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Resúmen

La dualidad entre teoŕıas de gravedad y teoŕıas de campos de gauge es una de

las ideas que más ha influido en el desarrollo de la f́ısica teórica de altas enerǵıas

en la última decada. Hoy en d́ıa, esta se ha convertido en una poderosa her-

ramienta en el estudio de sistemas fuertemente interactuantes. Sin embargo, la

correspondencia AdS/CFT no ha sido probada completamente y aún se encuentra

al nivel de conjetura. En este trabajo pretendemos chequear la correspondencia

en algunos casos simples. Concretamente, calculamos funciones de correlación

de tres y cuatro puntos en teoŕıa de supercuerdas sobre AdS3 × S3 × T 4 a nivel

árbol para operadores primarios quirales y mostramos que estas coinciden per-

fectamente con los correladores esperados en la teoŕıa de campos dual. Además

sugerimos una interesante conexión entre funciones de correlación de n puntos de

operadores con número de torcimiento (twist) igual a dos y esṕın muy grande y

valores de expectacion de loops de Wilson poligonales con lados nulos en teoŕıa

de Super-Yang-Mills con cuatro super-simetŕıas. Justificamos esta conexión a

través de la comparación de las divergencias ultravioletas de ambos objetos en

acoplamiento fuerte y presentamos algunas consideraciones perturbativas a este

respecto en teoŕıa de campos.

Palabras Clave: Teoŕıa de Cuerdas, AdS/CFT, Teoŕıas de Campos Super-

simétricas.
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Correlation functions in AdS/CFT

correspondence

Abstract

The duality between theories of gravity and gauge field theories has been one

of the most influential ideas in theoretical high energy physics within the last

decade. Nowadays, it has become a truly powerful tool to study strongly inter-

acting systems. However, the AdS/CFT correspondence still has the status of a

conjecture. In this work we would like to contribute to test the correspondence

in some simple cases. Concretely, we compute correlation functions of three- and

four-points in string theory on AdS3×S3×T 4 at tree-level for chiral primary op-

erators and we find perfect agreement with the corresponding correlators in dual

the field theory in all the cases considered. We also suggest a possible connec-

tion between n−point functions of twist-two large spin operators in N = 4 super

Yang-Mills and null-polygonal Wilson loops. We support that suggestion by a

semi-classical computation in the string theory side and by some perturbative

considerations in the dual field theory.

Keywords: String Theory, AdS/CFT, Supersymmetric Quantum Field Theory
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Introduction

Quantum field theory and general theory of relativity are the fundamental pillars

of modern physics.

Nowadays the microscopic understanding of nature is described with a high

degree of precision by quantum field theory. The fundamental objects are particles

which correspond to excitations of the fields, and with the exception of gravity, all

the content of the known particles in nature (almost all observed so far) is encoded

in the Standard Model. Even though this theory explains very successfully most

of the phenomena we can measure at the energy scales that we can access with

the current technology, there exists strong theoretical evidence suggesting that

new physics will show up at higher energies. This can be exemplified by looking

closer at the theory of General Relativity at microscopic scales. It is well known

that General Relativity can not be quantized by the usual methods of quantum

field theory. Specifically, if one performs quantum perturbation theory around

Minkowski space, the usual UV infinities appear. In order to subtract those

infinities one has to introduce an infinite number of counter-terms to the Einstein-

Hilbert action which render the theory non-renormalizable.

Another related puzzle concerning the high energy behaviour of General Rela-

tivity comes from the existence of singular classical solutions such as black-holes,

where the geometrical description of space-time provided by the General Theory

of Relativity stops working beyond a given length scale. A quantum theory of

gravity must contain a complete understanding of these singularities. Because

of this and other several reasons, it is widely believed that at very high-energies

Nature will be described by a more general theory from which we should obtain

all the known quantum field theories as well as the theory of General Relativity

as low energy limits.

Indeed, string theory is a potential candidate for such a theory, in which all

the content of fields arises as oscillations of a relativistic string. From the effective
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low energy description of string theory (i.e. at length scales much larger than the

string length) the Einsten-Hilbert action emerges and, as we will discuss later,

some gauge field theories sharing similarities with the Standard Model can be

also obtained as low energy limits of systems of strings. But currently a deeper

understanding of the theory is needed in order to know how exactly the Standard

Model should arise.

There are many properties of string theory which lead us to believe it is the

right theory describing all the known interactions in all the energy spectrum.

The main framework of this thesis, namely the AdS/CFT correspondence, is

among the most interesting reasons, but at this point it is worth mentioning a

couple more. As a quantum theory of gravity, there are good reasons to believe

that string theory solves the ultraviolet problems of General Relativity, mainly

because the extended nature of string interactions provide an inherent ultraviolet

cut-off given by the fundamental string length [1, 2]. Furthermore, string theory

has been able to ’resolve’ a class of singularities of black-hole type even at the

classical level [3].

String theory has a richer structure than field theories. It contains several

extended objects, other than strings, which arise naturally without adding any

extra content to the theory. This multi-dimensional extended objects, called

D−branes, arise by studying the dynamics of open strings on compactified back-

grounds. They can also be obtained as classical solutions of the effective descrip-

tion of low energy gravity . From the open string point of view, the effective

low energy description of systems of branes is generically given by gauge theo-

ries, some of them similar to those that standard quantum field theory is used

to dealing with. On the other hand, solutions of classical gravity associated with

D−brane systems, are generically described by black hole-like geometries with

fluxes. The study of the relation between these two alternative points of view,

unravelled the AdS/CFT duality [4]. We shall elaborate on this point in chapter

1.

The AdS/CFT correspondence is a concrete realization of an old idea due to

G. ’t Hooft and L. Susskind [5, 6], which suggests that in a quantum theory of

gravity, the physics in some region can be described by a theory on the boundary

of the given region. From the AdS/CFT perspective, string theory (which as we

said above is an actual quantum theory of gravity) defined on an AdS space is

dual to a conformal field theory living on the flat boundary of the AdS space.

12



The most interesting property of the duality is that it relates both theories in

opposite coupling regimes, i.e, by performing perturbative computations on the

string theory side we are exploring the strong coupling regime of the corresponding

dual field theory and vice-versa. Although it is a very exciting property from the

practical point of view, it makes the correspondence hard to prove.

In this work we are going to focus on the two most popular examples of the cor-

respondence. We will be mainly interested in the duality between superstring the-

ory on AdS3×S3×T 4 and the two-dimensional conformal field theory whose target

space is given by the symmetric product of N four-torus, namely (T 4)N/S(N),

S(N) being the permutation group of N−indices (AdS3/CFT2). We will also

work out an explicit computation in the context of the duality between super-

string theory on AdS5 × S5 and the four-dimensional N = 4 superconformal-

Yang-Mills theory (AdS5/CFT4). All the theories involved in these examples are

N = 4 supersymmetric invariant, and their shortest multiplets are built from chi-

ral primary operators, whose R−charges equal their conformal weights ∆ and do

not receive quantum corrections, i.e, they can be evaluated exactly in a tree-level

computation. This last property of the chiral spectrum provides a nice window

to test the correspondence, since the perturbative computation of some observ-

ables built out of chiral primaries should agree with their corresponding strong

coupling values.

Because of this, correlation functions involving the chiral spectrum become

useful in testing the correspondence. For the AdS3/CFT2 case, the structure

constants of single-cycle operators in the chiral spectrum of the symmetric prod-

uct were computed originally in [7] and, for a subset of these operators, they

were extended in [8, 9] to the full 1/2 BPS SU(2) multiplet. These three-point

functions were exactly reproduced in the supergravity approximation of string

theory [10, 11, 12, 13] and also in the full string theory [14, 15, 17, 18]. This

agreement between bulk and boundary correlators was at first surprising because

the computations on the string and CFT sides are performed at very different

points in the moduli space [19, 20]. It can be explained by a non-renormalization

theorem proved in [21] and recently revisited in [22]. Some four-point functions

have been also considered in the conformal field theory on the symmetric product

in [23] and some of them were reproduced in the string theory dual in an operator

product expansion limit [81].

For the case AdS5/CFT4 the analysis of three-point functions for chiral pri-
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maries in the supergravity approximation has been made in [25, 26] and the results

match the expected ones from the field theory. On the other hand, it was argued

that in the limit where the number of colors in N = 4 SYM goes to infinity,1

only planar diagrams contribute to the perturbative expansion, but even more,

the theory is integrable [27, 28, 29]. Exploiting integrability, it was possible to

compute the spectrum of anomalous dimensions for some single trace operators

for all values of the ’t Hooft coupling [30] (see also [28, 29, 31]). In this case,

following the discovery of the pp wave correspondence [32], single trace operators

in N = 4 SYM at large N were mapped to ”spin chains” [33], with the spin chain

formed by the different fields inside the trace. Since the spin chains were known

to be related to integrability via the Bethe ansatz, this in turn led to integrability

of N = 4 SYM as above. Unlike the case of strings on AdS3×S3×T 4, the quan-

tum formulation of string theory on AdS5 ×S5 is not yet fully defined. However,

there are some regimes where we still could see some quantum effects. Among

those regimes we can mention the pp-wave limit [32] where a sort of quantization

could be done which is similar to the flat space case, and the regime where the

quantum numbers of the operators, such as their energy or angular momentum,

are very large. In the last case, most developments have been made for single

trace operators in N = 4 SYM theory built out of large numbers of derivatives of

a couple of scalar fields. In [34] it has been suggested that the above states should

correspond to excited string states in AdS5 × S5 with large angular momentum

in the AdS5 factor. In that case we can perform semi-classical computations in

string theory.

This work is organized as follows. In chapter 1 we present a brief review of

the formulation of the AdS/CFT correspondence as close as possible to its orig-

inal formulation [4]. We will show the arguments relating string theory on AdS

space to both, four dimensional N = 4 super-Yang-Mills and two-dimensional

conformal field theory on (T 4)N/S(N). In chapter 2 we review the construction

of string theory on AdS3 with a NS antisymmetric field turned on, and we will

see that it is related to a Wess-Zumino-Novikov-Witten model. After studying

some simple classical solutions we will proceed to the construction of the whole

quantum spectrum and the associated vertex fields. In chapter 3 we general-

ize the construction of the quantum spectrum made in chapter 2 to the whole

AdS3×S3×T 4 space-time and from there we build the spectrum of chiral vertex

1SU(N) is the gauge group of N = 4 SYM
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operators in generic representations. In chapter 4 we make a quick review of the

sigma model on the symmetric product orbifold (T 4)N/S(N), mainly focusing on

the chiral spectrum. We also list a set of correlation functions we are going to

use in chapters 5 and 6. Chapter 5 is devoted to the computation of three-point

functions in superstring theory on AdS3 × S3 × T 4 of chiral primary operators

and we compare them with the expected correlators in the dual field theory. In

chapter 6 we perform a detailed computation of the leading contribution on the

sphere to some extremal and non-extremal unflowed four-point functions of chiral

primary operators in an operator product expansion (OPE). We show that in the

short-distance OPE limit, these correlators agree with the single-particle contri-

bution to the boundary correlators. We also show how in the OPE limit these

four-point functions factorize as expected from a conformal field theory in space-

time. In chapter 7 we go back to the classical string theory on AdS3 but now as

a sub-factor of a bigger AdS5 space. We summarize the Pohlmeyer reduction of

strings on AdS3 and then use it in order to study worldsheet solutions which con-

tain asymptotically rotating folded strings (GKP) at large spin, and from these

we compute semi-classically the leading divergent factor of an n−point correla-

tion function of large spin operators. At the end of the chapter, we give some

hints from the field theory perspective supporting the relation between correla-

tion functions of large spin operators and expectation values of null polygonal

Wilson loops. Finally chapter 8 contains the conclusions and some suggestions

for further work.
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Chapter 1

Formulation of the AdS/CFT

correspondence

In this chapter, we will present a very brief review of the AdS/CFT correspon-

dence as originally formulated by Juan Maldacena [4] just to give the context

which motivates this work. In the first section we will start reviewing the argu-

ments relating type IIB superstrings on AdS5 × S5 to N = 4 Super Yang-Mills

theory (SYM) in four dimensions. In the second section we will show how these

arguments extend to type IIB superstring theory on AdS3 ×S3 ×T 4 which turns

out to be dual to the two-dimensional conformal field theory whose target space

corresponds to the symmetric product of N−copies of the four torus T 4, namely,

(T 4)N/S(N). The content of this chapter is mainly based on [35].

1.1 The AdS5/CFT4 correspondence

Consider a system of N parallel D3-branes that are sitting together and let us

study the low energy limit of this system from two different points of view. At

the string level, this system contains both closed and open strings. The closed

strings are the excitations of empty space (outside of the brane system) and the

open strings end on the D−branes and describe their excitations. Taking the

low energy limit, i.e, considering the system at energies lower than the string

scale α′ → 0, only the massless string states can be excited. Considering that

the closed string sector is given by type IIB string theory, the massless states

are described by type IIB supergravity. The open string massless states give a

low-energy effective Lagrangian which corresponds to N = 4 SYM. The complete
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effective action is given by

S = Ssugra + Sbrane + Sint . (1.1)

Both Ssugra and Sbrane contain higher derivative corrections, which are subleading

at low energies. In the limit α′ → 0 , Ssugra reduces to the action of a free graviton

plus other free fields such as the dilaton and the anti-symmetric field. A quick way

to see this is by expanding the gravity piece of Ssugra around a flat metric η, i.e.

taking g = η+ κh, κ being the gravitational coupling, which gives schematically,

Ssugra ∼
1

2κ2

∫ √
gR ∼

∫
(∂h)2 + κ(∂h)2h+ · · · . (1.2)

On other hand, Sint depends explicitly on the coupling κ ∼ gsα
′2, gs being the

string coupling which we keep fixed. So, equally as the interaction term in Ssugra,

Sint is proportional to positive powers of κ and in the low energy limit α′ → 0,

all interaction terms drop out. In this low energy limit we end up with two

decoupled systems. On the one hand we have free gravity in the bulk and, on the

other hand, we have the four dimensional gauge theory.

Now, let us study the low energy regime of the system from the pure gravita-

tional perspective.

D−branes are massive charged objects which act as sources for the various

supergravity fields. We can find solutions to type IIB supergravity containing

branes from the action,

SIIB
sugra =

1

(2π)7α′4

∫
d10x

√−g
[
e−2φ(R + 4(∇φ)4)− 2

(8− p)!
F 2
p+2

]
, (1.3)

where Fp+2 is the stress tensor associated to the p+1-form potential Fp+2 = dAp+1,

which couples to the brane. We are particularly interested in the D3−brane

solutions, which have the following form [36, 37],

ds2 = f−1/2(−dt2 + dx21 + dx22 + dx23) + f 1/2(dr2 + r2dΩ2
5)

F5 = (1 + ∗)dtdx1dx2dx3df−1

f = 1 +
R4

r4
, (1.4)

where R4 ≡ 4πgsα
′2N and ∗ denotes the 10d Hodge−∗ dual. Since gtt is non-

constant, the energy Ep of an object as measured by an observer at a constant

position r and the energy E∞ measured by an observer at infinity are related by

the redshift factor,

E∞ = f− 1
4Ep . (1.5)
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This implies that an object close to r = 0 would appear to have lower energy for

an observer at infinity. From the point of view of an observer at infinity, there are

two kinds of excitations. On one hand we can have massless particles propagating

in the bulk with very large wavelengths, and therefore they are insensitive to the

curvature (i.e. to the presence of the branes). They behave as free gravitons (or

other fields) propagating in the bulk. On the other hand we can have excitations

getting closer and closer to r = 0 which find it harder and harder to escape to

the asymptotic region. In other words, the two kinds of excitations decouple in

the low energy limit [38, 34], and we end up with free supergravity in the bulk

and physical excitations in the near horizon geometry (r << R) of (1.4). In the

near horizon region, we can approximate,

ds2 =
r2

R2
(−dt2 + dx21 + dx22 + dx23) +R2(

dr2

r2
+ dΩ2

5) , (1.6)

which is the geometry of AdS5 × S5.

Comparing the above two approaches to the low-energy limit of a system of

N D3−branes we see that they both have two decoupled regions in that limit. In

both cases one of the regions is described by free supergravity. So, it is natural

to identify the second system which appears in both descriptions. Thus, we are

led to the conjecture that N = 4 SYM in four dimensions is dual to type IIB

superstring theory on AdS5 × S5 [4].

