
Di r ecci ó n:Di r ecci ó n: Biblioteca Central Dr. Luis F. Leloir, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires.
Intendente Güiraldes 2160 - C1428EGA - Tel. (++54 +11) 4789-9293

Co nta cto :Co nta cto : digital@bl.fcen.uba.ar

Tesis Doctoral

Tipos para seguridad basada en flujoTipos para seguridad basada en flujo
de información y computaciónde información y computación

auditadaauditada

Bavera, Francisco Pedro

2012

Este documento forma parte de la colección de tesis doctorales y de maestría de la Biblioteca
Central Dr. Luis Federico Leloir, disponible en digital.bl.fcen.uba.ar. Su utilización debe ser
acompañada por la cita bibliográfica con reconocimiento de la fuente.

This document is part of the doctoral theses collection of the Central Library Dr. Luis Federico
Leloir, available in digital.bl.fcen.uba.ar. It should be used accompanied by the corresponding
citation acknowledging the source.

Cita tipo APA:

Bavera, Francisco Pedro. (2012). Tipos para seguridad basada en flujo de información y
computación auditada. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos
Aires.

Cita tipo Chicago:

Bavera, Francisco Pedro. "Tipos para seguridad basada en flujo de información y computación
auditada". Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. 2012.

http://digital.bl.fcen.uba.ar
http://digital.bl.fcen.uba.ar
mailto:digital@bl.fcen.uba.ar

Universidad de Buenos Aires
Facultad de Ciencias Exactas y Naturales

Departamento de Computación

Tipos para seguridad basada en flujo de

información y computación auditada

Tesis presentada para optar al t́ıtulo de Doctor de la Universidad de Buenos Aires

en el área Ciencias de la Computación

Francisco Pedro Bavera

Director: Eduardo Bonelli

Lugar de Trabajo: Departamento de Computación, Facultad de Ciencias Exactas,
F́ısico-Qúımicas y Naturales, Universidad Nacional de Ŕıo Cuarto

Buenos Aires - 2012

Tipos para Seguridad basada en Flujo de Información y

Computación Auditada

Resumen

Garantizar la confidencialidad de la información restringiendo su acceso sólo a usuarios autorizados es
uno de los pilares de la seguridad informática actual. Sin embargo, una vez otorgado dicho acceso no se
conserva control alguno sobre cómo se utiliza. El Análisis del Flujo de Información (IFA) estudia cómo se
transmite la información por diferentes mecanismos. Para ello se vale de poĺıticas de flujo de información
previamente establecidas. IFA vela por el cumplimiento de las mismas, a través de técnicas de análisis
estático de programas o a través de monitores de ejecución. De esta manera se logra un control sobre
el uso de los datos, que aplica más allá del momento en que se otorga el acceso a los mismos. Una
alternativa a esta modalidad de control de uso de los datos es utilizar computación auditada. En este
caso, las operaciones sobre los datos son permitidas pero también auditadas.

Las contribuciones de esta tesis son dos. En primer lugar, presentamos un sistema de tipos para
Bytecode JVM que garantiza que el flujo de la información sea seguro, incluso en el caso en que diferentes
instancias de una clase puedan tener atributos cuyo nivel de seguridad vaŕıa de acuerdo al contexto
en el cual han sido instanciados. La seguridad viene dada por la propiedad de no-interferencia: una
formulación rigurosa de la ausencia de filtraciones de información sensible. Si bien esta propiedad es
técnicamente viable, en la práctica hay muchos programas que permiten revelar intencionalmente cierta
información sensible. Esto nos motiva a extender el Bytecode JVM con un mecanismo de ”desclasificación”
que permite liberar información sensible. El riesgo que introduce es que el mismo pueda ser abusado,
permitiendo desclasificar más información sensible de la que originalmente se teńıa prevista. Por tal
motivo, extendemos el sistema de tipos para garantizar que estas situaciones no sucedan. Dicha extensión
satisface ”desclasificación robusta”: un atacante no puede deducir ninguna información adicional a la
permitida por la poĺıtica de seguridad ni tampoco puede influir en los datos que serán desclasificados.

En segundo lugar, presentamos un análisis teórico de un modelo computacional funcional que mantiene
un registro de su historia de computación. A partir de un fragmento de la Lógica de Justificación (JL)
de Artemov y el isomorfismo de Curry-de Bruijn-Howard obtenemos un cálculo lambda que modela
unidades auditadas de computación. Reducción en estas unidades auditadas genera trazas que están
confinadas a cada unidad auditada. Asimismo, estas unidades auditadas pueden consultar sus trazas
para tomar decisiones en base a las mismas. Probamos seguridad de tipado y normalización fuerte para
una restricción del mismo. Este cálculo lambda puede ser utilizado para definir programas que refuerzan
una variedad de poĺıticas de seguridad basadas en computación auditada.

Palabras Clave:

Flujo de Información, Desclasificación, No Interferencia, Robustes, Bytecode, Lógica de Justificación,
Computaciones Auditadas, Isomorfismo de Curry-Howard.

Types for Security based-on Information Flow and Audited

Computation

Abstract

One of the pillars of computer security is to ensure the confidentiality of information restricting its
access to authorized users. Information Flow Analysis studies how information is transmitted by different
mechanisms or channels. An attacker can obtain confidential information by observing the output (of any
particular channel) of the system.

However, while information flow policies are useful and important, there are other proposed mecha-
nisms such as access control or stack inspection. We want a programming language that can enforce a
wide range of policies while providing the assurance that programs enforce their policies correctly. An
alternative is to use audited trails (logs). Informally, a program is auditable if, at any audit point, an
impartial judge is satisfied with the evidence produced by the program.

The contributions of this dissertation are twofold. Firstly, we present a type system for ensuring secure
information flow in a JVM-like language that allows instances of a class to have fields with security
levels depending on the context in which they are instantiated. We prove that the type system enforces
noninterference.

Although noninterference is an appealing formalisation for the absence of leaking of sensitive informa-
tion, its applicability in practice is somewhat limited given that many systems require intensional release
of secret information. This motivates our extension of a core JVM-like language with a mechanism for
performing downgrading of confidential information. We discuss how the downgrading mechanism may
be abused in our language and then extend our type system for ensuring it captures these situations. It
is proved that the type system enforces robustness of the declassification mechanism: attackers may not
affect what information is released or whether information is released at all.

Secondly, we present a proof theoretical analysis of a functional computation model that keeps track
of its computation history. A Curry-de Bruijn-Howard isomorphism of an affine fragment of Artemov’s
Justification Logic yields a lambda calculus λh which models audited units of computation. Reduction
in these units generates audit trails that are confined within them. Moreover, these units may look-up
these trails and make decisions based on them. We affirm that the computational interpretation of JL is
a programming language that records its computation history. We prove type safety for λh and strong
normalisation for a restriction of it. λh can be used for writing programs that enforce a variety of security
policies based on audited trails.

Keywords:

Information Flow, Declassification, Noninterference, Robustness, Bytecode, Justification Logic, Audited
Computations, Curry-Howard Isomorphism.

A Yani, Guille y Benja
con todo mi amor.

Agradecimientos

La culminación de esta tesis se logro gracias al esfuerzo, el apoyo y los aportes (aportes no necesariamente
relacionados con la tesis) de muchas personas y algunas instituciones. Quiero agradecer sinceramente a
todos ellos:

Primero, a quienes más quiero y amo:
A Yani por su apoyo incondicional, por darme su amor y querer compartir su vida conmigo. Simplemente,

te amo!!!
A Guille y Benja por su capacidad infinita de amar y de hacer travesuras.
A mis viejos, gracias por todo! Sin dudas, mi viejo me contagió el amor por la docencia universitaria.
A mis hermanos porque siempre están.
A mis amigos de toda la vida: Tincho, Boti, Lucas, Corcho, Nari, Mencho, Nico, Guille y Cali, por los

buenos momentos pasados y los que quedan por pasar.
A mis amigos del DC-UNRC, Germán, Chino, Valen, Naza, Sonia, Marta, Gaston, Damian, Pablo, Ivana,

Marcelo, Zurdo, Marcelo y Jorge.
A todos gracias por su cariño, comprensión y el tiempo compartido.

Gracias Eduardo! Por la gúıa, paciencia y enseñanzas brindadas. Sin lugar a dudas, el gran art́ıfice de las
cosas buenas de este trabajo.

El apoyo incondicional y la colaboración de dos grandes amigos, fue sin lugar a dudas lo que me permitió
culminar con este trabajo. Gracias Tincho y Germán!!! Por estar siempre dispuestos a brindarme su
amistad y ayuda.

Al Profe porque es un ejemplo a seguir. Gracias por las oportunidades brindadas y las enseñanzas dadas.
A Pedro, Diego y Alejandro, los jurados, por aceptar ser los revisores de este trabajo, la atenta lectura, las

correcciones, cŕıticas y los valiosos aportes que realizaron.
Un agradecimiento especial para Gilles, por estar siempre dispuesto a colaborar y brindar sus consejos.
Un especial agradecimiento a todo el Departamento de Computación de la FCEFQyN de la UNRC, un muy

buen lugar de trabajo.
Al Departamento de Computación de la Facultad de Exactas de la UBA, en especial a la Subcomisión de

Postgrado, a la Secretaŕıa y a los profes de los cursos que tome (Alejandro, Diego, Juan Pablo y José).
A Charlie, Juan Pablo y Mariano que compartieron su oficina cada vez que visitaba el DC.

Quiero agradecer al LIFIA, ITBA, FaMaF, UNQui e InCo instituciones que visite en el transcurso de mis
estudios. Por último, al CONICET, el MinCyT de la Provincia de Córdoba, la UNRC, y la ANPCyT
que me brindaron recursos para poder realizar mis estudios.

A todos ellos y a aquellos que me olvido en este momento:

Un abrazo y ... Gracias Totales!!!

Contents

1 Introduction . 1
1.1 Structure of the Thesis and Contributions . 3

Part I Information Flow for Bytecode

2 Preliminaries . 7
2.1 Information Flow . 7

2.1.1 Noninterference . 8
2.1.2 Flow-sensitivity vs. flow-insensitivity . 8
2.1.3 Declassification . 9

2.2 The Java Virtual Machine . 9

3 Type-Based Information Flow Analysis for Bytecode Languages with Variable
Object Field Policies . 13
3.1 Motivation . 13
3.2 Syntax and Semantics . 16
3.3 Type System. 18

3.3.1 Subtyping Frame, Heap and Stack Types . 19
3.3.2 Control Dependence Region . 20
3.3.3 Typing Schemes . 22
3.3.4 Type-Checking Examples . 24
3.3.5 Implementing Type Checking . 25

3.4 JVMs
E - Adding Exceptions to JVMs . 29

3.4.1 JVM Exception Handling . 29
3.4.2 JVMs

E . 30
3.4.3 Typing Schemes . 32

3.5 JVMs
C - Adding Method Calls to JVMs

E . 34
3.5.1 JVM Method Calls . 34
3.5.2 JVMs

C . 34
3.5.3 Type System . 37

3.6 Noninterference . 39
3.6.1 Indistinguishability - Definitions . 41
3.6.2 Indistinguishability - Properties . 43
3.6.3 Noninterference . 45

3.7 Discussion . 48
3.7.1 Extensions . 48

XIV Contents

3.7.2 Related work . 48

4 Robust Declassification for Java Bytecode . 53
4.1 Motivating Examples . 53
4.2 Attacker Model . 55
4.3 The Bytecode Language and its Type System . 56

4.3.1 Typing Schemes . 56
4.3.2 Type-Checking Examples . 59

4.4 Soundness . 60
4.4.1 Noninterference . 60
4.4.2 Robustness . 61
4.4.3 Robustness Proof . 64

4.5 Discussion . 66
4.5.1 Extensions . 66
4.5.2 Related work . 66

Part II Justification Logic and Audited Computation

5 Justification Logic and Audited Computation . 71
5.1 Curry-Howard Isomorphism and Modal Logic . 71
5.2 JL and Hypothetical JL . 73
5.3 A Calculus of Audited Units . 75

5.3.1 History based access control for information flow . 77
5.4 The Logic . 77

5.4.1 Inference Schemes . 78
5.4.2 Basic Metatheoretic Results . 80

5.5 Normalisation . 81
5.5.1 Principle Contractions . 81
5.5.2 Permutation Conversions . 82

5.6 Term Assignment . 85
5.6.1 Typing Schemes and Operational Semantics . 85
5.6.2 Safety . 88

5.7 Strong Normalisation . 88
5.7.1 Step 1 . 89
5.7.2 Step 2 . 90

5.8 Discussion . 91
5.8.1 Related Work . 92

Part III Conclusions and Future Works

6 Conclusions and Future Work . 95
6.1 Conclusions . 95
6.2 Future Work . 96

Part IV Appendix

Contents XV

A Noninterference Soundness Proofs . 99
A.1 Preliminaries . 99

A.1.1 Indistinguishability - Properties . 100
A.2 Low Context . 104
A.3 High Context . 115
A.4 High-Low Context . 122

B Robustness Soundness Proofs . 125
B.1 Integrity Indistinguishability - Properties . 125
B.2 Preliminaries . 127
B.3 Proof of Unwinding Lemmas . 128

C Definitions and Proofs for Justification Logic and Audited Computation 133
C.1 Basic Definitions . 133
C.2 Lemmata . 136

C.2.1 Proof of the Substitution Principle for Truth Hypothesis . 139
C.2.2 Proof of the Substitution Principle for Validity Hypothesis . 143

C.3 Subject Reduction . 150
C.4 Strong Normalisation . 151

C.4.1 Weight Functions and Associated Results . 152
C.5 Termination of Permutation Schemes . 157

References . 159

List of Figures

3.1 Bytecode instructions . 16
3.2 Memory Model . 17
3.3 Operational Semantics of JVMs . 17
3.4 Typing Contexts . 18
3.5 Subtyping frame, heap and stack types . 20
3.6 Example of Region and Junction Point . 21
3.7 Typing Schemes . 23
3.8 The Constraints Solver Algorithm . 26
3.9 The Rewrite Constraints Algorithm . 27
3.10 Additional Reduction Schemes for Exception Handling . 31
3.11 Typing Schemes for Exception Handling . 33
3.12 Information leak due to exceptions. 35
3.13 Information leak by object-oriented features. 36
3.14 Additional Reduction Schemes for Method Calls . 36
3.15 Typing Schemes for Method Calls . 38
3.16 Location bijection Set . 40
3.17 Composition of location bijection sets . 43
3.18 Unwinding lemmas . 45
3.19 Noninterference proof scheme . 46

4.1 Attacker’s view of lattice L. 55
4.2 Full set of typing schemes I . 57
4.3 Full set of typing schemes II . 58
4.4 Full set of typing schemes III . 59

5.1 Failure of subject reduction for naive modal introduction scheme . 74
5.2 Inference Schemes for Hypothetical Judgements with Proof Codes . 78
5.3 Schemes defining proof code compatibility judgement . 79
5.4 Permutation conversions for Eq and TI . 84
5.5 Typing schemes for λh . 86
5.6 Permutation reduction schemes . 87
5.7 Full principle reduction . 89

1

Introduction

Nowadays, the information age has its own Pandora’s box. In its large inventory, mobile code is one
of the leading distributors of adversities. Mobile code is a powerful method to install and execute code
dynamically. However, it represents a serious security risk for the receiver (for instance providing access to
its resources and internal services). Therefore, this method can be used for malicious purposes, depending
on the intentions of its creator or any interceptor.

Computer security has always been an important concern; the use of mobile code makes it even more
relevant. One of the pillars of computer security is to ensure the confidentiality of private information
maintaining its access only to authorized users. Data confidentiality can be impaired while transmitting
from one system to another. This problem can be addressed using cryptographic techniques, however, an
attacker could gain knowledge of the secret data by extracting them from the system. Confidentiality of
secret stored data has been an active research field [53, 54, 117, 116, 82, 99, 19, 72].

To avoid leaking information, data can be encrypted. However, encryption is not applied due to ef-
ficiency reasons since it is expensive to make computing with encrypted data. Although it is possible
to transmit confidential information on encrypted channels, it is desirable to provide security guarantee
regarding how data is manipuled once decrypted. To access secret data, the attacker can apply two main
approaches: (1) tampering the authentication mechanism, and (2) deducing information. In the first ap-
proach, the attacker may be able to access the information system with the identity and permissions
of someone having access to secret data. The second approach deduces the secret information observ-
ing outputs of a system executing a precise process, malicious or not. The main techniques to prevent
information leakage for these attacks are access control and information flow analysis.

Access control [36] is a technique to control who can interact with a resource. One of the limitations
of this technique is that once access has been granted, there is no real control of the dissemination of the
data. For instance, a process may need to access confidential data in order to fulfill its goal. An owner may
agree to allow this process to access confidential data for the fulfillment of the process purpose. However,
it is likely that the owner does not want the process to spread the information it has been given access to.
Unfortunately, this spreading of information often can not be practically and efficiently enforced using
access control. For example, a tax computation service needs access to the financial information of the
client. It also needs access to the service provider server, for example, to send a bill if the service cost is
on a per use basis or simply to download the latest updates. Then, what are the customers guarantees
that its financial data are not unduly sent to the service provider? To enforce such a policy, it is required
to enforce some sort of information flow control.

Information Flow Analysis (IFA) [99] studies how information is transmitted directly or indirectly
by different mechanisms or channels. An attacker can obtain confidential information by observing the
output of the system. The application of this technique can help to control propagation of confidential
data. This is the reason why information flow control mechanisms are of high interest.

2 1 Introduction

Research in language-based security has focused on how to ensure that information flows, within
programs, do not violate the intended confidentiality properties. Language-based security is becoming
an increasingly important aspect of computer security. Large amounts of data are being processed by
computer programs and there is a need for control and accountability in the way these programs handle the
information they glean from the data. The programming language community has focussed on information
flow control: making sure that sharing of data is controlled in some manner to ensure that it does not
leak in undesirable ways. Language technology, such as type systems, can be fruitfully applied to address
this problem.

Language-based security is a useful technique that can be applied in many situations. It can range
from a simple syntactic parsing to a full semantic analysis, such as verifying code security properties,
finding potential bugs in applications, detecting unused code, applying reverse engineer code, to name a
few. These techniques can be applied to any programming language (with varying challenges depending
of the source language). In the case of Java, they can be applied to the source code or the bytecode
code. Applying these techniques to bytecode increases their applicability since the source code for some
programs might not be available.

Currently a large amount of code is distributed over the Internet largely in the form of bytecode or
similar low-level languages. Direct verification of security properties of bytecode allows the code consumer
to be assured that its security policy is upheld. Analysis at the bytecode level has the benefit of being
independent of a mechanism (compiled, handwritten, code generated) that generated it.

Although initial work was developed for imperative languages, most current efforts are geared towards
object-oriented and concurrent languages. Somewhat orthogonally, and sparked mainly by the success of
Java and the JVM [75], also low-level code formats are being studied. This allows the direct analysis of
Java applets and other code distributed over the Internet. A number of systems in the literature have
focused on type based IFA for bytecode (cf. Section 3.7.2). Advanced features including object creation,
exceptions, method calls, etc. [116, 82, 84, 19, 108, 105, 94] have been considered. However, many of these
systems are crippled in several important ways that reduce its potential applicability, already for a core
fragment of the language.

The first part of this thesis is concerned with language-based information flow [99] policies for mobile
code. We propose a static enforcement mechanism of confidentiality policies for low-level languages that
allows verification using type system for Java Bytecode.

While information flow policies are useful and important, there are many other styles of policies that
are in common use, including access control [36], type enforcement [14], tainting [43], stack inspection [55],
and forms of security automata [121]. One approach to verifying the correct enforcement of these policies
is to encode them on programs. Then, we want a programming language that can enforce a wide range
of policies while providing the assurance that programs enforce their policies correctly. An alternative is
to use audited trails (logs).

Auditing is an essential component of secure distributed applications, and the use of audit logs is
strongly recommended by security standards [1, 2]. Informally, a program is auditable if, at any audit
point, an impartial judge is satisfied with the evidence produced by the program. In practice, most ap-
plications selectively store information of why authorizations were granted or why services were provided
in audit logs, with the hope that this data can be later used for regular maintenance, such as debugging
of security policies, as well as conflict resolution.

As a step toward this goal, in second part of those thesis, we present a proof theoretical analysis
of a λ-calculus which produces a trail of its execution (as a type system for a calculus that records its
computation history). This λ-calculus can be used for writing programs that enforce a variety of security
policies based on audited trails. The programmers may specify security policies in a separate part of the
program called the enforcement policy.

1.1 Structure of the Thesis and Contributions 3

1.1 Structure of the Thesis and Contributions

This thesis is organized in two parts. The first part is concerned with practical, language-based information
flow policies for mobile code. We address the issue of what is a secure bytecode program from the point
of view of confidentiality in information flow. We propose a static enforcement mechanism for low-level
languages to confidentiality policies that allows verification using a type system for Java Bytecode.

Static, type-based information flow analysis techniques targeted at Java and JVM-like code typically
assume a global security policy on object fields: all fields are assigned a fixed security level. However,
instances of objects may be created under varying security contexts, particularly for widely used classes
such as wrapper or collection classes. This entails an important loss in precision of the analysis.

In Chapter 3, we present a core bytecode language together with a sound type system that performs
information flow analysis in a setting where the security level assigned to fields may vary at different points
of the program where their host object is created. Two further contributions, less significant although
worthy of mention, are that local variables are allowed to be reused with different security levels (flow-
sensitive type system) and also that we enhance precision on how information flow through the stack is
handled.

Chapter 3 is an extended version of the paper [28] presented at the 23rd Annual ACM Symposium on
Applied Computing (SAC’08), Fortaleza, Brazil, March 16-20, 2008.

The noninterference property states that a system is void of insecure information flows from private
to public data. This constitutes too severe a requirement for many systems which allow some form
of controlled information release. Therefore, an important effort is being invested in studying forms of
intended information declassification. Robust declassification is a property of systems with declassification
primitives that ensures that a third party cannot affect the behavior of a system in such a way as to
declassify information other than intended.

In Chapter 4, we study robust declassification for a core fragment of Java Bytecode. We observe
that, contrary to what happens in the setting of high-level languages, variable reuse, jumps and operand
stack manipulation can be exploited by an attacker to declassify information that was not intended to
be released. We introduce a sound type system for ensuring robust declassification.

Chapter 4 is an extended version of the paper [29] presented at the V Congreso Iberoamericano de
Seguridad Informática (CIBSI’09), Montevideo, Uruguay, November 16-18, 2009.

The second part of this thesis presents a proof theoretical analysis of a λ-calculus which produces a trail
of its execution. Justification Logic (JL) [9, 10, 11] is a refinement of modal logic that has recently been
proposed for explaining well-known paradoxes arising in the formalization of Epistemic Logic. Assertions
of knowledge and belief are accompanied by justifications: the formula JtKA states that t is “reason” for
knowing/believing A.

In Chapter 5, we study the computational interpretation of JL via the Curry-de Bruijn-Howard
isomorphism in which the modality JtKA is interpreted as: t is a type derivation justifying the validity of
A. The resulting lambda calculus is such that its terms are aware of the reduction sequence that gave rise
to them. This serves as a basis for understanding systems, many of which belong to the security domain,
in which computation is history-aware.

Chapter 5 is an extended version of the paper [30] presented at the 7th International Colloquium on
Theoretical Aspects of Computing (ICTAC 2010), Natal, Brazil, September 1-3, 2010.

The main definitions and statements of the results are presented in the body of the thesis. Proofs are
deferred to the appendices.

Part I

Information Flow for Bytecode

2

Preliminaries

We introduce some basic concepts that serve as the basis for the developments presented in this part of
the thesis.

Structure. Section 2.1 presents, informally, concepts related to information flow, noninterference and
declassification. The Java Virtual Machine and the Java Bytecode are presented in Section 2.2.

2.1 Information Flow

Some work in Language-Based Security [70, 104] approach consists of preserving the relevant information
obtained from the source code into its compiled version. The extra information, called the certificate, is
obtained during the compilation process and is included in the compiled code. The user can then carry
out an analysis of the code as well as its certificate to check that it fits the security policy requirements.
If the certificate proves to be secure then the code can be safely executed. The main advantage of
this procedure lies in the fact that the code producer must assume the costs of guaranteeing the code
security (by generating the certificate) whereas the user has only to verify whether this certificate fits the
security requirements [70]. Among the Language-Based Security variants techniques to guarantee security
we can mention: Proof-Carrying Code (PCC) [89], Type Assembly Language (TAL) [80] and Efficient
Code Certification (ECC) [70]. All these techniques introduces logic frameworks and type systems that
guarantee security; and they all use the information generated during the compilation process so that
the consumer can be able to verify the code security efficiently. However, they differ in expressiveness,
flexibility and efficiency.

A program is information flow secure if an attacker cannot obtain confidential information by in-
teracting with the program. The starting point in secure information flow analysis is the classification
of program variables into different confidential security levels. Following standard practice, we assume
security levels to form a lattice. However, in most of our examples, we will only use two security levels:
public information (low or L) and secret information (high or H). Security levels are attributed to variables
and signals, using subscripts to specify them (eg. xH is a variable of high level). In a sequential imperative
language, an insecure flow of information occurs when the initial values of high variables influence the
final value of low variables. For example, if L ≤ H, then we would allow flows from L to L, from H to H,
and from L to H, but we would disallow flows from H to L [106].

The simplest case of insecure flow, called explicit (insecure) flow, is the assignment of the value of a
high variable to a low variable, as in

yL = xH

More subtle kinds of flow, called implicit flows, may be induced by the control flow. An example is
the program

if xH = 0 then yL = 0 else yL = 1

8 2 Preliminaries

where at the end of execution the value of yL may give information about xH.
One of the difficulties of tracking information flows is that information may flow through different

communications channels. To address this issue, Lampson [71] introduces the concept of covert channels.
Various convert channels have been studied, such as, timing [120, 7, 107, 100, 96, 97], termination [119, 4]
and power consumption [69]. Gligor, Millen et al. [61] give a comprehensive introduction of covert channels
for both theoretical and practical purposes.

Another property related to information flow is integrity. Integrity and confidentiality are long con-
sidered dual to each other [34]. Confidentiality prevents data flow from flowing to undesired destinations.
Integrity prevents critical computations from being manipulated from outside. There is an important
amount of research enforcing integrity properties using information flow analysis [83, 119, 64, 85, 19, 105,
74].

In general, two different approaches have been explored with the aim of providing information flow,
static and dynamic, each associated with compile-time and run-time systems. Run-time solutions take a
different approach by using the labels as an extra property of the object and tracking their propagation
as the objects are involved in computation. In the compile-time approach, applications are written in
specially designed programming languages in which special annotations are used to attach security labels
and constraints to the objects in the program. At compile time, the compiler uses these extra labels to
ensure authorized flows of information. These compile-time checks can be viewed as an augmentation of
type checking [87, 86]. In type-based analysis, types are extended so that they include security information.
Then typing rules are constructed by taking security information into account and, finally, a type checker
algorithm for the type system is developed.

In the last years, type-based information flow analysis has been drawing much attention. Many infor-
mation flow analysis techniques based on type systems have been proposed for various kinds of languages,
including low-level languages [68, 25, 94, 58, 28, 38, 124], procedural [116, 117], functional [105, 64],
object-oriented [17, 109, 82] and concurrent languages [107, 120, 41, 97].

2.1.1 Noninterference

Following Cohen’s notion of strong dependency [45], Goguen and Meseguer [62] introduced the general
concept of noninterference to formalize security policies. Volpano, Smith, and Irvine [117] are the first in
formalizing the definition of noninterference for information flow.

Noninterference is a correctness property of information flow analysis. This property intuitively means
that, given a program that takes a confidential input and yields a public output, the public output remains
the same no matter what value is given as the confidential input. I.e. in a system with multiple security
levels, information should only be allowed to flow from lower to higher (more secure) levels [62]. Much
research in the area of secure information flow formalize the notion of secure information flow based on
noninterference.

2.1.2 Flow-sensitivity vs. flow-insensitivity

Enforcing noninterference requires the information flow analysis throughout the control flow of the pro-
gram. The control flow of a program plays an important role in static analysis as well as in its precision.
With respect to the interpretation of control flow, program techniques can be divided into two categories:
flow-insensitive and flow-sensitive.

Flow-insensitive analysis is independent of the control flow encountered as it does not consider the
execution order. The program is considered as a set of statements. Information given simply indicates that
a particular fact may hold anywhere in the program because it does hold somewhere in the program. Flow-
sensitive analysis [65] depends on control flow. The program is considered as a sequence of statements.
A given piece of information indicates that a particular fact is true at a certain point in the program.
Considering that xL is a public, low variable and yH is a secret, high variable, the example

2.2 The Java Virtual Machine 9

xL = yH;
xL = 0;

yields an illegal flow of information in a flow-insensitive analysis (but not in the flow-sensitive analysis), yet
the program clearly satisfies noninterference. Hence, flow-insensitive information is fast to compute, but
not very precise. Flow-sensitive analysis usually provides more precise information than flow-insensitive
analysis but it is also usually considerably more expensive in terms of computational time and space. Flow-
sensitive approach is important in presence of register reuse, a significant feature in low-level languages.

2.1.3 Declassification

Noninterference is a good baseline for guaranteeing that there is no secret information leakage. However,
noninterference is of limited use in practice since many systems require intensional release of secret in-
formation. Indeed, full noninterference is not always desired [126] in real applications because in many
cases information downgrading is part of the desired policy. Examples are: releasing the average salary
from a secret database of salaries for statistical purposes, a password checking program, releasing an
encrypted secret, etc. This calls for relaxed notions of noninterference where primitives for information
declassification are adopted. Yet, declassification is hard to analyze because it breaks noninterference. A
declassification mechanism can be exploited affecting the data that is declassified or whether declassifi-
cation happens at all. There are many ways to define the semantics of declassification properly.

A recent survey on declassification [101, 102] categorizes approaches to information release by what
information is declassified, by whom it is released, and where and when in the system declassification
occurs. Robustness operates primarily on the who dimension since it controls that the attacker does not
decide when data get declassified.

In this same survey on declassification [101, 102], the authors identify some common semantic princi-
ples for declassification mechanisms:

1. semantic consistency, which states that security definitions should be invariant under equivalence-
preserving transformations;

2. conservativity, which states that the definition of security should be a weakening of noninterference;
3. monotonicity of release, which states that adding declassification annotations cannot make a secure

program become insecure. Roughly speaking: the more you choose to declassify, the weaker the
security guarantee; and

4. non-occlusion, which states that the presence of declassifications cannot mask other covert information
leaks.

The authors state that these principles help shed light on existing approaches and should also serve
as useful sanity check for emerging models. For instance, they claim that robust declassification satisfies
these principles.

2.2 The Java Virtual Machine

The Java programming language [63] is a general-purpose object-oriented language. Java is currently one
of the most popular programming languages in use, and is widely used from application software to web
applications [3]. The language derives much of its syntax from C and C++ but has a simpler object
model and fewer low-level facilities. Furthermore, it omits many of the features that make C and C++
complex, confusing, and unsafe. The Java platform was initially developed to address the problems of
building software for networked consumer devices. It was designed to support multiple host architectures
and to allow secure delivery of software components. To meet these requirements, compiled code had to
survive transport across networks, operate on any client, and assure the client that it was safe to run.

10 2 Preliminaries

Java is specifically designed to have as few implementation dependencies as possible, which means that
computer programs written in the Java language must run similarly on any supported hardware/operating-
system platform. This is achieved by compiling the Java language code to an intermediate representation
called Java bytecode, instead of directly to platform-specific machine code. Java bytecode instructions
are analogous to machine code, but are intended to be interpreted by a (Java) Virtual Machine (JVM)
[75] written specifically for the host hardware.

The JVM is the cornerstone of the Java. It is the component responsible for its hardware and operating
system independence, the small size of its compiled code, and its ability to protect users from malicious
programs.

The JVM knows nothing of the Java programming language, only of a particular binary format, the
class file format. A class file contains JVM instructions (or bytecodes) and a symbol table, as well as other
ancillary information. A JVM can be also used to implement programming languages other than Java.
For example, Ada [6] or Scala [103] source code can be compiled to Java bytecode to then be executed
by a JVM.

A basic philosophy of Java is that it is inherently safe from the standpoint that no user program
can crash the host machine or otherwise interfere inappropriately with other operations on the host
machine, and that it is possible to protect certain functions and data structures belonging to trusted
code from access or corruption by untrusted code executing within the same JVM. Furthermore, common
programmer errors that often lead to data corruption or unpredictable behavior such as accessing off
the end of an array or using an uninitialized pointer are not allowed to occur. Several features of Java
combine to provide this safety, including the class model, the garbage-collected heap, and the Bytecode
Verifier.

The Bytecode Verifier verifies all bytecode before it is executed [75]. This verification consists primarily
of the following checks:

• There are no operand stack overflows or underflows.
• All local variable uses and stores are valid.
• The arguments to all the Java virtual machine instructions are of valid types.
• Branches are always to valid locations.
• Data is always initialized and references are always type-safe.
• Any given instruction operates on a fixed stack location.
• Methods are invoked with the appropriate arguments.
• Fields are assigned only using values of appropriate types.
• Arbitrary bit patterns cannot get used as an address.
• Access to private data and methods is rigidly controlled.

The Bytecode Verifier is independent of any compiler. It should certify all code generated by any
compiler. Any class file that satisfies the structural criteria and static constraints will be certified by the
verifier. The class file verifier is also independent of the Java programming language. Programs written in
other languages can be compiled into the class file format, but will pass verification only if all the same
constraints are satisfied [75].

Java bytecode language consists of 212 instructions, then is hard to perform its formalisation. For this
reason, the existing formalisations usually cover a representative set of instructions. Chrzaszcz, Czarnik
and Schubert [44] describe a concise formalisation of JVM bytecode which turns out to be factorisable
into 12 instruction mnemonics. It reduces the number of instructions in a systematic and rigorous way
into a manageable set of more general operations that cover the full functionality of the Java bytecode.
The factorization of the instruction set is based on the use of the runtime structures such as operand
stack, heap, etc. We consider 11 of these instruction mnemonics in the development of this work.

The instruction set can be roughly grouped as follows:

2.2 The Java Virtual Machine 11

Stack operations: Constants can be pushed onto the stack, e.g., iconst 0 or bipush (push byte
value).
Arithmetic operations: The instruction set of the Java Virtual Machine distinguishes its operand
types using different instructions to operate on values of specific type. Arithmetic operations starting
with i, for example, denote an integer operation. E.g., iadd that adds two integers and pushes the
result back on the stack. The Java types boolean, byte, short, and char are handled as integers by the
JVM.
Control flow: There are branch instructions like goto, and if icmpeq, which compares two integers
for equality. Exceptions may be thrown with the athrow instruction. Branch targets are coded as
offsets from the current byte code position, i.e., with an integer number.
Load and store operations for local variables: like iload and istore. There are also array
operations like iastore which stores an integer value into an array.
Field access: The value of an instance field may be retrieved with getfield and written with
putfield.
Method invocation: Static Methods may either be called via invokestatic or be bound virtually
with the invokevirtual instruction.
Object allocation: Class instances are allocated with the new instruction, arrays of basic type like
int[] with newarray.
Conversion and type checking: For stack operands of basic type, there exist casting operations
like f2i which converts a float value into an integer. The validity of a type cast may be checked with
checkcast and the instanceof operator can be directly mapped to the equally named instruction.

3

Type-Based Information Flow Analysis for Bytecode Languages

with Variable Object Field Policies

We present JVMs (“s” is for “safe”), a core bytecode language together with a type system that performs
IFA in a setting where the security level assigned to fields may vary at different points of the program
where their host object is created. Two further contributions are that local variables are allowed to be
reused with different security levels and also that we enhance precision on how information flow through
the stack is handled.

Structure. Section 3.1 introduces motivating examples and Section 3.2 presents the syntax and
operational semantics of JVMs. The type system is presented in Section 3.3. Exceptions are added in
Section 3.4 and method calls in Section 3.5, followed by an analysis of noninterference in Section 3.6.
Finally, further language features and related work are briefly discussed in Section 3.7.

3.1 Motivation

Most existing literature on type-based IFA [16, 19, 25, 26, 24] assumes that the fields of objects are assigned
some fixed security label. However, some objects such as instances of, say, class Collection or WrapInt

(wrapper class for integers), are meant to be used in different contexts. Consider the aforementioned
WrapInt class that has a field for storing integers. If the field is declared public, then wrappers that are
instantiated in high-level regions (fragments of code that depends on confidential data) cannot have their
integers assigned. Likewise, if it is declared secret, then although it may be freely assigned in both low
and high-level regions, precision is lost when it is used in low-level regions (fragments of code that does
not depend on confidential data). This is illustrated by the Example 3.1. This program loads the value
of xH, which we assume to be secret, on the stack, creates a new instance of WrapInt and assigns 0 to
its only field f (the possible security levels for f and their consequences are discussed below). It then
branches on the secret value of xH. Instructions 6 to 8 thus depend on this value and hence the value 1
assigned to field f of the new instance of WrapInt shall be considered secret.

Example 3.1.

1 load xH
2 new WrapInt

3 push 0
4 putfield f
5 if 9
6 new WrapInt

7 push 1
8 putfield f
9 return

14 3 Type-Based Information Flow Analysis for Bytecode Languages with Variable Object Field Policies

If field f of WrapInt is declared public, then the assignment on line 4 is safe but not the one on
line 7. Since this would render the wrapper useless, one could decide to declare f secret. This time
both assignments are acceptable, however the public value 0 is unnecessarily coerced to secret with the
consequent loss in precision.

Local variable reuse. Local variable reuse is promoted by Sun’s JVM Specification [75, Ch.7]:
“The specialized load and store instructions should encourage the compiler writer to reuse local variables
as much as is feasible. The resulting code is faster, more compact, and uses less space in the frame”. Java
Card [110], the reduced Java language for smart cards, also encourage this form of reuse particularly
due to the limited available resources. It also promoted object reuse: reusing attributte of objects. This
form of reuse reduces the wear of the smart card’s persistent memory and is even necessary in most
cases given that garbage collection is not readily available. Finally, reuse is of key importance in other
low-level languages such as assembly language and although we do not address them here (cf. [80, 38])
the techniques developed in this work should be applicable.

The following code excerpt, in Example 3.2, illustrates variable reuse. Assuming that x is declared
public and y secret, line 6 attempts to reuse x to store a secret value.

Example 3.2.

1 push 1
2 store xL ← x is public
3 load yH
4 if 7
5 new C
6 store xH ← x is secret
7 · · ·

Insensitive-flow type-based IFA for high-level programming languages reject this code on the grounds
that confidentiality could be breached: a public variable is assigned a secret value. However, this is
perfectly secure code given that x now takes on a new value (and security level) unrelated to the previous
value (and use) of x and indeed no security risk is present.

Likewise, Example 3.3 presents no information leak given that the second use of x on line 6 completely
discards (and is unrelated to) the first one. In the following example, we assume both x and y are declared
secret whereas z is declared public. Most extant type systems [24, 94, 118] will in fact complain that illicit
information flow takes place at line 8.

Example 3.3.

1 load yH
2 if 5
3 new C
4 store xH
5 push 0
6 store xL
7 load xL
8 store zL
9 · · ·

Even though variable reuse can be avoided in the analysis by transforming the bytecode so that
different uses of a variable become different variables [73], this makes the security framework dependent
on yet another component. Moreover, this transformation is not viable in other low-level code such as
assembly language where the number of registers is fixed.

Operand stack limitations. The operand stack introduces new ways in which information may
leak, these being notably absent in high-level languages given that the stack is not directly available

3.1 Motivation 15

to the user. A number of articles take the approach of modifying the level of the elements of the stack
when evaluating conditionals [25, 26, 24]. In particular, whenever a conditional on a secret expression is
evaluated, the security elements of all the elements in the stack are set to secret. That certainly helps
avoid undesired leaks but, arguably, in a rather drastic way. In particular, once the dependence region
of the conditional exits, all remaining values on the operand stack shall be tagged as secret limiting the
expressiveness of the analysis.

It is often argued that since Java compilers use the operand stack for evaluation of expressions and
thus is empty at the beginning and end of each instruction, the aforementioned approach is not a severe
limitation (the compilation of the expression e1?e2 : e3 does, however, require dealing with nonempty
operand stacks). However, this makes the IFA on low-level code unnecessarily dependent, as shown in
this work, on assumptions on the compiler or the application that generated the bytecode. In turn, this
requires studying IFA of the low-level object code itself, the topic of this work. Such an analysis should
ideally strive to be applicable independently of how the code was generated hence reducing the trusted
base of the security framework.

As an example of the loss in precision, using the approach of modifying the level of the elements of
the stack when evaluating conditionals, consider the piece of code in Example 3.4. We assume x and y are
declared secret and z public. This program fails to type check [25, 26, 24] at line 9. An attempt is made
to store the topmost element of the stack (0, pushed on the stack in line 1) into z. Although this constant
is public and was added to the stack as such, after exiting the dependence region of the conditional at
line 3, its level was changed to secret. Hence, it can no longer be assigned to the public variable z.

Example 3.4.

1 push 0
2 load xH
3 if 7
4 push 0
5 store yH
6 goto 9
7 push 0
8 store yH
9 store zL
10 · · ·

A further often seen limitation [38] is that public elements on the stack are not allowed to be freed
under high-level regions1. Although this avoids some situations of illicit flows it is overly restrictive. In
particular, Example 3.5 is perfectly safe: there is no risk in popping the low element stack 1 as long as it
is popped in both branches.

Example 3.5.

1 push 1
2 load xH
3 if 6
4 pop

5 goto 8
6 pop

7 goto 8
8 return

1 This particular problem is not present in those works which update the level of all elements on the stack.
However, this is because all elements in the stack are promoted to high security, as already mentioned. This
has the consequent loss in precision discussed in the previous item.

16 3 Type-Based Information Flow Analysis for Bytecode Languages with Variable Object Field Policies

3.2 Syntax and Semantics

A program B is a sequence of bytecode instructions as defined in Figure 3.1. There op is + or ×; x ranges
over a set of local variables X; f, g ranges over a fixed set of field identifiers F; C ranges over a universe
C of class names; i over the natural numbers N; j over the integers Z.

I ::= prim op primitive operation
| push j push i on stack
| pop pop from stack
| load x load value of x on stack
| store x store top of stack in x
| if i conditional jump
| goto i unconditional jump
| return return
| new C create new object in heap
| getfield f load value of field f on stack
| putfield f store top of stack in field f

Fig. 3.1. Bytecode instructions

We write Dom(B) for the set of program points of B and B(i), with i ∈ 1..n and n the length of B,
for the ith instruction of B.

Example 3.6. For example, in

1 load xH
2 new WrapInt

3 push 0
4 putfield f
5 if 9
6 new WrapInt

7 push 1
8 putfield f
9 return

we have Dom(B) = {1, 2, .., 9}, B(1) = load xH, B(2) = new WrapInt and so forth.

A value v is either an integer j, a (heap) location o or the null object null . Thus, if L stands for the
set of locations, V = Z + L + {null}. Objects are modeled as functions assigning values to their fields2,
O = C× (F→ V).

Machine states are tuples 〈i, α, σ, η〉, where i ∈ N is the program counter that points to the next
instruction to be executed; α (local variable array) is a mapping from local variables to values; σ (stack)
is an operand stack, the operand stacks are list of values; and η (heap) is a mapping from locations to
objects. A machine state for B is one in which the program counter points to an element in Dom(B).
These definitions are summarized in Figure 3.2.

The small-step operational semantics of JVMs is standard; it is defined in terms of the one-step
reduction schemes given in Figure 3.3. For example, the schemeR-Store resorts to the following notation:
If α ∈ LV, x ∈ X and v ∈ V, then α ⊕ {x 7→ v} is the local variable array α′ s.t. α′(y) = α(y) if y 6= x,

2 We assume that the field names of all classes are different.

3.2 Syntax and Semantics 17

V = Z+ L+ {null} Values
O = C× (F → V) Objects
LV = X → V Local Variables
S = V

∗ Operand Stack
H = L → O Heap
State = N× LV× S×H States
FinalState = V×H Final States

Fig. 3.2. Memory Model

and α′(x) = v otherwise. For every function f : A→ B, x ∈ A and y ∈ B, we denote with f ⊕ {x 7→ y}
the unique function f ′ such that f ′(y) = f(y) if y 6= x, and f ′(x) = y otherwise.

Execution of new relies on two auxiliary functions. One is Fresh that given a heap η creates a location
o with o /∈ Dom(η). The other is Default that given a class name returns an object of that class whose
fields have been initialized with default values. The default values are zero for integer fields and null for
object fields.

We write s1 −→B s2 if both s1, s2 are states for B and s2 results by one step of reduction from s1. In
the sequel we work with states for some program B which shall be clear from the context and thus simply
speak of states without explicit reference to B. Expressions of the form 〈v, η〉 are referred to as final states.
A non-final state s may either reduce to another non-final state or to a final state. Initial states take the
form 〈1, α, ǫ, η〉, where ǫ denotes the empty stack. Summing up, −→B⊆ State × (State +FinalState). We
write ։B for the reflexive-transitive closure of −→B .

(R-Push)

B(i) = push j

〈i, α, σ, η〉 −→B 〈i+ 1, α, j · σ, η〉

(R-Pop)

B(i) = pop

〈i, α, v · σ, η〉 −→B 〈i+ 1, α, σ, η〉

(R-Load)

B(i) = load x

〈i, α, σ, η〉 −→B 〈i+ 1, α, α(x) · σ, η〉

(R-Store)

B(i) = store x

〈i, α, v · σ, η〉 −→B 〈i+ 1, α⊕ {x 7→ v}, σ, η〉

(R-Prim)

B(i) = prim op

〈i, α, n ·m · σ, η〉 −→B 〈i+ 1, α, n opm · σ, η〉

(R-Goto)

B(i) = goto i′

〈i, α, σ, η〉 −→B 〈i′, α, σ, η〉

(R-If1)

B(i) = if i′ v 6= 0

〈i, α, v · σ, η〉 −→B 〈i+ 1, α, σ, η〉

(R-New)

B(i) = new C o = Fresh(η)

〈i, α, σ, η〉 −→B 〈i+ 1, α, o · σ, η ⊕ {o 7→ Default(C)}〉

(R-If2)

B(i) = if i′ v = 0

〈i, α, v · σ, η〉 −→B 〈i′, α, σ, η〉

(R-PtFld)

B(i) = putfield f o ∈ Dom(η) f ∈ Dom(η(o))

〈i, α, v · o · σ, η〉 −→B 〈i+ 1, α, σ, η ⊕ {o 7→ η(o)⊕ {f 7→ v}}〉

(R-Ret)

B(i) = return

〈i, α, v · σ, η〉 −→B 〈v, η〉

(R-GtFld)

B(i) = getfield f o ∈ Dom(η) η(o, f) = v

〈i, α, o · σ, η〉 −→B 〈i+ 1, α, v · σ, η〉

Fig. 3.3. Operational Semantics of JVMs

18 3 Type-Based Information Flow Analysis for Bytecode Languages with Variable Object Field Policies

l, li, λ ∈ {L, H} Security Levels
a, ai ∈ SymLoc Symbolic Locations
κ, κi ∈ SecLabels Security Labels
κ ::= 〈{a1, . . . , an}, l〉 Security Label
ObjType ::= [f1 : κ1, . . . , fn : κn] Object Types
V, Vi ::= X → SecLabels Frame Type
S, Si ::= N → SecLabels Stack Type
T, Ti ::= SymLoc → ObjType Heap Type
V = {Vi | i ∈ 0..Dom(B)} Variable Typing Contexts
S = {Si | i ∈ 0..Dom(B)} Stack Typing Contexts
A = {li | i ∈ 0..Dom(B)} Instruction Typing Contexts
T = {Ti | i ∈ 0..Dom(B)} Heap Typing Contexts

Fig. 3.4. Typing Contexts

3.3 Type System

We assume given a set {L, H} of security levels (l) equipped with �, the least partial order satisfying
L � H, and write ⊔,⊓ for the induced supremum and infimum. Security labels (κ) are expressions of the
form 〈{a1, . . . , an}, l〉 where ai, i ∈ 0..n, ranges over a given infinite set SymLoc of symbolic locations
(motivated shortly). We write SecLabels for the set of security labels. If n = 0, then the security label is
〈∅, l〉. We occasionally write 〈 , l〉, or l, when the set of symbolic locations is irrelevant. Furthermore, we
note ⌊〈R, l〉⌋ = l and ⌈〈R, l〉⌉ = R.

Two orderings on security labels are defined:

〈R1, l1〉 ⊑ 〈R2, l2〉 iff R1 ⊆ R2 and l1 � l2

and

〈R1, l1〉 ⊏
∼ 〈R2, l2〉 iff R1 ⊆ R2 and l1 = l2

We write κ 6⊑ κ′ when κ ⊑ κ′ does not hold. and κ 6⊏∼ κ′ when κ ⊏
∼ κ′ does not hold.

By abuse of notation, we write κ ⊑ l (l ⊑ κ) to indicate that the level of κ (l) is below or equal to l
(κ) and κ 6= l to indicate that the level of κ is different from l.

The supremum on security labels over ⊑ is defined as follows:

〈R1, l1〉 ⊔ 〈R2, l2〉 = 〈R1 ∪R2, l1 ⊔ l2〉.

Also, we introduce the following abbreviations: l1 ⊔ 〈R2, l2〉 = 〈R2, l1 ⊔ l2〉 and 〈R1, l1〉 ⊔ l2 = 〈R1, l1 ⊔ l2〉.
Typing contexts supply information needed to type each instruction of a method. As such, they con-

stitute families of either functions (V,S, T) or labels (A) indexed by a finite set of instruction addresses.

Definition 3.7 (Typing Context). A typing context for a program B is a tuple (V,S,A, T) where:

• V (variable typing) assigns a frame type V to each instruction of B. A frame type is a function
assigning security labels to each local variable.

• S (stack typing) assigns a stack type S to each instruction of B. A stack type is a function assigning
security labels to numbers from 0 to n− 1, where n is assumed to be the length of the stack.

• A (program point typing) indicates the level (L or H) of each instruction of B.
• T (heap typing), associates a heap type T to each instruction of B. Heap types map symbolic locations

to object types, as explained below.

3.3 Type System 19

We write Vi to refer to the i
th element of the family and similarly with the others typings. For example,

Ai is the security level of instruction i. These notions are summarized in Figure 3.4.
The field of each class is assigned either a (fixed) security label 〈∅, l〉 or the special symbol ⋆ for

declaring the field polymorphic as explained below. The security label of fields is determined by a function
ft : F → κ ∪ {⋆}. Fields declared polymorphic adopt a level determined by the type system at the point
where creation of its host object takes place. The field is given the security level of the context in which
the corresponding new instruction is executed. Given that multiple instances of the same class may have
possibly different security labels for the same fields, we need to perform some bookkeeping. This is
achieved by associating with each location a symbolic location.

Heap types map symbolic locations to expressions of the form [f1 : κ1, . . . , fn : κn] called object
types. An object type gives information on the security label of each field. We write T (a, f) for the label
associated to field f of the object type T (a).

Definition 3.8 (Method). A method M is an expression of the form ((x1 : κ1, . . . , xn : κn, κr), B),
abbreviated ((−−→x : κ, κr), B), where κ1, . . . , κn are the security labels of the formal parameters x1, . . . , xn,
κr is the security label of the value returned by the method, and B is a program referred to as its body.

Methods M = ((−−→x : κ, κr), B) are typed by means of a typing judgement : V,S,A, T ✄ M , where
(V,S,A, T) is a typing context for M . The method M shall be considered well-typed if such a judgement
is derivable by means of appropriate type schemes.

Two further ingredients are required before formulating the type system: (1) a notion of subtyping
for frame, heap and stack types; and (2) the availability of control dependence region information.

3.3.1 Subtyping Frame, Heap and Stack Types

The notion of subtyping for frame array, heap and stack types is presented in Figure 3.5.
Frame types are compared pointwise using the ordering on security labels. For example, if X = {x, y},

V1 = {x 7→ L, y 7→ H} and V2 = {x 7→ H, y 7→ H}, then V1 ≤ V2.
A heap type T1 is a subtype of T2 if the domain of T1 is included in that of T2; for all field f of a

symbolic location a, the security level of T1(a, f) and T2(a, f) are equal and the symbolic location sets
of the security label of T1(a, f) is included in those of T2(a, f). For example, let

T1 = {(a, [f1 : 〈∅, H〉, f2 : 〈{b}, L〉]), (b, [f1 : 〈∅, H〉])} and
T2 = {(a, [f1 : 〈∅, H〉, f2 : 〈{c, b}, L〉]), (b, [f1 : 〈∅, H〉])(c, [f1 : 〈∅, H〉])}

We note that Dom(T1) = {a, b} and Dom(T2) = {a, b, c}; T1(a, f1) = 〈∅, H〉 and T2(a, f1) = 〈∅, H〉;
T1(a, f2) = 〈{b}, L〉 and T2(a, f2) = 〈{c, b}, L〉; and, T1(b, f1) = 〈∅, H〉 and T2(b, f1) = 〈∅, H〉 then T1 ≤ T2.

Stack types may be only compared if they are of the same size. We use ‖S‖ for the length of stack
S. Furthermore, we allow depth subtyping at position i provided that S(i) is at least l. S1 ≤l S2 asserts
that stack type S1 is a subtype of S2 at level l. This last requirement is due to the security level of low
stack element can not vary in a high context. If l = H, S1(2) = L and S2(2) = H then S1 6≤l S2.

20 3 Type-Based Information Flow Analysis for Bytecode Languages with Variable Object Field Policies

(SubTyp-Frame)
∀x ∈ X.V1(x) ⊑ V2(x)

V1 ≤ V2

(SubTyp-Heap)
Dom(T1) ⊆ Dom(T2)

∀a ∈ Dom(T1).Dom(T1(a)) = Dom(T2(a)) ∧ ∀f ∈ Dom(T1(a)).T1(a, f) ⊏
∼ T2(a, f)

T1 ≤ T2

(SubTyp-Stack)
‖S1‖ = ‖S2‖ = n

∀j ∈ 0..n− 1.

{
S1(j) ⊑ S2(j) if l ⊑ S1(j),
S1(j) = S2(j) otherwise

S1 ≤l S2

Fig. 3.5. Subtyping frame, heap and stack types

3.3.2 Control Dependence Region

High-level languages have control-flow constructs that explicitly state dependency. For example, from

while x begin c1;c2 end

one easily deduces that both c1 and c2 depend on x. Given that such constructs are absent from JVMs, as
is the case in most low-level languages, and that they may be the source of unwanted information flows,
our type system requires this information to be supplied (cf. Sec.3.3.5). Let Dom(B)♯ denote the set of
program points of B where branching instructions occur (i.e. Dom(B)♯ = {k ∈ Dom(B) | B(k) = if i}).
We assume given two functions (℘ below denotes the powerset operator):

• region: Dom(B)♯ → ℘(Dom(B))
• jun: Dom(B)♯ → Dom(B)

The first computes the control dependence region, an overapproximation of the range of branching
instructions and the second the unique junction point of a branching instruction at a given program
point. In the Figure 3.6 shows an example of these functions.

Following previous work [21, 26, 24], we only require some abstract properties of these functions to
hold. We need the notion of successor relation to formulate these properties.

Definition 3.9. The successor relation 7→⊆ Dom(B)×Dom(B) of a method B is defined by the clauses:

• If B(i) = goto i′, then i 7→ i′;
• If B(i) = if i′, then i 7→ i+ 1 and i 7→ i′ ;
• If B(i) = return, then i 67→ (i has no successors);
• Otherwise, i 7→ i+ 1;

A small set of requirements, the safe over approximation property or SOAP, on region and jun suffice
for the proof of noninterference. The SOAP state some basic properties on how the successor relation,
region and jun are related.

Property 3.10 (SOAP). Let i ∈ Dom(B)♯.

1. If i 7→ i′, then i′ ∈ region(i).
2. If i′ 7→ i′′ and i′ ∈ region(i), then i′′ ∈ region(i) or i′′ = jun(i).
3. If i 7→∗ i′ and i′ ∈ Dom(B)♯ ∩ region(i), then region(i′) ⊆ region(i).

3.3 Type System 21

1 push 0

2 load x

3 if 7

4 push 0

5 store y

6 goto 15

7 load z

8 if 11

9 push 1

10 goto 13

11 push 2

12 goto 13

13 store y

14 goto 15

15 return

1

2

3

4 7

5 8

6 9 11

10 12

13

14

15

Instruction’s 3 Region

Instruction’s 8 Region

Junction Point of
Instruction’s 8 Region

Junction Point of
Instruction’s 3 Region

(a) Program (b) Regions and Junction Point

Fig. 3.6. Example of Region and Junction Point

4. If jun(i) is defined, then jun(i) /∈ region(i) and ∀i′ such that i 7→∗ i′, either i′ 7→∗ jun(i) or jun(i) 7→∗ i′.

Intuitively, successors i′ of a branching instruction i should be in the same region. As for successors
i′′ of an instruction i′ with i′ ∈ region(i), either i′′ should be in the region associated to i or be a junction
point for this region. Regarding the third item, we write 7→∗ for the reflexive, transitive closure of 7→ and
say that i′ is an indirect successor of i when i 7→∗ i′. This item reads as follows: if i′ is the program point
of a branching instruction that is an indirect successor of a branching instruction i that has not left the
region of i, then the region of i′ is wholly inside that of i. The final item states that the junction point
of a region are not part of the region and, moreover, all indirect successors of the program point i of a
branching instruction either come before or after (in terms of the indirect successor relation) the junction
point of the region of i.

Remark 3.11. In what follows we shall adopt two assumptions that, without sacrificing expressiveness,
simplify our analysis and soundness proof. First we assume a method body B has a unique return

instruction. Second, that predecessors of a junction point are always goto instructions (i.e. i ∈ region(k)
and i 7→ i′ and i′ = jun(k) implies B(i) = goto i′).

22 3 Type-Based Information Flow Analysis for Bytecode Languages with Variable Object Field Policies

3.3.3 Typing Schemes

This section describes the typing schemes that define when a method is to be considered well-typed. We
assume that this method is valid JVM code in the sense that it passes the bytecode verifier. For example,
in an instruction such as prim + we do not check whether the operands are indeed numbers. The typing
schemes rely on previously supplied region and jun satisfying the SOAP properties, as discussed above.

Definition 3.12. A method M is well-typed if there exists a typing context (V,S,A,T) such that the type
judgement

V,S,A, T ✄M

is derivable using the following typing scheme

∀xj ∈ ~x.V1(xj) = κj S1 = ǫ
∀xj ∈ ~x.∀a ∈ ⌈κj⌉.a ∈ Dom(T1)

∀i ∈ Dom(B).V,S,A, T , i✄ ((−−→x : κ, κr), B)

V,S,A, T ✄ ((−−→x : κ, κr), B)

The variable array type V1 must provide labels for all parameters and must agree with the ones
assigned to each of them by the declaration −−→x : κ. The stack is assumed to be empty on entry. Condition
“∀xj ∈ ~x.∀a ∈ ⌈κj⌉.a ∈ Dom(T1)” ensures that, if the label of a parameter has a nonempty set of symbolic
locations, then T1 does not leave out these references. Finally, all program points should be well-typed
under the typing contexts V,S,A and T . A program point i of B is well-typed if the judgement

V,S,A, T , i✄ ((−−→x : κ, κr), B)

holds. This will be the case if it is derivable using the typing schemes for instructions of Figure 3.7. For
ease of presentation, in the schemes of Figure 3.7 we have abbreviated ((−−→x : κ, κr), B) with B. Note that
there may be more than one typing context (V,S, T ,A) such that a program is well-typed. For reasons
of technical convenience we assume, without loss of generality, that the chosen typing context is the least
solution. A typing context C such that a program B is well-typed is the least solution if for all typing
context C1, · · · , Cn such that a program B is well-typed then C =

d
i=1,···,n Ci. Furthermore, we assume

∀i ∈ Dom(B).A1 � Ai.
We now describe the typing schemes. They introduce a set of constraints between the frame types,

stack types and heap types at different instructions in the program.
T-PrimOp requests that Si have at least two elements on the top and that the top element of Si+1,

the stack type of the successor instruction, have at least that of these elements. We write Si+1(0) for the
topmost element of the stack type Si+1 and Si+1\0 for Si+1 without the topmost element. Subtyping
(rather than equality) for variable array, stack and heap types are required given that instruction i + 1
may have other predecessors apart from i.

Concerning T-Str, since instruction store x does change local variables, Vi \ x must be a subtype
of Vi+1 \ x as stated by the third line. Furthermore, the value of local variable x is modified by stack
top, then Si ≤Ai

Vi+1(x) · Si+1 must hold. The fourth line states that the security level of the x value in
follow instruction must be greater than or equal to the security level of current address.

In T-Load, the instruction load x does not change local variables, Vi must be a subtype of Vi+1.
Since the value of local variable x is pushed into the stack the security level of the pushed value must be
greater than or equal to the security level of local variable x and to the security level of current address.

T-Ret simply requires that the label of the topmost element of the stack does not leak any informa-
tion. Here, κr is the label of the result of the method body. Note that Ai is not resorted to given that by
assumption there is a unique return instruction and this instruction is executed with Ai at low. Typing
schemes T-Pop, T-Push and T-Goto follow similar lines.

Regarding T-If, we assume that if i′ instructions have always two branches (in this case i′ and i+1).
Since control jumps to i′ or i+ 1, Vi must be a subtype of Vi′ and Vi+1 as stated by the second line. Si

3.3 Type System 23

(T-PrimOp)

B(i) = prim op
κ′ ⊔ κ′′ ⊑ Si+1(0)
Si ≤Ai κ

′ · κ′′ · (Si+1\0)
Ai ⊑ κ′, κ′′

Vi ≤ Vi+1

Ti ≤ Ti+1

V,S,A, T , i✄B

(T-Str)

B(i) = store x
Si ≤Ai Vi+1(x) · Si+1

Vi\x ≤ Vi+1\x
Ti ≤ Ti+1

Ai ⊑ Vi+1(x)

V,S,A, T , i✄B

(T-Load)

B(i) = load x
Ai ⊔ Vi(x) · Si ≤Ai Si+1

Vi ≤ Vi+1

Ti ≤ Ti+1

V,S,A, T , i✄B

(T-Ret)

B(i) = return

Si(0) ⊔ Ai ⊑ κr

V,S,A, T , i✄B

(T-Pop)

B(i) = pop

Si ≤Ai κ · Si+1

Vi ≤ Vi+1

Ti ≤ Ti+1

Ai ⊑ κ

V,S,A, T , i✄B

(T-Push)

B(i) = push n
Ai · Si ≤Ai Si+1

Vi ≤ Vi+1

Ti ≤ Ti+1

V,S,A, T , i✄B

(T-Goto)

B(i) = goto i′

Vi ≤ Vi′

Si ≤Ai Si′

Ti ≤ Ti′

V,S,A, T , i✄B

(T-If)

B(i) = if i′

Vi ≤ Vi+1,Vi′

Si ≤Ai κ · Si+1, κ · Si′

Ai ⊑ κ
Ti ≤ Ti+1, Ti′

∀k ∈ region(i).κ ⊑ Ak

V,S,A, T , i✄B

(T-New)

B(i) = new C
a = Fresh(Ti)
Ti ⊕ {a 7→ [f1 : ftAi(f1), . . . , fn : ftAi(fn)]} ≤ Ti+1

〈{a},Ai〉 · Si ≤Ai Si+1

Vi ≤ Vi+1

V,S,A, T , i✄B

(T-PtFld)

B(i) = putfield f
Si ≤Ai 〈R1, l1〉 · 〈R, l〉 · Si+1

l1 ⊔ l ⊑
d

a∈R Ti(a, f)
for all a ∈ R.Ti+1(a, f) = 〈R3, l2〉,

where Ti(a, f) = 〈 , l2〉 ∧R1 ⊆ R3

Ai ⊑ l, l1
Vi ≤ Vi+1

Ti\{(a, f) | a ∈ R} ≤ Ti+1\{(a, f) | a ∈ R}

V,S,A, T , i✄B

(T-GtFld)

B(i) = getfield f
Si(0) = 〈R, l〉
κ =

⊔

a∈R Ti(a, f)
l ⊔ κ ⊔ Ai · (Si\0) ≤Ai Si+1

Vi ≤ Vi+1

Ti ≤ Ti+1

V,S,A, T , i✄B

Fig. 3.7. Typing Schemes

must be a subtype of κ · Si′ and κ · Si+1. Moreover, the security level of region(i) must be greater than
or equal to the security level κ of the value inspected at i.

