 , Π0

a = 0 , πi
a = µεij (ωaj + m eaj) , Πi

a = εij (ωaj + µ eaj) , (6.42)

which correspond to e0
a, ω0

a, ei
a and ωi

a, respectively, where the notation is such that i, j = 1, 2
refer to the spatial part of the spacetime indices. The canonical momenta are indeed defined with
respect to the action (6.1) times 16πGµ. These relations define the primary constraints of the
theory; namely,

φ0
a ≡ π0

a , Φ0
a ≡ Π0

a , φi
a ≡ πi

a − µεij (ωaj + meaj) , Φi
a ≡ Πi

a − εij (ωaj + µeaj) . (6.43)

Then, the primary Hamiltonian density is,

HT = ea
0 Ha + ωa

0 Ka + ėa
0 φ0

a + ω̇a
0 Φ0

a + ėa
i φi

a + ω̇a
i Φi

a , (6.44)
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where the dot stands for time derivatives and, following the notation used in [118],

Ha = −µ
(
mT a

ij + Ra
ij − Λ εa

bce
b
ie

c
j

)
εij , (6.45)

Ka = −
(
µT a

ij + Ra
ij + mµ εa

bce
b
ie

c
j

)
εij . (6.46)

The dynamics of the theory is generated by HT , while the time derivatives of the coordinates
that accompany the constraints play the rôle of Lagrange multipliers that fix them to zero. The
structure of the Hamiltonian is, in general, given by HT = H̃ + q̇I φI . That is, the actual
Hamiltonian is given by the sum of the canonical Hamiltonian and the contributions coming from
the constraints. The Poisson structure arises from imposing canonical constraints on coordinates
and momenta through the Lie bracket {, }. The constraints φI = 0 reduce the original phase
space to the physical one, and consistency of the theory demands the constraints to be preserved
through the dynamical evolution of the system in the reduced phase space. This requires φ̇J to
weakly vanish,

φ̇J = {HT , φJ} = {H̃, φJ} + q̇I{φI , φJ} ≈ 0 . (6.47)

In our case, we have,

φ̇0
a = −Ha , Φ̇0

a = −Ka ,

φ̇i
a = 2µmǫji

(
∂jea0 − ǫ c

ab

(
ωb

j −
Λ

m
eb
j

)
ec0

)
+ 2µǫji

(
∂jωa0 − ǫ c

ab

(
ωb

j + meb
j

)
ωc0

)

+2µǫji (mėaj + ω̇aj) ,

Φ̇i
a = 2µǫji

(
∂jea0 − ǫ c

ab

(
ωb

j + meb
j

)
ec0

)
+ 2ǫji

(
∂jωa0 − ǫ c

ab

(
ωb

j + µeb
j

)
ωc0

)

+2ǫji (µėaj + ω̇aj) ,

The first line above expresses the fact that that Ha and Ka are secondary constraints, while the
second and third lines give equations that allows to find the values of ėaj and ω̇aj that set these
expressions to zero. Solving these equations is always possible except when the determinant of the
system is zero, what precisely occurs when m = µ. Leaving the critical case aside for a moment,
one can continue the analysis and verify that the secondary constraints are actually consistent:
the non-trivial Poisson brackets for m 6= µ are,

{φi
a, φ

j
b} = −2mµ εij δab , {φi

a, Φ
j
b} = −2µ εij δab , {Φi

a, Φ
j
b} = −2 εij δab , (6.48)

with,

{φi
a, H̄b} = ε c

ab

(
Λ + mµ

m − µ
φi

c + µ
Λ + m2

µ − m
Φi

c

)
, (6.49)

{φi
a, K̄b} = {Φi

a, H̄b} = −ε c
ab φi

c , {Φi
a, K̄b} = −ε c

ab Φi
c , (6.50)
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and,

{H̄a, H̄b} = ε c
ab

(
Λ + mµ

m − µ
H̄c + µ

Λ + m2

µ − m
K̄c

)
, (6.51)

{H̄a, K̄b} = −ε c
ab H̄c , {K̄a, K̄b} = −ε c

ab K̄c . (6.52)

There is of course a δ2(~x − ~y) implicit in all these formulas. After substituting the expression
for the multipliers back into the total Hamiltonian, one can integrate by parts to rearrange the
factors that accompany the canonical variables, that instead of H and K are now,

H̄a = Ha −
(
∂iφ

i
a − ǫ c

ab ωb
i φi

c

)
− ǫ c

ab eb
i

(
Λ + mµ

m − µ
φi

c + µ
Λ + m2

µ − m
Φi

c

)
,

K̄a = Ka −
(
∂iΦ

i
a − ǫ c

ab ωb
i Φi

c

)
+ ǫ c

ab eb
i Φi

c .

In contrast, at the critical point the theory exhibits a dynamical pathology. The reason is
that, when m = µ, a new symmetry appears, and this must be properly taken into account when
analyzing the constraints. What happens when going from the generic case to the critical case
m = µ is that two of the momenta become proportional to each other, namely πi

a = µΠi
a, and

consequently the respective constraints happen to carry the same information. This is basically
because at such point of the space of parameters the coordinates ea and ωa play symmetric rôles
in the action. As mentioned before, at the singular point one of the Chern-Simons actions drops
out and one is left with a single action describing the dynamics of the field Aa = ωa + µea. In
order to take this symmetry (between the rôle played by ea and ωa) into account, one can replace
the constraint φi

a by the new one ψi
a ≡ φi

a − µΦi
a, in such a way that the constraints turn out to

be given by,

φ̇0
a = −Ja , Φ̇0

a = −Ja , ψ̇i
a = 0 , (6.53)

Φ̇i
a = 2ǫij

(
∂jAa0 − ǫ c

ab Ab
jAc0

)
+ 2ǫji (µėaj + ω̇aj) , (6.54)

where the last equation can always be solved. At the critical point, Ja = Ha/µ = Ka = −ǫijF a
ij ,

where µ = m =
√
−Λ. The non-zero Poisson brackets in the critical case are,

{Φi
a, Φ

j
b} = −2εijδab , {Φi

a, J̄b} = −ε c
ab Φi

c , {J̄a, J̄b} = −ε c
ab J̄c , (6.55)

where,

J̄a = Ja −
(
∂iΦ

i
a − ǫ c

ab Ab
iΦ

i
c

)
. (6.56)

The difference between the critical point m = µ and the generic case can be summarized easily
by counting the amount of constraints of first class (FC) and of second class (SC) that appear in
each case. Namely,

Primary Secondary

FC φ0
a, Φ0

a H̄a, K̄a

SC φi
a, Φi

a —–

Primary Secondary

FC φ0
a, Φ0

a, ψi
a J̄a

SC Φi
a —–
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We see that at the critical point one primary constraint of second class is promoted to the
first class4. This indicates that a new symmetry appears at the critical point; namely,

δξe
a
i = ξa

i , δξω
a
i = −µ ξa

i , (6.57)

which certainly leaves Aa
i invariant. Also, two secondary constraints of the first class, H and K,

collapse to one, denoted by J . Note that H and K are the only ones with spatial derivatives and
so need boundary terms to make them differentiable, giving rise to central extensions following
the analysis of Brown and Henneaux of [3] explained in Section 1.3. Thus, once they collapse to
J at the critical point, half of the generators of asymptotic symmetries vanish, as needs to be the
case to have a manifest chirality on the boundary.

It is worth noticing that the prescription for going from the general case to the critical point
defined through the limiting procedure (6.35) can be applied to the set of commutators (6.48)-
(6.51), along with the change φi

a → ψi
a = φi

a − µΦi
a and Ja = Ha/µ = Ka, to obtain the set of

commutation relations of the critical case.

4Notice that the number of degrees of freedom in each case remains to be zero: #coordinates
+#momenta −2 × #FC−#SC.



Conclusions

In this thesis we have reviewed the main results up to now in the context of quantization of
general relativity in three dimensions with a negative cosmological constant via the AdS/CFT
correspondence. Besides, in Chapters 3, 4, 5 and 6, some of the original contributions by the
author and collaborators in these topics have been explained in detail.