In the gauge theory, the perturbative analysis is reliable when g2YMN << 1,

gYM being the coupling constant of the Yang-Mills theory. From the physics of

D−branes we know that gYM is related to the string coupling through [39],

gs =
g2YM

4π
. (1.7)

By using this relation and

R4 ≡ 4πgsα
′2N (1.8)

we have,

g2YMN ∼ gsN ∼ R4

α′2
<< 1 . (1.9)

Therefore, when the Yang-Mills theory is at weak coupling, the dual string theory

is at large α′ and the supergravity approximation is not reliable. Conversely, the

classical gravity description becomes reliable when the radius of curvature of AdS

and of S5 become large compared to the string length,

R4

α′2
∼ g2YMN >> 1 . (1.10)
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The two theories are conjectured to be the same, but when one side is weakly

coupled the other is strongly coupled and viceversa. This makes the correspon-

dence both hard to prove and useful, as we can solve a strongly coupled gauge

theory via classical supergravity.

1.2 The AdS3/CFT2 correspondence

All the arguments leading to the formulation of the AdS5/CFT4 correspondence

in previous section, analogously apply to the case of the AdS3/CFT2 duality.

The only novelty is that now we have to consider a system of Q1 parallel D1-

branes which at the same time are parallel to one of the directions of Q5 parallel

D5-branes. Additionally, we wrap (compactify) the four directions (x6, x7, x8, x9)

which are non-parallel to the D1 on a T 4 torus. This is known as the D1 −D5

system. Let us start considering the brane system from the purely gravitational

point of view. The type IIB effective string action is again given by

1

(2π)7α′4

∫
d10x

√−g
[
e−2φ(R + 4(∇φ)4)− 1

12
F 2

]
, (1.11)

where F = dC(2) is a three-form, and C(2) is the 2-form RR gauge potential. The

solution characterizing the D1−D5 system is given by

ds210 = f
−1/2
1 f

−1/2
5 (−dt2 + dx25) + f

1/2
1 f

1/2
5 dxidx

i + f
1/2
1 f

−1/2
5 dxadx

a ,

C2
05 = −1

2
(f−1

1 − 1) ,

Fijk = ǫijkl∂lf5 ,

e−2φ = f5f
−1
1 ,

f1,5 = (1 + r21,5/r
2) ,

r21 =
gsα

′

ṽ
Q1 ,

r25 = gsα
′Q5 , (1.12)

where ṽ is associated to the volume of the T 4 by VT 4 ≡ α′2(2π)4ṽ and r2 = xix
i

denotes the distance measured in the transverse direction to all D−branes. As

in the D3−brane system, the energy of an object measured by anyone at infinity

is redshifted as

E∞ = (f1f5)
−1/4Er . (1.13)

Once again, from the point of view of an observer at infinity, excitations sitting

near the horizon geometry and bulk excitations decouple in the low energy limit
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and we end up with free supergravity and the physical excitations in the near

horizon geometry. More precisely, the supergravity approximation is reliable in

the limit α′ → 0, therefore a more appropriate scaling is,

α′ → 0,
r

α′ ≡ U = fixed ,

ṽ =
V4

α′2(2π)4
= fixed, g6 ≡

gs√
ṽ
= fixed . (1.14)

In this limit, the redshift is given by,

E∞ =
r

R
Er (1.15)

with R =
√
α′(g26Q1Q5)

1/4 and the metric (1.12) becomes,

ds2 = α′
(
ds23 + ds2[S3] + ds2[T 4]

)
, (1.16)

where

ds23 =
[U2

l2
(−dx20 + dx25) + l2

dU2

U2

]
, (1.17)

represents three-dimensional anti-de Sitter space AdS3 and

ds2[S3] = l2dΩ2
3,

ds2[T 4] =

√
Q1

vQ5

(dx26 + . . . dx29), (1.18)

represent a three-sphere and a four-torus. Thus the near horizon geometry is

that of AdS3 × S3 × T 4. Now from the point of view of the open string theory

describing the dynamics of the D1 − D5 system we will work in the following

region of parameter space,

V4 ∼ O(α′2), R >>
√
α′ , (1.19)

which by using (1.14) implies that gs ∼ R2

α′2
√
N
, being N = Q1Q5. In this region,

the size of the torus T 4 is of the order of the string scale, the masses of the

winding and momentum modes of the strings are of order 1/
√
α′. This implies

that for energies E << 1/
√
α′ we can neglect these modes. This means that

from the point of view of the effective low energy theory on the brane system

(x0, x5, x6, x7, x8, x9), the elementary excitations correspond to the dimensional

reduction to 1+1 dimensions (the (t, x5)−space) of the spectrum of open strings

ending on the branes. There are three classes of such strings. Those with both

ends on a D1−brane ([1,1]-strings), those with both ends on a D5−brane ([5,5]-

strings) and those with one end on a D1−brane and the other one on a D5−brane
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([1,5]-strings). The part of the spectrum coming from [1,1] ([5,5]) strings is

simply the dimensional reduction to 1 + 1 dimensions of the N = 1, U(Q1)

(N = 1, U(Q5)) gauge theory in 9 + 1 dimensions [40]. The bosonic fields of

this theory can be organized into the vector multiplet and the hypermultiplet of

N = 2 theory in four-dimensions as

Vector multiplet: A
(1)
0 , A

(1)
5 , Y (1)

m ,m = 1, 2, 3, 4 (1.20)

Hypermultiplet: Y
(1)
i , i = 6, 7, 8, 9

Vector multiplet: A
(5)
0 , A

(5)
5 , Y (5)

m ,m = 1, 2, 3, 4 (1.21)

Hypermultiplet: Y
(5)
i , i = 6, 7, 8, 9

The A
(1)
0 , A

(1)
5 (A

(5)
0 , A

(5)
5 ) are the U(Q1) (U(Q5)) gauge fields in the non-

compact directions. The Y
(1)
m ’s, Y

(1)
i ’s, Y

(5)
m ’s, Y

(5)
i are gauge fields in the compact

directions of the N = 1 super Yang-Mills in ten-dimensions. They are hermitian

Q1 ×Q1 (Q5 ×Q5) matrices transforming as adjoints of U(Q1) (Q5). The hyper-

multiplets of N = 2 supersymmetry are doublets of the SU(2)R symmetry of the

theory. The adjoint matrices Y
(1)
i ’s (Y

(5)
i ’s) can be arranged as doublets under

SU(2)R as

N (1) =

(
N

(1)
1

N
(1)†
2

)
=

(
Y

(1)
9 + iY

(1)
8

Y
(1)
7 − iY

(1)
6

)
,

N (5) =

(
N

(5)
1

N
(5)†
2

)
=

(
Y

(5)
9 + iY

(5)
8

Y
(5)
7 − iY

(5)
6

)
.

Similarly, the part of the bosonic spectrum coming from [1,5] is given by

Vector multiplet: A
(1,5)
0 , A

(1,5)
5 , Y (1,5)

m ,m = 1, 2, 3, 4 (1.22)

Hypermultiplet: Y
(1,5)
i , i = 6, 7, 8, 9 ,

but now all these fields transform as bi-fundamentals of U(Q1)×U(Q5). Adding

the fermionic superpartners we endup with an effective 1+1 dimensional (4,4)

supersymmetric gauge theory with gauge group U(Q1) × U(Q5). The matter

content of this theory consists of hypermultiplets Y (1)’s, Y (5)’s transforming in the

adjoint representation of U(Q1), U(Q5) respectively, and hypermultiplets Y (1,5)’s

transforming in the bi-fundamental representation of U(Q1) × U(Q5). It has

been argued that in the Higgs branch this gauge theory flows in the infrared

to an N = 4 superconformal field theory (SCFT) on the symmetric product of

N = Q1Q5 four torus [41, 42], i.e, the target space of this theory is given by

(T 4)Q1Q5/S(Q1Q5), S being the symmetric group of Q1Q5 indices.
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Thus, we are led to the conjecture in this case that N = 4 SCFT in two

dimensions is dual to type IIB superstring theory on AdS3 × S3 × T 4.
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Chapter 2

String theory on AdS3

In order to explore the AdS3/CFT2 correspondence we need to understand string

propagation in the bulk geometry. String theory on AdS3 × S3 × T 4 involves

Ramond-Ramond fluxes Fijk (see (1.12)). Although some progress has been made

for strings propagating on Ramond-Ramond backgrounds [43, 44, 45, 46, 47, 48],

the quantization of this models is still difficult and results are hard to obtain.

For that reason, it is convenient to take advantage of the S−duality on the

D1 − D5−system. The near horizon geometry of the S−dual brane system is

also AdS3 × S3 × T 4 but with Neveu-Schwarz H−flux which is the field strength

of a two-form field B.

2.1 Classical theory.

Let us start considering strings propagating on AdS3 spaces with H−flux [49, 50].

The isometry group of AdS3 is SO(2, 2) ∼ SL(2, R)× SL(2, R). This is obvious

from the embedding of the hyperboloid in M2,2,

−X2
0 −X2

−1 +X2
1 +X2

2 = −1 . (2.1)

The above three-dimensional hyperboloid can be parametrized by the following

element of SL(2, R),

g =

(
X−1 +X1 X0 −X2

−X0 −X2 −X−1 −X1

)
. (2.2)

Another useful parametrization is given by

g = e(i
t+φ
2

σ2) eρσ3 e(i
t−φ
2

σ2) , (2.3)
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where σi are the Pauli matrices. We use the following generators for the SL(2, R)

Lie algebra

T 0 = − i

2
σ2, T± =

1

2
(σ3 ± iσ1). (2.4)

Then the metric on the SL(2, R) group manifold is given by

gµν =
1

2
Tr(g−1∂µgg

−1∂νg), (2.5)

where µ, ν are indices referring to ρ, t, φ. Evaluating the metric using the parametriza-

tion given in (2.3) we get

ds2 = − cosh2 ρdt2 + dρ2 + sinh2 ρdφ2, (2.6)

which is the metric on AdS3 expressed in the global coordinates (t, φ, ρ). Thus

string propagation on AdS3 can be expressed in terms of the WZW action given

by,

S =
k

4πα′

∫

M

dx+dx−Tr(g−1∂µgg−1∂µg) +

k

24πα′

∫

N

d3yǫαβγTr(g
−1∂αg g−1∂βg g−1∂γg). (2.7)

The last term corresponds to the H−field, which can be written in terms of the

Maurer-Cartan 1-form

w = g−1dg, H = w3 , (2.8)

and N is a three dimensional manifold whose boundary is the world-sheet M . k

is a parameter of the theory which can be interpreted as 1/~. The equations of

motion for this action are given by,

∂−
(
∂+g g

−) = 0 . (2.9)

Therefore, a general solution is,

g = g+(x
+)g−(x

−) . (2.10)

Let us consider a simple solution given by,

g+(x
+) = U e

iα
2
σ2x+

, g−(x
−) = e

iα
2
σ2x−

V , (2.11)

where we have used x± = τ ±σ, with (τ, σ) the world sheet coordinates and U , V

are constant elements of SL(2, R). When V = U−1, without loss of generality,

we can set U = V −1 = eρ0σ3/2, and then we have g = eρ0σ3/2 eiατσ2 e−ρ0σ3/2. From
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the parametrization in (2.3) we see that in the particular case ρ0 = 0, the solution

is a time-like geodesic with ρ = φ = 0 and t = ατ , i.e. it represents a particle

trajectory sitting at the center of AdS3.

One can generate new solutions by the following transformations,

g+ = ei
1
2
ωx+σ2 g̃+ , g− = g̃−e

i 1
2
ωx−σ2 , (2.12)

where g̃+ and g̃− are the old solutions, i.e, g(ω) = ei
1
2
ωx+σ2 g̃ ei

1
2
ωx−σ2 . From (2.3)

we see that this acts on t and φ as

t→ t+ ωτ φ→ φ+ ωσ (2.13)

This transformation is called spectral flow and will be of great importance in our

discussion of the spectrum and correlation functions. It stretches the geodesics in

the t-direction and gives them σ dependence. In fact, now the solution represents

a string winding w times around the centre ρ = 0 of AdS3; the resulting solution

describes a circular string which repeats expansion and contraction.

As we argued above, the theory is invariant under the action of SL(2, R) ×
SL(2, R), g → Ω(x+)gΩ̄−1(x−), both Ω and Ω̄ being elements of SL(2, R). Under

infinitesimal transformations Ω ∼ 1 + ǫ(x+), Ω̄ ∼ 1 + ǭ(x−), g transforms as

δg = δǫg + δǭg , (2.14)

where δǫg = ǫg and δǭg = −gǭ. The variation of the action (2.7) is given by,

δS =
k

2πα′

∫

M

d2xTr(g−1δg∂+(g
−1∂−g)) ,

=
k

2πα′

∫

M

d2 xTr(ǫ∂−(∂+gg
−1)− ǭ∂+(g

−1∂−g)) , (2.15)

from where we read the set of conserved currents,

j+ = k∂+gg
−1, j− = kg−1∂−g , (2.16)

or in components,

ja+ = Tr(T aj+), ja− = Tr(T a∗j−), a = 0,± , (2.17)

which generate an infinite set of conserved charges associated to the affine SL(2, R)×
SL(2, R) symmetry of the theory given by

jan =

∫ 2π

0

dx+

2π
einx

+

ja+ , j̄an =

∫ 2π

0

dx−

2π
einx

−

ja− . (2.18)
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The zero modes of j0± are related to the energy E and angular momentum l,

j00 =

∫ 2π

0

dx+

2π
j0+ =

1

2
(E + l) , j̄00 =

∫ 2π

0

dx−

2π
j0− =

1

2
(E − l) . (2.19)

The energy-momentum tensor can be written in terms of the currents as,

TAdS
++ =

1

k
ja+j

a
+ , (2.20)

with a similar expression for TAdS
−− .

Under the spectral flow transformation the currents change in the following way,

j0+ = j̃0+ +
k

2
ω, j±+ = j̃∓iωx+

, (2.21)

and a similar expression for ja−. In terms of the charges (Fourier modes) (2.18),

j0n = j̃0n +
k

2
ωδn,0, j±n = j̃±n∓ω , (2.22)

with a similar expression for j̄an. The energy-momentum tensor transforms as,

TAdS
++ = T̃AdS

++ − ωj̃0+ − k

4
ω2 . (2.23)

2.2 Quantum theory

From now on we will use Euclidean world-sheet signature, i.e, we analytically

continue to z = τ + iσ and work on the complex plane.

The variation of the action (2.15) is given in z−complex coordinates by the

following,

δS = −i k

4πα′

∫

M

d2 zTr(ǫ(z)∂z̄(∂zgg
−1)− ǭ(z̄)∂z(g

−1∂z̄g)) . (2.24)

We have used d2x = (−i/2)d2z. Now performing an integration by parts, we get,

δS = −i 1

4πα′

∫

M

d2 z [∂z̄Tr(ǫ(z)j(z)) + ∂zTr(ǭ(z̄)j̄(z̄))] ,

=
i

4πα′

∮
dzTr(ǫ(z)j(z))− i k

4πα′

∮
dz̄Tr(ǭ(z̄)j̄(z̄)) , (2.25)

which in components looks like,

δS =
i

2πα′

∮
dz
∑

a

ǫaja − i

4πα′

∮
dz̄
∑

a

ǭaj̄a . (2.26)
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For a generic correlation function of a number of operators, denoted here as 〈X〉,
the Ward identity

δ〈X〉 = 〈(δS)X〉 , (2.27)

should be satisfied, i.e,

δ〈X〉 = i

2πα′

∮
dz
∑

a

ǫa〈jaX〉 − i

4πα′

∮
dz̄
∑

a

ǭa〈j̄aX〉 . (2.28)

On the other hand, we can compute directly the infinitesimal transformation law

for the currents from expressions (2.16),

δj(z) = [ǫ, j]− k∂zǫ , (2.29)

or,

δja(z) =
∑

b,c

ifabcǫ
bjc − k∂zǫ , (2.30)

where fabc are the structure constants of the SL(2, R) algebra and the non-

vanishing components are given by,

f0±± = ±1, f−+0 = −2 (2.31)

By comparing (2.28) and (2.30) we deduce the following OPE between cur-

rents,

ja(z)jb(z′) ∼ kδab
(z − z′)2

+
∑

c

ifabc
jc(w)

(z − w)
. (2.32)

This is known in the literature as current algebra. In terms of the Fourier modes,

the above current algebra is equivalent to the following commutation relations,

[jan, j
b
m] =

∑

c

ifabcj
c
n+m +

k

2
nδn+m,0. (2.33)

There is a similar set of commutation relations for the right movers j̄an. Using

equation (2.20) one can find the Fourier modes of the energy-momentum tensor1.

They are given by

L0 =
1

k − 2

[
1

2
(j+0 j

−
0 + j−0 j

+
0 )− (j00)

2 (2.34)

+
∞∑

m=1

(j+−mj
−
m + j−−mj

+
m − 2j0−mj

0
m)

]

Ln 6=0 =
1

k − 2

∞∑

m=1

(j+n−mj
−
m + j−n−mj

+
m − 2j0n−mj

0
m) .