In order to type new C a fresh symbolic location is created. The Fresh(Ti) function return a symbolic
location not used in Ti. The heap type of the successor of i is required to define an object type for it. This
object type assigns a security label to each field according to ftAi

. For those fields declared polymorphic,
the level Ai is assigned.

T-PtFld requires that no information about the value written to field f (l1), the reference of the
object (l) nor the current security context (Ai) be leaked. The security level of the field f does not
change (the level is fixed throughout the execution). However, the symbolic locations associated with
the attribute (f) are updated with the value symbol locations (R1). Note that label 〈R, l〉 may contain
multiple symbolic references in R. For example, this would be the case if a new object was created in two
different branches of a conditional before merging and then executing the putfield instruction.

24 3 Type-Based Information Flow Analysis for Bytecode Languages with Variable Object Field Policies

The scheme T-GtFld requires that information about the current security context (Ai), the reference
of the object (l) and the value read to the field (κ) is pushed on top of the stack.

3.3.4 Type-Checking Examples

The combination of T-If scheme with T-Store, T-Load, T-PtFld or T-GtFld allows to prevent
indirect flows, as we now exemplify:

Example 3.13.

1 load xL
2 load yH
3 if 7
4 push 0
5 putfield fL
6 goto 10
7 push 1
8 putfield fL
9 goto 10
10 return

By requiring the updated field level to be greater or equal than the context level in the T-PtFld rule
and by requiring a global constraint on the security context in the T-If rule, the type system rejects this
program. Since instructions at 5 and 8 are in region(3) (hence are under the influence of high if), these
program points must be H (A5 = A8 = H).

The condition: Si ≤Ai
Si+1 on rules T-PrimOp, T-If,T-Pop,T-Str and T-PtFld determines the

operand stack elements that will be popped in a high context. This condition avoids implicit flows caused
by the manipulation of the operand stack. In high contexts one cannot remove low stack elements.

Example 3.14. In the following program, the final value of the top of the stack in return (3 or 4) depends
on the initial value of yH. The problem is caused by an arithmetic instruction that manipulates (removes
a low value) the operand stack in the scope of a high if instruction.

1 push 3
2 load yH
3 if 7
4 push 1
5 prim +
6 goto 8
7 goto 8
8 return

Subtyping on heap types is required to accomodate new symbolic locations.

Example 3.15. Consider the program fragment:

1 new C
2 if i
3 new D
4 goto 2
· · ·

T2 will assign symbolic locations to both the new C object and the new D object. The reason for the
latter is the goto instruction which folds back the heap type assignment to T2.

3.3 Type System 25

Example 3.16 shows the result of type checking.

Example 3.16. Consider the following method:

1 push 0
2 load x
3 if 7
4 push 0
5 store y
6 goto 10
7 push 1
8 store y
9 goto 10
10 return

The final value of y (0 or 1) depends of the value of x (push on stack in the instruction 2) evaluated
in the instruction 3. The type checking algorithm generates the following constraints, with κr = L and
region(3) = {4, 5, 6, 7, 8, 9}:

i B(i) Vi(x) Vi(y) Si Ai Constraints Generated
1 push 0 H H ǫ L L · ǫ ≤L β1 · ǫ
2 load x H H β1 · ǫ δ2 H · β1 · ǫ ≤δ2 β2 · β1 · ǫ δ2 ⊑ β2

3 if 7 H H β2 · β1 · ǫ δ3 ∀i ∈ {4, 5, 6, 7, 8, 9}.β2 ⊑ Ai

4 push 0 H H β1 · ǫ δ4 δ4 · β1 · ǫ ≤δ4 β3 · β1 · ǫ
5 store y H H β3 · β1 · ǫ δ5 β3 · β1 · ǫ ≤δ5 γ1 · β1 · ǫ δ5 ⊑ γ1
6 goto 10 H γ1 β1 · ǫ δ6 V6(y) ⊑ V10(y)
7 push 1 H γ1 β1 · ǫ δ7 δ7 · β1 · ǫ ≤δ7 β4 · β1 · ǫ
8 store y H γ1 β4 · β1 · ǫ δ8 β4 · β1 · ǫ ≤δ8 γ2 · β1 · ǫ δ8 ⊑ γ2
9 goto 10 H γ2 β1 · ǫ δ9 V6(y) ⊑ V10(y)
10 store z H γ2 β1 · ǫ δ10 β1 ⊔ δ10 ⊑ κr

The constraints are satisfiable by:

β1, δ2, δ3, δ10 = L β2, β3, β4, δ4, δ5, δ6, δ7, δ8, δ9, γ1, γ2 = H

3.3.5 Implementing Type Checking

The type checking algorithm works in two phases:

1. first it collects constraints dictated by the typing schemes of each instruction;
2. second it solves the set of inequality constraints obtained in the first step. The least solution of this

set of constraints is computed. Next, it verifies that all constraints are satisfied with the solution
obtained.

Typing schemes were already covered in previous sections. Now, we explain how we compute the least
solution for the constraints.

The Solution of Set Constraints

We call terms to expressions of the form:

var ::= βi | δi | γi | ci Variables
t ::= L | H | 〈R, t〉 | var | t ⊔ t | t ⊓ t Terms

26 3 Type-Based Information Flow Analysis for Bytecode Languages with Variable Object Field Policies

The least solution of a set of constraints is computed by the algorithm in Figure 3.8. This algorithm
is a version of the classic Abstract Worklist Algorithm [90] for solving sets of inequalities. The algorithm
uses:

• A set of constraints t1 ⊑ c1, · · · , tN ⊑ cN , named C, of input.
• A worklist W.
• An auxiliary array of sets of constraints, infl, which records the constraints that depend on each

variable.
• Analysis is the array that represents the solution. A solution is a total function that assigns to each

variable a security label.
• The function eval(t, Analysis) evaluates term t according to the array Analysis.

The algorithm initializes the worklist W with the set of constraints. The initial solution for each
element in Analysis is ⊥ = 〈∅, L〉, the least element. And, after the initialisation infl[c] = {t′ ⊑ c′ ∈ C |
c appears in t′}.

The worklist is then processed until it is empty. In each iteration one constraint is computed and all
constraints that depend on it are added to the list for recomputing if the level differs (is greater) from
the one computed earlier.

INPUT: A system C of constraints: t1 ⊑ c1, · · · , tN ⊑ cN

OUTPUT: The least solution: Analysis

INITIALISATION: (of W, Analysis and infl)
W := ∅
for all t ⊑ c ∈ C do

W := W ∪ {t ⊑ c}
Analysis[c] := ⊥
infl[c] := ∅

end for

for all t ⊑ c ∈ C do

for all c′ in t do
infl[c′] := infl[c′] ∪ {t ⊑ c}

end for

end for

ITERATION: (updating W and Analysis)
while W 6= ∅ do

t ⊑ c := choose some t ⊑ c ∈ W

W := W \ {t ⊑ c}
new := eval(t, Analysis)
if new 6⊑ Analysis[c] then

Analysis[c] := Analysis[c] ⊔ new
for all t′ ⊑ c′ ∈ infl[c] do

W := W ∪ {t′ ⊑ c′}
end for

end if

end while

Fig. 3.8. The Constraints Solver Algorithm

We need the set of constraints to be as follows: t1 ⊑ c1, · · · , tN ⊑ cN , where c1, · · · , cN are variables and
t1, · · · , tN are terms. Then we rewrite the constraints generated by the type checker with the algorithm
of Figure 3.9.

3.3 Type System 27

INPUT: The set of constraints C generated by the type schemes.

OUTPUT: A system C of constraints: t1 ⊑ c1, · · · , tN ⊑ cN

C := ∅

for all S ≤l S
′ ∈ C do

for all j ∈ {0 · · · ‖S‖} do

C := C ∪ {S(j) ⊑ S ′(j)}
end for

end for

for all V ≤ V ′ ∈ C do

for all x ∈ X do

C := C ∪ {V(x) ⊑ V ′(x)}
end for

end for

for all T ≤ T ′ ∈ C do

for all a ∈ Dom(T) do
for all f ∈ Dom(T (a)) do

C := C ∪ {T (a, f) ⊏
∼ T ′(a, f)}

end for

end for

end for

for all (t ⊑ t′ or t = t′) ∈ C do

C := C ∪ {t ⊑ t′}
end for

for all t ⊑ κ ⊓ t′ ∈ C do

C := (C \ {t ⊑ κ ⊓ t′}) ∪ {t ⊑ κ} ∪ {t ⊑ t′}
end for

Fig. 3.9. The Rewrite Constraints Algorithm

Let us return to the Example 3.16. We have the constraints set generated by the type checker:

L · ǫ ≤L β1 · ǫ
H · β1 · ǫ ≤γ2

β2 · β1 · ǫ δ2 ⊑ β2

∀i ∈ {4, 5, 6, 7, 8, 9}.β2 ⊑ Ai

δ4 · β1 · ǫ ≤γ4
β3 · β1 · ǫ

β3 · β1 · ǫ ≤γ5
γ1 · β1 · ǫ δ5 ⊑ γ1

V6(y) ⊑ V10(y)
δ7 · β1 · ǫ ≤γ7

β4 · β1 · ǫ
β4 · β1 · ǫ ≤γ8

γ2 · β1 · ǫ δ8 ⊑ γ2
V6(y) ⊑ V10(y)
β1 ⊔ δ10 ⊑ κr

The Algorithm of Figure 3.9 rewrite the set of constraints, then we have:

28 3 Type-Based Information Flow Analysis for Bytecode Languages with Variable Object Field Policies

L ⊑ β1

H ⊑ β2 δ2 ⊑ β2

β2 ⊑ δ4, δ5, δ6, δ7, δ8, δ9
δ4 ⊑ β3

β3 ⊑ γ1 δ5 ⊑ γ1
γ1 ⊑ γ4
δ7 ⊑ β4

β4 ⊑ γ2 δ8 ⊑ γ2
γ2 ⊑ γ4

β1 ⊔ δ10 ⊑ L

We show how the algorithm obtains the solution of the constraints for a subset of the restrictions. We
consider the following set of constraints C = {L ⊑ β1, H ⊑ β2, δ2 ⊑ β2, β2 ⊑ δ4}. The Constraint Solver
initialisation (Figure 3.8) produces:

W = L ⊑ β1, H ⊑ β2, δ2 ⊑ β2, β2 ⊑ δ4

β1 β2 δ2 δ4
Analysis L L L L

infl ∅ β2 ⊑ δ4 δ2 ⊑ β2 ∅

The first iteration take a constraint, by example L ⊑ β1. Then the first iteration result is

W = H ⊑ β2, δ2 ⊑ β2, β2 ⊑ δ4

β1 β2 δ2 δ4
Analysis L L L L

infl ∅ β2 ⊑ δ4 δ2 ⊑ β2 ∅

We note that since eval(L, Analysis) = L, then Analysis(β1) does not change.
The following is H ⊑ β2. We have eval(H, Analysis) = H, then Analysis(β2) changes.

W = δ2 ⊑ β2, β2 ⊑ δ4

β1 β2 δ2 δ4
Analysis L H L L

infl ∅ β2 ⊑ δ4 δ2 ⊑ β2 ∅

The third iteration does not generate changes. Now we take the last constraint, β2 ⊑ δ4. eval(β2, Analysis) =
H then Analysis(δ4) change. Then, the least solution is (the constraints are satisfiable by):

β1 β2 δ2 δ4
Analysis L H L H

Some Considerations

Nielson et al. [90] prove that the algorithm computes the least solution. The assumptions required for
the proof are:

1. (SecLabels,⊑) is a complete lattice that satisfies the Ascending Chain Condition. A complete lattice
is a partially ordered set in which all subsets have both a supremum and an infimum. A complete
lattice is said to satisfy the Ascending Chain Condition if every ascending chain of elements eventually
terminates, or eventually stabilizes (that is, there is no infinite ascending chain).

2. The set of elements that we want to find the solution is finite.

3.4 JVMs
E - Adding Exceptions to JVMs 29

These requirements are met so we can say that the algorithm computes the least solution. Furthermore,
Nielson et al. [90] prove that the complexity of the algorithm for computing the least solution is O(h ·
M2 ·N), where N is the number of constraints, M is the largest size of the right hand sides of constraints
and h is the height of (SecLabels,⊑).

Let n be the number of instructions, v the number of local variables of a method and let f be the
number of fields of the symbolic locations into heap type. Furthermore, let b the maximun arity for a
branching point. Then the size of the constraints generated from each instruction is O(b ·n+ v+ f), and
hence the size of all the constraints generated is O(b · n2 + n · v+ n · f). The constraints can be solved in
quadratic time by using the linear-time algorithm of J. Rehof and T. Mogensen [93]. Therefore, the time
complexity of type checking is quadratic [68].

Currently we assume that the region and jun functions verifying SOAP are supplied by the user. This
is by no means necessary given that such information may be inferred by an analyzer using standard
algorithms [15, 92, 33]. The complexity of computing regions is the same as the complexity of verifying
the SOAP property, i.e. it can be done in quadratic time [24].

3.4 JVM
s

E
- Adding Exceptions to JVM

s

This section extends our analysis to deal with exceptions. We briefly explain the JVM exception handling
mechanism and then extend the operational semantics and inference schemes for JVMs accordingly.

3.4.1 JVM Exception Handling

In Java, throwing an exception results in an immediate non-local transfer of control from the point where
the exception has been thrown. This transfer of control may abruptly complete, one by one, multiple
statements, constructor invocations, static and field initializer evaluations, and method invocations. The
process continues until a catch clause is found that handles the thrown value. If no such clause can be
found, the current program exits. As implemented by the JVM, each try-catch clause of a method is
represented by an exception handler.An exception handler specifies the range of instructions into the
JVM code implementing the method for which the exception handler is active, describes the type of
exception that the exception handler is able to handle, and specifies the location of the code that is to
handle that exception. An exception matches an exception handler if the pc of the instruction that caused
the exception is in the range of pcs of the exception handler and the exception type is the same class of
the class of exception that the exception handler handles. In the Example 3.17 we show a program with
their exception handler.

Example 3.17.

try{
yH.f = v;
yH.f1 = v;

}catch(E e){
thisL.f2 = v;

};
return v;

1 load yH
2 push v
3 putfield f
4 load yH
5 push v
6 putfield f1
7 push v
8 return

9 load thisL
10 push v
11 putfield f2
12 goto 7

(a) Program (b) Bytecode

30 3 Type-Based Information Flow Analysis for Bytecode Languages with Variable Object Field Policies

The exception table consists of a single handler (1, 6, 9), that says that all program points in the interval
[1, 6] are handled by the code starting at program point 9.

When an exception is thrown, the JVM searches for a matching exception handler in the current
method. If a matching exception handler is found, the system branches to the exception handling code
specified by the matched handler. If no such exception handler is found in the current method, the current
method invocation completes abruptly. On abrupt completion, the operand stack and local variables of the
current method invocation are discarded, and its frame is popped, reinstating the frame of the invoking
method. The exception is then re-thrown in the context of the invoker’s frame and so on, continuing
up the method invocation chain. If no suitable exception handler is found before the top of the method
invocation chain is reached, the execution of the program in which the exception was thrown is terminated
[75].

3.4.2 JVM
s

E

In the presence of exceptions, information leakage can be caused by new forms of implicit flows, as we
now illustrate.

Example 3.18. Consider the following program that assigns v1 to field f1 of the object stored in y and v2
to field f2 of the object stored in x.

1 load yH
2 push v1
3 putfield f1H
4 load xL

5 push v2
6 putfield f2L
7 push v
8 return

This program is interferent if y and f1 are H, x and f2 is L and the exception table is (1, 7, 8) (meaning
the handler for a Throwable exception commencing at instruction 8 applies to instruction range 1 to
7). In a normal execution field f2 is assigned the value v2, while in an exceptional case (y contains a null
reference) instructions 4, 5 and 6 are never reached. Since f2 is low, it is observable and hence there is
an implicit flow from yH to f2.

In the case that the handler is not defined and κr is L, then this program is interferent since the
exception that is raised is high (the object y is high).

Example 3.17 is another case of an interferent program. The assignment to yH.f = v may throw an
exception, skipping the assignment to yH.f1 = v, and causing an assignment to thisL.f2 = v.

Operational semantics of JVM
s
E. The operational semantics of JVMs

E is obtained by adding the
reduction rules of Fig. 3.10 to those of JVMs.

In order to simplify our presentation we assume the two following requirements. The first is a unique
class Throwable in C of throwable exceptions. An instance of this class is created upon attempting
to write to (or read from) a field whose object reference is null. Also, it should be the class of the
topmost object of the operand stack just before a throw instruction (although we do not check this given
the assumption that the method passes the JVM bytecode verifier). The other requirement is that all
methods return a value. That is, if a method invocation terminates abruptly, then the value returned is
a reference to a throwable object.

We assume given a (partial) function Handler that indicates whether a handler is available at a given
program point. For example, if a putfield instruction appears at i, then Handler(i) = i′ indicates that

3.4 JVMs
E - Adding Exceptions to JVMs 31

the handler for a null pointer reference is located at i′. If i′ is not relevant, then we write Handler(i) ↓.
We write Handler(i) ↑ if Handler(i) is undefined.

For each program point i such that Handler(i) ↑ we assume the existence of a dummy program point
err i to which control is transferred in the case that i generates an exception. To model exceptional
behavior we use states of the form 〈err i, α, 〈o〉 · σ, η〉, where o is a reference to a throwable object. This
allows us to model the attacker having access to the machine state on abnormal (i.e. due to an unhandled
exception) termination. Additionally, it simplifies the notion of noninterference (indeed, our previous
formulation applies to JVMs

E too). Note that the use of multiple dummy program points also provides
support for further precision in our analysis given that the memory state at different program points may
differ substantially.

Upon raising an exception and assuming a handler is available at a given program point, the contents of
the operand stack is assumed to be cleared. Note, however, that the information in the heap is maintained.

Furthermore, we assume the existence of a final program point pf . The control is transferred from all
dummy program points and the return instruction to final program point pf . This allows us to model
the attacker having access to the final machine state. We note that the final program point pf may be a
junction point. In that case it is the only one we do not assume that is preceded by goto instructions.
Indeed, the final program point pf is either preceded by the return instruction and/or dummy program
points. Now, final states are referred to as expressions of the form 〈pf , v, η〉.

(R-PtFldH)

B(i) = putfield f o = null
o′ = Fresh(η) Handler(i) = i′

〈i, α, v · o · σ, η〉 −→B 〈i′, α, o′ · ǫ, η ⊕ {o′ 7→ Default(Throwable)}〉

(R-PtFldNoH)

B(i) = putfield f o = null
o′ = Fresh(η) Handler(i) ↑

〈i, α, v · o · σ, η〉 −→B 〈err i, α, 〈o
′〉 · σ, η ⊕ {o′ 7→ Default(Throwable)}〉

(R-GtFldH)

B(i) = getfield f o = null
o′ = Fresh(η) Handler(i) = i′

〈i, α, o · σ, η〉 −→B 〈i′, α, o′ · ǫ, η ⊕ {o′ 7→ Default(Throwable)}〉

(R-GtFldNoH)

B(i) = getfield f o = null
o′ = Fresh(η) Handler(i) ↑

〈i, α, o · σ, η〉 −→B 〈err i, α, 〈o
′〉 · σ, η ⊕ {o′ 7→ Default(Throwable)}〉

(R-ThrH)

B(i) = throw Handler(i) = i′

〈i, α, o · σ, η〉 −→B 〈i′, α, o · ǫ, η〉

(R-ThrNoH)

B(i) = throw Handler(i) ↑

〈i, α, o · σ, η〉 −→B 〈err i, α, 〈o〉 · σ, η〉

(R-Erri)

〈erri, α, 〈o〉 · σ, η〉 −→B 〈pf , 〈o〉, η〉

(R-Ret)

B(i) = return

〈i, α, v · σ, η〉 −→B 〈pf , v, η〉

Fig. 3.10. Additional Reduction Schemes for Exception Handling

32 3 Type-Based Information Flow Analysis for Bytecode Languages with Variable Object Field Policies

3.4.3 Typing Schemes

Given that exceptions are a form of conditional jumps control dependence regions must be extended. The
extension is rather straightforward. First the set of conditional control points is modified as follows:

Dom(B)♯ = {k ∈ Dom(B) | B(k) = if i or B(k) = putfield f or B(k) = getfield f}

.
Note that throw is not a conditional jump and hence not included.
Then, we extend the successor relation (Def. 3.9) to include the possible change of control flow:

• If B(i) = throw and Handler(i) = i′, then i 7→ i′, otherwise i 7→ erri;
• If B(i) = putfield f , then i 7→ i+ 1 and if Handler(i) = i′, then i 7→ i′, otherwise i 7→ erri;
• If B(i) = getfield f , then i 7→ i+ 1 and if Handler(i) = i′, then i 7→ i′, otherwise i 7→ erri;
• If B(i) = return, then i 7→ pf ;
• If B(erri), then erri 7→ pf .

The SOAP properties, however, are not modified since that notion is already parametrized by
Dom(B)♯. But, we need extend SOAP to pf :

• ∀i ∈ Dom(B).pf 6∈ region(i).

The additional typing schemes are presented in Figure 3.11. The main requirement in scheme T-

ThrNoH, the typing scheme for the instruction throw when no handler is available, is A(i)⊔Si(0) ⊑ κr.
In the case of an unhandled exception, the occurrence of the exception should not leak the level of the
context. For example, if the level of the return value (κr) is L, then Ai should be low too for otherwise
the occurrence or not of the exception could reveal the secret value on which an instruction branched,
whose region includes the throw instruction. Likewise, the instance of the exception that is raised may
be seen as the returned error value. In the case that there is a handler, then T-ThrH deals with the
throw instruction as a unconditional jump to the handler. Furthermore, the operand stack are discarded
and the object security level is pushed on the stack.

The putfield instruction requires three typing schemes. T-PtFld and T-PtFldH types a putfield
at a program point that has a handler. T-PtFld and T-PtFldNoH are applied if the program point
has a no handler. In the case of a putfield instruction located at a program point for which there is a
handler, when control is transferred to this handler the operand stack is assumed to be purged and a new
instance of Throwable created. This object’s reference must be at least the level of the null reference
and the context in which the putfield is executed. Most notably, the level of all items on the stack must
be assumed high since its contents is available for inspection after an exception (i.e. the fact that it has
been emptied is observable). It should be mentioned that this does not force all items of the stack of
ancestor instructions to be high thanks to subtyping of stack types. The typing scheme T-PtFldNoH

may be understood similarly to T-ThrNoH. And getfield typing schemes may be understood similarly
to putfield typing schemes.

3.4 JVMs
E - Adding Exceptions to JVMs 33

(T-ThrNoH)

B(i) = throw

Handler(i) ↑
Ai ⊔ Si(0) ⊑ κr

Si ≤Ai Serri

Vi ≤ Verri

Ti ≤ Terri

V,S,A, T , i✄B

(T-ThrH)

B(i) = throw

Handler(i) = i′

Si(0) ⊑ Ai′

Si(0) · ǫ ≤Ai Si′

Vi ≤ Vi′

Ti ≤ Ti′

∀j ∈ Dom(Si).Ai ⊑ Si(j)

V,S,A, T , i✄B

(T-PtFld)

B(i) = putfield f
Handler(i) ↓
Si ≤Ai 〈R1, l1〉 · 〈R, l〉 · Si+1

l1 ⊔ l ⊑
d

a∈R Ti(a, f)
for all a ∈ R.Ti+1(a, f) = 〈R3, l2〉,

where Ti(a, f) = 〈 , l2〉 ∧R1 ⊆ R3

Ai ⊑ l, l1
Vi ≤ Vi+1

Ti\{(a, f) | a ∈ R} ≤ Ti+1\{(a, f) | a ∈ R}
∀k ∈ region(i).l ⊑ Ak

V,S,A, T , i✄B

(T-PtFldNoH)

B(i) = putfield f
Handler(i) ↑
Si ≤Ai κ · 〈R, l〉 · (Serri\0)
κ ⊑

d
a∈R Ti(a, f)

a = Fresh(Ti)
〈{a}, l ⊔ Ai〉 ⊑ Serri(0)
l ⊑ κr

Ai ⊑ κ, l
Vi ≤ Verri

Ti ⊕ {a 7→ [f1 : ftAi(f1), . . . , fn : ftAi(fn)]} ≤ Terri

V,S,A, T , i✄B

(T-PtFldH)

B(i) = putfield f
Handler(i) = i′

Si = κ′ · 〈R, l〉 · S, for some S
a = Fresh(Ti)
〈{a}, l ⊔ Ai〉 · ǫ ≤Ai Si′

Vi ≤ Vi′

Ti ⊕ {a 7→ [f1 : ftAi(f1), . . . , fn : ftAi(fn)]} ≤ Ti′

∀j ∈ Dom(Si).Ai ⊑ Si(j)

V,S,A, T , i✄B

(T-Ret)

B(i) = return

Si(0) ⊔ Ai ⊑ κr

Ti ≤ Tpf

V,S,A, T , i✄B

(T-Erri)

B(erri)
Si(0) ⊔ Ai ⊑ κr

Ti ≤ Tpf

V,S,A, T , i✄B

(T-GtFld)

B(i) = getfield f
Handler(i) ↓
Si(0) = 〈R, l〉
κ =

⊔

a∈R Ti(a, f)
l ⊔ κ ⊔ Ai · (Si\0) ≤Ai Si+1

Vi ≤ Vi+1

Ti ≤ Ti+1

∀k ∈ region(i).l ⊑ Ak

V,S,A, T , i✄B

(T-GtFldH)

B(i) = getfield f
Handler(i) = i′

Si = 〈R, l〉 · S, for some S
a = Fresh(Ti)
〈{a}, l ⊔ Ai〉 · ǫ ≤Ai Si′

Vi ≤ Vi′

Ti ⊕ {a 7→ [f1 : ftAi(f1), . . . , fn : ftAi(fn)]} ≤ Ti′

∀j ∈ Dom(Si).Ai ⊑ Si(j)

V,S,A, T , i✄B

(T-GtFldNoH)

B(i) = getfield f
Handler(i) ↑
Si ≤Ai 〈R, l〉 · (Serri\0)
Si(0) = 〈R, l〉
κ =

⊔

a∈R Ti(a, f)
a = Fresh(Ti)
〈{a}, l ⊔ Ai〉 ⊑ Serri(0)
Ai ⊑ l ⊑ κr

Vi ≤ Verri

Ti ⊕ {a 7→ [f1 : ftAi(f1), . . . , fn : ftAi(fn)]} ≤ Terri

V,S,A, T , i✄B

Fig. 3.11. Typing Schemes for Exception Handling

34 3 Type-Based Information Flow Analysis for Bytecode Languages with Variable Object Field Policies

Example 3.19. Let us return to Example 3.18 above. As already mentioned, this program is interferent if
y and f1 are H, x and f2 are L and the exception table is (1, 7, 8) (meaning the handler for a Throwable
exception commencing at instruction 8 applies to instruction range 1 to 7). In a normal execution field
f2 is assigned the value v2, while in an exceptional case (y contains a null reference) instructions 4, 5
and 6 are never reached. Since f2 is low, it is observable and hence there is an implicit flow from f1
to f2. This program is rejected by JVMs

E . First note that region(3) = {4, 5, 6, 7} and region(6) = {7}.
Then the security environment of the instructions in {4, 5, 6, 7} is high and the type system prevents the
assignment to low fields in high contexts, i.e. the putfield at line 6 is rejected.

In the case that the handler is not defined and κr is L, then this program is interferent since the
exception that is raised is high (the object y is high). The type system rejects this program by requiring
that the object which throws an exception has at least level κr.

Example 3.20. The program of Example 3.17 also is rejected by JVMs
E . We note that the security en-

vironment of the instructions in {4, 5, 6, 9, 10, 11, 12} is high (region(3) = {4, 5, 6, 9, 10, 11, 12}) and the
type system prevents the assignment to fields of low objects in high contexts, i.e. the putfield at line
11 is rejected.

3.5 JVM
s

C
- Adding Method Calls to JVM

s

E

This section presents our final extension to JVMs, namely JVMs
C , which results from adding method calls.

We briefly explain the JVM method call mechanism and extend the operational semantics and inference
schemes for JVMs

C . The following table summarizes our three extensions:

System Description
JVMs Core bytecode
JVMs

E Core bytecode with exceptions
JVMs

C Core bytecode with exceptions and method calls

3.5.1 JVM Method Calls

A method invocation completes normally or abruptly. A method invocation completes normally if that
invocation does not cause an exception to be thrown, either directly from the Java virtual machine or
as a result of executing an explicit throw statement. If the invocation of the current method completes
normally, then a value may be returned to the invoking method. This occurs when the invoked method
executes one of the return instructions, the choice of which must be appropriate for the type of the value
being returned (if any). Execution then continues normally in the invoking method’s frame with the
returned value (if any) pushed onto the operand stack of that frame. A method invocation completes
abruptly if execution of a Java virtual machine instruction within the method causes the Java virtual
machine to throw an exception, and that exception is not handled within the method. Execution of a
throw instruction also causes an exception to be explicitly thrown and, if the exception is not caught by
the current method, results in abrupt method invocation completion. A method invocation that completes
abruptly never returns a value to its invoker [75].

3.5.2 JVM
s

C

In the presence of methods and exceptions, information leakage can be caused by propagation of exceptions
to caller methods. Furthermore, other kind of leakage that arises with the extension to methods is caused
by dynamic method dispatch, i.e. when classes contain different implementations of the same method,
and different methods codes are executed depending on the dynamic type of their target object. We will
illustrate these cases with examples. After doing so we introduce the syntax of JVMs

C .

3.5 JVMs
C - Adding Method Calls to JVMs

E 35

We recall from that we have a set C of class names that is as a hierarchy to model the inheritance
of classes. Each class comes equipped with set M of method names; letters m,m′ range over M. Each
method m possesses its local variables set Xm and its list of instructions Bm. The set of instructions
of JVMs

C results from extending those of JVMs
E the new instruction invokevirtual m where m is any

method name.

Example 3.21. A example of information leakage due to exceptions. Consider the method m, in Figure
3.12, with exception handler (5, 7, 9), method m3 with exception handler (3, 3, 5) and method m2 without
any handler. The local variable yH is passed as parameter to method m2. If the value of yH at run-time is
null then an exception is thrown and handled in m. The exception handler specifies an assignment to a
low field f ′

L
. An attacker, who can observe the value of f ′

L
, will detect if variable yH has value null or not

according to the value of f ′
L
after execution of method m. The attacker can also infer information about

zH since the exception may be handled by the handler method m3, assigning low field f ′
L
, depending on

the value of zH.

Code of m
1. load yH
2. load yH
3. load zH
4. if 7
5. invokevirtual m2

6. goto 12
7. invokevirtual m3

8. goto 12
9. push 1
10 putfield f ′

L

11 push 1
12. return

Code of m2

1. load yH
2. load this
3. putfield fH
4. push 1
5. return

Code of m3

1. load yH
2. load this
3. putfield fH
4. goto 7
5. push 0
6. putfield f ′′

L

7. push 1
8. return

Fig. 3.12. Information leak due to exceptions.

Example 3.22. These examples (taken from [94]) illustrate how object-oriented features can lead to in-
terference. Let class C be a superclass of a class D. Let method foo be declared in D, and a method
m declared in C and overridden in D as illustrated by the source program in Figure 3.13. At run-time,
either code C.m or code D.m is executed depending on the value of high variable yH. Information about
yH may be inferred by observing the return value of method m.

Operational semantics of JVM
s
C . While JVM states contain a frame stack to handle method

invocations, it is convenient (as discussed in [94]) for showing the correctness of static analysis to rely
on an equivalent semantics where method invocation is performed in one go. While small-step semantics
uses a call stack to store the calling context and retrieve it during a return instruction, method invocation
directly executes the full evaluation of the called method from an initial state to a return value and uses
it to continue the current computation. The resulting semantics is termed mixed-step semantics.

This choice simplifies the notion of indistinguishability between states. In the presence of a small-step
semantics states possess stack of frames (one frame corresponding to each method in the calling chain)
and hence indistiguishability must take account of frames of high and low methods which can throw
and propagate low and high exceptions. It is also needed for indistiguishability to state if the method is
invoked in a low or high target object.

The reduction rules defining the mixed-step operational semantics is given in Figure 3.14. A method
identifier may correspond to several methods in the class hierarchy according to overriding of methods.

36 3 Type-Based Information Flow Analysis for Bytecode Languages with Variable Object Field Policies

class C{
int m(){return 0; }

}
class D extends C{

int m(){ return 1; }
int foo(boolean y){

return ((y? new C() : this).m());
}

}
(a) Source Code

D.foo :
1. load yH
2. if 5
3. new C
4. goto 6
5. load this
6. invokevirtual m
4. return

C.m :
1. push 0
2. return

D.m :
1. push 1
2. return

(b) Bytecode

Fig. 3.13. Information leak by object-oriented features.

But, we assume, as in the JVM, that the operational semantics of invokevirtual is deterministic, and
given by a function lookup that takes a method identifier and a class name (that corresponds to the
dynamic type of the target object of the method) given by the function dynamic and returns the body of
the method to be executed. The function Handler is now parameterized by the subscript B, and it selects
the appropriate handler for a given program point. If a handler does not exist inside B, then HandlerB is
undefined. The operational semantics of the remaining instructions is adapted from the previous sections
in the obvious way.

(R-InvkVrtlH)

B(i) = invokevirtual m o′ = Fresh(η) B′ = lookup(m, dynamic(o))
〈1, {this 7→ o,−−−−→x 7→ v1}, ǫ, η〉 −→

∗
B′ 〈p′f , 〈o

′〉, η′〉 HandlerB(i) = i′

〈i, α,−→v1 · o · σ, η〉 −→B 〈i′, α, 〈o′〉 · ǫ, η′〉

(R-InvkVrtlNoH)

B(i) = invokevirtual m o′ = Fresh(η) HandlerB(i) ↑ B′ = lookup(m, dynamic(o))
〈1, {this 7→ o,−−−−→x 7→ v1}, ǫ, η〉 −→

∗
B′ 〈p′f , 〈o

′〉, η′〉

〈i, α,−→v1 · o · σ, η〉 −→B 〈err i, α, 〈o
′〉 · σ, η′〉

(R-InvkVrtl)

B(i) = invokevirtual m o ∈ Dom(η) B′ = lookup(m, dynamic(o))
〈1, {this 7→ o,−−−−→x 7→ v1}, ǫ, η〉 −→

∗
B′ 〈p′f , v, η

′〉

〈i, α,−→v1 · o · σ, η〉 −→B 〈i+ 1, α, v · σ, η′〉

Fig. 3.14. Additional Reduction Schemes for Method Calls

3.5 JVMs
C - Adding Method Calls to JVMs

E 37

3.5.3 Type System

As mentioned earlier, in the presence of methods and exceptions, information leakage can be caused by
propagation of exceptions to the calling method. This kind of leakage is prevented by providing security
signatures that impose constraints on parameters, the result, assignments and exceptions that must
be satisfied for methods to be typable. Signatures for the called methods are used in the typing rules
for calling methods, achieving modularity in this way. Thus, the analysis assumes that methods come
equipped with a security signature of the form

A1, T1, Tpf
✄ ((−−→x : κ, κr, E), B)

where −−→x : κ = x1 : κ1, . . . , xn : κn and κ1, . . . , κn are the security labels of the formal parameters
x1, . . . , xn. κr is the security label of the value returned by the method and is the maximal security level
of the exceptions not handled in the method might be thrown. If the exceptional effect of a method m
is low (κr = L), then if an exception is propagated from m, it will correspond to a low exception. A low
exception is an exception thrown in a low environment (possibly under a low conditional) and caused
by a low expression, e.g. an access to field x.f where x is a low variable holding a null value. A1 is the
context level in which the method will be executed (the level of the first instruction). T1 is the initial heap
and Tpf

is the final heap. The set E contains the throwable class names of exceptions not handled in the
method. If the method handles all its exceptions then E = ∅. We assume that every variable appearing
in the method is included in the signature of the method, i.e. the frame variables V1 is defined by the
parameters (−−→x : κ).

A method could have more than one defined security signature given that it could behave differently
with different target objects. Then security signatures are therefore given by a function mt. This function
is parameterized by a method name and a security label, mtm(κ). κ is the supremum from the security
label of the target object and the security context where the method is invoked. The symbolic locations
in κ help determine which method is invoked.

Before addressing the typing rules for JVMs
C , we revisit the notion of control dependence regions.

Control Dependence Regions for JVM
s
C . Given that method invocation is a form of conditional

jump (in case that an exception not handled in the method might be thrown) control dependence regions
must be extended. The set of conditional control points is modified as follows:

Dom(B)♯ = {k ∈ Dom(B) | B(k) = if i or B(k) = putfield f or B(k) = getfield f or
(B(k) = invokevirtual m and (∃l.mtm(l) = A1, T1, Tpf

✄ ((−−→x : κ, κr, E), B′) and E 6= ∅))}.

Then we extend the successor relation (Def. 3.9) to include the possible change of control flow:

• If B(i) = invokevirtual m then i 7→ i+ 1 and if HandlerB(i) = i′, then i 7→ i′ otherwise i 7→ ierr.

The SOAP properties, however, are not modified since that notion is already parametrized by
Dom(B)♯.

Typability

The additional typing schemes are presented in Fig. 3.15. There are three typing schemes for invokevirtual.
The T-InvkVrtl and T-InvkVrtlH schemes types a invokevirtual at a program point that has a
handler. The T-InvkVrtl and T-InvkVrtlNoH are applied if the program point has a no handler.
We now describe each of these in turn. The security level in which the method is executed is given by the
target object level and the context level (Ai ⊔ κ). The security level of the return value is κ ⊔ κ′

r ⊔ Ai.
The level κ prevents flows due to execution of two distinct methods. A high target object may mean

38 3 Type-Based Information Flow Analysis for Bytecode Languages with Variable Object Field Policies

that the body of the method to be executed is different in two executions. The security level κr prevents
that the method result flows to variables or fields with lower level and Ai prevents implicit flows. The
constraints on the operand stack are due to the fact that the first elements are removed (parameters and
object invoker) from the operand stack and the return value is pushed on the stack. Furthermore, the
security level in which the method is executed (Ai ⊔ κ) is to avoid invocation of methods with low effect
on the heap with high target objects or in high contexts. Finally, if the invoked method does not catch
all exceptions then the method call instruction is a branching point. Hence, the security level of region(i)
must be greater than or equal to the security level of the return value.

We assume an implicit function mapping the arguments to parameters of B′ and transposing flows
between parameters in B′ in flows between mapped values in B. It is used especially in heap constraint
Ti ≤ T

′
1 ≤ T

′
pf
≤ Terri .

The second scheme is applied in case of abnormal termination of the invoked method and a handler
is defined for the current instruction. The main requirements in this scheme are Si′ = κ′

r ⊔ Ai · ǫ and
∀j ∈ Dom(Si).κ ⊔ Ai ⊔ κ′

r ⊑ Si(j). These constraints are necessary since upon raising an exception, the
contents of the operand stack is cleared and the security level of the exception handler is pushed onto
the top of stack. If exception is high, then low values on the stack cannot be removed.

The last one is applied in case of abnormal termination of the invoked method and no handler is
defined for the current instruction (an exception escape from the current method). The called method
terminates by a uncaught exception and then propagates the thrown exception. Therefore the security
level of the exception is push onto the top of the stack of the erri instruction (κ′

r⊔Ai ⊑ Serri(0)). Finally,
the security level of return object must be Ai ⊔ κ ⊔ κ′

r ⊑ κr.

(T-InvkVrtl)

B(i) = invokevirtual m
HandlerB(i) ↓

mtm(κ ⊔ Ai) = A′
1, T

′
1, T

′
pf ✄ ((

−−−→
x′ : κ′, κ′

r, E
′), B′)

Ai ⊔ κ = A′
1

Si = κ′
1 · · ·κ

′
n · κ · S, for some S

Si ≤Ai κ
′
1 · · ·κ

′
n · κ · (Si+1\0)

Ai ⊑ κ′
1, · · · , κ

′
n, κ

κ ⊔ κ′
r ⊔ Ai ⊑ Si+1(0)

Vi ≤ Vi+1

Ti ≤ T ′
1 ≤ T ′

pf ≤ Ti+1

∀k ∈ region(i).κ ⊔ κ′
r ⊑ Ak, if i ∈ Dom(B♯)

V,S,A, T , i✄B

(T-InvkVrtlH)

B(i) = invokevirtual m
HandlerB(i) = i′

mtm(κ ⊔ Ai) = A′
1, T

′
1, T

′
pf ✄ ((

−−−→
x′ : κ′, κ′

r, E
′), B′)

E′ 6= ∅
Ai ⊔ κ = A′(1)
κ′
r ⊔ Ai · ǫ ≤Ai Si′

Ti ≤ T ′
1 ≤ T ′

pf ≤ Ti′

Vi ≤ Vi′

∀j ∈ Dom(Si).Ai ⊑ Si(j)

V,S,A, T , i✄B

(T-InvkVrtlNoH)

B(i) = invokevirtual m
HandlerB(i) ↑

mtm(κ ⊔ Ai) = A′
1, T

′
1, T

′
pf ✄ ((

−−−→
x′ : κ′, κ′

r, E
′), B′)

E′ 6= ∅
Ai ⊔ κ = A′(1)
Si ≤Ai κ

′
1 · · ·κ

′
n · κ · (Serri\0)

κ′
r ⊔ Ai ⊑ Serri(0)

Ai ⊔ κ ⊔ κ′
r ⊑ κr

Vi ≤ Verri

Ti ≤ T ′
1 ≤ T ′

pf ≤ Terri

V,S,A, T , i✄B

Fig. 3.15. Typing Schemes for Method Calls

3.6 Noninterference 39

Definition 3.23 (Well-Typed Method). A method M is well-typed if for all security signatures of M,
mtM (l) = l, T1, Tpf

✄ ((−−→x : κ, κr, E), B), there exists a typing context (V,S,A, T), where

V = {−−−−→x 7→ κ,V2, · · · ,Vpf
}, for some V2, · · · ,Vpf

;
S = {ǫ,S2, · · · ,Spf

}, for some S2, · · · ,Spf
;

A = {l,A2, · · · ,Apf
}, for some A2, · · · ,Apf

;
T = {T1, T2, · · · , Tpf

}, for some T2, · · · , Tpf−1,

such that the type judgement V,S,A, T ✄M holds.

A program is well-typed if all its methods are.

Definition 3.24 (Well-Typed Program). A program P is well-typed if for each declared method m
and for each security signature of m, mtm(l) = l, T1, Tpf

✄ ((−−→x : κ, κr, E), B), there exists a typing context
(V,S,A, T), where

V = {−−−−→x 7→ κ,V2, · · · ,Vpf
}, for some V2, · · · ,Vpf

;
S = {ǫ,S2, · · · ,Spf

}, for some S2, · · · ,Spf
;

A = {l,A2, · · · ,Apf
}, for some A2, · · · ,Apf

;
T = {T1, T2, · · · , Tpf

}, for some T2, · · · , Tpf−1,

such that the type judgement V,S,A, T ✄m holds.

Let us return to Example 3.21 and Example 3.22. In the former if the value of yH at run-time is null
then an exception is thrown and handled in m. The exception handler specifies an assignment to a low
field f ′

L
. An attacker, who can observe the value of f ′

L
, will detect if variable yH has value null or not

according to the value of f ′
L
after execution of method m. The attacker can also infer information about

zH since the exception may be handled by the handler method m3, assigning low field f ′
L
, depending on

the value of zH. This kind of programs is rejected by the type system, since the type system disallows
invocation of methods with high exceptions effect from methods with low value return. Furthermore, the
exception not handled by m2 is high then the lift to high of the region of invokevirtual m2 in the
typing rule disallows the assignment to any low fields in its region.

The second example we recall that at run-time, either code C.m or code D.m is executed depending
on the value of high variable yH. Information about yH may be inferred by observing the return value of
method m. The type system prevents this flow by requiring that the return value level is determined by
κ ⊔ κ′

r ⊔ Ai, where κ is the target object security level.

3.6 Noninterference

This section proves the absence of illicit information flows by means of noninterference [62]. A notion
of equivalence of machine states relative to a security level is introduced, the intuition being that two
related states are indistinguishable for an external observer. In essence, noninterference ensures that any
two computations wich are fired from initial states that differ only in values indistinguishable for an
external observer, are equivalent. The principle effort in proving this result is in obtaining an appropriate
notion of indistinguishable states. This of course depends on the types of illicit flows that are to be
captured. In particular, we have to provide a definition that caters for the features advertised in the
introduction, including unrestricted reuse of local variables and a more precise control of the operand
stack.

We begin our discussion with some preliminary notions. Given that in any two runs of a program
different locations may be allocated, it is convenient to introduce a (partial) bijection β between loca-
tions [19]. For example, two runs of new C could allocate different locations, say o1 and o2, in the heap
to the new object. This bijection helps establish that these locations are related by setting β(o1) = o2.

40 3 Type-Based Information Flow Analysis for Bytecode Languages with Variable Object Field Policies

Given that JVMs tracks the types of fields via symbolic locations we also introduce a pair of (partial) bi-
jections between symbolic locations and locations themselves: (β✁, β✄) (cf. Figure 3.16). In our example,
β✁(a) = o1 and β✄(a) = o2. Notice that both locations get assigned the same symbolic location given
that it arises from the typing derivation of new C. The sum of β and (β✁, β✄) is called a location bijection
set. Location bijection sets shall thus be required for relating heaps (as explained below). We write f−1

for the inverse of function f and f ⊆ f ′ for the inclusion of functions. A function f is included in f ′ if
Dom(f) ⊆ Dom(f ′), Ran(f) ⊆ Ran(f ′) and for all (a, b) ∈ f then (a, b) ∈ f ′.

Definition 3.25 (Location Bijection Set). A location bijection set β consists of (1) a (partial) bijec-
tion βloc between locations; and (2) a pair of (partial) bijections (β✁, β✄) between symbolic locations and
locations with

1. Dom(βloc) ⊆ Ran(β✁).
2. Ran(βloc) ⊆ Ran(β✄).

s.t. for all o ∈ Dom(βloc), β
✁

−1

(o) = β✄
−1

(βloc(o))).

Symbolic locationsOO

β✁

��

Symbolic locationsOO

β✄

��
Locations oo

βloc

// Locations

Fig. 3.16. Location bijection Set

By default, we write β(o) to mean βloc(o).

Definition 3.26. We define location bijection set β′ to be an extension of β, written β ⊆ β′, if βloc ⊆ β′
loc

and Ran(β✁) ⊆ Ran(β′✁) and Ran(β✄) ⊆ Ran(β′✄).

Definition 3.27. We write β id for a location bijection set β such that β id

loc is the identity on locations
(identity over the domain of βloc) and β id✁ = β✁, β id✄ = β✁.

Definition 3.28. Finally, define the inverse of a location bijection set β, denoted β̂, to be: β̂loc = β−1
loc

and β̂✁ = β✄ and β̂✄ = β✁.

A small set of requirements state some basic properties on how the heaps and heaps types are related
by a location bijection set.

Property 3.29 (Well-Defined Location Bijection Set). Let η1, η2 be heaps, T1, T2 heap types then a location
bijection set β is well-defined w.r.t. η1, η2, T1 and T2 if

1. Dom(βloc) ⊆ Dom(η1) and Ran(βloc) ⊆ Dom(η2),
2. Ran(β✁) ⊆ Dom(η1) and Ran(β✄) ⊆ Dom(η2),
3. Dom(β✁) ⊆ Dom(T1) and Dom(β✄) ⊆ Dom(T2),
4. for every o ∈ Dom(βloc), Dom(η1(o)) = Dom(η2(βloc(o))).

3.6 Noninterference 41

3.6.1 Indistinguishability - Definitions

In order to relate states we need to be able to relate each of its components. This includes values, variable
arrays, stacks and heaps, all of which are addressed in this section. Indistinguishability for states at
some security level λ is formulated by considering each of its components at a time. States are declared
indistinguishable depending on what may be observed and this, in turn, depends on the security level l
of the observer.

Values. The case for values is standard: public values must be identical (except for the case of
locations where they have to be related via the location bijection β) for them to be indistinguishable,
however any pair of secret values are indistinguishable regardless of their form.

Definition 3.30 (Value Indistinguishability). Given values v1, v2, security levels l, λ and β a location
bijection set we define β, l ⊢ v1 ∼

λ v2 (“values v1 and v2 are indistinguishable at level λ w.r.t. observer
level l”) as follows:

(L-Null)

l ⊑ λ

β, l ⊢ null ∼λ null

(L-Int)

v ∈ Z l ⊑ λ

β, l ⊢ v ∼λ v

(L-Loc)

v1, v2 ∈ L l ⊑ λ β(v1) = v2

β, l ⊢ v1 ∼
λ v2

(H-Val)

l 6⊑ λ

β, l ⊢ v1 ∼
λ v2

Local Variable Arrays. In the case that the current security level of the program counter is low,
both program runs are assumed to be executing the same instructions, in lock-step. We thus compare
pointwise the value of each variable using the security label indicated by Vi, the variable array type at
instruction i. Note that this does not preclude local variable reuse: if one computation reuses a register,
given that both are executing the same instruction, so will the other computation; moreover, both values
shall be related assuming the initial states are related.

However, if the current security level of the program counter is high, then computations may proceed
independently before converging at a junction point. Meanwhile, reuse of a local variable, say x, could
take place by writing a high level value where a previously low level one was held. By comparing the
values of x in both computations using the join of their levels we can assure that if reuse takes place, then
the contents of the variables are not compared (given that these contents are no longer related). Note
that once the junction point of the high level region, in which these computations occur, is reached the
subtyping conditions on heap types shall ensure that from that point on, the previously low level variable
should in fact be considered no longer inspectable (i.e. should be considered high).

Definition 3.31 (Local Variable Array Indistinguishability). Let α1, α2 be local variable arrays,
V1, V2 frame types, β a location bijection set and l, λ a security levels. We write β, (V1, V2), l ⊢ α1 ∼

λ α2

(or β, V1, l ⊢ α1 ∼
λ α2 when V1 = V2 and l ⊑ λ).

• Low-indist. Local Variable (l ⊑ λ and V1 = V2). α1 and α2 are considered low-indist. at level λ if for
all x ∈ X,

β, ⌊V1(x)⌋ ⊢ α1(x) ∼
λ α2(x).

• High-indist. Local Variable (l 6⊑ λ). α1 and α2 are considered high-indist. at level λ if for all x ∈ X,

β, ⌊V1(x) ⊔ V2(x)⌋ ⊢ α1(x) ∼
λ α2(x).

Heaps. In order to compare heaps η1 and η2 we verify that all objects allocated in η1 are indistin-
guishable with regards to their corresponding objects, as dictated by β, in the other heap (cf. condition
5 of Def.3.32). Before comparing objects it is determined whether references o allocated in η1 and which

42 3 Type-Based Information Flow Analysis for Bytecode Languages with Variable Object Field Policies

have a related allocated reference β(o) in η2 are indeed of the same type (cf. condition 4 of Def.3.32).
Then, they are compared field by field using the security level given by the heap type at the relevant
program point (if the instruction is i, then it would be Ti(β

✁−1(o), f), see Def. 3.34). The remaining
conditions in the definition below are sanity checks that are in fact preserved by reduction. Regarding
the use of T1(β

✁−1(o), f) in condition 5, rather than T2(β
✄−1(β(o)), f), the reader should note that the

following invariant is seen to hold all along the execution of the program: for every o ∈ Dom(β), for
every f ∈ Dom(o), ⌊T1(β

✁−1(o), f)⌋ = ⌊T2(β
✄−1(β(o)), f)⌋. I.e. the field security level is fixed along the

execution of the program.

Definition 3.32 (Heap Indistinguishability). Let η1, η2 be heaps, T1, T2 heap types, β a location
bijection set and λ security level. We define η1 and η2 to be indistinguishable at T1, T2 under β (we write
β, (T1, T2) ⊢ η1 ∼

λ η2 or β, T1 ⊢ η1 ∼
λ η2 in the case that T1 = T2) if:

1. β is well-defined w.r.t. η1, η2, T1 and T2, and
2. for every o ∈ Dom(β), for every field name f ∈ Dom(η1(o))

β, ⌊T1(β
✁−1(o), f)⌋ ⊢ η1(o, f) ∼

λ η2(β(o), f).

Stacks. Assuming that computation takes place in lock-step, with a program counter set to low, their
respective stacks will have the same size and its elements will be related pointwise. This intuition is for-
malised in the notion of low-indistinguishable stacks below. In the case that a conditional is executed and
that the topmost element on the stack is high, computations may progress independently, as mentioned
above. As a consequence, their corresponding stacks may vary in the number and types of the additional
elements, although all elements added in the region of the conditional shall of course have a high security
level. However, at all times both stacks shall contain a common substack, namely those that were related
just before executing the conditional.

Definition 3.33 (Stack Indistinguishability). Let σ1, σ2 be stacks, S1, S2 stack types, β a location
bijection set and l, λ security levels. We write β, (S1, S2), l ⊢ σ1 ∼

λ σ2 (or β, S1, l ⊢ σ1 ∼
λ σ2, when

S1 = S2 and l ⊑ λ).

• Low-indist. stacks (l ⊑ λ).

(L-Nil)

l ⊑ λ

β, ǫ, l ⊢ ǫ ∼λ ǫ

(Cons-L)

β, S, l ⊢ σ1 ∼
λ σ2 β, ⌊κ⌋ ⊢ v1 ∼

λ v2 l ⊑ λ

β, κ · S, l ⊢ v1 · σ1 ∼
λ v2 · σ2

• High-indist. stacks (l 6⊑ λ).

(H-Low)

β, S, l ⊢ σ1 ∼λ σ2 l ⊑ λ l′ 6⊑ λ

β, (S, S), l′ ⊢ σ1 ∼λ σ2

(H-Cons-L)

β, (S1, S2), l ⊢ σ1 ∼λ σ2 l, ⌊κ⌋ 6⊑ λ

β, (κ · S1, S2), l ⊢ v · σ1 ∼λ σ2

(H-Cons-R)

β, (S1, S2), l ⊢ σ1 ∼λ σ2 l, ⌊κ⌋ 6⊑ λ

β, (S1, κ · S2), l ⊢ σ1 ∼λ v · σ2

Machine states. Finally, we address indistinguishability of machine states. Two states are indis-
tinguishable if they are either both executing in a high region (in which case we say they are high-
indistinguishable) or they are both executing the same instruction in a low region (low-indistinguishable).
Furthermore, in any of these cases the variable array types, operand stacks and heaps should also be
indistinguishable. Note that this notion is relative to a current location bijection set.

Definition 3.34 (Machine state indistinguishability). Given security level λ, β a location bijection
set, β ⊢ 〈i, α, σ, η〉 ∼λ 〈i′, α′, σ′, η′〉 holds iff

3.6 Noninterference 43

1. Ai,Ai′ 6⊑ λ or (Ai = Ai′ ⊑ λ and i = i′);
2. β, (Vi,Vi′),Ai ⊢ α ∼λ α′;
3. β, (Si,Si′),Ai ⊢ σ ∼λ σ′; and
4. β, (Ti, Ti′) ⊢ η ∼λ η′.

Definition 3.35 (Final State Indistinguishability). Given security level λ, β a location bijection set,
β ⊢ 〈pf , v, η〉 ∼

λ 〈pf , v
′, η′〉 holds if the following hold:

1. β, ⌊κr⌋ ⊢ v ∼λ v′; and
2. β, Tpf

⊢ η ∼λ η′.

3.6.2 Indistinguishability - Properties

Determining that indistinguishability of values, local variable arrays, stacks and heaps is an equivalence
relation requires careful consideration on how location bijection sets are composed. Furthermore, in
the presence of variable reuse (cf. high-indistinguishable variable arrays of Def. 3.31) transitivity of
indistinguishability of variable arrays in fact fails unless additional conditions are imposed. These issues
are discussed in this section (for proofs consult A.1.1).

In order to state transitivity of indistinguishability for values (or any component of a machine state)
location bijection sets must be composed. A location bijection set β is said to be composable with another
location set γ if for all o ∈ Dom(β), β✄−1(β(o)) = γ✁−1(β(o)). Note that any two location sets may be
assumed to be composable w.l.o.g. For composable location bijection sets we can define their composition.

Definition 3.36. If β is composable with γ, then the location bijection set γ ◦ β is defined as follows (cf.
Figure 3.17):

1. (γ ◦ β)loc = γloc ◦ βloc
3

2. (γ ◦ β)✁ = β✁

3. (γ ◦ β)✄ = γ✄

Symbolic locationsOO

β✁

��

Symbolic locationsOO

γ✄

��
Locations oo

β
// oo

γ
// Locations

Fig. 3.17. Composition of location bijection sets

Note that, as defined, γ◦β is indeed a location bijection set. In particular, for all o ∈ Dom(γloc◦βloc)(⊆
Dom(βloc)), we have:

(γ ◦ β)✁−1(o) = β✁−1(o) (Def.)
= β✄−1(β(o))) (β loc. bij. set)
= γ✁−1(β(o)) (Composability)
= γ✄−1(γ(β(o))) (γ loc. bij. set)
= (γ ◦ β)✄−1(γ(β(o)))

Lemma 3.37.

1. β id, l ⊢ v ∼λ v, if v ∈ L and l ⊑ λ implies v ∈ Dom(β id).

3 It is partial functions that are composed: Dom(γloc ◦ βloc) = {o ∈ Dom(βloc) |βloc(o) ∈ Dom(γloc)}.

44 3 Type-Based Information Flow Analysis for Bytecode Languages with Variable Object Field Policies

2. β, l ⊢ v1 ∼
λ v2 implies β̂, l ⊢ v2 ∼

λ v1.
3. If β, l ⊢ v1 ∼

λ v2 and γ, l ⊢ v2 ∼
λ v3, then γ ◦ β, l ⊢ v1 ∼

λ v3.

Proof. The first two items follow directly from a close inspection of the definition of value indis-
tinguishability. Regarding transitivity we consider the two cases, l 6⊑ λ and l ⊑ λ. In the former
case, γ ◦ β, l ⊢ v1 ∼

λ v3 holds trivially by definition of value indistinguishability. For the latter, if
v1 = null or v1 ∈ Z we resort to transitivity of equality. If v1 ∈ L, then by hypothesis and by the
definition of value indistinguishability, v2, v3 ∈ L, β(v1) = v2 and γ(v2) = v3. And by definition of γ ◦ β,
(γ ◦ β)(v1) = γ(β(v1)) = v3. Hence γ ◦ β, l ⊢ v1 ∼

λ v3.

We now address local variable arrays. Variable reuse allows a public variable to be reused for storing
secret information in a high security execution context. Suppose, therefore, that l 6⊑ λ, β, (V1, V2), l ⊢
α1 ∼

λ α2 and γ, (V2, V3), l ⊢ α2 ∼
λ α3 where, for some x, V1(x) = L, V2(x) = H and V3(x) = L. Clearly it

is not necessarily the case that γ ◦ β, (V1, V3), l ⊢ α1 ∼
λ α3 given that α1(x) and α3(x) may differ. We thus

require that either V1 or V3 have at least the level of V2 for this variable: V2(x) ⊑ V1(x) or V2(x) ⊑ V3(x).
Of course, it remains to be seen that such a condition can be met when proving noninterference. This
is indeed the case and we defer that discussion to Sec. 3.6.3. For now we state the result, namely that
indistinguishability of local variable arrays is an equivalence relation (its proof is an easy consequence of
lemma 3.37).

Notation 3.38
• LowLoc(α, V, λ) (or simply LowLoc(α) if the V is understood from the context) is shorthand for
{o |α(x) = o, V (x) ⊑ λ}.

• LowLoc(σ, S, λ) (or simply LowLoc(σ) if the S is understood from the context) is defined as {o | ∃i ∈
0..‖S‖ − 1.σ(i) = o, S(i) ⊑ λ}

• LowLoc(η, β, T, λ) (or simply LowLoc(η, β) if the T is understood from the context) is defined as
{o′ | o ∈ Dom(β), ∃f ∈ Dom(η(o)).(η(o, f) = o′, T (β−1(o), f) ⊑ λ}

• LowLoc(〈i, α, σ, η〉, β, 〈i, V, S, T 〉, λ) (or simply LowLoc(s, β, λ) if the 〈i, V, S, T 〉 is understood from the
context) is defined as LowLoc(α, V, λ)∪LowLoc(σ, S, λ)∪LowLoc(η, β, T, λ)

Lemma 3.39. For low indistinguishability we have (l ⊑ λ):

1. β id, V , l ⊢ α ∼λ α, if LowLoc(α, V, λ) ⊆ Dom(β id).

2. β, V , l ⊢ α1 ∼
λ α2 implies β̂, V , l ⊢ α2 ∼

λ α1.
3. If β, V , l ⊢ α1 ∼

λ α2, γ, V , l ⊢ α2 ∼
λ α3, then γ ◦ β, V , l ⊢ α1 ∼

λ α3.

For high indistinguishability (l 6⊑ λ) we have:

1. β id, (V, V), l ⊢ α ∼λ α, if LowLoc(α, V, λ) ⊆ Dom(β id).

2. β, (V1, V2), l ⊢ α1 ∼
λ α2 implies β̂, (V2, V1), l ⊢ α2 ∼

λ α1.
3. If β, (V1, V2), l ⊢ α1 ∼

λ α2, γ, (V2, V3), l ⊢ α2 ∼
λ α3 and ∀x ∈ X.V2(x) ⊑ V1(x) or V2(x) ⊑ V3(x),

then γ ◦ β, (V1, V3), l ⊢ α1 ∼
λ α3.