In the first two chapters we have presented the necessary facts about three-dimensional gravity
and AdS/CFT. In particular, we noted the influence of Brown-Henneaux analysis to immediately
see the rôle of the asymptotic symmetries in the path to quantization, giving an explicit way to
reach Liouville theory as an effective classical dual CFT. With the knowledge of the existence of
“Virasoro gravitons” living on the boundary of AdS3, we have explained the proposal of Witten
[11] for a family of holomorphic extremal CFTs dual to gravity, and also the computation of
the partition function of AdS3 gravity by Maloney and Witten [12]. As we mentioned at that
point, this partition function fails to be identified with the trace over a Hilbert space of the
exponential of a Hamiltonian operator. One of the most probable reasons for this is that there
are more geometries to consider in the partition function, such as point-particle geometries, i.e.
conical singularities. Motivated by this and by the need of a complete understanding of the rôle
of such singularities in the quantum theory, we investigated BPS solutions to Chern-Simons AdS
supergravities in three dimensions [13, 14, 15]. What we described in Chapter 4 is that from a
similar construction as the one for the BTZ black holes, it is possible to obtain singular geometries
that describe spinning massive particles sailing in AdS3, where the singularity in the curvature
is a Dirac delta distribution. It is worth mentioning that these singularities are not calling for
a cosmic censor: They correspond to point-like objects, with the geometry around them being
smooth. Then, by a coupling in the action of the matter source to the gauge field of the form∫

A ∧ j, the equation of motion is F = j and the fact of the curvature being a Dirac delta
distribution means that the source that is coupled is indeed a massive particle. These geometries,
although they describe particles, seem like sensible contributions to the partition function of pure
gravity, since they can be thought of with the singularity curve removed, and, even more, they
fill in the energy gap between global AdS3 and the BTZ black holes, with masses between −1/8G
and 0.

The stability of such geometries was established in the context of the supersymmetric ex-
tension of three-dimensional gravity: super AdS3 gravity. It was shown that for any number of
supersymmetries, there are BPS spinning and/or charged 0-branes that are supersymmetric when
their parameters satisfy certain quantization conditions. This reinforces the idea of including such
stable geometries in the computation of the partition function, at least of the supersymmetric
theory. The actual inclusion is an interesting open problem.

In any case, when we reviewed [11] and [12], the holomorphic factorization hypothesis was
emphasized as a feature that would help in the understanding of dualities in three dimensions,
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even if it is not a priori present in pure AdS3 gravity. Motivated by this, the conjecture by Li,
Maloney, Song and Strominger [18, 23], called chiral gravity conjecture, was explained in detail.
It states that TMG at the critical point µℓ = 1 with Brown-Henneaux boundary conditions is
dual to a holomorphic CFT, with vanishing left central charge, and whose partition function
has a sensible quantum interpretation. Nevertheless, we saw that at least two assumptions on
the spectrum of chiral gravity are still not clear to be valid: 1) the absence of right-moving
ghosts is not demonstrated yet, and 2) the absence of non-Einstein solutions to chiral gravity with
Brown-Henneaux asymptotics is now known to be false [27]. But to be precise, these non-Einstein
solutions suffer from pathologies such as closed-timelike curves and also they have zero conserved
charges, contributing minimally to the partition function. It is not still clear wether they should
be included in the physical spectrum. In addition, we commented on the possibility of relaxing
the asymptotic conditions of chiral gravity, giving rise to what is now known as log gravity. This
is a much more complicated theory, since a zoo of exact solutions with boundary conditions with
slower fall-off behavior as that of Brown-Henneaux is known to exist. We explained in detail
one of such log solutions, which was first presented by the author and collaborators in [24]. It is
an extremal geometry, in the sense that it possesses non-vanishing mass and angular momentum
which satisfy the relation ℓM = J , and its vacuum is the extremal BTZ black hole where both
charges vanish.

In the last chapter, we presented an alternative for a chiral gravity, in the context of Mielke-
Baekler theory of gravity in asymptotically AdS3 spacetime with torsion. We have reviewed the
computation of central charges of the asymptotic algebra, which turn out to be the central charges
of the dual CFT2. The result we obtained agrees with the central charges obtained in the literature
by employing different methods [108, 114, 115, 116, 117]. It was observed that a special point
of the space of parameters exists, at which one of the central charges vanishes. This point was
compared with the chiral point of topologically massive gravity, and the analogies between both
models were pointed out. This is a singular point for the Mielke-Baekler theory, where the theory
exhibits degeneracy. We analyzed this at the level of the space of solutions, in the Chern-Simons
formulation, and in the canonical approach. In the Chern-Simons formulation this critical point
appears as the point of the space of parameters at which one of the two SL(2, R) actions drops
out. This point was recently mentioned by Witten [125] within the context of the analytically
extended theory, where the connection with the chiral gravity of [18] was already mentioned. It
was one of our motivations to make this connection with chiral gravity more explicit.

One of the aspects one observes here is that several features of the dual conformal field theory
do not seem to depend on the precise prescription adopted to reach the singular point of the
Mielke-Baekler theory. This raises the question as to whether the relevant physical information
is independent of the way one approaches m = µ =

√
−Λ. Despite the fact that quantities in the

geometric realization do actually depend on how the limit is taken, this possibly reflecting that
the theory becomes in essence non-geometrical, it seems plausible that all these geometries are
different realizations of the same theory, and, likely, the way of making sense out of Mielke-Baekler
theory at the point it exhibits degeneracy is, in fact, resorting to the dual description in terms of
a chiral CFT.



Appendix A

sl(2, R) algebra and close relatives

The SO(2, 2) Lie group is the set of four-by-four matrices of determinant one that leave invariant
the quadratic form (1.5), together with the product of matrices. It is a double cover of SO(2, 1)×
SO(2, 1) [11], with each piece being double-covered by the group SL(2, R). Thus, SO(2, 2) is
locally isomorphic to SO(2, 1)×SO(2, 1) which is locally isomorphic to SL(2, R)×SL(2, R). This
implies that their corresponding algebras are the same. The sl(2, R) algebra is generated by,

t+ =

(
0 1
0 0

)
, t− =

(
0 0
1 0

)
, t3 =

(
1/2 0
0 −1/2

)
. (A.1)

which satisfy the Lie algebra product,

[t+, t−] = 2t3, [t3, t±] = ±t±. (A.2)

Note that by performing the isomorphism t± = t2 ± t1, the generators {t1, t2, t3} satisfy [ti, tj ] =
ǫ k
ij tk, where ǫ123 = −1 and there is a Minkowski metric η = diag(−1, 1, 1), so with this unfortunate

notation η11 = −1. These generators give,

tr(titj) =
1

2
ηij . (A.3)

In order to make contact with the indices a = 0, 1, 2 used for example in Section 1.2, it is
enough to make the redefinition 123 → 012 of the notation in this appendix.
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Appendix B

Notions of differential geometry

This part is entirely based on [127] and is intended to give an account of some mathematical
objects of differential geometry as well as building foundations to construct gauge theories, such
as Chern-Simons theory, which is present all along the thesis.

Vectors

Given a manifold M , a vector field v over M is defined as a function from C∞(M) to itself, and
must satisfy the following properties which define a Derivation,

v(f + g) = v(f) + v(g)

v(αf) = αv(f)

v(fg) = v(f)g + fv(g),

where α ∈ R and f, g ∈ C∞(M). Let’s call Vect(M) to the set of all vector fields in M .
Now, a tangent vector of M at p, is a function vp : C∞(M) → R that satisfies,

vp(f) = v(f)(p)

vp(f + g) = vp(f) + vp(g)

vp(αf) = αvp(f)

vp(fg) = vp(f)g(p) + f(p)vp(g).

Let us denote TpM the set of all tangent vector of M at p. We call the Tangent Bundle TM the
union of all Tp(M).

A curve γ(t) in M is a function γ : R → M . One would like to have a vector in Tγ(t)M that
is tangent to the curve, so we call it γ′(t) : C∞(M) → R, and define it as a

γ′(t)(f) :=
d

dt
f(γ(t)) (B.1)

Pullback and pushforward

If M and N are manifolds, let φ : M → N and f : N → R. We call φ ∗ f : M → R the pullback
of f by φ and define it by,

φ∗f := f ◦ φ. (B.2)
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So a function f : N → R, by means of φ : M → N , can be used to give another function from M
to R. Pulling back is an operation,

φ∗ : C∞(N) → C∞(M). (B.3)

Now let us define the pushforward operation. It will take a tangent vector in p, vp ∈ TpM ,
and give another tangent vector but in q = φ(p), vq ∈ TqN . This is defined as,

(φ∗vp)(f) := vp(φ
∗f). (B.4)

The pushforward sends a vector in M to a vector in N . If γ is a curve in M , then the curve
φ ◦ γ(t) has tangent vector φ∗γ′(t). Let’s prove it,

(φ ◦ γ)′(t)(f) =
d

dt

(
f [φ ◦ γ(t)]

)
=

d

dt

(
f ◦ φ[γ(t)]

)
(B.5)

= γ′(f ◦ φ) = γ′(φ∗f) = (φ∗γ
′(t))(f). (B.6)

Vector bundles

We call End(V ) to the set of all linear maps from V to itself. It can be shown that it is isomorphic
to V ⊗ V ∗,

End(V ) ∼= V ⊗ V ∗. (B.7)

If v ⊗ z ∈ V ⊗ V ∗, then the endomorphism acts on w ∈ V as,

w 7→ z(w)v. (B.8)

The space End(V ) is in fact a vector space, where we define,

(αT )(v) = αT (v)

(S + T )(v) = S(v) + T (v),

where α ∈ R(C) and T, S ∈ End(V ). It is convenient to introduce a basis for End(V ). Let ei be
a basis for V and ej for its dual V ∗. Then a good basis for End(V ) is ej

i with the property

ej
iek = δj

kei, (B.9)

since now, any vector v = viei gets mapped as,

T (v) = T i
j ej

i vkek = T i
j vj ei. (B.10)

A vector bundle is just a bundle whose fiber is a vector space. Then, for each point p in the
base manifold M , one has a fiber Ep that is in fact a vector space. We also have a dual vector
bundle E∗, which can be constructed in the following way: for each p, take the dual of the vector
sapce Ep, E∗

p . Now, take the union of all E∗
p for p ∈ M . The projection π : E∗ → M maps each

E∗
p to the corresponding p. It can be show that E∗ is in fact a vector bundle.