1This is known in the literature as Sugawara construction [51]
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It can be compactly written as,

Ln =
1

k − 2

∑

m

: jamj
a
n−m : , (2.35)

where : ... : denotes normal ordering. These generators obey the Virasoro algebra

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n− 1)δn+m,0 , (2.36)

with the central charge given by

c =
3k

k − 2
. (2.37)

The action of the Virasoro generators on the currents is given by,

[Ln, j
a
m] = −mjan+m . (2.38)

2.2.1 Spectrum

The physical spectrum of a string in AdS3 must be in unitary ghost-free repre-

sentations of the following algebra,

[jan, j
b
m] =

∑

c

ifabcj
c
n+m +

k

2
nδn+m,0, f0±± = ±1, f−+0 = −2 ,

[Ln, j
a
m] = −mjan+m

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n− 1)δn+m,0 . (2.39)

The unitary representations of the zero modes of the currents obeying [ja0 , j
b
0] =∑

c ifabcj
c
0, are classified by the eigen-values of j00 which we denote by m and take

highest value −h ( lowest h) by repeated action of j+0 (j−0 ). They are divided in

five classes2:

1. Identity:

The trivial representation |0〉. This representation has h = 0,m = 0 and

j±0 |0〉 = 0.

2. Principal discrete representations (lowest weight):

These are representations of the form

D+
h = {|h;m〉 : m = h, h+ 1, h+ 2 · · · }, (2.40)

2See [52] for a review.
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Here |h;h〉 is annihilated by j−0 . The tower of states over |h;h〉 is built

by the repeated action of j+0 . The norm of these states is positive and

the representation is unitary if h is real and h > 0. h is restricted to be

half integer if we are considering representations of the group SL(2, R),

however for the universal cover of SL(2, R) which is our interest, h can be

any positive integer.

3. Principal discrete representations (highest weight):

These are representations of the form

D−
h = {|h;m〉 : m = −h,−h− 1,−h− 2, · · · }, (2.41)

where |h;−h〉 is annihilated by j+0 . The representation has positive norm

and is unitary if h is real and h > 0. This representation is the charge

conjugate of D+
h .

4. Principal continuous representations:

These representations are of the form

Cα
h = {|h, α;m〉 : m = α, α± 1, α± 2, · · · } (2.42)

Without loss of generality, we can restrict 0 ≤ α < 1. The representation

has positive norm and is unitary if h = 1/2 + is, where s is real.

5. Complementary representations:

These are of the form

Eα
h = {|h, α;m〉 : m = α, α± 1, α± 2, · · · }. (2.43)

Again without loss of generality we can restrict 0 ≤ α < 1 The representa-

tion has positive norm and is unitary if h is real and h(1− h) > α(1− α).

Among these representations, we restrict to those which admit square in-

tegrable wave functions in the point particle limit. As AdS3 is non-compact,

square-integrability refers to delta function normalizable wave functions. This

imposes the restriction h > 1/2 3. It is known that Cα
h=1/2+is ⊗ Cα

h=1/2+is and

D±
h ⊗ D±

h with h > 1/2 form the complete basis of square integrable wave func-

tions on AdS3. Along this work we are going to use D±
h representations only, for

reasons which will become clear in the next section.

3This condition is also the condition for the Breitenlohner-Freedman bound [53] on D±
h which

states that the mass of a scalar in AdS3 is given by m2 = h(h− 1) ≥ − 1
4 .
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Given a unitary representation H of SL(2, R), one can construct a representa-

tion of the affine algebra (2.39) or ̂SL(2, R) by regarding H as the primary states

annihilated by j0,±n≥1, and the full representation space is generated by acting with

j0,±n≤1 on H. We denote the representations of the full current algebra built on the

corresponding representations of the zero modes by D̂±
h .

The above spectrum in general contain states with negative norms or ghosts.

As in strings on flat space, we should be able to remove them by imposing the

Virasoro conditions,

Ln|physical〉 = 0 , n ≥ 0 . (2.44)

It has been shown that this spectrum does not contain ghosts when D̂±
h is re-

stricted to 0 < h < k/2 [54, 55, 56, 57, 58].

Finally, as we saw in the previous section, we can generate new classical

solutions from the old ones by the spectral flow transformation. At the quantum

level, this is the statement that we can generate new representations from the

standard ones by application of the spectral flow transformation on the currents.

Indeed, we can easily see that, for any integer w, the transformation given by,

j0n = j̃0n +
k

2
ωδn,0, j±n = j̃±n∓ω ,

Ln = L̃n − wj0n +
k

4
w2δn, 0 , (2.45)

preserves the commutation relations (2.39). The above transformation maps one

representation into an inequivalent one for a given w. We are going to denote the

spectral flow images of D̂±
h ⊗D̂±

h , Ĉα
h ⊗Ĉα

h as D̂±,w
h ⊗D̂±,w

h , Ĉα,w
h ⊗Ĉα,w

h respectively,

with w ∈ Z.

Moreover, it has been shown in [59] that in order to produce a modular in-

variant partition function for string theory on AdS3, spectral flowed states should

be taken into account.

2.2.2 Primary fields

In the WZW theory, a primary field is defined as a field that transforms covari-

antly with respect to the group in which the model is defined. Explicitly in the

case discussed in this chapter, the group is SL(2, R) × SL(2, R). This implies

that a primary field transforms infinitesimally as,

δǫΦλ(z, z̄) = ǫΦλ(z, z̄), δǭΦλ̄(z, z̄) = −Φλ̄(z, z̄)ǭ , (2.46)
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where (λ, λ̄) denotes a given representation of SL(2, R)×SL(2, R). Using (2.28),

we deduce the following OPEs between the currents and the primary fields,

ja(z)Φλ(w) ∼
−taλΦλ(w, w̄)

z − w
, j̄a(z)Φλ(w) ∼

Φλ(w, w̄)t
a
λ̄

z − w
, (2.47)

where taλ and ta
λ̄
are the generators of the SL(2, R) × SL(2, R) algebra in the

corresponding representation.

In this work we will be mainly interested in the following representation,

− t+x ≡ D+
x = ∂x, −t0x ≡ D0

x = x∂x + h, −t−x ≡ D−
x = x2∂x + 2hx . (2.48)

This is known as iso-spin representation and can be interpreted as a usual scalar

representation in coordinate x.
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Chapter 3

String theory on AdS3× S3× T4

In this chapter, we shall generalize the construction of the string theory made in

chapter 2 to the full super-string theory on AdS3 × S3 × T 4.

3.1 Quantum theory

Type IIB superstring theory on AdS3 × S3 × T 4 was originally studied in [60,

61, 35, 62, 63, 64]. As in the AdS3 case, we can build an SU(2)−WZW and a

U(1)4−WZWmodels [65], where SU(2) and U(1)4 are the corresponding isometry

groups of the S3 sphere and T 4 torus respectively. Therefore we have a bosonic

action with an ŜL(2)× ŜU(2)× Û(1)
4

affine worldsheet symmetry. We would like

to consider a world-sheet with N = 1 supersymmetry. To do that, we introduce

a set of fermions ψA, χA, λi, A = 0,±, i = 1, 2, 3, 4 corresponding to the super-

partners of the bosonic SL(2, R), SU(2) and T 4 respectively.

The ŜL(2) and ŜU(2) supercurrents ψA + θJA and χA + θKA, respectively,

satisfy the following OPE

JA(z)JB(w) ∼
k
2
ηAB

(z − w)2
+
iǫAB

CJ
C(w)

z − w
,

JA(z)ψB(w) ∼ iǫAB
Cψ

C(w)

z − w
,

ψA(z)ψB(w) ∼
k
2
ηAB

z − w
, (3.1)
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KA(z)KB(w) ∼
k
2
δAB

(z − w)2
+
iǫAB

CK
C(w)

z − w
,

KA(z)χB(w) ∼ iǫAB
Cχ

C(w)

z − w
,

χA(z)χB(w) ∼
k
2
δAB

z − w
, (3.2)

with A = 0, 1, 2, ǫ012 = 1 and ηAB = (−,+,+). It is convenient to introduce new

currents as

JA(z) = jA(z) + ĵA(z) , KA(z) = kA(z) + k̂A(z) , (3.3)

where jA (ĵA) and kA (k̂A) generate SL(2)k+2 (SL(2)−2) and SU(2)k−2 (SU(2)2)

affine algebras, respectively, with

ĵA(z) = − i

k
ǫABCψ

B(z)ψC(z), k̂A(z) = − i

k
ǫABCχ

B(z)χC(z). (3.4)

The advantage of the above spliting is that the bosonic jA(z) and ferminonic

ĵA(z) currents are decoupled. The Û(1)
4

is realized in terms of free bosonic

currents i∂Y i and free fermions λi, i = 1, 2, 3, 4.

The stress tensor and supercurrent are given by

T (z) =
ηAB

k
(jAjB − ψA∂ψB) +

δAB

k
(kAkB − χA∂χB) +

1

2
(∂Y i∂Yi −

1

2
λi∂λi),

G(z) =
2

k
(ηABψ

AjB +
2i

k
ψ0ψ1ψ2) +

2

k
(δABχ

AkB − 2i

k
χ0χ1χ2) + λi∂Yi . (3.5)

The spectrum of the theory is built from those of the SL(2,R) and SU(2)

WZNWmodels. As we mentioned in the previous section, the Hilbert space of the

former [49] is decomposed into unitary representations of the SL(2,R)× SL(2,R)

current algebra 1, namely the discrete lowest- and highest-weight representations

D±
h ⊗ D±

h with h ∈ R, 1
2
< h < k+2

2
and m = ±h,±h ± 1, . . . , the continuous

representations Cα
h ⊗ Cα

h with h = 1
2
+ iR, m = α + Z, α ∈ [0, 1), their current

algebra descendants and spectral flow images, D̂±,w
h ⊗ D̂±,w

h , Ĉα,w
h ⊗ Ĉα,w

h with

w ∈ Z and the same spin and amount of spectral flow on the left- and right-

moving sectors.

Primary operators of spin h and worldsheet conformal dimension ∆sl(Φh) =

−h(h−1)
k

, are defined by (2.48),

ja(z)Φh(x, x;w,w) ∼
Da

xΦh(x, x;w,w)

z − w
, a = 0,± , (3.6)

1Actually, the spectrum is built on representations of the universal cover of SL(2,R), to

which we refer simply as SL(2,R) for short.
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where D+
x = ∂x, D

0
x = x∂x + h and D−

x = x2∂x + 2hx. Expanding in modes as

Φh(x, x) =
∑

m,m

Φh,m,mx
−h+mx−h+m , (3.7)

one can read the action of the zero modes of the currents on Φh,m,m, namely

j00Φh,m,m = mΦh,m,m, j±0 Φh,m,m = [m∓ (h− 1)] Φh,m±1,m, (m 6= ±h) , (3.8)

and j−0 Φh,h,m = j+0 Φh,−h,m = 0, which exhibit the usual state-field correspondence.

We can go back from the x−basis to the m−basis by the inverse transform,

Φh,m,m =

∫
d2xxh−m−1xh−h−1Φh(x, x) . (3.9)

It is worth mentioning at this point that the ̂SL(2, R) current algebra on the

string worldsheet induces a Virasoro algebra in coordinates (x, x̄), under which

the fields Φh(x, x) behave as conformal primaries with conformal weight equal to

h [60]. That is the reason why we have made the usual CFT expansion in (3.7).

This also lead us to think about the coordinates (x, x̄) as the boundary coordi-

nates where the dual field theory should be defined. In forthcoming chapters we

are going to use this fact strongly.

Similarly, the primary fields of the SU(2)k−2 WZNW model with conformal

dimension ∆su(Vj) =
j(j+1)

k
verify

ka(z)Vj(y, y;w,w) ∼
P a
y Vj(y, y;w,w)

z − w
, (3.10)

with P+
y = ∂y, P

0
y = y∂y − j, P−

y = −y2∂y + 2jy and can be expanded in modes

as

Vj(y, y) =

j∑

m′,m′=−j

Vj,m′,m′yj+m′

yj+m′

. (3.11)

The spin j ∈ Z/2 is bounded by 0 ≤ j ≤ k−2
2

and k+0 Vj,j,m′ = k−0 Vj,−j,m′ = 0,

k00Vj,m′,m′ = m′Vj,m′,m′ , k±0 Vj,m′,m′ = (±m′ + 1 + j)Vj,m′±1,m′ , (m′ 6= ±j).(3.12)

In the fermionic sector, the fields ψa transform in the spin ĥ = −1 represen-

tation of the global SL(2,R) algebra and χa transform in the spin ĵ = 1 of the

SU(2) global algebra.

Vertex operators creating unflowed physical states in the NS sector were con-

structed in [64]. The construction of the physical spectrum is very similar to that
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corresponding to super-strings in flat space. The ground state corresponds to the

following vertex,

Vh,j,p = Φh,m,m̄Vj,m′,m̄′ ei~p·
~Y+i~̄p· ~̄Y , (3.13)

where ei~p·
~Y+i~̄p· ~̄Y is the plane wave on the torus, i.e, ~Y are coordinates on the torus

and ~p is a vector in an even self-dual Narain lattice Γ4,4̄. The towers of string

states are obtained by multiplying this zero mode wave function by a polynomial

in the fermionic oscillators, the bosonic oscillators and their derivatives, and a

similar polynomial in the antiholomorphic oscillators. More concretely, the most

general state in the (-1, -1) picture of the NS-NS sector has the form

BN,N̄
h,j,p = e−ϕ−ϕ̄PN(ψ

A, ∂ψA, ..., ja, ∂jA, ..)P̄N̄(...)Vh,j,p , (3.14)

where PN is a polynomial in the bosonic and fermionic worldsheet fields and their

derivatives with scaling dimension N, and similarly for P̄N̄ . e−ϕ is a bosonised

super-ghost field ensuring that those states are in −1 picture. A physical state

should satisfy the Virasoro conditions,

Ln|Phys〉 =
(
Ln,AdS + Ln,SU(2) + Ln,T 4

)
|Phys〉 = 0, n ≥ 0 , (3.15)

which implies,

− 1

2
+N − h(h− 1)

k
+
j(j + 1)

k
+

|p|2
2

= 0 , (3.16)

and a similar relation for N̄ , p̄2. From the above relation we can see that generi-

cally, a physical state has to satisfy,

h = j + 1 . (3.17)

Additionally, as we have discussed in chapter 1, the size of the T 4 (1.19) is of

the order of the string length to the four V4 ∼ O(α′2). In this work we are

going to compute only tree-level correlators, therefore we can neglect the massive

contributions from T 4 since they will become visible in higher α′ corrections. In

other words, we set |p|2 = |p̄|2 = 0.

As we mentioned in the introduction, there is a nice window to test the

AdS/CFT correspondence if we restrict the spectrum to the chiral ring. The chi-

ral (antichiral) fields, are primaries which satisfy the condition H = J (H = −J )

(see chapter 4 ), H being the total space-time conformal dimension3 and J the

2From now on we display only the holomorphic indices.
3This is the quantum number we have denoted h in the bosonic sector, but now generalized

to the super-symmetric case
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total SU(2) charge. As we see from (3.16) the lowest physical primary (without

covariant derivatives) should have N = 1/2. In the −1 picture, for generic h

there are eight primary physical states satisfying the above conditions 4,

V i
h,m,m′ = e−ϕλiΦh,mVj,m′ ,

W±
h,m,m′ = e−ϕ(ψΦh,m)h±1,m

T
Vj,m′ , (3.18)

Y±
h,m,,m′ = e−ϕΦh,m(χVj,m′)h,m′

T
,

where (ψΦh,m)h±1,m
T
denotes the SL(2,R) current algebra product representation

of the representation h and the representation 1 with total ‘angular momentum’

H = h± 1.

The four operators V i
h,m,m′ have H = h = j + 1 and J = j; W±

h,m,m′ have

H = h = j + 1± 1 and J = j; and Y±
h,m,,m′ have H = h = j + 1 and J = j ± 1.

Therefore we have the following chiral vertex in the NS sector,

O(0)
h,m,m′ ≡ W−

h,m,m′ = e−ϕ(ψΦh,m)h−1,m
T
Vj,m′ , (3.19)

O(2)
h,m,,m′ ≡ Y+

h,m,,m′ = e−ϕΦh,m(χVj,m′)j+1,m′

T
. (3.20)

To study the Ramond sector one needs to construct the spin fields for ψa, χa, λi

[64]. It is convenient to have a bosonised form of the fermions such as

∂H1 =
2

k
iψ+ψ−, ∂H2 =

2

k
iχ+χ−,

∂H3 = −2

k
iψ3χ3, ∂H4 = λ1λ2, ∂H5 = λ3λ4 . (3.21)

The spin fields take the form S[ǫ1,··· ,ǫ5] = exp i
2

∑5
i=1 ǫiHi, with ǫi = ±1. They

transform as two copies of (1
2
, 1
2
) under SL(2)× SU(2). GSO projection requires

∏5
i=1 ǫi = +1 and BRST invariance demands

∏3
i=1 ǫi = −1. Following [66] we

define the spin fields associated with ψa, χa as S̃[ǫ1,ǫ2,ǫ3] = exp i
2
(ǫ1H1 + ǫ2H2 +

ǫ3H3).