The condition on β id simply ensures that it is defined on the appropriate locations. This too is a
condition that shall always be met given that in the proof of noninterference β id is always taken to be
the domain of the appropriate heap.

The case of stacks and heaps are dealt with similarly. Together these results determine that machine
state indistinguishability too is an equivalence relation.

Lemma 3.40. For low indistinguishability we have:

1. β id ⊢ s ∼λ s, where LowLoc(s, β, λ) ⊆ Dom(β id) and Ran(β id✁),Ran(β id✄) ⊆ Dom(η) and
Dom(β id✁),Dom(β id✄) ⊆ Dom(T).

2. β ⊢ s1 ∼
λ s2 implies β̂ ⊢ s2 ∼

λ s1.

3.6 Noninterference 45

3. If β ⊢ s1 ∼
λ s2, γ ⊢ s2 ∼

λ s3, then γ ◦ β ⊢ s1 ∼
λ s3.

For high indistinguishability we have:

1. β id ⊢ s ∼λ s, where LowLoc(s, β, λ) ⊆ Dom(β id) and Ran(β id✁),Ran(β id✄) ⊆ Dom(η) and
Dom(β id✁),Dom(β id✄) ⊆ Dom(T).

2. β ⊢ s1 ∼
λ s2 implies β̂ ⊢ s2 ∼

λ s1.
3. Suppose β ⊢ s1 ∼

λ s2 and γ ⊢ s2 ∼
λ s3. Furthermore, assume ∀x ∈ X.V2(x) ⊑ V1(x) or V2(x) ⊑

V3(x). Then γ ◦ β ⊢ s1 ∼
λ s3.

3.6.3 Noninterference

Noninterference states that any two terminating runs of a well-typed program starting from indistin-
guishable initial states produce indistinguishable final states. Our notion of noninterference assumes the
attacker has the ability to see the initial low variables value, and its final result (variant of termination-
insensitive information flow). We do not address other covert channels (e.g. termination, timing, or
abstraction-violation attacks) in this type system.

In the sequel, we assume M to be a well-typed program V,S,A, T ✄ ((−−→x : κ, κr), B). Also, we let
s1 = 〈i, α1, σ1, η1〉 and s2 = 〈i, α2, σ2, η2〉 be states for M .

A program is non-interferent if two different runs that start from indistinguishable states, terminate
with final indistinguishable states.

Definition 3.41 (Noninterference). M satisfies noninterference (NI(M)), if for every l ⊑ λ and α1, α2

variable arrays, v1, v2 values, η1, η2, η
′
1, η

′
2 heaps and β a location bijection set:

1. mtM (l) = A′
1, T

′
1, T

′
pf

✄ ((−−→x : κ, κr, E), B),
2. 〈1, α1, ǫ, η1〉 −→

∗
B 〈pf , v1, η

′
1〉,

3. 〈1, α2, ǫ, η2〉 −→
∗
B 〈pf , v2, η

′
2〉,

4. β,V1, l ⊢ α1 ∼
λ α2 and

5. β, T1 ⊢ η1 ∼
λ η2

implies β′, Tpf
⊢ η′1 ∼

λ η′2 and β′, ⌊κr⌋ ⊢ v1 ∼
λ v2, for some location bijection set β′ ⊇ β.

With the definition of noninterference in place we now formulate the soundness result of our type
system. Its proof is deferred to the last part of this section, once the appropriate supporting results are
stated.

Proposition 3.42. All well-typed methods M in JVMs
C satisfy NI(M).

The proof relies on three unwinding lemmas depicted in Figure 3.18((a), (b) and (d)) and whose
role we now explain. The first, dubbed Equivalence in Low Level Contexts Lemma, states that related
states that execute under a low security program counter proceed in lock-step and attain related states
(Fig 3.18(a), where β′ ⊇ β).

s1
B

L/HL //

L.3.44

s2

s′1 B

L/HL //

β

O�
O�
O�

s′2

β′

O�
O�
O�

s1
B

HH //

L.3.45

s2

s′1

β

O�
O�
O� β

>~
>~

>~
>~

s

��

B

HH // //

Aux.forL. 3.45

t

s
βid

/o/o/o t

s1
B

LH //

L.3.46

s2

s′1 B

LH //

β

O�
O�
O�

s′2

β

O�
O�
O�

(a) (b) (c) (d)

Fig. 3.18. Unwinding lemmas

46 3 Type-Based Information Flow Analysis for Bytecode Languages with Variable Object Field Policies

s1 // //

L.3.44

sj
βid

1

// . . .
βid

1

// sh1
//

L.3.46

sh3
// . . . // sn

s′1

β

O�
O�
O�

// // s′j

β1

O�
O�
O�

β′id

1

// . . .
β′id

1

// s′h2

β1

O�
O�
O�

// s′h4

β1

O�
O�
O�

// . . . // s′n

βm

O�
O�
O�

Fig. 3.19. Noninterference proof scheme

Notation 3.43 if s = 〈i, α, σ, η〉, then we say As = Ai and pc(s) = i.

Lemma 3.44 (One-Step Low). Suppose

1. Ai ⊑ λ;
2. pc(s1) = pc(s2)
3. s1 −→B s′1;
4. s2 −→B s′2; and
5. β ⊢ s1 ∼

λ s2 for some location bijection set β.

Then
β′ ⊢ s′1 ∼

λ s′2 and pc(s′1) = pc(s′2), for some β′ ⊇ β.

Consider two runs of M , one from s1 and another from s′1. Computation from s1 and s′1 may be seen
to unwind via this lemma, in lock-step, until the security context is raised to high at some states sj and
s′j , resp. (cf. Fig 3.19). At this point, unwinding continues independently in each of the computations
starting from sj and s′j until each of these reaches a goto instruction, say at state sh1

for the first
computation and s′h2

for the second, that lowers the security level of the context back to low. Since all
values manipulated in these two intermediate computations are high level values, sj is seen to be high-
indistinguishable from sh1

and, likewise, s′j is seen to be high-indistinguishable from s′h2
, both facts are

deduced from the following Equivalence in High Level Contexts lemma (Fig 3.18(b)).

Lemma 3.45 (One-Step High). Let i1, i2 ∈ region(k) for some k such that ∀k′ ∈ region(k) : Ak′ 6⊑ λ.
Furthermore, suppose:

1. β ⊢ s1 ∼
λ s′1 for some location bijection set β;

2. s1 −→B s2;
3. s2 = 〈i′1, α

′
1, σ

′
1, η

′
1〉; and

4. i′1 ∈ region(k).

Then β ⊢ s2 ∼
λ s′1.

The proof of lemma 3.45 relies on first proving that β id ⊢ s1 ∼
λ s2 and then resorting to transitivity.

This final step requires that we meet the condition on transitivity of variable arrays, as discussed in
Sec. 3.6.2. The only problematic case would be when (1) s1 −→ s2 reuses a secret variable with public
data and (2) s′1 declares this variable to be public. Although (2) may of course hold, (1) cannot: any
value written to a variable in a high security context must be secret as may be gleaned from the typing
rule for store.

At this point both computations exit their high level regions and coincide at the unique junction
point of these regions. The resulting states sh3

and s′h4
now become low-indistinguishable according to

the following result (Fig 3.18(d)).

Lemma 3.46 (One-Step High to Low). Let i1, i2 ∈ region(k) for some k such that ∀k′ ∈ region(k) :
Ak′ 6⊑ λ. Suppose:

1. s1 −→B s′1 and s2 −→B s′2;

3.6 Noninterference 47

2. β ⊢ s1 ∼
λ s2, for some location bijection set β; and

3. s′1 = 〈i′1, α
′
1, σ

′
1, η

′
1〉 and s′2 = 〈i′2, α

′
2, σ

′
2, η

′
2〉;

4. and Ai′1
= Ai′2

and Ai′1
⊑ λ.

Then i′1 = jun(k) = i′2 and β ⊢ s′1 ∼
λ s′2.

Noninterference Proof

The proof of noninterference (Proposition 3.42) follows.

Proof. Consider the two runs of M depicted in Figure 3.19 where

• s1 = 〈1, α1, σ1, η1〉 and s′1 = 〈1, α′
1, σ

′
1, η

′
1〉 with σ1 = σ′

1 = ǫ.
• sn = 〈pf , v, ηn〉 and s′n = 〈pf , v

′, η′m〉.
• β ⊢ s1 ∼

λ s′1 for some location bijection set β .

First some notation: we write region(k) = H if ∀j ∈ region(k).Aj 6⊑ λ.
Now to the proof. Starting from s1 and s′1, repeatedly apply Case 1 and Case 2, described below, until

the final states are reached.

1. Case 1. If the current instruction level is ⊑ λ, repeatedly apply Lemma 3.44 until it is no longer
possible. Suppose sj and s′j are the states reached.
We have two cases to consider:

• Suppose sj = sn = 〈pf , v, ηn〉 and s′j = s′m = 〈pf , v
′, η′m〉. Then this states are final states and by

Lemma 3.44 we have β′, ⌊κr⌋ ⊢ v ∼λ v′ and β′, Tpf
⊢ ηn ∼

λ η′m for some location bijection set
β′ ⊇ β.

• Otherwise apply Case 2. By Lemma 3.44 we know that pc(sj) = pc(s′j) and by previous case sj
and s′j are no final states.

2. Case 2. If the current instruction level is 6⊑ λ. Let us call sj and s′j the current states, we know that

Asj ,As′
j
6⊑ λ and β1 ⊢ sj ∼

λ s′j for some β1 ⊇ β. As a consequence, there exists a program point k

in Dom(B)♯ such that k was the value of the program counter for sj−1 and s′j−1. Furthermore, k 7→ g
and k 7→ g′, for g = pc(sj−1) and g′ = pc(s′j−1), by the definition of the Successor Relation. By SOAP
property (3.10(i)), both g, g′ ∈ region(k). Furthermore, region(k) = H follows from the conditions of
the typing rule T-If, T-GtFld, T-PtFld or T-InvkVrtl. Therefore the hypothesis of Lemma 3.45
is satisfied.
Now, we repeatedly apply Lemma 3.45 to the first program run in Figure 3.19 until it is no longer
possible. Let us call sh1

the reached state. Then by (the repeated application of) Lemma 3.45,

β1 ⊢ sh1
∼λ s′j . By symmetry, β̂1 ⊢ s′j ∼

λ sh1
. Applying a similar reasoning to the program run at

the bottom of Figure 3.19 yields the existence of a state s′h2
such that β̂1 ⊢ s′h2

∼λ sh1
. Finally, by

resorting to symmetry once more we conclude
ˆ̂
β1 ⊢ sh1

∼λ s′h2
. Then β1 ⊢ sh1

∼λ s′h2
.

We have two cases to consider:

• Suppose sh1
= sn = 〈pf , v, ηn〉 and s′h2

= s′m = 〈pf , v
′, η′m〉 are the states reached. Then this

states are final states. By the above reasoning, we know that the predecessors states of sh1
and

s′h2
are indistinguishable, called sh3

and s′h4
. The heap and the stack are indistinguishable. The

instructions that generate final states no modify the heap then we can affirm β1, Tpf
⊢ ηn ∼

λ η′m.
Furthermore, v and v′ are the stack top in the predecessors states, then β1, ⌊Sh3

(0) ⊔ S ′h4
(0)⌋ ⊢

v ∼λ v′, and by typed schemes Sh3
(0),S ′h4

(0) ⊑ κr. Then we have β1, ⌊κr⌋ ⊢ v ∼λ v′.
• In other case, by Lemma 3.45 we know that Ash1

,As′
h2
6⊑ λ. Furthermore, for all h3 and h4 such

that h1 7→ h3 and h2 7→ h4, we have Ah3
,Ah4

⊑ λ. Hence there exist h3 and h4 such that h1 7→ h3

and h2 7→ h4. Finally, note that by Lemma 3.45, pc(sh1
), pc(s′h2

) ∈ region(k) = H. Therefore, we

are in condition of applying Lemma 3.46 to deduce β1 ⊢ sh3
∼λ s′h4

.

48 3 Type-Based Information Flow Analysis for Bytecode Languages with Variable Object Field Policies

We repeat the argument, namely applying Lemma 3.44, Case 1 and Case 2 until it is no longer
possible. Given that the derivations are finite, eventually final states are reached.

Remark 3.47. Noninterference may be proved for any program which is well-typed rather than just well-
typed methods: the requirement that execution begin at a state where the stack is empty is not necessary
for the result to hold.

3.7 Discussion

We have presented a type system for ensuring secure information flow in a JVM-like language that allows
instances of a class to have fields with security levels depending on the context in which they were
instantiated. This differs over the extant approach of assigning a global fixed security level to a field, thus
improving the precision of the analysis as described in the motivation 3.1.

We want to emphasize that the type system was developed incrementally: we went from JVMs to
JVMs

E and then finally JVMs
C . We proved noninterference for each of the bytecode subsets. The proof of

noninterference was developed incrementally, too. Moreover, the infrastructure needed for prove noninter-
ference (definition of indistinguishability and unwinding lemmas) was reused in each step of development
of the type system.

3.7.1 Extensions

Support for threads seems to be absent in the literature on IFA for bytecode languages (a recent exception
being [27]) and would be welcome. The same applies to declassification. Regarding the latter, it should
be mentioned that some characteristics of low level code such as variable reuse enhance the capabilities
of an attacker to declassify data.

Our current efforts are geared toward enriching the core bytecode language while maintaining our
results. We can treat arrays in the same way as Jif does. That is, like Java, Jif treats arrays as normal
objects. Pointers to arrays can be assigned, dereferenced or cascaded to form multi-dimensional arrays.
The type system handles regular array read and update operations. Out-of-bound accesses will cause an
OutOfBoundException. This exception will leak information about the array size and the index being
used. So they must be caught and handled properly.

In Section 2.2 we mentioned that bytecode instruction set is factorisable into 12 instruction mnemonics.
A single instruction mnemonic is not considered in JVMs

C : the type conversion (cast) and type checking
instructions. We can treat this class of instructions as skip instructions (instruction does not have any
effect on the state of the program). Conversion and type checking instructions do not have any effect in
the information flow analysis.

To sum up, although less significant, these are worthy contributions towards minimizing the assump-
tions on the code that is to be analyzed hence furthering its span of applicability. In order to achieve
an acceptable degree of usability, the information flow type system could be based on preliminary static
analyses that provide a more accurate approximation of the control flow graph of the program. Typically,
the preliminary analyses will perform safety analyses such as class analysis, null pointer analysis, excep-
tion analysis and escape analysis. For example, null pointer analysis could use to indicate whether the
execution of a putfield instruction will be normal or there will be an exception. This analysis drastically
improve the quality of the approximation of the control dependence regions.

3.7.2 Related work

This section presents work previously done on information flow analysis. First present an overview of
the early work leading to information flow analysis. Second, we review some of the relevant literature

3.7 Discussion 49

(mostly) on type-based IFA for low-level languages and Java. A survey of research on information flow,
highlighting all the open areas of research, is given by Sabelfeld and Hedin [98].

Information Flow

Denning and Denning [53, 54] point out that information flow can be tracked conservatively using static
program analysis. A security lattice model is used to classify data sensitivity. Data flow is allowed only
when labels on the data units along the flow path increase monotonically. This way information of a
certain security level is kept within the boundary given by the labels in the program. The system is
formulated in a way that programs can be checked and certified mechanically. Based on Denning and
Denning’s work, Volpano and Smith first analyze secure information flow using a security type system
[116, 117]. They consider a sequential imperative language with procedures. Variables, method parameters
and method returns are given level constants indicating their sensitivity. A typing rule is given for each
language construct to ensure that there is no information flow from high security input to low security
output according to the labels on the data. The analysis is conservative in that a well-typed program is
guaranteed not to leak sensitive data. The type system is proved to ensure non-interference. An inference
system is designed to infer security labels automatically. The language in this work is rather simple. It
does not support object-oriented features. No polymorphism on procedures is provided.

Following Cohen’s notion of strong dependency [45], Goguen and Meseguer [62] introduced the general
concept of non-interference to formalize security policies. A formal model for checking security properties
with regard to given confidentiality policies is given using simulation theory. Non-interference is used to
define security guarantees by a lot of work. In this work, our type system is proved to preserve non-
interference.

Myers presents Jif [82] a rich subset of Java with type annotations together with a type system
ensuring secure information flow based on the decentralized label model [84]. Some advanced features of
Jif include label polymorphism, run-time label checking and automatic label interference. Soundness of
Jif is not proved.

Noninterference properties are not safety properties. They are defined as properties of pairs of com-
putations rather than individual ones. Standard automatic software model checking tools cannot reason
about multiple runs of a program. They deal exclusively with safety properties which involves reasoning
about a single run [48, 111]. Barthe, D’Argenio and Rezk [23] explore extensively self composition, a
technique that allows to reduce information flow policies to properties of single executions. Self com-
position provides methods to establish security properties for languages for which no information flow
type system is known. In [94] are proposed specifications for different information flow policies using self
composition in several frameworks, both for sequential and concurrent non-deterministic programming
languages. Characterization of security are given in Hoare logic (termination-insensitive security), weak-
est precondition calculus (termination-sensitive security), separation logic (pointer programs), temporal
logics (CTL and LTL) and remarks on how to combine verification method using self composition with
type systems.

Hunt and Sands [65] present a flow-sensitive type system for tracking information flow in a simple
While language which allow assign to variables different security types at different points in the programs.
This type system preserves non-interference. Finally they show, for any program typeable in one of these
systems, how to construct an equivalent program which is typeable in a simple flow-insensitive system.
Extend this work with robust declassification involves similar restricts in the attacks (w.r.t. variable
reuse) that the present in this work.

Information Flow for Low-Level Languages

Kobayashi and Shirane [68] develop an IFA type system for a simple subset of JVM bytecode. Their system
verifies a noninterference property and encompasses information leaking based on timing channels. Object
creation and exceptions are not considered.

50 3 Type-Based Information Flow Analysis for Bytecode Languages with Variable Object Field Policies

Lanet et al. [35] develop a method to detect illicit flows for a sequential fragment of the JVM. In a
nutshell, they proceed by specifying in the SMV model checker [77] a symbolic transition semantics of
the JVM that manipulates security levels, and by verifying that an invariant that captures the absence
of illicit flows is maintained throughout the abstract program execution. Their analysis is more flexible
than ours, in that it accepts programs such as yL = xH; yL = 0. However, they do not provide a proof of
non-interference.

The approach of Lanet et al. has been refined by Bernardeschi and De Francesco [31] for a subset of
the JVM that includes jumps, subroutines but no exceptions.

Barthe, Basu and Rezk [21] define a simple JVM bytecode type system for IFA. They prove preserva-
tion of noninterference for a compilation function from a core imperative language to bytecode. Barthe
and Rezk [25] extend the type system to handle objects and method calls. Later, Barthe, Naumann and
Rezk [26] present a type-preserving compilation for a Java-like language with objects and exceptions. In
this work, they study the formal connection between security policies on the source code and properties
of the compiled code using certified compilers. They extend the type system of [17] to include exceptions,
and prove that if the source program is typable, the compiled bytecode is also typable. A non-interference
result is obtained by applying the analysis to connect the source language to the low-level byte code in
Barthe and Rezk’ work [21], which is proved to enforce non-interference. Further details on this work
may be found in the thesis of T. Rezk [94]. All these works assume fields have a fixed security level. Less
importantly, they do not allow variable reuse and have a less precise management of information flow of
the operand stack. Barthe, Rezk, Russo and Sabelfeld [27] considers a modular method to devise sound
enforcement mechanisms for multi-threaded programs. The central idea of these works is to constrain the
behavior of the scheduler so that it does not leak information; it is achieved by giving to the scheduler
access to the security levels of program points, and by requiring that the choice of the thread to be
executed respects appropriate conditions. The type system for the concurrent language is defined in a
modular fashion from the type system for the sequential language, and the soundness of the concurrent
type system is derived from unwinding lemmas for the sequential type system.

The method presented by Bernardeschi et al. [32] relies on the type-level abstract interpretation of
standard bytecode verification to detect illegal information flows. Verification is performed on the code
output by a transformation algorithm applied to the original code. If verification succeeds, then the
original code is shown to be secure. The main advantage of the proposed method is that it does not rely
on any extra verification tool. Moreover, verification is performed inside the Java environment. The main
disadvantage of their approach is that the analysis is monomorphic. It should also be mentioned that all
fields of all instances of a class are assumed to have the same, fixed security level.

Also, there is work on IFA of Typed Assembly Language (TAL) [38, 124] although these languages do
not provide primitives for object creation nor exceptions. They do however deal with register reuse [124]
and polymorphic assembly code [38, 124]. Yu and Islam [124] develop a type system for a rich assembly
language (similar to SIFTAL) and prove type-preserving compilation for an imperative language with
procedures. But, the stacks not can be manipulated in the high contexts. Bonelli, Compagnoni and Medel
[38] development a sound information flow type system for a simple assembly language called SIFTAL.
SIFTAL has primitives to raise and lower the security level of regions for enforce structured control flow.
They do not assume anything about the use of the stack by the programs, and verifies that not leaking of
information is produced by stack manipulation. Also, they not assume the existence of trusted functions
that obtain the code regions. Furthermore, SIFTAL has not reuse of registers. In a recent work, Bonelli
and Molinari [40] present a type-preserving compilation of a simple high level programming language to
SIFTAL.

Genaim and Spoto [57] present a flow and context sensitive compositional information flow analysis
for full (mono-threaded) Java bytecode (including methods exceptions and dynamic heap allocation). The
analysis is based on the transformation of bytecode into a control-flow graph of basic code blocks and
use boolean functions to represent sets of information flows for which binary decision diagrams become
applicable.

3.7 Discussion 51

Our notation is based on work by Kobayashi and Shirane [68] and [56]. The former develops an IFA
type system for a simple subset of JVM bytecode and encompasses information leaking based on timing
channels. The second studies correctness of JVM’s bytecode verifier.

Ghindici [58] present a sound technique for enforcing information flow model in open systems. It
relies on static analysis, abstract interpretation [47] and points-to analysis [122]. To adapt to the dy-
namic downloading from untrusted sources and through insecure channels, certify JVM bytecode, and
the verification is performed at loading time. Due to the limited resources of open systems, they split the
verification process in two steps: first, an external analysis, that could be performed on any computer and
which computes, for each method, a flow signature containing all possible flows within the method, and
proof elements which are shipped with the code; second, an embedded analysis, which certifies the flow
signature, using the proof, at loading time. The flow signature is computed using abstract interpretation
and type inference techniques. Hence, they have designed for the external analysis an automatic type in-
ference system for object- oriented languages. It system does both inter-procedural and intra-procedural
inference, in contrast with previous work on information flow inference for object-oriented languages
which supports only intra-procedural inference. Moreover, they perform modular inference, e.g., each
flow signature is computed only once. Furthermore, Ghindici have implemented two tools: the prover
STAN and the verifier VSTAN. STAN implements the information flow model; it is a abstract analyser
that allows static alias analysis and information flow certification. STAN statically computes the type
inference and annotates the .class files with proof elements and flow signatures verifiable at loading time.
VSTAN check information flow at loading time. VSTAN verifies JVM bytecode annotated by STAN
[58].

4

Robust Declassification for Java Bytecode

The starting point of this chapter is the core fragment of bytecode JVMs
C extended with a declassification

instruction declassify l, where l is a security level (see Section 4.3). The effect of this instruction is to
declassify the top element of the operand stack of the JVM run-time system.

We study a notion of robust declassification [85] for JVMs
C and discuss several subtle ways in which

the standard notion of robust declassification fails. Particularly, this fails in the presence of flow-sensitive
types and low-level stack manipulation primitives. Under an attacker that observes and manipulates data,
we address the requirements that programs must meet in order for robustness to be enjoyed. We propose
a type system for enforcing robust declassification in JVMs

C and prove that this system is sound.
Structure. Section 4.1 introduces motivating examples. It is followed by the attacker model. The

type system is presented in Section 4.3. Section 4.4 addresses noninterference and robust declassification.

4.1 Motivating Examples

Information flow policies in terms of noninterference ensure the absence of information channels from
private to public data. Although an intuitively appealing information security policy, it has been recog-
nized to be too strict for practical applications since many of them do allow some form of information
declassification or downgrading. Examples are: releasing the average salary from a secret database of
salaries for statistical purposes, a password checking program, releasing an encrypted secret, etc. This
calls for relaxed notions of noninterference where primitives for information declassification are adopted.
At the same time we are also interested in mobile code. Currently a large amount of code is distributed
over the Internet largely in the form of bytecode [75] or similar low-level languages. Direct verification of
security properties of bytecode allows the code consumer to be assured that its security policy is upheld.
It should also be stressed that most efforts on information flow target high-level languages yet compilation
can produce a program which does not necessarily satisfy the same security properties. Analysis at the
bytecode level has the benefit of independence of the mechanism (compiled, handwritten, code generated)
that generated it.

An important issue that arises in mobile code (or any code) that provides a declassification mechanism
is whether it can be exploited affecting the data that is declassified or whether declassification happens
at all. If this does not arise we declare our declassification mechanism robust. We briefly illustrate that
with an example taken from [85] and translated to bytecode.

1. load xL

2. if 6
3. load zH
4. declassify L

5. store yL
6. · · ·

54 4 Robust Declassification for Java Bytecode

This program releases private information held in zH to a publicly readable variable yL if the variable
xL is true, and otherwise has no effect. Here, declassify explicitly indicates a release from secret to
public of the level of the topmost element on the stack. As a consequence, this program does not enjoy
noninterference. However, we can observe something more on the reliability of the declassification mech-
anism. Indeed, an attacker can affect whether information is declassified at all (assuming she can change
the value of xL) or can affect the information that is declassified (assuming she can change the value of
zH). This program is therefore declared not to be robust under any of these two assumptions.

We consider that attackers may change system behavior by injecting new code into the program. Such
attacker-controlled low-integrity computation, called active attacker, may be interspersed with trusted
high-integrity code. To distinguish the two, the high-integrity code is represented as a program in which
some statements are missing, replaced by holes and denoted with bullets •. The idea is that the holes are
places where the attacker can insert arbitrary low-integrity code. There may be multiple holes (possibly
none) in the high-integrity code, represented by the notation −→• . Such expressions are called high-integrity
contexts, written B[−→•], and formally defined as programs in which the set of bytecode instructions is
extended with a distinguished symbol “•”. These holes can be replaced by a vector of attacker fragments
−→a to obtain a complete method B[−→a]. An attacker is thus a vector of such code fragments. An active
attacker is any attack vector that fills some hole in a way that changes the original program behavior.

One way an attacker can cause information leak is to directly violate confidentiality and integrity
(eg. using declassify in its own code). However, one is interested in how an attacker can exploit insecure
information flow in the trusted code. Therefore, we restrict our attention to attacks that are active in
this sense (cf. Def. 4.3). We discuss some examples1.

Example 4.1. Examples of user code subject to attacks.

1 loadxH
2 load yH
3 [•]
4 declassify L

5 · · ·

1 [•]
2 loadxH
3 declassify L

4 · · ·

1 [•]
2 loadxH
3 declassify L

4 return

1 [•]
2 load xH
3 if 5
4 declassify L

5 · · ·
(a) (b) (c) (d)

In (a), assuming xH and yH are confidential, at line 4 the value of yH is declassified. If the attacker
consists of a pop instruction, then declassification of the value of xH is forced. Likewise the attacker could
push an element on the stack rather than remove it. In this case it is the newly pushed element that is
declassified. Let us consider another example.

In (b) the security level of xH at 2 is assumed to be confidential. If the attacker inserts load yH; goto 3
where yH holds some high confidentiality data, then by affecting the control-flow yH is now declassified.

If the code is that of (c), then by inserting the code load y; return declassification of xH is avoided.
One final consideration is that we must also restrict variable reuse in low-integrity contexts. Consider

the code excerpt (d) where x is assumed high-integrity at 2 and y low-integrity at 2. Line 4 attempts
to declassify depending on the value of x (a high-integrity value). Suppose the attacker reuses x with a
low-integrity value, such as in load y; storex. Then in line 4 a declassification is attempted depending on
the value of the variable y (a low-integrity value). Therefore the attacker can manipulate the condition in
line 3 which decides whether declassification is performed or not. This situation is avoided by restricting
attackers from manipulating high-integrity variables such as x above.

Summing up, our definition of active attack requires that attacks not include return nor declassify
instructions. Likewise, we require all jumps to be local to the attackers code. The size of the stack before
the attacker code is executed should be the same after it is executed. Finally, high-integrity variables and
stack elements should not be modifiable. These observations are made precise in Def. 4.3 and incorporated
into the typing schemes for our bytecode language (Sec. 4.3).

1 In these examples, for expository purposes, the argument of declassify is L. However these labels are actually
pairs of levels (cf. Sec. 4.2).

4.2 Attacker Model 55

��
��

��
��

��
��

�

??
??

??
??

??
??

?

��
��

��
��

��
��

�

??
??

??
??

??
??

?

??
??

??
??

??
??

??
??

?

��
��

��
��

��
��

��
��

�

VVVVVVVVV

hhhhhhhhh

•

•

LLHH

LH

HL

CA

IAAttacker

can read

Attacker

can modify

✛
✚

✘
✙

✛
✚

✘
✙

HC = {κ | Cκ 6⊑C CA}
LC = {κ | Cκ ⊑C CA}

HI = {κ | IA 6⊑I Iκ}
LI = {κ | IA ⊑I Iκ}

Fig. 4.1. Attacker’s view of lattice L.

4.2 Attacker Model

Since robustness of a system depends on the power an attacker has to affect the execution of the system,
we follow [85] and introduce integrity labels in our model. High-integrity information and code are trusted
and assumed not to be affected by the attacker while low-integrity information and code are untrusted
and assumed to be under the control of the attacker. Both confidentiality and integrity labels are merged
into a single lattice of security levels.

We assume given a lattice of confidentiality levels LC with ordering ⊑C and a lattice of integrity levels
LI with ordering ⊑I . We use ⊥C and ⊤C for the bottom and top elements of LC and similarly for those
of LI . We write lC for elements of the former and lI for elements of the latter and ⊔C and ⊔I , resp., for
the induced join. In this work, we assume the lattice to be {L, H}; L ⊑C H; and H ⊑I L.

Now, a security level is a pair (lC , lI).
And, a security label is an expression of the form

〈{a1, . . . , an}, (lC , lI)〉

where we recall from Sec. 3.3 that ai, i ∈ 0..n, ranges over the set of symbolic locations SymLoc. If n = 0,
then the security label is 〈∅, (lC , lI)〉. We say ai (for each i ∈ 1..n) and (lC , lI) are the symbolic locations
and level of the security label, respectively. We occasionally write 〈 , (lC , lI)〉, or (lC , lI), when the set of
symbolic locations is irrelevant. Also, we occasionally write l instead of (lC , lI).

The security labels are elements of a lattice L and are typically denoted using letters κ, κi. The partial
order ⊑ on L is defined as:

〈R1, (lC , lI)〉 ⊑ 〈R2, (l
′
C , l

′
I)〉 iff R1 ⊆ R2, lC ⊑C l′C and lI ⊑I l′I .

The join on security labels is:

〈R1, (lC , lI)〉 ⊔ 〈R2, (l
′
C , l

′
I)〉 = 〈R1 ∪R2, (lC ⊔C l′C , lI ⊔I l

′
I)〉.

The projections of the first and second component of the level of a security label are:

C(〈R1, (lC , lI)〉) = lC and I(〈R1, (lC , lI)〉) = lI .

Also, we occasionally write Cκ for C(κ) and Iκ for I(κ).
The power of an attacker is described by a security level A, where CA is the confidentiality level of data

the attacker is expected to be able to read, and IA is the integrity level of data or code that the attacker
is expected to be able to affect. Thus, the robustness of a system is w.r.t. the attacker security level A.

The attacker security level A determines both high and low-confidentiality (HC and LC) areas and high
and low-integrity areas (HI and LI) in the security lattice L, as depicted in Fig. 4.1. We can identify four
key areas of the lattice:

1. LL ≃ LC ∩ LI . The LL region is under complete control of the attacker: she can read and modify data
in this region.

2. LH ≃ LC ∩ HI . Data in the LH region may be read but not modified by the attacker.

56 4 Robust Declassification for Java Bytecode

3. HH ≃ HC ∩ HI . The attacker may not read nor modify data in the region HH.
4. HL ≃ HC ∩ LI . Data in the HL region may not be inspected but can be modified by the attacker.

4.3 The Bytecode Language and its Type System

Our language is JVMs
C but with the addition of the following instruction:

declassify l

which declassifies (or downgrades) to l the security level of value on the top of the operand stack. This
instruction does not have any run-time effect on the state of the program.

Definition 4.2 (Method). A method M [−→•] is a pair ((−−→x : κ, κr, E), B[−→•]), where (−−→x : κ, κr, E) is a
method type and B[−→•] is the method’s body.

4.3.1 Typing Schemes

Methods M [−→•] are typed by means of a typing judgement: V,S,A, T ✄M [−→•]. Recall from Def. 3.7
that the tuple (V,S,A, T) is a typing context. Henceforth we turn to the definitions of well-typing method
(Definition 3.23).
A indicates the level of each instruction. If Ai is high at some program point because C(Ai) ∈ HC ,

then an attacker might learn secrets from the fact that execution reached that point. If Ai is high because
I(Ai) ∈ LI , the attacker might be able to affect whether control reaches that point.

Just as in JVMs
C we adopt three assumptions that, without sacrificing expressiveness, simplify our

analysis:

• The bytecode passes the bytecode verifier.
• Method body B[−→•] has a unique return instruction.
• Predecessors of a junction point are always goto, return or erri instructions.

Additionally, the typing schemes rely on region and jun satisfying the SOAP properties, as discussed for
JVMs

C .

The typing schemes are given in Fig. 4.2, Fig. 4.3, and Fig. 4.4 and are described below.
We now describe the typing schemes. Except for some additional conditions to be discussed below,

these rules are identical to those of JVMs
C . The new conditions avoid high integrity variable reuse (T-

Str, condition 6) and popping high integrity values off the stack (for example, condition 6 of T-Str

and T-Pop and condition 5 of T-PrimOP) in low integrity contexts. These constraints are necessary for
proving that the type system guarantees robustness.

T-Declassify states that only high-integrity data is allowed to be declassified and that declassi-
fication might only occur at a high-integrity security environment. Because the possible flow origins is
within the high-integrity area of the lattice, the attacker (who can only affect the low-integrity area of
the lattice) cannot influence uses of the declassification mechanism and therefore cannot exploit it.

Regarding T-Hole, for robustness, it is important that holes not be placed at program points where
the type environment is high-confidentiality, because then the attacker would be able to directly observe
implicit flows to the hole and could therefore cause information to leak even without a declassify.

4.3 The Bytecode Language and its Type System 57

(T-Declassify)

B[−→•](i) = declassify l
(Si\0) ≤Ai (Si+1\0)
Ai ⊔ l ⊑ Si+1(0)
I(Si(0)) = I(l)
I(Ai), I(Si(0)) ∈ HI

Vi ≤ Vi+1

Ti ≤ Ti+1

V,S,A, T , i✄B[−→•]

(T-Hole)

B[−→•](i) = [•]
Ai ∈ LC

Si ≤(⊥C ,I(A)) Si+1

Vi ≤ Vi+1

Ti ≤ Ti+1

V,S,A, T , i✄B[−→•]

(T-PrimOp)

B[−→•](i) = prim op
κ′ ⊔ κ′′ ⊑ Si+1(0)
Si ≤Ai κ

′ · κ′′ · (Si+1\0)
Ai ⊑ κ′, κ′′

Vi ≤ Vi+1

Ti ≤ Ti+1

Si(0),Si(1) ∈ LI , if Ai ∈ LI

V,S,A, T , i✄B[−→•]

(T-If)

B[−→•](i) = if i′

Vi ≤ Vi+1,Vi′

Si ≤Ai κ · Si+1, κ · Si′

Ai ⊑ κ
Ti ≤ Ti+1, Ti′

∀k ∈ region(i).κ ⊑ Ak

Si(0) ∈ LI , if Ai ∈ LI

V,S,A, T , i✄B[−→•]

(T-Ret)

B[−→•](i) = return

Si(0) ⊔ Ai ⊑ κr

Ti ≤ Tpf

V,S,A, T , i✄B[−→•]

(T-Goto)

B[−→•](i) = goto i′

Vi ≤ Vi′

Si ≤Ai Si′

Ti ≤ Ti′

V,S,A, T , i✄B[−→•]

(T-Pop)

B[−→•](i) = pop

Si ≤Ai κ · Si+1

Vi ≤ Vi+1

Ti ≤ Ti+1

Ai ⊑ κ
Si(0) ∈ LI , if Ai ∈ LI

V,S,A, T , i✄B[−→•]

(T-Erri)

B(erri)
Si(0) ⊔ Ai ⊑ κr

Ti ≤ Tpf

V,S,A, T , i✄B[−→•]

(T-Load)

B[−→•](i) = load x
Ai ⊔ Vi(x) · Si ≤Ai Si+1

Vi ≤ Vi+1

Ti ≤ Ti+1

V,S,A, T , i✄B[−→•]

(T-Str)

B[−→•](i) = store x
Si ≤Ai Vi+1(x) · Si+1

Vi\x ≤ Vi+1\x
Ti ≤ Ti+1

Ai ⊑ Vi+1(x)
Si(0),Vi(x) ∈ LI , if Ai ∈ LI

V,S,A, T , i✄B[−→•]

(T-Push)

B[−→•](i) = push n
Ai · Si ≤Ai Si+1

Vi ≤ Vi+1

Ti ≤ Ti+1

V,S,A, T , i✄B[−→•]

(T-New)

B[−→•](i) = new C
a = Fresh(Ti)
Ti ⊕ {a 7→ [f1 : ftAi(f1), . . . , fn : ftAi(fn)]} ≤ Ti+1

〈{a},Ai〉 · Si ≤Ai Si+1

Vi ≤ Vi+1

V,S,A, T , i✄B[−→•]

Fig. 4.2. Full set of typing schemes I

58 4 Robust Declassification for Java Bytecode

(T-ThrH)

B[−→•](i) = throw

Handler(i) = i′

Si(0) ⊑ Ai′

Si(0) · ǫ ≤Ai Si′

Vi ≤ Vi′

Ti ≤ Ti′

∀j ∈ Dom(Si).Ai ⊑ Si(j)
∀j ∈ Dom(Si).Si(j) ∈ LI , if Ai ∈ LI

V,S,A, T , i✄B[−→•]

(T-ThrNoH)

B[−→•](i) = throw

Handler(i) ↑
Ai ⊔ Si(0) ⊑ κr

Si ≤Ai Serri

Vi ≤ Verri

Ti ≤ Terri

V,S,A, T , i✄B[−→•]

(T-PtFld)

B[−→•](i) = putfield f
Handler(i) ↓
Si ≤Ai 〈R1, l1〉 · 〈R, l〉 · Si+1

l1 ⊔ l ⊑
d

a∈R Ti(a, f)
for all a ∈ R.Ti+1(a, f) = 〈R3, l2〉,

where Ti(a, f) = 〈 , l2〉 ∧R1 ⊆ R3

Ai ⊑ l, l1
Vi ≤ Vi+1

Ti\{(a, f) | a ∈ R} ≤ Ti+1\{(a, f) | a ∈ R}
∀k ∈ region(i).l ⊑ Ak

Si(0),Si(1) ∈ LI , if Ai ∈ LI

V,S,A, T , i✄B[−→•]

(T-GtFld)

B[−→•](i) = getfield f
Handler(i) ↓
Si(0) = 〈R, l〉
κ =

⊔

a∈R Ti(a, f)
l ⊔ κ ⊔ Ai · (Si\0) ≤Ai Si+1

Vi ≤ Vi+1

Ti ≤ Ti+1

∀k ∈ region(i).l ⊑ Ak

Si(0) ∈ LI , if Ai ∈ LI

V,S,A, T , i✄B[−→•]

(T-PtFldH)

B[−→•](i) = putfield f
Handler(i) = i′

Si = κ′ · 〈R, l〉 · S, for some S
a = Fresh(Ti)
〈{a}, l ⊔ Ai〉 · ǫ ≤Ai Si′

Vi ≤ Vi′

Ti ⊕ {a 7→ [f1 : ftAi(f1), . . . , fn : ftAi(fn)]} ≤ Ti′

∀j ∈ Dom(Si).Ai ⊑ Si(j)
∀j ∈ Dom(Si).Si(j) ∈ LI , if Ai ∈ LI

V,S,A, T , i✄B[−→•]

(T-GtFldH)

B[−→•](i) = getfield f
Handler(i) = i′

Si = 〈R, l〉 · S, for some S
a = Fresh(Ti)
〈{a}, l ⊔ Ai〉 · ǫ ≤Ai Si′

Vi ≤ Vi′

Ti ⊕ {a 7→ [f1 : ftAi(f1), . . . , fn : ftAi(fn)]} ≤ Ti′

∀j ∈ Dom(Si).Ai ⊑ Si(j)
∀j ∈ Dom(Si).Si(j) ∈ LI , if Ai ∈ LI

V,S,A, T , i✄B[−→•]

(T-PtFldNoH)

B[−→•](i) = putfield f
Handler(i) ↑
Si ≤Ai κ · 〈R, l〉 · (Serri\0)
κ ⊑

d
a∈R Ti(a, f)

a = Fresh(Ti)
〈{a}, l ⊔ Ai〉 ⊑ Serri(0)
l ⊑ κr

Ai ⊑ κ, l
Vi ≤ Verri

Ti ⊕ {a 7→ [f1 : ftAi(f1), . . . , fn : ftAi(fn)]} ≤ Terri

V,S,A, T , i✄B[−→•]

(T-GtFldNoH)

B[−→•](i) = getfield f
Handler(i) ↑
Si ≤Ai 〈R, l〉 · (Serri\0)
Si(0) = 〈R, l〉
κ =

⊔

a∈R Ti(a, f)
a = Fresh(Ti)
〈{a}, l ⊔ Ai〉 ⊑ Serri(0)
Ai ⊑ l ⊑ κr

Vi ≤ Verri

Ti ⊕ {a 7→ [f1 : ftAi(f1), . . . , fn : ftAi(fn)]} ≤ Terri

V,S,A, T , i✄B[−→•]

Fig. 4.3. Full set of typing schemes II

4.3 The Bytecode Language and its Type System 59

(T-InvkVrtl)

B[−→•](i) = invokevirtual m
HandlerB(i) ↓

mtm(κ ⊔ Ai) = A′
1, T

′
1, T

′
pf ✄ ((

−−−→
x′ : κ′, κ′

r, E
′), B′)

Ai ⊔ κ = A′(1)
Si = κ′

1 · · ·κ
′
n · κ · S, for some S

Si ≤Ai κ
′
1 · · ·κ

′
n · κ · (Si+1\0)

Ai ⊑ κ′
1, · · · , κ

′
n, κ

κ ⊔ κ′
r ⊔ Ai ⊑ Si+1(0)

Vi ≤ Vi+1

Ti ≤ T ′
1 ≤ T ′

pf ≤ Ti+1

∀k ∈ region(i).κ ⊔ κ′
r ⊑ Ak, if i ∈ Dom(B♯)

κ′
1, · · · , κ

′
n, κ ∈ LI , if Ai ∈ LI

V,S,A, T , i✄B[−→•]

(T-InvkVrtlH)

B[−→•](i) = invokevirtual m
HandlerB(i) = i′

mtm(κ ⊔ Ai) = A′
1, T

′
1, T

′
pf ✄ ((

−−−→
x′ : κ′, κ′

r, E
′), B′)

E′ 6= ∅
Ai ⊔ κ = A′(1)
κ′
r ⊔ Ai · ǫ ≤Ai Si′

Ti ≤ T ′
1 ≤ T ′

pf ≤ Ti′

Vi ≤ Vi′

∀j ∈ Dom(Si).Ai ⊑ Si(j)
∀j ∈ Dom(Si).Si(j) ∈ LI , if Ai ∈ LI

V,S,A, T , i✄B[−→•]

(T-InvkVrtlNoH)

B[−→•](i) = invokevirtual m
HandlerB(i) ↑

mtm(κ ⊔ Ai) = A′
1, T

′
1, T

′
pf ✄ ((

−−−→
x′ : κ′, κ′

r, E
′), B′)

E′ 6= ∅
Ai ⊔ κ = A′(1)
Si ≤Ai κ

′
1 · · ·κ

′
n · κ · (Serri\0)

κ′
r ⊔ Ai ⊑ Serri(0)

Ai ⊔ κ ⊔ κ′
r ⊑ κr

Vi ≤ Verri

Ti ≤ T ′
1 ≤ T ′

pf ≤ Terri

V,S,A, T , i✄B[−→•]

Fig. 4.4. Full set of typing schemes III

Now that the type system is in place and our motivating examples have been introduced we can
formalize the notion of an active attack.

Definition 4.3 (Active attack). A program a is an active attack under method type (−−→x : κ, κr, E) if a

• does not contain declassify or return instructions,
• a handler is defined for each instruction that can raise an exception,
• all jumps to be local to a,and
• there exists a typing context (V,S,A, T)such that the following judgement holds:

Aa1
= (⊥C , IA) ‖Sa1

‖ = ‖Saexit
‖

∀i ∈ Dom(a).V,S,A, T , i✄ ((−−→x : κ, κr, E), a)

V,S,A, T ✄ ((−−→x : κ, κr, E), a)

The index a1 in Aa1
and Sa1

refers to the initial program point of a; and the index aexit in Sexit
refers to the program point n + 1 where n is the size of a. We assume that execution always ends at
this program point. Also, as in the definition of well-typed programs, we assume the chosen A verifies
∀i ∈ Dom(a).Aa1

⊑ Ai.

4.3.2 Type-Checking Examples

This section examines some examples to exhibit how our type system deals with them.

60 4 Robust Declassification for Java Bytecode

Example 4.4. Given the following instructions of a method:

1 loadx
2 load y
3 declassify (L, H)

The typing rules generate the following constraints, with A = (L, L):

i B(i) Vi(x) Vi(y) Si Ai Rule′s Precond. Constraints
1 load x (H, H) (H, H) ǫ (L, H) (H, H) · ǫ ≤ β1 · ǫ (H, H) ⊑ β1

2 load y (H, H) (H, H) β1 · ǫ δ2 (H, H) · β1 · ǫ ≤ β2 · β1 · ǫ δ2 ⊑ β2 (H, H) ⊑ β2 δ2 ⊑ β2

3 declassify (L, H) (H, H) (H, H) β2 · β1 · ǫ δ3 I(δ3), I(β2) ∈ HI I(δ3), I(β2) ∈ HI

The constraints are satisfacible by:

β1, β2 = (H, H) δ2, δ3 = (L, H)

If the attacker consists of a pop instruction, then declassification of the value of x is forced. If [•] = pop

and this code is inserted between the instruction 2 and 3:

1 loadx
2 load y
[•]

3 declassify (L, H)

In this case, the constraint I(S(0)) ∈ LI of pop instruction is violated. So this is not a possible attack.

We note that if the attacker inserts the code goto 4 or return between the instruction 2 and 3 then
by affecting the control-flow y is not declassified. However, these code fragments violate the definition of
valid attacks. That is, these attacks are not allowed.

Now, suppose the attacker reuses y with a low-integrity value, such as in [•] = load z(H,L); store y and
this code is inserted between the instruction 1 and 2. Then in line 3 a declassification of z is attempted
(a low-integrity value). In this case, the constraint I(V(y)) ∈ LI of store instruction is violated. So this
is not a possible attack.

4.4 Soundness

The type system enforces two interesting properties: noninterference and robust declassification. Recall
that noninterference states that any two (terminating) runs of a well-typed method, that does not use
declassify, starting from initial states that coincide on public input data produce final states in which
public output data are identical. This holds immediately from the results of Section 3.6.1; we merely
restate the definition and statement of the noninterference result. Robust declassification states that an
attacker may not manipulate the declassification mechanism to leak more information than intended.
This property applies to programs that may contain declassify instructions. Section 4.4.2 introduces
the precise definition and proves the main result of this Chapter.

4.4.1 Noninterference

Indistinguishability for states at some level λ is formulated by considering each of its components at a
time (values, local variable assignments, heaps and stacks) in the same way as Chapter 3. States are
declared indistinguishable depending on what may be observed and this, in turn, depends on the level
κ of the observer. Henceforth we turn to the definitions of noninterference (Definition 3.41) presented in
the Chapter 3.

4.4 Soundness 61

Proposition 4.5. All well-typed methods M [−→a], without declassify instructions, satisfy NI(M [−→a]).

Proposition 4.5 is a consequence of a stronger property (Proposition 4.10) that we state below. This
latter property is used in our result on robustness (Proposition 4.12). First we introduce some definitions.

Definition 4.6 (Trace). The trace of execution of B from a state 〈i0, α, σ, η〉 for B is denoted TrB(〈i0, α, σ, η〉)
and defined to be the sequence 〈i0, α, σ, η〉 −→B 〈i1, α1, σ1, η1〉 −→B 〈i2, α2, σ2, η2〉 −→B · · ·.

Definition 4.7. Let the sequence states t1 = si1 · · · sin and t2 = sj1 · · · sjn , β1 ⊢ t1 ∼
λ t2 holds iff for all

k ∈ 1..n, βk ⊢ sik ∼
λ sjk , for some β2 · · ·βn such that β1 ⊆ β2 ⊆ · · · ⊆ βn.

We recall that if s = 〈i, α, σ, η〉 then we say pc(s) = i and As = Ai.
Because computation steps can be observed at level λ we identify traces formed only by states with

security level less than or equal to lambda

Definition 4.8. The λ-projection of a trace t, written t|λ, where

t = si0 −→B[−→a]
si1 −→B[−→a]

si2 −→B[−→a]
si3 −→B[−→a]

si4 · · ·

is the sequence of states sj0sj1sj2sj3 · · · s.t. j0 < j1 < j2 < · · · and for all ik, if A(ik) ⊑ λ then ik = pc(jn),
for some n.

By example, if t = s1 −→ s2 −→ s3 −→ s4 −→ s5, A(1),A(3),A(4) ⊑ λ and A(2),A(5) 6⊑ λ then
t|λ = s1 −→ s3 −→ s4.

Definition 4.9 (Trace Indistinguishability). Let t1 and t2 two finite traces of the same length are
indistinguishable, written β ⊢ t1 ∼

λ t2, iff their λ-projections are indistinguishable β ⊢ t1|λ ∼
λ t2|λ.

Proposition 4.10. Suppose M [−→a] has no declassify instructions and s1 and s2 are initial states such
that β ⊢ s1 ∼

λ s2. Then β ⊢ Tr
B[−→a]

(s1) ∼
λ Tr

B[−→a]
(s2).

Proof. By Proposition 3.42 the result follows.

4.4.2 Robustness

We show that typable programs satisfy robustness.

Definition 4.11 (Robustness). Let M [−→•] = ((−−→x : κ, κr, E), B[−→•]) be a well-typed method and β a
location bijection set. We say that it satisfies robustness with respect to active attacks at level A if for
every s1, s

′
1 initial states and −→a1, −→a2 active attacks:

β ⊢ Tr
B[−→a1](s1) ∼

(C(A),⊤I) Tr
B[−→a1](s

′
1) implies β ⊢ Tr

B[−→a2](s1) ∼
(C(A),⊤I) Tr

B[−→a2](s
′
1)

Robust declassification holds if the attacker’s observations from the execution of M [−→a2] may not reveal
any secrets apart from what the attacker already knows from observations about the execution of M [−→a1].
The main result of this work is therefore:

Proposition 4.12. All well-typed methods satisfy robustness.

In order to address the proof two auxiliary results are required. The first (Lemma 4.13) states that
an active attack cannot consult or modify high-integrity data on the stack and the second (Lemma 4.23)
extends this observation to the states of a trace.

Proposition 4.13. An active attack a:

(i) cannot consult or modify high-integrity data on the stack.

62 4 Robust Declassification for Java Bytecode

(ii)satisfies noninterference.

Proof. The second item follows immediately from Proposition 3.42. The first one is proved by case
analysis on the instructions of a. Before proceeding, we recall from Definition 4.3, A1 = (⊥C , IA) and
A1 ⊑ Ai for all program points i of a. Therefore, for all program points i of a (⊥C , IA) ⊑ Ai. We supply
two sample cases. The remaining cases are similar.

• Case load x. As mentioned (⊥C , IA) ⊑ Ai. Also, since a is well-typed, Vi(x) ⊔ Ai · Si ≤ Si+1. By
transitivity (⊥C , IA) ⊑ Si+1(0), hence IA ⊑ I(Si+1(0)). But, since HI = {κ | IA 6⊑ Iκ}, I(Si+1(0)) 6∈ HI .

• Case store x. As mentioned (⊥C , IA) ⊑ Ai. Since a is well-typed, Ai ⊑ Si(0) and therefore by
transitivity (⊥C , IA) ⊑ Si(0) and hence IA ⊑ I(Si(0)). But, since HI = {κ | IA 6⊑ Iκ}, I(Si(0)) 6∈ HI (1).
Furthermore, a well-typed implies Si(0) ⊑ Vi+1(x). Then I(Vi+1(x)) 6∈ HI , by (1) and transitivity of
⊑.

First, we defined the indistinguishability for integrity values. States are declared indistinguishable
depending on what may be modified and this, in turn, depends on the security level l of the observer.
The following definitions are similar to indistinguishability definitions for confidentiality (Section 3.6.1).

Definition 4.14 (Value Integrity Indistinguishability). Given values v1, v2, security levels l, A (A is
the attacker security level) and β a location bijection set we define β, l ⊢ v1 ≃

A v2 (“values v1 and v2 are
indistinguishable at level A w.r.t. observer level l”) as follows:

(L-Null-I)

l ∈ HI

β, l ⊢ null ≃A null

(L-Int-I)

v ∈ Z l ∈ HI

β, l ⊢ v ≃A v

(L-Loc-I)

v1, v2 ∈ L l ∈ HI β(v1) = v2

β, l ⊢ v1 ≃
A v2

(H-Val-I)

l 6∈ HI

β, l ⊢ v1 ≃
A v2

We remember that the HI is determined by the attacker security level A.

Definition 4.15 (Local Variable Array Integrity Indistinguishability). Let α1, α2 be local variable
arrays, V1, V2 frame types, β a location bijection set and l, A a security levels. We write β, (V1, V2), l ⊢
α1 ≃

A α2 (or β, V1, l ⊢ α1 ≃
A α2 when V1 = V2 and l ∈ HI).

• Low-indist. Local Variable (l ∈ HI and V1 = V2). α1 and α2 are considered low-indist. at level A if for
all x ∈ X,

β, ⌊V1(x)⌋ ⊢ α1(x) ≃
A α2(x).

• High-indist. Local Variable (l 6∈ HI). α1 and α2 are considered high-indist. at level A if for all x ∈ X,

β, ⌊V1(x) ⊔ V2(x)⌋ ⊢ α1(x) ≃
A α2(x).

Definition 4.16 (Heap Integrity Indistinguishability). Let η1, η2 be heaps, T1, T2 heap types, β a
location bijection set and A security level. We define η1 and η2 to be indistinguishable at T1, T2 under β
(we write β, (T1, T2) ⊢ η1 ≃

A η2 or β, T1 ⊢ η1 ≃
A η2 in the case that T1 = T2) if:

1. β is well-defined w.r.t. η1, η2, T1 and T2, and
2. for every o ∈ Dom(β), for every field name f ∈ Dom(η1(o))

β, ⌊T1(β
✁−1(o), f)⌋ ⊢ η1(o, f) ≃

A η2(β(o), f).

4.4 Soundness 63

Definition 4.17 (Stack Integrity Indistinguishability). Let σ1, σ2 be stacks, S1, S2 stack types, β a
location bijection set and l, A security levels. We write β, (S1, S2), l ⊢ σ1 ≃

A σ2 (or β, S1, l ⊢ σ1 ≃
A σ2,

when S1 = S2 and l ∈ HI).

• Low-indist. stacks (l ∈ HI).

(L-Nil-I)

l ∈ HI

β, ǫ, l ⊢ ǫ ≃A ǫ

(Cons-L-I)

β, S, l ⊢ σ1 ≃
A σ2 β, ⌊κ⌋ ⊢ v1 ≃

A v2 l ∈ HI

β, κ · S, l ⊢ v1 · σ1 ≃
A v2 · σ2

• High-indist. stacks (l 6∈ HI).

(H-Low-I)

β, S, l ⊢ σ1 ≃A σ2 l ∈ HI l′ 6∈ HI

β, (S, S), l′ ⊢ σ1 ≃A σ2

(H-Cons-L-I)

β, (S1, S2), l ⊢ σ1 ≃A σ2 l, ⌊κ⌋ 6∈ HI

β, (κ · S1, S2), l ⊢ v · σ1 ≃A σ2

(H-Cons-R-I)

β, (S1, S2), l ⊢ σ1 ≃A σ2 l, ⌊κ⌋ 6∈ HI

β, (S1, κ · S2), l ⊢ σ1 ≃A v · σ2

Definition 4.18 (Machine State Integrity Indistinguishability). Given security level A, β a loca-
tion bijection set, β ⊢ 〈i, α, σ, η〉 ≃A 〈i′, α′, σ′, η′〉 holds iff

1. Ai,Ai′ 6∈ HI or (Ai = Ai′ ∈ HI and i = i′);
2. β, (Vi,Vi′),Ai ⊢ α ≃A α′;
3. β, (Si,Si′),Ai ⊢ σ ≃A σ′; and
4. β, (Ti, Ti′) ⊢ η ≃A η′.

Definition 4.19 (Final State Indistinguishability). Given security level A, β a location bijection set,
β ⊢ 〈pf , v, η〉 ≃

A 〈pf , v
′, η′〉 holds if the following hold:

1. β, ⌊κr⌋ ⊢ v ≃A v′; and
2. β, Tpf

⊢ η ≃A η′.

The three unwinding lemmas follow together with the statement of Lemma 4.23 Preservation of
Equality of High Integrity Data and its proof. For proofs of the unwinding lemmas consult Appendix
B.3. The Lemma 4.23 says that, assuming that in the initial states agree on high-integrity data then
they also agree on high-integrity data at the intermediate states. This is a form of noninterference of
high-integrity values.

Lemma 4.20 (One-Step Preservation of Equality of High Integrity Data on Low Context).
Suppose

1. As1 ∈ HI and pc(s1) = pc(s2)
2. s1 −→B[−→a1] s

′
1;

3. s2 −→B[−→a2] s
′
2; and

4. β ⊢ s1 ≃
A s2 for some location bijection set β.

Then
β′ ⊢ s′1 ≃

A s′2 and pc(s′1) = pc(s′2), for some β′ ⊇ β.

Lemma 4.21 (One-Step Preservation of Equality of High Integrity Data on High Context).
Let pc(s1), pc(s

′
1), pc(s2) ∈ LI . Furthermore, suppose:

1. β ⊢ s1 ≃
A s′1 for some location bijection set β;

2. s1 −→B[−→a]
s2.

64 4 Robust Declassification for Java Bytecode

Then β ⊢ s2 ≃
A s′1.

Lemma 4.22 (One-Step Preservation of Equality of High Integrity Data on High to Low
Context). Let pc(s1), pc(s2) ∈ LI and pc(s′1), pc(s

′
2) ∈ HI . Furthermore, suppose:

1. s1 −→B[−→a1] s
′
1:

2. s2 −→B[−→a2] s
′
2;

3. β ⊢ s1 ≃
A s2, for some location bijection set β; and

4. pc(s′1) = pc(s′2).

Then β ⊢ s′1 ≃
A s′2.

Lemma 4.23 (Preservation of Equality of High Integrity Data). Let M [−→•] = ((−−→x : κ, κr, E), B[−→•])
be a well-typed method, −→a1, −→a2 active attacks, A attacker security level, s1, s

′
1 initial states, β a location

bijection set and

1. β ⊢ s1 ≃
(⊤C ,l) s′1, where for all l′ in HI l′ ⊑ l and l in HI ;

2. s1, · · · , sn in Tr
B[−→a1](s1)|(⊤C ,l); and

3. s′1 · · · , s
′
n in Tr

B[−→a2](s
′
1)|(⊤C ,l).

Then for all i in {1, · · · , n} β′ ⊢ si ≃
(⊤C ,l) s′i, for some β′ ⊇ β.

Proof. Consider any terminating execution path of M [−→a1] and of M [−→a2]:

s1 −→B[−→a1] s2 −→B[−→a1] · · · −→B[−→a1] sn
s′1 −→B[−→a2] s

′
2 −→B[−→a2] · · · −→B[−→a2] s

′
m

where, β ⊢ s1 ≃
(⊤C ,l) s′1. We proceed as follows. Starting from s1 and s′1, repeatedly apply Lemma 4.20

until it is no longer possible. Let sj and s′j be the states that are reached. We have two cases to treat:

1. Case j = n. Suppose sj = sn and s′j = s′m. Then these states are final states and by Lemma 4.20,

β ⊢ sn ≃
(⊤C ,l) s′m. We note that for all intermediate states, sj and s′j , β ⊢ sj ≃

(⊤C ,l) s′j holds, by
Lemma 4.20. Furthermore, Asj ,As′

j
∈ HI then sj in Tr

B[−→a1](s1)|(⊤C ,l) and s′j in Tr
B[−→a2](s

′
1)|(⊤C ,l).

2. Case j < n. Asj ,As′
j
∈ LI . As a consequence, the program counter points to the attackers’ code.

Before proceeding, we recall from Sec. 4.3.1, pc(sj) = (⊥C , IA) = pc(s′j) and pc(sj) ⊑ Ai for all
program points i of a1 and a2. Therefore, for all program points i of a1 and a2, (⊥C , IA) ⊑ Ai and
hence Ai ∈ LI . Since the hypothesis of Lemma 4.21 is satisfied we now repeatedly apply Lemma 4.21
in both branches of the executions until it is no longer possible and, say, s1exit

and s′2exit
are the

reached states. Then β ⊢ s1exit
≃(⊤C ,l) s′2exit

.
By Lemma 4.21, As1exit

,As′2exit
∈ LI and we know that 1exit 7→ h1, 2exit 7→ h2 and h1 = h2 and

Ah1
,Ah2

∈ HI . Then, by Lemma 4.22, we can affirm that β ⊢ sh1
≃(⊤C ,l) s′h2

. Furthermore, we have
that sh1

in Tr
B[−→a1](s1)|(⊤C ,l) and s′h2

in Tr
B[−→a2](s

′
1)|(⊤C ,l).

We repeat the argument, namely applying Lemma 4.20, cases 1 and case 2 until no longer possible. Given
that the derivations are finite, eventually case 1 is reached.

4.4.3 Robustness Proof

We now deliver the promised result, namely the proof of Proposition 4.12.

Proposition 4.12 All well-typed methods satisfy robustness.

Proof. Consider any two execution paths of M [−→a2] = ((−−→x : κ, κr, E), B[−→a2]):

4.4 Soundness 65

s1 −→B[−→a2] s2 −→B[−→a2] · · · −→B[−→a2] sn
s′1 −→B[−→a2] s

′
2 −→B[−→a2] · · · −→B[−→a2] s

′
m

where

1. s1 = 〈1, α1, σ1, η1〉 and s′1 = 〈1, α′
1, σ

′
1, η

′
1〉 with σ1 = σ′

1 = ǫ,
2. sn = 〈pf , v, η〉 and s′m = 〈pf , v

′, η′〉, and
3. β ⊢ s1 ∼

(C(A),⊤I) s′1.