One can define the endomorphism bundle of a vector bundle E as End(E) = E⊗E∗. This is a
good definition since sections of End(E) do determine vector bundles morphisms form E to itself:
note that the fibre of End(E) over any p ∈ M is just the same as End(Ep), therefore a section T
of End(E) defines a map from E to itself, sending a vector v ∈ Ep to T (p)v ∈ Ep. This is a vector
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bundle morphism. As a result, any section T of End(E) acts on any section of E pointwise, giving
a new section Ts of E, as

(Ts)(p) = T (p)s(p). (B.11)

Thus, T is a function T : Γ(E) → Γ(E). This function is C∞(M)-linear, meaning,

T (fs) = fT (s), (B.12)

with f ∈ C∞(M).

G-bundles and stuff

Let us concentrate now in the specific case when E is a G-bundle, with G some Lie group. This
means that there is an open cover {Uα} of M such that E is built by gluing together trivial bundles
Uα × V , where V is a vector space on which G has a representation ρ.

Given a section T of End(E), we will say that T (p) ∈ End(Ep) lives in G if it is of the form
ρ(g), for some g ∈ G. We say it leaves in g if it is of the form dρ(x), for some x ∈ g. Going one
step forward, we say that T lives in g if T (p) leaves in it for all p ∈ M . And if T (p) lives in G for
all p, we say that T is a gauge transformation. Let us call G the set of all gauge transformations
which is in fact a group, with products and invserses given by,

(TS)(p) = T (p)S(p)

T−1(p) = T (p)−1.

Now we will define the concept of “connection”, which allows to differentiate sections along
some direction in the base space. A connection D on M assigns to each vector field v on M a
funcion Dv form Γ(E) to Γ(E), satisfying,

Dv(αs) = αDvs

Dv(t + s) = Dvt + Dvs

Dv(fs) = v(f)s + fDvs

Dv+ws = Dvs + Dws

Dfvs = fDvs,

for α ∈ R(C), f ∈ C∞(M), t, s ∈ Γ(E), v, w ∈ Vect(M). We call Dvs the covariant derivative of
s in the direction v.

Let us see what a connection does to a section (given some vector field) in local coordinates.
Let us call {∂µ} the basis of vector fields over some open set U ⊂ M and let ei be a basis for
section of E|U . We will use the abbreviation D∂µ

= Dµ. Note that Dµej ∈ Γ(E|U ), so it must be
equal to some linear combination of the basis elements ei, with coefficients being functions over
U . We will call this coefficients Ai

µj ,

Dµej = Ai
µjei. (B.13)
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Now, the covariant derivative of s along v is,

Dvs = Dvµ∂µ
s = vµDµ(siei) (B.14)

= vµ(∂µsiei + siDµei) (B.15)

= vµ(∂µsiei + siAj
µiej) (B.16)

= vµ(∂µsi + sjAi
µj)ei (B.17)

= vµ(Dµs)iei. (B.18)

The functions Ai
µj are called the components of the vector potential. The last term we got

when computing the covariant derivative,

Aj
µiv

µsiej , (B.19)

is a section of E|U . Note that is C∞(U)-linear in v and s, so one would (correctly) think that the
vector potential is an End(E)-valued 1-form on U . In other words, it is a section of the bundle
End(E|U )⊗ T ∗U . Let us see that if we define the vector potential this way, we get (B.19). So we
define the vector potential (on U),

A := Aj
µiej ⊗ ei ⊗ dxµ. (B.20)

Now for some vector field v ∈ Vect(U),

A(v) = Aj
µiv

µej ⊗ ei,

and for some section s ∈ Γ(E|U ),

A(v)s = Aj
µiv

µej ⊗ eis

A(v)s = Aj
µiv

µsiej .

Here is an important property: given some connection D0 on E, for each connection D on E
there exists a vector potential A such that,

Dvs = D0
vs + A(v)s, (B.21)

for every v ∈ Vect(M) and every s ∈ Γ(E). The demonstration is by construction. If D and D0

are connections on E, then it is easy to show that the difference between them is C∞(M)-linear in
any vector v and any section s, so it is in fact an End(E)-valued 1-form. The vector potential that
suits each connection D is just the one we get when taking the difference D−D0. The connection
D0 is usually chosen to be the one with cero vector potential in some local trivialization:

D0
vs = v(sj)ej . (B.22)

This connection D0 is called the “standard flat connection”.
We say that D is a G-connection if in local coordinates the components Aµ ∈ End(E) live in

g. This definition is coordinate-independent since if Aµ lives in g, then A′
ν = ∂xµ

∂x′ν Aµ will do too.
We now define a gauge transformation over a G-connection. Let D be a G -connection on E

and g a gauge transformation, then, the claim is that there exists a new G-connection D′ that we
will call the gauge-transformed from D by g, defined by,

D′
v(s) = gDv(g

−1s). (B.23)
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It is not difficult to prove that D′ is indeed a G-connection.
Let us see how the vector potential is transformed. Recall that D′ = D0 + A′, so we compare

this to

D′
v(s) = gDv(g

−1s)

= gv((g−1s)j)ej + gA(v)g−1s

= gv((g−1)j
is

i)ej + gA(v)g−1s

= gv((g−1)j
i )s

iej + g(g−1)j
iv(si)ej + gA(v)g−1s

= gv((g−1)i
j)s

jei + gg−1v(si)ei + gA(v)g−1s

= gv((g−1)i
j)s

jei + D0
v(s) + gA(v)g−1s

= D0
v(s) + gv(g−1)s + gA(v)g−1s,

where we have used how the basis elements of End(E) act on elements of Γ(E) and in the last
step we defined

v(g−1) = v((g−1)j
i )e

i
j . (B.24)

Thus, we can write,
A′

µ = gAµg−1 + g∂µg−1. (B.25)

If the G-connection D′ is obtained from the G-connection D, then it is said that they are
gauge equivalent.

As an example, let us consider the case of a U(1)-bundle, that is, electromagnetism. We
will take the bundle to be trivial, so we assume E = M × C. Since End(C) ∼= C (canonically
isomorphic), then the vector potential is a complex-valued 1-form. We think of the fiber C as the
fundamental representation (ρ : U(1) → GL(C)) of U(1), so E is a U(1)-bundle. If the connection
D is a U(1)-connection, then the components Aµ of the vector potential must live in u(1). Since
this Lie algebra is the set of purely imaginary numbers, Aµ is a purely imaginary function. In
other words, A = iA, with A a real-valued 1-form.

Curvature, in brief

The curvature two-form is defined as,

F (u, v)s = DuDvs − DvDus − D[u,v]s. (B.26)

The third term makes the curvature vanish (for all vectors v and u) when comes from a flat
connection over a trivial bundle, with fiber V , where a section is just a function f : M → V ,

f(v, u) = vuf − uvf − [v, u]f = 0. (B.27)

On the other hand, a connection with vanishing curvature for all vectors v and u and sections s,
is said to be flat.

An important property of F is that is C∞(M)-linear in each argument (vectors and sections),
so it is really an End(E)-valued two-form.