Decomposing the product (S̃Φh,mVj,m′) into representations of the total cur-

rents Ja, Ka, the chiral vertex operators in the −1
2
picture take the form

O(a)
h,m,m′ = e−

ϕ
2 (S̃Φh,mVj,m′)h− 1

2
,m

T
+ 1

2
;j+ 1

2
,m′

T
+ 1

2
eai(Ĥ4−Ĥ5) , (3.22)

where Hi are redefined as Ĥi = Hi + π
∑

j<iNj, Nj = i
∮
∂Hi and a = ±.

• Spectral flow

4There are two remaining contributions which involve (ψΦh,m)h,m
T
and (χVj,m′)j,m′

T
, but

they are not physical [64].
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The algebras (3.1) are invariant under the following spectral flow automor-

phisms

J̃0
n = J0

n − k

2
wδn,0, J̃±

n = J±
n±w, K̃0

n = K0
n +

k

2
w′δn,0, K̃±

n = K±
n±w′ .

The currents ja, ĵa, ka and k̂a transform under spectral flow as

j0n = j̃0n +
k + 2

2
wδn,0 , j±n = j̃±n∓w , k0n = k̃0n −

k − 2

2
w′δn,0 , k±n = k̃±n∓w′ ,

ĵ0n = ˜̂j0n − wδn,0, ĵ±n = ˜̂j±n∓w , k̂0n =
˜̂
k0n − w′δn,0 , k̂±n =

˜̂
k±n∓w′ .

As we did with the currents, we split the Virasoro generators into their bosonic

and fermionic pieces as, Lsl
n = lsln + l̂sln , L

su
n = lsun + l̂sun ,

L̃sl
n = Lsl

n + wJ̃0
n +

k

4
w2δn,0 , L̃su

n = Lsu
n + w′K̃0

n −
k

4
w′2δn,0

lsln = l̃sln − wj̃0n −
k + 2

4
w2δn,0 , lsun = l̃sun − w′k̃0n +

k − 2

4
w′2 ,

l̂sln =
˜̂
lsln − w˜̂j0n +

1

2
w2δn,0 , l̂sun =

˜̂
lsun − w′˜̂k0n +

1

2
w′2δn,0 . (3.23)

The closure of the SL(2,R) and SU(2) algebras requires the same amount of spec-

tral flow w (w′) for ja and ĵa (ka and k̂a). The spectral flow maps primaries to

descendants of SU(2) and, unlike in SL(2,R), it does not generate new represen-

tations. For the sake of simplicity, we restrict to w > 0 in this section.

To construct spectral flow images of chiral primaries in generic frames, we

consider the SL(2,R) sector first. A w = 0 affine primary is mapped by the

spectral flow to a lowest-weight state of the global algebra Φh,w
H,M with H = M

satisfying [49]

j00Φ
h,w
H,M = MΦh,w

H,M =

(
m+

k + 2

2
w

)
Φh,w

H,M , (3.24)

l0Φ
h,w
H,M =

(
−h(h− 1)

k
− wm− k + 2

4
w2

)
Φh,w

H,M . (3.25)

Using (3.23) − (3.23), the fermions ψa in the spectral flow frame obey

̂00ψ
a = (a− w)ψa, ̂−0 ψ

a = ˜̂−wψ
a = 0 , (3.26)

l̂0ψ
a = (

1

2
− wa+

1

2
w2)ψa , (3.27)

i.e. ψa is a lowest-weight field with angular momentum ĥ = a − w. Acting with

ĵ+0 , one obtains the global representation in the w sector as ψ
|ĥ|
m̂ ∼ (̂+0 )

nψa with

m̂ = −ĥ, · · · , ĥ up to a normalization.
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All these ingredients allow to construct the representations of Ja. We denote

the fields of the product representation in the NS sector as (ψ
|ĥ|
m̂ Φw,h

H,M)H,M(z, z),

where |H − ĥ| ≤ H ≤ H + ĥ, M = H,H + 1, ... and their worldsheet conformal

weight is given by

∆sl
[
(ψ

|ĥ|
m̂ Φh,w

H,M)H,M

]
= −h(h− 1)

k
− w(m− a) +

1

2
− k

4
w2 . (3.28)

Repeating the analysis for SU(2), one obtains the product representation

(χĵ
m̂′V

j,w′

J,M ′)J ,M′ , with |J − ̂| ≤ J ≤ J + ̂, −J ≤ M′ ≤ J , J = m′ − k−2
2
w′,

̂ = |a− w′| and worldsheet conformal weight

∆su
[
(χĵ

m̂′V
j,w′

J,M ′)J ,M′

]
=
j(j + 1)

k
− w′(m′ − a) +

1

2
+
k

4
w′2 . (3.29)

In order to construct chiral states in generic representations, we should apply

the spectral flow operation on the chiral primaries (3.19) and (3.20). A detailed

derivation of these vertices is left until the next section. We notice that the

physical and chiral state conditions require to simultaneously spectral flow the

SL(2,R) and SU(2) product representations and we obtain [18],
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O(0),w
H,M ≡ e−ϕ(ψw+1

m̂ Φh,w
H,M)H,M(χw′

m̂′V
j,w′

J,M ′)J ,M′ , (3.30)

O(2),w
H,M ≡ e−ϕ(ψw

m̂Φ
h,w
H,M)H,M(χw′+1

m̂′ V j,w′

J,M ′)J ,M′ , (3.31)

where ϕ is the bosonization of the β, γ ghosts, M = H and M′ = −J . For

generic level k, the physical state condition (L0 − 1)W = 0 implies h = j + 1,

w = w′ and m′
T = −mT (see (3.19),(3.20)), and similarly for Y . Analogously,

GrW = (G̃r − wψ̃0
r − wχ̃0

r)W = 0 (GrY = 0) for r > 0 requires mT = h − 1

(mT = h) [66]. Finally, chirality (or antichirality) demands, for both operators

O(0) and O(2),

H = mT +
k

2
w = ±J . (3.32)

To obtain the spectral flowed 1
2
BPS operators in the Ramond sector we need

the product representation (S ĵ
m̂,m̂′Φ

h,w
H,MV

j,w′

J,M ′). The discussion about the fermions

applies analogously to the spin fields, i.e. from the lowest-weight component of

the ĥ = −ĵ = −|w ± 1
2
| spin representation, given by

S
w+ 1

2

−w− 1
2
,w+ 1

2

≡ e−i(w+ 1
2
)(Ĥ1+Ĥ2)− i

2
Ĥ3 , (3.33)

one constructs the global representation acting with ĵ+0 , k̂
+
0 .

The chiral fields in the w sector are [66]

O(a),w
H,M = e−

ϕ
2 (S

w+ 1
2

m̂,m̂′Φ
h,w
H,MV

j,w
J,M ′)H,M,J ,M′e±

i
2
(Ĥ4−Ĥ5) , (3.34)

where S
w+ 1

2

m̂,m̂′ has conformal weight 3
8
+ w2 + w, ĥ = −w − 1

2
= −ĵ and H =

h− 1
2
+ k

2
w = J .

42



3.2 Vertex operators of chiral states

In this section we present a derivation of the vertex operators creating spectral

flow images of chiral primary states. These operators were proposed and built in

[18] and [66] .

3.1 NS sector

The Clebsch-Gordan coefficients expanding the product representation (ψΦ)

in (3.30) and (3.31) are computed in appendix A1. We find

(ψ
|ĥ|
m̂ Φh,w

H,M)H,M =
ĥ∑

m̂=−ĥ

CM,m̂,M
H,ĥ,H ψ

|ĥ|
m̂ Φh,w

H,M , (3.35)

where only the holomorphic part has been written and 5

CM,m̂,M
H,ĥ,H =

(M+H)!

(m̂+ |ĥ|)!(M− m̂+H)!

m̂+|ĥ|∑

s=0

(−1)s−|ĥ| ×
(
m̂+ |ĥ|

s

)
(M− s+ |ĥ|+H)!

(M− s+H)!
×

(|ĥ| −H +M− s− 1)!

(M− s−H− 1)!(H + |ĥ| −H)!
. (3.36)

This can be rewritten using the generalized hypergeometric function

3F2(a, b, c; e, f |1) as

CM,m̂,M
H,ĥ,H =

(−1)m̂−|ĥ|Γ(−H + |ĥ|+M)Γ(H + |ĥ|+M+ 1)

Γ(H−H + |ĥ|+ 1)Γ(M−H)Γ(H +M− m̂+ 1)Γ(|ĥ|+ m̂+ 1)
×

3F2(−H−M,H−M+ 1,−|ĥ| − m̂;−H − |ĥ| −M, H − |ĥ| −M+ 1; 1) ,

with the advantage that it can be represented in terms of the Pochhammer double-

loop contour integral, possessing a unique analytic continuation in the complex

plane for all its indices [67, 68]. The analogous coefficients for SU(2) are related

to these ones through analytic continuation.

For our purposes, it is convenient to write the vertex operators in the x−basis,

where the isospin can be identified with the coordinates on the boundary [61].

This can be done using J+ ∼ ∂x (3.6), i.e, every observable O(x) is conjugate to

O(0),

e−xJ+
0 O(z)exJ

+
0 ≡ O(x, z). (3.37)

5The coefficients CM,m̂,M

H,ĥ,H
are given by the dot product 〈H,M ; ĥ, m̂|H, ĥ;H,M〉 as we show

in the appendix.

43



Performing this operation on the fermion fields, in the unflowed frame one gets

e−xJ+
0 ψ+(z)exJ

+
0 = ψ+(x, z) ≡ ψ(x, z) (3.38)

= −2xψ0(z) + ψ+(z) + x2ψ−(z), (3.39)

and in a generic w frame

e−xJ+
0 ψ

|ĥ|
m̂=ĥ

(z)exJ
+
0 ≡ ψ|ĥ|(x, z) =

ĥ∑

m̂=−ĥ

(−1)m̂+ĥ Γ(2|ĥ|+ 1)

Γ(m̂+ |ĥ|+ 1)Γ(|ĥ| − m̂+ 1)
ψ

|ĥ|
m̂ x−ĥ+m̂ .

(3.40)

Inserting H = m+ k+2
2
w and ĥ = −w − 1 in (3.36) we get

CM,m̂,M
H,ĥ,H = (−1)m̂+w+1 Γ(2w + 3)

Γ(m̂+ w + 2)Γ(w − m̂+ 2)
, (3.41)

which coincide with the coefficients in (3.40). Therefore, the SL(2,R) part of the

chiral vertex (3.30) may be written as

(ψw+1
m̂ Φh,w

H,M)H,M =
w+1∑

m̂=−w−1

(−1)m̂+w+1 Γ(2w + 3)

Γ(m̂+ w + 2)Γ(w − m̂+ 2)
ψw+1
m̂ Φh,w

H,M .

(3.42)

Expanding in modes, it is easy to see that they may be expressed in the following

factorized form

(ψΦ)h,wH (x) ≡
∑

M
(ψw+1

m̂ Φh,w
H,M)H,M x−H+M = ψw+1(x)Φh,w

H (x) . (3.43)

Surprisingly, this factorization always occurs in (3.30) when H and ĥ combine to

produce a chiral state.

So far, we have restricted to the holomorphic SL(2,R) sector, but the same

analysis applies to SU(2) [68] and to their antiholomorphic parts. Putting all

together, we get the following vertex operators creating spectral flow images of

chiral primary states in arbitrary spectral flow frames

O(0),w

HH (x, y, x, y) = e−ϕ Φh,w

HH
(x, x)ψw+1(x)ψ

w+1
(x)V h−1,w

JJ
(y, y)χw(y)χw(y),

(3.44)

O(2),w

HH (x, y, x, y) = e−ϕΦh,w

HH
(x, x)ψw(x)ψ

w
(x)χw+1(y)χw+1(y)V h−1,w

J,J
(y, y)

, (3.45)

with J = H − 2w, J = H − 2w, H = −J − 1,H = −J − 1.
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3.2 Ramond sector

The product representation needed to construct the vertex operators (3.34)

in the Ramond sector can be expanded as

(S ĵ
m̂,m̂′Φ

h,w
H,MV

j,w
J,M ′)H,M,J ,M′ =

ĥ∑

m̂,m̂′=−ĥ

(S ĵ
m̂,m̂′Φ

h,w
H,MV

j,w
J,M ′)C

(M,m̂,M),(M ′,m̂′,M′)

(H,ĥ,H),(J,ĥ,J )

≡
ĥ∑

m̂=−ĥ

(S ĵ
m̂Φ

h,w
H,M)CM,m̂,M

H,ĥ,H ⊗
ĥ∑

m̂′=−ĥ

(S ĵ
m̂′V

j,w
J,M ′)C

M ′,m̂′,M′

J,ĥ,J , (3.46)

i.e. the SL(2) and SU(2) parts factorize. The Clebsch-Gordan coefficients CM,m̂,M
H,ĥ,H

can be computed from (3.36) taking H = m + k+2
2
w and ĥ = −w − 1

2
. Using

(3.37), it is easy to see that the triple product factorizes in the x−basis as

(SΦV )h,wH,J (x, y) ≡
∑

M,M′

(S
w+ 1

2

m̂,m̂′Φ
h,w
H,MV

j,w
J ;M ′)H,M,J ,M′ x−H+MyJ+M′

= Sw+ 1
2 (x, y)Φh,w

H (x)V j,w
J (y) , (3.47)

where

Sw+ 1
2 (x, y) ≡
w+ 1

2∑

m̂,m̂′=−(w+ 1
2
)

[
(−1)m̂+w+ 1

2 Γ(2w + 2)

Γ(m̂+ w + 3
2
)Γ(w − m̂+ 3

2
)

(−1)m̂
′+w+ 1

2 Γ(2w + 2)

Γ(m̂′ + w + 3
2
)Γ(w − m̂′ + 3

2
)

]

× S
w+ 1

2

m̂,m̂′ x
m̂+w+ 1

2ym̂
′+w+ 1

2 . (3.48)

Taking into account the antiholomorphic part, the vertex operators creating

spectral flow images of chiral primary states in the Ramond sector are given by

O(a),w

HH (x, x, y, y) = e−
ϕ
2 Sw+ 1

2 (x, y)S
w+ 1

2 (x, y)Φh,w

H,H
(x, x)

V j,w

J,J
(y, y)ea

i
2
(Ĥ4−Ĥ5)e±

i
2
(Ĥ4−Ĥ5) . (3.49)
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Chapter 4

Sigma Model On The Symmetric

Product Orbifold of T4

In this chapter we briefly review the dual field theory to type IIB super-string

theory in AdS3 × S3 × T 4, which is given by a two-dimensional conformal field

theory whose target space corresponds to the symmetric product of N T 4 torus,

(T 4)N/S(N).

4.1 The Model

Type IIB superstring theory on AdS3× S3× T4 with RR background is conjec-

tured to be dual to the infrared fixed point theory living on a D1-D5 system

compactified on T4. As we mentioned at the end of chapter 1, it has been argued

that in the Higgs branch this theory flows in the infrared to an N = 4 supercon-

formal field theory (SCFT) on the symmetric product of N = Q1Q5 four-torus

[41], i.e, the target space of this theory is given by (T 4)N/S(N), S being the

symmetric group of N indices.

The N = (4, 4) SCFT on T 4 is described by the free Lagrangian

S =
1

2

∫
d2z

[
∂xiA∂̄xi,A + ψi

A(z)∂̄ψ
i
A(z) + ψ̃i

A(z̄)∂ψ̃
i
A(z̄)

]
(4.1)

Here i runs over the T 4 coordinates 1,2,3,4 and A = 1, 2, . . . , N labels various

copies of the four-torus. The symmetric group S(N) acts by permuting the A

indices.

The N = 4 superconformal algebra with central charge c = 6N can be con-

structed out of N copies of four real fermions and bosons.
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The generators are given by

T (z) = ∂XA(z)∂X
†
A(z) +

1

2
ΨA(z)∂Ψ

†
A(z)−

1

2
∂ΨA(z)Ψ

†
A(z) , (4.2)

Ga(z) =

(
G1(z)

G2(z)

)
=

√
2

(
Ψ1

A(z)

Ψ2
A(z)

)
∂X2

A(z) +
√
2

(
−Ψ2†

A (z)

Ψ1†
A (z)

)
∂X1

A(z) ,

J i
R(z) =

1

2
ΨA(z)σ

iΨ†
A(z) .