And suppose A1 ∈ LC .
If HI = ∅ then declassification is disallowed by the typing rules and the result follows from Proposi-

tion 4.10. Otherwise we proceed as follows. Starting from s1 and s′1 repeatedly apply Lemma 3.44 until it
is no longer possible. Let sj1 and s′j2 be the states that are reached. Note β′ ⊢ sj1 ∼

(C(A),⊤I) s′j2 . If j = n,
then the result holds immediately since the full trace has been attained. Otherwise, j < n and we have
two cases to treat (we write As for Ai, where s = 〈i, α, σ, η〉):

1. Case Asj1
,As′

j2
⊑ (C(A),⊤I). Let sj1 = 〈i, α, v · σ, η〉 and s′j2 = 〈i′, α′, v′ · σ′, η′〉 and B[−→a2](i) =

declassify κ. From β′ ⊢ sj1 ∼
(C(A),⊤I) s′j2 and Asj1

,As′
j2
⊑ (C(A),⊤I) we deduce i = i′. Also, from

the semantics sj1+1 = 〈i+1, α, v ·σ, η〉 and s′j2+1 = 〈i+1, α′, v′ ·σ′, η′〉. Finally, by typability of B[−→•]
all hypothesis of T-Declassify are assumed.
We wish to prove β′ ⊢ sj1+1 ∼

(C(A),⊤I) s′j2+1. The only non-trivial case is β′,Si+1,Ai+1 ⊢

v · σ ∼(C(A),⊤I) v′ · σ′

For this we first check that β′,Si+1\0,Ai+1 ⊢ σ ∼(C(A),⊤I) σ′. This fact is obtained by reasoning as
follows:
• If Ai+1 ⊑ (C(A),⊤I), by β′,Si\0,Ai ⊢ σ ∼(C(A),⊤I) σ′. (Si\0) ≤Ai

(Si+1\0) and Lemma A.6, we
have that β′,Si+1\0,Ai ⊢ σ ∼(C(A),⊤I) σ′. Then the result follows from Lemma A.9.

• If Ai+1 6⊑ (C(A),⊤I), the result follows from the previous item and H-Low.
Second we must check that β′, ⌊Si+1(0)⌋ ⊢ v ∼(C(A),⊤I) v′. By β′ ⊢ sj1 ∼

(C(A),⊤I) s′j2 , we know that

β′, ⌊Si(0)⌋ ⊢ v ∼(C(A),⊤I) v′. We consider two cases depending on whether Si(0) ⊑ (C(A),⊤I) or
Si(0) 6⊑ (C(A),⊤I).
Suppose Si(0) ⊑ (C(A),⊤I).
• if Si+1(0) ⊑ (C(A),⊤I), β

′, ⌊Si+1(0)⌋ ⊢ v ∼(C(A),⊤I) v′ follows from β′ ⊢ sj1 ∼
(C(A),⊤I) s′j2 and

value indist.;
• otherwise, we conclude directly by value indist.
Suppose now Si(0) 6⊑ (C(A),⊤I). If v = v′ then β′, ⌊Si+1(0)⌋ ⊢ v ∼(C(A),⊤I) v′ is immediate. But,
if v 6= v′ and Si+1(0) ⊑ (C(A),⊤I), since declassification has occurred, indistinguishability is not a
priori guaranteed.
Since v, v′ are high-integrity data and active attackers cannot modify them (Proposition 4.13(i)),
these same values are at the same program point in the execution of B[−→a1] (Lemma 4.23). Then these
same data, v, v′, are also declassified by B[−→a1] at this program point (since declassify instructions
do not belong to B[−→•]). By Lemma 4.23, if high integrity values not are equal at the same program
point, then there exist high integrity data on initial states s.t. they are not equal either. If v 6= v′,
then the given assumption β ⊢ Tr

B[−→a1](s1) ∼
(C(A),⊤I) Tr

B[−→a1](s
′
1) would fail. Hence it must be the

case that v = v′.
2. Case Asj1

,As′
j2
6⊑ (C(A),⊤I).

As a consequence, there exists a program point k in Dom(B)♯ such that k was the value of the
program counter for sj1−1 and s′j2−1. Furthermore, let pc(sj1) = g and pc(s′j2) = g′ then we have
k 7→ g and k 7→ g′ by the definition of the Successor Relation. By the SOAP properties (3.10(i)),
both g, g′ ∈ region(k).
Furthermore, ∀j ∈ region(k).Aj 6⊑ (C(A),⊤I) follows from the conditions of the typing rule T-If,
T-GtFld, T-PtFld or T-InvkVrtl. Therefore the hypothesis of Lemma 3.45 is satisfied.

66 4 Robust Declassification for Java Bytecode

Now, we repeatedly apply Lemma 3.45 in both branches of executions until it is no longer possible. Let
us call sh1

and s′h2
the reached states. By transitivity and symmetry of indistinguishability of states,

(Lemma 3.40), β′ ⊢ sh1
∼(C(A),⊤I) s′h2

. By Lemma 3.45, Ash1
,As′

h2
6⊑ (C(A),⊤I). Also, if h1 7→ h′

1

and h2 7→ h′
2, then Ah′

1
,Ah′

2
⊑ (C(A),⊤I). We are therefore at a junction point, Lemma A.12,

h′
1 = jun(k) = h′

2. Finally, by Lemma 3.46, β′ ⊢ sh′

1
∼(C(A),⊤I) s′h′

2
.

We repeat the argument, namely applying Lemma 3.44 until no longer possible and then analyzing
cases 1 and case 2. Given that the derivations are finite, eventually final states are reached.

4.5 Discussion

We present a type system for ensuring secure information flow in a core JVM-like language that includes
a mechanism for performing downgrading of confidential information. It is proved that the type system
enforces robustness of the declassification mechanism in the sense of [127]: attackers may not affect what
information is released or whether information is released at all. The restriction of the attackers ability
to modify data is handled by enriching the confidentiality lattice with integrity levels.

In presence of flow-sensitive type systems we have showed that variable reuse endows the attacker
with further means to affect declassification than those available in high-level languages in which variables
are assigned a fixed type during their entire lifetime. Additional means of enhancing the ability of an
attacker to declassify information in stack-based languages (e.g. bytecode) is by manipulating the stack,
as exemplified in Sec. 4.1. Also, in unstructured low-level languages, we are required to restrict the use
of jumps.

We note that the infrastructure developed for the type system of Chapter 3 (typing schemes, definition
of indistinguishability, lemmas, theorems and proofs) was used in this Chapter to show that well-typed
programs satisfy robustness.

4.5.1 Extensions

The inclusion of a primitive for endorsement (for upgrading the integrity of data) as studied elsewhere [85,
67] in the setting of high-level languages would be interesting. Note that although confidentiality and
integrity are dual properties, the treatment of declassify and endorse should not be symmetric for
otherwise the attacker would be given total control over the data. We anticipate no major difficulties in
adapting qualified robustness [85] in our type system. Although, qualified robustness is in some cases more
permissive than desired [85] and we must probe that the type system meets posibilistic non-interference.

4.5.2 Related work

A brief description of related literature on type based information flow analysis for declassification and
for low-level languages follows. A recent survey of research on declassification techniques is presented by
Sabelfeld and Sands [102].

Zdancewic and Myers [127] introduce robust declassification (RD) in an attempt to capture the de-
sirable restrictions on declassification. Robustness addresses an important issue for security analysis: the
possibility that an attacker can affect some part of the system. If a system contains declassification, it
is possible that an attacker can use the declassification mechanism to release more information than was
intended. A system whose declassification is robust may release information, but it gives attackers no
control over what information is released or whether information is released [85]. But, Zdancewic and
Myers [127] did not propose a method for determining when a program satisfies RD. Zdancewic [125]
shows that a simple change to a security type system can enforce it: extend the lattice of security labels
to include integrity constraints as well as confidentiality constraints and then require that the decision

4.5 Discussion 67

to perform declassification have high integrity. Myers et al [85] introduce a type system for enforcing RD
and also, they show how to support upgrading (endorsing) data integrity.

We extend our type system with a declassification instruction that perform explicit downgrading of
confidential information. Also we prove that the type system is robust (in the sense of Robust Declassi-
fication introduced by Zdancewic and Myers [127]).

Rezk et al [22] provide a modular method for achieving sound type systems for declassification from
sound type systems for noninterference, and instantiate this method to a sequential fragment of the JVM.
They consider a declassification policy called delimited non-disclosure that combines the what and where
dimensions of declassification.

Jiang, Ping and Pan [67] combined who and where dimensions to present a security model for dynamical
information release and incorporated it in a new security type system which has a pair of a security
level and an endorsing policy as its type. In it model, endorsing the integrity of data is controlled by
the endorsing policy of each data. Such local endorsing policy describes a sequence of integrity levels
through which a labeled data value may be endorsed and the conditions will hold at the execution of
the corresponding endorsement points. It allows the specification of how data should be used prior to
endorsement, when the endorsement is permitted, and how data should be treated after endorsement. As
a result, they are able to upgrade the integrity of untrusted code in a controlled way to grant the code
an ability to affect information downgrading. But, the type system enable endorsement information to a
lower integrity level than the attacker level.

Myers and Askarov [13] inspired in [85] introduced a new knowledge-based framework for semantic
security conditions for information security with declassification and endorsement. The impact and control
of the attacker over information is characterizing in terms of sets of similar attacks. This framework, can
express semantic conditions that more precisely characterize the security offered by a security type system,
and derive a satisfactory account of new language features such as checked endorsement.

Part II

Justification Logic and Audited Computation

5

Justification Logic and Audited Computation

This Chapter is concerned with the computational interpretation of Justification Logic (formerly, the Logic
of Proofs) [9, 10, 11] (JL). JL is a refinement of modal logic that has recently been proposed for explaining
well-known paradoxes arising in the formalization of Epistemic Logic. Assertions of knowledge and belief
are accompanied by justifications: the modality JtKA states that t is “reason” for knowing/believing A.
The starting point of this work is the observation that if t is understood as a typing derivation of a term
of type A, then a term of type JtKA should include some encoding of t. If this typing derivation is seen
as a logical derivation, then any normalisation steps applied to it would produce a new typing derivation
for A. Moreover, its relation to t would have to be made explicit in order for derivations to be closed
under normalisation (in type systems parlance: for Subject Reduction (SR) to hold). This suggests that
the computational interpretation of JL should be a programming language that records its computation
history.

Structure. Section 5.3 presents an informal presentation of λh by describing an example of access
control based on execution history. Section 5.4 introduces JL•, an affine fragment of JL. Sec. 5.5 studies
normalisation in this system. We then introduce a term assignment for this logic in order to obtain a
lambda calculus with computation history trails. This calculus is endowed with a call-by-value operational
semantics and type safety of this semantics w.r.t. the type system is proved. Section 5.7 addresses strong
normalisation.

5.1 Curry-Howard Isomorphism and Modal Logic

Modal logic [37] is a type of formal logic that extends the standards of formal logic to include the elements
of modality. Modals qualify the truth of a judgment. Traditionally, there are three modalities represented
in modal logic, namely, possibility, probability, and necessity. The basic modal operators are usually
written ✷ for necessarily and ✸ for Possibly. For example, the modality ✷A states that knows/believes
A.

Modal formulas are defined by the following grammar:

F ::= P |⊥|F ⊃ F |⊞ F

where P is a propositional variable, ⊥ and ⊃ are the standard propositional connectives and ⊞ is one
of the modalities used in a particular modal language.

The other modal and propositional connectives are defined in the standard way:

¬A ≡ A ⊃ ⊥
A ∧B ≡ ¬(A ⊃ ¬B)
A↔ B ≡ (A ⊃ B) ∧ (B ⊃ A)

72 5 Justification Logic and Audited Computation

✸A ≡ ¬✷¬A

In order to study the logical truth and valid deductions in modal logic, we need to know how to
interpret ✷ and ✸, i.e., we need defined precisely the meanings of necessity and possibility. There is not a
unique modal logic since it is possible define infinite different modal logics. It is different from other well-
known logical systems, such as classical logic and intuitionistic logic. Some of the common interpretations
of ✷A are:

A is necessarily true, alethic logic.
A is provable, provability logic.
It ought to be that A, deontic logic.
It is known that A, epistemic logic.
A will always be true, temporal logic.

Some common axioms and inference schemes in modal logics are:
A0. Schemes of classical propositional logic in the modal language
A1.✷(F ⊃ G) ⊃ (✷F ⊃ ✷G) normality
A2.✷F ⊃ F reflexivity
A3.✷F ⊃ ✷✷F Modal Positive Introspection
A4. ¬✷F ⊃ ✷¬✷F Modal Negative Introspection
A5.✷⊥ ⊃ ⊥ Seriality
R1. F ⊃ G and F implies G modus ponens
R2. ⊢ F implies ⊢ ✷F necessitation

The modal logic S4 (one of the Lewis’ five modal logical system) have the A0, A1, A2, A3 axioms
and R1, R2 rules. This system is commonly studied in epistemic logic.

The Curry-Howard Isomorphism. Haskell Curry observed a correspondence between types of
combinators and propositions in intuitionist implicational logic. William Howard extended this corre-
spondence to first order logic by introducing dependent types. This correspondence is known as the
Curry-Howard Isomorphism [60].

The Curry-Howard isomorphism is a correspondence between type expressions in the lambda calculus
and propositional logic. The correspondence looks something like this:

Logic Programming
Formulas ⇐⇒ Types
Proofs ⇐⇒ Derivations

Proof normalisation ⇐⇒ Reduction

The Curry-Howard Isomorphism states a correspondence between systems of formal logic and com-
putational calculi. It has been extended to more expressive logics, e.g. higher order logic and modal
logic. Through a Curry-Howard correspondence, any type system can be regarded as a logic by forgetting
terms. In this sense, modal logics are contributing to practical studies for programming languages, e.g.,
staged computations [50], mobile code [39] and information flow analysis [78]. Modal necessity ✷A may
be read as the type of programs that compute values of type A and that do not depend on local resources
[79, 115, 113] or resources not available at the current stage of computation [112, 123, 52]. The former
reading refers to mobile computation (✷A as the type of mobile code that computes values of type A)
while the latter to staged computation (✷A as the type of code that generates, at run-time, a program
for computing a value of type A) [39].

Staged Computation. Staged computation refers to explicit or implicit division of a task into stages.
It is a standard technique from algorithm design that has found its way to programming languages and

5.2 JL and Hypothetical JL 73

environments. Examples are partial evaluation which refers to the global specialization of a program
based on a division of the input into static (early) and dynamic (late) data, and run-time code generation
which refers to the dynamic generation of optimized code based on run-time values of inputs.

David and Pfenning [50] extended the Curry-Howard correspondence to intuitionistic modal logic.
They showed that the λ-calculus with the S4 modal necessity operator ✷ provides a theoretical frame-
work of staged computation by interpreting a formula ✷A as a type of program codes the type A. The
isomorphism relates proofs in modal logic to functional programs which manipulate program fragments
for later stages. Each world in the Kripke semantics of modal logic corresponds to a stage in the compu-
tation, and a term of type ✷A corresponds to code to be executed in a future stage of the computation
[50].

Mobile Code. Bonelli and Feller [39] explore an intuitionistic fragment of Justification Logic (JL)
[9, 10, 11] as a type system for a programming language for mobile units. This language caters for
both code and certificate development in a unified theory. JL may be regarded as refinement of modal
logic S4 in which ✷A is replaced by [s]A, for s a proof term expression, and is read: s is a proof of
A. Bonelli and Feller interpret the modal type constructor [s]A as the type of mobile units, expressions
composed of a code and certificate component. In the same way that mobile code is constructed out
of code components and extant type systems track local resource usage to ensure the mobile nature of
these components, the Bonelli and Feller system additionally ensures correct certificate construction out
of certificate components. This mechanism for internalizing its own derivations provides a natural setting
for code certification.

Information Flow. Miyamoto and Igarashi [78], based-on ideas of David and Pfenning [50], develop
a natural extension of the Curry-Howard isomorphism between a type system for information flow anal-
ysis and a intuitionistic modal logic. They relate the notion of security levels to possible worlds. Since
information available at a lower level is also available at a higher level, a suitable modality seems to be
validity ✷l, which means it is true at every level higher (or equal to) the security level l. So, the fact
that l1 is higher than l2 (or information can flow from l2 to l1) can be regarded as that a possible world
l1 is reachable from l2 . It is expected that the proposition ✷l naturally corresponds to the type that
represents the values of type A at the security level l.

5.2 JL and Hypothetical JL

In JL proofs are represented as combinatory terms (proof polynomials). Proof polynomials are constructed
from proof variables and constants using two operations: application “·” and proof-checker “!”. The usual
propositional connectives are augmented by a new one: given a proof polynomial s and a proposition A
build JsKA. The intended reading is: “s is a proof of A”. The axioms and inference schemes of JL are as
follows where we restrict the first axiom to minimal logic rather than classical logic:

A0. Axiom schemes of minimal logic in the language of JL
A1. JsKA ⊃ A “verification”
A2. JsK(A ⊃ B) ⊃ (JtKA ⊃ Js · tKB) “application”
A3. JsKA ⊃ J!sKJsKA “proof checker”
R1. Γ ⊢ A ⊃ B and Γ ⊢ A implies Γ ⊢ B “modus ponens”
R2. IfA is an axiomA0-A3, and c is a proof constant,

then ⊢ JcKA
“necessitation”

In [12], based on work on judgemental reconstruction [76] of intuitionistic S4 [50, 52, 51], judgements are
introduced in which a distinction is made between propositions whose truth is assumed from those whose
validity is assumed. Moreover, the notion of proof code is incorporated:

∆;Γ ⊢ A | s

This judgement reads as: “s is evidence that A is true, assuming validity of hypothesis in ∆ and truth of
hypothesis in Γ”. In such hypothetical judgements with proof codes, evidence s is a constituent part of

74 5 Justification Logic and Audited Computation

π1

∆; a : A ⊢ B | s
⊃ I

∆; · ⊢ A ⊃ B | λaA.s

π2

∆; · ⊢ A | t
⊃ E

∆; · ⊢ B | (λaA.s) · t
✷I

∆;Γ ⊢ J(λaA.s) · tKB |!(λaA.s) · t

π3

∆; · ⊢ B | sat
✷I

∆;Γ ⊢ J(λaA.s) · tKB |!(λaA.s) · t

Fig. 5.1. Failure of subject reduction for naive modal introduction scheme

it without which the proposed reading is no longer possible. Its importance is reflected in the following
introduction rule for the JsK connective, where “·” stands for an empty context:

∆; · ⊢ A | s
✷I

∆;Γ ⊢ JsKA |!s

This scheme internalises proofs of validity: If s is evidence that A is unconditionally true, then it is true
that s is a proof of A. The new witness to this fact is registered as the evidence !s. The “!” operator is
reminiscent of that of proof polynomials. However, in our paper, proof terms such as s encode Natural
Deduction and thus are no longer the proof polynomials of JL.

Unfortunately, the system which includes ✷I is not closed under substitution of derivations. For e.g.
the derivation in Fig. 5.1 (left) would produce, after a step of normalisation, the derivation of Fig. 5.1
(right) where π3 is obtained from π1,2 and an appropriate substitution principle (cf. Sec. 5.4.2). However,
this derivation is invalid since proof codes sat (replace all free occurrences of a in s by t) and (λaA.s) · t
do not coincide. SR may be regained, however, be introducing a judgement stating compatibility of proof
codes, where e below is called a compatibility code (or trail) and is witness to the compatibility between
the derivations denoted by the proof codes s and t (cf. Sec. 5.4.2 for the syntax of trails):

∆;Γ ⊢ Eq(A, s, t) | e (5.1)

together with a new scheme:

∆;Γ ⊢ A | s ∆;Γ ⊢ Eq(A, s, t) | e
Eq

∆;Γ ⊢ A | t

Normalisation of derivations gives rise to instances of Eq. These instances in fact may be permuted past
any inference scheme except a box introduction. This suggests a normalisation procedure over canonical
derivations where instances of Eq are permuted until they reach the innermost instance of a ✷ introduction
scheme at which point they permute to the upper right-hand hypothesis (cf. Sec. 5.5):

∆; · ⊢ A | s ∆; · ⊢ Eq(A, s, t) | e
✷I

∆;Γ ⊢ JtKA | t
It determines a natural notion of locality of trails given in terms of scope: trails are local to the

innermost box introduction scheme. The resulting calculus, may be shown strongly normalising and
confluent by applying properties of higher-order rewrite systems [12].

Although reduction and their corresponding trails are confined to local computation units, compu-
tation itself is unaware of them. We thus incorporate means for reification of trails. We introduce trail
variables in order to name the trail of a local computation and extend the introduction rule for the box
accordingly:

∆; ·;Σ ⊢ A | s ∆; ·;Σ ⊢ Eq(A, s, t) | e
✷I

∆;Γ ;Σ′ ⊢ JΣ.tKA | Σ.t

5.3 A Calculus of Audited Units 75

Here Σ is a context of affine trail variables. Trail variables are affine since each trail lookup may produce
a different result. The proof code Σ.t binds all free occurrences of the trail variables in Σ. A fold over
trails is also introduced (cf. TI in Sec. 5.4).

The resulting presentation of JL we coin the hypothetical JL and denote it with JL•. Its schemes are
now described in further detail from the point of view of λh, the induced calculus of audited units via its
term assignment.

5.3 A Calculus of Audited Units

We begin with an informal presentation of λh by describing an example program that models Abadi and
Fournet’s [5] mechanism for access control based on execution history. This mechanism, proposed as an
enhanced alternative to Java stack-inspection, consists in controlling access to objects depending on which
functions were invoked previously in time. Each function is (statically) assigned a set of permissions; the
current set of permissions is computed by taking the intersection of the permissions of all function calls
in the history of the computation. As an example, consider a function deleteFile that given a file name,
either deletes the file if it has the appropriate permission (FileIOPerm) or raises an exception if it does
not. In λh we write the top-level declaration:

deleteFile
.
= !αλaStr .if FileIOPerm ∈ αϑ then Win32Delete a else securityException; (5.2)

An expression of the form !α1,...,αn
e M is called an audited (computation) unit, M being the body, e

the history or trail of computation producing M and αi, i ∈ 1..n, the trail variables that are used for
consulting the computation history. In this example, there is only one trail variable, namely α; its scope
is the innermost enclosing modal term constructor “!α”. And, αϑ is a occurrence of trail variable, where
α is a trail variable and ϑ is the evaluation of trail (trail inspection). As discussed, the trail e is an
encoding of all reduction steps that have taken place from some origin term to produce the current term
M . Uninteresting trails, such as those witnessing that no computation has taken place (e.g. that the type
derivation for M is equal to itself), are often omitted for notational convenience, as has been done in
(5.2). Next we describe some of the salient features of λh, namely (1) trail update; (2) substitution of
audited units; and (3) trail inspection.

Trail update. Consider the term !α
r((λaStr .s1)·s2)

M , where M is:
(

λaStr .if FileIOPerm ∈ ϑα thenWin32Delete a else securityException
)

“..\passwd′′

It differs in two ways w.r.t. (5.2). First the body M of the audited unit is an application rather than
an abstraction. Second, the uninteresting trail reflecting that no computation has taken place is now
displayed: r((λaStr .s1) · s2). This trail asserts that (λa

Str .s1) · s2 is the code of a typing derivation for M
and should be considered compatible with itself. It reflects that no computation has taken place since it
does not have occurrences of β-trails, as we now describe. A β-step of computation from !α

r((λaStr .s1)·s2)
M

produces:
!α
t(ba(aStr .s1,s2),r((λaStr .s1)·s2))

if FileIOPerm ∈ αϑ

thenWin32Delete “..\passwd′′

else securityException

(5.3)

The trail of the audited unit has been updated to reflect the reduction step that took place. In
t(ba(aStr .s1, s2), r((λa

Str .s1) · s2)), the expressions aStr .s1, s2 and (λaStr .s1) · s2 are encodings of typing
derivations for (λaStr .if FileIOPerm ∈ αϑ thenWin32Delete a else securityException), “..\passwd”
and M , resp. The β-trail ba(aStr .s1, s2) states that the typing derivation s1 where all free occurrences of
a have been replaced by s2 should be considered compatible with (λaStr .s1) · s2; the trail constructor t

asserts transitivity of compatibility.
This account of the process of updating the trail while computing is slightly abridged; it is actually

developed in two stages: a principle contraction, which produces the trail, followed by a number of

76 5 Justification Logic and Audited Computation

permutative conversions, which transports the trail to its innermost enclosing audited unit constructor
(cf. Sec. 5.5).

Substitution for audited units. Let us return to deleteFile. How do we supply the name of the
file to delete? Clearly we cannot simply apply deleteFile to a string since it is not an abstraction (indeed,
it is an audited unit). We require some means of extracting the value computed by an audited unit. This
is accomplished by audited unit composition letu = M in N . We refer to M as its argument and N its
body. It evaluates as follows, determining a β✷-step. First evaluate M until a value !α1,...,αn

e V is obtained
(note the V under the modal term constructor). Then replace the free occurrences of u in N with V . In
addition, the following actions are performed, as dictated by the proof theoretical analysis that shall be
developed shortly:

1. e is copied so that trails are correctly persisted; and
2. all free occurrences of α1, . . . , αn in V are “rewired” with the trail variables of the (innermost) audited

unit in which u resides.1 Trail variables u are therefore accompanied by a trail variable rewiring and
are written 〈u; {α1/β1, . . . , αn/βn}〉.

As an illustration, consider the following additional top-level declarations:

cleanup
.
= !βλa.delete β a;

bad
.
= !γcleanup γ “..\passwd′′;

where we write f ~β ~N to abbreviate letu = f in 〈u; ~α/~β〉 ~N assuming that f
.
=!~αe λ~a : ~A.M . Evaluation of

the term !δbad δ will produce:

!δeif FileIOPerm ∈ δϑ thenWin32Delete “..\passwd′′ else securityException (5.4)

The trail e will include three instances of a bb trail constructor reflecting three β✷-steps and the
defdeleteFile, defcleanup and defbad trail constructors reflecting three top-level function unfoldings. The
next step is to determine whether the predicate FileIOPerm ∈ δϑ holds. This brings us to the last part
of our informal introduction to λh, namely trail inspection, after which we shall complete the description
of our example.

Trail inspection. Inspection of trails is achieved by means of trail variables. Evaluation of trail
variables inside an audited unit consists in first looking up the trail and then immediately traversing it,
replacing each constructor of the trail with a term of the appropriate type2. The mapping that replaces
trail constructors with terms is called a trail replacement. All occurrences of trail variables are thus
written αϑ where α is a trail variable and ϑ a trail replacement. A notable property of trail variables is
that they are affine (i.e. at most one permitted use) since each trail inspection may produce a different
result. Returning to (5.4), assume we have at our disposal an assignment of a set of (static) permissions

to top-level functions: perms(bad)
def
= ∅, perms(cleanup)

def
= {FileIOPerm} and perms(deleteFile)

def
=

{FileIOPerm}. Assume, moreover, that the trail replacement takes the form:

ϑ(r) = ϑ(ti)
def
= ∅

ϑ(s) = ϑ(ab)
def
= λaN.a

ϑ(t) = ϑ(ap) = ϑ(l)
def
= λaN.λbN.a ∩ b

ϑ(rw)
def
= λaN.a1 ∩ .. ∩ a10

ϑ(b) = ϑ(bb)
def
= ∅

ϑ(def
f
)

def
= {perms(f)}

Returning to (5.4), evaluation of δϑ produces the empty set given that the intersection of the permissions
associated to the trail constructors for defdeleteFile, defcleanup and defbad is the empty set. Thus the
predicate FileIOPerm ∈ δϑ is false and a security exception is raised.

1 These two items illustrate how the reduction behavior of letu = M in N differs from the standard computational
interpretation of some modal logics [91, 52, 51].

2 In the same way as one recurs over lists using fold in functional programming, replacing nil and cons by
appropriate terms.

5.4 The Logic 77

5.3.1 History based access control for information flow

The next example is drawn from studies in static checking of method bodies in object-oriented languages
to ensure that they satisfy confidentiality policies. These policies guarantee that private information is
not leaked into public channels. They should be flexible enough to admit the largest possible number of
programs. With that objective in mind, it would be convenient to allow a method to be given several
types so that different information flow policies can be imposed for callers with different permissions. We
explain the idea with the following example from [18]. Consider a trusted function getStatus that can
be called in more than one context. If called by untrusted code, getStatus returns public information.
Trusted code, however, can obtain private information.

The definition of perms is as follows: perms(get)
def
= ∅, perms(getStatus)

def
= ∅ and perms(getHinfo)

def
=

{sysPerm}. The trail replacement ϑ is the same as in the previous example. The top-level declarations
we have at our disposal are:

getHinfo
.
= !

αgH

Refl(r)if sysPerm ∈ θαgH

thenprivateInfo

else securityException;

getStatus
.
= !

αgS

Refl(s)if sysPerm ∈ θαgS

thenprivateInfo

elsepublicInfo;

Function getHinfo is useful only to callers with permission sysPerm. However, getStatus is useful
both for callers with permission sysPerm and for those without; only the former obtain private info.
Volpano-Irvine-Smith style type analysis [118] would assign getStatus the type H. The type system
of [18] introduces permissions into types and assigns the more precise type3 {sysPerms} → L reflecting
that the result may be public (indicated by the “L”) if sysPerms is absent.

5.4 The Logic

JL is a modal logic of provability which has a sound and complete arithmetical semantics. This section
introduces a natural deduction presentation for a fragment4 of JL. The inference schemes we shall define
give meaning to hypothetical judgements with proof codes ∆;Γ ;Σ ⊢ A | s whose intended reading is: “s is
evidence that A is true under validity hypothesis ∆, truth hypothesis Γ and compatibility hypothesis Σ”.

We assume given term variables a, b, . . ., audited unit variables u, v, . . . and trail variables α, β,
The syntax of each component of the judgement is described below:

Propositions A ::= P |A ⊃ A | JΣ.sKA
Validity context ∆ ::= · |∆,u : A[Σ]
Truth context Γ ::= · |Γ, a : A

Compat. context Σ ::= · |Σ,α : Eq(A)
Rewiring σ ::= {α1/β1, . . . , αn/βn}

Proof code s ::= a |λaA.s | s · s | 〈u;σ〉 |Σ.s | let(uA[Σ].s, s) |αθ
Proof code trail replmnt θ ::= {r/s1, s/s2, t/s3, ba/s4, bb/s5, ti/s6, abC/s7, apC/s8, leC/s9, rpC/s10}

Contexts are considered multisets; “·” denotes the empty context. In ∆;Γ ;Σ we assume all variables
to be fresh. Variables in Σ are assigned a type of the form Eq(A)5. A proposition is either a propositional

3 Actually, this is a simplification of the type assigned in [18] since there they study an object-oriented object
language.

4 Minimal propositional JL without the “plus” polynomial proof constructor.
5 The type Eq(A) in an assignment α : Eq(A) may informally be understood as ∃x, y.Eq(A, x, y) (where x, y
stand for arbitrary type derivations of propositions of type A) since α stands for a proof of compatibility of two
type derivations of propositions of type A about which nothing more may be assumed. These type derivations
are hidden since trail inspection may take place at any time.

78 5 Justification Logic and Audited Computation

a : A ∈ Γ
Var

∆;Γ ;Σ ⊢ A | a

∆;Γ, a : A;Σ ⊢ B | s
⊃ I

∆;Γ ;Σ ⊢ A ⊃ B | λaA.s

∆;Γ1;Σ1 ⊢ A ⊃ B | s
∆;Γ2;Σ2 ⊢ A | t

⊃ E
∆;Γ1,2;Σ1,2 ⊢ B | s · t

u : A[Σ] ∈ ∆ Σσ ⊆ Σ′

mVar
∆;Γ ;Σ′ ⊢ A | 〈u;σ〉

∆; ·;Σ ⊢ A | s
∆; ·;Σ ⊢ Eq(A, s, t) | e

✷I
∆;Γ ;Σ′ ⊢ JΣ.tKA | Σ.t

∆;Γ1;Σ1 ⊢ JΣ.rKA | s
∆, u : A[Σ];Γ2;Σ2 ⊢ C | t

✷E
∆;Γ1,2;Σ1,2 ⊢ Cu

Σ.r | let(uA[Σ].t, s)

α : Eq(A) ∈ Σ ∆; ·; · ⊢ T B | θ
TI

∆;Γ ;Σ ⊢ B | αθ

∆;Γ ;Σ ⊢ A | s ∆;Γ ;Σ ⊢ Eq(A, s, t) | e
Eq

∆;Γ ;Σ ⊢ A | t

Fig. 5.2. Inference Schemes for Hypothetical Judgements with Proof Codes

variable P , an implication A ⊃ B or a modality JΣ.sKA. In JΣ.sKA, “Σ.” binds all occurrences of trail
variables in s and hence may be renamed at will. We refer to an encoding of a type derivation as proof
code. Proof code bears witness to proofs of propositions, they encode each possible scheme that may
be applied: truth hypothesis, abstraction, audited computation unit variable, audited computation unit
introduction and elimination, and trail inspection. A compatibility code replacement is a mapping θ from
the set of trail constructors (introduced shortly) to proof codes. It is used for associating proof codes
to trail replacements. We write σ for for a bijective map over trail variables that we call rewiring. Free
truth variables of s (fvT(s)), free validity variables of s (fvV(s)) and free trail variables of s (fvTrl(s)) are
defined as expected.

5.4.1 Inference Schemes

The meaning of hypothetical judgements with proof codes is given by the axiom and inference schemes
of Fig. 5.2 and determine the JL• system. Both Γ and Σ are affine hypothesis whereas those in ∆
are intuitionistic. We briefly comment on the schemes. The axiom scheme Var states that judgement
“∆;Γ ;Σ ⊢ A | a” is evident in itself: if we assume a is evidence that proposition A is true, then we
may immediately conclude that A is true with proof code a. Similarly, the asumption that A is valid
allows us to conclude that it is true, as indicated by mVar. However, since the validity of A depends
on compatiblity assumptions Σ, they must be “rewired” to fit the current context. The schemes for
introduction and elimination of implication need no further explanation. The introduction scheme for the
modality has already been motivated in the introduction. The compatibility code e of ✷I can take one of
the following forms, where rpC(e1, . . . , e10) is usually abbreviated rpC(e):

e ::= r(s) reflexivity
| s(e) symmetry
| t(e, e) transitivity
| ba(aA.s, s) β
| bb(uA[Σ].s, Σ.s) β✷

| ti(θ, α) trail inspection
| abC(aA.e) abstraction compatibility
| apC(e, e) application compatibility
| leC(uA[Σ].e, e) let compatibility
| rpC(e1, . . . , e10) replacement compatibility

5.4 The Logic 79

∆;Γ ;Σ ⊢ A | s
EqRefl

∆;Γ ;Σ ⊢ Eq(A, s, s) | r(s)

∆;Γ1, a : A;Σ1 ⊢ B | s
∆;Γ2;Σ2 ⊢ A | t

Eqβ
∆;Γ1,2;Σ1,2 ⊢ Eq(B, sat , (λa

A.s) · t) | ba(aA.s, t)

∆; ·;Σ1 ⊢ A | r ∆; ·;Σ1 ⊢ Eq(A, r, s) | e ∆, u : A[Σ1];Γ2;Σ2 ⊢ C | t Γ2 ⊆ Γ3 Σ2 ⊆ Σ3

Eqβ✷

∆;Γ3;Σ3 ⊢ Eq(Cu
Σ1.s, t

u
Σ1.s, let(u

A[Σ1].t, Σ1.s)) | bb(u
A[Σ1].t, Σ1.s)

∆; ·;Σ1 ⊢ Eq(A, s, t) | e ∆; ·; · ⊢ T B | θ α : Eq(A) ∈ Σ2

EqTI
∆;Γ ;Σ2 ⊢ Eq(B, eθ, αθ) | ti(θ, α)

∆;Γ ;Σ ⊢ Eq(A, s, t) | e
EqSym

∆;Γ ;Σ ⊢ Eq(A, t, s) | s(e)

∆;Γ ;Σ ⊢ Eq(A, s1, s2) | e1
∆;Γ ;Σ ⊢ Eq(A, s2, s3) | e2

EqTrans
∆;Γ ;Σ ⊢ Eq(A, s1, s3) | t(e1, e2)

∆;Γ, a : A;Σ ⊢ Eq(B, s, t) | e
EqAbs

∆;Γ ;Σ ⊢ Eq(A ⊃ B, λaA.s, λaA.t) | abC(aA.e)

∆;Γ1;Σ1 ⊢ Eq(A ⊃ B, s1, s2) | e1
∆;Γ2;Σ2 ⊢ Eq(A, t1, t2) | e2

EqApp
∆;Γ1,2;Σ1,2 ⊢ Eq(B, s1 · t1, s2 · t2) | apC(e1, e2)

∆;Γ1;Σ1 ⊢ Eq(JΣ.rKA, s1, s2) | e1 ∆,u : A[Σ];Γ2;Σ2 ⊢ Eq(C, t1, t2) | e2
EqLet

∆;Γ1,2;Σ1,2 ⊢ Eq(Cu
Σ.r, let(u

A[Σ].t1, s1), let(u
A[Σ].t2, s2)) | leC(u

A[Σ].e2, e1)

∆; ·; · ⊢ Eq(T B , θ′, θ) | ei α : Eq(A) ∈ Σ
EqRpl

∆;Γ ;Σ ⊢ Eq(B,αθ′, αθ) | rpC(e)

Fig. 5.3. Schemes defining proof code compatibility judgement

The schemes defining the judgement (5.1) are given in Fig. 5.3. There are four proof code compatibil-
ity axioms (EqRefl, Eqβ, Eqβ✷ and EqTI) and six inference schemes (the rest). The axioms are used for
recording principle contractions (Sec. 5.5) at the root of a term and schemes EqAbs, EqApp, EqLet and
EqTI enable the same recording but under each of the term constructors. Note that there are no congru-
ence schemes for the modality. Regarding trail inspection (EqTI in Fig. 5.3) recall from the introduction
that we append each reference to a trail variable with a trail replacement. Therefore, the trail replacement
has to bee accompanied by proof codes, one for each term that is to replace a trail constructor. The proof
code for each of these proofs is grouped as θ and is called a proof code trail replacement : ∆; ·; · ⊢ T B | θ
which is a shorthand for ∆; ·; · ⊢ T B(c) | θ(c), for each c in the set of compatibility witness constructors
{r, s, t, ba, bb, ti, abc, apc, lec, rpc}, where T B(c) is the type of term that replaces the trail constructor c.
These types are defined as follows:

T B(r)
def
= B

T B(s)
def
= B ⊃ B

T B(t)
def
= B ⊃ B ⊃ B

T B(ba) = T B(bb)
def
= B

T B(ti)
def
= B

T B(abc)
def
= B ⊃ B

T B(apc)
def
= B ⊃ B ⊃ B

T B(lec)
def
= B ⊃ B ⊃ B

T B(rpc)
def
= B ⊃ . . . ⊃ B

︸ ︷︷ ︸

10 copies

⊃ B

Remark 1 It should be noted that the proof code s in a derivable judgement ∆;Γ ;Σ ⊢ A | s does not
encode a derivation of this judgement due to the presence of Eq. The term assignment for JL• is the
topic of Sec. 5.6.

80 5 Justification Logic and Audited Computation

5.4.2 Basic Metatheoretic Results

Some basic meta-theoretic results about JL• are presented next. The judgements in the statement of
these results are decorated with terms (such as M , N and Ma

N,t below) which may safely be ignored for
the time being (they are introduced in Sec. 5.6 when we discuss the term assignment for JL•). The first
states that hypothesis may be added without affecting derivability.

Lemma 5.4.1 (Weakening) 1. If ∆;Γ ;Σ ⊢ M : A | s is derivable, then so is ∆′;Γ ′;Σ′ ⊢ M : A | s,
where ∆ ⊆ ∆′, Γ ⊆ Γ ′ and Σ ⊆ Σ′.

2. If ∆;Γ ;Σ ⊢ Eq(A, s, t) | e is derivable, then so is ∆′;Γ ′;Σ′ ⊢ Eq(A, s, t) | e, where ∆ ⊆ ∆′, Γ ⊆ Γ ′

and Σ ⊆ Σ′.

The second and third results address two substitution principles. The first principle is about substi-
tution of truth variables. We abbreviate Γ1, Γ2 with Γ1,2. If Γ = Γ1, a : A,Γ3, we write Γ a

Γ2
for Γ1,2,3.

Also, we write sat for the substitution of all free occurrences of a in s by t and define it as follows (and
similarly for eas), where in the third clause we assume that b has been renamed away from s:

aa
s

def
= s

bas
def
= b

(λbA.t)
a

s

def
= λbA.tas

(t1 · t2)
a
s

def
= t1

a
s · t2

a
s

〈u;σ〉as
def
= 〈u;σ〉

(Σ.t)as
def
= Σ.t

let(uA[Σ].t2, t1)
a

s

def
= let(uA[Σ].t2

a
s , t1

a
s)

(αθ)as
def
= αθ

r(t)as
def
= r(tas)

s(e)as
def
= s(eas)

t(e1, e2)
a
s

def
= t(e1

a
s , e2

a
s)

ba(bA.r, t)
a

s

def
= ba(bA.ras , t

a
s)

bb(uA[Σ].r, Σ.t)
a

s

def
= bb(uA[Σ].ras , Σ.t)

ti(θ, α)as
def
= ti(θ, α)

abC(bA.e)
a

s

def
= abC(bA.eas)

apC(e1, e2)
a
s

def
= apC(e1

a
s , e2

a
s)

leC(uA[Σ].e1, e2)
a

s

def
= leC(uA[Σ].e1

a
s , e2

a
s)

rpC(e)as
def
= rpC(eas)

Lemma 5.4.2 (Subst. Principle for Truth Hypothesis) Suppose ∆;Γ2;Σ2 ⊢ N : A | t is derivable
and a : A ∈ Γ1.

1. If ∆;Γ1;Σ1 ⊢M : B | s, then ∆;Γ1
a
Γ2
;Σ1,2 ⊢Ma

N,t : B | s
a
t .

2. If ∆;Γ1;Σ1 ⊢ Eq(B, s1, s2) | e, then ∆;Γ1
a
Γ2
;Σ1,2 ⊢ Eq(B, (s1)

a
t , (s2)

a
t) | e

a
t .

The second substitution principle is about substitution of validity variables. Substitution of validity
variables in proof codes is denoted suΣ.t. It is defined as follows, where Cu

s stands for the proposition
resulting from replacing all occurrences of u in C with s; in the second clause the domain of σ is Σ; and
all trail variables in Σ are rewired by means of the rewiring σ:

au
Σ.s

def
= a

〈u;σ〉uΣ.s

def
= sσ

〈v;σ〉uΣ.s

def
= 〈v;σ〉

(λbA.t)
u

Σ.s

def
= λbA.tuΣ.s

(t1 · t2)
u
Σ.s

def
= t1

u
Σ.s · t2

u
Σ.s

(Σ′.t)
u
Σ.s

def
= Σ′.tuΣ.s

let(vA[Σ′].t2, t1)
u

Σ.s

def
= let(vA[Σ′].t2

u
Σ.s, t1

u
Σ.s)

(αθ)uΣ.s

def
= α(θ)uΣ.s

Lemma 5.4.3 (Subst. Principle for Validity Hypothesis) Suppose judgements ∆1,2; ·;Σ1 ⊢ M :

A | s and ∆1,2; ·;Σ1 ⊢ Eq(A, s, t) | e1 are derivable. Let ∆
def
= ∆1, u : A[Σ1], ∆2. Then:

1. If ∆;Γ ;Σ2 ⊢ N : C | r, then ∆1,2;Γ ;Σ2 ⊢ Nu
Σ1.(M,t,e1)

: Cu
Σ1.t
| ruΣ1.t

.

5.5 Normalisation 81

2. If ∆;Γ ;Σ2 ⊢ Eq(C, s1, s2) | e2, then ∆1,2;Γ ;Σ2 ⊢ Eq(Cu
Σ1.t

, s1
u
Σ1.t

, s2
u
Σ1.t

) | e2
u
Σ1.t

.

Remark 2 In this substitution principle, substitution of u : A[Σ1] requires not only a derivation of
∆1,2; ·;Σ1 ⊢ M : A | s, but also its computation history ∆1,2; ·;Σ1 ⊢ Eq(A, s, t) | e1 (cf. substitution of
validity variables, in particular the clause for 〈u;σ〉, in Sec. 5.6)

The last ingredient we require before discussing normalisation is the following lemma which is used
for computing the results of trail inspection. If ϑ is a mapping from trail constructors to terms, then
eϑ produces a term by replacing each trail constructor in e by its associated term via ϑ. For example,

ba(aA.r, t)ϑ
def
= ϑ(ba) and t(e1, e2)ϑ

def
= ϑ(t) e1ϑ e2ϑ. In contrast, eθ produces a proof code by replacing

each trail constructor in e with its associated proof code via θ.

Lemma 5.4.4 ∆; ·; · ⊢ ϑ : T B | θ and ∆; ·;Σ ⊢ Eq(A, s, t) | e implies ∆; ·; · ⊢ eϑ : B | eθ.

5.5 Normalisation

Normalisation equates derivations and since JL• internalises its own derivations by means of proof codes,
normalisation steps must explicitly relate proof codes in order for SR to hold. Normalisation is modeled
as a two step process. First a principle contraction is applied, then a series of permutation conversions
follow. Principle contractions introduce witnesses of derivation compatibility. Permutation conversions
standardise derivations by moving these witnesses to the innermost ✷ introduction scheme. They per-
mute instances of Eq past any of the inference schemes in {⊃ I,⊃ E,✷E,Eq,TI}. Eq just above the left
hypothesis of an instance of ✷I is composed with the trail of the corresponding unit (cf. end of Sec. 5.5.2).
In this sense, instances of ✷I determine the scope of the audited unit.

5.5.1 Principle Contractions

There are three principal contractions (β, β✷ and TI-contraction), the first two of which rely on the
substitution principles discussed earlier. The first replaces a derivation of the form:

π1

∆;Γ1, a : A;Σ1 ⊢ B | s
⊃ I

∆;Γ1;Σ1 ⊢ A ⊃ B | λaA.s

π2

∆;Γ2;Σ2 ⊢ A | t
⊃ E

∆;Γ1,2;Σ1,2 ⊢ B | (λaA.s) · t

by the following, where π3 is a derivation of ∆;Γ1,2;Σ1,2 ⊢ B | sat resulting from π1 and π2 and the
Substitution Principle for Truth Hypothesis:

π3

π1

∆;Γ1, a : A;Σ1 ⊢ B | s

π2

∆;Γ2;Σ2 ⊢ A | t

∆;Γ1,2;Σ1,2 ⊢ Eq(B, sat , (λa
A.s) · t) | ba(aA.s, t)

Eq
∆;Γ1,2;Σ1,2 ⊢ B | (λaA.s) · t

The second contraction replaces:

∆; ·;Σ ⊢ A | s
∆; ·;Σ ⊢ Eq(A, s, t) | e1

✷I
∆;Γ1;Σ1 ⊢ JΣ.tKA | Σ.t ∆, u : A[Σ];Γ2;Σ2 ⊢ C | r

✷E
∆;Γ1,2;Σ1,2 ⊢ Cu

Σ.t | let(u
A[Σ].r, Σ.t)

with the following derivation where π is a derivation of ∆;Γ1,2;Σ1,2 ⊢ Cu
Σ.t | t

u
Σ.t resulting from the Sub-

stitution Principle for Validity Hypothesis followed by weakening (of Γ1 and Σ1) and e2 is bb(u
A[Σ].r, Σ.t):

82 5 Justification Logic and Audited Computation

π

∆; ·;Σ ⊢ A | s
∆; ·;Σ ⊢ Eq(A, s, t) | e1

∆,u : A[Σ];Γ2;Σ2 ⊢ C | r
Eqβ✷

∆;Γ1,2;Σ1,2 ⊢ Eq(Cu
Σ.t, r

u
Σ.t, let(u

A[Σ].r, Σ.t)) | e2
Eq

∆;Γ1,2;Σ1,2 ⊢ Cu
Σ.t | let(u

A[Σ].r, Σ.t)

TI-contraction models audit trail inspection. Consider the following derivation, where Σ1 ⊆ Σ2,
∆′ ⊆ ∆ and the branch from the depicted instance of TI in π1 to its conclusion has no instances of ✷I:

α : Eq(A) ∈ Σ1

∆; ·; · ⊢ T B | θ
TI

∆;Γ ;Σ1 ⊢ B | αθ
·
·
·
·
π1

∆′; ·;Σ2 ⊢ A | s

π2

∆′; ·;Σ2 ⊢ Eq(A, s, t) | e
✷I

∆′;Γ ′;Σ′ ⊢ JΣ2.tKA | Σ2.t

The instance of TI in π1 is replaced by the following derivation where π′
2 is obtained from π2 by

resorting to Lem. 5.4.4 and weakening (Lem. 5.4.1). Also, ∆; ·;Σ2 ⊢ Eq(A, s, t) | e is obtained from
∆′; ·;Σ2 ⊢ Eq(A, s, t) | e by weakening (Lem. 5.4.1).

π′
2

∆;Γ ;Σ1 ⊢ B | eθ

∆; ·;Σ2 ⊢ Eq(A, s, t) | e
∆; ·; · ⊢ T B | θ

EqTI
∆;Γ ;Σ1 ⊢ Eq(B, eθ, αθ) | ti(θ, α)

Eq
∆;Γ ;Σ1 ⊢ B | αθ

5.5.2 Permutation Conversions

As for the permutation conversions, they indicate how Eq is permuted past any of the inference schemes
in {⊃ I,⊃ E,✷E,Eq,TI}. In the first case, Eq permutes past ⊃ I by replacing:

π1

∆;Γ, a : A;Σ ⊢ B | s

π2

∆;Γ, a : A;Σ ⊢ Eq(B, s, t) | e
Eq

∆;Γ, a : A;Σ ⊢ B | t
⊃ I

∆;Γ ;Σ ⊢ A ⊃ B | λaA.t

with the following derivation where π3 is a derivation of ∆;Γ ;Σ ⊢ A ⊃ B | λaA.s obtained from π1 and
⊃ I:

π3

∆;Γ, a : A;Σ ⊢ Eq(B, s, t) | e
EqAbs

∆;Γ ;Σ ⊢ Eq(A ⊃ B, λaA.s, λaA.t) | abC(aA.e)
Eq

∆;Γ ;Σ ⊢ A ⊃ B | λaA.t

There are two permutation conversions associated to the ⊃ E inference scheme depending on whether
the instance of Eq is the last scheme in the left or the right hypothesis. In the former the permutation
conversion consists in replacing,

∆;Γ1;Σ1 ⊢ A1 ⊃ A2 | s
∆;Γ1;Σ1 ⊢ Eq(A1 ⊃ A2, s, t) | e

Eq
∆;Γ1;Σ1 ⊢ A1 ⊃ A2 | t ∆;Γ2;Σ2 ⊢ A1 | r

⊃ E
∆;Γ1,2;Σ1,2 ⊢ A2 | t · r

with the derivation

5.5 Normalisation 83

∆;Γ1;Σ1 ⊢ A1 ⊃ A2 | s
∆;Γ2;Σ2 ⊢ A1 | r

⊃ E
∆;Γ1,2;Σ1,2 ⊢ A2 | s · r

π1

EqApp
∆;Γ1,2;Σ1,2 ⊢ Eq(A2, s · r, t · r) | apC(e, r(r))

Eq
∆;Γ1,2;Σ1,2 ⊢ A2 | t · r

where π1 is

∆;Γ1;Σ1 ⊢ Eq(A1 ⊃ A2, s, t) | e

∆;Γ2;Σ2 ⊢ A1 | r
EqRefl

∆;Γ2;Σ2 ⊢ Eq(A1, r, r) | r(r)
EqApp

∆;Γ1,2;Σ1,2 ⊢ Eq(A2, s · r, t · r) | apC(e, r(r))

In the latter the permutation conversion consists in replacing,

∆;Γ1;Σ1 ⊢ A1 ⊃ A2 | r

∆;Γ2;Σ2 ⊢ A1 | s
∆;Γ2;Σ2 ⊢ Eq(A1, s, t) | e

Eq
∆;Γ2;Σ2 ⊢ A1 | t

⊃ E
∆;Γ1,2;Σ1,2 ⊢ A2 | r · t

with the derivation,

∆;Γ1;Σ1 ⊢ A1 ⊃ A2 | r
∆;Γ2;Σ2 ⊢ A1 | s

⊃ E
∆;Γ1,2;Σ1,2 ⊢ A2 | r · s

π1

EqApp
∆;Γ1,2;Σ1,2 ⊢ Eq(A2, r · s, r · t) | apC(r(r), e)

Eq
∆;Γ1,2;Σ1,2 ⊢ A2 | r · t

where π1 is

∆;Γ1;Σ1 ⊢ A1 ⊃ A2 | r
EqRefl

∆;Γ1;Σ1 ⊢ Eq(A1 ⊃ A2, r, r) | r(r) ∆;Γ2;Σ2 ⊢ Eq(A1, s, t) | e
EqApp

∆;Γ1,2;Σ1,2 ⊢ Eq(A2, r · s, r · t) | apC(r(r), e)

For the same reasons that there are two permutation conversions associated to ⊃ E, there are also
two associated to ✷E. The first consists in replacing,

∆;Γ1;Σ1 ⊢ JΣ.s1KA | s2
∆;Γ1;Σ1 ⊢ Eq(JΣ.s1KA, s2, r) | e

Eq
∆;Γ1;Σ1 ⊢ JΣ.s1KA | r ∆, u : A[Σ];Γ2;Σ2 ⊢ C | t

✷E
∆;Γ1,2;Σ1,2 ⊢ Cu

Σ.s1 | let(uA[Σ].t, r)

with
π1

✷E
∆;Γ1,2;Σ1,2 ⊢ Cu

Σ.s1 | q

π2

EqLet
∆;Γ1,2;Σ1,2 ⊢ Eq(Cu

Σ.s1 , q, q
′) | e′

Eq
∆;Γ1,2;Σ1,2 ⊢ Cu

Σ.s1 | let(uA[Σ].t, r)

where q is the proof code let(uA[Σ].t, s2) and π1 is:

∆;Γ1;Σ1 ⊢ JΣ.s1KA | s2 ∆,u : A[Σ];Γ2;Σ2 ⊢ C | t
✷E

∆;Γ1,2;Σ1,2 ⊢ Cu
Σ.s1 | let(uA[Σ].t, s2)

and π2 is the following derivation where q′ is let(uA[Σ].t, r), e′
def
= leC(uA[Σ].r(t), e):

∆;Γ1;Σ1 ⊢ Eq(JΣ.s1KA, s2, r) | e

∆, u : A[Σ];Γ2;Σ2 ⊢ C | t
EqRefl

∆,u : A[Σ];Γ2;Σ2 ⊢ Eq(C, t, t) | r(t)
EqLet

∆;Γ1,2;Σ1,2 ⊢ Eq(Cu
Σ.s1 , q, q

′) | e′

84 5 Justification Logic and Audited Computation

The second permutation conversion associated to ✷E consists in replacing,

∆;Γ1;Σ1 ⊢ JΣ.rKA | s

∆, u : A[Σ];Γ2;Σ2 ⊢ C | t1
∆,u : A[Σ];Γ2;Σ2 ⊢ Eq(C, t1, t2) | e

Eq
∆,u : A[Σ];Γ2;Σ2 ⊢ C | t2

✷E
∆;Γ1,2;Σ1,2 ⊢ Cu

Σ.r | let(uA[Σ].t2, s)

with the derivation,

∆;Γ1;Σ1 ⊢ JΣ.rKA | s ∆, u : A[Σ];Γ2;Σ2 ⊢ C | t1
✷E

∆;Γ1,2;Σ1,2 ⊢ Cu
Σ.r | let(uA[Σ].t1, s) π1

Eq
∆;Γ1,2;Σ1,2 ⊢ Cu

Σ.r | let(uA[Σ].t2, s)

where, π1 is

π2 ∆,u : A[Σ];Γ2;Σ2 ⊢ Eq(C, t1, t2) | e
EqLet

∆;Γ1,2;Σ1,2 ⊢ Eq(Cu
Σ.r, q, q

′) | leC(r(s), uA[Σ].e)

where q
def
= let(uA[Σ].t1, s) and q′

def
= let(uA[Σ].t2, s) and π2 is:

∆;Γ1;Σ1 ⊢ JΣ.rKA | s
EqRefl

∆;Γ1;Σ1 ⊢ Eq(JΣ.rKA, s, s) | r(s)

Two permutation conversions remain, namely permutation with Eq itself and the case where proof
code passes from the left hypothesis in an introduction of the modality to the right hypothesis. These
two cases are given in Fig. 5.4. In the last one c is some trail constructor and

• θ′(c)
def
= r and θ′(d)

def
= θ(d), for all d ∈ C s.t. d 6= c; and

• ec
def
= e and ed

def
= r(θ(d)), for all d 6= c.

∆;Γ ;Σ ⊢ A | r
∆;Γ ;Σ ⊢ Eq(A, r, s) | e1

Eq
∆;Γ ;Σ ⊢ A | s ∆;Γ ;Σ ⊢ Eq(A, s, t) | e2

Eq
∆;Γ ;Σ ⊢ A | t

∆;Γ ;Σ ⊢ A | r

∆;Γ ;Σ ⊢ Eq(A, r, s) | e1
∆;Γ ;Σ ⊢ Eq(A, s, t) | e2

EqTrans
∆;Γ ;Σ ⊢ Eq(A, r, t) | t(e1, e2)

Eq
∆;Γ ;Σ ⊢ A | t

∆; ·; · ⊢ T B | θ
α : Eq(A) ∈ Σ

∆; ·; · ⊢ T B(c) | r
∆; ·; · ⊢ Eq(T B(c), r, θ(c)) | e

Eq
∆; ·; · ⊢ T B(c) | θ(c)

TI
∆;Γ ;Σ ⊢ B | αθ

∆; ·; · ⊢ T B | θ′

TI
∆;Γ ;Σ ⊢ B | αθ′

∆; ·; · ⊢ Eq(T B , θ′, θ) | ei
EqRpl

∆;Γ ;Σ ⊢ Eq(B,αθ′, αθ) | rpC(e)
Eq

∆;Γ ;Σ ⊢ B | αθ

Fig. 5.4. Permutation conversions for Eq and TI

Finally, we have the conversion that fuses Eq just above the left hypothesis in an instance of ✷I
with the trail of the corresponding unit is also coined, by abuse of language, permutation conversion. It
replaces:

∆; ·;Σ ⊢ A | r ∆; ·;Σ ⊢ Eq(A, r, s) | e1
Eq

∆; ·;Σ ⊢ A | s ∆; ·;Σ ⊢ Eq(A, s, t) | e2
✷I

∆;Γ ;Σ′ ⊢ JΣ.tKA | Σ.t

with:

5.6 Term Assignment 85

∆; ·;Σ ⊢ A | r

∆; ·;Σ ⊢ Eq(A, r, s) | e1 ∆; ·;Σ ⊢ Eq(A, s, t) | e2
EqTrans

∆; ·;Σ ⊢ Eq(A, r, t) | t(e1, e2)
✷I

∆;Γ ;Σ′ ⊢ JΣ.tKA | Σ.t

5.6 Term Assignment

Computation by normalisation is non-confluent, as one might expect (audit trail inspection affects com-
putation), hence a strategy is required. This section introduces the call-by-value λh-calculus. It is obtained
via a term assignment for JL•. Recall from Sec. 5.4 that ϑ in TTI is a mapping from trail constructors
to terms. The syntax of λh terms is:

M ::= a term variable
| λaA.M abstraction
| M M application
| 〈u;σ〉 audited unit variables
| !Σe M audited unit
| letuA[Σ] � M inM audited unit composition
| αϑ trail inspection
| e✄M derived term

We occasionally drop the type decoration in audited unit composition for readability. Since terms may
be decorated with trails, substitution (both for truth and validity hypothesis) replaces free occurrences of
variables with both terms and evidence. We write Ma

N,t for substitution of truth variables and Mu
Σ.(N,t,e)

for substitution of validity variables (similar notions apply to substitution in propositions, proof code and
trails). Note that “Σ.” in Σ.(N, t, e) binds all free occurrences of trail variables from Σ which occur in
N , t and e.

aa
N,s

def
= N

baN,s
def
= b

(λbA.M)
a

N,s

def
= λbA.Ma

N,s

(P Q)aN,s

def
= P a

N,s Q
a
N,s

〈u;σ〉aN,s

def
= 〈u;σ〉

(!Σe M)
a

N,s

def
= !Σe M

(letu � M1 inM2)
a
N,s

def
= letu � M1

a
N,s inM2

a
N,s

(αθ)aN,s

def
= αθ

(e✄M)aN,s

def
= eas ✄Ma

N,s

buΣ.(N,t,e)
def
= b

(λbA.M)
u

Σ.(N,t,e)

def
= λbA.Mu

Σ.(N,t,e)

(P Q)uΣ.(N,t,e)

def
= Pu

Σ.(N,t,e) Q
u
Σ.(N,t,e)

〈u;σ〉uΣ.(N,t,e)

def
= eσ ✄Nσ

〈v;σ〉uΣ.(N,t,e)

def
= 〈v;σ〉

(!Σ
′

e′ M)
u

Σ.(N,t,e)

def
= !Σ

′

e′u
Σ.t

Mu
Σ.(N,t,e)

(let v � P in
def
= let v � Pu

Σ.(N,t,e) in

Q)uΣ.(N,t,e) Qu
Σ.(N,t,e)

(αϑ)uΣ.(N,t,e)

def
= αϑu

Σ.(N,t,e)

(e′ ✄M)
u
Σ.(N,t,e)

def
= e′

u
Σ.t ✄Mu

Σ.(N,t,e)

These definitions rely on suΣ.t which traverses the structure of s replacing 〈u;σ〉uΣ.s with sσ and euΣ.t

which traverses the structure of e until it reaches one of r(r1), ba(a
A.r1, r2) or bb(vA[Σ′].r1, Σ

′.r2) in
which case it resorts to substitution over the ris. Of particular interest is the fourth defining clause of the
definition of Mu

Σ.(N,t,e). Note how it substitutes 〈u;σ〉 with eσ✄Nσ, thus (1) propagating the history of

N and (2) rewiring the trail variables of N so that they make sense in the new host unit.

5.6.1 Typing Schemes and Operational Semantics

The typing judgement ∆;Γ ;Σ ⊢M : A | s is defined by means of the typing schemes. These are obtained
by decorating the inference schemes of Fig. 5.2 with terms. A term M is said to be typable if there exists
∆,Γ,Σ,A, s s.t. ∆;Γ ;Σ ⊢M : A | s is derivable. The typing schemes are presented in Fig. 5.5. Note that
the scheme TEq incorporates the trail e into the term assignment.