Defining Fµν := F (∂µ, ∂ν) (which is antisymmetric by definition), one can show, using a basis
for sections, that

Fµν = [Dµ, Dν ] = ∂µAν − ∂νAµ + [Aµ, Aν ], (B.28)
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where internal indices i, j, k are suppressed. Then, F can be expressed as,

F =
1

2
Fµν ⊗ dxµ ∧ dxν . (B.29)

Generalization of exterior derivatives

First, we define an E-valued p-form as a section of E ⊗ ΛpT ∗M . Let us now define the wedge
product of an E-valued form1 s ⊗ w and an ordinary form µ on M ,

(s ⊗ w) ∧ µ := s ⊗ w ∧ µ, (B.30)

where s is a section of E and w is a differential form on M .
We know so far how to covariantly differentiate a section T ∈ Γ(E). Now, we wish to define

something similar for a E-valued differential form. First, we define an exterior covariant derivative
dD of a section s as the 1-form satisfying,

dDs(v) = Dv(s), ∀v ∈ Vect(M). (B.31)

In local coordinates on some open set, this is

dDs = Dµs ⊗ dxµ. (B.32)

Now, we define an exterior covariant derivative on E-valued forms, as

dD(s ⊗ w) = dDs ∧ w + s ⊗ dw. (B.33)

Locally, if we express the E-valued form s as sI ⊗dxI (where I goes over several indices), we have,

dD(sI ⊗ dxI) = DµsI ⊗ dxµ ∧ dxI . (B.34)

We will show that d 2
D of any E-valued form η is proportional to F . First, we need to define a

wedge product between an End(E)-valued form T ⊗ w and an E-valued form s ⊗ µ,

(T ⊗ w) ∧ (s ⊗ µ) := T (s) ⊗ (w ∧ µ). (B.35)

Now, let us calculate d 2
Dη, where η = sI ⊗ dxI is an E-valued form,

d 2
Dη = dD(dDsI ⊗ dxI)

= dD(DnusI ⊗ dxν ∧ dxI)

= DµDνsI ⊗ dxµ ∧ dxν ∧ dxI

=
1

2
[Dµ, Dν ]sI ⊗ dxµ ∧ dxν ∧ dxI

=
1

2
FµνsI ⊗ dxµ ∧ dxν ∧ dxI

= (
1

2
Fµν ⊗ dxµ ∧ dxν) ∧ (sI ⊗ dxI)

= F ∧ η.

1Any E-valued form can be expressed as a (not necessarily unique) sum of elements of the form s ⊗ w.
Locally, there is only a unique way.
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We now want to define a connection on End(E) starting from one on E. Then, we will define
an exterior covariant derivative on End(E)-valued forms, just as we did on E-valued forms. So,
by inspiration on Leibnitz rule,

v(λ(s)) = (D∗
vλ)(s) + λDv(s), (B.36)

where s ∈ Γ(E), λ ∈ Γ(E∗) and v is some vector field on M . Now that we have a connection D∗

on E∗, we define a connection2 on End(E) ∼= E ⊗ E∗,

(D ⊗ D∗)v(s ⊗ s∗) = (Dvs) ⊗ s∗ + s ⊗ (D∗
vs

∗). (B.37)

One can go further and see what a connection D on End(E) actually looks like,

(DvT )(s) = Dv(T
i
jei ⊗ ej)(s)

= v(T i
j )(ei ⊗ ej)(s) + T i

jDv(ei ⊗ ej)(s)

= v(T i
j )eis

j + T i
j (Dvei)s

j + T i
jei ⊗ D∗

v(e
j)(s)

= v(T i
j )eis

j + T i
j (Dvei)s

j + T i
j (eiv(sj) − ei ⊗ ej(Dv(s)))

= v(T i
j )eis

j + T i
jDv(s

jei) − T i
jei ⊗ ej(Dv(s))

= Dv(T
i
js

jei) − T (Dvs)

= Dv(Ts) − T (Dvs).

So, the connection D on End(E) is

(DvT )(s) = Dv(Ts) − T (Dvs). (B.38)

Now, we define an exterior covariant derivative on an End(E)-valued form T ⊗ w just as we did
with E-valued forms,

dD(T ⊗ w) = dDT ⊗ w + T ⊗ dw, (B.39)

where (dDT )(v) = DvT . Locally,

dD(T ⊗ w) = DµT ⊗ dxµ ∧ w. (B.40)

Let us see how dD acts on a wedge product between an End (E)-valued p-form w = TI ⊗ dxI

and an (E)-valued form µ = sJ ⊗ dxJ , with D a connection on E,

dD(w ∧ µ) = dD((TI ⊗ dxI) ∧ (sJ ⊗ dxJ))

= dD(TIsJ ⊗ dxI ∧ dxJ)

= Dµ(TIsJ) ⊗ dxµ ∧ dxI ∧ dxJ

= ((DµTI)sJ + TIDµsJ) ⊗ dxµ ∧ dxI ∧ dxJ

= (DµTI ⊗ dxµ ∧ dxI) ∧ (sJ ⊗ dxJ) + (−1)p(TI ⊗ dxI) ∧ (DµsI ⊗ dxµ ∧ dxJ)

= dDw ∧ µ + (−1)pw ∧ dDµ. (B.41)

We have made an abuse of language when calling also D to the connection acting on TI , which is
a section of End(E), from the forth equality above.

2Actually, this is valid for any product E ⊗ E′, where E′ is another vector bundle over M .
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Let us prove Bianchi identity: dDF = 0. On one hand, d 3
Dη = d2

D(dDη) = F ∧ dDη, for any
E-valued form η. On the other hand,

d 3
Dη = dD(d 2

Dη)

= dD(F ∧ η)

= dDF ∧ η + F ∧ dDη,

so, since this is valid for any η,
dDF = 0. (B.42)

So far we have defined the wedge product of End(E)-valued forms with E-valued forms. Here
we define the wedge product of an End(E)-valued form S ⊗ w and another one T ⊗ µ,

(S ⊗ w) ∧ (T ⊗ µ) := ST ⊗ w ∧ µ. (B.43)

Similar to (B.41), we have for an End(E)-valued p-form w and an End(E)-valued form µ,

dD(w ∧ µ) = dDw ∧ µ + (−1)pw ∧ dDµ. (B.44)

Let us define the graded commutator between an End(E)-valued p-form w and an End(E)-
valued q-form µ,

[w, µ] := w ∧ µ − (−1)pqµ ∧ w = −(−1)pq[µ, w]. (B.45)

Let su consider the case where E admits a flat connection D0. This happens for all trivial
bundles, so D0 exists at least locally. We define

d := dD0 , (B.46)

for the exterior covariant derivative of E-valued or End(E)-valued forms with respect to the
connection D0. Note that, although an abuse of notation, it has some sense since d2 = 0, just
as the exterior derivative of ordinary differential forms. Given any connection D on E, it can be
written as D0 + A, so let us prove that if w is an E-valued form, then dDw = dw + A ∧ w,

dDw = DµwI ⊗ dxµ ∧ dxI

= (D0
µ + Aµ)wI ⊗ dxµ ∧ dxI

= dw + A ∧ w.

Likewise, for η = ηI ⊗ dxI an End(E)-valued p-form, we can prove that dDη = dη + [A, η]:

dDη = [Dµ, ηI ] ⊗ dxµ ∧ dxI

= [D0
µ + Aµ, ηI ] ⊗ dxµ ∧ dxI

= dη + A ∧ η − ηIAµ ⊗ dxµ ∧ dxI

= dη + A ∧ η − (−1)pη ∧ A

= dη + [A, η].

Let us prove a useful identity, [A, A ∧ A] = 0:

[A, A ∧ A] = A ∧ (A ∧ A) − (A ∧ A) ∧ A = 0, (B.47)
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because of the property of associativity that enjoys the product of End(E)-valued forms.
We had already seen that d 2

Dw = F ∧ w for some E-valued form w. If one computes this
quantity again, but using the result (B.47), one gets,

d,2
Dw = (dA + A ∧ A) ∧ w, (B.48)

so this looks like one can say,
F = dA + A ∧ A. (B.49)

This is indeed the case: if one writes this in components, recovers (B.28). The Bianchi identity
can be again recovered using (B.49) and (B.47).

Now let us see how the curvature transforms under gauge transformations,

F ′(u, v)(s) = D′
uD′

vs − D′
vD

′
us − D′

[u,v]s

= g(DuDv − DvDu − D[u,v])(g
−1s)

= gF (u, v)g−1s,

so
F ′ = gFg−1. (B.50)

This product is well defined: one should think of the gauge transformations as End(E)-valued
0-forms. It not difficult to show the following results: if η is an E-valued form, then

dD′η = gdD(g−1η). (B.51)

If T is a section of End(E), then

D′
vT = Ad(g)Dv(Ad(g−1)T ), (B.52)

where Ad(g)T = gTg−1. Finally, if η is an End(E)-valued form, then

dD′η = Ad(g)dD(Ad(g−1)η). (B.53)

To end this subsection, let us define a trace of End(E) as a linear map tr : End(E) → R such
that,

tr(v ⊗ λ) := λ(v), (B.54)

so if T is a section of End(E), then

tr(T ) = T i
j tr(ei ⊗ ej) = T i

i , (B.55)

so we get the usual trace. This naturally defines a function tr:M → R. Even more, we can define
the trace of an End(E)-valued form, which is an ordinary form, like this,

tr(T ⊗ w) = tr(T )w. (B.56)



Appendix C

Notions of gauge theories

What a variation means in differential geometry

We will be interested in taking variations with respect to a vector potential, so let us define
what this means. A plausible transformation of the vector potential A is adding to it s times an
End(E)-valued 1-form δA,

As = A + sδA. (C.1)

If Z is a function of the vector potential A, then its variation is defined by,

δZ :=
d

ds
Z(As)

∣∣∣
s=0

. (C.2)

When we say δZ = 0, we mean that this variation vanishes for all δA.