The summation over A which runs from 1 to N is implied. By performing all

the operator product expansions among the currents, we can realize that they

generate an N = 4 super conformal algebra [69]. The bosons X and the fermions

Ψ are given in terms of the torus coordinates and their fermionic super-partners

as,

XA(z) = (X1
A(z), X

2
A(z)) =

√
1/2(x1A(z) + ix2A(z), x

3
A(z) + ix4A(z)), (4.3)

ΨA(z) = (Ψ1
A(z),Ψ

2
A(z)) =

√
1/2(ψ1

A(z) + iψ2
A(z), ψ

3
A(z) + iψ4

A(z))

X†
A(z) =

(
X1†

A (z)

X2†
A (z)

)
=

√
1

2

(
x1A(z)− ix2A(z)

x3A(z)− ix4A(z)

)

Ψ†
A(z) =

(
Ψ1†

A (z)

Ψ2†
A (z)

)
=

√
1

2

(
ψ1
A(z)− iψ2

A(z)

ψ3
A(z)− iψ4

A(z)

)

4.2 Short Multiplets

The representations of the supergroup are classified according to the confor-

mal weight and SU(2)R quantum number. The highest weight states |hw〉 =

|h, jR, j3R = jR〉 satisfy the following properties

L1|hw〉 = 0 L0|hw〉 = h|hw〉 (4.4)

J
(+)
R |hw〉 = 0 J

(3)
R |hw〉 = jR|hw〉

Ga
1/2|hw〉 = 0 Ga†

1/2|hw〉 = 0

where J±
R = J

(1)
R ± iJ

(2)
R . L±,0, J

(±),(3)
R are the global charges of the currents T (z)

and J
(i)
R (z). The charges Ga

1/2,−1/2 are the global charges of the supersymmetry

currents Ga(z).

Highest weight states which satisfy G2†
−1/2|hw〉 = 0, G1

−1/2|hw〉 = 0 are chiral

primaries. Short multiplets are generated from the chiral primaries through the
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action of the raising operators J−, G
1†
−1/2 and G2

−1/2. The structure of the short

multiplet is given below

States j L0 Degeneracy

|hw〉S h h 2h+ 1

G1†
−1/2|hw〉S, G2

−1/2|hw〉S h− 1/2 h+ 1/2 2h+ 2h = 4h

G1†
−1/2G

2
−1/2|hw〉S h− 1 h+ 1 2h− 1

(4.5)

and h = 1, 3/2, ..., (N + 1)/2.

The chiral primary operators on the symmetric product associated to the

above states are given by the single-cycle twist operators

O(0)
n (x, x̄) , O(a)

n (x, x̄) , O(2)
n (x, x̄) , (4.6)

with a = ±, and n = 1, ..., N denotes the length of the cycle (For a precise

definition see e.g. [23, 8, 9]). The corresponding conformal dimensions are

h(0) =
n− 1

2
, h(a) =

n

2
, h(2) =

n+ 1

2
(4.7)

and similarly for the antiholomorphic sector. For the comparison with string

theory computations, we will later use the label h = (n+ 1)/2 instead of n such

that

h(0) = h− 1 , h(a) = h− 1/2 , h(2) = h . (4.8)

The (anti-)chiral operators O
(A)
n (O

(A)†
n ) (A = 0, a, 2) form a (anti-)chiral ring

under an N = 2 subalgebra and satisfy h(A) = Q (h(A) = −Q), where q is the

corresponding U(1) charge.

Let us summarize the holomorphic chiral ring in the following table,

Field ∆ = Q Range of ∆

O
(0)
h h− 1 0, 1

2
. . . N−1

2

O
(a)
h h− 1/2 1

2
, 1 . . . N

2

O
(2)
h h 1, 3

2
. . . N+1

2

Table 1: Holomorphic chiral ring.

As the notation suggests, the operators displayed in table 1, are identified to be

dual to (3.45), (3.44) and (3.49) respectively.
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4.3 Some Correlation functions

Correlators of single-cycle twist operators are computed on covering surfaces of

different genera. Quite generally, it can be shown from the Riemann-Hurwitz

formula that if the cycle lengths of a p-point correlator satisfy

np =

p−1∑

i=1

ni − p+ 2 , (4.9)

the sphere is the only covering surface which contributes to the correlator [23].

Two- and three-point functions on the sphere for the operators in above table

are given by [8, 9] 1

〈Oǫn
n (x1, x1)O−ǫn

−n (x2, x2)〉 = |x12|−4h , (4.10)

〈Oǫn1
n1 Oǫn2

n2 Oǫn3†
n3 〉 =

√
n1n2n3

N
δ2(

3∑

i=1

Mni
)Cn1n2n3

∏

i<j

|xij|−2hij , (4.11)

where (ǫn; ǫn) = ± , and with respect to the notation in Table 1 (−) corresponds

to the index (0) and (+) corresponds to index (2), h12 = h1 + h2 − h3, etc.,

−hi ≤ mi ≤ hi and the coefficients Cn1n2n3 are defined in terms of the SU(2) 3j

symbols as

Cn1n2n3 =
|ǫn1n1 + ǫn2n2 + ǫn3n3 + 1|2

4n1n2n3

×
∣∣∣∣∣

(
h1 h2 h3

m1 m2 m3

)∣∣∣∣∣

2 ∣∣∣∣∣
h12!h23!h31!(

∑3
i=1 hi + 1)!

(2h1)!(2h2)!(2h3)!

∣∣∣∣∣ .

Using (4.7) and mi = ±hi, the delta function in (4.11) implies hij = 0 for certain

i, j. Specifying n3 = n1 + n2 − 1, the non-vanishing three-point functions are

those with (ǫn1 , ǫn2 , ǫn3) = (−,−,−) and (+,−,+). In this case, the product in

the second line reduces to one.

Two other correlators that will be important below have been evaluated in

the particular case n3 = n1 + n2 − 1 [7], namely (we omit the obvious coordinate

dependence)

〈
Oa

n1
O−

n2
Oa′†

n3

〉
=

1√
N

(
n1n3

n2

)1/2

δa,a
′

δa,a
′

, (4.12)

〈
Oa

n1
Oa′

n2
O+†

n3

〉
=

1√
N

(
n1n2

n3

)1/2

ξa,a
′

ξa,a
′

, ξa,a
′

= ξa,a
′

=

(
0 1

1 0

)
.

(4.13)

1Contributions from surfaces with higher genus are suppressed in the large N limit.
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Several four-point correlators satisfying (4.9) on the sphere have been com-

puted in [23]. Among others, the authors found the extremal four-point functions

〈O(0)†
n4

(∞)O(0)
n3
(1)O(0)

n2
(x, x̄)O(0)

n1
(0)〉 = F4(ni)

n
5/2
4

(n1n2n3)1/2
, (4.14)

〈O(2)†
n4

(∞)O(2)
n3
(1)O(0)

n2
(x, x̄)O(0)

n1
(0)〉 = F4(ni)

n
3/2
3 n

1/2
4

(n1n2)1/2
, (4.15)

〈O(b)†
n4

(∞)O(a)
n3
(1)O(0)

n2
(x, x̄)O(0)

n1
(0)〉 = δabF4(ni)

n
3/2
4 n

1/2
3

(n1n2)1/2
, (4.16)

〈O(2)†
n4

(∞)O(a)
n3
(1)O(b)

n2
(x, x̄)O(0)

n1
(0)〉 = ǫabF4(ni)

(n4n3n2)
1/2

n
1/2
1

, (4.17)

where the function F4(ni) is given by

F4(ni) =

[
(N − n1)!(N − n2)!(N − n3)!

(N − n4)!(N !)2

]1/2
. (4.18)

Note that F4 ≈ 1/N at large N and that the correlators are independent of the

cross-ratio x ≡ x12x34

x13x24
. The extremality conditions

h4 = h1 + h2 + h3 , etc. (4.19)

imposed on these correlators imply the condition (4.9), n4 = n1 + n2 + n3 − 2.2

There are also some non-extremal correlators satisfying (4.9). An example is

given by the correlator [23]

〈O(0)†
n+2(∞)O

(0)
2 (1)O

(0)†
2 (x, x̄)O(2)

n (0)〉 = G(x, x̄) , (4.20)

where for small x

G(x, x̄) ≈ (n+ 2)3/2

2(n+ 1)n1/2

√
(N − n)(N − n− 1)

N2(N − 1)2
|x|−2 . (4.21)

The correlator scales as 1/N at large N . The conformal dimensions are h1 =

h4 = n+1
2

and h2 = h3 =
1
2
and similarly for the anti-holomorphic sector. The

correlator is clearly non-extremal since

h4 = h1 + h2 + h3 − 1 , (4.22)

2There is also a fifth extremal correlator, 〈O(2,2)†
n4 (∞)O

(0,0)
n3 (1)O

(0,0)
n2 (x, x̄)O

(0,0)
n1 (0)〉 with n4 =

n1 + n2 + n3 − 4 [23], which does not satisfy (4.9).
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but nevertheless satisfies (4.9). The appearance of two anti-chiral operators in

(4.20) ensures charge conservation since

4∑

i=1

qi = h1 − h2 + h3 − h4 = 0 . (4.23)

Extremal correlators satisfy a non-renormalization theorem [21] and are thus

protected along the entire moduli space. They should therefore be reproducible

by a string or supergravity computation. The non-extremal correlator (4.20) is

not a priori protected by a non-renormalization theorem.
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Chapter 5

Three-point functions in AdS3×
S3× T4

In this chapter we shall compute three-point functions of physical vertex operators

in the full WZNWmodel on AdS3× S3× T4. Since our main interest is to compare

these correlators with their corresponding duals by AdS/CFT , we will restrict to

three-point functions involving chiral vertex operators only. This is based upon

[18].

5.1 Three-point functions of chiral states

As we saw in chapter 2 (see also chapter 3), the usual unitary “unflowed” represen-

tations of the SL(2, R) current algebra have the ’spin’ bounded as 0 < h ≤ k/2.

On the other hand, the symmetric product orbifold contains cycles of lengh n ≤ N

(see Table 1 in chapter 4). We will see below in this chapter that perturbative

worldsheet theory is valid when N is large. In that limit, it appears that in-

finitely many chiral operators are missing in the bulk [70]. This puzzle is solved

once we recall that spectral flow generates inequivalent SL(2, R) current algebra

representations with ’spin’ given by

Hn = h− 1 +
k

2
w . (5.1)

Thus we see that spectral flowed representations can take any value of H without

violating the unitarity bound imposed on h. By comparing h(0) in (4.7) with (5.1)

we see that the ’missing’ string states should correspond to chiral primaries in

the boundary with n = 2h− 1 + kw.
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In order to explore to whole chiral spectrum and verify this correspondence,

we compute correlation functions involving spectral flowed fields.

In this section we compute w−conserving three-point functions involving spec-

tral flow images of chiral primary states [18, 66]. We restrict to the so called ex-

tremal correlators, satisfying jn = jm+jl. Our results reduce to the unflowed case

when taking all the winding numbers w inside the correlator to zero [14, 15, 17]

(see also [16]).

NS-NS-NS three-point functions

Let us start by evaluating the following amplitudes

A3 = g−2
s

〈
O(0),w1

H1,H1
(x1, y1, x1, y1)O(0),w2

H2,H2
(x2, y2, x2, y2)O(0),w3

H3,H3
(x3, y3, x3, y3)

〉
S2
,

(5.2)

A′
3 = g−2

s

〈
O(2),w1

H1,H1
(x1, y1, x1, y1)O(0),w2

H2,H2
(x2, y2, x2, y2)O(2),w3

H3,H3
(x3, y3, x3, y3)

〉
S2
.

(5.3)

The vertices O(0),w

H,H , O(2),w

H,H were defined in the −1 ghost picture. Note that the

total ghost number of a correlator on a genus-g surface must be −χ = −(2− 2g).

In order to have total ghost number −2, as required on the sphere, the above

three-point correlator should contain one operator in 0 ghost picture. We change

the picture of an operator by applying to it the picture changing operator [14, 15].

We change the picture of an unflowed operator for simplicity, i.e.

Õ(0)
h (x, y, x, y)

=

[(
(1− h)̂(x) + j(x) +

2

k
ψ(x)χa(y)P

a
y

)
× c.c.

]
Φh(x, x)Vh−1(y, y) , (5.4)

Õ(2)
h (x, y, x, y)

=

[(
hk̂(y) + k(y) +

2

k
χ(y)ψa(x)D

a
x

)
× c.c.

]
Φh(x, x)Vh−1(y, y) . (5.5)

As discussed in detail below, this restriction is not strictly necessary to evaluate

(5.3), but further knowledge on spectral flowed affine representations than is

currently available is needed to compute (5.2) in a more general situation. In any

case, we shall see that including an unflowed operator does not imply any loss of

generality for correlators involving spectral flow images of chiral primary states

in the SL(2,R) sector.
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Replacing (5.4) in (5.2), A3 explicitly reads

A3 = g−2
s

〈
e−ϕ(z1,z̄1)e−ϕ(z2,z̄2)

〉 〈
V h1−1,w

J1,J1
(y1, y1)V

h2−1,w

J2,J2
(y2, y2)Vh3−1(y3, y3)

〉

× 〈χw(y1)χ
w(y2)〉 〈χw(y1)χ

w(y2)〉
×

〈
Φh1,w

H1,H1
(x1, x1)ψ

w+1(x1)ψ
w+1

(x1)Φ
h2,w

H2,H2
(x2, x2)ψ

w+1(x2)ψ
w+1

(x2)

× {(1− h3)̂(x3) + j(x3)} {(1− h3)̂(x3) + j(x3)}Φh3(x3, x3)〉 ,

and inserting (5.5) into (5.3) and using ψa(x)D
a
x = 1

2
(ψ(x)∂x + h∂xψ(x)) we get

A′
3 = g−2

s

〈
e−ϕ(z1,z̄1)e−ϕ(z2,z̄2)

〉 〈
V h1−1,w

J1,J1
(y1, y1)V

h2−1,w

J2,J2
(y2, y2)Vh3−1(y3, y3)

〉

×
{[〈

ψw(x1)ψ
w+1(x2)ψ(x3)

〉
∂x3

〈
Φw

H1,H1
(x1, x1)Φ

w
H2,H2

(x2, x2)Φh3(x3, x3)
〉
+

h3
〈
ψw(x1)ψ

w+1(x2)∂x3ψ(x3)
〉 〈

Φw
H1,H1

(x1, x1)Φ
w
H2,H2

(x2, x2)Φh3(x3, x3)
〉]

×
〈
χw+1(y1)χ

w(y2)χ(y3)
〉
× c.c.

}
, (5.6)

where w = w1 = w2.

The SU(2) and fermionic expectation values involved in the above expression

were discussed in [66] and we will recall them below. We now compute the SL(2,R)

correlators, applying the technique developed in [71].

As we argued in chapter 3, the (x, x̄) can be interpreted as the boundary

coordinates, hence we would like to compute the correlation functions in that

basis in order to compare the results in this chapter with those expected from

the dual field theory. Since we do not know a prescription to perform generic

spectral flow transformations in the x−basis1 we first turn the expressions into

the m−basis, perform the spectral flow, and then transform them back into the

x−basis.

Recalling that the fields Φh,w

H,H
(x, x) behave as primary fields in (x, x̄)−coordinates,

a generic three-point function in the x−basis can be written as, (we omit the z

dependence for short)
〈
Φh1,w1

H1,H1
(x1, x1)Φ

h2,w2

H2,H2
(x2, x2)Φ

h3,w3

H3,H3
(x3, x3)

〉

= D(Hi, H i)
(
x−H12
12 x−H23

23 x−H13
13 × c.c.

)
, (5.7)

(c.c. stands for the antiholomorphic dependence). The goal is thus to determine

the unknown function D(Hi, H i).

From the inverse transform (3.9),

Φh,w

H,M,H,M
=

∫
d2x xH−M−1xH−M−1Φh,w

H,H
(x, x) , (5.8)

1[71] gave a prescription to perform one unit of spectral flow in the x−basis.
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(5.7) can be transformed to the m−basis as
〈

3∏

i=1

Φ
hi,w

′

i

Hi,Mi,Hi,M i

〉
= (2π)2D(Hi, H i)W (Hi,Mi, H i,M i)δ

2(M1 +M2 +M3),

(5.9)

where

W (Hi,Mi, H i,M i) =

∫
d2x1d

2x2x
H1−M1−1
1 xH2−M2−1

2 xH1−M1−1
1 xH2−M2−1

2

× |x12|−2H12 |1− x1|−2H13 |1− x2|−2H23 . (5.10)

In principle, in order to obtain a general expression, we should integrate (5.10)

for arbitrary Hi, Mi, i = 1, 2, 3. However, recall that the spectral flow with

w > 0 (w < 0) turns primary states of the current algebra into lowest- (highest-)

weight states of a global representation with H = M = m + k+2
2
w, H = M =

m + k+2
2
w (H = −M = −m + k+2

2
|w|, H = −M = −m + k+2

2
|w|) 2. We are

particularly interested in the case, H1 = M1, H1 = M1 and H2 = −M2, H2 =

−M2, where the function (5.10) develops two single poles. The corresponding

divergences are related to the regions x1, x1 → 0 and x2, x2 → ∞ in the integrand

of W (Hi, H i,Mi,M i). Near these two regions we simply get,
〈

3∏

i=1

Φ
hi,w

′

i

Hi,Mi,Hi,M i

〉
= (2π)2V 2

confδ
2(M1 +M2 +M3)D(Hi, H i), (5.11)

where Vconf =
∫
dx2/|x|2.