86 5 Justification Logic and Audited Computation

a : A ∈ Γ
TVar

∆;Γ ;Σ ⊢ a : A | a

∆;Γ, a : A;Σ ⊢ M : B | s
TAbs

∆;Γ ;Σ ⊢ λaA.M : A ⊃ B | λaA.s

∆;Γ1;Σ1 ⊢ M : A ⊃ B | s
∆;Γ2;Σ2 ⊢ N : A | t

TApp
∆;Γ1,2;Σ1,2 ⊢ M N : B | s · t

u : A[Σ] ∈ ∆ Σσ ⊆ Σ′

TmVar
∆; ·;Σ′ ⊢ 〈u;σ〉 : A | 〈u;σ〉

∆; ·;Σ ⊢ M : A | s
∆; ·;Σ ⊢ Eq(A, s, t) | e

TBox
∆;Γ ;Σ′ ⊢!Σe M : JΣ.tKA | Σ.t

∆;Γ1;Σ1 ⊢ M : JΣ.rKA | s
∆, u : A[Σ];Γ2;Σ2 ⊢ N : C | t

TLet

∆;Γ1,2;Σ1,2 ⊢
letuA[Σ] � M inN : Cu

Σ.r

let(uA[Σ].t, s)
|

α : Eq(A) ∈ Σ
∆; ·; · ⊢ ϑ : T B | θ

TTI
∆;Γ ;Σ ⊢ αϑ : B | αθ

∆;Γ ;Σ ⊢ M : A | s
∆;Γ ;Σ ⊢ Eq(A, s, t) | e

TEq
∆;Γ ;Σ ⊢ e✄M : A | t

Fig. 5.5. Typing schemes for λh

The operational semantics of λh is specified by a binary relation of typed terms called reduction. We
say that a term M reduces to a term N if the reduction judgement ∆;Γ ;Σ ⊢M → N : A | s is derivable.
In most cases we simply write M → N for the sake of readability. In order to define reduction we first
introduce two intermediate notions, namely principle reduction (M 7→ N) and permutation reduction
(M N). The former corresponds to principle contraction and the latter to permutation conversions
of the normalisation procedure. The set of values are standard except for !Σe V (audited units with fully
evaluated bodies are also values):

Values V ::= a | 〈u;σ〉 |λaA.M | !Σe V
Value replacement ϑV ::= {c1/V1, . . . , c10/V10}

The expressions ci, i ∈ 1..10, abbreviate each of the trail constructors introduced in Sec. 5.4. In the sequel
of this section we write ϑ rather than ϑV . Evaluation contexts are represented with letters E , E ′, etc:

Eval . contexts E ::= ✷ | E M |V E | let(uA[Σ].M, E) | !Σe E
| α{c1/V1, . . . , cj/Vj , cj+1/E , . . .}

F ::= ✷ | F M |V F | let(uA[Σ].M,F)

Definition 5.6.1 (Principle Reduction) Principle reduction, 7→, is defined by the following reduction
scheme:

M ⇀ N

E [M] 7→ E [N]

where ⇀ is the union of the following binary relations:

∆;Γ1, a : A;Σ1 ⊢ M : B | s ∆;Γ2;Σ2 ⊢ V : A | t
βV

∆;Γ1,2;Σ1,2 ⊢ (λaA.M) V ⇀ ba(aA.s, t)✄Ma
V,t : B | (λaA.s) · t

∆; ·;Σ ⊢ V : A | r ∆; ·;Σ ⊢ Eq(A, r, s) | e1 ∆,u : A[Σ];Γ2;Σ2 ⊢ N : C | t
βV
✷

∆;Γ1,2;Σ1,2 ⊢ O ⇀ P : Cu
Σ.s | let(uA[Σ].t, Σ.s)

α : Eq(A) ∈ Σ ∆′; ·; · ⊢ ϑ : T B | θ ∆ ⊆ ∆′ ∆; ·;Σ ⊢ F [αϑ] : A | r ∆; ·;Σ ⊢ Eq(A, r, s) | e
IV

∆;Γ ;Σ′ ⊢!Σe F [αϑ] ⇀ !Σe F [ti(θ, α)✄ eϑ] : JΣ.sKA | Σ.s

5.6 Term Assignment 87

(e✄M) N apC(e, r(t))✄ (M N)
M (e✄N) apC(r(t), e)✄ (M N)

λaA.(e✄M) abC(a.e)✄ (λaA.M)
letu � (e✄M) inN leC(u.e, r(t))✄ (letu � M inN)
letu � M in (e✄N) leC(u.r(s), e)✄ (letu � M inN)

!Σe2(e1 ✄M) !Σt(e1,e2)M

e1 ✄ (e2 ✄M) t(e1, e2)✄M

t(apC(e1, e2), apC(e3, e4)) apC(t(e1, e3), t(e2, e4))
t(abC(a.e1), abC(a.e2)) abC(a.t(e1, e2))

t(leC(u.e1, e2), leC(u.e3, e4)) leC(u.t(e1, e3), t(e2, e4))
t(r(s), e) e
t(e, r(t)) e

t(t(e1, e2), e3) t(e1, t(e2, e3))
t(apC(e1, e2), t(apC(e3, e4), e5)) t(apC(t(e1, e3), t(e2, e4)), e5)

t(abC(a.e1), t(abC(a.e2), e3)) t(abC(a.t(e1, e2)), e3)
t(leC(u.e1, e2), t(leC(u.e3, e4), e5)) t(leC(u.t(e1, e3), t(e2, e4)), e5)

Fig. 5.6. Permutation reduction schemes

where, in βV
✷
, O

def
= letuA[Σ] �!Σe V inN and P

def
= bb(uA[Σ].t, Σ.s)✄Nu

Σ.(V,s,e).

Note that reduction under the audited unit constructor is allowed. Contexts F are required for defining
I(nspection), the principle reduction axiom for trail inspection. It differs from E by not allowing holes
under the audited unit constructor. Each principle reduction scheme produces a trail of its execution. In
accordance with our discussion in the introduction, βV

✷
replaces all occurrences of 〈u;σ〉 with eσ ✄ V σ,

correctly: (1) preserving trails and (2) rewiring trail variables so that they now refer to their host audited
computation unit.

Regarding permutation reduction, the original schemes obtained from the normalisation procedure
are the contextual closure of the first group of rules depicted in Fig. 5.6, where type decorations in
compatibility codes have been omitted for the sake of readability. These schemes are easily proven to
be terminating. However, they are not confluent. As an example, consider the term (e1 ✄M) (e2 ✄ N).
Application of the first rule yields apC(e1, r(t2)) ✄ (M (e2 ✄ N)) where t2 is the proof code of the type
derivation of e2✄N in (e1✄M) (e2✄N). Likewise, application of the second yields apC(r(t1), e2)✄ ((e1✄
M)N) where t1 is the proof code of the type derivation of e1 ✄M in (e1 ✄M) (e2 ✄N). The reader may
verify that these terms are not joinable. As a consequence we complete these schemes with those in the
second group depicted in Fig. 5.6.

Definition 5.6.2 (Permutation reduction) Permutation reduction, , is defined by the contextual
closure of the reduction axioms of Fig. 5.6

Proposition 5.6.1 is terminating and confluent.

Termination may be proved automatically by using AProVE [59]. Confluence follows by checking local
confluence and resorting to Newman’s Lemma.

Remark 3 The fact that these reduction schemes are defined over typed terms is crucial for confluence.
Indeed, the system is not confluent over the set of untyped terms. For example, t(r(s), r(t)) reduces to
both r(s) and r(t). However, in a typed setting t(r(s), r(t)) typable implies s = t.

88 5 Justification Logic and Audited Computation

Definition 5.6.3 (Reduction) Let stand for permutation reduction to (the unique) normal form.
Reduction (→) is defined over terms in permutation-reduction normal form as 7→ ◦, where ◦ denotes
relation composition.

We summarise the relations introduced in this section:

7→ principle reduction
 permutation reduction
 permutation reduction to normal form
→ reduction

5.6.2 Safety

We now address safety of reduction w.r.t. the type system. This involves proving SR and Progress. SR
follows from the fact that the reduction schemes originate from proof normalisation. The exception are
the second group of schemes of Fig. 5.6 for which type preservation may also be proved separately.

Proposition 5.6.2 (Subject Reduction) ∆;Γ ;Σ ⊢ M : A | s and M → N implies ∆;Γ ;Σ ⊢ N : A |
s.

Before addressing Progress we introduce some auxiliary notions. A term is inspection-blocked if it is
of the form F [αθ]. A term M is tv-closed if fvT(M) = fvV(M) = ∅. It is closed if it is tv-closed and
fvTrl(M) = ∅.

Lemma 5.6.3 (Canonical forms) Assume ·; ·;Σ ⊢ V : A | s. Then,

1. If A = A1 ⊃ A2, then V = λaA1 .M for some a,M .
2. If A = JΣ′.tKA1, then V =!Σ

′

e V ′ for some e, V ′.

Proposition 5.6.4 Suppose M is in permutation reduction-normal form, is typable and tv-closed. Then
(1) M is a value or; (2) there exists N s.t. M 7→ N or; (3) M is inspection-blocked.

Since a closed term cannot be inspection-blocked:

Corollary 1 Progress Suppose M is in permutation reduction normal form, is typable and closed. Then
either M is a value or there exists N s.t. M → N .

5.7 Strong Normalisation

We address SN for reduction. In fact, we shall prove SN for a restriction of reduction. The restriction
consists in requiring that M in the principle reduction axiom βV

✷
not have occurrences of the audited

computation unit constructor “!”6. In order to develop our proof, we introduce the notion of full reduction
which lifts the value restriction in βV and βV

✷
; and allows more general evaluation contexts for all three

axioms.

Definition 5.7.1 (Full Principle Reduction) Full principle reduction,
f
7→, is defined by the following

reduction scheme:

M
f
⇀ N

D[M]
f
7→ D[N]

6 We currently have no proof for unrestricted reduction, however we believe the result should hold.

5.7 Strong Normalisation 89

D ::= ✷ |λaA.D |D M |M D

| letuA[Σ] � D inM

| letuA[Σ] � M inD | !Σe D | e✄D
| α{c1/M1, . . . , cj/Mj , cj+1/D, . . .}

C ::= ✷ |λaA.C | C M |M C

| letuA[Σ] � C inM

| letuA[Σ] � M in C
| e✄ C

Fig. 5.7. Full principle reduction

where
f
⇀ is the union of the following binary relations:

∆;Γ1, a : A;Σ1 ⊢ M : B | s ∆;Γ2;Σ2 ⊢ N : A | t
β

∆;Γ1,2;Σ1,2 ⊢ (λaA.M) N
f
⇀ ba(aA.s, t)✄Ma

N,t : B | (λaA.s) · t

∆; ·;Σ ⊢ M : A | r M is ! free ∆; ·;Σ ⊢ Eq(A, r, s) | e1 ∆,u : A[Σ];Γ2;Σ2 ⊢ N : C | t
β✷

∆;Γ1,2;Σ1,2 ⊢ O
f
⇀ P : Cu

Σ.s | let(uA[Σ].t, Σ.s)

α : Eq(A) ∈ Σ ∆′; ·; · ⊢ ϑ : T B | θ ∆ ⊆ ∆′ ∆; ·;Σ ⊢ C[αϑ] : A | r ∆; ·;Σ ⊢ Eq(A, r, s) | e
I

∆;Γ ;Σ′ ⊢!Σe C[αϑ]
f
⇀ !Σe C[ti(θ, α)✄ eϑ] : JΣ.sKA | Σ.s

where, in β✷, O
def
= letuA[Σ] �!Σe M inN and P

def
= bb(uA[Σ].t, Σ.s)✄Nu

Σ.(M,s,e).

Definition 5.7.2 (Full reduction) Full reduction,
f
→, is defined as the union of full principle reduction

(
f
7→) and permutation reduction ().

In the sequel, we write
rf
7→ for the abovementioned restricted notion of reduction. The proof is by

contradiction and is developed in two steps. The first shows that an infinite
f
7→ ∪ reduction sequence

must include an infinite number of
f
7→I steps. The second, that

f
7→I is SN.

5.7.1 Step 1

We first note that
f
7→β,β✷

is SN. This can be proved by defining a translation S(•) on λh types that
“forget” the modal connective and a similar translation from terms in λh to terms of the simply typed
lambda calculus (with constants) such that: (1) it preserves typability; and (2) it maps full reduction to
reduction in the simply typed lambda calculus. Since we already know that is SN and that reduction
in the simply typed lambda calculus is SN, our result shall follow. For a proposition A, S(A) produces
a type of the simply typed lambda calculus by “forgetting” the modal type constructor; for contexts it
behaves homomorphically producing multisets of labeled hypothesis:

S(P)
def
= P

S(A ⊃ B)
def
= S(A) ⊃ S(B)

S(JΣ.sKA)
def
= S(A)

S(·)
def
= ·

S(Γ, a : A)
def
= S(Γ), a : S(A)

S(∆,u : A[Σ])
def
= S(∆), u : S(A)

The decoration of a typed term is the expression obtained from replacing every occurrence of the trail
lookup expression αϑ by αBϑ, where B is the result type of the lookup. We assume we have a constant
cB for each type B. For a term M , S(M) produces a term of the simply typed lambda calculus:

90 5 Justification Logic and Audited Computation

S(a)
def
= a

S(λaA.M)
def
= λaS(A).S(M)

S(M N)
def
= S(M)S(N)

S(〈u;σ〉)
def
= u

S(!Σe M)
def
= S(M)

S(letuA[Σ] � M inN)
def
= (λuS(A).S(N))S(M)

S(αBϑ)
def
= (λa : S(T B).cB)S(ϑ)

S(e✄M)
def
= S(M)

where S(T B) abbreviates the product type 〈S(T B(c1)), . . . ,S(T
B(c10))〉 and S(ϑ) abbreviates the

product term 〈S(ϑ(c1)), . . . ,S(ϑ(c10))〉.

Lemma 5.7.1 If ∆;Γ ;Σ ⊢M : A | s, then S(∆),S(Γ) ⊢ S(M) : S(A).

The following result is verified by noticing that S(•) erases both evidence and the modal term con-
structor in terms.

Lemma 5.7.2 If M N , then S(M) = S(N).

The translation function S(•) permutes with both truth and validity substitution. Note that S(M)
a
S(N)

and S(M)
u
S(N) below, is substitution in the simply typed lambda calculus. The proofs of these items is

by induction on the structure of M ; the third item resorts to the first one.

Lemma 5.7.3 1. S(Mσ) = S(M).
2. S(Ma

N,t) = S(M)
a
S(N).

3. S(Mu
Σ.(N,t,e)) = S(M)

u
S(N).

Lemma 5.7.4 If M
f
7→β,β✷

N , then S(M)
λ⊃,×

→ S(N).

The following result is a consequence of Lem. 5.7.2 and Lem. 5.7.4.

Corollary 2 If M
β,β✷

→ N , then S(M)
λ⊃,×

→ S(N).

We may thus conclude with the following result.

Proposition 5.7.5
f
7→β,β✷

∪ is SN.

Therefore, an infinite
f
7→ ∪ reduction sequence must include an infinite number of

f
7→I steps.

5.7.2 Step 2

Next we show that for
rf
7→ this is not possible. More precisely, we show that in an infinite

rf
7→ ∪ reduction

sequence, there can only be a finite number of
f
7→I steps. This entails:

Proposition 5.7.6
rf
7→ ∪ is SN. Hence λh, with the same restriction, is SN.

5.8 Discussion 91

We now address the proof of the main lemma on which Prop. 5.7.6 relies (Lem. 5.7.10). We introduce

weight functions which strictly decrease by each application of a
f
7→I-step and which decreases with each

application of a
rf
7→β,β✷

-step or -step. A word on notation: 〈〈 〉〉 is the empty multiset; ⊎ is multiset union;
and n⊎M is the union of the multiset 〈〈n〉〉 andM, for n ∈ N. We use the standard multiset extension ≺
of the well-founded ordering < on natural numbers which is also well-founded. For each n ∈ N we define
Wn(M) as the multiset given by the following inductive definition on M :

Wn(a)
def
= 〈〈 〉〉

Wn(λa
A.M)

def
= Wn(M)

Wn(M N)
def
= Wn(M) ⊎Wn(N)

Wn(〈u;σ〉)
def
= 〈〈 〉〉

Wn(!
Σ
e M)

def
= n ∗Wt(M)⊎

⊎Wn∗Wt(M)(M)

Wn(letu � M inN)
def
= Wn(M) ⊎Wn(N)

Wn(αϑ)
def
=

⊎

i∈1..10 Wn(ϑ(ci))

Wn(e✄M)
def
= Wn(M)

where Wt(M) is the number of free trail variables in M plus 1. Note that Wt(e ✄M)
def
= Wt(M). The

weight functions informally count the number of trail variables that are available for look-up in audited
computation units. The principle reduction axiom β either erases the argument N or substitutes exactly
one copy, given the affine nature of truth hypothesis. However, multiple copies of M can arise from β✷

reduction (cf. Fig. 5.7), possibly under “!” constructors (hence our restriction in item 2 below). Finally,
we must take into account that although a trail variable is consumed by I it also copies the terms in ϑ
(which may contain occurrences of the “!” constructor). In contrast to β✷ however, the consumed trail
variable can be used to make the copies of “!” made by eϑ weigh less than the outermost occurrence of
“!” on the left-hand side of I.

Lemma 5.7.7 1. Wn((λa : A.M)N) � Wn(M
a
N,t).

2. If M has no occurrences of the modal term constructor, then Wn(letu : A[Σ] =!Σe M in N) ≻
Wn(bb(u

A[Σ].t, Σ.s)✄Nu
Σ.(M,s,e)).

3. Wn(!
Σ
e C[αϑ]) ≻ Wn(!

Σ
e C[ti(θ, α)✄ eϑ]).

Lemma 5.7.8 Suppose M has no occurrences of the modal term constructor. Then Wn(letu : A[Σ] =
!Σe M in N) ≻ Wn(bb(u

A[Σ].t, Σ.s)✄Nu
Σ.(M,s,e)).

Lemma 5.7.9 Wn(!
Σ
e C[αϑ]) ≻ Wn(!

Σ
e C[ti(θ, α)✄ eϑ]).

From these results follow:

Lemma 5.7.10 (1) M
rf
7→β,β✷

N implies Wn(M) � Wn(N); (2) M
f
7→I N implies Wn(M) ≻ Wn(N);

and (3) M N implies Wn(M) =Wn(N).

5.8 Discussion

We have presented a proof theoretical analysis of a functional computation model that keeps track of
its computation history. A Curry-de Bruijn-Howard isomorphism of an affine fragment of Artemov’s
Justification Logic yields a lambda calculus λh which models audited units of computation. Reduction
in these units generates audit trails that are confined within them. Moreover, these units may look-up
these trails and make decisions based on them. We prove type safety for λh and strong normalisation
for a restriction of it. It would be nice to lift the restriction in the proof of strong normalisation that M
in the principle reduction axiom β✷ not have occurrences of the audited computation unit constructor
“!”. Also, it would make sense to study audited computation in a classical setting where, based on audit
trail look-up, the current continuation could be disposed of in favour of a more judicious computation.
Finally, although examples from the security domain seem promising more are needed in order to better
evaluate the applicability of these ideas.

92 5 Justification Logic and Audited Computation

5.8.1 Related Work

We develop a proof theoretical analysis of a λ-calculus which produces a trail of its execution. This builds
on ideas stemming from JL, a judgemental analysis of modal logic [76, 50, 52, 51] and Contextual Modal
Type Theory [88]. More precisely, we argue how a fragment of JL whose notion of validity is relative
to a context of affine variables of proof compatibility may be seen, via the Curry-de Bruijn-Howard
interpretation, as a type system for a calculus that records its computation history.

S. Artemov introduced JL in [9, 10, 11]. For natural deduction and sequent calculus presentations
consult [10, 42, 12]. Computational interpretation of proofs in JL are studied in [8, 12, 39], however
none of these address audit trails. From a type theoretic perspective we should mention the theory of
dependent types [20] where types may depend on terms, in much the same way that a type JsKA depends
on the proof code s. However, dependent type theory lacks a notion of internalisation of derivations as is
available in JL.

Finally, there is work on exploring what JL can contribute towards mobile code interpretations of
intuitionistic S4 [79, 115, 113, 114, 66]. The result is a calculus of certified mobile units in which a unit
consists of mobile code and a certificate [39]. The type system guarantees that when these mobile units
are composed to form new ones, the certificates that are constructed out of those of the composed units,
are correct.

Part III

Conclusions and Future Works

6

Conclusions and Future Work

6.1 Conclusions

We have addressed the issue of what is a secure bytecode program from the point of view of confidentiality
in information flow. We studied two main security policies: termination insensitive non-interference and
robust declassification properties.

First, we presented a type system for ensuring secure information flow in a JVM-like language that
allows instances of a class to have fields with security levels depending on the context in which they are
instantiated. This differs over extant approaches in which a global fixed security level is assigned to a field,
thus improving the precision of the analysis as described in the Section 3.1. Two further contributions
are that local variables are allowed to be reused with different security levels and also that we enhance
precision on how information flow through the stack is handled, as described in Section 3.1.

Although noninterference is an appealing formalisation for the absence of leaking of sensitive informa-
tion, its applicability in practice is somewhat limited given that many systems require intensional release
of secret information. This motivated our extension of a core JVM-like language with a mechanism for
performing downgrading of confidential information. We discussed how the downgrading mechanism may
be abused in our language and then extend our type system for ensuring it captures these situations. It
is proved that the type system enforces robustness of the declassification mechanism in the sense of [127]:
attackers may not affect what information is released or whether information is released at all. The re-
striction of the attackers ability to modify data is handled by enriching the confidentiality lattice with
integrity levels.

It should be mentioned that in the presence of flow-sensitive type systems we have showed that variable
reuse endows the attacker with further means to affect declassification than those available in high-level
languages in which variables are assigned a fixed type during their entire lifetime. Additional means of
enhancing the ability of an attacker to declassify information in stack-based languages (e.g. bytecode) is
by manipulating the stack, as exemplified in Section 4.1. Also, in unstructured low-level languages, we
are required to restrict the use of jumps (including uncaught exceptions).

In the second and last part of this thesis, we presented a proof theoretical analysis of a functional
computation model that keeps track of its computation history. A Curry-de Bruijn-Howard isomorphism
of an affine fragment of Artemov’s Justification Logic yields a lambda calculus λh which models audited
units of computation. Reduction in these units generates audit trails that are confined within them.
Moreover, these units may look-up these trails and make decisions based on them. We affirmed that the
computational interpretation of JL is a programming language that records its computation history. We
proved type safety for λh and strong normalisation for a restriction of it. Furthermore, we showed that
λh can be used for writing programs that enforce a variety of security policies based on audited trails.

96 6 Conclusions and Future Work

6.2 Future Work

In relation to type systems for information flow and declassification:

– We are developing an extension of our type system that supports threads. Support for threads
seems to be absent in the literature on IFA for bytecode languages (a recent exception being [27])
and would be welcome.

– One of the difficulties of tracking information flows is that information may flow in various indirect
ways. Over 30 years ago, Lampson [71] coined the phrase covert channel to describe channels which
were not intended for information transmission at all. At that time the concern was unintended
transmission of information between users on timeshared mainframe computers. In much security
research that followed, it was not considered worth the effort to consider covert channels. But
with the increased exposure of sensitive information to potential attackers, and the ubiquitous use
of cryptographic mechanisms, covert channels have emerged as a serious threat to the security
of modern systems – both networked and embedded [111]. A recent work proposes techniques to
deal with internal timming covert channel in multi-thread low-level languages [27, 95]. We are
interested in extending the type system (or develop others) to consider covert channels, such as,
certain timing leaks or resource consumption leaks.

– For increased confidence the results should be verified in the Coq Proof Assistant [46] (or similar).
Furthermore, this opens the possibility of applying automatic program extraction [49] to obtain a
verified OCaml implementation of the extended bytecode verifier for the JVM.

– Also, the inclusion of a primitive for endorsement (for upgrading the integrity of data) as studied
elsewhere [85, 67] in the setting of high-level languages would be interesting. Note that although
confidentiality and integrity are dual properties, the treatment of declassify and endorse should
not be symmetric for otherwise the attacker would be given total control over the data. We
anticipate no major difficulties in adapting qualified robustness [85] in our type system. Although,
qualified robustness is in some cases more permissive than desired [85] and we must probe that
the type system meets posibilistic non-interference.

– In order to validate experimentally the benefits of type system, it is important to perform case
studies of real code. Potential examples include case studies developed in Jif [81], such as mental
poker or battleship (in this case must be considered endorsement operation), as well as, case studies
stemming from the Trusted Personal Device industry.

– To sum up, although less significant, these are worthy contributions towards minimizing the as-
sumptions on the code that is to be analyzed hence furthering its span of applicability. In order
to achieve an acceptable degree of usability, the information flow type system of relies on prelimi-
nary static analyses that provide a more accurate approximation of the control flow graph of the
program. Typically, the preliminary analyses will perform safety analyses such as class analysis,
null pointer analysis, exception analysis and escape analysis. For example, null pointer analysis
could use to indicate whether the execution of a putfield instruction will be normal or there will
be an exception. This analysis drastically improve the quality of the approximation of the control
dependence regions.

Regarding JL•and λh:

– It would be nice to lift the restriction in the proof of strong normalisation that M in the principle
reduction axiom β✷ not have occurrences of the audited computation unit constructor “!”.

– Also, it would make sense to study audited computation in a classical setting where, based on
audit trail look-up, the current continuation could be disposed of in favour of a more judicious
computation.

– Finally, although examples from the security domain seem promising more are needed in order to
better evaluate the applicability of these ideas.

Part IV

Appendix

A

Noninterference Soundness Proofs

This appendix presents detailed proofs of all results of Chapter 3.

A.1 Preliminaries

The first five results address preservation of indistinguishability by subtyping. The proofs are either by
direct inspection of the corresponding notion of indistinguishability (as, for example, in Lemma A.1) or
by induction on the derivation of the indistinguishability judgement. Lemma A.7 is straightforward given
that S′ ≤l S

′′, l 6⊑ λ implies S′ = S′′.

Lemma A.1. β, l ⊢ v1 ∼
λ v2 and β ⊆ β′ and l′ ⊑ λ implies β′, l′ ⊢ v1 ∼

λ v2.

Lemma A.2. If β, V , l ⊢ α1 ∼
λ α2, β ⊆ β′, l ⊑ λ and V ≤ V ′, then β′, V ′, l ⊢ α1 ∼

λ α2.

Lemma A.3. If β, (V, V ′), l ⊢ α1 ∼
λ α2, l 6⊑ λ and V ′ ≤ V ′′ then β, (V, V ′′), l ⊢ α1 ∼

λ α2.

Lemma A.4. If β, (V ′, V), l ⊢ α1 ∼
λ α2, l 6⊑ λ and V ′ ≤ V ′′ then β, (V ′′, V), l ⊢ α1 ∼

λ α2.

Proof. Immediate consequence of lemma A.1.

Lemma A.5. If β, V , l ⊢ α1 ∼
λ α2, l ⊑ λ and l′ ⊑ λ then β, V , l′ ⊢ α1 ∼

λ α2.

Proof. We have, by hypothesis, that for all x ∈ X : β, ⌊V (x)⌋ ⊢ α1(x) ∼
λ α2(x) holds. Let l

′ ⊑ λ then
follows β, V , l′ ⊢ α1 ∼

λ α2 by local variable assignment indistinguishability definition.

Lemma A.6. If β, S, l ⊢ σ1 ∼
λ σ2, β ⊆ β′, l ⊑ λ and S ≤l S

′ then β′, S′, l ⊢ σ1 ∼
λ σ2.

Lemma A.7. If β, (S, S′), l ⊢ σ1 ∼
λ σ2, l 6⊑ λ and S′ ≤l S

′′, then β, (S, S′′), l ⊢ σ1 ∼
λ σ2.

Lemma A.8. If β, (S′, S), l ⊢ σ1 ∼
λ σ2, l 6⊑ λ and S′ ≤l S

′′, then β, (S′′, S), l ⊢ σ1 ∼
λ σ2.

Lemma A.9. If β, S, l ⊢ σ1 ∼
λ σ2, l ⊑ λ and l′ ⊑ λ then β, S, l′ ⊢ σ1 ∼

λ σ2.

Proof. We proceed by induction on the the derivation of β, S, l ⊢ σ1 ∼
λ σ2. The base case is

straightforward given that β, ǫ, l′ ⊢ ǫ ∼λ ǫ follows from l′ ⊑ λ and L-Nil. For the inductive case, we
assume that β, l′′ · S, l ⊢ v1 · σ

′
1 ∼

λ v2 · σ
′
2 is derivable and that the derivation ends in an application of

Cons-L. We must prove that β, l′′ · S, l′ ⊢ v1 · σ
′
1 ∼

λ v2 · σ
′
2. By Cons-L we know that β, l′′ ⊢ v1 ∼

λ v2
(1) and β, S, l ⊢ σ1 ∼

λ σ2. Now, by the I.H. we have that β, S, l′ ⊢ σ1 ∼
λ σ2 (2). Then by (1), (2) and

Cons-L β, l′′ · S, l′ ⊢ v1 · σ1 ∼
λ v2 · σ2 holds.

Lemma A.10. β, (T, T) ⊢ η1 ∼
λ η2 and T ≤ T ′ and T ≤ T ′′ and β ⊆ β′ such that

100 A Noninterference Soundness Proofs

1. β′
loc = βloc,

2. Ran(β′✁) ⊆ Dom(η1) and Ran(β′✄) ⊆ Dom(η2),
3. Dom(β′✁) ⊆ Dom(T ′) and Dom(β′✄) ⊆ Dom(T ′′)

Then β′, (T ′, T ′′) ⊢ η1 ∼
λ η2

Proof. β′ is well-defined w.r.t. η1, η2, T
′ and T ′′ follow directly from the β′ definition. For the second

item we proceed as follows. Let o ∈ Dom(β′
loc) and let f ∈ Dom(η1(o)). We must prove:

β′, ⌊T ′(β′✁−1(o), f)⌋ ⊢ η1(o, f) ∼
λ η2(β

′(o), f).

This result follow by hypothesis T ≤ T ′ and T ≤ T ′′, i.e. ∀a ∈ Dom(T).∀f ∈ F.⌊T (a, f)⌋ = ⌊T ′(a, f)⌋ =
⌊T ′′(a, f)⌋.

We recall from Definition 3.27 that β id is a location bijection bijection set such that β id

loc is the identity
over the domain of βloc.

Lemma A.11. If β id, (T, T) ⊢ η1 ∼
λ η2 and T ≤ T ′, then β id, (T, T ′) ⊢ η1 ∼

λ η2.

Proof. Immediate from the fact that for any a ∈ Dom(T) and f ∈ Dom(T (a)), ⌊T (a, f)⌋ = ⌊T ′(a, f)⌋
and hypothesis T ≤ T ′.

The following lemma shows that transitions from some high region for k to a low one through i 7→ i′,
implies that i′ is a junction point for the latter region.

Lemma A.12. Let M [−→a] be a well-typed method with code B[−→a] and i ∈ region(k) for some k ∈
Dom(B)♯. Suppose l 6⊑ λ and ∀k′ ∈ region(k).l ⊑ Ak′ and furthermore let i 7→ i′, Ai 6⊑ λ and Ai′ ⊑ λ.
Then i′ = jun(k).

Proof. Suppose i′ 6= jun(k). By SOAP (property 3.10(2)) i′ ∈ region(k). Furthermore, by the hypoth-
esis l 6⊑ λ and ∀k′ ∈ region(k).l ⊑ Ak′ we have l ⊑ Ai′ . However, this contradicts Ai′ ⊑ λ.

A.1.1 Indistinguishability - Properties

Determining that indistinguishability of values, local variable arrays and stacks is an equivalence relation
requires careful consideration. In the presence of variable reuse transitivity of indistinguishability of
variable arrays in fact fails unless additional conditions are imposed. These issues are discussed in this
section.

We assume that β is composable with γ in the statement of transitivity (third item) of lemmas 3.37,
3.39, A.14 and A.15 below. Furthermore, recall that we define the inverse of a location bijection set β,
denoted β̂, to be: β̂loc = β−1

loc and β̂✁ = β✄ and β̂✄ = β✁.
We can now state the first result (3.37), namely that value indistinguishability is an equivalence

relation. The condition on β id simply ensures that it is defined on the appropriate locations. This too is
a condition that shall always be met given that in the proof of noninterference β id is always taken to be
the domain of the appropriate heap.

Lemma 3.37

1. β id, l ⊢ v ∼λ v, if v ∈ L and l ⊑ λ implies v ∈ Dom(β id).

2. β, l ⊢ v1 ∼
λ v2 implies β̂, l ⊢ v2 ∼

λ v1.
3. If β, l ⊢ v1 ∼

λ v2 and γ, l ⊢ v2 ∼
λ v3, then γ ◦ β, l ⊢ v1 ∼

λ v3.

A.1 Preliminaries 101

Proof. The first two items follow directly from a close inspection of the definition of value indis-
tinguishability. Regarding transitivity we consider the two cases, l 6⊑ λ and l ⊑ λ. In the former
case, γ ◦ β, l ⊢ v1 ∼

λ v3 holds trivially by definition of value indistinguishability. For the latter, if
v1 = null or v1 ∈ Z we resort to transitivity of equality. If v1 ∈ L, then by hypothesis and by the
definition of value indistinguishability, v2, v3 ∈ L, β(v1) = v2 and γ(v2) = v3. And by definition of γ ◦ β,
(γ ◦ β)(v1) = γ(β(v1)) = v3. Hence γ ◦ β, l ⊢ v1 ∼

λ v3.

Also, the following notions will be required for properly stating the conditions under which indistin-
guishability of frames, stacks, heaps and states are equivalence relations.

Notation A.13
• LowLoc(α, V, λ) (or simply LowLoc(α) if the V is understood from the context) is shorthand for
{o |α(x) = o, V (x) ⊑ λ}.

• LowLoc(σ, S, λ) (or simply LowLoc(σ) if the S is understood from the context) is defined as {o | ∃i ∈
0..‖S‖ − 1.σ(i) = o, S(i) ⊑ λ}

• LowLoc(η, β, T, λ) (or simply LowLoc(η, β) if the T is understood from the context) is defined as
{o′ | o ∈ Dom(β), ∃f ∈ Dom(η(o)).(η(o, f) = o′, T (β−1(o), f) ⊑ λ}

• LowLoc(〈i, α, σ, η〉, β, 〈i, V, S, T 〉, λ) (or simply LowLoc(s, β, λ) if the 〈i, V, S, T 〉 is understood from the
context) is defined as LowLoc(α, V, λ)∪LowLoc(σ, S, λ)∪LowLoc(η, β, T, λ)

We now address local variable arrays. Variable reuse allows a public variable to be reused for storing
secret information in a high security execution context. Suppose, therefore, that l 6⊑ λ, β, (V1, V2), l ⊢
α1 ∼

λ α2 and γ, (V2, V3), l ⊢ α2 ∼
λ α3 where, for some x, V1(x) = L, V2(x) = H and V3(x) = L. Clearly it

is not necessarily the case that γ ◦ β, (V1, V3), l ⊢ α1 ∼
λ α3 given that α1(x) and α3(x) may differ. We thus

require that either V1 or V3 have at least the level of V2 for this variable: V2(x) ⊑ V1(x) or V2(x) ⊑ V3(x).
Of course, it remains to be seen that such a condition can be met when proving noninterference. For now
we state the result, namely that indistinguishability of local variable arrays is an equivalence relation (its
proof is an easy consequence of lemma 3.37).

Lemma 3.39 Frame indistinguishability is an equivalence relation.
For low indistinguishability we have (l ⊑ λ):

1. β id, V , l ⊢ α ∼λ α, if LowLoc(α, V, λ) ⊆ Dom(β id).

2. β, V , l ⊢ α1 ∼
λ α2 implies β̂, V , l ⊢ α2 ∼

λ α1.
3. If β, V , l ⊢ α1 ∼

λ α2, γ, V , l ⊢ α2 ∼
λ α3, then γ ◦ β, V , l ⊢ α1 ∼

λ α3.

For high indistinguishability (l 6⊑ λ) we have:

1. β id, (V, V), l ⊢ α ∼λ α, if LowLoc(α, V, λ) ⊆ Dom(β id).

2. β, (V1, V2), l ⊢ α1 ∼
λ α2 implies β̂, (V2, V1), l ⊢ α2 ∼

λ α1.
3. If β, (V1, V2), l ⊢ α1 ∼

λ α2, γ, (V2, V3), l ⊢ α2 ∼
λ α3 and ∀x ∈ X.V2(x) ⊑ V1(x) or V2(x) ⊑ V3(x),

then γ ◦ β, (V1, V3), l ⊢ α1 ∼
λ α3.

Proof. First we address the low case. Reflexivity and symmetry are immediate consequences of
Lemma 3.37. We develop the case for transitivity. By hypothesis the following statement holds

∀x ∈ X.β, ⌊V (x)⌋ ⊢ α1(x) ∼
λ α2(x) and ∀x ∈ X.γ, ⌊V (x)⌋ ⊢ α2(x) ∼

λ α3(x) (A.1)

Let x ∈ X. If V (x) 6⊑ λ, then we are done. If V (x) ⊑ λ, from (A.1),

β, ⌊V (x)⌋ ⊢ α1(x) ∼
λ α2(x) and γ, ⌊V (x)⌋ ⊢ α2(x) ∼

λ α3(x) (A.2)

and we obtain the desired result from (A.2) and Lemma 3.37.
We now address the high case. Since reflexivity and symmetry are straightforward we concentrate on

transitivity. By hypothesis the following two statements hold

102 A Noninterference Soundness Proofs

∀x ∈ X.β, ⌊V1(x) ⊔ V2(x)⌋ ⊢ α1(x) ∼
λ α2(x) and ∀x ∈ X.γ, ⌊V2(x) ⊔ V3(x)⌋ ⊢ α2(x) ∼

λ α3(x) (A.3)

and
∀x ∈ X.V2(x) ⊑ V1(x) or V2(x) ⊑ V3(x) (A.4)

We must verify that ∀x ∈ X.γ ◦ β, ⌊V1(x) ⊔ V3(x)⌋ ⊢ α1(x) ∼
λ α3(x).

Let x ∈ X. If V1(x) ⊔ V3(x) 6⊑ λ, then we are done. Otherwise, V1(x) ⊑ λ and V3(x) ⊑ λ. From (A.4)
we deduce that V2(x) ⊑ λ. Then by (A.3),

β, l ⊢ α1(x) ∼
λ α2(x) and γ, ⌊l⌋ ⊢ α2(x) ∼

λ α3(x), l ⊑ λ (A.5)

Finally, we obtain the desired result from (A.5) and Lemma 3.37.

The case of stacks are dealt with similarly. First a word on notation. If S is a a stack type, we write
Sn for the prefix of S of length n and S−n for the suffix of S of length n. By example, let the stack type
S = v1 · v2 · v3 · v4 · v5, the prefix S3 = v1 · v2 · v3 and the suffix S−3 = v3 · v4 · v5

Lemma A.14. The stack indistinguishability relation is an equivalence relation.

1. β id, (S, S), l ⊢ σ ∼λ σ, if LowLoc(α, S, λ) ⊆ Dom(β id

loc).

2. β, (S1, S2), l ⊢ σ1 ∼
λ σ2 implies β̂, (S2, S1), l ⊢ σ2 ∼

λ σ1.
3. If β, (S1, S2), l ⊢ σ1 ∼

λ σ2 and γ, (S2, S3), l ⊢ σ2 ∼
λ σ3, then γ ◦ β, (S1, S3), l ⊢ σ1 ∼

λ σ3.

Proof. The low case is proved straightforwardly. We consider the high case. Reflexivity follows from
reflexivity for the low case given that

β id, S, l ⊢ σ ∼λ σ′ l ⊑ λ l′ 6⊑ λ
H-Low

β id, (S, S), l′ ⊢ σ ∼λ σ′

For symmetry we proceed by structural induction on the derivation of β, (S1, S2), l ⊢ σ1 ∼
λ σ2, with

l 6⊑ λ. For the base case we resort to symmetry for the low case. The two remaining inductive cases are
developed below. We assume that

β, (S1, S2), l ⊢ σ1 ∼
λ σ2 implies β̂, (S2, S1), l ⊢ σ2 ∼

λ σ1 (A.6)

1. if β, (l′ · S1, S2), l ⊢ v · σ1 ∼
λ σ2, l

′ 6⊑ λ by H-Cons-L, then β, (S1, S2), l ⊢ σ1 ∼
λ σ2 and by (A.6) we

can assert β̂, (S2, S1), l ⊢ σ2 ∼
λ σ1. Now by H-Cons-R we have β̂, (S2, l

′ · S1), l ⊢ σ2 ∼
λ v · σ1.

2. if β, (S1, l
′ · S2), l ⊢ σ1 ∼

λ v · σ2, l
′ 6⊑ λ by H-Cons-R, then from (A.6) and H-Cons-L we deduce

β̂, (l′ · S2, S1), l ⊢ v · σ2 ∼
λ σ1.

Transitivity may be proved by structural induction on the derivation of β, (S1, S2), l ⊢ σ1 ∼
λ σ2 and

then performing case analysis on the form of the derivation for γ, (S2, S3), l ⊢ σ2 ∼
λ σ3.

Lemma A.15. Heap indistinguishability is an equivalence relation.

1. β id, (T, T) ⊢ η ∼λ η, where Dom(β id

loc) ⊆ Dom(η), Dom(β id✁),Dom(β id✄) ⊆ Dom(T) and LowLoc(η, βid, T, λ) ⊆
Dom(β id

loc).

2. β, (T1, T2) ⊢ η1 ∼
λ η2 implies β̂, (T2, T1) ⊢ η2 ∼

λ η1 assuming for every o ∈ Dom(β), f ∈ η1(o, f),
T1(β

✁−1(o), f) = T2(β
✄−1(β(o)), f).

3. If β, (T1, T2) ⊢ η1 ∼
λ η2, γ, (T2, T3) ⊢ η2 ∼

λ η3 then γ ◦ β, (T1, T3) ⊢ η1 ∼
λ η3.

A.1 Preliminaries 103

Proof. Reflexivity follows directly from hypothesis and the definition of β id. For symmetry we see that
the four first items of high-indistinguishable heap definition follow directly from hypothesis β, (T1, T2) ⊢

η1 ∼
λ η2 and the definition of β̂. Now, we address the last item. We must verify that ∀o′ ∈ Dom(β̂) and

∀f ∈ Dom(η2(o
′))

β̂, T2(β̂
✁−1(o′), f) ⊢ η2(o

′, f) ∼λ η1(β̂(o
′), f) (A.7)

By hypothesis, ∀o ∈ Dom(β) and ∀f ∈ Dom(η1(o))

β, T1(β
✁−1(o, f)) ⊢ η1(o, f) ∼

λ η2(β(o), f) (A.8)

By definition of β̂, if β(o) = o′ then β̂(o′) = o. Furthermore, β̂✁

loc = β✄

loc and β̂✄

loc = β✁

loc. Then we can
rewrite the above statement as

∀o′ ∈ Dom(β̂).∀f ∈ Dom(η2(o
′)).

β̂, T1(β̂
✄−1(β̂(o′), f) ⊢ η1(β̂(o

′), f) ∼λ η2(o
′, f)

(A.9)

Finally, from the assumption T1(β
✁−1(o), f) = T2(β

✄−1(β(o)), f) and the definition of β̂

∀o′ ∈ Dom(β̂).∀f ∈ Dom(η2(o
′)).

β̂, T2(β̂
✁−1(β̂(o′), f) ⊢ η1(β̂(o

′), f) ∼λ η2(o
′, f)

(A.10)

We obtain the desired result from (A.10) and Lemma 3.37
Finally, we address transitivity. By hypothesis the following statements hold

Dom(β) ⊆ Dom(η1),Ran(β) ⊆ Dom(η2)
and

Dom(γ) ⊆ Dom(η2),Ran(γ) ⊆ Dom(η3)
(A.11)

Ran(β✁

loc) ⊆ Dom(η1),Ran(β
✄

loc) ⊆ Dom(η2)
and

Ran(γ✁

loc) ⊆ Dom(η2),Ran(γ
✄

loc) ⊆ Dom(η3)
(A.12)

Dom(β✁

loc) ⊆ Dom(T1),Dom(β✄

loc) ⊆ Dom(T2)
and

Dom(γ✁

loc) ⊆ Dom(T2),Dom(γ✄

loc) ⊆ Dom(T3)
(A.13)

∀o ∈ Dom(β).Dom(η1(o)) = Dom(η2(β(o)))
and

∀o′ ∈ Dom(γ).Dom(η2(o
′)) = Dom(η3(γ(o

′)))
(A.14)

We prove the first item of high-indistinguishable heap definition directly from (A.11), (A.12), (A.14) and
(A.13) and the definition of γ ◦ β.

We now address the second item. By hypothesis we know that

∀o ∈ Dom(β).∀f ∈ Dom(η1(o)).
β, T1(β

✁−1(o), f) ⊢ η1(o, f) ∼
λ η2(β(o), f)

(A.15)

and
∀o′ ∈ Dom(γ).∀f ∈ Dom(η2(o

′)).
γ, T2(γ

✁−1(o′), f) ⊢ η2(o
′, f) ∼λ η3(γ(o

′), f)
(A.16)

Take any o ∈ Dom(γ ◦ β). Thus o ∈ Dom(β) and β(o) ∈ Dom(γ), given that β is composable with γ.
Then by (A.15) and (A.16) we have

∀o ∈ Dom(β).∀f ∈ Dom(η1(o)).
β, T1(β

✁−1(o), f) ⊔ T2(β
✄−1(β(o)), f) ⊢ η1(o, f) ∼

λ η2(β(o), f)
(A.17)

104 A Noninterference Soundness Proofs

and
∀β(o) ∈ Dom(γ).∀f ∈ Dom(η2(β(o))).

γ, T2(γ
✁−1(β(o)), f) ⊢ η2(β(o), f) ∼

λ η3(γ(β(o)), f)
(A.18)

Since T1(β
✁−1(o), f) = T2(β

✄−1(β(o)), f) and for all o ∈ Dom(β), β✄−1
loc (β(o)) = γ✁−1(β(o)) (β is

composable with γ),

T1(β
✁−1(o), f) = T2(γ

✁−1(β(o)), f)

Therefore we resort to transitivity of indistinguishability of values (Lemma 3.37) to conclude that

∀o ∈ Dom(β).∀f ∈ Dom(η1(o)).β, T1(β
✁−1(o), f) ⊢ η1(o, f) ∼

λ η3(γ(β(o)), f)

Finally, note that

∀o ∈ Dom(γ ◦ β), ∀f ∈ Dom(η1(o)).T1(β
✁−1(o), f) = T3(γ

✁−1(γ(β(o))), f)

Then, the proof of Lemma3.40, machine state indistinguishability is an equivalence relation, follow by
the before results.

A.2 Low Context

We now address the proof of the Equivalence in Low Level Contexts.

Lemma 3.44 (One-Step Low)
Suppose

1. Ai ⊑ λ;
2. pc(s1) = pc(s2)
3. s1 −→B s′1;
4. s2 −→B s′2; and
5. β ⊢ s1 ∼

λ s2 for some location bijection set β.

Then
β′ ⊢ s′1 ∼

λ s′2 and pc(s′1) = pc(s′2), for some β′ ⊇ β.

Proof. We proceed by case analysis on the instruction that is executed.

Case: Suppose B(i) = store x. Then

B(i) = store x

〈i, α1, v1 · σ1, η1〉 −→B 〈i+ 1, α1 ⊕ {x 7→ v1}, σ1, η1〉 = s′1

B(i) = store x

〈i, α2, v2 · σ2, η2〉 −→B 〈i+ 1, α2 ⊕ {x 7→ v2}, σ2, η2〉 = s′2

Moreover, by T-Store:

Si ≤Ai
Vi+1(x) · Si+1

Vi \ x ≤ Vi+1 \ x
Ai ⊑ Vi+1(x)
Ti ≤ Ti+1

A.2 Low Context 105

We prove β ⊢ s′1 ∼
λ s′2.

1. Since i′1 = i+ 1 = i′2, then Ai′1
= Ai′2

.

2. First we note that β, ⌊Vi+1(x)⌋ ⊢ v1 ∼
λ v2 (1) follows from hypothesis β, ⌊Si(0)⌋ ⊢ v1 ∼

λ v2,
condition 1 of T-Store (Si(0) ⊑ Vi+1(x)) and Lemma A.1 .
Furthermore, by hypothesis β,Vi \ x, ⌊Ai⌋ ⊢ α1 \ x ∼

λ α2 \ x, Ai ⊑ λ and by condition 2 of T-Store

and Lemma A.2 we have β,Vi+1 \ x,Ai ⊢ α1 \ x ∼
λ α2 \ x (2).

From (1) and (2) we deduce β,Vi+1,Ai ⊢ α1 ∼
λ α2 (3).

If Ai+1 ⊑ λ then β,Vi+1,Ai+1 ⊢ α1 ∼
λ α2 follows by (3) and Lemma A.5.

If Ai+1 6⊑ λ, then we note that β,Vi+1,Ai+1 ⊢ α1 ∼
λ α2 follows from (3).

3. By hypothesis β,Si,Ai ⊢ v1 · σ1 ∼
λ v2 · σ2, condition 1 of T-Store and lemma A.6 we have

β,Vi+1(x) · Si+1,Ai ⊢ v1 · σ1 ∼
λ v2 · σ2.

Now, by Ai ⊑ λ and Cons-L we have β,Si+1,Ai ⊢ σ1 ∼
λ σ2.

We have two cases:
• Ai+1 ⊑ λ. Then by Lem. A.9 we have β,Si+1,Ai+1 ⊢ σ1 ∼

λ σ2, as required.
• Ai+1 6⊑ λ. Then by H-Low β, (Si+1,Si+1),Ai+1 ⊢ σ1 ∼

λ σ2 holds.
4. By hypothesis β, Ti ⊢ η1 ∼

λ η2, condition 4 of T-Store and Lemma A.10, β, Ti+1 ⊢ η1 ∼
λ η2.

Case: B(i) = load x. By the operational semantics:

B(i) = load x

〈i, α1, σ1, η1〉 −→B 〈i+ 1, α1, α1(x) · σ1, η1〉 = s′1

B(i) = load x

〈i, α2, σ2, η2〉 −→B 〈i+ 1, α2, α2(x) · σ2, η2〉 = s′2

Moreover, by T-Load:

Ai ⊔ Vi(x) · Si ≤Ai
Si+1

Vi ≤ Vi+1

Ti ≤ Ti+1

We prove β ⊢ s′1 ∼
λ s′2.

1. By the operational semantics i′1 = i+ 1 = i′2, hence Ai′1
= Ai′1

.

2. We must prove β,Vi+1, ⌊Ai+1⌋ ⊢ α1 ∼
λ α2. Given that Ai+1 may be either low or high we must

consider both cases. Therefore, suppose first that Ai+1 ⊑ λ. By hypothesis we know β,Vi, ⌊Ai⌋ ⊢
α1 ∼

λ α2, Ai ⊑ λ. Then, resorting to condition 2 of T-Load and Lemma A.2, β,Vi+1, ⌊Ai⌋ ⊢ α1 ∼
λ

α2 Now, by Lemma A.5 the result follows.
Suppose now that Ai+1 6⊑ λ. We proceed as above and simply note that by the definition of indistin-
guishability of local variable frames β,Vi+1, ⌊Ai+1⌋ ⊢ α1 ∼

λ α2 follows from β,Vi+1, ⌊Ai⌋ ⊢ α1 ∼
λ α2.

3. We have two cases:
• Ai+1 ⊑ λ. By hypothesis we know β,Si,Ai ⊢ σ1 ∼

λ σ2, Ai ⊑ λ and β, ⌊Vi(x)⌋ ⊢ α1(x) ∼
λ α2(x).

From the latter and Lemma A.1 we deduce β, ⌊Ai ⊔ Vi(x)⌋ ⊢ α1(x) ∼
λ α2(x) Then, by L-Cons,

β,Ai ⊔ Vi(x) · Si,Ai ⊢ α1(x) · σ1 ∼
λ α2(x) · σ2 (A.19)

Condition 1 of T-Load, namely Ai ⊔ Vi(x) · Si ≤Ai
Si+1, and (A.19) allows us to apply Lemma

A.6 to deduce β,Si+1,Ai ⊢ α1(x) · σ1 ∼
λ α2(x) · σ2. Now, by Lem. A.9 follows the result.

• Ai+1 6⊑ λ. By the previous case we know β,Si+1,Ai ⊢ α1(x) · σ1 ∼
λ α2(x) · σ2. Then by H-Low

β, (Si+1,Si+1),Ai+1 ⊢ α1(x) · σ1 ∼
λ α2(x) · σ2 holds.

4. By hypothesis β, Ti ⊢ η1 ∼
λ η2, condition 3 of T-Load and Lemma A.10, β, Ti+1 ⊢ η1 ∼

λ η2.

106 A Noninterference Soundness Proofs

Case: B(i) = goto i′

By the operational semantics we know:

B(i) = goto i ′

〈i, α1, σ1, η1〉 −→B 〈i
′, α1, σ1, η1〉 = s′1

B(i) = goto i ′

〈i, α2, σ2, η2〉 −→B 〈i
′, α2, σ2, η2〉 = s′2

By the T-Goto rule we know:

Vi ≤ Vi′
Si ≤Ai

Si′
Ti ≤ Ti′

We set β′ = β and prove β ⊢ s′1 ∼
λ s′2.

1. By the operational semantics i′1 = i′ = i′2 and hence Ai′1
= Ai′1

.

2. Suppose first that Ai′ ⊑ λ. By hypothesis β,Vi,Ai ⊢ α1 ∼
λ α2, condition 1 of T-Goto and Lemma

A.2, β,V ′
i,Ai ⊢ α1 ∼

λ α2. The result follows by Lemma A.5.
If Ai′ 6⊑ λ, we proceed as above and simply note that β,V ′

i,Ai′ ⊢ α1 ∼
λ α2 follows from β,V ′

i,Ai ⊢
α1 ∼

λ α2.
3. Suppose first that Ai′ ⊑ λ. By hypothesis β,Si,Ai ⊢ σ1 ∼

λ σ2. and by condition 2 of T-Goto and
Lemma A.6 β,Si′ ,Ai ⊢ σ1 ∼

λ σ2. Now, by Lem. A.9 follows the result.
If Ai′ 6⊑ λ, we proceed as above and note that β,Si′ ,Ai′ ⊢ σ1 ∼

λ σ2 follows from β,Si′ ,Ai ⊢ σ1 ∼
λ σ2

by resorting to H-Low.
4. By hypothesis β, Ti ⊢ η1 ∼

λ η2, condition 3 of T-Goto and Lemma A.10, β, Ti′ ⊢ η1 ∼
λ η2.

Case: B(i) = if i′

We must consider four cases. In all of them we take β′ = β:

1. By the operational semantics we know:

B(i) = if i ′ v1 6= 0

〈i, α1, v1 · σ1, η1〉 −→B 〈i+ 1, α1, σ1, η1〉 = s′1

B(i) = if i ′ v1 6= 0

〈i, α2, v2 · σ2, η2〉 −→B 〈i+ 1, α2, σ2, η2〉 = s′2

From T-If:

Vi ≤ Vi+1

Si ≤Ai
κ · Si+1

Ai ⊑ κ
Ti ≤ Ti+1

∀k ∈ region(i).κ ⊑ Ak

We prove β ⊢ s′1 ∼
λ s′2.

a) By the operational semantics i′1 = i+ 1 = i′2, hence Ai′1
= Ai′1

.

A.2 Low Context 107

b) If Ai+1 ⊑ λ. The β,Vi,Ai ⊢ α1 ∼
λ α2, condition 1 of T-If and Lemma A.2, we have β,Vi+1,Ai ⊢

α1 ∼
λ α2. Now, the result follows from apply Lemma A.5.

If Ai+1 6⊑ λ. β,Vi+1,Ai+1 ⊢ α1 ∼
λ α2 follows from β,Vi+1,Ai ⊢ α1 ∼

λ α2.
c) Idem to T-Goto case.
d) Idem to T-Goto case.

2. By the operational semantics we know:

B(i) = if i ′ v1 = 0

〈i, α1, v1 · σ1, η1〉 −→B 〈i
′, α1, σ1, η1〉 = s′1

B(i) = if i ′ v1 = 0

〈i, α2, v2 · σ2, η2〉 −→B 〈i
′, α2, σ2, η2〉 = s′2

From T-If:

Vi ≤ Vi′
Si ≤Ai

κ · Si′
Ai ⊑ κ
Ti ≤ Ti′
∀k ∈ region(i).κ ⊑ Ak

We prove β ⊢ s′1 ∼
λ s′2. The proof is similar to the previous case (the only change is i′ by i+ 1).

3. By the operational semantics we know:

B(i) = if i ′ v1 = 0

〈i, α1, v1 · σ1, η1〉 −→B 〈i
′, α1, σ1, η1〉 = s′1

B(i) = if i ′ v2 6= 0

〈i, α2, v2 · σ2, η2〉 −→B 〈i+ 1, α2, σ2, η2〉 = s′2

From T-If:

Vi ≤ Vi′ ,Vi+1

Si ≤Ai
κ · Si′ , κ · Si+1

Ai ⊑ κ
Ti ≤ Ti′ , Ti+1

∀k ∈ region(i).κ ⊑ Ak

Now we prove β ⊢ s′1 ∼
λ s′2.

a) Since v1 = 0, v2 6= 0 and β, κ · Si,Ai ⊢ v1 · σ1 ∼
λ v2 · σ2, it must be the case that κ 6⊑ λ).

By item i) of SOAP property and condition 4 of T-If, κ ⊑ Ai′ ,Ai+1. Therefore, Ai′ ,Ai+1 6⊑ λ.
b) We must prove β, (Vi′ ,Vi+1), l ⊢ α1 ∼

λ α2, l 6⊑ λ. For any x ∈ X, if either Vi′(x) 6⊑ L or
Vi+1(x) 6⊑ L, then we are done. Otherwise, β, ⌊Vi′(x) ⊔ Vi+1(x)⌋ ⊢ α1(x) ∼

λ α2(x) holds by the
hypothesis β,Vi,Ai ⊢ α1 ∼

λ α2 condition 1 of T-If.
c) By hypothesis β,Si,Ai ⊢ v1 · σ1 ∼

λ v2 · σ2. From this, by H-Low, β, (Si,Si), l ⊢ v1 · σ1 ∼
λ v2 · σ2,

l 6⊑ λ.
Now, by Lemma A.7 and Lemma A.8 we have β, (κ · Si′ , κ · Si+1), l ⊢ v1 · σ1 ∼

λ v2 · σ2.
The result, β, (Si′ ,Si+1), l ⊢ σ1 ∼

λ σ2, follow of the definition of stack indistinguishability.
d) Idem to T-Goto case.

108 A Noninterference Soundness Proofs

4. The proof the last case is similar to the previous case.

Case: Suppose B(i) = new C. Then

B(i) = new C o1 = Fresh(η1)

〈i, α1, σ1, η1〉 −→B 〈i+ 1, α1, o1 · σ1, η1 ⊕ {o1 7→ Default(C)}〉 = s′1

B(i) = new C o2 = Fresh(η2)

〈i, α2, σ2, η2〉 −→B 〈i+ 1, α2, o2 · σ2, η2 ⊕ {o2 7→ Default(C)}〉 = s′2

Moreover, from T-New:

a = Fresh(Ti)
Ti ⊕ {a 7→ [f1 : ftAi

(f1), . . . , fn : ftAi
(fn)]} ≤ Ti+1

〈{a},Ai〉 · Si ≤Ai
Si+1

Vi ≤ Vi+1

We prove β′ ⊢ s′1 ∼
λ s′2 for β′ = β ⊕ {o1 7→ o2} and β′✁ = β✁ ∪ {a 7→ o1} and β′✄ = β✄ ∪ {a 7→ o2}.

We prove the four points of state indistinguishability:

1. From i′1 = i+ 1 = i′2 it follows that Ai′1
= Ai′1

.
2. Idem to T-Goto case.
3. By hypothesis β,Si,Ai ⊢ σ1 ∼

λ σ2 and given that β ⊆ β′, we resort to lemma A.6 to deduce

β′,Si,Ai ⊢ σ1 ∼
λ σ2 (A.20)

We have two cases:
• Ai+1 ⊑ λ. Since β′, ⌊〈{a},Ai〉⌋ ⊢ o1 ∼

λ o2 we appeal to L-Cons and (A.20) to deduce
β′, 〈{a}, L〉 · Si,Ai ⊢ o1 · σ1 ∼

λ o2 · σ2. This result and condition 3 of T-New and lemma A.6
(again) allows to conclude β′,Si+1,Ai+1 ⊢ o1 · σ1 ∼

λ o2 · σ2.
• Ai+1 6⊑ λ. From the previous case, resorting to H-Low.

4. We must prove the two items of the definition of heap indistinguishability. The first clearly follow
from the definition of β′:
a) Dom(β′) ⊆ Dom(η′1) and Ran(β′) ⊆ Dom(η′2).
b) Ran(β′✁) ⊆ Dom(η′1) and Ran(β′✄) ⊆ Dom(η′2).
c) Dom(β′✁) ⊆ Dom(Ti+1) and Dom(β′✄) ⊆ Dom(Ti+1).
d) Dom(η′1(o)) = Dom(η′2(β

′(o)))
We focus on the second item, namely

β′, ⌊Ti+1(β
′✁(o), f)⌋ ⊢ η′1(o, f) ∼

λ η′2(β
′(o), f)

Let o ∈ Dom(β′) and f ∈ Dom(η′1(o)). By hypothesis we know β, ⌊Ti(β
✁(o), f)⌋ ⊢ η1(o, f) ∼

λ

η2(β(o), f). Also, by condition 2 of T-New and lemma A.1, β′, ⌊Ti+1(β
✁(o), f)⌋ ⊢ η1(o, f) ∼

λ

η2(β(o), f).
We conclude by noticing that we (trivially) have β′, ⌊Ti+1(β

′✁(o1), f)⌋ ⊢ {o1 7→ Default(C)}(o1, f) ∼
λ

{o2 7→ Default(C)}({o1 7→ o2}(o1), f).

Cases: B(i) = push v and B(i) = prim are similar to case B(i) = load x.

Case: B(i) = pop is similar to case B(i) = store x.

Case: Suppose that B(i) = putfield f .
There are several options to consider depending on whether exceptions are raised or not and whether

there is a handler or not.