Yang-Mills acion

The Yang-Mills action is,

SY M [A] =
1

2

∫

M
tr(F ∧ ⋆F ), (C.3)

where ⋆ is the Hodge dual1. We explicitly say that this action is a function of the vector potential
because F depends on the connection D, and we can sweep all of them by choosing a fixed
connection D0 and adding to it every End(E)-valued 1-form A. So the vector potential can be
thought of being the actual dynamical field.

In order to calculate the variation of the Yang-Mills action, we need to know first several
things. For example, the variation of the curvature, so we point towards that direction. We saw
that if D0 is the flat connection, then F = dA + A ∧ A. But if the bundle does not admit a flat
connection, we need a more general formula for F . Let us suppose that D0 is some connection
(not necessarily flat) and call d0 its exterior covariant derivative. Then,

d2
0w = F0 ∧ w, (C.4)

1Here the star operator acts on an End(E)-valued 2-form, so this is defined as the Hodge dual acting
on the differential 2-form sector, not seeing the End(E)-valued section.

85



86

for any (E)-valued form w and F0 being the curvature of D0. On the other hand, d2
Dw = F ∧ w.

So let us keep this in mind, and recalculate d2
Dw,

d2
Dw = dD(d0w + A ∧ w)

= d0(d0w + A ∧ w) + A ∧ (d0w + A ∧ w)

= F0 ∧ w + (d0A + A ∧ A) ∧ w.

This, although not rigorously, says that,

F = F0 + d0A + A ∧ A. (C.5)

Now, let us take the variation of F ,

δF =
d

ds
(F0 + d0As + As ∧ As)

∣∣
s=0

= d0

(
d

ds
As

)
+

d

ds
As ∧ A + A ∧ d

ds
As

∣∣
s=0

= d0δA + δA ∧ A + A ∧ δA

= d0δA + [A, δA]

= dDδA.

So the variation of the curvature equals the exterior covariant derivative of the variation of the
vector potential.

Let us now prove some useful results about the trace of End(E)-valued forms that we will
soon use to get the variation of the Yang-Mills action.

1- If w and µ are End(E)-valued p- and q-forms, respectively, then tr(w∧µ) = (−1)pqtr(µ∧w):

tr(w ∧ µ) = tr(wIµJ) ⊗ dxI ∧ dxJ

= tr(µJwI) ⊗ dxI ∧ dxJ

= (−1)pqtr(µJwI) ⊗ dxJ ∧ dxI

= (−1)pqtr(µ ∧ w).

This property is called the graded cyclic property and in the second step we used the com-
mutativity of elements of End(E) inside the trace.

2- With w and µ of the item before, it holds that tr([w, µ]) = 0: one just has to use item 1
and the linearity of the trace.

3- Let D be a connection on E. If w is an End(E)-valued form, then tr(dDw) = dtr(w):

tr(dDw) = tr([Dµ, wI ]) ⊗ dxµ ∧ dxI .
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To continue, let us show how [Dµ, wI ] acts on a section s of E,

[Dµ, wI ](s) = (Dµwa
Ibea ⊗ eb − wa

Ibea ⊗ ebDµ)(s)

= Dµwa
Ibs

bea − wa
Ibeas

b
,µ − wa

Ibea ⊗ ebAc
µds

dec

= wa
Ib,µsbea + wa

Ibs
b
,µeA + wa

Ibs
bAc

µaec − wa
Ibs

b
,µea − wa

IbA
b
µcs

cea

=
(
wa

Ib,µ + wc
IbA

a
µc − wa

IcA
c
µb

)
ea ⊗ eb (s)

Now let us go on from where we left,

tr(dDw) =
(
wa

Ib,µ + wc
IbA

a
µc − wa

IcA
c
µb

)
tr(ea ⊗ eb) ⊗ dxµ ∧ dxI

= wa
Ia,µ ⊗ dxµ ∧ dxI

= d(tr(wI) ⊗ dxI)

= dtr(w),

where d is the ordinary exterior derivative. This identity allows to “commute” the trace
and the exterior covariant derivative.

4- Let M be an n-dimensional oriented manifold, and w and µ as usual with p + q + 1 = n,
then ∫

M
tr(dDw ∧ µ) = (−1)p+1

∫

M
tr(w ∧ dDµ). (C.6)

One just has to use the last result and to integrate by parts.

5- As in the last point, but with p = q, then holds,

∫

M
tr(w ∧ ⋆µ) =

∫

M
tr(µ ∧ ⋆w). (C.7)

To prove it, just use the cyclic property of the trace and the identity dΩ = dxI ∧ ⋆dxJ =
dxJ ∧ ⋆dxI , where dΩ is the volume form.

We are now in position of computing the equations of motion of Yang-Mills theory,

δSY M =
1

2
δ

∫

M
tr(F ∧ ⋆F )

=
1

2

∫

M
tr(δF ∧ ⋆F + F ∧ ⋆δF )

=

∫

M
tr(dDδA ∧ ⋆F )

=

∫

M
tr(δA ∧ dD ⋆ F ).
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Chern-Simons theory

As me do not want a theory with some fixed given metric, we would like to cook a lagrangian that
only depends on the connection (or the vector potential). The easy guess would be,

S(A) =

∫

M
tr(Fn), (C.8)

but is easy to see that it gives a trivial equation of motion,

tr(dDFn−1) = 0, (C.9)

satisfied always by means of the Bianchi identity. Not useful as an action, it is a simple (or
not) example of a bundle invariant, since its vanishing variation with respecto to A says that the
integral of the nth-Chern form,

∫
M tr(Fn), is independent of the connection! In other words, given

some bundle E, you can take any connection on E to compute the integral of the nth-Chern form.

Let us talk a bit about the Chern forms. First of all, they are closed, which can be seen using
the item 3 result in the previous section and the Bianchi identity. This means that the kth Chern
form defines a cohomology class in H2k(M), [tr(F k)]. Now, although the Chern form depends on
A, its cohomology class does not, it changes by an exact form:

δtr(F k) = ktr(δF ∧ F k−1)

= ktr(dDδA ∧ F k−1)

= ktr(dD(δA ∧ F k−1))

= kdtr(δA ∧ F k−1)

We can compute the difference between two Chern forms given by different connections. Say A′

is a vector potential with curvature F ′, δA = A′ − A, As = A + sδA, and Fs the curvature of As,
then,

trF ′k − trF k =

∫ 1

0

d

ds
tr(F k

s )ds

= k

∫ 1

0
ds tr(

d

ds
Fs ∧ F k−1

s )

= k

∫ 1

0
ds tr(dDδA ∧ F k−1

s + 2sδA2 ∧ F k−1
s )

= k

∫ 1

0
ds dtr(δA ∧ F k−1

s ) + k

∫ 1

0
ds tr(δA ∧ dDF k−1

S ) + 2ks

∫ 1

0
ds tr(δA2 ∧ F k−1

s )
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Let us work on the second term of the RHS:

k

∫ 1

0
ds tr(δA ∧ dDF k−1

S ) = k

∫ 1

0
ds tr(δA ∧ (dF k−1

s + [A, F k−1
s ]))

= k

∫ 1

0
ds tr(δA ∧ (−[As, F

k−1
s ] + [A, F k−1

s ]))

= k

∫ 1

0
ds tr(δA ∧ [−sδA, F k−1

s ])

= −sk

∫ 1

0
ds tr(δA ∧ (δA ∧ F k−1

s − F k−1
s ∧ δA))

= −sk

∫ 1

0
ds tr(δA2 ∧ F k−1

s − (−1)δA2 ∧ F k−1
s )

= −2sk

∫ 1

0
ds tr(δA2 ∧ F k−1

s ),

so we finally get,

trF ′k − trF k = d

(
k

∫ 1

0
ds tr(δA ∧ F k−1

s )

)
. (C.10)

Therefore, we can define the kth-Chern class ck(E) of the vector bundle E to be the cohomlogy
class of tr(F k), where F is the curvature of any connection on E. Actually, it can be shown that

(i/2π)k

k!
tr(F k) (C.11)

is an integral class, meaning that its integral over a compact and orientable manifold M is an
integer.