On the other hand, it is known that spectral flow preserving n−point functions

in them−basis are related to correlators involving only unflowed operators as [73]
〈

n∏

i=1

Φhi,wi

Hi,Mi,Hi,M i
(zi, zi)

〉

∑
i wi=0

=

∏

j<i

(zij)
−wjmi−wimj− k+2

2
wiwj × c.c.

〈
n∏

i=1

Φwi=0
hi,mi,mi

(zi, zi)

〉
, (5.12)

and three-point functions of w = 0 primary states have the following form in

m−basis [74, 75]:
〈

3∏

i=1

Φwi=0
hi,mi,mi

(zi, zi)

〉
=

(2π)2δ2(
∑

i

mi)W (hi,mi,mi)C(hi)|z12|−2∆12 |z13|−2∆13 |z23|−2∆23 ,

(5.13)

2The spectral flow labels w and w′ for highest/lowest weight states of global representations

in the x− and m−basis, respectively, may be related as w′ = M
H w.
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with

C(h1, h2, h3) = − G(1− h1 − h2 − h3)G(−h12)G(−h13)G(−h23)
2π2νh1+h2+h3−1γ

(
k+1
k

)
G(−1)G(1− 2h1)G(1− 2h2)G(1− 2h3)

, (5.14)

where G(h) = k
j(k+1−h)

2k Γ2(−h|1, k)Γ2(k + 1 + h|1, k), Γ2 being the Barnes double

gamma function and ∆12 = ∆1 +∆2 −∆3, h12 = h1 + h2 − h3, etc.

Comparing with (5.11), one finds that the three-point functions involving

spectral flow images of primary operators in arbitrary w−sectors in the x−basis

corresponding to w−preserving amplitudes in the m−basis are given by 3

〈
Φh1,w1

H1,H1
(x1, x1)Φ

h2,w2

H2,H2
(x2, x2)Φ

h3,w3

H3,H3
(x3, x3)

〉

=
1

V 2
conf

W (hi,mi,mi)C(hi)x
−H12
12 x−H13

13 x−H23
23 x−H12

12 x−H13
13 x−H23

23 . (5.15)

Recall that this result holds for operators satisfying m1 +m2 +m3 = 0.

As discussed above, for highest/lowest weight states the functionW (hi,mi,mi)

develops poles which cancel the factor V −2
conf . Taking, for instance, a chiral field

at x1, x1 and an antichiral one at x2, x2, i.e. m1 = m1 = h1,m2 = m2 = −h2, the
residue of the double pole is just one, and we obtain 4

A1
3 ≡ 〈Φh1,w1

H1,H1
(x1, x1)Φ

h2,w2

H2,H2
(x2, x2)Φ

h3,w3

H3,H3
(x3, x3)〉

= C(hi)x
−H12
12 x−H13

13 x−H23
23 x−H12

12 x−H13
13 x−H23

23 .

The following expectation value is also needed to evaluate A3:

A2
3 ≡ 〈Φh1,w1

H1,H1
(x1, x1)Φ

h2,w2

H2,H2
(x2, x2)j(x3)Φh3(x3, x3)〉 .

The OPE j(x)Φh,w

H,H
(x′, x′) is only known so far for w = 1 fields [71], namely

j(x′, z′)Φh,w=1

H,H
(x, x; z, z) = (m− h+ 1)

(x− x′)2

(z − z′)2
Φh,w=1

H+1,H
(x, x; z, z)

+
1

z′ − z

[
2H(x− x′) + (x− x′)2∂x

]
Φh,w=1

H,H
(x, x; z, z) .

(5.16)

3This correlation function was directly computed in the x−basis in [72] in the particular case

w1 = w2 = 1, w3 = 0 using the definition of w = 1 vertex operators given in [71]. Here we have

used a different technique which is useful to evaluate correlators involving fields in arbitrary w

sectors and, specially, expectation values including currents.
4Normalizing the two-point functions of these operators to the identity, this result agrees with

the prediction formulated in [66] when the correlator involves one unflowed state. Three flowed

chiral primary operators obeying m1+m2+m3 = 0 cannot meet the condition h3 = h1+h2−1

under which the prediction of [66] holds.
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Therefore, we restrict to this case. Inserting (5.16) into A2
3, one gets

A2
3 = (1− h1 +m1)

(x1 − x3)
2

(z1 − z3)2
< Φh1,w=1

H1+1,H1
(x1, x̄1)Φ

h2,w=1

H2,H2
(x2, x̄2)Φh3(x3, x̄3) >

+ (1− h2 −m2)
(x2 − x3)

2

(z2 − z3)2
< Φh1,w=1

H1,H1
(x1, x̄1)Φ

w=1,h2

H2+1,H2
(x2, x̄2)Φh3(x3, x̄3) >

+
1

z3 − z1

[
2H1(x1 − x3) + (x1 − x3)

2∂x1

]
A1

3

+
1

z3 − z2

[
2H2(x2 − x3) + (x2 − x3)

2∂x2

]
A1

3 .

The first two terms are easily evaluated using the procedure discussed above

and we get

〈
Φh1,w=1

H1+1,H1
(x1, x̄1)Φ

h2,w=1

H2,H2
(x2, x̄2)Φh3(x3, x̄3)

〉
= W (hi,m1 = h1 + 1,m2 = −h2,m3)

× V −2
conf C(hi) x

−H12−1
12 x−H13−1

13 x−H23+1
23 x−H12

12 x−H13
13 x−H23

23 , (5.17)

where

W (hi,m1 = h1 + 1,m2 = −h2,m3) = V 2
conf

h13
m1 − h1 + 1

, (5.18)

and similarly,

〈
Φh1,w=1

H1,H1
(x1, x1)Φ

h2,w=1

H2+1,H2
(x2, x2)Φh3(x3, x3)

〉
= C(hi)

h23
1− h2 −m2

× x−H12−1
12 x−H13+1

13 x−H23−1
23 x−H12

12 x−H13
13 x−H23

23 . (5.19)

Putting all together, we obtain

A2
3 = (3h3 −H1 −H2)C(hi) x

−H12−1
12 x−H13+1

13 x−H23+1
23 x−H12

12 x−H13
13 x−H23

23

× z−∆12+1
12 z−∆13−1

13 z−∆23−1
23 z−∆12

12 z−∆13
13 z−∆23

23 , (5.20)

and analogously for the term containing the antiholomorphic current j(x) in A3.

To write down the final result, let us recall the fermionic and SU(2) correlators

(see [66] for details).

< ψw+1(x1)ψ
w+1(x2) >=

k

2

x
2(w+1)
12

z
(w+1)2

12

, (5.21)

< ψw+1(x1)ψ
w+1(x2)̂(x3) >

=
2∑

i=1

1

z3i

[
2(w + 1)x3i + (x3i)

2∂xi

]
< ψw+1(x1)ψ

w+1(x2) >

= k(w + 1)
x13x23
x12

z12
z13z23

x
2(w+1)
12

z
(w+1)2

12

, (5.22)
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< ψw(x1)ψ
w+1(x2)ψ(x3) >= k

x2w12 x
2
23z

w
13

zw
2+w

12 zw+1
23

. (5.23)

Similar expressions are obtained for χw.

In the SU(2) WZNW model, normalizing the two−point functions as

〈Vj1(y1, y1; z1, z1)Vj2(y2, y2; z2, z2) = δj1j2
|y12|2j1
|z12|4∆j1

, (5.24)

the three−point functions are given by [76]

〈Vj1(y1, ȳ1; z1, z̄1)Vj2(y2, ȳ2; z2, z̄2)Vj3(y3, ȳ3; z3, z̄3)〉 = C ′(j1, j2, j3)
∏

i<j

|yij|2jij
|zij|2∆ij

,

(5.25)

for jn ≤ jm + jl, where

C ′(j1, j2, j3) =

√
γ( 1

k
)

γ(2j1+1
k

)γ(2j2+1
k

)γ(2j3+1
k

)

P (j1 + j2 + j3 + 1)P (j12)P (j23)P (j31)

P (2j1)P (2j2)P (2j3)

with P (j) =
∏j

m=1 γ(
m
k
), P (0) = 1.

As argued in [66], the structure constants for spectral flowed chiral fields in

SU(2) are also given by C ′(ji) for jn = jm + jl. Therefore, collecting all the

contributions and suppressing the x− and z−dependence for short, we get

A3 = g−2
s

k2

4
|H1 +H2 +H3 + 1|2C ′(ji)C(hi) , (5.26)

A′
3 = g−2

s

k2

4
|H1 −H2 +H3 − 1|2C ′(ji)C(hi) . (5.27)

As shown in [14, 15],

C(h1, h2, h3)C
′(j1, j2, j3) =

c
1/2
ν

2π

3∏

i=1

√
B(hi) , (5.28)

where

B(hi) =
k

4π3

ν1−2hi

γ
(
2hi−1

k

) , ν = π
Γ
(
1− 1

k

)

Γ
(
1 + 1

k

) , (5.29)

with γ(x) = Γ(x)
Γ(1−x)

, and cν a free parameter.

In order to compare these results with the conjectured dual counterparts, the

two-point functions must be normalized to the identity.

In the NS sector the two-point function is (h = j + 1) [14, 15]

〈O(0),w

H,H̄ (x1, x̄1, y2, ȳ2)O(0),w

H,H̄ (x2, x̄2, y2, ȳ2)〉 =
k2

g2s

B(h)δ(0) |y12|4J
|z12|4|x12|4(H)

, (5.30)
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where we defined φi = φ(zi) and used (5.22), (5.24) and

〈e−φ(z1)e−φ(z2)〉 = 1

z12
,

〈Φh,w

H,H
(x1, x1)Φ

h,w

H,H
(x2, x2)〉 = g−2

s δ(0)x−2H
12 x−2H

12 , (5.31)

The two-point function scales as |x12|−4h(0)
with h(0) as in (4.8), which agrees with

the scaling of the dual boundary operator.

In the Ramond sector we get the two-point function (h = j + 1)

〈Õa,w

H,H̄(x1, x̄1, y2, ȳ2)O
b,w

H,H̄(x2, x̄2, y2, ȳ2) =
1

g2s

k

(2h− 1 + kw)2
B(h)δ(0) |y12|4J
|z12|4|x12|4H

δab ,

(5.32)

where we used

〈sa+(x1, y1)sb−(x2, y2)〉 = δab
ix12y12
(z12)5/4

, 〈e−3φ(z1)/2e−φ(z2)/2〉 = 1

(z12)3/4
. (5.33)

Note that one primary is in the −1/2 picture while the other one is in the −3/2

picture such that the total ghost number is −2, as required on the sphere. The

two-point function scales as |x12|−4h(a)
with h(a) as in (4.8).

In order to obtain the corresponding boundary correlators we need to inte-

grate the above two-point functions over the worldsheet coordinates z1 and z2.

Equivalently, we may fix z1 = 1 and z2 = 0 and divide the correlator by the vol-

ume of the conformal group Vconf which keeps the two points fixed. As shown in

appendix A in [71], this removes the divergence coming from δ(0) and introduces

the factor5

− 2h− 1

2πνk2γ(k+1
k
)cν

=
2h− 1

2πk
for ν =

π

cν

Γ(1− 1
k
)

Γ(1 + 1
k
)
. (5.34)

We observe that other than the operators in the boundary conformal field the-

ory, the chiral primaries are not normalized to unity. We therefore rescale the

operators as

O
(0),w

H,H (x, x̄) =

√
2π√

k B(h)(2h− 1)
gs O(0),w

H,H (x, x̄) ,

O
a,w

H,H(x, x̄) =

√
2π(2h− 1)

B(h)
gsOa,w

H,H(x, x̄) . (5.35)

The operator O(2),w

H,H (x, x̄) is rescaled as O(0),w

H,H (x, x̄).

5ν = ν(k) is a free parameter. As in [15], we leave cν (and thus ν) undetermined for the

moment. cν will later be fixed, when we compare the bulk and boundary correlators. Note that

cν = 1 in [71].
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Omitting the standard dependence on the coordinates, we thus get

〈O(0),w

H1,H1
O

(0),w

H2,H2
O

(0)
h3
〉 = 4gs(2πk cν)

1/2 |H1+H2+H3+1|2√
(2h1−1+kw)(2h2−1+kw)(2h3−1)

(5.36)

〈O(2),w

H1,H1
O

(0),w

H2,H2
O

(2)
h3
〉 = 4gs(2πk cν)

1/2 |H1−H2+H3−1|2√
(2h1−1+kw)(2h2−1+kw)(2h3−1)

. (5.37)

While (5.36) was obtained for w = 1, (5.37) holds for arbitrary w.

These three-point functions involve one unflowed operator. We restricted to

this case for simplicity. However, notice that when the three operators are spectral

flow images of chiral primaries of SL(2,R) or the unflowed operator creates a

highest/lowest weight primary state, the condition hi = ±mi together with the

requirement m1 + m2 + m3 = 0 imply, for example, h2 = h1 + h3. Combined

with the chirality condition ji = hi − 1, this gives j2 = j1 + j3 + 1 which violates

the triangular inequality j2 ≤ j1 + j3 of the SU(2) WZNW model. Therefore the

SU(2) factor gives a zero for the whole three-point function. This conclusion does

not apply when the unflowed operator obeys h3 6= ±m3. Therefore, the results

(5.36) and (5.37) hold for amplitudes containing two flowed and one unflowed

chiral primary operators as long as the latter does not create a highest/lowest

weight state in the SL(2,R) sector.

Let us now compare these results with the correlators in the dual theory. Re-

call from chapter 1 that gs ∼ R2

α′2
√
N

when the volume of the T 4 can be neglected.

Besides, we are considering now the regime where stringy corrections are impor-

tant, i.e R ∼
√
α′. Therefore, if we choose cν = 1/2πk, we can see the correlation

functions (5.36) and (5.37) scale as N−1/2 and the contribution to these from the

sphere is reliable if N is large. Recall that the chiral string states O(0),w

HH , O(2),w

HH
have been identified with the chiral operators O(0)

n , O(2)
n of the SCFT, respectively

[14, 15, 66]. Moreover, the proposed identification between the quantum numbers

of O
(0),w

HH,h
and those of O(0)

n (x, x̄) is the following [14, 15, 66]

Hn =
n− 1

2
= h− 1 +

k

2
w ⇒ n = 2h− 1 + kw , (5.38)

and for Yh,w

HH and O(2)
n (x, x̄) it is

Hn =
n+ 1

2
= h+

k

2
w ⇒ n = 2h− 1 + kw . (5.39)

Replacing these values of n in the boundary three-point functions (4.11), one gets
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at leading order

〈O(0)
n1
O(0)

n2
O(0)†

n3
〉 =

1√
N

|H1 +H2 +H3 + 1|2√
(2h1 − 1 + kw1)(2h2 − 1 + kw2)(2h3 − 1)

,(5.40)

〈O(2)
n1
O(0)

n2
O(2)†

n3
〉 =

1√
N

|H1 −H2 +H3 − 1|2√
(2h1 − 1 + kw1)(2h2 − 1 + kw2)(2h3 − 1)

,(5.41)

in perfect agreement with (5.36) and (5.37), respectively. Furthermore, using

the bulk-to-boundary dictionary, one can verify that the boundary correlators

corresponding to three spectral flow images of chiral primary operators is zero

because in both cases (5.40) and (5.41) the relation h2 = h1 + h3 implies n2 =

n1 + n3, which violates the U(1) charge by one unit.

Two other correlators can be considered in the string theory corresponding to

the vanishing correlators ((2), (0), (2)) and ((0), (0), (2)) in the boundary CFT,

namely 〈∏3
i=1 O

(2),wi

Hi,Hi
〉 and 〈∏2

i=1 O
(0),wi

Hi,Hi
O(2),w3

H3,H3
〉. It is easy to see that they violate

the SU(2) charge conservation in the case j2 = j1 + j3 that we are considering,

and therefore they also vanish.

R-R-NS three-point functions

The chiral states Oa,w

H,H were identified with the operators Oa
n in [17, 66]. To

compare the corresponding three-point functions in the dual theories, the two

R-R-NS correlators needed are

A3 = g−2
s

〈
Oa,w3

H3,H3
(x3, x3)Oa,w2

H2,H2
(x2, x2)O(o),w1

H1,H1
(x1, x1)

〉
S2
, (5.42)

A′
3 = g−2

s

〈
O(2),w3

H3,H3
(x3, x3)Oa,w2

H2,H2
(x2, x2)Oa,w1

H1,H1
(x1, x1)

〉
S2
. (5.43)

The R vertices (3.49) were obtained in the −1
2
picture, so it is not necessary to

insert a picture changing operator and we can compute this amplitude for states

in arbitrary w sectors, as long as wn = wm + wl.