A.2 Low Context 109

1. If no exceptions are raised, then

B(i) = putfield f o1 ∈ Dom(η1) f ∈ Dom(η1(o1)) Handler(i) ↓

〈i, α1, v1 · o1 · σ1, η1〉 −→B 〈i+ 1, α1, σ1, η1 ⊕ ({o1 7→ η1(o)} ⊕ {fj 7→ v1})〉 = s′1

B(i) = putfield f o2 ∈ Dom(η2) f ∈ Dom(η2(o2)) Handler(i) ↓

〈i, α2, v2 · o2 · σ2, η2〉 −→B 〈i+ 1, α2, σ2, η2 ⊕ ({o2 7→ η2(o)} ⊕ {fj 7→ v2})〉 = s′2

Moreover, from T-Ptfld:

Si ≤Ai
〈R1, l1〉 · 〈R, l〉 · Si+1

l1 ⊔ l ⊑
d

a∈R Ti(a, f)
for all a ∈ R.Ti+1(a, f) = 〈R3, l2〉,

where Ti(a, f) = 〈 , l2〉 ∧R1 ⊆ R3

Ai ⊑ l, l1
Vi ≤ Vi+1

Ti\{(a, f) | a ∈ R} ≤ Ti+1\{(a, f) | a ∈ R}

By setting β′ = β we may prove β ⊢ s′1 ∼
λ s′2, as developed below.

a) From i′1 = i+ 1 = i′2 it follows that Ai′1
= Ai′1

.
b) Idem to T-Goto case.
c) We have two cases:
• Ai+1 ⊑ λ. By hypothesis β,Si,Ai ⊢ v1 · o1 · σ1 ∼

λ v2 · o2 · σ2 and by condition 1 of T-

Ptfld and lemma A.6, β, 〈R1, l1〉 · 〈R, l〉 · Si+1,Ai ⊢ v1 · o1 · σ1 ∼
λ v2 · o2 · σ2. We conclude

by resorting to the definition of stack indistinguishability and Lemma A.9: β, Si+1,Ai+1 ⊢
σ1 ∼

λ σ2.
• Ai+1 6⊑ λ. By the previous case and resorting to H-Low.

d) We prove heap indistinguishability to deduce β, Ti+1 ⊢ η′1 ∼
λ η′2.

The first item is an immediate consequence of the hypothesis. For the last item we proceed as
follows.
Let o ∈ Dom(βloc), and let f ∈ Dom(η′1(o)). We must prove that:

β, ⌊Ti+1(β
✁−1(o), f)⌋ ⊢ η′1(o, f) ∼

λ η′2(β(o), f).
Recall that by hypothesis we know β, ⌊Ti(β

✁−1(o), f)⌋ ⊢ η1(o, f) ∼
λ η2(β(o), f).

We have two cases:
i. if o is such that β✁−1(o) ∈ Dom(Ti \R), the result follows from Ti ≤ Ti+1 and lemma A.1.
ii. if o is such that β✁−1(o) ∈ Dom(R), the result follows from β, l1 ⊢ v1 ∼

λ v2, condition 2 of
T-Ptfld and lemma A.1.

2. If both runs raise an exception and there is a handler, then

B(i) = putfield f o1 = null
o′1 = Fresh(η1) Handler(i) = i′

〈i′, α1, v1 · o1 · σ1, η1〉 −→B 〈i
′, α1, o

′
1 · ǫ, η1 ⊕ {o

′
1 7→ Default(Throwable)}〉 = s′1

B(i) = putfield f o2 = null
o′2 = Fresh(η2) Handler(i) = i′

〈i′, α2, v2 · o2 · σ2, η2〉 −→B 〈i
′, α2, o

′
2 · ǫ, η2 ⊕ {o

′
2 7→ Default(Throwable)}〉 = s′2

Moreover, from T-PtFldH:

110 A Noninterference Soundness Proofs

Handler(i) = i′

Si = κ′ · 〈R, l〉 · S, for some S
a = Fresh(Ti)
〈{a}, l ⊔ Ai〉 · ǫ ≤Ai

Si′
Vi ≤ Vi′
Ti ⊕ {a 7→ [f1 : ftAi

(f1), . . . , fn : ftAi
(fn)]} ≤ Ti′

∀j ∈ Dom(Si).Ai ⊑ Si(j)

If l ⊔ Ai ⊑ λ, then we set β′ = β ⊕ {o′1 7→ o′2} and β′✁ = β✁ ∪ {a 7→ o′1} and β′✄ = β✄ ∪ {a 7→ o′2}.
We can proceed similarly to case new.
If l ⊔ Ai 6⊑ λ, then we set to β′ = β. Also, we can proceed similarly to case new in the firsts three
cases. We prove heap indistinguishability to deduce β′, Ti′ ⊢ η1 ⊕ {o

′
1 7→ Default(Throwable)} ∼λ

η2 ⊕ {o
′
2 7→ Default(Throwable)}. The first item of heap indistinguishability result by β′ definition.

Now, by hypothesis β′, Ti ⊢ η1 ∼
λ η2. and o′1 6∈ Dom(β) (o1 is fresh in η1) then trivially

β′, Ti ⊕ {a 7→ [. . .]} ⊢ η1 ⊕ {o
′
1 7→ Default(Throwable)} ∼λ η2 ⊕ {o

′
2 7→ Default(Throwable)}.

The result follows by condition 6 of T-PtFldH and Lemma A.10.
3. If both runs raise an exception and no handler is available. The proof the last case is similar to the

previous case.
4. One run is normal and an exception is raised in the other execution (for which there is a handler).

B(i) = putfield f o1 ∈ Dom(η1) f ∈ Dom(η1(o1))

〈i, α1, v1 · o1 · σ1, η1〉 −→B 〈i+ 1, α1, σ1, η1 ⊕ ({o1 7→ η1(o)} ⊕ {fj 7→ v1})〉 = s′1

B(i) = putfield f o2 = null
o′ = Fresh(η) Handler(i) = i′

〈i, α, v2 · o2 · σ2, η2〉 −→B 〈i
′, α2, o

′ · ǫ, η2 ⊕ {o
′ 7→ Default(Throwable)}〉 = s′2

Moreover, from T-PtFld and T-PtFldH:

Si ≤Ai
〈R1, l1〉 · 〈R, l〉 · Si+1

l1 ⊔ l ⊑
d

a∈R Ti(a, f)
for all a ∈ R.Ti+1(a, f) = 〈R3, l2〉,

where Ti(a, f) = 〈 , l2〉 ∧R1 ⊆ R3

Ai ⊑ l, l1
Vi ≤ Vi+1,Vi′
Ti\{(a, f) | a ∈ R} ≤ Ti+1\{(a, f) | a ∈ R}
∀k ∈ region(i).l ⊑ Ak

Handler(i) = i′

Si = κ′ · 〈R, l〉 · S, for some S
a = Fresh(Ti)
〈{a}, l ⊔ Ai〉 · ǫ ≤Ai

Si′
Ti ⊕ {a 7→ [f1 : ftAi

(f1), . . . , fn : ftAi
(fn)]} ≤ Ti′

∀j ∈ Dom(Si).Ai ⊑ Si(j)

We set β′ = β and prove β′ ⊢ s′1 ∼
λ s′2.

a) From hypothesis β,Si,Ai ⊢ v1 · o1 · σ1 ∼
λ v2 · o2 · σ2 and the operational semantics o1 6= null and

o2 = null. Therefore β, ⌊l⌋ ⊢ o1 ∼
λ o2, i.e. l 6⊑ λ. By SOAP, i+ 1, i′ ∈ region(i) and by condition

5 of T-PtFld λ ⊑ Ai+1,Ai′ . Then Ai+1,Ai′ 6⊑ λ.
b) Idem to case If with v1 = 0 and v2 6= 0.

A.2 Low Context 111

c) We must prove that β′, (Si+1,Si′), l
′ ⊢ σ1 ∼

λ o′ · ǫ, l′ 6⊑ λ.
By L-Nil and H-Low, we can affirm that β′, (ǫ, ǫ), l′ ⊢ ǫ ∼λ ǫ. Now, by l 6⊑ λ and H-Cons-R we
have that β′, (ǫ, 〈{a}, l ⊔ Ai〉 · ǫ), l

′ ⊢ ǫ ∼λ o′ · ǫ
By first condition of T-PtFld and the last one of T-PtFldH (both of which are listed above),
we can repeatedly apply H-Cons-L to obtain β′, (Si+1, 〈{a}, l ⊔ Ai〉 · ǫ), l

′ ⊢ σ1 ∼
λ o′ · ǫ. The this

and condition 11 of T-PtFld we can apply Lemma A.7 and result holds.
d) We prove items of heap indistinguishability to deduce β′, (Ti+1, Ti′) ⊢ η1 ⊕ ({o1 7→ η1(o)} ⊕ {fj 7→ v1}) ∼

λ

η2 ⊕ {o
′ 7→ Default(Throwable)}.

The first item is an immediate consequence of the hypothesis. The last item follows from the
hypothesis and o′ 6∈ Dom(β′

loc) (it is a high object). Furthermore, by condition 2, the updated
field is high.

5. One execution is normal and the other one raises an exception (for which there is no handler). The
proof is similar to previous case.

Case: B(i) = throw

There are two options to consider:

1. If there is a handler, then

B(i) = throw Handler(i) = i′

〈i, α1, o1 · σ1, η1〉 −→B 〈i
′, α1, o1 · ǫ, η1〉 = s′1

B(i) = throw Handler(i) = i′

〈i, α2, o2 · σ2, η2〉 −→B 〈i
′, α2, o2 · ǫ, η2〉 = s′2

Moreover, by T-ThrH,

Handler(i) = i′

Si(0) ⊑ Ai′

Si(0) · ǫ ≤Ai
Si′

Vi ≤ Vi′
Ti ≤ Ti′
∀j ∈ Dom(Si).Ai ⊑ Si(j)

Set β′ = β. We prove β ⊢ s′1 ∼
λ s′2 below.

a) By the operational semantics i′1 = i′ = i′2 and hence Ai′1
= Ai′1

.
b) Idem to T-Goto case.
c) We have two cases:
• Ai′ ⊑ λ. By hypothesis β,Si,Ai ⊢ o1 · σ1 ∼

λ o2 · σ2 then β, ⌊Si(0)⌋ ⊢ o1 ∼
λ o2. By this and

by L-Nil we can apply L-Cons for obtain the result.
• Ai′ 6⊑ λ. By the previous case and resorting to H-Low.

d) Idem to T-Goto case.

2. If there is no handler, then proof is idem to T-Goto case.

Cases: B(i) = getfield f .
This case is is similar to case B(i) = putfield.

Case: We assume B(i) = return. By the operational semantics we know:

112 A Noninterference Soundness Proofs

B(i1) = return

〈i, α1, v1 · σ1, η1〉 −→B 〈pf , v1, η1〉 = s′1

B(i2) = return

〈i, α2, v2 · σ2, η2〉 −→B 〈pf , v2, η2〉 = s′2

From T-Ret:

Si(0) ⊔ Ai ⊑ κr

Ti ≤ Tpf

We take β′ = β and prove β ⊢ s′1 ∼
λ s′2.

1. We must prove β, κr ⊢ v1 ∼
λ v2. By the hypothesis, β,Si,Ai ⊢ v1 · σ1 ∼

λ v2 · σ2 then we have
β, ⌊Si(0)⌋ ⊢ v1 ∼

λ v2. Furthermore, by T-Ret Si(0) ⊑ κr. Now, by indistinguishability definition
β, κr ⊢ v1 ∼

λ v2.
2. η1 ∼

λ
β,Tpf

,Apf
η2 follow by Ti1 ≤ Tpf

and Lemma A.10.

Cases: We assume pc(i) = erri. By the operational semantics we know:

B(erri)

〈erri, α1, 〈o1〉 · σ1, η1〉 −→B 〈pf , 〈o1〉, η1〉 = s′1

B(erri)

〈erri, α2, 〈o2〉 · σ2, η2〉 −→B 〈pf , 〈o2〉, η2〉 = s′2

From T-Ret:

Serri(0) ⊔ Aerri ⊑ κr

Terri ≤ Tpf

The proof is idem to T-Ret case.
Cases: We assume pc(i) = invokevirtual m. There are several options to consider depending on

whether exceptions are raised or not and whether there is a handler or not.

1. If no exceptions are raised, then

B(i) = invokevirtual m o1 ∈ Dom(η1) B′ = lookup(m, dynamic(o1))
〈1, {this 7→ o1,−−−−→x 7→ v1}, ǫ, η1〉 −→

∗
B′ 〈p′f , v1, η

′
1〉

〈i, α1,−→v1 · o1 · σ1, η1〉 −→B 〈i+ 1, α1, v1 · σ1, η
′
1〉 = s′1

B(i) = invokevirtual m o2 ∈ Dom(η2) B′ = lookup(m, dynamic(o2))
〈1, {this 7→ o2,−−−−→x 7→ v2}, ǫ, η2〉 −→

∗
B′ 〈p′f , v2, η

′
2〉

〈i, α2,−→v2 · o2 · σ2, η2〉 −→B 〈i+ 1, α2, v2 · σ2, η
′
2〉 = s′2

Moreover, from T-InvkVrt:

A.2 Low Context 113

HandlerB(i) ↓

mtm(κ ⊔ Ai) = A
′
1, T

′
1, T

′
pf

✄ ((
−−−→
x′ : κ′, κ′

r, E
′), B′)

Ai ⊔ κ = A′(1)
Si = κ′

1 · · ·κ
′
n · κ · S, for some S

Si ≤Ai
κ′
1 · · ·κ

′
n · κ · (Si+1\0)

Ai ⊑ κ′
1, · · · , κ

′
n, κ

κ ⊔ κ′
r ⊔ Ai ⊑ Si+1(0)

Vi ≤ Vi+1

Ti ≤ T
′
1 ≤ T

′
pf
≤ Ti+1

∀k ∈ region(i).κ ⊔ κ′
r ⊑ Ak, if i ∈ Dom(B♯)

By setting β′ ⊇ β, where β′ is the location bijection set such that λ ⊢ 〈p′f , v1, η
′
1〉 ∼

β′

〈p′f , v2, η
′
2〉, we

may prove λ ⊢ s′1 ∼
β′

s′2, as developed below. The proof that exist β′ proceeds by induction on the
quantity of invokevitual instructions in the derivation for s −→B s′.

a) From i′1 = i+ 1 = i′2 it follows that A(i′1) = A(i
′
2).

b) By hypothesis β,Vi,Ai ⊢ α1 ∼
λ α2, condition 8 of T-InvkVrt and lemma A.2, β′,Vi+1,Ai ⊢

α1 ∼
λ α2. If A(i+ 1) ⊑ λ, the result follows by Lemma A.5.

In the case that A(i+ 1) 6⊑ λ we appeal to the definition of indistinguishability of local variables
to deduce β′,Vi+1,Ai+1 ⊢ α1 ∼

λ α2.
c) We have two cases:
• A(i + 1) ⊑ λ. By hypothesis β,Si,Ai ⊢ −→v1 · o1 · σ1 ∼

λ −→v2 · o2 · σ2 and by condition 5 of
T-InvkVrt and lemma A.6, β′, κ′

1 · · ·κ
′
n · κ · (Si+1\0),Ai ⊢ −→v1 · o1 · σ1 ∼

λ −→v2 · o2 · σ2. By
resorting to the definition of stack indistinguishability we have β′,Si+1\0,Ai ⊢ σ1 ∼

λ σ2.
Now, by hypothesis β′ ⊢ 〈pf , v1, η

′
1〉 ∼

λ 〈pf , v2, η
′
2〉 and condition 7 of T-InvkVrt and L-

Cons. we conclude β′,Si+1,Ai ⊢ v1 · σ1 ∼
λ v2 · σ2. The result follows by Lemma A.9.

• A(i+ 1) 6⊑ λ. By the previous case and resorting to H-Low.
d) By hypothesis β′, T ′

pf
⊢ η′1 ∼

λ η′2, condition 9 of T-InvkVrt and Lemma A.10, β′, Ti+1 ⊢ η′1 ∼
λ

η′2.

2. If both runs raise an exception and there is a handler, then

B(i) = invokevirtual m o′1 = Fresh(η1) B′ = lookup(m, dynamic(o1))
〈1, {this 7→ o1,−−−−→x 7→ v1}, ǫ, η1〉 −→

∗
B′ 〈p′f , 〈o

′
1〉, η

′
1〉 HandlerB(i) = i′

〈i, α1,−→v1 · o1 · σ1, η1〉 −→B 〈i
′, α1, 〈o

′
1〉 · ǫ, η

′
1〉 = s′1

B(i) = invokevirtual m o′2 = Fresh(η2) B′ = lookup(m, dynamic(o2))
〈1, {this 7→ o2,−−−−→x 7→ v2}, ǫ, η2〉 −→

∗
B′ 〈p′f , 〈o

′
2〉, η

′
2〉 HandlerB(i) = i′

〈i, α2,−→v2 · o2 · σ2, η2〉 −→B 〈i
′, α2, 〈o

′
2〉 · ǫ, η

′
2〉 = s′2

Moreover, from T-InvkVrtH:

HandlerB(i) = i′

mtm(κ ⊔ Ai) = A
′
1, T

′
1, T

′
pf

✄ ((
−−−→
x′ : κ′, κ′

r, E
′), B′)

E′ 6= ∅
Ai ⊔ κ = A′(1)
κ′
r ⊔ Ai · ǫ ≤Ai

Si′
Ti ≤ T

′
1 ≤ T

′
pf
≤ Ti′

Vi ≤ Vi′
∀j ∈ Dom(Si).Ai ⊑ Si(j)

By setting β′ ⊇ β, where β′ is the location bijection set such that β′ ⊢ 〈p′f , o
′
1, η

′
1〉 ∼

λ 〈p′f , o
′
2, η

′
2〉, we

may prove β′ ⊢ s′1 ∼
λ s′2, as developed below.

114 A Noninterference Soundness Proofs

a) From i′1 = i′ = i′2 it follows that A(i′1) = A(i
′
2).

b) Idem to previous case.
c) We have two cases:
• A(i′) ⊑ λ. By hypothesis β′ ⊢ 〈p′f , o

′
1, η

′
1〉 ∼

λ 〈p′f , o
′
2, η

′
2〉, L-Nil and L-Cons we have

β′, κ′
r ⊔ Ai · ǫ,Ai ⊢ o′1 · ǫ ∼

λ o′2 · ǫ.
Now, by condition 5 of T-InvkVrt and Lemma A.6 we have β′,Si′ ,Ai ⊢ o′1 · ǫ ∼

λ o′2 · ǫ. The
result follows by Lemma A.9.

• A(i′) 6⊑ λ. By the previous case and resorting to H-Low.
d) Idem to previous case.

3. If both runs raise an exception and no handler is available, then

B(i) = invokevirtual m o′1 = Fresh(η1) HandlerB(i) ↑ B′ = lookup(m, dynamic(o1))
〈1, {this 7→ o1,−−−−→x 7→ v1}, ǫ, η1〉 −→

∗
B′ 〈p′f , 〈o

′
1〉, η

′
1〉

〈i, α1,−→v1 · o1 · σ1, η1〉 −→B 〈err i, α1, 〈o
′
1〉 · σ1, η

′
1〉 = s′1

B(i) = invokevirtual m o′2 = Fresh(η2) HandlerB(i) ↑ B′ = lookup(m, dynamic(o2))
〈1, {this 7→ o2,−−−−→x 7→ v2}, ǫ, η2〉 −→

∗
B′ 〈p′f , 〈o

′
2〉, η

′
2〉

〈i, α2,−→v2 · o2 · σ2, η2〉 −→B 〈err i, α2, 〈o
′
2〉 · σ2, η

′
2〉 = s′2

Moreover, from T-InvkVrtNoH:

HandlerB(i) ↑

mtm(κ ⊔ Ai) = A
′
1, T

′
1, T

′
pf

✄ ((
−−−→
x′ : κ′, κ′

r, E
′), B′)

E′ 6= ∅
Ai ⊔ κ = A′(1)
Si ≤Ai

κ′
1 · · ·κ

′
n · κ · (Serri\0)

κ′
r ⊔ Ai ⊑ Serri(0)
Ai ⊔ κ ⊔ κ′

r ⊑ κr

Vi ≤ Verri
Ti ≤ T

′
1 ≤ T

′
pf
≤ Terri

By setting β′ ⊇ β, where β′ is the location bijection set such that β′ ⊢ 〈p′f , o
′
1, η

′
1〉 ∼

λ 〈p′f , o
′
2, η

′
2〉, we

may prove β′ ⊢ s′1 ∼
λ s′2, as developed below.

a) From i′1 = erri = i′2 it follows that A(i′1) = A(i
′
2).

b) Idem to previous case.
c) Idem to both runs raise an exception and no handler is available case of putfield instruction.
d) Idem to previous case.

4. One run is normal and an exception is raised in the other execution (for which there is a handler).

B(i) = invokevirtual m o1 ∈ Dom(η1) B′ = lookup(m, dynamic(o1))
〈1, {this 7→ o1,−−−−→x 7→ v1}, ǫ, η1〉 −→

∗
B′ 〈p′f , v1, η

′
1〉

〈i, α1,−→v1 · o1 · σ1, η1〉 −→B 〈i+ 1, α1, v1 · σ1, η
′
1〉 = s′1

B(i) = invokevirtual m o′ = Fresh(η2) B′ = lookup(m, dynamic(o2))
〈1, {this 7→ o2,−−−−→x 7→ v2}, ǫ, η2〉 −→

∗
B′ 〈p′f , 〈o

′〉, η′2〉 HandlerB(i) = i′

〈i, α2,−→v2 · o2 · σ2, η2〉 −→B 〈i
′, α2, 〈o

′〉 · ǫ, η′2〉 = s′2

Moreover, from T-InvkVrtl and T-InvkVrtlH:

A.3 High Context 115

HandlerB(i) = i′

mtm(κ ⊔ Ai) = A
′
1, T

′
1, T

′
pf

✄ ((
−−−→
x′ : κ′, κ′

r, E
′), B′)

Ai ⊔ κ = A′(1)
Si = κ′

1 · · ·κ
′
n · κ · S, for some S

Si ≤Ai
κ′
1 · · ·κ

′
n · κ · (Si+1\0)

Ai ⊑ κ′
1, · · · , κ

′
n, κ

κ ⊔ κ′
r ⊔ Ai ⊑ Si+1(0)

Vi ≤ Vi+1,Vi′
Ti ≤ T

′
1 ≤ T

′
pf
≤ Ti+1, Ti′

∀k ∈ region(i).κ ⊔ κ′
r ⊑ Ak, if i ∈ Dom(B♯)

E′ 6= ∅
κ′
r ⊔ Ai · ǫ ≤Ai

Si′
∀j ∈ Dom(Si).Ai ⊑ Si(j)

By setting β′ ⊇ β, where β′ is the location bijection set such that β′ ⊢ 〈p′f , o
′
1, η

′
1〉 ∼

λ 〈p′f , o
′
2, η

′
2〉, we

may prove β′ ⊢ s′1 ∼
λ s′2, as developed below.

a) From hypothesis one run is normal and an exception is raised in the other execution (for which
there is a handler) and β′, ⌊κ′

r⌋ ⊢ v1 ∼
λ o′ with κ′

r 6⊑ λ. By SOAP, i + 1, i′ ∈ region(i) and by
condition 10 of T-InvkVrtl A(i+ 1),A(i′) 6⊑ λ.

b) By hypothesis β,Vi,Ai ⊢ α1 ∼
λ α2, conditions 8 of T-InvkVrtl and Lemmas A.3 and A.4 we

deduce β′, (Vi+1,Vi′),A1 ⊢ α1 ∼
λ α2. we resort to the definition of indistinguishability of local

variable arrays and conditions 8 of T-InvkVrtl to deduce the result.
c) We must prove that β′, (Si+1,Si′), l ⊢ v1 · σ1 ∼

λ o′ · ǫ, with l 6⊑ λ.
By L-Nil and H-Low, we can affirm that β′, (ǫ, ǫ), l ⊢ ǫ ∼λ ǫ. Now, by κ′

r 6⊑ λ and H-Cons-R

we have that β′, (ǫ, κ′
r ⊔ A(i) · ǫ), l ⊢ ǫ ∼λ o′2 · ǫ

By conditions 3, 4, 5 and 6 and the last one of T-InvkVrtl (both of which are listed above),
we can repeatedly apply H-Cons-L, following to application of Lemmas A.8 and A.8 to obtain
β′, (Si+1,Si′), l ⊢ v1 · σ1 ∼

λ o′2 · ǫ.
d) By hypothesis β′, T ′

pf
⊢ η′1 ∼

λ η′2, condition 9 of T-InvkVrt and Lemma A.10, β′, (Ti+1, Ti′) ⊢

η′1 ∼
λ η′2.

5. One execution is normal and the other one raises an exception (for which there is no handler). This
case is similar to previous case.

A.3 High Context

We address the proof of the One-Step Noninterference in High Level Environments.

Lemma 3.45 (One-Step High)
Let i1, i2 ∈ region(k) for some k such that ∀k′ ∈ region(k) : Ak′ 6⊑ λ. Furthermore, suppose:

1. β ⊢ s1 ∼
λ s′1 for some location bijection set β;

2. s1 −→B s2;
3. s2 = 〈i′1, α

′
1, σ

′
1, η

′
1〉; and

4. i′1 ∈ region(k).

Then β ⊢ s2 ∼
λ s′1.

Proof. First we prove β id ⊢ s1 ∼
λ s′1 by a case analysis on the instruction that is executed and we

conclude β ◦ β id ⊢ s′1 ∼
λ s2 by the typing rule and the third item of the Lemma 3.40 (transitivity). We

note that by β id definition β ◦ β id = β then we conclude β ⊢ s′1 ∼
λ s2

116 A Noninterference Soundness Proofs

Before commencing, we point out that Ai1 ,Ai2 ,Ai′1
6⊑ λ. In particular, Ai1 ,Ai′1

6⊑ λ and thus this
proves the first item needed to determined that s1 and s′1 are indistinguishable. We consider the remaining
three for each reduction steps case.

Case: B(i1) = store x

B(i1) = store x

〈i1, α1, v1 · σ1, η1〉 −→B 〈i1 + 1, α1 ⊕ {x 7→ v1}, σ1, η1〉 = s′1

Moreover, by T-Store:

Si1 ≤Ai1
Vi1+1(x) · Si1+1

Vi1 \ x ≤ Vi1+1 \ x
Ai1 ⊑ Vi1+1(x)
Ti1 ≤ Ti1+1

We prove β id ⊢ s1 ∼
λ s′1 by considering the two remaining items of machine state indistinguishability:

1. First we β id, (Vi1 ,Vi1+1),Ai1+1 ⊢ α1 ∼
λ α1 ⊕ {x 7→ v1}.

The only variable of interest is x since it is the only one that is changed. From condition 3 of T-Store,
Ai1 ⊑ Vi1+1(x) and hence β id, ⌊(Vi1(x) ⊔ Vi1+1(x))⌋ ⊢ α1(x) ∼

λ α1 ⊕ {x 7→ v1}(x) (1).
Now, by Lemma 3.39 (reflexivity of variable high indistinguishability)

β id, (Vi1 \ x,Vi1 \ x),Ai1 ⊢ α1 \ x ∼
λ α1 ⊕ {x 7→ v1} \ x

By this and by condition 2 of T-Store and by Lemma A.3 we have β id, (Vi1 \ x,Vi1+1 \ x),Ai1 ⊢
α1 \ x ∼

λ α1 ⊕ {x 7→ v1} \ x (2). By (2), (1) and indistinguishability definition, we conclude that
β id, (Vi1 ,Vi1+1),Ai1+1 ⊢ α1 ∼

λ α1 ⊕ {x 7→ v1}.
2. By Lemma A.14 (reflexivity of stack high indistinguishability) β id, (Si1 \ 0,Si1 \ 0),Ai1 ⊢ σ1 ∼

λ σ1.
By condition 1 of T-Store, Si1 \ 0 ≤Ai1

Si1+1. Therefore, by resorting to Lemma A.7 we deduce

β id, (Si1 \ 0,Si1+1),Ai1 ⊢ σ1 ∼
λ σ1

Finally, by H-Cons-L

β id, (Si1 ,Si1+1),Ai1+1 ⊢ v1 · σ1 ∼
λ σ1

3. By definition of β id and Lemma A.15 (reflexivity of heap high indistinguishability) we have that
β id, (Ti1 , Ti1) ⊢ η1 ∼

λ η1. Now, by the hypothesis Ti1 ≤ Ti1+1 and the Lemma A.11 we deduce
β id, (Ti1 , Ti1+1) ⊢ η1 ∼

λ η1.

Case: B(i1) = load x. By the operational semantics :

B(i1) = load x

〈i1, α1, σ1, η1〉 −→B 〈i1 + 1, α1, α1(x) · σ1, η1〉 = s′1

Moreover, from T-Load:

Ai1 ⊔ Vi1(x) · Si1 ≤Ai1
Si1+1

Vi1 ≤ Vi1+1

Ti1 ≤ Ti1+1

We prove the three remaining items of β id ⊢ s1 ∼
λ s′1.

A.3 High Context 117

1. We address β id, (Vi1 ,Vi1+1),Ai1+1 ⊢ α1 ∼
λ α1.

By Lemma 3.39 (reflexivity of variable high indistinguishability), β id, (Vi1 ,Vi1),Ai1 ⊢ α1 ∼
λ α1. By

this and by condition 2 of T-Load and by Lemma A.3, β id, (Vi1 ,Vi1+1),Ai1 ⊢ α1 ∼
λ α1 .

2. By Lemma A.14 (reflexivity of stack high indistinguishability) we have that β id, (Si1 ,Si1),Ai1 ⊢ σ1 ∼
λ

σ1. Given that Ai1 6⊑ λ we may resort to H-Cons-R to obtain β id, (Si1 ,A(i) ⊔ Vi1(x) · Si1)),Ai1 ⊢
σ1 ∼

λ α1(x) · σ1. Finally, by condition 1 of T-Load and Lemma A.7 we have β id, (Si1 ,Si1+1),A(i1 + 1) ⊢
σ1 ∼

λ α1(x) · σ1.
3. Idem to store case.

Case: B(i) = new C

B(i1) = new C o1 = Fresh(η1)

〈i1, α1, σ1, η1〉 −→B 〈i1 + 1, α1, o1 · σ1, η1 ⊕ {o1 7→ Default(C)}〉 = s′1

Therefore η′1 = η1 ⊕ {o1 7→ Default(C)}. Moreover, from T-New:

a = Fresh(Ti1)
Ti1 ⊕ {a 7→ [f1 : ft(f1), . . . , fn : ft(fn)]} ≤ Ti1+1

〈{a},Ai1〉 · Si1 ≤Ai1
Si1+1

Vi1 ≤ Vi1+1

We prove the three remaining items of β id ⊢ s1 ∼
λ s′1.

1. Idem to load case.
2. By Lemma A.14 (reflexivity of stack high indistinguishability), β id, (Si1 ,Si1),Ai1 ⊢ σ1 ∼

λ σ1. By this
and H-Cons-R, β id, (Si1 , 〈{a},A(i1)〉 · Si1),Ai1 ⊢ σ1 ∼

λ o1 · σ1.
Now, by condition 3 of T-New and Lemma A.7 we conclude that β id, (Si1 ,Si1+1),Ai1+1 ⊢ σ1 ∼

λ

o1 · σ1.
3. We prove the two items of β id, (Ti1 , Ti1+1) ⊢ η1 ∼

λ η′1.
The first is an immediate consequence of the definition of β id.
The last item is proved as follows. Let o ∈ Dom(β id

loc) and let f ∈ Dom(η1(o)). Note that o1 /∈
Dom(β id

loc). We must prove that:

β id, ⌊Ti1(β
id

✁−1

(o), f)⌋ ⊢ η1(o, f) ∼
λ η′1(β

id(o), f).

By Lemma 3.37 (in particular, that value indistinguishability is reflexive),

β id, ⌊Ti1(β
id

✁−1

(o), f)⌋ ⊢ η1(o, f) ∼
λ η1(β

id(o), f).

Given the definition of η′1 this is equivalent to

β id, ⌊Ti1(β
id

✁−1

(o), f)⌋ ⊢ η1(o, f) ∼
λ η′1(β

id(o), f).

Finally, we resort to the hypothesis Ti1 ≤ Ti1+1 and Lemma A.1 to conclude.

Case: B(i) = putfield fj
There are three options to consider:

1. There is no exception, then

B(i1) = putfield fj o1 ∈ Dom(η1) fj ∈ Dom(η1(o1))

〈i1, α1, v1 · o1 · σ1, η1〉 −→B 〈i1 + 1, α1, σ1, η1 ⊕ ({o1 7→ η1(o1)} ⊕ {fj 7→ v1})〉 = s′1

Moreover, from T-PtFld:

118 A Noninterference Soundness Proofs

Si1 ≤Ai1
〈R1, l1〉 · 〈R, l〉 · Si+1

l1 ⊔ l ⊑
d

a∈R Ti1(a, f)
for all a ∈ R.Ti+1(a, f) = 〈R3, l2〉,

where Ti1(a, f) = 〈 , l2〉 ∧R1 ⊆ R3

Ai1 ⊑ l, l1
Vi1 ≤ Vi+1

Ti1\{(a, f) | a ∈ R} ≤ Ti+1\{(a, f) | a ∈ R}
∀k ∈ region(i).l ⊑ Ak

We prove all three remaining items of β id ⊢ s1 ∼
λ s′1.

a) Idem to load case.
b) By Lemma A.14 (reflexivity of stack high indistinguishability), β id, (Si1 \ 2,Si1 \ 2),Ai1 ⊢ σ1 ∼

λ

σ1. By H-Cons-L we deduce β id, (Si1 ,Si1 \ 2),Ai1 ⊢ v1 · o1 · σ1 ∼
λ σ1. Finally, by condition 1 of

T-PtFld and Lemma A.7 we have that β id, (Si1 ,Si1+1),Ai1+1 ⊢ v1 · o1 · σ1 ∼
λ σ1.

c) We address β id, (Ti1 , Ti1+1) ⊢ η1 ∼
λ η′1.

The first item is immediate. The second item is proved as follows. Let o ∈ Dom(β id

loc), and let
f ∈ Dom(η1(o)). We must prove that:

β id, ⌊Ti1(β
id

✁−1

(o), f)⌋ ⊢ η1(o, f) ∼
λ η′1(β

id(o), f).
By Lemma 3.37,

β id, ⌊Ti1(β
id

✁−1

(o), f)⌋ ⊢ η1(o, f) ∼
λ η1(β

id(o), f).
We have two cases:
i. If β id

✁−1

(o) ∈ Dom(Ti1) \R, then the result follows from Ti1 ≤ Ti1+1 and Lemma A.1.

ii. Otherwise β id
✁−1

(o) ∈ R. From condition 2 and 4 of T-PtFld, Ti1(β
id

✁−1

(o), f) 6⊑ λ. There-
fore,

β id, ⌊Ti1(β
id

✁−1

(o), f)⌋ ⊢ η1(o, f) ∼
λ η′1(β

id(o), f)
holds trivially. Note that for all other f ′ ∈ Dom(η1(o)) different from f we reason as in the
previous subcase.

2. An exception is raised and there is a handler, then

B(i1) = putfield f o1 = null
o′ = Fresh(η1) Handler(i1) = i′

〈i1, α, v1 · o1 · σ1, η1〉 −→B 〈i
′, α1, o

′ · ǫ, η1 ⊕ {o
′ 7→ Default(Throwable)}〉 = s′1

Moreover, from T-PtFldH:

Handler(i1) = i′

Si1 = κ′ · 〈R, l〉 · S, for some S
a = Fresh(Ti1)
〈{a}, l ⊔ Ai1〉 · ǫ ≤Ai1

Si′

Vi1 ≤ Vi′
Ti1 ⊕ {a 7→ [f1 : ftAi1

(f1), . . . , fn : ftAi1
(fn)]} ≤ Ti′

∀j ∈ Dom(Si1).Ai1 ⊑ Si1(j)

We prove stack indistinguishability. For the two remaining items of β id ⊢ s1 ∼
λ s′1, we conclude as in

the case of new.
We must prove that β id, (Si1 ,Si′),Ai′ ⊢ v1 · o1 · σ1 ∼

λ o′ · ǫ.
By L-Nil and H-Low, we can affirm that β id, (ǫ, ǫ),Ai1 ⊢ ǫ ∼λ ǫ. Now, by condition 4 of typing rule
and Ai1 6⊑ λ and H-Cons-R we have that β id, (ǫ, 〈 , l ⊔ Ai1〉 · ǫ), H ⊢ ǫ ∼λ o′ · ǫ.
By the last condition of T-PtFld, we can repeatedly applyH-Cons-L for obtain β′, (Si, 〈 , l ⊔ Ai1〉 · ǫ),Ai1 ⊢
v1 · o1 · σ1 ∼

λ o′ · ǫ. The result follows by Ai′ 6⊑ λ and stack indistinguishability definition.

A.3 High Context 119

3. An exception is raised and there is no a handler, then

B(i1) = putfield f o1 = null
o′1 = Fresh(η1) Handler(i1) ↑

〈i1, α1, v1 · o1 · σ1, η1〉 −→B 〈err i, α1, o
′
1 · σ1, η1 ⊕ {o

′
1 7→ Default(Throwable)}〉 = s′1

Moreover, from T-PtFldNoH:

Si1 ≤Ai1
κ · 〈R, l〉 · (Serri\0)

κ ⊑
d

a∈R Ti1(a, f)
a = Fresh(Ti1)
〈{a}, l ⊔ Ai1〉 ⊑ Serri(0)
l ⊑ κr

Ai1 ⊑ κ, l
Vi1 ≤ Verri
Ti1 ⊕ {a 7→ [f1 : ftAi

(f1), . . . , fn : ftAi
(fn)]} ≤ Terri

We prove all three remaining items of β id ⊢ s1 ∼
λ s′1.

a) By Lemma 3.39 (reflexivity of variable high indistinguishability), β id, (Vi1 ,Vi1),Ai1 ⊢ α1 ∼
λ α1.

Using this, condition 7 of T-PtFld and Lemma A.3 we conclude as in the case of T-New.
b) We address β id, (Si1 ,Serri),Aerri ⊢ v1 · o1 · σ1 ∼

λ o′1 · σ1.
By Lemma A.14 (reflexivity of stack high indistinguishability) we have that
β id, (Si1 ,Si1),Ai1 ⊢ v1 · o1 · σ1 ∼

λ v1 · o1 · σ1.
Now, by condition 1 of T-PtFld and Lemma A.7 we have β id, (Si1 , κ · 〈R, l〉 · (Serri\0)),Ai1 ⊢
v1 · o1 · σ1 ∼

λ v1 · o1 · σ1. Given that Ai1 6⊑ λ, by condition 6 of T-PtFld we may resort to
H-Cons-R to obtain β id, (Si1 , (Serri\0))),Ai1 ⊢ v1 · o1 · σ1 ∼

λ σ1.
Now, by condition by condition 4 of T-PtFld and H-Cons-R, we have β id, (Si1 ,Serri),Ai1 ⊢
v1 · o1 · σ1 ∼

λ o′1 · σ1. The result follows by Aerri 6⊑ λ and stack indistinguishability definition.
c) We conclude as in the case of new.

Case: B(i1) = throw

We have two cases:

1. If there is a handler defined, then

B(i1) = throw Handler(i1) = i′

〈i1, α1, o1 · σ1, η1〉 −→B 〈i
′, α1, o1 · ǫ, η1〉 = s′1

Moreover, from T-Throw:

Handler(i1) = i′

Si1(0) ⊑ A(i
′)

Vi1 ≤ Vi′
Ti1 ≤ Ti′
Si(0) · ǫ ≤Ai1

Si′

∀j ∈ Dom(Si1).Ai1 ⊑ Si1(j)
A(i)

We prove the three remaining items of β id ⊢ s1 ∼
λ s′1.

120 A Noninterference Soundness Proofs

a) We conclude as in the case of load.
b) We conclude as in the case of T-PtFldH.
c) We conclude as in the case of store.

2. If there is a no handler defined, then

B(i1) = throw Handler(i1) ↑

〈i1, α1, o1 · σ1, η1〉 −→B 〈erri, α1, o1 · σ1, η1〉 = s′1

Moreover, from T-Throw:

Handler(i1) ↑
Si1(0) ⊔ Ai1 ⊑ κr

Si1 ≤Ai1
Serri

Vi1 ≤ Verri
Ti1 ≤ Terri

We prove stack indistinguishability. For the two remaining items of β id ⊢ s1 ∼
λ s′1, we conclude as in

the previous case.
By Lemma A.14 (reflexivity of stack high indistinguishability) we have that β id, (Si1 ,Si1),Ai1 ⊢
o1 · σ1 ∼

λ o1 · σ1. Finally, by condition 3 of T-Throw and Lemma A.7 we have β id, (Si1 ,Serri),Ai1 ⊢
o1 · σ1 ∼

λ o1 · σ1. Now, β id, (Si1 ,Serri),Aerri ⊢ o1 · σ1 ∼
λ o1 · σ1, follow by stack indistinguishability

and Aerri 6⊑ λ.

Case: B(i1) = getfield fj
There are three options to consider:

1. There is no exception, then

• By the operational semantics we know:

B(i1) = getfield f o1 ∈ Dom(η1) η1(o1, f) = v1

〈i1, α1, o1 · σ1, η1〉 →B 〈i1 + 1, α1, v1 · σ1, η1〉

i.e. s′1 = 〈i1 + 1, α1, v1 · σ1, η1〉.
• From T-GtFld:

Handler(i1) ↓
Si1(0) = 〈R, l〉
κ =

⊔
a∈R Ti1(a, f)

l ⊔ κ ⊔ Ai1 · (Si1\0) ≤Ai1
Si1+1

Vi1 ≤ Vi1+1

Ti1 ≤ Ti1+1

∀k ∈ region(i1).l ⊑ Ak

In order to prove β id ⊢ s1 ∼
λ s′1, the only case of interest is stack indistinguishability.

By Lemma A.14 (reflexivity of stack high indistinguishability), β id, (Si1 \ 0,Si1 \ 0),Ai1 ⊢ σ1 ∼
λ

σ1. Then by H-Cons-L and condition 4, β id, (Si1 ,Si1 \ 0),Ai1 ⊢ o1 · σ1 ∼
λ σ1. Now, by H-Cons-

R,β id, (Si1 , l ⊔ l · Si1 \ 0),Ai1 ⊢ o1 · σ1 ∼
λ v1 · σ1.

Finally, by condition 4 of T-GtFld and Lemma A.7 we conclude with β id, (Si1 ,Si1+1),Ai1 ⊢
o1 · σ1 ∼

λ v1 · σ1. The result follows by stack indistinguishability and Ai+1 6⊑ λ.
2. An exception is raised and there is a handler.

A.3 High Context 121

3. An exception is raised and there is no a handler.
The proof the both cases it is the same way that the case for putfield.

Cases: We assume B(i1) = return.
By the operational semantics we know:

B(i1) = return

〈i1, α1, v1 · σ1, η1〉 −→B 〈pf , v1, η1〉 = s′1

From T-Ret:

Si1(0) ⊔ Ai1 ⊑ κr

Ti1 ≤ Tpf

The 〈i1, v1, η1〉 ∼
λ
βid 〈pf , v1, η1〉 is trivial.

Cases: We assume pc(i1) = erri1 .
By the operational semantics we know:

B(erri1)

〈erri1 , α1, v1 · σ1, η1〉 −→B 〈pf , v1, η1〉 = s′1

From T-Ret:

Serri1 (0) ⊔ A(erri1) ⊑ κr

Terri1 ≤ Tpf

The 〈erri1 , v1, η1〉 ∼
λ
βid 〈pf , v1, η1〉 is trivial.

Case: B(i) = invokevirtual B′

There are three options to consider:

1. There is no exception, then

B(i) = invokevirtual m o1 ∈ Dom(η1) B′ = lookup(m, dynamic(o1))
〈1, {this 7→ o1,−−−−−→x1 7→ v1}, ǫ, η1〉 −→

∗
B′ 〈p′f , v1, η

′
1〉

〈i1, α1,−→v1 · o1 · σ1, η1〉 −→B 〈i1 + 1, α1, v1 · σ1, η
′
1〉 = s′1

From T-InvkVrtl:

mtm(κ ⊔ Ai1) = A
′
1, T

′
1, T

′
pf

✄ ((
−−−→
x′ : κ′, κ′

r, E
′), B′)

Ai1 ⊔ κ = A′
1

Si1 = κ′
1 · · ·κ

′
n · κ · S, for some S

Si1 ≤Ai1
κ′
1 · · ·κ

′
n · κ · (Si1+1\0)

Ai1 ⊑ κ′
1, · · · , κ

′
n, κ

κ ⊔ κ′
r ⊔ Ai1 ⊑ Si1+1(0)

Vi1 ≤ Vi1+1

Ti1 ≤ T
′
1 ≤ T

′
pf
≤ Ti1+1

∀k ∈ region(i1).κ ⊔ κ′
r ⊑ Ak, if i1 ∈ Dom(B♯)

122 A Noninterference Soundness Proofs

In order to prove β id ⊢ s1 ∼
λ s′1, the only case of interest is stack indistinguishability.

By Lemma A.14 (reflexivity of stack high indistinguishability), β id, (Si1 \ ‖κ
′
1 · · ·κ

′
n · κ‖,Si1 \ ‖κ

′
1 · · ·κ

′
n · κ‖),Ai1 ⊢

σ1 ∼
λ σ1. By H-Cons-L we deduce β id, (Si1 ,Si1 \ ‖κ

′
1 · · ·κ

′
n · κ‖),Ai1 ⊢

−→v1 · o1 · σ1 ∼
λ σ1. Now, by

condition 4 of T-InvkVrtl and Lemma A.7 we have that β id, (Si1 ,Si1+1 \ 0),Ai1 ⊢
−→v1 · o1 · σ1 ∼

λ σ1.
Finally, by condition 5 y 6 of T-InvkVrtl and H-Cons-L we have that β id, (Si1 ,Si1+1),Ai1 ⊢
−→v1 · o1 · σ1 ∼

λ v1 · σ1. The result follows by stack indistinguishability and Ai1+1 6⊑ λ.

2. An exception is raised and there is a handler.
3. An exception is raised and there is no a handler.

The proof the both cases it is the same way that the case for putfield.

Case: B(i) = goto i′ is trivial by that it does not change the state of the program.

Case: B(i) = push v and B(i) = prim are similar to case B(i) = load x.

Case: B(i) = pop is similar to case B(i) = store x .

Case: B(i) = if i′ the four cases are similar to case B(i) = store x .

A.4 High-Low Context

The proof of the Equivalence in High-Low Level Contexts Lemma follows. The only interesting cases are
goto, return and pc(s1)=erri.

Lemma 3.46 (One-Step High to Low)
Let i1, i2 ∈ region(k) for some k such that ∀k′ ∈ region(k) : Ak′ 6⊑ λ. Suppose:

1. s1 −→B s′1 and s2 −→B s′2;
2. β ⊢ s1 ∼

λ s2, for some location bijection set β; and
3. s′1 = 〈i′1, α

′
1, σ

′
1, η

′
1〉 and s′2 = 〈i′2, α

′
2, σ

′
2, η

′
2〉;

4. and Ai′1
= Ai′2

and Ai′1
⊑ λ.

Then i′1 = jun(k) = i′2 and β ⊢ s′1 ∼
λ s′2.

Proof. There are several options to consider.

• Due to our assumption on the forms of programs (see comment below Property 3.10), we may assume
both B(i1) = goto i ′1 and B(i2) = goto i ′2 . Thus, s

′
1 = 〈i′1, α1, σ1, η1〉 and s′2 = 〈i′2, α2, σ2, η2〉 and

both of the following hold:

B(i1) = goto i ′1

〈i1, α1, σ1, η1〉 −→B 〈i
′
1, α1, σ1, η1〉

B(i2) = goto i ′2

〈i2, α2, σ2, η2〉 −→B 〈i
′
2, α2, σ2, η2〉

Also, from T-Goto:

Vi1 ≤ Vi′1
Si1 ≤Ai1

Si′1
Ti1 ≤ Ti′1

Vi2 ≤ Vi′2
Si2 ≤Ai2

Si′2
Ti2 ≤ Ti′2

We now address the proof of both items:

A.4 High-Low Context 123

I- i′1 = jun(k) = i′2. By the hypothesis Ai1 ,Ai2 6⊑ λ, i1 7→ i′1, i2 7→ i′2 and by assumption Ai′1
=

A(i′2) ⊑ λ. Therefore, by Lemma A.12 we know that i′1 = jun(k) and that i′2 = jun(k). But by the
SOAP property, junction points are unique. Hence i′1 = jun(k) = i′2.

II-We address the proof of the four items of the definition of state indistinguishability for β ⊢ s′1 ∼
λ s′2:

1. By hypothesis Ai′1
= Ai′2

and Ai′1
⊑ λ.

2. We must prove β,Vi′1 ,Ai′1
⊢ α1 ∼

λ α2 (since α′
1 = α1 and α′

2 = α2). Recall from above that by
hypothesis:

β, (Vi1 ,Vi2), l ⊢ α1 ∼
λ α2, l 6⊑ λ (A.21)

Let x ∈ X. We have two cases:
· If Vi′1(x) 6⊑ λ, then we trivially have β, ⌊Vi′1(x)⌋ ⊢ α1(x) ∼

λ α2(x).

· If Vi′1(x) ⊑ λ, then Vi1(x) ⊑ λ and Vi2(x) ⊑ λ. Thus β, ⌊Vi′1(x)⌋ ⊢ α1(x) ∼
λ α2(x) follows

from (A.21).
3. We must prove β,Si′1 ,Ai′1

⊢ σ1 ∼
λ σ2. By the hypothesis,

β, (Si1 ,Si2), l ⊢ σ1 ∼
λ σ2, l 6⊑ λ (A.22)

and by condition 2 of T-Goto we know that ‖Si1‖ = ‖Si′1‖ = ‖Si2‖ (also, Si′1 = Si′2).
For each j ∈ {0..‖Si′1‖ − 1}, we proceed as follows:

· If Si′1(j) 6⊑ λ, then trivially β, ⌊Si′1(j)⌋ ⊢ σ1(j) ∼
λ σ2(j).

· If Si′1(j) ⊑ λ, then Si1(j) = Si2(j) ⊑ λ. From (A.22) and the definition of stack indistin-
guishability, it follows that there exists k ≥ j such that the prefix of size k of σ1 and σ2

are low indistinguishable. As a consequence, β, ⌊Si′1(j)⌋ ⊢ σ1(j) ∼
λ σ2(j).

Hence, β,Si′1 ,Ai′1
⊢ σ1 ∼

λ σ2.

4. We address the two items of the definition of β, Ti′1 ⊢ η1 ∼
λ η2. The first follow from the

hypothesis that s1 and s2 are indistinguishable and Ti1 , Ti2 ≤ Ti′1 . Regarding the last item, we
proceed as follows. Let o ∈ Dom(βloc), and let f ∈ Dom(η1(o)). We must prove that:

β, ⌊Ti′1(β
✁−1(o), f)⌋ ⊢ η1(o, f) ∼

λ η2(β(o), f).

This is an immediate consequence of the hypothesis, ∼λ
β Ti1(β

✁−1(o), f)η1(o, f)η2(β(o), f) and
Ti1 , Ti2 ≤ Ti′1 .

• Wemay assume both B(i1) = return and B(i2) = return. Thus, s′1 = 〈pf , v1, η1〉 and s′2 = 〈pf , v2, η2〉
and both of the following hold:

B(i1) = return

〈i1, α1, v1 · σ1, η1〉 −→B 〈pf , v1, η1〉

B(i2) = return

〈i2, α2, v2 · σ2, η2〉 −→B 〈pf , v2, η2〉

Also, from T-Ret:

Si1(0) ⊔ Ai1 ⊑ κr

Ti1 ≤ Tpf

Si2(0) ⊔ Ai2 ⊑ κr

Ti2 ≤ Tpf

We now address the proof of both items:

I- By successor relation definition pc(s′1)=pc(s
′
2)=pf .

II-We address the proof of the two items of the definition of final state indistinguishability for
β ⊢ s′1 ∼

λ s′2:
1. By hypothesis A(pf) ⊑ λ.
2. We must prove β, ⌊κr⌋ ⊢ v1 ∼

λ v2. By the hypothesis, β, (Si1 ,Si2), l ⊢ v1 · σ1 ∼
λ v2 · σ2, l 6⊑ λ,

then we have β, ⌊Si1(0) ⊔ Si2(0)⌋ ⊢ v1 ∼
λ v2.

Furthermore, by T-Ret Si1(0) ⊑ κr and Si2(0) ⊑ κr.
Now, by indistinguishability definition β, ⌊κr⌋ ⊢ v1 ∼

λ v2.
3. Idem to previous T-Goto case.

124 A Noninterference Soundness Proofs

• The remain cases B(i1) = return and pc(i2) = erri, pc(i1) = erri, B(i2) = return and pc(i1) = erri,
pc(i2) = erri are similar to the previous case.

B

Robustness Soundness Proofs

In this appendix we present detailed proofs of the lemmas introduced in Chapter 4.

B.1 Integrity Indistinguishability - Properties

Determining that integrity indistinguishability of values, local variable arrays, stacks and heaps is an
equivalence relation requires the same careful consideration that for indistinguishability properties of
Section 3.6.2. The proofs are similar at proof in Section A.1.1.

Lemma B.1.

1. β id, l ⊢ v ≃A v, if v ∈ L and l ∈ HI implies v ∈ Dom(β id).

2. β, l ⊢ v1 ≃
A v2 implies β̂, l ⊢ v2 ≃

A v1.
3. If β, l ⊢ v1 ≃

A v2 and γ, l ⊢ v2 ≃
A v3, then γ ◦ β, l ⊢ v1 ≃

A v3.

Proof. The first two items follow directly from a close inspection of the definition of value indis-
tinguishability. Regarding transitivity we consider the two cases, l 6∈ HI and l ∈ HI . In the former
case, γ ◦ β, l ⊢ v1 ≃

A v3 holds trivially by definition of value indistinguishability. For the latter, if
v1 = null or v1 ∈ Z we resort to transitivity of equality. If v1 ∈ L, then by hypothesis and by the
definition of value indistinguishability, v2, v3 ∈ L, β(v1) = v2 and γ(v2) = v3. And by definition of γ ◦ β,
(γ ◦ β)(v1) = γ(β(v1)) = v3. Hence γ ◦ β, l ⊢ v1 ≃

A v3.

We now address local variable arrays. Variable reuse allows a public variable to be reused for storing
secret information in a high security execution context. Suppose, therefore, that l 6∈ HI , β, (V1, V2), l ⊢
α1 ≃

A α2 and γ, (V2, V3), l ⊢ α2 ≃
A α3 where, for some x, V1(x) = L, V2(x) = H and V3(x) = L. Clearly it is

not necessarily the case that γ ◦ β, (V1, V3), l ⊢ α1 ≃
A α3 given that α1(x) and α3(x) may differ. We thus

require that either V1 or V3 have at least the level of V2 for this variable: V2(x) ⊑ V1(x) or V2(x) ⊑ V3(x).
Of course, it remains to be seen that such a condition can be met when proving noninterference, we defer
that discussion to Sec. 3.6.3. For now we state the result, namely that indistinguishability of local variable
arrays is an equivalence relation (its proof is an easy consequence of lemma 3.37).

Notation B.2
• HighLoc(α, V, A) (or simply HighLoc(α) if the V is understood from the context) is shorthand for
{o |α(x) = o, V (x) ∈ HI}.

• HighLoc(σ, S, A) (or simply HighLoc(σ) if the S is understood from the context) is defined as {o | ∃i ∈
0..‖S‖ − 1.σ(i) = o, S(i) ∈ HI}

• HighLoc(η, β, T, A) (or simply HighLoc(η, β) if the T is understood from the context) is defined as
{o′ | o ∈ Dom(β), ∃f ∈ Dom(η(o)).(η(o, f) = o′, T (β−1

sloc(o), f) ∈ HI}

126 B Robustness Soundness Proofs

• HighLoc(〈i, α, σ, η〉, β, 〈i, V, S, T 〉, A) (or simply HighLoc(s, β, A) if the 〈i, V, S, T 〉 is understood from
the context) is defined as HighLoc(α, V, A)∪HighLoc(σ, S, A)∪HighLoc(η, β, T, A)

Lemma B.3. For low indistinguishability we have (l ∈ HI):

1. β id, V , l ⊢ α ≃A α, if HighLoc(α, V, A) ⊆ Dom(β id).

2. β, V , l ⊢ α1 ≃
A α2 implies β̂, V , l ⊢ α2 ≃

A α1.
3. If β, V , l ⊢ α1 ≃

A α2, γ, V , l ⊢ α2 ≃
A α3, then γ ◦ β, V , l ⊢ α1 ≃

A α3.

For high indistinguishability (l 6∈ HI) we have:

1. β id, (V, V), l ⊢ α ≃A α, if HighLoc(α, V, A) ⊆ Dom(β id).

2. β, (V1, V2), l ⊢ α1 ≃
A α2 implies β̂, (V2, V1), l ⊢ α2 ≃

A α1.
3. If β, (V1, V2), l ⊢ α1 ≃

A α2, γ, (V2, V3), l ⊢ α2 ≃
A α3 and ∀x ∈ X.V2(x) ⊑ V1(x) or V2(x) ⊑ V3(x),

then γ ◦ β, (V1, V3), l ⊢ α1 ≃
A α3.

The condition on β id simply ensures that it is defined on the appropriate locations. This too is a
condition that shall always be met given that in the proof of noninterference id is always taken to be the
domain of the appropriate heap.

The case of stacks and heaps are dealt with similarly. Together these results determine that machine
state indistinguishability too is an equivalence relation.

Lemma B.4. The stack indistinguishability relation is an equivalence relation.

1. β id, (S, S), l ⊢ σ ≃λ σ, if HighLoc(α, S, λ) ⊆ Dom(β id

loc).

2. β, (S1, S2), l ⊢ σ1 ≃
λ σ2 implies β̂, (S2, S1), l ⊢ σ2 ≃

λ σ1.
3. If β, (S1, S2), l ⊢ σ1 ≃

λ σ2 and γ, (S2, S3), l ⊢ σ2 ≃
λ σ3, then γ ◦ β, (S1, S3), l ⊢ σ1 ≃

λ σ3.

Lemma B.5. Heap indistinguishability is an equivalence relation.

1. β id, (T, T) ⊢ η ≃λ η, where Dom(β id

loc) ⊆ Dom(η), Dom(β id✁),Dom(β id✄) ⊆ Dom(T) and HighLoc(η, βid, T, λ) ⊆
Dom(β id

loc).

2. β, (T1, T2) ⊢ η1 ≃
λ η2 implies β̂, (T2, T1) ⊢ η2 ≃

λ η1 assuming for every o ∈ Dom(β), f ∈ η1(o, f),
T1(β

✁−1(o), f) = T2(β
✄−1(β(o)), f).

3. If β, (T1, T2) ⊢ η1 ≃
λ η2, γ, (T2, T3) ⊢ η2 ≃

λ η3 then γ ◦ β, (T1, T3) ⊢ η1 ≃
λ η3.

Lemma B.6. For low indistinguishability we have:

1. β id ⊢ s ≃A s, where HighLoc(s, β, A) ⊆ Dom(β id) and Ran(β id✁),Ran(β id✄) ⊆ Dom(η) and
Dom(β id✁),Dom(β id✄) ⊆ Dom(T).

2. β ⊢ s1 ≃
A s2 implies β̂ ⊢ s2 ≃

A s1.
3. If β ⊢ s1 ≃

A s2, γ ⊢ s2 ≃
A s3, then γ ◦ β ⊢ s1 ≃

A s3.

For high indistinguishability we have:

1. β id ⊢ s ≃A s, where HighLoc(s, β, A) ⊆ Dom(β id) and Ran(β id✁),Ran(β id✄) ⊆ Dom(η) and
Dom(β id✁),Dom(β id✄) ⊆ Dom(T).

2. β ⊢ s1 ≃
A s2 implies β̂ ⊢ s2 ≃

A s1.
3. Suppose β ⊢ s1 ≃

A s2 and γ ⊢ s2 ≃
A s3. Furthermore, assume ∀x ∈ X.V2(x) ⊑ V1(x) or V2(x) ⊑

V3(x). Then γ ◦ β ⊢ s1 ≃
A s3.

B.2 Preliminaries 127

B.2 Preliminaries

These auxiliary lemmas and their proofs are similar to those presented in the Appendix A.

Lemma B.7. β, l ⊢ v1 ≃
λ v2 and β ⊆ β′ and l′ ∈ HI implies β′, l′ ⊢ v1 ≃

λ v2.

Lemma B.8. If β, V , l ⊢ α1 ≃
λ α2, β ⊆ β′, l ∈ HI and V ≤ V ′, then β′, V ′, l ⊢ α1 ≃

λ α2.

Lemma B.9. If β, (V, V ′), l ⊢ α1 ≃
λ α2, l 6∈ HI and V ′ ≤ V ′′ then β, (V, V ′′), l ⊢ α1 ≃

λ α2.

Lemma B.10. If β, (V ′, V), l ⊢ α1 ≃
λ α2, l 6∈ HI and V ′ ≤ V ′′ then β, (V ′′, V), l ⊢ α1 ≃

λ α2.

Proof. Immediate consequence of lemma B.7.

Lemma B.11. If β, V , l ⊢ α1 ≃
λ α2, l ∈ HI and l′ ∈ HI then β, V , l′ ⊢ α1 ≃

λ α2.

Proof. We have, by hypothesis, that for all x ∈ X : β, ⌊V (x)⌋ ⊢ α1(x) ≃
λ α2(x) holds. Let l′ ∈ HI

then follows β, V , l′ ⊢ α1 ≃
λ α2 by local variable assignment indistinguishability definition.

Lemma B.12. If β, S, l ⊢ σ1 ≃
λ σ2, β ⊆ β′, l ∈ HI and S ≤l S

′ then β′, S′, l ⊢ σ1 ≃
λ σ2.

Lemma B.13. If β, (S, S′), l ⊢ σ1 ≃
λ σ2, l 6∈ HI and S′ ≤l S

′′, then β, (S, S′′), l ⊢ σ1 ≃
λ σ2.

Lemma B.14. If β, (S′, S), l ⊢ σ1 ≃
λ σ2, l 6∈ HI and S′ ≤l S

′′, then β, (S′′, S), l ⊢ σ1 ≃
λ σ2.

Lemma B.15. If β, S, l ⊢ σ1 ≃
λ σ2, l ∈ HI and l′ ∈ HI then β, S, l′ ⊢ σ1 ≃

λ σ2.

Proof. We proceed by induction on the the derivation of β, S, l ⊢ σ1 ≃
λ σ2. The base case is

straightforward given that β, ǫ, l′ ⊢ ǫ ≃λ ǫ follows from l′ ∈ HI and L-Nil-I. For the inductive case, we
assume that β, l′′ · S, l ⊢ v1 · σ

′
1 ≃

λ v2 · σ
′
2 is derivable and that the derivation ends in an application of

Cons-L-I. We must prove that β, l′′ · S, l′ ⊢ v1 · σ
′
1 ≃

λ v2 · σ
′
2. By Cons-L-I we know that β, l′′ ⊢ v1 ≃

λ v2
(1) and β, S, l ⊢ σ1 ≃

λ σ2. Now, by the I.H. we have that β, S, l′ ⊢ σ1 ≃
λ σ2 (2). Then by (1), (2) and

Cons-L-I β, l′′ · S, l′ ⊢ v1 · σ1 ≃
λ v2 · σ2 holds.