Now, the Chern-Simons form is a (2k − 1)-form whose exterior derivative gives the kth-Chern
form. This is well defined only locally, of course. For example, take (C.10), with A = F = 0, and
now call A′ = δA := A, then

tr(F k) = d

(
k

∫ 1

0
ds tr(A ∧ F k−1

s )

)
. (C.12)

For a 3-dimensional theory (dim(M) = 3), we want the Chern-Simons form to be a 3-form, so
k = 2,

tr(F 2) = d

(
2

∫ 1

0
ds tr(δA ∧ Fs)

)
= dtr(A ∧ dA +

2

3
A3), (C.13)

so the Chen-Simons form, in three dimensions, is

LCS(A) = A ∧ dA +
2

3
A3. (C.14)

The three dimensional Chern-Simons theory is defined as

SCS(A) =

∫

M
tr(LCS(A)). (C.15)
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The variation of this action is easily computed and gives,

δSCS = 2

∫

M
tr(δA ∧ F ), (C.16)

so flat connections are the ones which solve the equations of motion. For other odd dimensions,
dim(M) = 2k − 1, the variation of the Chern-Simons action is,

δSCS = k

∫

M
tr(δA ∧ F k−1). (C.17)

The Chern-Simons action is not gauge invariant. If we compute the action for the gauge
transformed vector potential A′ = g−1dg + g−1Ag, we get,

LCS(A′) = LCS(A) − 1

3
tr((g−1dg)3) + dtr(dgg−1A). (C.18)



Appendix D

Many AdS3 black holes living in
harmony

The discovery of Bañados, Teitelboim and Zanelli triggered the search for other black hole solutions
in AdS3 gravity. What it was found later is that one can construct spacetimes with many BTZ
black holes coexisting, thanks to the absence of gravitational waves which would make them
interact [59, 60, 61].

In order to briefly sketch how to construct these multi-black hole solutions, let us first present
another way to obtain the BTZ black hole from initial data. Consider the surface x0 = t = 0
on AdS3 as the “initial data” surface (with x3 > 0) in (1.6), which has zero extrinsic curvature
and then also has negative constant curvature: it is the hyperbolic space H2. This space can be
projected on x3 = ℓ by an stereographic projection with “North pole” at x3 = −ℓ, and one gets
the Poincar disk,

ds2 =

(
1

1 − r2

)2

(dx2 + dy2), r2 =
x2 + y2

4ℓ2
, (D.1)

which is an Euclidean geometry of constant negative curvature. Every geodesic in this space is
an arc of circle that intersects the boundary at right angles. The curves φ = 0 and φ = 2π are
geodesics and the interior the interior region they define makes for the initial geometry of the
BTZ black holes, once one has identified this two geodesics, The identification of the geodesics
permits the idea of folding the diagram making it a three-dimensional image, like a cigar, where
the horizon line in Figure D.1 becomes a circle.

Now, to describe in a nutshell how to construct a geometry with many BTZ black holes
coexisting in harmony, we proceed pictorially based on Figure D.1. The idea is to have many
disconnected boundaries each of them identical to the boundary of the BTZ black hole. In Figure
D.2 the initial surface corresponding to three BTZ black holes is shown. If one would like to
draw a three-dimensional picture when the identifications are performed, then the result would
be a trinion or pant, as the one used in [128], which is a genus-zero Riemann surface with three
punctures. Each of these punctures represents a horizon. The asymptotic regions cannot be
embedded in flat space so this kind of visualization is only valid from the origin to the position of
the horizons.
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Figure D.1: Picture of the procedure to obtain the initial surface of the BTZ black hole.
The disk is the Poincaré disk. The two arcs of a circle that intersect the boundary of
the disk are the geodesics to be identified (as shows the double thin arrow). The region
between the geodesics and the dotted lines are eliminated and remains the interior between
the geodesics. The horizon and the asymptotic region are also shown.

Figure D.2: Picture of the procedure to obtain the initial surface of the three-BTZ black
holes-spacetime. The disk is the Poincaré disk. Now there are three asymptotic regions and
three geodesics to be identified. Only one horizon is shown, although there are two other
horizons joining the other geodesics.



Appendix E

3D curvature from parallel transport

The Riemann curvature of the three-dimensional 0-brane described in Section 4.2 can be obtained
from parallel transport of a Lorentz vector V a around the point r = 0. The equation of parallel
transport along B(r) = Const. reads,

(DV )c =
(
∂φV c + ωcd

φ Vd

)
dφ = 0 , (E.1)

or in components,

0 = ∂φV 0 +
bB

ℓ
V 1 ,

0 = ∂φV 1 +
bB

ℓ
V 0 − a

ℓ

√
B2 + ℓ2 V 2 , (E.2)

0 = ∂φV 2 +
a

ℓ

√
B2 + ℓ2 V 1 .

The most general solution to these equations has the form,

V 0(φ) =
Bb

ℓΩ
(β cosΩφ − α sin Ωφ) +

a

bB

√
B2 + ℓ2γ ,

V 1(φ) = α cosΩφ + β sin Ωφ , (E.3)

V 2(φ) =
a

ℓΩ

√
B2 + ℓ2 (β cosΩφ − α sin Ωφ) + γ ,

where the angular frequency is,

Ω2(r) =
a2 − b2

ℓ2
B2 + a2 =

r2

ℓ2
+ a2 + b2 . (E.4)

If the transport starts in the point φ = 0 with the vector V̄ a, the integration constants are,

α = V̄ 1 ,

β =
1

ℓΩ

(
−bBV̄ 0 + a

√
B2 + ℓ2V̄ 2

)
, (E.5)

γ =
bB

ℓ2Ω2

(
a
√

B2 + ℓ2V̄ 0 − bBV̄ 2
)

.
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After moving along the circle and returning to the initial point, the vector becomes,

V c(2π) = Sc
d V̄ d , (E.6)

where the transformation matrix, in the limit r → 0, reads,

S =




1 + b4

a4−b4
(1 − cos θ) − b2√

a4−b4
sin θ − a2b2

a4−b4
(1 − cos θ)

− b2√
a4−b4

sin θ cos θ a2√
a4−b4

sin θ
a2b2

a4−b4
(1 − cos θ) − a2√

a4−b4
sin θ 1

a4−b4

(
−b4 + a4 cos θ

)


 . (E.7)

We have introduced the angle,

θ := lim
r→0

2πΩ = 2π
√

a2 + b2 . (E.8)

In the static case (b = 0), we have θ0 = 2πa0 and,

Sstatic =




1 0 0
0 cos θ0 sin θ0

0 − sin θ0 cos θ0


 = eθ0J12 . (E.9)

A non-trivial curvature appears due to the static current,

Sstatic = e−
∫

jstatic ,

∫
jstatic = −2πa0 J12 . (E.10)

In the rotating case (b 6= 0), in analogy to the static case, we can rewrite the matrix S as a
composition of the 12-rotation and 02-boost,

S = eηJ02 eθJ12 e−ηJ02 , (E.11)

with the angles,

θ := lim
r→0

2πΩ = 2π
√

a2 + b2 , (E.12)

tanh η := lim
r→0

bB

a
√

B2 + ℓ2
=

b2

a2
. (E.13)

Again, a spinning brane is obtained from the static one after applying the Lorentz boost,

eηJ02 =




cosh η 0 sinh η
0 1 0

sinh η 0 cosh η


 . (E.14)

The non-trivial curvature (S 6= 1) generated by the spinning source becomes explicit now as,

S = e−
∫

jcurvature . (E.15)

Because the generators J12 and J02 do not commute, [J12, J02] = J01, we apply the Baker-
Campbell-Hausdorff formula,

eηJ02eθJ12e−ηJ02 = eθ(J12 cosh η−J01 sinh η) , (E.16)
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and we obtain the source as,

∫
jcurvature = θ (−J12 cosh η + J01 sinh η)

=
2π√

a2 − b2

(
−a2J12 + b2J01

)
. (E.17)

We have then reproduced the Riemannian piece of the curvature (4.35). Anyway, this analysis
is incomplete because the full source contains a torsional piece as well, j = jcurvature + jtorsion.



Appendix F

BPS branes in 2+1 dimensions

The supersymmetric extension of the AdS group in three dimensions, with N = p+q supersymme-
tries, is OSp(p|2)×OSp(q|2) [1, 16] with the corresponding algebra generators GK =

{
G+

K , G−
K

}
.

The connection 1-form can be written as,

A = AKGK = A+ + A− , (F.1)

where

A± =

(
ω a ± 1

ℓ
e a

)
J±

a +
1

2
bIJ
± T±

IJ + ψI
±α Q±α

I . (F.2)

Here {T+
IJ , T−

I′J ′} generate the O(p)×O(q) subgroup. The corresponding field strength also splits
as F = F+ + F−, with

F± =

(
Ra ± 1

ℓ
T a +

1

2ℓ2
ǫa

bc eb ∧ ec

)
J±

a +
1

2
FIJ
± T±

IJ + spinors , (F.3)

the curvature being given by Ra = 1
2 ǫabc Rbc = dωa + 1

2ǫabcωb ∧ ωc.