The SU(2) part of the three-point functions is given by C ′(ji) for jn = jm+ jl

and the fermionic contributions are the following [66] 6

〈Sw3+
1
2 (x3, y3)S

w2+
1
2 (x2, y2)ψ

w1+1(x1)χ
w1(y1)〉 =

(w1 + w2)!

w1!w2!
,

〈ψw3(x3)χ
w3+1(y3)S

w2+
1
2 (x2, y2)S

w1+
1
2 (x1, y1)〉 =

(w1 + w2)!

w1!w2!
. (5.44)

As shown in the previous section, the SL(2,R) contribution is simply C(hi)

for two or three flowed chiral primary states satisfying m1 +m2 +m3 = 0. If the

6We get the inverse of the result reported in [66].
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three operators are flowed, the SU(2) spins violate the triangular inequality and

the correlator vanishes, analogously to the NS-NS-NS case. When one operator

is unflowed, the factor (w1+w2)!
w1!w2!

reduces to unity and we have

A3 = A′
3 = g−2

s

√
B(h1)B(h2)B(h3) . (5.45)

Normalizing the R operators as (5.35) we get

〈
O

a,w3

H3,H3
O

a,w2

H2,H2
O

(0),w1

H1,H1

〉
=

〈
O

a,w3

H3,H3
O

a,w2

H2,H2
O

(2),w1

H1,H1

〉

= 2gs

[
(2h3 + kw3 − 1)(2h2 + kw2 − 1)

(2h1 + kw1 − 1)

]1/2
, (5.46)

for w1 = 0 or w2 = 0, again in agreement with the boundary correlators (4.12)

and (4.13). These correlators as well as (5.36), (5.37) were also predicted in [66]

by using the AdS/CFT correspondence.

Summarizing, in this chapter we have compute three-point functions of chiral

primary operators in spectral flowed representations and have found that they

agree with the corresponding correlation functions in the conformal field theory

on the symmetric product.

On one hand, this result confirms the non-renormalization theorem for three-

point functions of chiral operators in the field theory side [21]. On the other hand,

we can notice from (5.36), (5.37) and (5.46) that three-point functions involving

spectral flowed operators in the full superstring theory are just copies of the ones

involving only unflowed states. This is a very non-trivial fact since in the full

supersymmetric theory we have to use picture-changing currents which introduce

additional dependence on the winding number w, as well as correlation functions

of fermions in higher spin representations, such as (5.21), which also contain a

non-trivial dependence on the winding number w. Thus it is quite surprising that

at the end all the dependence on w factorizes in a way which reproduces a copy

of the unflowed result.
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Chapter 6

Four-point functions in AdS3×
S3× T4

In this chapter we shall compute four-point functions of chiral vertex operators

in string theory on AdS3 × S3 × T 4, based upon [24].

6.1 Four-point function of chiral states

In this section we compute a four-point correlator which involves only unflowed

chiral primary operators of the NS sector 1. In particular we are interested in

computing the correlator

GNS
4 (x, x̄) = g−2

s

∫
d2z
〈
Õ(0)

j4,m4
(∞)O(0)

j3,m3
(1)Õ(0)

j2,m2
(x, x̄; z, z̄)O(0)

j1,m1
(0)
〉
, (6.1)

where we choose m-labels as (d ∈ Z)

m1 = m̄1 = j1 ,

m2 = m̄2 = j2 − d ,

m3 = m̄3 = j3 ,

m4 = m̄4 = −j4 = −(j1 + j2 + j3 − d) . (6.2)

By conformal invariance the worldsheet coordinates are fixed as z1,2,3,4 = 0, z, 1,∞,

where z is the cross-ratio z = z12z34/(z13z24) on the worldsheet. Similarly, in the

x−basis we choose x1,2,3,4 = 0, x, 1,∞. Thus, the complex x corresponds to the

1Recall the general vertex O(0),w
H,M is denoted by O(0)

h,m in the unflowed w = 0 sector. We also

use h or j indistinguishably, keeping in mind that they are simply related by h = j + 1.
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spacetime (boundary) cross-ratio. The correlator GNS
4 (x, x̄) involves two ghost

number zero and two ghost number −1 operators, Õ(0)
j and O(0)

j , respectively.

The correlator (6.1) is extremal, if the spacetime scalings of the operators

in GNS
4 (x, x̄) satisfy (4.19), H4 = H1 + H2 + H3. Using (4.8) and hi = ji + 1

(i = 1, ..., 4), for (6.1) this translates into the condition

j4 = j1 + j2 + j3 (6.3)

or d = 0. We will first consider the non-extremal case d > 0 and come back to

the extremal case d = 0 in section 6.1.4.

Substituting the explicit expressions for these operators, as given by (5.4),

(5.5) and (3.44) with w = 0, we get2

GNS
4 (x, x̄) = g−2

s

∫
d2z

[
(1− h2)(1− h4) 〈ψ(0)̂(x)ψ(1)̂(∞)〉

〈
4∏

i=1

Φhi

〉

+(1− h2) 〈ψ(0)̂(x)ψ(1)〉
〈
j(∞)

4∏

i=1

Φhi

〉

+(1− h4) 〈ψ(0)ψ(1)̂(∞)〉
〈
j(x)

4∏

i=1

Φhi

〉

+ 〈ψ(0)ψ(1)〉
〈
j(x)j(∞)

4∏

i=1

Φhi

〉]〈
4∏

i=1

Φ′
ji,mi

〉
〈
e−φ(0)e−φ(1)

〉
× c.c .

(6.4)

The actual computation of GNS
4 (x, x̄) will be done along the lines of [71].

6.1.1 Some correlators inside GNS
4 (x, x̄)

Following [71], we write the SL(2) four-point function (see appendix (B))
〈

4∏

i=1

Φhi

〉
= |x24|−4h2 |x14|2(h2+h3−h1−h4)|x34|2(h1+h2−h3−h4)|x13|2(h4−h1−h2−h3)

× |z24|−4∆2 |z14|2ν1 |z34|2ν2 |z13|2ν3 FSL(2)(x, x̄; z, z̄) , (6.5)

in terms of the factorization Ansatz [78]

FSL(2)(x, x̄; z, z̄) =

∫

1
2
+iR

dh C(h)|Fh(x; z)|2 , (6.6)

2There is also a non-vanishing term involving the correlator 〈(χaP
a
y4
)(χbP

b
y2
)
∏4

i=1 Φhi
Φ′

ji
〉.

This term turns out to be subleading in x and may be neglected in the small x region, see the

discussion below.

66



where the normalization C(h) is given by C(h) = C(h1,h2,h)C(h,h3,h4)
B(h)

. The functions

B(h) and C(h1, h2, h3) are the scaling of the SL(2) two-point function and the

SL(2) structure constants, respectively. They are given by (5.29) and (5.14) in

chapter 5. As in [71], we change variables from z to u by defining u = z/x and

consider the case |x| < 1. We may then perform an expansion of Fh(x; u) in

powers of x as

Fh(x; u) = x∆(h)−∆(h1)−∆(h2)+h−h1−h2u∆(h)−∆(h1)−∆(h2)

∞∑

m=0

gm(u)x
m . (6.7)

Substituting this expansion into the KZ equation for SL(2) [78], one finds that

the first term obeys the hypergeometric equation in u, i.e.

g0(u) = F (a, b, c|u) , (6.8)

with a = h1 + h2 − h , b = h3 + h4 − h , c = k − 2h. We will sometimes use the

shorthand notation Fh(u) ≡ F (a, b, c|u). In what follows we will focus on the

leading term in the x expansion,

Fh(x; u) = x∆(h)−∆(h1)−∆(h2)+h−h1−h2u∆(h)−∆(h1)−∆(h2)Fh(u) + ... , (6.9)

where the ellipsis represents higher order terms in x. Such terms correspond to

descendants under the global SL(2) algebra [71], which do not play a role in the

small x region. It is convenient to write Fh(u) as a power series in u,

Fh(u) =
∞∑

n=0

H(a, b, c, n)un , (6.10)

with coefficients

H(a, b, c, n) =
Γ(a+ n)Γ(b+ n)Γ(c)

Γ(a)Γ(b)Γ(c+ n)Γ(n+ 1)
. (6.11)

A similar factorization ansatz can be found for the SU(2) four-point function.

As shown in appendix D, at small z the SU(2) four-point function with m-values

as in (6.2) can be expanded as3

〈
4∏

i=1

Φ′
ji,mi

〉
=

j1+j2∑

j=|j1−j2|
C ′(j) |Gj(z)|2 , (6.12)

3We assume that the level k is large enough. For small k, the upper bound of summation is

changed [76].
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with

|Gj(z)|2 =
∞∑

n′=0

Gj,n′ |z|2(∆(j)−∆(j1)−∆(j2)+n′) ,

Gj,n′ = δ2j1+j2+j3−j4,d
cj2+m2

2j2
D(j1, j2, J)D(J, j3, j4)

× Γ(0)2

Γ(j + n′ − j1 − j2 + 1 + d)2Γ(j4 − j − n′ − j3)2
. (6.13)

cj+m
2j are the inverse of the binomial coefficients,

cj+m
2j =

Γ(j +m+ 1)Γ(j −m+ 1)

Γ(2j + 1)
. (6.14)

The δ-function reflects the charge conservation m1 + m2 + m3 + m4 = 0. The

normalization C ′(j) is given by C ′(j) = C ′
j,j1,j2

C ′
j,j3,j4

(no summation over j). The

SU(2) structure constants C ′
j1,j2,j3

and the functions D(j1, j2, J) are given by

(B-20) and (D-8) in the appendix, respectively.

We will also need some other four-point correlators for GNS
4 (x, x̄). For the

following, it is useful to define the n-point correlators

d
(n)
k =

〈
j(xk)

n∏

i=1

Φhi
(xi)

〉
, d

(n)
km =

〈
j(xk)j(xm)

n∏

i=1

Φhi
(xi)

〉
, (6.15)

with k,m = 1, ..., n, in which one or two bosonic currents j(x) act on the product

of n SL(2) functions Φh(x). As shown in appendix C, such correlators can entirely

be expressed in terms of derivatives of the SL(2) n-point function. In particular,

the functions d
(4)
2 , d

(4)
4 and d

(4)
24 appearing in (6.4) can be computed by means of

(C-6) and (C-7). Using only the first term in the small x expansion (6.9) of the

SL(2) four-point function (6.5) (and x = x12x34/(x13x24)), we find

d
(4)
k = 〈j(xk)

4∏

i=1

Φhi
(xi)〉 =

∫
dh C(h)

∣∣∣∣∣

∞∑

n=0

d̂
(4)
k,n Sn

∣∣∣∣∣

2

, (6.16)

with

Sn = (x24)
−2h2(x14)

h2+h3−h1−h4(x34)
h1+h2−h3−h4(x13)

h4−h1−h2−h3

× (z24)
−2∆2(z14)

ν1(z34)
ν2(z13)

ν3

× xh−h1−h2−nz∆(h)−∆(h1)−∆(h2)+nH(a, b, c, n) (6.17)
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and H(a, b, c, n) as in (6.11). For k = 4, 2, 1, the coefficients are given by4

d̂
(4)
4,n = − z13

z34z14

x34x14
x13

(h+ h3 − h4 − n)

+
z12
z24z14

x24x14
x12

(h− h1 − h2 − n) , (6.18)

d̂
(4)
2,n =

z34
z24z23

x24x23
x34

(h− h3 − h4 − n)

+
z14
z24z12

x24x12
x14

(h1 − h2 − h3 + h4 − n)

− z13
z23z12

x23x12
x13

(h+ h3 − h4 − n) , (6.19)

d̂
(4)
1,n =

z34
z14z13

x14x13
x34

(h− h3 − h4 − n)

− z24
z14z12

x14x12
x24

(h− h1 + h2 − n) . (6.20)

Finally, the correlator d
(4)
24 is given by

d
(4)
24 =

∫
dh C(h)

∣∣∣∣∣

∞∑

n=0

d̂
(4)
24,n Sn

∣∣∣∣∣

2

, (6.21)

d̂
(4)
24,n = −(h+ h3 − h4 − n)(−h− h1 + h2 + n)x

z
+ ... , (6.22)

which, for brevity, is expanded around z = 0 (the ellipses denote further terms

subleading in z). Also the x- and z-dependence is already fixed as above. Note

that the above expressions for the d(4) correlators are only valid for small x.

We will also need the fermionic correlators

〈ψ(x1)ψ(x2)〉 = k
(x12)

2

z12
,

〈ψ(x1)ψ(x2)̂(x3)〉 = 2k
x12x23x31
z31z23

,

〈ψ(x1)̂(x2)ψ(x3)̂(x4)〉 = 2k

[
z13x23x14
z34z23z14x213

(x13x24 + x12x34)

− z13x34x12
z34z14z12x213

(x14x32 + x13x42)

]
, (6.23)

which have been computed using (C-8) in appendix C.

Substituting now the correlators (6.18), (6.19), (6.21) and (6.23) as well as

the expansions (6.5) (with (6.9)) and (6.12) for the SL(2) and SU(2) four-point

4Here we also list the coefficient d̂
(4)
1,n for later use.
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functions into (6.4), for small x we find

GNS
4 (x, x̄) = g−2

s k2
∫
d2u

∑

j,n′

C ′(j)

∫
dh C(h) |x|2(∆(h)+∆(j)+h−h1−h2+1+n′)

× |u|2(∆(h)+∆(j)+n′) ×
∣∣∣∣∣

∞∑

n=0

[
(1− h2)(1− h4)2

(2x− 1)z + x(x− 2)

z(z − 1)
+

d̂
(4)
4,n + (1− h2)2

(x− 1)x

(z − 1)z
+ (1− h4)2 d̂

(4)
2,n + d̂

(4)
24,n

]
H(a, b, c, n)un

∣∣∣∣
2

Gj,n′ ,

(6.24)

where it is understood that z needs to be replaced by z = ux. Note also ∆(hi) +

∆(ji) = 0 for the external fields.

6.1.2 Moduli integration and integral over h

We now perform the integrals over the worldsheet cross-ratio u and the SL(2)

representation label h. We wish to do the u-integral before the integral over h

but need to be careful about the occurrence of divergences. Following [71, 79],

we therefore regularize the u-integral by introducing a cut-off parameter ε and

divide the range of u into two regions:

region I: |u| < ε

region II: |u| > ε .

In region I there are only operators in the intermediate channel whose SL(2) part

is associated with short strings with winding number w = 0 [71]. In region II

there can be long strings with w = 1 and two-particle states [71]. The represen-

tation theory of SL(2) does not allow any other spectrally-flowed states in the

intermediate channel.

An important observation is that “single-cycle” operators in the spacetime

CFT arise locally on the worldsheet, i.e. in the small u region, while “multi-

cycle” operators correspond to non-local contributions coming from the large u

region [71, 79].5 Since at large N multi-particle contributions are suppressed in

non-extremal correlators [23], we may restrict to the one-particle contributions to

the four-point correlator. We therefore consider only region I and ignore possible

two-particle contributions coming from region II.

5The “single-cycle” operators (or “single-trace” operators in higher-dimensional CFTs) cor-

respond to one-particle states in the worldsheet theory. Similarly, “multi-cycle” operators

correspond to multi-particle states.
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Formally, the one-particle contributions are taken into account by first inte-

grating over the small u region, |u| < ε, and then taking the limit ε→ 0. This is

the limit where the operators approach each other in their worldsheet coordinates.

For |u| < ε, we may then expand GNS
4 (x, x̄) in powers of u as

GNS
4 (x, x̄) (6.25)

= g−2
s k2

∫
d2u

∫
dh
∑

j,n′

C(h)C ′(j)Gj,n′ |x|2(∆(h)+∆(j)+h−h1−h2+1+n′)|u|2(∆(h)+∆(j)+n′)

×
∣∣∣∣∣

∞∑

n=0

[
−(h+ h1 + h2 − 2− n)(h+ h3 + h4 − 2− n)

u
+O(u0)

]
H(a, b, c, n)un

∣∣∣∣∣

2

,

where we display only the most singular term in the square brackets. Subleading

terms are summarized in O(u0).

The relevant u-integral inside GNS
4 (x, x̄) is

∞∑

n,n̄=0

∫

|u|<ε

d2u |u|2(λ−1)unūn̄ =
∞∑

n,n̄=0

π

λ+ n
ε2(λ+n)δn,n̄ (6.26)

with λ = ∆(h) + ∆(j) + n′.