Lemma B.16. β, (T, T) ⊢ η1 ≃
λ η2 and T ≤ T ′ and T ≤ T ′′ and β ⊆ β′ such that

1. β′
loc = βloc,

2. Ran(β′✁) ⊆ Dom(η1) and Ran(β′✄) ⊆ Dom(η2),
3. Dom(β′✁) ⊆ Dom(T ′) and Dom(β′✄) ⊆ Dom(T ′′)

Then β′, (T ′, T ′′) ⊢ η1 ≃
λ η2

Proof. β′ is well-defined w.r.t. η1, η2, T
′ and T ′′ follow directly from the β′ definition. For the second

item we proceed as follows. Let o ∈ Dom(β′
loc) and let f ∈ Dom(η1(o)). We must prove:

β′, ⌊T ′(β′✁−1(o), f)⌋ ⊢ η1(o, f) ≃
λ η2(β

′(o), f).

This result follow by hypothesis T ≤ T ′ and T ≤ T ′′, i.e. ∀a ∈ Dom(T).∀f ∈ F.⌊T (a, f)⌋ = ⌊T ′(a, f)⌋ =
⌊T ′′(a, f)⌋.

We recall from Definition 3.27 that β id is a location bijection bijection set such that β id

loc is the identity
over the domain of βloc.

Lemma B.17. If β id, (T, T) ⊢ η1 ≃
λ η2 and T ≤ T ′, then β id, (T, T ′) ⊢ η1 ≃

λ η2.

Proof. Immediate from the fact that for any a ∈ Dom(T) and f ∈ Dom(T (a)), ⌊T (a, f)⌋ = ⌊T ′(a, f)⌋
and hypothesis T ≤ T ′.

128 B Robustness Soundness Proofs

The following lemma shows that transitions from some high region for k to a low one through i 7→ i′,
implies that i′ is a junction point for the latter region.

Lemma B.18. Let M [−→a] be a well-typed method with code B[−→a] and i ∈ region(k) for some k ∈
Dom(B)♯. Suppose l 6∈ HI and ∀k′ ∈ region(k).l ⊑ Ak′ and furthermore let i 7→ i′, Ai 6∈ HI and Ai′ ∈ HI .
Then i′ = jun(k).

Proof. Suppose i′ 6= jun(k). By SOAP (property 3.10(2)) i′ ∈ region(k). Furthermore, by the hypoth-
esis l 6∈ HI and ∀k′ ∈ region(k).l ⊑ Ak′ we have l ⊑ Ai′ . However, this contradicts Ai′ ∈ HI .

B.3 Proof of Unwinding Lemmas

We now address the proofs of the Lemma 4.20, Lemma 4.21 and Lemma 4.22. These proofs are similar
to the proofs of the unwinding lemmas presented in Appendix A.

Lemma 4.20 (One-Step Preservation of Equality of High Integrity Data on Low Context)
Suppose

1. As1 ∈ HI and pc(s1) = pc(s2)
2. s1 −→B[−→a1] s

′
1;

3. s2 −→B[−→a2] s
′
2; and

4. β ⊢ s1 ≃
A s2 for some location bijection set β.

Then
β′ ⊢ s′1 ≃

A s′2 and pc(s′1) = pc(s′2), for some β′ ⊇ β.

Proof. It proceeds by case analysis on the instruction that is executed. We supply two sample cases.

Case: Suppose B(i) = store x. Then

B(i) = store x

〈i, α1, v1 · σ1, η1〉 −→B 〈i+ 1, α1 ⊕ {x 7→ v1}, σ1, η1〉 = s′1

B(i) = store x

〈i, α2, v2 · σ2, η2〉 −→B 〈i+ 1, α2 ⊕ {x 7→ v2}, σ2, η2〉 = s′2

Moreover, by T-Store:

Si ≤Ai
Vi+1(x) · Si+1

Vi \ x ≤ Vi+1 \ x
Ai ⊑ Vi+1(x)
Ti ≤ Ti+1

We prove β ⊢ s′1 ≃
λ s′2.

1. Since i′1 = i+ 1 = i′2, then Ai′1
= Ai′2

.

2. First we note that β, ⌊Vi+1(x)⌋ ⊢ v1 ≃
λ v2 (1) follows from hypothesis β, ⌊Si(0)⌋ ⊢ v1 ≃

λ v2,
condition 1 of T-Store (Si(0) ⊑ Vi+1(x)) and Lemma B.7 .
Furthermore, by hypothesis β,Vi \ x, ⌊Ai⌋ ⊢ α1 \ x ≃

λ α2 \ x,Ai ∈ HI and by condition 2 of T-Store

and Lemma B.8 we have β,Vi+1 \ x,Ai ⊢ α1 \ x ≃
λ α2 \ x (2).

From (1) and (2) we deduce β,Vi+1,Ai ⊢ α1 ≃
λ α2 (3).

If Ai+1 ∈ HI then β,Vi+1,Ai+1 ⊢ α1 ≃
λ α2 follows by (3) and Lemma B.11.

If Ai+1 6∈ HI , then we note that β,Vi+1,Ai+1 ⊢ α1 ≃
λ α2 follows from (3).

B.3 Proof of Unwinding Lemmas 129

3. By hypothesis β,Si,Ai ⊢ v1 · σ1 ≃
λ v2 · σ2, condition 1 of T-Store and lemma B.12 we have

β,Vi+1(x) · Si+1,Ai ⊢ v1 · σ1 ≃
λ v2 · σ2.

Now, by Ai ∈ HI and Cons-L-I we have β,Si+1,Ai ⊢ σ1 ≃
λ σ2.

We have two cases:
• Ai+1 ∈ HI . Then by Lem. B.15 we have β,Si+1,Ai+1 ⊢ σ1 ≃

λ σ2, as required.
• Ai+1 6∈ HI . Then by H-Low-I β, (Si+1,Si+1),Ai+1 ⊢ σ1 ≃

λ σ2 holds.
4. By hypothesis β, Ti ⊢ η1 ≃

λ η2, condition 4 of T-Store and Lemma B.16, β, Ti+1 ⊢ η1 ≃
λ η2.

Case: B(i) = load x. By the operational semantics:

B(i) = load x

〈i, α1, σ1, η1〉 −→B 〈i+ 1, α1, α1(x) · σ1, η1〉 = s′1

B(i) = load x

〈i, α2, σ2, η2〉 −→B 〈i+ 1, α2, α2(x) · σ2, η2〉 = s′2

Moreover, by T-Load:

Ai ⊔ Vi(x) · Si ≤Ai
Si+1

Vi ≤ Vi+1

Ti ≤ Ti+1

We prove β ⊢ s′1 ≃
λ s′2.

1. By the operational semantics i′1 = i+ 1 = i′2, hence Ai′1
= Ai′1

.

2. We must prove β,Vi+1, ⌊Ai+1⌋ ⊢ α1 ≃
λ α2. Given that Ai+1 may be either low or high we must

consider both cases. Therefore, suppose first that Ai+1 ∈ HI . By hypothesis we know β,Vi, ⌊Ai⌋ ⊢
α1 ≃

λ α2, Ai ∈ HI . Then, resorting to condition 2 of T-Load and Lemma B.8, β,Vi+1, ⌊Ai⌋ ⊢ α1 ≃
λ

α2 Now, by Lemma B.11 the result follows.
Suppose now that Ai+1 6∈ HI . We proceed as above and simply note that by the definition of indistin-
guishability of local variable frames β,Vi+1, ⌊Ai+1⌋ ⊢ α1 ≃

λ α2 follows from β,Vi+1, ⌊Ai⌋ ⊢ α1 ≃
λ α2.

3. We have two cases:
• Ai+1 ∈ HI . By hypothesis we know β,Si,Ai ⊢ σ1 ≃

λ σ2, Ai ∈ HI and β, ⌊Vi(x)⌋ ⊢ α1(x) ≃
λ α2(x).

From the latter and Lemma B.7 we deduce β, ⌊Ai ⊔ Vi(x)⌋ ⊢ α1(x) ≃
λ α2(x) Then, by L-Cons-I,

β,Ai ⊔ Vi(x) · Si,Ai ⊢ α1(x) · σ1 ≃
λ α2(x) · σ2 (B.1)

Condition 1 of T-Load, namely Ai ⊔ Vi(x) · Si ≤Ai
Si+1, and (B.1) allows us to apply Lemma

B.12 to deduce β,Si+1,Ai ⊢ α1(x) · σ1 ≃
λ α2(x) · σ2. Now, by Lem. B.15 follows the result.

• Ai+1 6∈ HI . By the previous case we know β,Si+1,Ai ⊢ α1(x) · σ1 ≃
λ α2(x) · σ2. Then by H-Low-I

β, (Si+1,Si+1),Ai+1 ⊢ α1(x) · σ1 ≃
λ α2(x) · σ2 holds.

4. By hypothesis β, Ti ⊢ η1 ≃
λ η2, condition 3 of T-Load and Lemma B.16, β, Ti+1 ⊢ η1 ≃

λ η2.

Lemma 4.21 (One-Step Preservation of Equality of High Integrity Data on High Context)

Let pc(s1), pc(s
′
1), pc(s2) ∈ LI . Furthermore, suppose:

1. β ⊢ s1 ≃
A s′1 for some location bijection set β;

2. s1 −→B[−→a]
s2.

Then β ⊢ s2 ≃
A s′1.

130 B Robustness Soundness Proofs

Proof. First we prove β id ⊢ s1 ≃
λ s′1 by a case analysis on the instruction that is executed and we

conclude β ◦ β id ⊢ s′1 ≃
λ s2 by the typing rule and the third item of the Lemma B.6 (transitivity). We

note that by β id definition β ◦ β id = β then we conclude β ⊢ s′1 ≃
λ s2

Before commencing, we point out that Ai1 ,Ai2 ,Ai′1
6∈ HI . In particular, Ai1 ,Ai′1

6∈ HI and thus this
proves the first item needed to determined that s1 and s′1 are indistinguishable. We consider the remaining
three for each reduction steps case.

Case: B(i1) = store x

B(i1) = store x

〈i1, α1, v1 · σ1, η1〉 −→B 〈i1 + 1, α1 ⊕ {x 7→ v1}, σ1, η1〉 = s′1

Moreover, by T-Store:

Si1 ≤Ai1
Vi1+1(x) · Si1+1

Vi1 \ x ≤ Vi1+1 \ x
Ai1 ⊑ Vi1+1(x)
Ti1 ≤ Ti1+1

We prove β id ⊢ s1 ≃
λ s′1 by considering the two remaining items of machine state indistinguishability:

1. First we β id, (Vi1 ,Vi1+1),Ai1+1 ⊢ α1 ≃
λ α1 ⊕ {x 7→ v1}.

The only variable of interest is x since it is the only one that is changed. From condition 3 of T-Store,
Ai1 ⊑ Vi1+1(x) and hence β id, ⌊(Vi1(x) ⊔ Vi1+1(x))⌋ ⊢ α1(x) ≃

λ α1 ⊕ {x 7→ v1}(x) (1).
Now, by Lemma B.3 (reflexivity of variable high indistinguishability)

β id, (Vi1 \ x,Vi1 \ x),Ai1 ⊢ α1 \ x ≃
λ α1 ⊕ {x 7→ v1} \ x

By this and by condition 2 of T-Store and by Lemma B.9 we have β id, (Vi1 \ x,Vi1+1 \ x),Ai1 ⊢
α1 \ x ≃

λ α1 ⊕ {x 7→ v1} \ x (2). By (2), (1) and indistinguishability definition, we conclude that
β id, (Vi1 ,Vi1+1),Ai1+1 ⊢ α1 ≃

λ α1 ⊕ {x 7→ v1}.
2. By Lemma B.4 (reflexivity of stack high indistinguishability) β id, (Si1 \ 0,Si1 \ 0),Ai1 ⊢ σ1 ≃

λ σ1.
By condition 1 of T-Store, Si1 \ 0 ≤Ai1

Si1+1. Therefore, by resorting to Lemma B.13 we deduce

β id, (Si1 \ 0,Si1+1),Ai1 ⊢ σ1 ≃
λ σ1

Finally, by H-Cons-L-I

β id, (Si1 ,Si1+1),Ai1+1 ⊢ v1 · σ1 ≃
λ σ1

3. By definition of β id and Lemma B.5 (reflexivity of heap high indistinguishability) we have that
β id, (Ti1 , Ti1) ⊢ η1 ≃

λ η1. Now, by the hypothesis Ti1 ≤ Ti1+1 and the Lemma B.17 we deduce
β id, (Ti1 , Ti1+1) ⊢ η1 ≃

λ η1.

Case: B(i1) = load x. By the operational semantics :

B(i1) = load x

〈i1, α1, σ1, η1〉 −→B 〈i1 + 1, α1, α1(x) · σ1, η1〉 = s′1

Moreover, from T-Load:

Ai1 ⊔ Vi1(x) · Si1 ≤Ai1
Si1+1

Vi1 ≤ Vi1+1

Ti1 ≤ Ti1+1

B.3 Proof of Unwinding Lemmas 131

We prove the three remaining items of β id ⊢ s1 ≃
λ s′1.

1. We address β id, (Vi1 ,Vi1+1),Ai1+1 ⊢ α1 ≃
λ α1.

By Lemma B.3 (reflexivity of variable high indistinguishability), β id, (Vi1 ,Vi1),Ai1 ⊢ α1 ≃
λ α1. By

this and by condition 2 of T-Load and by Lemma B.9, β id, (Vi1 ,Vi1+1),Ai1 ⊢ α1 ≃
λ α1 .

2. By Lemma B.4 (reflexivity of stack high indistinguishability) we have that β id, (Si1 ,Si1),Ai1 ⊢ σ1 ≃
λ

σ1. Given that Ai1 6∈ HI we may resort to H-Cons-R-I to obtain β id, (Si1 ,A(i) ⊔ Vi1(x) · Si1)),Ai1 ⊢
σ1 ≃

λ α1(x) · σ1. Finally, by condition 1 of T-Load and Lemma B.13 we have β id, (Si1 ,Si1+1),A(i1 + 1) ⊢
σ1 ≃

λ α1(x) · σ1.
3. Idem to store case.

Lemma 4.22 (One-Step Preservation of Equality of High Integrity Data on High to Low Context)

Let pc(s1), pc(s2) ∈ LI and pc(s′1), pc(s
′
2) ∈ HI . Furthermore, suppose:

1. s1 −→B[−→a1] s
′
1:

2. s2 −→B[−→a2] s
′
2;

3. β ⊢ s1 ≃
A s2, for some location bijection set β; and

4. pc(s′1) = pc(s′2).

Then β ⊢ s′1 ≃
A s′2.

Proof. There are several options to consider.

• Due to our assumption on the forms of programs (see comment below Property 3.10), we may assume
both B(i1) = goto i ′1 and B(i2) = goto i ′2 . Thus, s

′
1 = 〈i′1, α1, σ1, η1〉 and s′2 = 〈i′2, α2, σ2, η2〉 and

both of the following hold:

B(i1) = goto i ′1

〈i1, α1, σ1, η1〉 −→B 〈i
′
1, α1, σ1, η1〉

B(i2) = goto i ′2

〈i2, α2, σ2, η2〉 −→B 〈i
′
2, α2, σ2, η2〉

Also, from T-Goto:

Vi1 ≤ Vi′1
Si1 ≤Ai1

Si′1
Ti1 ≤ Ti′1

Vi2 ≤ Vi′2
Si2 ≤Ai2

Si′2
Ti2 ≤ Ti′2

We now address the proof of both items:

I- i′1 = jun(k) = i′2. By the hypothesis Ai1 ,Ai2 6∈ HI , i1 7→ i′1, i2 7→ i′2 and by assumption Ai′1
=

A(i′2) ∈ HI . Therefore, by Lemma B.18 we know that i′1 = jun(k) and that i′2 = jun(k). But by the
SOAP property, junction points are unique. Hence i′1 = jun(k) = i′2.

II-We address the proof of the four items of the definition of state indistinguishability for β ⊢ s′1 ≃
λ s′2:

1. By hypothesis Ai′1
= Ai′2

and Ai′1
∈ HI .

2. We must prove β,Vi′1 ,Ai′1
⊢ α1 ≃

λ α2 (since α′
1 = α1 and α′

2 = α2). Recall from above that by
hypothesis:

β, (Vi1 ,Vi2), l ⊢ α1 ≃
λ α2, l 6∈ HI (B.2)

Let x ∈ X. We have two cases:
· If Vi′1(x) 6∈ HI , then we trivially have β, ⌊Vi′1(x)⌋ ⊢ α1(x) ≃

λ α2(x).

· If Vi′1(x) ∈ HI , then Vi1(x) ∈ HI and Vi2(x) ∈ HI . Thus β, ⌊Vi′1(x)⌋ ⊢ α1(x) ≃
λ α2(x) follows

from (B.2).

132 B Robustness Soundness Proofs

3. We must prove β,Si′1 ,Ai′1
⊢ σ1 ≃

λ σ2. By the hypothesis,

β, (Si1 ,Si2), l ⊢ σ1 ≃
λ σ2, l 6∈ HI (B.3)

and by condition 2 of T-Goto we know that ‖Si1‖ = ‖Si′1‖ = ‖Si2‖ (also, Si′1 = Si′2).
For each j ∈ {0..‖Si′1‖ − 1}, we proceed as follows:

· If Si′1(j) 6∈ HI , then trivially β, ⌊Si′1(j)⌋ ⊢ σ1(j) ≃
λ σ2(j).

· If Si′1(j) ∈ HI , then Si1(j) = Si2(j) ∈ HI . From (B.3) and the definition of stack indistin-
guishability, it follows that there exists k ≥ j such that the prefix of size k of σ1 and σ2

are low indistinguishable. As a consequence, β, ⌊Si′1(j)⌋ ⊢ σ1(j) ≃
λ σ2(j).

Hence, β,Si′1 ,Ai′1
⊢ σ1 ≃

λ σ2.

4. We address the two items of the definition of β, Ti′1 ⊢ η1 ≃
λ η2. The first follow from the

hypothesis that s1 and s2 are indistinguishable and Ti1 , Ti2 ≤ Ti′1 . Regarding the last item, we
proceed as follows. Let o ∈ Dom(βloc), and let f ∈ Dom(η1(o)). We must prove that:

β, ⌊Ti′1(β
✁−1(o), f)⌋ ⊢ η1(o, f) ≃

λ η2(β(o), f).

This is an immediate consequence of the hypothesis, ∼λ
β Ti1(β

✁−1(o), f)η1(o, f)η2(β(o), f) and
Ti1 , Ti2 ≤ Ti′1 .

• Wemay assume both B(i1) = return and B(i2) = return. Thus, s′1 = 〈pf , v1, η1〉 and s′2 = 〈pf , v2, η2〉
and both of the following hold:

B(i1) = return

〈i1, α1, v1 · σ1, η1〉 −→B 〈pf , v1, η1〉

B(i2) = return

〈i2, α2, v2 · σ2, η2〉 −→B 〈pf , v2, η2〉

Also, from T-Ret:

Si1(0) ⊔ Ai1 ⊑ κr

Ti1 ≤ Tpf

Si2(0) ⊔ Ai2 ⊑ κr

Ti2 ≤ Tpf

We now address the proof of both items:

I- By successor relation definition pc(s′1)=pc(s
′
2)=pf .

II-We address the proof of the two items of the definition of final state indistinguishability for
β ⊢ s′1 ≃

λ s′2:
1. By hypothesis A(pf) ∈ HI .
2. We must prove β, ⌊κr⌋ ⊢ v1 ≃

λ v2. By the hypothesis, β, (Si1 ,Si2), l ⊢ v1 · σ1 ≃
λ v2 · σ2, l 6∈ HI ,

then we have β, ⌊Si1(0) ⊔ Si2(0)⌋ ⊢ v1 ≃
λ v2.

Furthermore, by T-Ret Si1(0) ⊑ κr and Si2(0) ⊑ κr.
Now, by indistinguishability definition β, ⌊κr⌋ ⊢ v1 ≃

λ v2.
3. Idem to previous T-Goto case.

• The remain cases B(i1) = return and pc(i2) = erri, pc(i1) = erri, B(i2) = return and pc(i1) = erri,
pc(i2) = erri are similar to the previous case.

C

Definitions and Proofs for Justification Logic and Audited

Computation

C.1 Basic Definitions

Definition C.1.1 (Free truth variables) The set of free truth variables in evidence s (likewise for
equivalence witness e and term M) is denoted fvT(s) and defined as follows:

fvT(a)
def
= {a}

fvT(λb : A.t)
def
= fvT(t) \ {b}

fvT(t1 · t2)
def
= fvT(t1) ∪ fvT(t2)

fvT(Σ.t)
def
= ∅

fvT(let(uA[Σ].t2, t1))
def
= fvT(t1) ∪ fvT(t2)

fvT(αθw)
def
=

⋃
fvT(θw)

For equivalence witnesses:

fvT(r(t))
def
= fvT(t)

fvT(s(e))
def
= fvT(e)

fvT(t(e1, e2))
def
= fvT(e1) ∪ fvT(e2)

fvT(ba(aA.r, t))
def
= fvT(r) \ {a} ∪ fvT(t)

fvT(bb(uA[Σ1].r, Σ.t))
def
= fvT(r)

fvT(ti(θw, α))
def
=

⋃
i∈1..10 fvT(θ

w(ci))

fvT(abC(bA.e))
def
= fvT(e) \ {b}

fvT(apC(e1, e2))
def
= fvT(e1) ∪ fvT(e2)

fvT(leC(uA[Σ].e1, e2))
def
= fvT(e1) ∪ fvT(e2)

fvT(rpC(e))
def
=

⋃
i∈1..10 fvT(ei)

For terms:

134 C Definitions and Proofs for Justification Logic and Audited Computation

fvT(a)
def
= {a}

fvT(λa : A.M)
def
= fvT(M) \ {a}

fvT(M N)
def
= fvT(M) ∪ fvT(N)

fvT(〈u;σ〉)
def
= ∅

fvT(!Σe M)
def
= ∅

fvT(letu : A[Σ] = M in N)
def
= fvT(M) ∪ fvT(N)

fvT(αθ)
def
=

⋃
i∈1..10 fvT(θ(ci))

fvT(e✄M)
def
= fvT(e) ∪ fvT(M)

The set of free validity and trail variables are defined similarly.

Definition C.1.2 (Truth variable substitution II) The result of substituting all free occurrences of
a in M by N, s is denoted Ma

N,s and defined as follows:

aaN,s

def
= N

baN,s

def
= b

(λb : A.M)
a
N,s

def
= λb : A.Ma

N,s

(M1 M2)
a
N,s

def
= M1

a
N,s M2

a
N,s

〈u;σ〉aN,s

def
= 〈u;σ〉

(!Σe M)
a

N,s

def
= !Σe M

(letu : A[Σ] = M1 in M2)
a
N,s

def
= letu : A[Σ] = M1

a
N,s in M2

a
N,s

(αθ)
a
N,s

def
= αθ

(e✄M)
a
N,s

def
= eas ✄Ma

N,s

Definition C.1.3 (Trail Variable Renaming) Let σ be a renaming. We define sσ, eσ and Mσ as
follows:

aσ
def
= a

(λb : A.t)σ
def
= λb : A.tσ

(t1 · t2)σ
def
= t1σ · t2σ

〈u;σ′〉σ
def
= 〈u;σ ◦ σ′〉

(Σ.t)σ
def
= Σ.t

(let(uA[Σ].t2, t1))σ
def
= let(uA[Σ].t2σ, t1σ)

(αθw)σ
def
= σ(α)θw

For equivalence witnesses:

C.1 Basic Definitions 135

r(t)σ
def
= r(tσ)

s(e)σ
def
= s(eσ)

t(e1, e2)σ
def
= t(e1σ, e2σ)

ba(aA.t1, t2)σ
def
= ba(aA.t1σ, t2σ)

bb(uA[Σ1].s, Σ1.t)σ
def
= bb(uA[Σ1].sσ, t)

(ti(θw, α))σ
def
= ti(θw, σ(α))

abC(bA.e)σ
def
= abC(bA.eσ)

apC(e1, e2)σ
def
= apC(e1σ, e2σ)

leC(uA[Σ].e1, e2)σ
def
= leC(uA[Σ].e1σ, e2σ)

rpC(e)σ
def
= rpC(eσ)

For terms:

aσ
def
= a

(λa : A.M)σ
def
= λa : A.Mσ

(M1 M2)σ
def
= (M1σM2σ)

〈u;σ′〉σ
def
= 〈u;σ ◦ σ′〉

(!Σe M)σ
def
= !Σe M

(letu : A[Σ] = M1 in M2)σ
def
= letu : A[Σ] = M1σ in M2σ

(αθ)σ
def
= σ(α)θ

(e✄M)σ
def
= eσ ✄Mσ

Definition C.1.4 (Valid variable substitution I) The result of substituting all free occurrences of u
in proposition P (resp. evidence t or equivalence witness e) by Σ.s is denoted Pu

Σ.s (resp. tuΣ.s and euΣ.s)
and defined as follows:

Pu
Σ.s

def
= P

(A ⊃ B)
u
Σ.s

def
= Au

Σ.s ⊃ Bu
Σ.s

(JΣ′.tKA)
u
Σ.s

def
= JΣ′.tuΣ.sKAu

Σ.s

For equivalence witnesses:

r(t)
u
Σ.s

def
= r(tuΣ.s)

s(e)
u
s

def
= s(euΣ.s)

t(e1, e2)
u
Σ.s

def
= t(e1

u
Σ.s, e2

u
Σ.s)

ba(aA.r, t)
u

Σ.s

def
= ba(aA.ruΣ.s, t

u
Σ.s)

bb(vA[Σ′].r, Σ′.t)
u

Σ.s

def
= bb(vA[Σ′].ruΣ.s, (Σ

′.t)
u
Σ.s)

ti(θw, α)
u
Σ.s

def
= ti(θwu

Σ.s, α)

abC(bA.e)
u

Σ.s

def
= abC(bA.euΣ.s)

apC(e1, e2)
u
Σ.s

def
= apC(e1

u
Σ.s, e2

u
Σ.s)

leC(vA[Σ′].e1, e2)
u

Σ.s

def
= leC(vA[Σ′].e1

u
Σ.s, e2

a
Σ.s)

rpC(e)
u
Σ.s

def
= rpC(euΣ.s)

Definition C.1.5 (Valid variable substitution II) The result of substituting all free occurrences of
u in term M by Σ.(N, t) is denoted Mu

Σ.(N,t,e) and defined as follows:

136 C Definitions and Proofs for Justification Logic and Audited Computation

buΣ.(N,t,e)

def
= b

(λb : A.M)
u
Σ.(N,t,e)

def
= λb : A.Mu

Σ.(N,t,e)

(M1 M2)
u
Σ.(N,t,e)

def
= M1

u
Σ.(N,t,e) M2

u
Σ.(N,t,e)

〈u;σ〉uΣ.(N,t,e)
def
= eσ ✄Nσ

〈v;σ〉uΣ.(N,t,e)
def
= 〈v;σ〉

(!Σ
′

e′ M)
u

Σ.(N,t,e)

def
= !Σ

′

e′u
Σ.t

Mu
Σ.(N,t,e)

(let v : A[Σ′] = M1 in M2)
u
Σ.(N,t,e)

def
= let v : A[Σ′] = M1

u
Σ.(N,t,e) in M2

u
Σ.(N,t,e)

(αθ)
u
Σ.(N,t,e)

def
= α(θuΣ.(N,t,e))

(e′ ✄M)
u
Σ.(N,t,e)

def
= e′

u
Σ.t ✄Mu

Σ.(N,t,e)

Definition C.1.6 (Trail constructor replacement) The result of replacing each equivalence witness
constructor in e with a constructor term substitution θ is denoted eθ and defined as follows:

r(t)θ
def
= θ(Rfl)

s(e)θ
def
= θ(Sym) eθ

t(e1, e2)θ
def
= θ(Trn) e1θ e2θ

ba(aA.r, t)θ
def
= θ(β)

bb(uA[Σ1].r, Σ1.t)θ
def
= θ(β✷)

ti(θw, α)θ
def
= θ(Trl)

abC(bA.e)θ
def
= θ(Abs) eθ

apC(e1, e2)θ
def
= θ(App) e1θ e2θ

leC(uA[Σ].e1, e2)θ
def
= θ(Let) e1θ e2θ

rpC(e)θ
def
= θ(Rpl) eθ

Likewise, the result of replacing each equivalence witness constructor in e with evidence substitution
θw is denoted eθw and defined as follows:

r(t)θw
def
= θw(Rfl)

s(e)θw
def
= θw(Sym) · eθw

t(e1, e2)θ
w def

= θw(Trn) · e1θ
w · e2θ

w

ba(aA.r, t)θw
def
= θw(β)

bb(uA[Σ1].r, Σ1.t)θ
w def

= θw(β✷)

ti(θw, α)θw
def
= θw(Trl)

abC(bA.e)θw
def
= θw(Abs) · eθw

apC(e1, e2)θ
w def

= θw(App) · e1θ
w · e2θ

w

leC(uA[Σ].e1, e2)θ
w def

= θw(Let) · e1θ
w · e2θ

w

rpC(e)θw
def
= θw(Rpl) · eθw

C.2 Lemmata

Proof of Lemma 5.4.1 (Weakening).

1. If ∆;Γ ;Σ ⊢ M : A | s is derivable, then so is ∆′;Γ ′;Σ′ ⊢ M : A | s, where ∆ ⊆ ∆′, Γ ⊆ Γ ′ and
Σ ⊆ Σ′.

C.2 Lemmata 137

2. If ∆;Γ ;Σ ⊢ Eq(A, s, t) | e is derivable, then so is ∆′;Γ ′;Σ′ ⊢ Eq(A, s, t) | e, where ∆ ⊆ ∆′, Γ ⊆ Γ ′

and Σ ⊆ Σ′.

Proof. By simultaneous induction on the derivation of ∆;Γ ;Σ ⊢M : A | s and ∆;Γ ;Σ ⊢ Eq(A, s, t) |
e. Note that it suffices to prove the result for

1. ∆1, u : A[Σ], ∆2 assuming ∆ = ∆1, ∆2;
2. Γ1, a : A,Γ2 assuming Γ = Γ1, Γ2; and
3. Σ1, α : Eq(A), Σ2 assuming Σ = Σ1, Σ2.

In what follows we write ∆u for ∆1, u : A[Σ], ∆2 and similarly for the other two contexts.

• If the derivation ends in Var, the result is immediate.
• If the derivation ends in:

∆;Γ, b : A;Σ1 ⊢M : B | s
⊃ I

∆;Γ ;Σ ⊢ λb : A.M : A ⊃ B | λb : A.s

by the IH ∆u;Γ a, b : A;Σα ⊢M : B | s. We conclude by resorting to ⊃ I.
• Suppose the derivation ends in:

∆;Γ1;Σ1 ⊢M1 : A ⊃ B | s1 ∆;Γ2;Σ2 ⊢M2 : A | s2
⊃ E

∆;Γ1,2;Σ1,2 ⊢M1 M2 : B | s1 · s2

By the IH:
– ∆u;Γ a

1 ;Σ
α
1 ⊢M1 : A ⊃ B | s1

– ∆u;Γ2;Σ2 ⊢M2 : A | s2

∆u;Γ a
1 ;Σ

α
1 ⊢M1 : A ⊃ B | s1

∆u;Γ2;Σ2 ⊢M2 : A | s2
⊃ E

∆u;Γ a
1,2;Σ

α
1,2 ⊢M1 M2 : B | s1 · s2

• Suppose the derivation ends in TTlk:

α : Eq(A) ∈ Σ ∆; ·; · ⊢ θ : T B | θw
TTlk

∆;Γ ;Σ ⊢ αθ : B | αθw

We resort to the IH to obtain derivations of ∆u; ·; · ⊢ θ : T B | θw and then conclude with an instance
of TTlk.

• If the derivation ends in mVar the result is immediate.

u : A[Σ] ∈ ∆ Σσ ⊆ Σ1
TMVar

∆;Γ1;Σ1 ⊢ 〈u;σ〉 : A | 〈u;σ〉

• Suppose the derivation ends in ✷I:

∆; ·;Σ ⊢M : A | s ∆; ·;Σ ⊢ Eq(A, s, t) | e
TBox

∆;Γ1;Σ1 ⊢!
Σ
e M : JΣ.tKA | Σ.t

We apply the IH to obtain:
– ∆u; ·;Σ ⊢M : A | s; and
– ∆u; ·;Σ ⊢ Eq(A, s, t) | e.
Finally, we conclude by an instance of TBox.

• Suppose M = let v : A[Σ] = M1 in M2 and s = let(vA[Σ].s2, s1) and the derivation ends in:

∆;Γ1;Σ1 ⊢M1 : JΣ.rKA | s1
∆, v : A[Σ];Γ2;Σ2 ⊢M2 : C | s2

✷E
∆;Γ1,2;Σ1,2 ⊢M : Cv

Σ.r | s

138 C Definitions and Proofs for Justification Logic and Audited Computation

We resort to the IH and derive
– ∆u;Γ a

1 ;Σ
α
1 ⊢M1 : JΣ.rKA | s1

– ∆u, v : A[Σ];Γ2;Σ2 ⊢M2 : C | s2
We conclude by an instance of ✷E.

• If the derivation ends in:

∆;Γ1;Σ1 ⊢M : A | r ∆;Γ1;Σ1 ⊢ Eq(A, r, s) | e
Eq

∆;Γ1;Σ1 ⊢ e✄M : A | s

We resort to the IH and derive
– ∆u;Γ a

1 ;Σ
α
1 ⊢M : A | r

– ∆u;Γ a
1 ;Σ

α
1 ⊢ Eq(A, r, s) | e

We conclude with an instance of Eq.
• If the derivation ends in:

∆;Γ1;Σ1 ⊢M : A | s
EqRefl

∆;Γ1;Σ1 ⊢ Eq(A, s, s) | r(s)

The result holds by the IH.
• If the derivation ends in:

∆;Γ1, b : A;Σ1 ⊢M : B | r
∆;Γ2;Σ2 ⊢M ′ : A | s

Eqβ
∆;Γ1,2;Σ1,2 ⊢ Eq(B, rbs, (λb : A.r) · s) | e

By the IH.

• If q
def
= let(vA[Σ].r, Σ.s) and the derivation ends in:

∆; ·;Σ ⊢ A | t′

∆; ·;Σ ⊢ Eq(A, t′, s) | e
∆, v : A[Σ];Γ1;Σ1 ⊢ C | r

Γ1 ⊆ Γ2 Σ1 ⊆ Σ2
Eqβ✷

∆;Γ2;Σ2 ⊢ Eq(Cv
Σ.s, r

v
Σ.s, q) | bb(v

A[Σ].r, Σ.s)

By the IH we deduce:
– ∆u; ·;Σ ⊢ A | t′

– ∆u; ·;Σ ⊢ Eq(A, t′, s) | e
– ∆u, v : A[Σ];Γ1;Σ1 ⊢ C | r
We conclude with an instance of Eqβ✷.

• If the derivation ends in EqTlk:

∆; ·;Σ1 ⊢ Eq(A, s, t) | e
∆; ·; · ⊢ T B | θw

α : Eq(A) ∈ Σ2
EqTlk

∆;Γ ;Σ2 ⊢ Eq(B, eθw, αθw) | ti(θw, α)

We resort to the IH to obtain a derivation of ∆u; ·;Σ1 ⊢ Eq(A, s, t) | e and ∆u; ·; · ⊢ T B | θw. Finally,
we apply EqTlk.

• If the derivation ends in EqSym or EqTrans we resort to the IH.
• If the derivation ends in:

∆;Γ1, b : A;Σ1 ⊢ Eq(B, s, r) | e
EqAbs

∆;Γ1;Σ1 ⊢ Eq(A ⊃ B, λb : A.s, λb : A.r) | abC(bA.e)

By the IH.
• If the derivation ends in:

C.2 Lemmata 139

∆;Γ1;Σ1 ⊢ Eq(A ⊃ B, s1, s2) | e1
∆;Γ2;Σ2 ⊢ Eq(A, t1, t2) | e2

EqApp
∆;Γ1,2;Σ1,2 ⊢ Eq(B, s1 · t1, s2 · t2) | apC(e1, e2)

By the IH.

• If r1
def
= let(uA[Σ].t1, s1) and r2

def
= let(uA[Σ].t2, s2) and the derivation ends in:

∆;Γ1;Σ1 ⊢ Eq(JΣ.rKA, s1, s2) | e1
∆,u : A[Σ];Γ2;Σ2 ⊢ Eq(C, t1, t2) | e2

Γ2 ⊆ Γ3 Σ2 ⊆ Σ3
EqLet

∆;Γ3;Σ3 ⊢ Eq(Cu
Σ.r, r1, r2) | leC(u

A[Σ].e2, e1)

By the IH.
• If the derivation ends in:

∆; ·; · ⊢ T B(ci) | θ
w(ci)

∆; ·; · ⊢ Eq(T B(ci), θ
w(ci), θ

′w(ci)) | ei
α : Eq(A) ∈ Σ

EqRpl
∆;Γ ;Σ ⊢ Eq(B,αθ′w, αθw) | rpC(e)

By the IH we derive:
– ∆u; ·; · ⊢ T B(ci) | θ

w(ci)
– ∆u; ·; · ⊢ Eq(T B(ci), θ

w(ci), θ
′w(ci)) | ei

We conclude with an instance of EqRpl.

C.2.1 Proof of the Substitution Principle for Truth Hypothesis

Before proceeding we require the following auxiliary results.

Lemma C.2.1 1. If ∆;Γ ;Σ ⊢M : A | s, then fvT(s) ⊆ fvT(M) ⊆ Dom(Γ).
2. If ∆;Γ ;Σ ⊢ Eq(A, s, t) | e, then fvT(s, t) ⊆ fvT(e) ⊆ Dom(Γ).

Proof. The proof is by simultaneous induction on ∆;Γ ;Σ ⊢ M : A | s and ∆;Γ ;Σ ⊢ Eq(A, s, t) | e.
The only interesting case for the former judgement is:

∆;Γ ;Σ ⊢M : A | s ∆;Γ ;Σ ⊢ Eq(A, s, t) | e
TEq

∆;Γ ;Σ ⊢ e✄M : A | t

Here we use the IH w.r.t the latter judgement to deduce fvT(t) ⊆ fvT(e) ⊆ fvT(e✄M).

Lemma C.2.2 (Strengthening) Suppose a ∈ Dom(Γ).

1. If ∆;Γ ;Σ ⊢M : A | s and a /∈ fvT(M), then ∆;Γ \ a;Σ ⊢M : A | s.
2. If ∆;Γ ;Σ ⊢ Eq(A, s, t) | e and a /∈ fvT(e), then ∆;Γ \ a;Σ ⊢ Eq(A, s, t) | e.

Proof. By simultaneous induction on the derivations of ∆;Γ ;Σ ⊢M : A | s and ∆;Γ ;Σ ⊢ Eq(A, s, t) |
e.

Lemma C.2.3 (Substitution Lemma)

1. (sa1

t1
)
a2

t2
= (sa2

t2
)
a1

t1
a2
t2

.

140 C Definitions and Proofs for Justification Logic and Audited Computation

2. (sat)
u
Σ.r = (suΣ.r)

a

tu
Σ.r

.

We now address the proof of the Substitution Principle for Truth Hypothesis.

Proof. By simultaneous induction on the derivations of ∆;Γ1;Σ1 ⊢ M : B | s and ∆;Γ1;Σ1 ⊢
Eq(B, s1, s2) | e. First note that:

• If a /∈ fvT(M), then by Lem. C.2.1 also a /∈ fvT(s). Therefore, Ma
N,t = M and sat = s and the result

follows from strengthening and weakening.
• If a /∈ fvT(e), then by Lem. C.2.1 also a /∈ fvT(s1, s2). Therefore, e

a
t = e, s1

a
t = s1 and s2

a
t = s2 and

the result follows from strengthening and weakening.

So, in the sequel, we assume that a ∈ fvT(M, e).

• The derivation ends in:

b : A ∈ Γ
Var

∆;Γ1;Σ1 ⊢ b : A | b

If b = a, then A = B and we conclude by resorting to the hypothesis ∆;Γ2;Σ2 ⊢ N : A | t and then
weakening to obtain ∆;Γ1

a
Γ2
;Σ1,2 ⊢ N : A | t. Otherwise, ∆;Γ1

a
Γ2
;Σ1,2 ⊢ b : A | b follows immediately

from Var.
• If the derivation ends in:

∆;Γ1, b : A;Σ1 ⊢M : B | s
⊃ I

∆;Γ1;Σ1 ⊢ λb : A.M : A ⊃ B | λb : A.s

then b 6= a and by the IH ∆; (Γ1, b : A)
a
Γ2
;Σ1,2 ⊢ Ma

N,t : B | s
a
t . Since (Γ1, b : A)

a
Γ2

= Γ1
a
Γ2
, b : A, we

conclude by resorting to ⊃ I.
• Suppose the derivation ends in:

∆;Γ11;Σ11 ⊢M1 : A ⊃ B | s1
∆;Γ12;Σ12 ⊢M2 : A | s2

⊃ E
∆;Γ11,12;Σ11,12 ⊢M1 M2 : B | s1 · s2

Since fvT(M1) ∩ fvT(M2) = ∅, we consider three (mutually exclusive) subcases.

– a ∈ fvT(M1) (and, hence, a /∈ fvT(s2)). By the IH ∆;Γ11
a
Γ2
;Σ11,2 ⊢ (M1)

a
N,t : A ⊃ B | (s1)

a
t . We

construct the derivation:
∆;Γ11

a
Γ2
;Σ11,2 ⊢ (M1)

a
N,t : A ⊃ B | (s1)

a
t

∆;Γ12;Σ12 ⊢M2 : A | s2
⊃ E

∆;Γ11
a
Γ2
, Γ12;Σ11,2,12 ⊢ (M1)

a
N,t M2 : B | (s1)

a
t · s2

– a ∈ fvT(M2) (and, hence, a /∈ fvT(s1)). By the IH ∆;Γ12
a
Γ2
;Σ12,2 ⊢ (M2)

a
N,t : A | (s2)

a
t . We

construct the derivation:
∆;Γ11;Σ11 ⊢M1 : A ⊃ B | s1

∆;Γ12
a
Γ2
;Σ12,2 ⊢ (M2)

a
N,t : A | (s2)

a
t ⊃ E

∆;Γ11, Γ12
a
Γ2
;Σ11,12,2 ⊢M1 (M2)

a
N,t : B | s1 · (s2)

a
t

– a /∈ fvT(M1 M2). This case has already been dealt with.

• Suppose the derivation ends in mVar, ✷I or TTlk, then a /∈ fvT(M) and these cases have already
been dealt with.

• Suppose M = letu : A[Σ] = M1 in M2 and the derivation ends in:

∆;Γ11;Σ11 ⊢M : JΣ.rKA | s1
∆,u : A[Σ];Γ12;Σ12 ⊢ N : C | s2

✷E
∆;Γ11,12;Σ11,12 ⊢M : Cu

Σ.r | let(u
A[Σ].s2, s1)

Since fvT(M1) ∩ fvT(M2) = ∅, we consider three (mutually exclusive) subcases.

C.2 Lemmata 141

– a ∈ fvT(M1) (hence a /∈ fvT(s2)). Then by the IH, ∆;Γ11
a
Γ2
;Σ11,2 ⊢ (M1)

a
N,t : JΣ.rKA | (s1)at . We

construct the following derivation where M ′ = letu : A[Σ] = (M1)
a
N,t in M2:

∆;Γ11
a
Γ2
;Σ11,2 ⊢ (M1)

a
N,t : JΣ.rKA | (s1)at

∆,u : A[Σ];Γ12;Σ12 ⊢M2 : C | s2
✷E

∆;Γ11
a
Γ2
, Γ12;Σ11,2,12 ⊢M ′ : Cu

Σ.r | let(u
A[Σ].s2, (s1)

a
t)

– a ∈ fvT(M2) (hence a /∈ fvT(s1)). Then by the IH, ∆,u : A[Σ];Γ12
a
Γ2
;Σ12,2 ⊢ (M2)

a
N,t : C | (s2)

a
t .

We construct the following derivation where M ′ = letu : A[Σ] = M1 in (M2)
a
N,t:

∆;Γ11;Σ11 ⊢M1 : JΣ.rKA | s1
∆,u : A[Σ];Γ12

a
Γ2
;Σ12,2 ⊢ (M2)

a
N,t : C | (s2)

a
t

✷E
∆;Γ11, Γ12

a
Γ2
;Σ11,12,2 ⊢M ′ : Cu

Σ.r | let(u
A[Σ].(s2)

a
t , s1)

– a /∈ fvT(M). This case has already been dealt with.
• If the derivation ends in:

∆;Γ1;Σ1 ⊢M : A | r
∆;Γ1;Σ1 ⊢ Eq(A, r, s) | e

Eq
∆;Γ1;Σ1 ⊢ e✄M : A | s

Then by the IH:
– ∆;Γ1

a
Γ2
;Σ1,2 ⊢Ma

N,t : A | r
a
t .

– ∆;Γ1
a
Γ2
;Σ1,2 ⊢ Eq(A, rat , s

a
t) | e

a
t .

We conclude by:

∆;Γ1
a
Γ2
;Σ1,2 ⊢Ma

N,t : A | r
a
t

∆;Γ1
a
Γ2
;Σ1,2 ⊢ Eq(A, rat , s

a
t) | e

a
t

Eq
∆;Γ1

a
Γ2
;Σ1,2 ⊢ eat ✄Ma

N,t : A | s
a
t

• If the derivation ends in:

∆;Γ1;Σ1 ⊢M : A | s
EqRefl

∆;Γ1;Σ1 ⊢ Eq(A, s, s) | r(s)

By the IH ∆;Γ1
a
Γ2
;Σ1,2 ⊢Ma

N,t : A | s
a
t . Therefore we obtain

∆;Γ1
a
Γ2
;Σ1,2 ⊢Ma

N,t : A | s
a
t

EqRefl
∆;Γ1

a
Γ2
;Σ1,2 ⊢ Eq(A, sat , s

a
t) | r(s

a
t)

• If e = ba(bA.r, s) and the derivation ends in:

∆;Γ11, b : A;Σ11 ⊢M1 : B | r
∆;Γ12;Σ12 ⊢M2 : A | s

Eqβ
∆;Γ11,12;Σ11,12 ⊢ Eq(B, rbs, (λb : A.r) · s) | e

By Lem. C.2.1 fvT(M1) ∩ fvT(M2) = ∅. We therefore have two subcases.
– a ∈ fvT(M1). Then by the IH, ∆; (Γ11, b : A)

a
Γ2
;Σ11,2 ⊢ (M1)

a
N,t : B | rat . We construct the

following derivation where e′ = ba(bA.rat , s):

∆;Γ11
a
Γ2
, b : A;Σ11,2 ⊢ (M1)

a
N,t : B | r

a
t

∆;Γ12;Σ12 ⊢M2 : A | s
Eqβ

∆;Γ11
a
Γ2
, Γ12;Σ11,2,12 ⊢ Eq(B, (rat)

b
s, (λb : A.rat) · s) | e

′

– a ∈ fvT(M2). Then by the IH, ∆;Γ12
a
Γ2
;Σ12,2 ⊢ (M2)

a
N,t : A | sat . We construct the following

derivation where e′ = ba(bA.r, sat):
∆;Γ11, b : A;Σ11 ⊢M1 : B | r

∆;Γ12
a
Γ2
;Σ12,2 ⊢ (M2)

a
N,t : A | s

a
t

Eqβ
∆;Γ11, Γ12

a
Γ2
;Σ11,12,2 ⊢ Eq(B, rbsat , (λb : A.r) · sat) | e

′

142 C Definitions and Proofs for Justification Logic and Audited Computation

• If the derivation ends in:

∆; ·;Σ ⊢ A | t′

∆; ·;Σ ⊢ Eq(A, t′, s) | e
∆, u : A[Σ];Γ11;Σ11 ⊢ C | r

Γ11 ⊆ Γ1 Σ11 ⊆ Σ1
Eqβ✷

∆;Γ1;Σ1 ⊢ Eq(Cu
Σ.s, r

u
Σ.s, let(u

A[Σ].r, Σ.s)) | bb(uA[Σ].r, Σ.s)

Then by the IH, ∆,u : A[Σ];Γ11
a
Γ2
;Σ11,2 ⊢ C | rat . We construct the following derivation where

q = let(uA[Σ].rat , Σ.s):

∆; ·;Σ ⊢ A | t′

∆; ·;Σ ⊢ Eq(A, t′, s) | e
∆, u : A[Σ];Γ11

a
Γ2
;Σ11,2 ⊢ C | rat

Eqβ✷

∆;Γ1
a
Γ2
;Σ1,2 ⊢ Eq(Cu

Σ.s, (r
a
t)

u
Σ.s, q) | bb(u

A[Σ].rat , Σ.s)

• The case in which the derivation ends in EqTlk has already been dealt with since in this case
a /∈ fvT(e).

• Suppose the derivation ends in:

∆;Γ1;Σ1 ⊢ Eq(A, s1, s2) | e
EqSym

∆;Γ1;Σ1 ⊢ Eq(A, s2, s1) | s(e)

By the IH we have ∆;Γ1
a
Γ2
;Σ1,2 ⊢ Eq(A, (s1)

a
t , (s2)

a
t) | e

a
t . We conclude by resorting to EqSym.

• If the derivation ends in:

∆;Γ1;Σ1 ⊢ Eq(A, s1, s2) | e1
∆;Γ1;Σ1 ⊢ Eq(A, s2, s3) | e2

EqTrans
∆;Γ1;Σ1 ⊢ Eq(A, s1, s3) | t(e1, e2)

we resort to the IH.
• If the derivation ends in:

∆;Γ1, b : A;Σ1 ⊢ Eq(B, s, r) | e
EqAbs

∆;Γ1;Σ1 ⊢ Eq(A ⊃ B, λb : A.s, λb : A.r) | abC(bA.e)

Then b 6= a and by the IH ∆; (Γ1, b : A)
a
Γ2
;Σ1,2 ⊢ Eq(B, sat , r

a
t) | e

a
t . We conclude by resorting to

EqAbs.
• Suppose e = apC(e1, e2) and the derivation ends in:

∆;Γ11;Σ11 ⊢ Eq(A ⊃ B, s1, s2) | e1
∆;Γ12;Σ12 ⊢ Eq(A, t1, t2) | e2

EqApp
∆;Γ11,12;Σ11,12 ⊢ Eq(B, s1 · t1, s2 · t2) | e

Note that fvT(e1) ∩ fvT(e2) = ∅. We consider two (mutually exclusive) subcases:
1. a ∈ fvT(e1) (hence a /∈ fvT(e2)). Then by the IH, ∆;Γ11

a
Γ2
;Σ11,2 ⊢ Eq(A ⊃ B, s1

a
t , s2

a
t) | e1

a
t . We

construct the derivation:
∆;Γ11

a
Γ2
;Σ11,2 ⊢ Eq(A ⊃ B, s1

a
t , s2

a
t) | e1

a
t

∆;Γ12;Σ12 ⊢ Eq(A, t1, t2) | e2
EqApp

∆;Γ11
a
Γ2
, Γ12;Σ11,2,12 ⊢ Eq(B, s1

a
t · t1, s2

a
t · t2) | apC(e1

a
t , e2)

2. a ∈ fvT(e2) (hence a /∈ fvT(e1)). Then by the IH, ∆;Γ12
a
Γ2
;Σ12,2 ⊢ Eq(A, t1

a
t , t2

a
t) | e2

a
t . We

construct the derivation:
∆;Γ11;Σ11 ⊢ Eq(A ⊃ B, s1, s2) | e1
∆;Γ12

a
Γ2
;Σ12,2 ⊢ Eq(A, t1

a
t , t2

a
t) | e2

a
t

EqApp
∆;Γ11, Γ12

a
Γ2
;Σ11,12,2 ⊢ Eq(B, s1 · t1

a
t , s2 · t2

a
t) | apC(e1, e2

a
t)

C.2 Lemmata 143

• Suppose the derivation ends in:

∆;Γ11;Σ11 ⊢ Eq(JΣ.rKA, s1, s2) | e1
∆,u : A[Σ];Γ12;Σ12 ⊢ Eq(C, t1, t2) | e2

EqLet
∆;Γ11,12;Σ11,12 ⊢ Eq(Cu

Σ.r, r1, r2) | leC(u
A[Σ].e2, e1)

where r1 = let(uA[Σ].t1, s1) and r2 = let(uA[Σ].t2, s2). Note that fvT(e1)∩ fvT(e2) = ∅. We consider
two (mutually exclusive) subcases:
1. a ∈ fvT(e1). Then by the IH, ∆;Γ11

a
Γ2
;Σ11,2 ⊢ Eq(JΣ.rKA, s1

a
t , s2

a
t) | e1

a
t . We resort to EqLet and

construct the following derivation where r′1 = let(uA[Σ].t1, s1
a
t) and r′2 = let(uA[Σ].t2, s2

a
t) and

e′
def
= leC(uA[Σ].e2, e1

a
t):

∆;Γ11
a
Γ2
;Σ11,2 ⊢ Eq(JΣ.rKA, s1

a
t , s2

a
t) | e1

a
t

∆,u : A[Σ];Γ12;Σ12 ⊢ Eq(C, t1, t2) | e2
EqLet

∆;Γ11
a
Γ2
, Γ12;Σ11,2,12 ⊢ Eq(Cu

Σ.r, r
′
1, r

′
2) | e

′

2. a ∈ fvT(e2). Then by the IH, ∆,u : A[Σ];Γ12
a
Γ2
;Σ12,2 ⊢ Eq(JΣ.rKA, t1

a
t , t2

a
t) | e2

a
t . We re-

sort to EqLet and construct the following derivation where r′1 = let(uA[Σ].t1
a
t , s1) and r′2 =

let(uA[Σ].t2
a
t , s2) and e′

def
= leC(uA[Σ].e2

a
t , e1):

∆;Γ11;Σ11 ⊢ Eq(JΣ.rKA, s1
a
t , s2

a
t) | e1

a
t

∆,u : A[Σ];Γ12
a
Γ2
;Σ12,2 ⊢ Eq(JΣ.rKA, t1

a
t , t2

a
t) | e2

a
t
EqLet

∆;Γ11, Γ12
a
Γ2
;Σ11,12,2 ⊢ Eq(Cu

Σ.r, r
′
1, r

′
2) | e

′

• If the derivation ends in:

∆; ·; · ⊢ Eq(T B , θ′w, θw) | ei
α : Eq(A) ∈ Σ1

EqRpl
∆;Γ1;Σ1 ⊢ Eq(B,αθ′w, αθw) | rpC(e)

The result is immediate by an application of EqRpl.

C.2.2 Proof of the Substitution Principle for Validity Hypothesis

The proof requires the property that trail variable renaming preserve typability. In the turn, this property
requires the following lemma which is proved by induction on s.

Lemma C.2.4

1. (sat)σ = (sσ)
a
tσ.

2. (suΣ.t)σ = (sσ)
u
Σ.t.

3. (su1

Σ1.t1
)
u2

Σ2.t2
= (su2

Σ2.t2
)
u1

Σ1.t1
u2
Σ2.t2

.

Proof. Induction on s.

Lemma C.2.5 Let σ be a renaming s.t. Dom(Σ1) ⊆ Dom(σ).

1. If ∆;Γ ;Σ1 ⊢M : A | t is derivable, then so is ∆;Γ ;σ(Σ1) ⊢Mσ : A | tσ.
2. If ∆;Γ ;Σ1 ⊢ Eq(A, s, t) | e is derivable, then so is ∆;Γ ;σ(Σ1) ⊢ Eq(A, σ(s), σ(t)) | σ(e).

Proof. By induction on the derivation of ∆;Γ ;Σ1 ⊢M : A | t.

• The derivation ends in:

b : A ∈ Γ
Var

∆;Γ ;Σ1 ⊢ b : A | b

144 C Definitions and Proofs for Justification Logic and Audited Computation

Then ∆;Γ ;σ(Σ1) ⊢ b : A | b is immediate.
• If the derivation ends in:

∆;Γ, b : A;Σ1 ⊢M : B | r1
TAbs

∆;Γ ;Σ1 ⊢ λb : A.M : A ⊃ B | λb : A.r1

Then by the IH ∆;Γ, b : A;σ(Σ1) ⊢Mσ : B | r1σ. We construct the derivation:

∆;Γ, b : A;σ(Σ1) ⊢Mσ : B | r1σ
TAbs

∆;Γ ;σ(Σ1) ⊢ λb : A.Mσ : A ⊃ B | λb : A.r1σ

By the definition of renaming, ∆;Γ ;σ(Σ1) ⊢ (λb : A.M)σ : A ⊃ B | (λb : A.r1)σ.
• Suppose the derivation ends in:

∆;Γ1;Σ11 ⊢M1 : A ⊃ B | s1
∆;Γ2;Σ12 ⊢M2 : A | s2

TApp
∆;Γ1,2;Σ11,12 ⊢M1 M2 : B | s1 · s2

By the IH:

– ∆;Γ1;σ(Σ11) ⊢M1σ : A ⊃ B | s1σ
– ∆;Γ2;σ(Σ12) ⊢M2σ : A | s2σ

We construct the derivation:

∆;Γ1;σ(Σ11) ⊢M1σ : A ⊃ B | s1σ
∆;Γ2;σ(Σ12) ⊢M2σ : A | s2σ

TApp
∆;Γ1,2;σ(Σ11,12) ⊢M1σM2σ : B | s1σ · s2σ

• If the derivation ends in:

u : A[Σ] ∈ ∆ Σσ′ ⊆ Σ1
TMVar

∆;Γ ;Σ1 ⊢ 〈u;σ
′〉 : A | 〈u;σ′〉

Then

u : A[Σ] ∈ ∆ Σ(σ ◦ σ′) ⊆ σ(Σ1)
TMVar

∆;Γ ;σ(Σ1) ⊢ 〈u;σ ◦ σ
′〉 : A | 〈u;σ ◦ σ′〉

• If the derivation ends in:

∆; ·;Σ ⊢M : A | s ∆; ·;Σ ⊢ Eq(A, s, t) | e
TBox

∆;Γ ;Σ1 ⊢!
Σ1
e M : JΣ1.tKA | Σ1.t

The result is trivial. Note that (!Σe M)σ =!Σe M and (Σ1.t)σ = Σ1.t.
• Suppose the derivation ends in:

∆;Γ1;Σ11 ⊢M : JΣ.rKA | s1
∆,u : A[Σ];Γ2;Σ12 ⊢ N : C | s2

TLetB
∆;Γ1,2;Σ11,12 ⊢ letu : A[Σ] = M in N : Cu

Σ.r |
let(uA[Σ].s2, s1)

By the IH:

– ∆;Γ1;σ(Σ11) ⊢Mσ : JΣ.rKA | s1σ
– ∆,u : A[Σ];Γ2;σ(Σ12) ⊢ Nσ : C | s2σ

We construct the derivation:

C.2 Lemmata 145

∆;Γ1;σ(Σ11) ⊢Mσ : JΣ.rKA | s1σ
∆, u : A[Σ];Γ2;σ(Σ12) ⊢ Nσ : C | s2σ

TLetB
∆;Γ1,2;σ(Σ11,12) ⊢ letu : A[Σ] = Mσ in Nσ : Cu

Σ.r |
let(uA[Σ].s2σ, s1σ)

• The result holds immediately if the derivation is:

α : Eq(A) ∈ Σ ∆; ·; · ⊢ θ : T B | θw
TTlk

∆;Γ ;Σ1 ⊢ αθ : B | αθw

since (αθ)σ = αθ and we can resort to TTlk.
• If the derivation ends in:

∆;Γ ;Σ1 ⊢M : A | r
∆;Γ ;Σ1 ⊢ Eq(A, r, s) | e

TEq
∆;Γ ;Σ1 ⊢ e✄M : A | s

Then by IH ∆;Γ ;σ(Σ1) ⊢Mσ : A | rσ and ∆;Γ ;σ(Σ1) ⊢ Eq(A, rσ, sσ) | eσ.
We construct the derivation:

∆;Γ ;σ(Σ1) ⊢Mσ : A | rσ
∆;Γ ;σ(Σ1) ⊢ Eq(A, rσ, sσ) | eσ

TEq
∆;Γ ;σ(Σ1) ⊢ eσ ✄Mσ : A | sσ

• If the derivation ends in:

∆;Γ ;Σ1 ⊢M : A | s
EqRefl

∆;Γ ;Σ1 ⊢ Eq(A, s, s) | r(s)

Then by IH ∆;Γ ;σ(Σ1) ⊢Mσ : A | sσ.
We construct the derivation:

∆;Γ ;σ(Σ1) ⊢Mσ : A | sσ
EqRefl

∆;Γ ;σ(Σ1) ⊢ Eq(A, sσ, sσ) | r(sσ)

• If the derivation ends in:

∆;Γ1, b : A;Σ11 ⊢M : B | r
∆;Γ2;Σ12 ⊢ N : A | s

Eqβ
∆;Γ1,2;Σ11,12 ⊢ Eq(B, rbs, (λb : A.r) · s) | ba(bA.r, s)

By the IH:

– ∆;Γ1, b : A;σ(Σ11) ⊢Mσ : B | rσ
– ∆;Γ2;σ(Σ12) ⊢ Nσ : A | sσ

We construct the derivation and conclude from Lem. C.2.5(1):

∆;Γ1, b : A;σ(Σ11) ⊢Mσ : B | rσ
∆;Γ2;σ(Σ12) ⊢ Nσ : A | sσ

Eqβ
∆;Γ1,2;σ(Σ11,12) ⊢ Eq(B, rσb

sσ, (λb : A.rσ) · sσ) |
ba(bA.rσ, s)

• If the derivation ends in:

∆; ·;Σ ⊢ A | r
∆; ·;Σ ⊢ Eq(A, r, s) | e

∆, u : A[Σ];Γ ′;Σ′ ⊢ C | t
Γ ′ ⊆ Γ Σ′ ⊆ Σ

Eqβ✷

∆;Γ ;Σ ⊢ Eq(Cu
Σ.s, t

u
Σ.s, let(u

A[Σ].t, Σ.s)) |
bb(uA[Σ].t, Σ.s)

146 C Definitions and Proofs for Justification Logic and Audited Computation

We resort to the IH to deduce ∆,u : A[Σ];Γ ;σ(Σ1) ⊢ C | σ(t) and then derive:

∆; ·;Σ ⊢ A | r
∆; ·;Σ ⊢ Eq(A, r, s) | e

∆, u : A[Σ];Γ ;σ(Σ1) ⊢ C | σ(t)
Eqβ✷

∆;Γ ;σ(Σ1) ⊢ Eq(Cu
Σ.s, σ(t)

u
Σ.s, let(u

A[Σ].σ(t), Σ.s)) |
bb(uA[Σ].σ(t), Σ.s)

• The case in which the derivation ends in:

∆; ·;Σ′
1 ⊢ Eq(A, s, t) | e

∆; ·; · ⊢ T B | θw

α : Eq(A) ∈ Σ1
EqTlk

∆;Γ ;Σ1 ⊢ Eq(B, eθw, αθw) | ti(θw, α)

is immediate since we can derive:

∆; ·;Σ′
1 ⊢ Eq(A, s, t) | e

∆; ·; · ⊢ T B | θw

σ(α) : Eq(A) ∈ σ(Σ1)
EqTlk

∆;Γ ;σ(Σ1) ⊢ Eq(B, eθw, σ(α)αθw) | ti(θw, σ(α))

• Suppose the derivation ends in:

∆;Γ ;Σ1 ⊢ Eq(A, s1, s2) | e
EqSym

∆;Γ ;Σ1 ⊢ Eq(A, s2, s1) | s(e)

We resort to the IH.
• If the derivation ends in:

∆;Γ ;Σ1 ⊢ Eq(A, s1, s2) | e1
∆;Γ ;Σ1 ⊢ Eq(A, s2, s3) | e2

EqTrans
∆;Γ ;Σ1 ⊢ Eq(A, s1, s3) | t(e1, e2)

We resort to the IH.
• If the derivation ends in:

∆;Γ, b : A;Σ1 ⊢ Eq(B, s, t) | e
EqAbs

∆;Γ ;Σ1 ⊢ Eq(A ⊃ B, λb : A.s, λb : A.t) |
abC(bA.e)

We resort to the IH.
• If the derivation ends in:

∆;Γ1;Σ11 ⊢ Eq(A ⊃ B, s1, s2) | e1
∆;Γ2;Σ12 ⊢ Eq(A, t1, t2) | e2

EqApp
∆;Γ1,2;Σ11,12 ⊢ Eq(B, s1 · t1, s2 · t2) | apC(e1, e2)

We resort to the IH.
• If the derivation ends in:

∆′;Γ1;Σ11 ⊢ Eq(JΣ.rKA, s1, s2) | e1
∆′, u : A[Σ];Γ2;Σ12 ⊢ Eq(C, t1, t2) | e2

EqLet
∆′;Γ1,2;Σ11,12 ⊢ Eq(Cu

Σ.r, let(u
A[Σ].t1, s1), let(u

A[Σ].t2, s2)) |
leC(uA[Σ].e2, e1)

We resort to the IH and derive:

C.2 Lemmata 147

∆′;Γ1;σ(Σ11) ⊢ Eq(JΣ.rKA, σ(s1), σ(s2)) | σ(e1)
∆′, u : A[Σ];Γ2;σ(Σ12) ⊢ Eq(C, σ(t1), σ(t2)) | σ(e2)

EqLet
∆′;Γ1,2;σ(Σ11,12) ⊢ Eq(Cu

Σ.r, let(u
A[Σ].σ(t1), σ(s1)), let(u

A[Σ].σ(t2), σ(s2))) |
leC(uA[Σ].σ(e2), σ(e1))

• If the derivation ends in:

∆; ·; · ⊢ Eq(T B , θ′w, θw) | ei α : Eq(A) ∈ Σ1
EqRpl

∆;Γ ;Σ1 ⊢ Eq(B,αθ′w, αθw) |
rpC(e)

then we derive:

∆; ·; · ⊢ Eq(T B , θ′w, θw) | ei σ(α) : Eq(A) ∈ σ(Σ1)
EqRpl

∆;Γ ;σ(Σ1) ⊢ Eq(B, σ(α)θ′w, σ(α)θw) |
rpC(e)

We now address the proof of the Substitution Principle for Validity Hypothesis.