We seek for a bosonic configuration (ψ± = 0) that possesses non-trivial supersymmetries
ε = ε+ + ε− = ε+α

I Q+I
α + ε−α

I′ Q−I′
α , so that the spinor ε is a solution of the Killing spinor

equation,

Dε :=
(
D+ε+

) α

I
Q+I

α +
(
D−ε−

) α

I′
Q−I′

α = 0 .

Each term must be zero independently, so we have

D±ε± =

[
d − 1

2
(ωa ± 1

ℓ
ea)Γa + b±

]
ε± = 0 , (F.4)

where b± is a square matrix with components (b±)K
L (the components of the o(p) or o(q) gauge

fields), and Γa are Dirac matrices. The term b±ε± means (b±ε±)I
α = (b±)I

Jε±J
α .

The AdS connection in the region around the brane is locally flat, F± = 0. This means that
the torsion must vanish and the metric is that of a locally AdS spacetime. The only effect of
the presence of the brane is in the topology of the region around it. Next, the conditions for the
geometry to admit a global Killing spinor in the presence of the defect will be analyzed.
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N = 1 supersymmetry

The minimal supersymmetry, N = 1, is described by the super AdS algebra osp(1|2) with (p, q) =
(1, 0) or (0, 1), so the b± are absent, and only one gravitino, either ψ+ or ψ−, is present, and
consequently, either Q+ or Q− is included. Suppose the supersymmetry generator is Q+; then,
the Killing spinor is ε = ε+ Q+ and equation (F.4) must be solved for the + choice only.

The ansatz for the metric of a static three-dimensional 0-brane displayed in (4.3,4.4) can be
described by the vielbein ea and the spin connection ωa ≡ 1

2εa
bc ωbc, at r 6= 0, as

e0 = Adφ03 , e1 =
ℓ

A
dB , e2 = B dφ12 ,

ω0 = −A

ℓ
dφ12 , ω1 = 0 , ω2 =

B

ℓ
dφ03 ,

where A2 − B2 = ℓ2, B = r/a0, φ12 = a0φ, and φ03 = a0 t/ℓ. We want to solve the Killing spinor
equation (F.4) for ε+ = ε+α

I Q+I
α ≡ ε+Q+. In Chern-Simons AdS3 supergravity, considering the

gauge connection A describing only the 0-brane (i.e., without additional O(p)×O(q) gauge fields
switched on),

Dε+ =

[
d − 1

2

(
ωa +

1

ℓ
ea

)
Γa

]
ε+ = 0 . (F.5)

Here, Γa are three-dimensional Γ-matrices and, for simplicity, we choose only one of the two
inequivalent representation of Γ-matrices, with c = 1. In our notation, ǫ012 = 1.

The radial component of the Killing spinor equation,

Drε
+ =

(
∂r −

1

2a0A
Γ1

)
ε+ = 0 , (F.6)

has the general solution,

ε+ = ef(r)Γ1 ξ+(t, φ) , (F.7)

where ξ+ is a spinor and,

f(r) =
1

2

∫ r/a0

0

dr′√
r′2 + a2

0ℓ
2

=
1

2
sinh−1

(
r

a0ℓ

)
. (F.8)

The two remaining components of the Killing equation (F.5) are,

[
∂φ − a0

2ℓ
e−2fΓ1(A + B Γ1) Γ0

]
ξ+ = 0 , (F.9)

[
∂t −

a0

2ℓ2
e−2fΓ1(A + B Γ1) Γ0

]
ξ+ = 0 . (F.10)

It turns out that f(r) satisfies the identities,

ℓe±2fΓ1 = A ± B Γ1 , (F.11)

and therefore,

e∓2fΓ1 (A ± B Γ1) = ℓ . (F.12)
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Thus, the general solution of (F.9)-(F.10) reads ξ+ = e
1

2
a0 Γ0(φ+ t

ℓ) η+, and,

ε+ = ef(r)Γ1 e
1

2
a0 Γ0(φ+ t

ℓ) η+ . (F.13)

Here, η+ is a constant spinor that can always be chosen as an eigenvector of the matrix Γ0, for
instance,

Γ0 η+ = iη+ . (F.14)

The Killing spinor ε+ has to be globally single-valued, that is, it must be either periodic or
antiperiodic under rotations by 2π: ε+(φ + 2π) = ±ε+(φ). This is satisfied by (F.13) provided
the topological defect is quantized,

a0 = n ∈ Z . (F.15)

Because α0 ∈ (0, 1], one must have n = 1, that corresponds to global AdS3 (remember that a0 is
defined modulo the sum of integers, so n = 1 is equivalent to a0 = 0). We conclude that purely
gravitational static 0-branes in three-dimensional N = 1 CS supergravity with all additional
matter fields switched off do not admit Killing spinors (they are not BPS states). This means
that there are no globally defined Killing spinors except in the known cases (M = 0,−1), as
reported in [129].

N = 2 supersymmetries

N = 2 supersymmetries occur for (p, q) = (1, 1), (2, 0), and its symmetric reflection, (0, 2). The
case (p, q) = (1, 1) admits the Killing spinor ε = ε+ Q+ + ε− Q−, where ε+ is,

ε+ = ef(r)Γ1 e
1

2
ia0(φ+ t

ℓ) η+ , (F.16)

and similarly, for the (0, 1) spinor ε = ε− Q−, one obtains

ε− = e−f(r)Γ1e−
1

2
ia0(φ+ t

ℓ)η− , (F.17)

as is seen from the case N = 1 previously discussed. Again, this implies a0 = 1.
In the case (p, q) = (2, 0), the algebra contains a generator of o(2) that (modulo reflections)

acts as u(1). The corresponding Abelian field, b, introduces an additional charge in one of the
two copies (say, ε+). In this representation, (b+)I

J := −b σI
J , where

σ =

(
0 1
−1 0

)
. (F.18)

The CS field equations around the source are F± = 0, where the curvatures read

(
F+

) J

I
= δ J

I

(
Ra +

1

ℓ
T a +

1

2ℓ2
εa

bce
b ∧ ec

)
J+

a − 1

2
db σ J

I , (F.19)

(
F−) J

I
= δ J

I

(
Ra − 1

ℓ
T a +

1

2ℓ2
εa

bce
b ∧ ec

)
J−

a . (F.20)

Therefore, the geometry is locally AdS and torsion-free as in the previous case, and db = 0. The
last condition enables us to write the 1-form b locally as b = dΩ. Globally, this is much more
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interesting than being a trivial connection, since Ω could be multivalued (like the angle φ12 itself),
allowing for different topological sectors for b, labelled by the winding number. This provides the
basics to find a non-trivial Killing spinor charged with respect to b, producing a Aharonov-Bohm
phase that cancels the contribution of the spin connection [130, 131]. Thus, a Killing spinor
ε = ε+

I Q+I satisfies

dε+
I − 1

2

(
ωa +

1

ℓ
ea

)
Γa ε+

I − dΩ σ J
I ε+

J = 0 . (F.21)

Choosing Ω = q φ12, only one component of the Killing equation receives a correction when
compared with its form for b = 0,

(
∂φ12

− 1

2
Γ0 − q σ

)
ε+ = 0 . (F.22)

The solution is,

ε+
I = ef(r) e

i
2ℓ

a0t + i
2

a0(1+2q)φ η+
I , (F.23)

where we have used φ12 = a0φ and that η+
I is a constant simultaneous eigenspintor of σ and Γ0,

σ J
I η+

J = iη+
I , (Γ0)

α
β (η+

I )β = i(η+
I )α . (F.24)

The (anti-)periodic boundary condition ǫ+(φ + 2π) = ±ǫ+(φ) requires the U(1) charge to be
quantized,

a0 (1 + 2q) ∈ Z . (F.25)

Note that this extremality condition perfectly matches that obtained by Izquierdo and Townsend
(after replacing a0 → β and a0 q → Q in their eq.(3.5)) [78]. Therefore, for a given topological
defect a0 ∈ (0, 1], all charges given by q = k

2a0
− 1

2 , k ∈ Z satisfy the BPS condition. Conversely,
if the U(1) charge is fixed, there are several possible values for angular defect given by

0 < a0(q, k) =
k

2q + 1
< 1 , k ∈ Z . (F.26)

Note that for a given value of q, the number of allowed values for a0 increase with |q|.
We conclude that non-trivial Killing spinors exist for these choices of q and a0, and the corre-

sponding 0-branes should be stable BPS configurations. Each matrix condition in (F.24) projects
out 1/2 of the spinor components, so the final solution preserves 1/4 of the original supersym-
metries; a 1/4-BPS state. There is a single unbroken supercharge in the solution. Obviously, the
same is true for (p, q) = (0, 2), just replacing + by − in the preceding discussion.

The current that describes this 0-brane couples to the geometry and to the U(1) field. The
gravitational part of the current is given by Eq.(4.1). Additionally, the U(1) charge of the brane
couples to b. The form of this contribution can be found from the Abelian gauge field, b = q dφ12

(that carries an electromagnetic flux given by the integral of q ddφ12 = 2πa0 q δ(Σ12)), so the total
current is,

j[0] = −2πa0

(
J12 − qT 12

+

)
δ(Σ12) . (F.27)

The presence of the o(2) R-symmetry field b is responsible for stabilizing the 0-brane: the conical
defect in the spatial section is compensated by the U(1) charge in the internal gauge space [130,
131].
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N = p + q supersymmetries

For the osp(p|2) × osp(q|2) superalgebra, the brane solution is again locally flat, F = 0, namely,
locally AdS geometry, torsion-free, and has a flat R-connection dbI

(±)J + bI
(±)K ∧ bK

(±)J = 0,

AAdS = 0-brane , bIJ
± : locally flat , (F.28)

where the 0-brane is given by Eqs. (4.3, 4.4). The connection b has the general form b = g−1dg
(where g belongs to O(p) × O(q)), but here we consider a particular Abelian choice of this form
in the Cartan subalgebra of o(p)× o(q), such that dbI

(±)J = 0, and bI
(±)K ∧ bK

(±)J = 0. The Cartan
subalgebra is spanned by

{
T+

12, T
+
34, . . . , T

+
2[ p

2
]−1,2[ p

2
]
; T−

12, T
−
34, . . . , T

−
2[ q

2
]−1,2[ q

2
]

}
.

This means that we can take the matter connection as b = −T dφ12, with T a linear combination of
some Cartan generators, say k+ +k− of them, with k+ ≤ [p/2] and k− ≤ [q/2], and the coefficients
represent the corresponding charges q±k . Explicitly,

T = T+ + T− , (F.29)

where

T± =

k±∑

k=1

q±k T±
2k−1,2k . (F.30)

Thus, the connection and the source for this configuration read

A = AAdS + T dφ12 , (F.31)

j[0] = −2πa0 (J12 − T ) δ(Σ12) . (F.32)

For the Killing spinors, we already know that when k+ = k− = 0, there is no solution apart from
the global AdS space, whereas for k+ or k− 6= 0 (say, k+ = 1), the system resembles the N = 2
case, and a Killing spinor of the type (F.23) exists for a0 (1 + 2q+

1 ) ∈ Z.
The φ12-component of the Killing spinor ε± equation (F.4) reads


∂φ12

− 1

2
Γ0 −

k±∑

k=1

q±k τ±
2k−1,2k


 ε± = 0 , (F.33)

and has the general lowest supersymmetry preserving solution

ε± = exp



±f(r) ± i

2ℓ
a0t ±

i

2
a0


1 +

k±∑

k=1

q±k


φ



 η± . (F.34)

The constant spinors η± are chosen such that

(Γ0)
α
β η±β

I = iη±α
I , (F.35)

(
τ±
2k−1,2k

)J

I
η±J = iη±I , k = 1, . . . , k± . (F.36)
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This gives raise to p−k+ (q−k−) independent components. The boundary condition ε(φ+2π) =
±ε(φ) leads to the condition on the charges

a0

(
1 + q+

12 + · · · + q+
k+−1,k+

)
∈ Z , (F.37)

a0

(
1 + q−12 + · · · + q−k−−1,k−

)
∈ Z . (F.38)

Notice that each projection in (F.36) effectively acts on a two-dimensional subspace because it
corresponds to an Abelian rotation inside the Cartan subgroup of osp(p|2)×osp(q|2). Thus, at the
beginning, there were N = p + q (real two-component) spinors, and k+ + k− Abelian projections
leave N−(k−+k+) vectorial components unchanged. Furthermore, the spinorial projection (F.35)
breaks a half of supersymmetries, that finally gives [N − (k− + k+)] /2 supercharges.

So far, we have shown that the three-dimensional spacetime containing a 0-brane admits a
globally defined Killing spinor, by explicitly constructing it. This should be sufficient to guarantee
this geometry to be a stable vacuum for supersymmetric theories with different values of N . The
supersymmetry algebra establishes a lower bound for the energy, which is saturated by the vacuum
configuration. Thus, it is possible to assert the stability of the purely bosonic configuration by
just checking that a Killing spinor can exist in that background.

The only missing link in this proof of stability is that we have not shown the charges that
satisfy the supersymmetry algebra to be defined for this configuration. In fact, the charges that
generate the symmetry (super) group should be finite and satisfy the right Poisson algebra in the
phase space of the theory.

In 2 + 1 dimensions, it is rather straightforward to check that the canonical charges satisfy
the algebra of the supersymmetric extension of the AdS group, that is the super Virasoro algebra
[129, 132, 133]. Since there is not much difference in the construction for naked singularities and
for the standard black holes, we will not devote more lines to this discussion here. However,
in the five-dimensional case, where BPS co-dimension two-branes where constructed in [13], the
construction of the charges and the establishment of the energy lower bound need to be explicitly
carried out. This was done in [13].



Appendix G

A new massive gravity

In [31], Bergshoeff, Hohm and Townsend proposed a new theory of gravity in three dimensions
which has certain similarities with TMG. In this thesis focus was not put on the theory of [31],
so here we shall review its most important features for completeness.

This new massive gravity (NMG) is defined by the action,

S =
1

16πG

∫
d3x

√−g

[
R − 2λ − 1

m2

(
RµνR

µν − 3

8
R2

)]
. (G.1)

The associated field equations read,

Rµν − 1

2
Rgµν + λgµν − 1

2m2
Kµν = 0, (G.2)

where,

Kµν = 2¤Rµν − 1

2
∇µ∇νR − 1

2
¤Rgµν + 4RµανβRαβ

− 3

2
RRµν − RαβRαβgµν +

3

8
R2gµν . (G.3)

This tensor Kµν satisfies the property that,

gµνKµν = RµνR
µν − 3

8
R2, (G.4)

saying that its trace is equal to the Lagrangian where it comes from, after variation with respect
to the metric field.

NMG is a fourth-order theory of gravity in three dimensions, with the important feature that
it is unitary at the linear level, since its linearized equations of motion reduce to those of Fierz-
Pauli for a spin-two massive particle. As TMG, it admits any locally AdS3 solution provided its
radius l satisfies,

l2 = − 1

2λ

(
1 ±

√
1 − λm−2

)
. (G.5)

The central charge computed from the canonical realization of asymptotic symmetries for Brown-
Henneaux boundary conditions is given by,

c =
3l

2G

(
1 − 1

2m2l2

)
, (G.6)
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which certainly reduces to the Brown-Henneaux central charge c = 3l/2G in the limit m → ∞.
Since there is no parity-violating term in the action, the left and right central charges coincide.

Similar to the case of TMG, the space of solutions of NMG is much reacher than that of pure
gravity, admitting solutions such as BTZ black holes, warped AdS geometries [32] and AdS-waves
[33, 34]. Also, there are black hole geometries [35, 36] that satisfy the equations of motion but
are not asymptotically AdS3 in any sense. Their asymptotic behavior is that of a ‘Lifshitz metric’
[37],

ds2 = −r2z

l2z
dt2 +

l2

r2
dr2 +

r2

l2
dx2. (G.7)

These kind of geometries can be found in different theories of arbitrary dimension and are be-
lieved to be good candidates to holographically describe the dynamics of Lifshitz fixed points of
condensed matter theories in one less dimension with dynamical exponent z .
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d’aujourd’hui (Astérisque, 1985) 95.



108

[68] I. B. Frenkel, J. Lepowsky, and A. Meurman, A natural representation of the Fischer-Griess
monster with the modular function J as character, Proc. Natl. Acad. Sci. USA 81 (1984)
3256.

[69] D. Gaiotto, Monster symmetry and Extremal CFTs, [arXiv:0801.0988 [hep-th].

[70] M. R. Gaberdiel, Constraints on extremal self-dual CFTs, JHEP11 (2007) 087,
[arXiv:0707.4073 [hep-th]]. M. R. Gaberdiel, C. A. Keller, Modular differential equations
and null vectors, JHEP09 (2008) 079, [arXiv:0804.0489 [hep-th]].

[71] C. Mart́ınez, C. Teitelboim and J. Zanelli, Charged rotating black hole in three spacetime
dimensions, Phys. Rev. D 61, 104013 (2000) [hep-th/9912259].

[72] J. M. Maldacena and L. Maoz, De-singularization by rotation, JHEP12 (2002) 055, [hep-
th/0012025].
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[105] G. Compére, Symmetries and conservation laws in Lagrangian gauge theories with appli-
cations to the mechanics of black holes and to gravity in three dimensions, [arXiv:0708.3153
[hep-th]].
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