Proof. By simultaneous induction on the derivations of ∆1, u : A[Σ1], ∆2;Γ ;Σ2 ⊢ N : C | r and
∆2, u : A[Σ1], ∆2;Γ ;Σ2 ⊢ Eq(C, s1, s2) | e. We write ∆u

1,2 for ∆1, u : A[Σ1], ∆2.

• The derivation ends in:

Var
∆u

1,2;Γ ;Σ2 ⊢ b : A | b

Then ∆1,2; b : A;Σ2 ⊢ b : A | b is derivable.
• If the derivation ends in:

∆u
1,2;Γ, b : A;Σ2 ⊢M : B | r1

⊃ I
∆u

1,2;Γ ;Σ2 ⊢ λb : A.M : A ⊃ B | λb : A.r1

then by the IH ∆1,2;Γ, b : A;Σ2 ⊢ Mu
Σ1.(M,t,e) : Bu

Σ1.t
| r1

u
Σ1.t

. Note that Au
Σ1.t

= A since all labels
are chosen fresh. We conclude by resorting to ⊃ I.

• Suppose the derivation ends in:

∆u
1,2;Γ1;Σ21 ⊢M1 : A ⊃ B | s1 ∆u

1,2;Γ2;Σ22 ⊢M2 : A | s2
⊃ E

∆u
1,2;Γ1,2;Σ21,22 ⊢M1 M2 : B | s1 · s2

By the IH we have:
– ∆1,2;Γ1;Σ21 ⊢M1

u
Σ1.(M,t,e) : A

u
Σ1.t
⊃ Bu

Σ1.t
| s1

u
Σ1.t

– ∆u
1,2;Γ2;Σ22 ⊢M2

u
Σ1.(M,t,e) : A

u
Σ1.t
| s2

u
Σ1.t

We conclude by resorting to an instance of ⊃ E.
• If the derivation ends in:

v : C[Σ3] ∈ ∆u
1,2 Σ3σ ⊆ Σ2

mVar
∆u

1,2;Γ ;Σ2 ⊢ 〈v;σ〉 : C | 〈v;σ〉

we consider two subcases:
– u = v. First, from Lem. C.2.5 and the hypothesis, we obtain a derivation of ∆1,2; ·;Σ2 ⊢Mσ : A |

sσ and ∆1,2; ·;Σ2 ⊢ Eq(A, sσ, tσ) | eσ. We then resort to weakening and construct the derivation:

∆1,2;Γ ;Σ2 ⊢Mσ : A | sσ
∆1,2;Γ ;Σ2 ⊢ Eq(A, sσ, tσ) | eσ

∆1,2;Γ ;Σ2 ⊢ eσ ✄Mσ : A | tσ

Note that 〈u;σ〉uΣ1.(M,t,e) = eσ ✄Mσ. Also, 〈u;σ〉uΣ1.t
= tσ. Hence we conclude.

148 C Definitions and Proofs for Justification Logic and Audited Computation

– u 6= v. Then we derive the following, where ∆′′ is (∆11, v : A[Σ], ∆12) \ u:
v : C[Σ3] ∈ ∆u

1,2 Σ3σ ⊆ Σ2
mVar

∆1,2;Γ ;Σ2 ⊢ 〈v;σ〉 : A | 〈v;σ〉
• If the derivation ends in:

∆u
1,2; ·;Σ3 ⊢M1 : A | s1 ∆u

1,2; ·;Σ3 ⊢ Eq(A, s1, s2) | e3
✷I

∆u
1,2;Γ ;Σ2 ⊢!

Σ3
e3

M1 : JΣ3.s2KA | Σ3.s2

By the IH we have:
– ∆1,2; ·;Σ3 ⊢M1

u
Σ1.(M,t,e) : A

u
Σ1.t
| s1

u
Σ1.t

– ∆1,2; ·;Σ3 ⊢ Eq(Au
Σ1.t

, s1
u
Σ1.t

, s2
u
Σ1.t

) | e3
u
Σ1.t

We then construct the derivation

∆1,2; ·;Σ3 ⊢M1
u
Σ1.(M,t,e) : A

u
Σ1.t
| s1

u
Σ1.t

∆1,2; ·;Σ3 ⊢ Eq(Au
Σ1.t

, s1
u
Σ1.t

, s2
u
Σ1.t

) | e3
u
Σ1.t

✷I
∆1,2;Γ ;Σ2 ⊢!

Σ3

e3
u
Σ1.t

M1
u
Σ1.(M,t,e) : JΣ3.s2

u
Σ1.t

KA | Σ3.s2
u
Σ1.t

• Suppose q
def
= let(uA[Σ].s2, s1) and the derivation ends in:

∆u
1,2;Γ1;Σ21 ⊢M1 : JΣ.rKA | s1

∆u
1,2, v : A[Σ];Γ2;Σ22 ⊢M2 : C | s2

✷E
∆u

1,2;Γ1,2;Σ21,22 ⊢ letu : A[Σ] = M1 in M2 : Cu
Σ.r | q

We resort to the IH and derive the following derivation where P
def
= let v : A[Σ] = M1

u
Σ1.(M,t,e) inM2

u
Σ1.t

and q′
def
= let(uA[Σ].s2

u
Σ1.t

, s1
u
Σ1.t

):

∆1,2;Γ1;Σ21 ⊢M1
u
Σ1.(M,t,e) : JΣ.ruΣ1.t

KAu
Σ1.t
| s1

u
Σ1.t

∆1,2, v : A[Σ];Γ2;Σ22 ⊢M2
u
Σ1.(M,t,e) : C

u
Σ1.t
| s2

u
Σ1.t

✷E
∆1,2;Γ1,2;Σ21,22 ⊢ P : Cu

Σ1.t
u

Σ.ru
Σ1.t

| q′

• If the derivation ends in:

α : Eq(A) ∈ Σ2 ∆u
1,2; ·; · ⊢ θ : T B | θw

TTlk
∆u

1,2;Γ ;Σ2 ⊢ αθ : B | αθw

We resort to the IH and derive:

α : Eq(A) ∈ Σ2

∆1,2; ·; · ⊢ θuΣ1.(M,t,e) : T
Bu

Σ1.t | θwu
Σ1.t

TTlk
∆1,2;Γ ;Σ2 ⊢ α(θuΣ1.(M,t,e)) : B

u
Σ1.t
| α(θwu

Σ1.t
)

• If the derivation ends in:

∆u
1,2;Γ ;Σ2 ⊢M1 : A | s1

EqRefl
∆u

1,2;Γ ;Σ2 ⊢ Eq(A, s, s) | r(s)

We use the IH and derive:

∆1,2;Γ ;Σ2 ⊢M1
u
Σ1.(M,t,e) : A

u
Σ1.t
| s1

u
Σ1.t

EqRefl
∆1,2;Γ ;Σ2 ⊢ Eq(Au

Σ1.t
, s1

u
Σ1.t

, s1
u
Σ1.t

) | r(s1
u
Σ1.t

)

• If the derivation ends in:

∆u
1,2;Γ ;Σ2 ⊢M3 : A | s1

∆u
1,2;Γ ;Σ2 ⊢ Eq(A, s1, s2) | e3

Eq
∆u

1,2;Γ ;Σ2 ⊢ e3 ✄M3 : A | s2

C.2 Lemmata 149

We use the IH and derive:

∆1,2;Γ ;Σ2 ⊢M3
u
Σ1.(M,t,e) : A

u
Σ1.t
| s1

u
Σ1.t

∆1,2;Γ ;Σ2 ⊢ Eq(Au
Σ1.t

, s1
u
Σ1.t

, s2
u
Σ1.t

) | e3
u
Σ1.t Eq

∆1,2;Γ ;Σ2 ⊢ e3
u
Σ1.t

✄M3
u
Σ1.t

: Au
Σ1.t
| s2

u
Σ1.t

• If the derivation ends in:

∆u
1,2;Γ1, b : A;Σ21 ⊢M1 : B | r1
∆u

1,2;Γ2;Σ22 ⊢M2 : A | r2
Eqβ

∆u
1,2;Γ1,2;Σ21,22 ⊢ Eq(B, rbr2 , (λb : A.r1) · r2) | ba(b

A.r1, r2)

We use the IH and derive:

∆1,2;Γ1, b : A;Σ21 ⊢ r1
u
Σ1.(M,t,e) : B | r

∆1,2;Γ2;Σ22 ⊢M2
u
Σ1.(M,t,e) : A

u
Σ1.t
| r2

u
Σ1.t Eqβ

∆1,2;Γ1,2;Σ21,22 ⊢ Eq(B, r1
u
Σ1.t

b

r2
u
Σ1.t

, (λb : A.r1
u
Σ1.t

) · r2
u
Σ1.t

) | ba(bA.r1
u
Σ1.t

, r2
u
Σ1.t

)

• Let q
def
= let(vA[Σ].t1, Σ.s) and e2

def
= bb(vA[Σ].t1, Σ.s). If the derivation ends in:

∆u
1,2; ·;Σ ⊢ A | r

∆u
1,2; ·;Σ ⊢ Eq(A, r, s) | e

∆u
1,2, v : A[Σ];Γ ;Σ2 ⊢ C | t1

Eqβ✷

∆u
1,2;Γ ;Σ2 ⊢ Eq(Cv

Σ.s, t1
v
Σ.s, q) | e2

We use the IH and derive the following derivation where q′
def
= let(vA[Σ].t1

u
Σ1.t

, Σ.suΣ1.t
) and e′2

def
=

bb(vA[Σ].t1
u
Σ1.t

, Σ.suΣ1.t
):

∆1,2; ·;Σ ⊢ Au
Σ1.t
| ruΣ1.t

∆1,2; ·;Σ ⊢ Eq(Au
Σ1.t

, ruΣ1.t
, suΣ1.t

) | euΣ1.t

∆1,2, v : A[Σ];Γ ;Σ2 ⊢ Cu
Σ1.t
| t1

u
Σ1.t Eqβ✷

∆1,2;Γ ;Σ2 ⊢ Eq(Cu
Σ1.t

v

Σ.s
, (t1

u
Σ1.t

)
v

Σ.su
Σ1.t

, q′) | e′2

Note that, by the freshness condition on labels of hypothesis, u /∈ A. Therefore, the first hypothesis
reads: ∆1,2; ·;Σ ⊢ A | ruΣ1.t

and the second one reads ∆1,2; ·;Σ ⊢ Eq(A, ruΣ1.t
, suΣ1.t

) | euΣ1.t
, hence the

above derivation is a valid one. We conclude by resorting to Lem. C.2.4(3).
• The case in which the derivation ends in:

∆u
1,2; ·;Σ1 ⊢ Eq(A, s, t) | e
∆u

1,2; ·; · ⊢ T
B | θw

α : Eq(A) ∈ Σ2
EqTlk

∆u
1,2;Γ ;Σ2 ⊢ Eq(B, eθw, αθw) | ti(θw, α)

We use the IH.
• Suppose the derivation ends EqSym or EqTrans, then we proceed similarly to the case of EqRefl.
• If the derivation ends in:

∆u
1,2;Γ, b : A;Σ2 ⊢ Eq(B, s, t) | e

EqAbs
∆u

1,2;Γ ;Σ2 ⊢ Eq(A ⊃ B, λb : A.s, λb : A.t) | abC(bA.e)

We use the IH.
• If the derivation ends in:

∆u
1,2;Γ1;Σ21 ⊢ Eq(A ⊃ B, s1, s2) | e1
∆u

1,2;Γ2;Σ22 ⊢ Eq(A, t1, t2) | e2
EqApp

∆u
1,2;Γ1,2;Σ21,22 ⊢ Eq(B, s1 · t1, s2 · t2) | apC(e1, e2)

150 C Definitions and Proofs for Justification Logic and Audited Computation

We use the IH.
• Let q1

def
= let(vA[Σ].t1, s1) and q2

def
= let(vA[Σ].t2, s2). If the derivation ends in:

∆u
1,2;Γ1;Σ21 ⊢ Eq(JΣ.rKA, s1, s2) | e3

∆u
1,2, v : A[Σ];Γ2;Σ22 ⊢ Eq(C, t1, t2) | e4

EqLet
∆u

1,2;Γ1,2;Σ21,22 ⊢ Eq(Cv
Σ.r, q1, q2) | leC(v

A[Σ].e4, e3)

We use the IH and Lem. C.2.4(3).
• If the derivation ends in:

∆u
1,2; ·; · ⊢ Eq(T B , θw, θ′w) | ei α : Eq(A) ∈ Σ2

EqRpl
∆u

1,2;Γ ;Σ2 ⊢ Eq(B,αθ′w, αθw) | rpC(e)

We use the IH and derive:

∆1,2; ·; · ⊢ Eq(T Bu
Σ1.t , θ′w

u
Σ1.t

, θwu
Σ1.t

) | euΣ1.t

α : Eq(A) ∈ Σ2
EqRpl

∆1,2;Γ ;Σ2 ⊢ Eq(Bu
Σ1.t

, α(θ′w
u
Σ1.t

), α(θwu
Σ1.t

)) | rpC(euΣ1.t
)

C.3 Subject Reduction

Proof of Prop. 5.6.4.

Proof. By induction on the derivation of ·; ·;Σ ⊢M : A | s. Note that if the derivation ends in TVar

or TMVar, the result holds trivially. Also, if it ends in TAbs, then M is an abstraction and hence a
value. Finally, if the derivation ends in an instance of TEq, the result holds trivially too since M is
assumed in permutation reduction-normal form. We consider the remaining cases:

• Suppose M = M1 M2 and the derivation ends in an instance of TApp. Then M1 (and M2) is also
in permutation reduction normal form, typable and tv-closed. We apply the IH on M1 and reason as
follows:
1. M1 is a value V . By Canonical Forms Lem. 5.6.3 V is an abstraction λaB .M3. We resort to the

IH on M2:
a) M2 is a value. Then (λaB .M3)M2 7→ ba(aB .s, t)✄M3

a
M2,t

.
b) M2 is inspection-blocked. Then V M2 is inspection-blocked too.
c) There exists M ′

2 s.t. M2 7→M ′
2. Then V M2 7→ V M ′

2.
2. M1 is inspection-blocked. Then M1 M2 is inspection-blocked.
3. There exists M ′

1 s.t. M1 7→M ′
1. Then M1 M2 7→M ′

1 M2.
• M =!Σ1

e M1 and the derivation ends in TBox. Since M1 is in permutation reduction normal form,
typed and tv-closed, we resort to the IH and proceed as follows:
1. M1 is a value V . In this case !Σ1

e V is also a value.
2. M1 is inspection-blocked. Then, for some F , α, θ,M1 = F [αθ]. Then !Σ1

e F [αϑ] 7→!Σ1
e F [ti(θ, α)✄eϑ].

3. There exists M ′
1 s.t. M1 7→M ′

1. Then !Σ1
e M1 7→!Σ1

e M ′
1.

• M = let(uA[Σ].M2,M1) and the derivation ends in an instance of TLetB. SinceM1 is in permutation
reduction normal form, typable and tv-closed we can apply the IH and reason as follows:
1. M1 is a value. By the Canonical Forms Lem. 5.6.3, M1 is an audited computation unit !Σe V . Then

M = let(uA[Σ].M2, !
Σ
e V) 7→ bb(uA[Σ].t, Σ.s)✄M2

u
Σ.(V,s,e).

2. M1 is inspection-blocked. Then, for some F , α, ϑ, M1 = F [αϑ]. Therefore, let(uA[Σ].M3,F [αϑ])
is inspection-blocked.

3. There exists M ′
1 s.t. M1 7→M ′

1. Then let(uA[Σ].M2,M1) 7→ let(uA[Σ].M2,M
′
1).

C.4 Strong Normalisation 151

• M = αθ where θ = {c1/M1, . . . , c10/M10}. Since each Mi, i ∈ 1..10, is in permutation reduction
normal form, typable and tv-closed we may apply the IH to each one. If they are all values, then M is
inspection-blocked. Otherwise, let Mj be the first that is not a value. Then, it must be the case that

Mj 7→M ′
j for some M ′

j . Then also, M 7→ αθ′, where θ′(ci)
def
= Mi, i ∈ 1..10/j and θ′(cj)

def
= M ′

j .

C.4 Strong Normalisation

Proof of Lem. 5.7.1 (S() preserves typability).

Proof. By induction on the derivation of ∆;Γ ;Σ ⊢M : A | s. The interesting cases are:

• The derivation ends in:

∆; ·;Σ ⊢M : A | s ∆; ·;Σ ⊢ Eq(A, s, t) | e
TBox

∆;Γ ;Σ′ ⊢!Σe M : JΣ.tKA | Σ.t

By the IH S(∆) ⊢ S(M) : S(A) is derivable. We resort to weakening and conclude.
• M = letuA[Σ] � M1 inM2 and the derivation ends in:

∆;Γ1;Σ1 ⊢M1 : JΣ.rKA | s
∆, u : A[Σ];Γ2;Σ2 ⊢M2 : C | t

TLetB
∆;Γ1,2;Σ1,2 ⊢M : Cu

Σ.r | let(u
A[Σ].t, s)

By the IH both S(∆),S(Γ1) ⊢ S(M1) : S(A) and S(∆), u : S(A),S(Γ2) ⊢ S(M2) : S(C) are derivable.
We use weakening and then construct the derivation:

S(∆), u : S(A),S(Γ1,2) ⊢ S(M2) : S(C)

S(∆),S(Γ1,2) ⊢ λu : S(A).S(M2) : S(A) ⊃ S(C) S(∆),S(Γ1,2) ⊢ S(M1) : S(A)

S(∆),S(Γ1,2) ⊢ (λu : S(A).S(M2))S(M1) : S(C)

Finally, note that S(Cu
Σ.s) = S(C).

• The derivation ends in:

α : Eq(A) ∈ Σ ∆; ·; · ⊢ ϑ : T B | θ
TTlk

∆;Γ ;Σ ⊢ αBϑ : B | αθ

By the IH, for each compatibility witness constructor c, S(∆) ⊢ S(ϑ(c)) : S(T B(c)) is derivable.
We resort to weakening to obtain derivations of S(∆),S(Γ) ⊢ S(ϑ(c)) : S(T B(c)). With this we can
produce the derivation π:

S(∆),S(Γ) ⊢ S(ϑ) : S(T B)
Prod

S(∆),S(Γ) ⊢ S(ϑ) : S(T B)

Now we construct:

S(∆),S(Γ) ⊢ λa : S(T B).cB : S(T B) ⊃ S(B) π
TApp

S(∆),S(Γ) ⊢ (λa : S(T B).cB)S(ϑ) : S(B)

• The derivation ends in:

∆;Γ ;Σ ⊢M : A | s ∆;Γ ;Σ ⊢ Eq(A, s, t) | e
TEq

∆;Γ ;Σ ⊢ e✄M : A | t

We conclude by the IH from which we deduce the derivability of S(∆),S(Γ) ⊢ S(M) : S(A).

152 C Definitions and Proofs for Justification Logic and Audited Computation

Proof of Lem. 5.7.4

Proof. Suppose M = D[M ′] and N = D[N ′] with M ′ f
⇀ N ′. We proceed by induction on D.

• D = ✷. We consider each of the two principle reduction axioms β and β✷:
– β. We reason as follows:

S((λa : A.M) N)
= (λa : S(A).S(M))S(N)
β
→ S(M)

a
S(N)

= S(Ma
N,t)

= S(ba(aA.s, t)✄Ma
N,t)

– β✷. We reason as follows:
S(letuA[Σ] �!Σe M inN)

= (λu : S(A).S(N))S(M)
β
→ S(N)

u
S(M)

= S(Nu
Σ.(M,t,e))

= S(bb(uA[Σ].s, Σ.t)✄Nu
Σ.(M,t,e))

• D = D′ M1. By the IH S(D′[M ′])
β
→ S(D′[N ′]). Therefore, also S(D′[M ′])S(M1)

β
→ S(D′[N ′])S(M1).

• D = M1 D
′. Similar to the previous case.

• D = letuA[Σ] � D′ inM1. By the IH S(D
′[M ′])

β
→ S(D′[N ′]). Therefore, also (λu : S(A).S(M1))S(D

′[M ′])
β
→

(λu : S(A).S(M1))S(D
′[N ′]).

• D = letuA[Σ] � M1 inD
′. Similar to the previous item.

• D =!Σe D
′. Immediate from the IH.

• D = e✄D′. Immediate from the IH.

• D = α{c1/M1, . . . , cj/Mj , cj+1/D
′, . . .}. By the IH, S(D′[M ′])

β
→ S(D′[N ′]). Therefore, also (λa :

S(T B).cB) 〈S(M1), . . . ,S(Mj),S(D
′[M ′]), . . . , 〉

β
→ (λa : S(T B).cB) 〈S(M1), . . . ,S(Mj),S(D

′[N ′]), . . . , 〉.

C.4.1 Weight Functions and Associated Results

Note that if there are no audited computation units, then the weight is the empty multiset. The proof of
this observation is by close inspection of the definition of the weight functions.

Lemma C.4.1 If M has no occurrences of the trail computation constructor “!”, then Wn(M) = 〈〈 〉〉.

The weight functions are weakly monotonic in their parameter.

Lemma C.4.2 1. m ≤ n implies Wm(M) � Wn(M).
2. m < n and M has at least one occurrence of “!” implies Wm(M) ≺ Wn(M).

Proof. By induction on M .

• M = a. Then Wm(M) = 〈〈 〉〉 =Wn(M).
• M = λa : A.M1.

Wm(λa : A.M1)
= Wm(M1)
� Wn(M1) IH
= Wn(λa : A.M1)

C.4 Strong Normalisation 153

• M = M1 M2.

Wm(M1 M2)
= Wm(M1) ⊎Wm(M2)
� Wn(M1) ⊎Wn(M2) IH ∗ 2
= Wn(M1 M2)

• M = 〈u;σ〉. Then Wm(M) = 〈〈 〉〉 =Wn(M).
• M =!Σe M1.

Wm(!Σe M1)
= m ∗Wt(M1) ⊎Wm∗Wt(M1)(M1)
� n ∗Wt(M1) ⊎Wm∗Wt(M1)(M1)
� n ∗Wt(M1) ⊎Wn∗Wt(M1)(M1) IH
= Wn(!

Σ
e M1)

• M = letu : A[Σ] = M1 in M2.

Wm(letu : A[Σ] = M1 in M2)
= Wm(M1) ⊎Wm(M2)
� Wn(M1) ⊎Wn(M1) IH ∗ 2
= Wn(letu : A[Σ] = M1 in M2)

• M = αθ.

Wm(αθ)
=

⊎
i∈1..10Wm(θ(ci))

�
⊎

i∈1..10Wn(θ(ci)) IH ∗ 10
= Wn(αθ)

• M = e✄M1.

Wm(e✄M1)
= Wm(M1)
� Wn(M1) IH
= Wn(e✄M1)

Lemma C.4.3 Wn(M
a
N,t) � Wn(M) ⊎Wn(N).

Proof. By induction on M .

• M = b. If b 6= a, then 〈〈 〉〉 � Wn(b) ⊎Wn(N). If b = a, then Wn(N) � Wn(N) =Wn(a) ⊎Wn(N).
• M = λb : A.M1. We reason as follows

Wn((λb : A.M1)
a
N,t)

= Wn(M1
a
N,t)

� Wn(M1) ⊎Wn(N) IH
= Wn(λb : A.M1) ⊎Wn(N)

• M = M1 M2. This case relies on the affine nature of truth variables. Note that fvT(M1)∩fvT(M2) = ∅.
Suppose, therefore, that a ∈ fvT(M1) (the case a ∈ fvT(M2) is similar and hence omitted). We reason
as follows:

Wn((M1 M2)
a
N,t)

= Wn(M1
a
N,t M2)

= Wn(M1
a
N,t) ⊎Wn(M2)

� (Wn(M1) ⊎Wn(N)) ⊎Wn(M2) IH
= Wn(M1 M2) ⊎Wn(N) Ass. ⊎

154 C Definitions and Proofs for Justification Logic and Audited Computation

• M = 〈u;σ〉.

Wn(〈u;σ〉
a
N,t)

= Wn(〈u;σ〉)
= 〈〈 〉〉
� Wn(N)
= 〈〈 〉〉 ⊎Wn(N)
= Wn(〈u;σ〉) ⊎Wn(N)

• M =!Σe M1.

Wn((!
Σ
e M1)

a

N,t)

= Wn(!
Σ
e M1)

� Wn(!
Σ
e M1) ⊎Wn(N)

• M = letu : A[Σ] = M1 in M2. Note that fvT(M1)∩fvT(M2) = ∅. Suppose, therefore, that a ∈ fvT(M1)
(the case a ∈ fvT(M2) is similar and hence omitted). We reason as follows:

Wn((letu : A[Σ] = M1 in M2)
a
N,t)

= Wn(M1
a
N,t) ⊎Wn(M2)

� (Wn(M1) ⊎Wn(N)) ⊎Wn(M2) IH
= Wn(letu : A[Σ] = M1 in M2) ⊎Wn(N) Ass. ⊎

• M = αθ.

Wn((αθ)
a
N,t)

= Wn(αθ)
� Wn(αθ) ⊎Wn(N)

• M = e✄M1.

Wn((e✄M1)
a
N,t)

= Wn(e
a
t ✄M1

a
N,t)

= Wn(M1
a
N,t)

� Wn(M1) ⊎Wn(N) IH
= Wn(e✄M1) ⊎Wn(N)

As an immediate corollary of Lem. C.4.3 we obtain a proof of Lem. 5.7.7 (Wn((λa : A.M)N) �
Wn(M

a
N,t)).

Lemma C.4.4 Wt(Nu
Σ′.(M,t,e)) ≤ W

t(N).

Lemma C.4.5 If M has no occurrences of the “!” term constructor, then Wn(N
u
Σ.(M,t,e)) � Wn(N).

Proof. By induction on N using Lem. C.4.1 and Lem. C.4.4.

• N = a. Wn(N
u
Σ.(M,t,e)) = 〈〈 〉〉 =Wn(N).

• N = λa : A.N1.

Wn((λa : A.N1)
u
Σ.(M,t,e))

= Wn(λa : A.N1
u
Σ.(M,t,e))

= Wn(N1
u
Σ.(M,t,e))

� Wn(N1) IH
= Wn(λa : A.N1)

C.4 Strong Normalisation 155

• N = N1 N2.

Wn((N1 N2)
u
Σ.(M,t,e))

= Wn(N1
u
Σ.(M,t,e) N2

u
Σ.(M,t,e))

= Wn(N1
u
Σ.(M,t,e)) ⊎Wn(N2

u
Σ.(M,t,e))

� Wn(N1) ⊎Wn(N2) IH
= Wn(N1 N2)

• N = 〈v;σ〉.

Wn(〈v;σ〉
u
Σ.(M,t,e))

= Wn(〈v;σ〉)

• N = 〈u;σ〉.

Wn(〈u;σ〉
u
Σ.(M,t,e))

= Wn(eσ ✄Mσ)
= Wn(Mσ)
= 〈〈 〉〉 L. C.4.1
= Wn(〈u;σ〉)

• N =!Σ1
e1

N1. Let m
def
= n ∗Wt(N1

u
Σ.(M,t,e)).

Wn((!
Σ1
e1

N1)
u

Σ.(M,t,e)
)

= Wn(!
Σ1

e1
u
Σ.t

N1
u
Σ.(M,t,e))

= m ⊎Wm(N1
u
Σ.(M,t,e))

� n ∗Wt(N1) ⊎Wm(N1
u
Σ.(M,t,e)) L. C.4.4

� n ∗Wt(N1) ⊎Wm(N1) IH
� n ∗Wt(N1) ⊎Wn∗Wt(N1)(N1) L. C.4.2
= Wn(!

Σ1
e1

N1)

• N = letu : A[Σ] = N1 in N2. Similar to the case of application.
• N = αθ.

Wn((αθ)
u
Σ.(M,t,e))

= Wn(α(θ
u
Σ.(M,t,e)))

=
⊎

i∈1..10Wn(θ(ci)
u
Σ.(M,t,e))

�
⊎

i∈1..10Wn(θ(ci)) IH*10
= Wn(αθ)

• N = e1 ✄N1.

Wn((e1 ✄N1)
u
Σ.(M,t,e))

= Wn(e1
u
Σ.t ✄N1

u
Σ.(M,t,e))

= Wn(N1
u
Σ.(M,t,e))

� Wn(N1) IH
= Wn(e1 ✄N1)

Proof of Lem. 5.7.8:
Suppose M has no occurrences of the modal type constructor. Then Wn(letu : A[Σ] =!Σe M in N) ≻

Wn(bb(u
A[Σ].s, Σ.t)✄Nu

Σ.(M,t,e)).

Proof. On the one hand:

156 C Definitions and Proofs for Justification Logic and Audited Computation

Wn(letu : A[Σ] =!Σe M in N)
= Wn(!

Σ
e M) ⊎Wn(N)

= n ∗Wt(M) ⊎Wn∗Wt(M)(M) ⊎Wn(N)

On the other hand:

Wn(bb(u
A[Σ].s, Σ.t)✄Nu

Σ.(M,t,e))

= Wn(N
u
Σ.(M,t,e))

By Lem. C.4.5, we conclude.

Lemma C.4.6 m < n implies Wm(C[ti(θw, α)✄ eθ]) � Wn(C[αθ]).

Proof. By induction on C.

• C = ✷. We reason as follows:

Wm(ti(θw, α)✄ eθ)
= Wm(eθ)
� Wn(αθ)

The justification of the last step in our reasoning is as follows. Note thatWm(eθ) =
⊎

i∈1..10Wm(θ(ci))
pi ,

where pi is the number of occurrences of the constructor ci in e. Also, Wn(αθ) =
⊎

i∈1..10Wn(θ(ci)).
Thus for each i ∈ 1..10 we can “pair” Wn(θ(ci)) with Wm(θ(ci))

pi . For each ci we have two cases:
– If θ(ci) has no occurrences of the modal term constructor “!”, then Wm(eθ) � Wn(αθ) by

Lem. C.4.1.
– If θ(ci) has at least one occurrence of the modal term constructor “!”, then Wm(eθ) � Wn(αθ) by

Lem. C.4.2(2) and the definition of the multiset extension of an ordering.
• C = λa : A.C′. Similar to the case for application developed below.
• C = C′ M . We reason as follows:

Wm(C′[ti(θw, α)✄ eθ]M)
= Wm(C′[ti(θw, α)✄ eθ]) ⊎Wm(M)
� Wm(C′[ti(θw, α)✄ eθ]) ⊎Wn(M) L. C.4.2
� Wn(C

′[αθ]) ⊎Wn(M) IH
= Wn(C

′[αθ]M)

• C = M C′. Similar to the previous case.
• C = letu : A[Σ] = C′ in M1. We reason as follows:

Wm(letu : A[Σ] = C′[ti(θw, α)✄ eθ] in M1)
= Wm(C′[ti(θw, α)✄ eθ]) ⊎Wm(M1)
� Wm(C′[ti(θw, α)✄ eθ]) ⊎Wn(M1) L. C.4.2
� Wn(C

′[αθ]) ⊎Wn(M1) IH
= Wn(letu : A[Σ] = C′[αθ] in M1)

• C = letu : A[Σ] = M1 in C
′. Similar to the previous case.

• C = e1 ✄ C
′.

Wm(e1 ✄ C
′[ti(θw, α)✄ eθ])

= Wm(C′[ti(θw, α)✄ eθ])
� Wn(C

′[αθ]) IH
= Wn(e1 ✄ C

′[αθ])

Proof of Lem. 5.7.9 (Wn(!
Σ
e C[αθ]) ≻ Wn(!

Σ
e C[ti(θ

w, α)✄ eθ])).

C.5 Termination of Permutation Schemes 157

Proof. By induction on C.

• C = ✷. Let m
def
= n ∗ Wt(αθ) and m′ def

= n ∗ Wt(ti(θw, α) ✄ eθ). Note that m′ < m. We reason as
follows:

Wn(!
Σ
e αθ)

= m ⊎Wm(αθ)
= n ∗ 2 ⊎Wm(αθ)
≻ n ⊎Wm(αθ)
= n ∗ 1 ⊎Wm(αθ)
= n ∗Wt(ti(θw, α)✄ eθ) ⊎Wm(αθ)
� n ∗Wt(ti(θw, α)✄ eθ) ⊎Wm′(ti(θw, α)✄ eθ) L. C.4.6
= Wn(!

Σ
e ti(θ

w, α)✄ eθ)

• C = λa : A.C′. Similar to the case for application developed below.

• C = C′ M . Let m
def
= n ∗Wt(C′[αθ]M) and m′ def

= n ∗Wt(C′[ti(θw, α)✄ eθ]M). Note that m′ < m. We
reason as follows:

Wn(!
Σ
e (C

′[αθ]M))
= m ⊎Wm(C′[αθ]M)
= m ⊎Wm(C′[αθ]) ⊎Wm(M)
≻ m′ ⊎Wm(C′[αθ]) ⊎Wm(M)
� m′ ⊎Wm′(C′[ti(θw, α)✄ eθ]) ⊎Wm(M) L. C.4.6
� m′ ⊎Wm′(C′[ti(θw, α)✄ eθ]) ⊎Wm′(M) L. C.4.2
= m′ ⊎Wm′(C′[ti(θw, α)✄ eθ]M)
= Wn(!

Σ
e C

′[ti(θw, α)✄ eθ]M)

• C = M C′. Similar to the previous case.
• C = letu : A[Σ] = C′ in M1. Similar to the case for application.
• C = letu : A[Σ] = M1 in C

′. Similar to the case for application.

• C = e1✄C
′. Let m

def
= n∗Wt(e1✄C

′[αθ]) and m′ def
= n∗Wt(e1✄C

′[ti(θw, α)✄eθ]). Note that m′ < m.
We reason as follows:

Wn(!
Σ
e (e1 ✄ C

′[αθ]))
= m ⊎Wm(e1 ✄ C

′[αθ])
= m ⊎Wm(C′[αθ])
≻ m′ ⊎Wm(C′[αθ])
� m′ ⊎Wm′(C′[ti(θw, α)✄ eθ]) L. C.4.6
= m′ ⊎Wm′(e1 ✄ C

′[ti(θw, α)✄ eθ])
= Wn(!

Σ
e (e1 ✄ C

′[ti(θw, α)✄ eθ]))

C.5 Termination of Permutation Schemes

The encoding of the permutation reduction rules adapted for the AProVe tool. The output, with the
result that it indeed could be proven SN may be consulted at http://tpi.blog.unq.edu.ar/~ebonelli/
SNofPermRed.pdf.

(VAR m n e f e1 e2 e3 e4 e5)

(RULES

app(trail(e,m),n) -> trail(appCong(e,rfl),app(m,n))

app(m,trail(e,n)) -> trail(appCong(rfl,e),app(m,n))

http://tpi.blog.unq.edu.ar/~ebonelli/SNofPermRed.pdf
http://tpi.blog.unq.edu.ar/~ebonelli/SNofPermRed.pdf

158 C Definitions and Proofs for Justification Logic and Audited Computation

abs(trail(e,m)) -> trail(absCong(e),abs(m))

let(trail(e,m),n) -> trail(letCong(e,rfl),let(m,n))

let(m,trail(e,n)) -> trail(letCong(rfl,e),let(m,n))

auditedUnit(e,trail(f,m)) -> auditedUnit(trn(e,f),m)

trail(e,trail(f,m)) -> trail(trn(e,f),m)

trn(appCong(e1,e2),appCong(e3,e4)) -> appCong(trn(e1,e3),trn(e2,e4))

trn(absCong(e1),absCong(e2)) -> absCong(trn(e1,e2))

trn(letCong(e1,e2),letCong(e3,e4)) -> letCong(trn(e1,e3),trn(e2,e4))

trn(rfl,e) -> e

trn(e,rfl) -> e

trn(trn(e1,e2),e3) -> trn(e1,trn(e2,e3))

trn(appCong(e1,e2),trn(appCong(e3,e4),e5)) -> trn(appCong(trn(e1,e3),trn(e2,e4)),e5)

trn(absCong(e1),trn(absCong(e2),e3)) -> trn(absCong(trn(e1,e2)),e3)

trn(letCong(e1,e2),trn(letCong(e3,e4),e5)) -> trn(letCong(trn(e1,e3),trn(e2,e4)),e5)

)

References

1. Nist special publications. generally accepted principles and practices for securing information technology
systems., September 1996. 1

2. Iso/iec. common criteria for information technology security evaluation., 2004. 1
3. Programming language popularity. http://www.langpop.com/, Retrieved 2009-01-16. 2009. 2.2
4. M. Abadi, A. Banerjee, N. Heintze, and J. G. Riecke. A core calculus of dependency. In POPL, pages

147–160, 1999. 2.1
5. M. Abadi and C. Fournet. Access control based on execution history. In NDSS. The Internet Society, 2003.

5.3
6. Ada. Ada-europe. http://www.ada-europe.org/. 2.2
7. J. Agat. Transforming out timing leaks. In POPL, pages 40–53, 2000. 2.1
8. J. Alt and S. Artemov. Reflective λ-calculus. In Proceedings of the Dagstuhl-Seminar on Proof Theory in

CS, volume 2183 of LNCS, 2001. 5.8.1
9. S. Artemov. Operational modal logic. Technical Report MSI 95-29, Cornell University, 1995. 1.1, 5, 5.1,

5.8.1
10. S. Artemov. Explicit provability and constructive semantics. Bulletin of Symbolic Logic, 7(1):1–36, 2001.

1.1, 5, 5.1, 5.8.1
11. S. Artemov. Justification logic. In S. Hölldobler, C. Lutz, and H. Wansing, editors, JELIA, volume 5293 of

Lecture Notes in Computer Science, pages 1–4. Springer, 2008. 1.1, 5, 5.1, 5.8.1
12. S. Artemov and E. Bonelli. The intensional lambda calculus. In LFCS, volume 4514 of LNCS, pages 12–25.

Springer, 2007. 5.2, 5.2, 5.8.1
13. A. Askarov and A. C. Myers. Attacker control and impact for confidentiality and integrity. Logical Methods

in Computer Science, 7(3), 2011. 4.5.2
14. L. Badger, D. F. Sterne, D. L. Sherman, and K. M. Walker. A domain and type enforcement unix prototype.

Computing Systems, 9(1):47–83, 1996. 1
15. T. Ball. What’s in a region?: or computing control dependence regions in near-linear time for reducible

control flow. ACM Lett. Program. Lang. Syst., 2(1-4):1–16, 1993. 3.3.5
16. A. Banerjee and D. A. Naumann. Secure information flow and pointer confinement in a java-like language.

In Proceedings of the Fifteenth IEEE Computer Security Foundations Workshop (CSFW), pages 253–267.
IEEE Computer Society Press, 2002. 3.1

17. A. Banerjee and D. A. Naumann. Using access control for secure information flow in a java-like language.
In CSFW, pages 155–169. IEEE Computer Society, 2003. 2.1, 3.7.2

18. A. Banerjee and D. A. Naumann. History-based access control and secure information flow. In G. Barthe,
L. Burdy, M. Huisman, J.-L. Lanet, and T. Muntean, editors, CASSIS, volume 3362 of Lecture Notes in
Computer Science, pages 27–48. Springer, 2004. 5.3.1, 3

19. A. Banerjee and D. A. Naumann. Stack-based access control and secure information flow. Journal of
Functional Programming, 15(2):131–177, 2005. Special Issue on Language-Based Security. 1, 2.1, 3.1, 3.6

20. H. Barendregt. Handbook of Logic in Computer Science, chapter Lambda Calculi with Types. Oxford
University Press, 1992. 5.8.1

21. G. Barthe, A. Basu, and T. Rezk. Security types preserving compilation. Journal of Computer Languages,
Systems and Structures, 2005. 3.3.2, 3.7.2

160 References

22. G. Barthe, S. Cavadini, and T. Rezk. Tractable enforcement of declassification policies. Computer Security
Foundations Symposium, IEEE, 0:83–97, 2008. 4.5.2

23. G. Barthe, P. R. D’Argenio, and T. Rezk. Secure information flow by self-composition. Mathematical
Structures in Computer Science, 21(6):1207–1252, 2011. 3.7.2

24. G. Barthe, D. Pichardie, and T. Rezk. A Certified Lightweight Non-Interference Java Bytecode Verifier.
In Proc. of 16th European Symposium on Programming (ESOP’07), Lecture Notes in Computer Science.
Springer-Verlag, 2007. to appear. 3.1, 3.1, 3.1, 3.3.2, 3.3.5

25. G. Barthe and T. Rezk. Non-interference for a JVM-like language. In TLDI ’05: Proceedings of the 2005
ACM SIGPLAN international workshop on Types in languages design and implementation, pages 103–112,
New York, NY, USA, 2005. ACM Press. 2.1, 3.1, 3.1, 3.7.2

26. G. Barthe, T. Rezk, and D. A. Naumann. Deriving an information flow checker and certifying compiler for
java. In S&P, pages 230–242. IEEE Computer Society, 2006. 3.1, 3.1, 3.3.2, 3.7.2

27. G. Barthe, T. Rezk, A. Russo, and A. Sabelfeld. Security of multithreaded programs by compilation. In
Proc. of the 12th ESORICS, LNCS. Springer-Verlag, 2007. To appear. 3.7.1, 3.7.2, 6.2

28. F. Bavera and E. Bonelli. Type-based information flow analysis for bytecode languages with variable object
field policies. In SAC’08, Proceedings of the 23rd Annual ACM Symposium on Applied Computing. Software
Verification Track, 2008. 1.1, 2.1

29. F. Bavera and E. Bonelli. Robust declassification for bytecode. In V Congreso Iberoamericano de Seguridad
Informática (CIBSI’09), 2009. 1.1

30. F. Bavera and E. Bonelli. Justification logic and history based computation. In 7th International Colloquium
on Theoretical Aspects of Computing (ICTAC 2010), 2010. 1.1

31. C. Bernardeschi and N. D. Francesco. Combining abstract interpretation and model checking for analysing
security properties of java bytecode. In A. Cortesi, editor, VMCAI, volume 2294 of Lecture Notes in Computer
Science, pages 1–15. Springer, 2002. 3.7.2

32. C. Bernardeschi, N. D. Francesco, G. Lettieri, and L. Martini. Checking secure information flow in java
bytecode by code transformation and standard bytecode verification. Softw., Pract. Exper., 34(13):1225–
1255, 2004. 3.7.2

33. C. Bernardeschi, N. D. Francesco, and L. Martini. Efficient bytecode verification using immediate postdom-
inators in control flow graphs (extended abstract). 3.3.5

34. K. J. Biba. Integrity Considerations for Secure Computer Systems. Technical Report ESD-TR-76-372, USAF
Electronic Systems Division, Bedford, MA, apr 1977. (Also available through National Technical Information
Service, Springfield Va., NTIS AD-A039324.). 2.1

35. P. Bieber, J. Cazin, V. Wiels, G. Zanon, P. Girard, and J. Lanet. Checking secure interactions of smart card
applets. Journal of Computer Security, 1(10):369–398, 2002. 3.7.2

36. M. Bishop. Introduction to Computer Security. Addison-Wesley Professional, 2004. 1
37. P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge University Press, 2001. 5.1
38. E. Bonelli, A. Compagnoni, and R. Medel. Information-flow analysis for typed assembly languages with

polymorphic stacks. In Proc. of Construction and Analysis of Safe, Secure and Interoperable Smart Devices
(CASSIS’05), volume 3956 of LNCS. Springer-Verlag, 2005. 2.1, 3.1, 3.1, 3.7.2

39. E. Bonelli and F. Feller. The logic of proofs as a foundation for certifying mobile computation. In LFCS,
volume 5407 of LNCS, pages 76–91. Springer, 2009. 5.1, 5.8.1

40. E. Bonelli and E. Molinari. Compilación de programas seguros. In Proc. of Simposio Argentino de Ingenieŕıa
de Software (ASSE’09), 38 JAIIO, 2009. 3.7.2

41. G. Boudol and I. Castellani. Noninterference for concurrent programs and thread systems. Theor. Comput.
Sci., 281(1-2):109–130, 2002. 2.1

42. V. Brezhnev. On the logic of proofs. In Proceedings of the Sixth ESSLLI Student Session, pages 35–45, 2001.
5.8.1

43. W. Chang, B. Streiff, and C. Lin. Efficient and extensible security enforcement using dynamic data flow
analysis. In P. Ning, P. F. Syverson, and S. Jha, editors, ACM Conference on Computer and Communications
Security, pages 39–50. ACM, 2008. 1

44. J. Chrzaszcz, P. Czarnik, and A. Schubert. A dozen instructions make java bytecode. In D. Pichardie, editor,
Bytecode’2010, ENTCS, 2010. 2.2

45. E. S. Cohen. Information transmission in computational systems. In SOSP, pages 133–139, 1977. 2.1.1,
3.7.2

46. T. C. Community. The coq proof assistant: Reference manual. http://coq.inria.fr/refman/. 6.2

References 161

47. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis of programs
by construction or approximation of fixpoints. In POPL, pages 238–252, 1977. 3.7.2

48. A. Darvas, R. Hähnle, and D. Sands. A theorem proving approach to analysis of secure information flow. In
D. Hutter and M. Ullmann, editors, Proc. 2nd International Conference on Security in Pervasive Computing,
volume 3450 of LNCS, pages 193–209. Springer-Verlag, 2005. 3.7.2

49. P. David. Interprétation abstraite en logique intuitionniste : extraction d’analyseurs Java certifiés. PhD
thesis, Université Rennes 1, 2005. In french. 6.2

50. R. Davies and F. Pfenning. A modal analysis of staged computation. In 23rd POPL, pages 258–270. ACM
Press, 1996. 5.1, 5.2, 5.8.1

51. R. Davies and F. Pfenning. A judgmental reconstruction of modal logic. Journal of MSCS, 11:511–540,
2001. 5.2, 1, 5.8.1

52. R. Davies and F. Pfenning. A modal analysis of staged computation. J. ACM, 48(3):555–604, May 2001.
5.1, 5.2, 1, 5.8.1

53. D. E. Denning. A lattice model of secure information flow. Commun. ACM, 19(5):236–243, 1976. 1, 3.7.2
54. D. E. Denning and P. J. Denning. Certification of programs for secure information flow. Commun. ACM,

20(7):504–513, 1977. 1, 3.7.2
55. C. Fournet and A. D. Gordon. Stack inspection: theory and variants. In POPL, pages 307–318, 2002. 1
56. S. Freund and J. Mitchell. A type system for the java bytecode language and verifier. Journal of Automated

Reasoning, 30(3-4):271–321, 2003. 3.7.2
57. S. Genaim and F. Spoto. Information Flow Analysis for Java Bytecode. In R. Cousot, editor, Proc. of the

Sixth International Conference on Verification, Model Checking and Abstract Interpretation (VMCAI’05),
volume 3385 of Lecture Notes in Computer Science, pages 346–362, Paris, France, January 2005. Springer-
Verlag. 3.7.2

58. D. Ghindici. Information flow analysis for embedded systems: from practical to theoretical aspects. PhD
thesis, Universite des Sciences et Technologies de Lille, 2008. 2.1, 3.7.2

59. J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Automated termination proofs with aprove. In
RTA, volume 3091 of LNCS, pages 210–220. Springer, 2004. 5.6.1

60. J.-Y. Girard, P. Taylor, and Y. Lafont. Proofs and types. Cambridge University Press, New York, NY, USA,
1989. 5.1

61. V. D. Gligor. A Guide To Understanding Covert Channel Analysis of Trusted Systems. Technical report,
NSA/NCSC Rainbow, National Computer Security Center, 1993. 2.1

62. J. A. Goguen and J. Meseguer. Security policies and security models. In Proc. IEEE Symp. on Security and
Privacy, pages 11–20, April, 1982. 2.1.1, 3.6, 3.7.2

63. J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java language specification. Addison Wesley, third edition.
edition, 20005. 2.2

64. N. Heintze and J. G. Riecke. The slam calculus: Programming with secrecy and integrity. In POPL, pages
365–377, 1998. 2.1

65. S. Hunt and D. Sands. On flow-sensitive security types. In POPL’06, Proceedings of the 33rd Annual. ACM
SIGPLAN - SIGACT. Symposium. on Principles of Programming Languages, January 2006. 2.1.2, 3.7.2

66. L. Jia and D. Walker. Modal proofs as distributed programs (extended abstract). In D. A. Schmidt, editor,
ESOP, volume 2986 of Lecture Notes in Computer Science, pages 219–233. Springer, 2004. 5.8.1

67. L. Jiang, L. Ping, and X. Pan. Combining robust declassification and intransitive noninterference. In
IMSCCS, pages 465–471. IEEE, 2007. 4.5.1, 4.5.2, 6.2

68. N. Kobayashi and K. Shirane. Type-based information flow analysis for a low-level language. Proceedings of
the 3rd Asian Workshop on Programming Languages and Systems, 2002. Computer Software 20(2), Iwanami
Press, pp.2-21, 2003 (in Japanese). The English version appeared in informal Proceedings of the 3rd Asian
Workshop on Programming Languages and Systems (APLAS’02). 2.1, 3.3.5, 3.7.2

69. P. C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In M. J. Wiener, editor, CRYPTO, volume
1666 of Lecture Notes in Computer Science, pages 388–397. Springer, 1999. 2.1

70. D. Kozen. Language-based security. In M. Kutylowski, L. Pacholski, and T. Wierzbicki, editors, MFCS,
volume 1672 of Lecture Notes in Computer Science, pages 284–298. Springer, 1999. 2.1

71. B. W. Lampson. A note on the confinement problem. Commun. ACM, 16(10):613–615, 1973. 2.1, 6.2
72. G. Le Guernic. Confidentiality Enforcement Using Dynamic Information Flow Analyses. PhD thesis, Kansas

State University, 2007. 1
73. X. Leroy. Bytecode verification for java smart card. Software Practice and Experience, 32:319–340, 2002.

3.1

162 References

74. P. Li and S. Zdancewic. Downgrading policies and relaxed noninterference. In J. Palsberg and M. Abadi,
editors, POPL, pages 158–170. ACM, 2005. 2.1

75. T. Lindholm and F. Yellin. The Java(TM) Virtual Machine Specification. Addison Wesley, 1999. 1, 2.2, 3.1,
3.4.1, 3.5.1, 4.1

76. P. Martin-Löf. On the meaning of the logical constants and the justifications of the logical laws. Nordic J.
of Philosophical Logic 1, 1:11–60, 1996. 5.2, 5.8.1

77. K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993. 3.7.2
78. K. Miyamoto and A. Igarashi. A modal foundation for secure information flow. In Workshop on Foundations

of Computer Security (FCS’04), pages 187–203, 2004. 5.1
79. J. Moody. Logical mobility and locality types. In S. Etalle, editor, LOPSTR, volume 3573 of Lecture Notes

in Computer Science, pages 69–84. Springer, 2004. 5.1, 5.8.1
80. G. Morrisett, K. Crary, N. Glew, D. Grossman, R. Samuels, F. Smith, D. Walker, S. Weirich, and

S. Zdancewic. TALx86: A realistic typed assembly language. In 1999 ACM SIGPLAN Workshop on Compiler
Support for System Software, pages 25–35, Atlanta, GA, USA, May 1999. 2.1, 3.1

81. A. Myers, S. Chong, N. Nystrom, L. Zheng, and S. Zdancewic. Jif: Java information flow.
http://www.cs.cornell.edu/jif/, 2001. Software release. 6.2

82. A. C. Myers. JFlow: Practical mostly-static information flow control. In Symposium on Principles of
Programming Languages (POPL’99), pages 228–241, 1999. ACM Press. 1, 2.1, 3.7.2

83. A. C. Myers. Mostly-Static Decentralized Information Flow Control. PhD thesis, Laboratory of Computer
Science, MIT, 1999. 2.1

84. A. C. Myers and B. Liskov. A decentralized model for information flow control. In In Proceedings of 17th
ACM Symp. on Operating System Principles (SOSP), pages 129–142, 1997. 1, 3.7.2

85. A. C. Myers, A. Sabelfeld, and S. Zdancewic. Enforcing robust declassification. In CSFW, pages 172–186.
IEEE Computer Society, 2004. 2.1, 4, 4.1, 4.2, 4.5.1, 4.5.2, 6.2

86. S. K. Nair. Remote Policy Enforcement Using Java Virtual Machine. PhD thesis, Vrije Universiteit, 2010.
2.1

87. S. K. Nair, P. N. D. Simpson, B. Crispo, and A. S. Tanenbaum. A virtual machine based information flow
control system for policy enforcement. Electr. Notes Theor. Comput. Sci., 197(1):3–16, 2008. 2.1

88. A. Nanevski, F. Pfenning, and B. Pientka. Contextual modal type theory. ACM Trans. Comput. Log., 9(3),
2008. 5.8.1

89. G. Necula. Compiling with Proofs. PhD thesis, School of Computer Science, Carnegie Mellon University,
1998. 2.1

90. F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 1999. 3.3.5, 3.3.5, 3.3.5

91. F. Pfenning and H.-C. Wong. On a modal λ-calculus for S4. In Proceedings of the Eleventh Conference on
Mathematical Foundations of Programming Semantics (MFPS’95), 1995. Available as Electronic Notes in
Theoretical Computer Science, Volume 1, Elsevier. 1

92. V. Ranganath, T. Amtoft, A. Banerjee, M. Dwyer, and J. Hatcliff. A new foundation for control-dependence
and slicing for modern program structures. Tech report, SAnToS Lab., Kansas State University, 2004. 3.3.5

93. J. Rehof and T. Mogensen. Tractable constraints in finite semilattices. Science of Computer Programming,
35(2–3):191–221, 1999. 3.3.5

94. T. Rezk. Verification of confidentiality policies for mobile code. PhD thesis, Université de Nice and INRIA
Sophia Antipolis, 2006. 1, 2.1, 3.1, 3.22, 3.5.2, 3.7.2, 3.7.2

95. A. Russo. Language Support for Controlling Timing-Based Covert Channels. PhD thesis, Chalmers Univer-
sity of Technology, 2008. 6.2

96. A. Russo, J. Hughes, D. A. Naumann, and A. Sabelfeld. Closing internal timing channels by transformation.
In M. Okada and I. Satoh, editors, ASIAN, volume 4435 of Lecture Notes in Computer Science, pages
120–135. Springer, 2006. 2.1

97. A. Russo and A. Sabelfeld. Securing interaction between threads and the scheduler in the presence of
synchronization. J. Log. Algebr. Program., 78(7):593–618, 2009. 2.1

98. A. Sabelfeld and D. Hedin. A perspective on information-flow control. Proceedings of the 2011 Marktoberdorf
Summer School, IOS Press, 2011. 3.7.2

99. A. Sabelfeld and A. Myers. Language-based information-flow security. IEEE Journal on Selected Areas in
Communications, 21(1), 2003. 1

100. A. Sabelfeld and D. Sands. Probabilistic noninterference for multi-threaded programs. In CSFW, pages
200–214, 2000. 2.1

References 163

101. A. Sabelfeld and D. Sands. Dimensions and principles of declassification. In CSFW-18 2005, pages 255–269.
IEEE Computer Society, 2005. 2.1.3

102. A. Sabelfeld and D. Sands. Declassification: Dimensions and principles. Journal of Computer Security, 2007.
To appear. 2.1.3, 4.5.2

103. Scala. The scala programming language. http://www.scala-lang.org/. 2.2
104. F. B. Schneider, J. G. Morrisett, and R. Harper. A language-based approach to security. In Informatics -

10 Years Back. 10 Years Ahead., pages 86–101, London, UK, 2001. Springer-Verlag. 2.1
105. V. Simonet and I. Rocquencourt. Flow caml in a nutshell. In Proceedings of the first APPSEM-II workshop,

pages 152–165, 2003. 1, 2.1
106. G. Smith. Principles of secure information flow analysis. In Malware Detection, pages 297–307. Springer-

Verlag, 2007. 2.1
107. G. Smith and D. M. Volpano. Confinement properties for multi-threaded programs. Electr. Notes Theor.

Comput. Sci., 20, 1999. 2.1
108. Q. Sun. Constraint-Based Modular Secure Information Flow Inference for Object-Oriented Programs. PhD

thesis, Stevens Institute of Technology, 2008. 1
109. Q. Sun, D. Naumann, and A. Banerjee. Constraint-based secure information flow inference for a java-like

language. Tech Report 2004-2, Kansas State University CIS, 2005. 2.1
110. I. ”Sun Microsystems. http://java.sun.com/products/javacard/, 2008. 3.1
111. J. Svenningsson and D. Sands. Specification and verification of side channel declassification. In P. Degano

and J. D. Guttman, editors, Formal Aspects in Security and Trust, volume 5983 of Lecture Notes in Computer
Science, pages 111–125. Springer, 2009. 3.7.2, 6.2

112. W. Taha and T. Sheard. Multi-stage programming. In ICFP, page 321, 1997. 5.1
113. T. M. VII, K. Crary, and R. Harper. Distributed control flow with classical modal logic. In C.-H. L. Ong,

editor, CSL, volume 3634 of Lecture Notes in Computer Science, pages 51–69. Springer, 2005. 5.1, 5.8.1
114. T. M. VII, K. Crary, and R. Harper. Type-safe distributed programming with ml5. In G. Barthe and

C. Fournet, editors, TGC, volume 4912 of Lecture Notes in Computer Science, pages 108–123. Springer,
2007. 5.8.1

115. T. M. VII, K. Crary, R. Harper, and F. Pfenning. A symmetric modal lambda calculus for distributed
computing. In LICS, pages 286–295. IEEE Computer Society, 2004. 5.1, 5.8.1

116. D. Volpano and G. Smith. A type-based approach to program security. In Proceedings of TAPSOFT’97,
volume 1214 of LNCS, pages 607–621, 1997. 1, 2.1, 3.7.2

117. D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow analysis. Journal of Computer
Security, 4(3):167–187, 1996. 1, 2.1, 2.1.1, 3.7.2

118. D. M. Volpano, C. E. Irvine, and G. Smith. A sound type system for secure flow analysis. Journal of
Computer Security, 4(2/3):167–188, 1996. 3.1, 5.3.1

119. D. M. Volpano and G. Smith. Eliminating covert flows with minimum typings. In CSFW, pages 156–169.
IEEE Computer Society, 1997. 2.1

120. D. M. Volpano and G. Smith. Probabilistic noninterference in a concurrent language. Journal of Computer
Security, 7(1), 1999. 2.1

121. D. Walker. A type system for expressive security policies. In POPL, pages 254–267, 2000. 1
122. J. Whaley and M. C. Rinard. Compositional pointer and escape analysis for java programs. In OOPSLA,

pages 187–206, 1999. 3.7.2
123. P. Wickline, P. Lee, F. Pfenning, and R. Davies. Modal types as staging specifications for run-time code

generation. ACM Comput. Surv., 30(3es):8, 1998. 5.1
124. D. Yu and N. Islam. A typed assembly language for confidentiality. In 2006 European Symposium on

Programming (ESOP’06). LNCS Vol. 3924., 2006. 2.1, 3.7.2
125. S. Zdancewic. A type system for robust declassification. Proceedings of the Nineteenth Conference on the

Mathematical Foundations of Programming Semantics. Electronic Notes in Theoretical Computer Science,
2003. 4.5.2

126. S. Zdancewic. Challenges for information-flow security. In In Proc. Programming Language Interference and
Dependence (PLID’04), 2004. 2.1.3

127. S. Zdancewic and A. C. Myers. Robust declassification. In CSFW-14 2001. IEEE Computer Society, 2001.
4.5, 4.5.2, 6.1

	Portada
	Resumen
	Abstract
	Agradecimientos
	Contents
	1. Introduction
	2. Preliminaries
	3. Type-Based Information Flow Analysis for Bytecode Languages...
	4. Robust Declassification for Java Bytecode
	5. Justification Logic and Audited Computation
	6. Conclusions and Future Work
	Appendix
	References