We now turn to the integration over h. The h-integral is defined along the

line h = k−1
2

+ is (s ∈ R), away from the locus of the continuous representation

of SL(2), h = 1
2
+ is. The reason for the deformation is that only there the

integrand is equivalent to a monodromy invariant solution, cf. (4.34) in [71]. It is

possible to shift the integration contour back to h = 1
2
+ is. However, in general,

the integral picks up pole residues when the poles cross the integration contour.

At small u there are altogether four types of poles of the h-integral which may

contribute to the integral. These are [71]:

type I: λ+ n = 0 ,

type II: h = h1 + h2 + n ,

type III: h = k − h1 − h2 + n ,

type IV: h = |h1 − h2| − n , n ∈ {0, 1, 2, ...} .

The poles of type II-IV are poles in the structure constants C(h, h1, h2). As

discussed extensively in [79], none of these poles contributes to the integral. Even

though naively one might interpret the contributions from the poles of type II as

“double-cycle” operators in the spacetime CFT, such contributions go to zero in

the ε→ 0 limit [79]. Type III poles do not appear if h1 + h2 <
k+1
2

[71].

71



The contribution coming from poles of type IV was found to be canceled by

the same contribution from crossing the integration contour [79].

We are left with poles of type I. These poles correspond to short string rep-

resentations (with zero winding number) in the SL(2) WZW model [71]. The

condition

λ+ n = ∆(h) + ∆(j) + n+ n′ = 0 (n, n′ ≥ 0) (6.27)

is solved by (h > 0)

h =
1

2
+

1

2

√
1 + 4k(n+ n′) + 4j(j + 1) . (6.28)

A particular solution is n + n′ = 0 and h = j + 1. Since n and n′ are both

positive, n = n′ = 0 and we recover the on-shell condition for chiral primaries

in the intermediate channel. As such they map to single-cycle chiral primary

operators in the spacetime CFT.

For n + n′ 6= 0, we generically do not get a rational conformal weight h.

Substituting the condition (6.27) into (6.25), we find that the correlator depends

on x as xh−n−h1−h2 . This should be compared with the x dependence of the

corresponding boundary four-point function, which is xH−H1−H2 (see e.g. (4.2)

in [71]), where H denotes the corresponding spacetime conformal weights. Since

H = h−n with h as in (6.28), one therefore identifies this contribution as coming

from SL(2) short string descendants (of the type (J−
−1)

n(J−
−1)

n̄|h,m = m̄ = h〉) in
the intermediate channel [71]. These states have a continuous spectrum for h > 0,

if one chooses the universal cover of SL(2) as the target space. Since H = h−n is

generically irrational, it is not clear to us which boundary states can be identified

with the current algebra descendants. In the following we therefore restrict to the

case n = n′ = 0 (h = j + 1), for which there are only chiral primary operators in

the intermediate channel, and ignore possible contributions from current algebra

descendants.

This leads to some simplification of the product C(h)C ′(j). Recalling the

relation between the structure constants of SL(2) and SU(2) (5.28), which holds

for hi = ji + 1 (i = 1, 2, 3), we find the identity

C(h)C ′(j) =
cν

(2π)2

4∏

i=1

√
B(hi) (6.29)

since h = j+1. In other words, the poles of the SL(2) structure constants cancel

against the zeros of the SU(2) structure constants.
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With these identities, we may now return to GNS
4 (x, x̄). Applying the residue

theorem6 and taking the limit ε→ 0, we get

GNS
4 (x, x̄) = g−2

s k2
∑

j

4∏

i=1

√
B(ji + 1)Gj,0

cν
(2π)2

2π2

∂h(∆(h))|h=j+1

|x|2(j−j1−j2)

× ((j + j1 + j2 + 1)(j + j3 + j4 + 1))2 . (6.30)

Where the factor ∂h(∆(h))|h=j+1/(2π) = (2j + 1)/(2πk) in the denominator is

related to the fact that we need to integrate over the conformal group on the

worldsheet when comparing two-point functions on the worldsheet to two-point

functions in spacetime. Recall that spacetime four-point functions can be con-

sidered as a sum over the product of two three-point functions divided by the

two-point function.

We must still normalize the four-point function with respect to the scaling

of the two-point functions. For the four-point function of the corresponding

normalized operators (5.35), we then find

GNS
4 (x, x̄) = s(k)

∑

j

(j + j1 + j2 + 1)2(j + j3 + j4 + 1)2√
(2j1 + 1)(2j2 + 1)(2j3 + 1)(2j4 + 1)

Gj,0

2j + 1
|x|2(j−j1−j2) ,

(6.31)

where we introduced the factor

s(k) = g−2
s k2

(
gs

√
2π

k

)4
cν

(2π)2
2π k . (6.32)

If we choose cν = 1/(2πk) as in chapter (5), then s(k) = g2s , which scales as 1/N .

6Let us denote the r.h.s. of (6.26) by f(h) such that for n = 0 we have f(h) ≡ πε2λ(h)

λ(h) . Define

also h0 by λ(h0) = 0. Then
∮
dhf(h) = 2πiRes(f ;h0) with Res(f ;h0) =

πε2λ(h0)

λ′(h0)
such that

∫
dh
πε2λ(h)

λ(h)
∝ 2π2

∂h∆(h0)

with h0 = j + 1.
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6.1.3 Factorization into three-point functions

It is possible to rewrite GNS
4 (x, x̄) as the product of two three-point functions. For

that, we label the state in the intermediate channel by j and set its m quantum

number as m = j.7 Then, the charge conservation m = m1 +m2 selects the term

with

j = j1 + j2 − d (6.33)

in the sum over j. For this particular value of j, or d = j1 + j2 − j, Gj,0 reduces

to

Gj,0 = cj2+m2

2j2
δ2j1+j2+j3−j4,d

=
Γ(j2 + j − j1 + 1)Γ(j1 + j2 − j + 1)

Γ(2j2 + 1)
δ2j1+j2+j3−j4,d

(6.34)

and GNS
4 (x, x̄) becomes

GNS
4 (x, x̄) = g2s

Γ(j2 + j − j1 + 1)Γ(j1 + j2 − j + 1)

Γ(2j2 + 1)

(j + j1 + j2 + 1)2√
(2j1 + 1)(2j2 + 1)(2j + 1)

× (j + j3 + j4 + 1)2√
(2j + 1)(2j3 + 1)(2j4 + 1)

|x|−2d + ... . (6.35)

However, this is nothing but the expected factorization in terms of three-point

functions,

GNS
4 (x, x̄) =

〈
O

(0)
j (∞)Õ

(0)
j2
(x, x̄)O

(0)
j1
(0)
〉〈

Õ
(0)
j4
(∞)O

(0)
j3
(1)O

(0)
j (0)

〉

〈
O

(0)
j (∞)O

(0)
j (0)

〉 + ... (6.36)

with [14]

〈
O

(0)
j1
(∞)O

(0)
j2
(1)Õ

(0)
j3
(0)
〉
= gs

(j1 + j2 + j3 + 1)2
∏

i(2ji + 1)
1
2

Γ(j13 + 1)Γ(j12 + 1)

Γ(2j1 + 1)
. (6.37)

The ellipsis indicates terms subleading in x. The x-dependence |x|−2d is now

contained in the left three-point function.

7More generally, one could have set m = j − d̃ with d̃ ≥ 0. Each term in GNS
4 (x, x̄) would

then scale as |x|2(j−j1−j2) = |x|2(−d+d̃). Since at small x the leading term in the sum over j is

that for d̃ = 0, we may neglect global SU(2) descendants. Note that we have already ignored

global SL(2) descendants in (6.9).
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6.1.4 The extremal case and comparison with the bound-

ary theory

So far, general non-extremal four-point functions have not been considered in the

dual symmetric orbifold theory. For comparison with the results in the boundary

conformal field theory, we therefore specialize now to the extremal case j4 =

j1 + j2 + j3, for which the dual boundary correlator is known [23].

As we can see from (6.34) for d = 0 (i.e. j = j1 + j2), Gj,0 = δ2j1+j2+j3,j4
, and

hence

GNS
4 (x, x̄) = g2s

(2j + 1)(2j4 + 1)2√
(2j1 + 1)(2j2 + 1)(2j3 + 1)(2j4 + 1)

. (6.38)

The result is independent of the cross-ratio x, as expected for extremal correlators.

Changing variables from j to n by setting ni = 2ji + 1 (i = 1, 2, 3, 4), we get

GNS
4 (x, x̄) =

1

N

n
5/2
4

(n1n2n3)1/2
ñ

n4

(6.39)

with ñ = n1+n2−1. In the largeN limit, this is in agreement with the single-cycle

contribution to the boundary correlator (4.14), which is given by (4.14) times the

factor ñ/n4 [23]. This is the contribution coming from single-cycle operators in

the intermediate channel.

As argued in [23], in the extremal case contributions coming from double-

cycle operators in the intermediate channel are not suppressed at large N . It was

found that the combined effect of single- and double-cycle operators is given by

the single-cycle contribution times the factor n4/ñ, symbolically:

full extremal correlator = single- + double-cycle contribution

=
n4

ñ
· (single-cycle contribution) .

Clearly, it would be desirable to reproduce this factor in the worldsheet theory.

Double-cycle terms in the spacetime OPE arise nonlocally on the worldsheet and

are presently not very-well understood.
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6.1.5 Crossing symmetry

We conclude this section with some comments on the crossing symmetry of

GNS
4 (x, x̄).

An essential part of the correlator is the SL(2) four-point function, which may

be denoted by

G12
34(x, z) ≡

〈
4∏

i=1

Φhi
(xi, zi)

〉
. (6.40)

On the right hand side we set again z1,2,3,4 = 0, z, 1,∞ and x1,2,3,4 = 0, x, 1,∞.

As shown by Teschner in [80], the SL(2) four-point function is invariant under

crossing symmetry, i.e it satisfies the following identity:

G12
34(x, z) = G32

14(1− x, 1− z) . (6.41)

This corresponds to the simultaneous exchanges

x1 ↔ x3 , z1 ↔ z3 , h1 ↔ h3 , (6.42)

which map the cross-ratios as x ↔ 1 − x and z ↔ 1 − z. The operators O(0)
j,m

are basically SL(2) primaries dressed by some spinors ψ and e−φ (and currents

in case of Õ(0)
j,m). We need to show that this dressing does not violate crossing

symmetry.

Let us investigate the crossing symmetry of (6.1) (or, equivalently, (6.4)),

which follows if each term in (6.4) is invariant under (6.42). For instance, consider

the four-point function

d
(4)
2 =

〈
j(x2)

4∏

i=1

Φhi
(xi, zi)

〉
=

[
x21
z21

(x21∂x1 − 2h1) +
x23
z23

(x23∂x3 − 2h3)

+
x24
z24

(x24∂x4 − 2h4)

]〈 4∏

i=1

Φhi
(xi, zi)

〉
. (6.43)

Here we used the explicit expression (C-6) in Appendix B. Clearly, due to (6.41),

this expression is invariant under the exchange (6.42), and similarly d
(4)
4 and

d
(4)
24 appearing in (6.4). The action of the currents j(x) on the SL(2) four-point

function therefore remains crossing invariant. Similarly, we can verify the crossing

symmetry of correlators in (6.4) which involve only SL(2) fermions by checking

the explicit expressions (6.23).

In summary, assuming the crossing invariance of the SL(2) four-point function

G12
34(x, z) (proven in [80]), we find that (6.1) is also invariant under this symmetry.
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Note however that in the computation of the one-particle contribution we used an

approximation for the SL(2) four-point function (Eq. (6.9)), valid at small x and

u, which is not crossing invariant. The one-particle contribution computed here is

therefore not crossing invariant by itself. The above analysis shows however that

it can in principle be made invariant by including the two-particle contributions

in the intermediate channel.

6.2 Mixed NS and R four-point function

The computation of the previous section can easily be adapted to other four-point

functions. As a further example, we next compute a four-point function which

involves two chiral primaries in the NS sector and two in the R sector. Such a

four-point function is given by

GR
4 (x, x̄) = g−2

s

∫
d2z
〈
O(b)

j4,m4
(∞)O(a)

j3,m3
(1)O(0)

j2,m2
(x, x̄; z, z̄)Õ(0)

j1,m1
(0)
〉

= g−2
s

∫
d2z 〈e−φ(∞)

2 e−
φ(1)
2 e−φ(z)〉

[
(1− h1)

〈
sa−(1)s

b
−(∞)ψ(x)̂(0)

〉

×
〈

4∏

i=1

Φhi

〉
+
〈
sa−(1)s

b
−(∞)ψ(x)

〉
〈

4∏

i=1

j(0)Φhi

〉]〈
4∏

i=1

Φ′
ji,mi

〉
× c.c.

(6.44)

with m-values as in (6.2). The first two operators are Ramond chiral primaries

with ghost number −1/2. The third and fourth operators are NS chiral primaries

with ghost number −1 and 0. The total ghost number is therefore again −2, as

required on the sphere.

For the computation, we will need the fermionic correlators

〈
sb−(x4)ψ(x2)s

a
−(x3)

〉
= k1/2

x23x24

z
1/2
23 z

1/2
24 z

3/4
34

δab , (6.45)

〈
sa−(x4)s

b
−(x3)ψ(x2)̂(x1)

〉
=

−
[
x14x12
x24

z42
z14z12

+
x13x12
x23

z23
z13z12

] 〈
sb−(x4)ψ(x2)s

a
−(x3)

〉
. (6.46)

For simplicity, we neglected the dependence on the y-labels here. The contribu-

tion from the ghosts is 〈e−φ(z4)/2e−φ(z3)/2e−φ(z2)〉 = z
−1/2
23 z

−1/2
24 z

−1/4
34 .
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Proceeding as before, we use again the factorization ansatz (6.6) and get

GR
4 (x, x̄) = g−2

s k

∫
d2u

∫
dh
∑

j

C(h)C ′(j) |x|2(∆(h)+∆(j)+h−h1−h2+1)|u|2(∆(h)+∆(j))

× δab
∣∣∣∣(1− h1)

(
1

u
+

1

u

xu− 1

x− 1

)
+ d̂

(4)
1,0

∣∣∣∣
2

Gj,0 , (6.47)

where the first term in the four-point function d
(4)
1 , denoted by d̂

(4)
1,n with n = 0,

is given by (6.20). As in the previous section, we keep only the terms with

n = n′ = 0 (and Fh(u) ≈ 1). Notice that in the small-u, small-x region, we have

1

u
+

1

u

xu− 1

x− 1
≈ 2

u
, d̂

(4)
1,0(h, hi, x, z) ≈ −(h− h1 + h2)x

z
, (6.48)

with z = ux, as before. The structure of GR
4 (x, x̄) is similar to that of GNS

4 (x, x̄)

as given, for instance, by (6.24). The only change is the terms in the second line.

We now perform the u- and h-integrals. In the region |u| < ε we expand

(6.47) as

GR
4 (x, x̄) = g−2

s k

∫
d2u

∫
dh
∑

j

C(h)C ′(j)Gj,0 |x|2(∆(h)+∆(j)+h−h1−h2+1)|u|2(∆(h)+∆(j))

× δab
∣∣∣∣−

(h+ h1 + h2 − 2)

u
+O(u0)

∣∣∣∣
2

(6.49)

and do the u-integral as in (6.26). Performing also the h-integral and taking the

ε→ 0 limit we get

GR
4 (x, x̄) = g−2

s k δab
∑

j

4∏

i=1

√
B(ji + 1)Gj,0

cν
(2π)2

|x|2(j−j1−j2)
2π2(j + j1 + j2 + 1)2

∂h(∆(h))|h=j+1

.

(6.50)

As argued above, there are only chiral primary states in the intermediate channel

(with h = j + 1), which allows us to use (6.29).

With the above value for cν = 1/(2πk), the corresponding rescaled correlator

is

GR
4 (x, x̄) = g2s δ

ab
∑

j

Gj,0

2j + 1
(j + j1 + j2 + 1)2

[
(2j3 + 1)(2j4 + 1)

(2j1 + 1)(2j2 + 1)

]1/2
|x|2(j−j1−j2) .

(6.51)
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As argued in the previous section, at small x the leading term in the sum over j

is that for j = j1 + j2 − d. Recalling now (6.34), GR
4 (x, x̄) can be rewritten as

GR
4 (x, x̄) = g2s δ

ab

× Γ(j2 + j − j1 + 1)Γ(j1 + j2 − j + 1)

Γ(2j2 + 1)

(j + j1 + j2 + 1)2

[(2j + 1)(2j1 + 1)(2j2 + 1)]1/2

×
[
(2j3 + 1)(2j4 + 1)

(2j + 1)

]1/2
|x|−2d + ... , (6.52)

with j = j1 + j2 − d = j4 − j3. Ellipses represent again subleading terms in x.

After comparing with the three-point functions, we get the factorization

GR
4 (x, x̄) =

〈
O

(0,0)
j (∞)O

(0,0)
j2

(x, x̄)Õ
(0,0)
j1

(0)
〉〈

O
(b,b̄)
j4

(∞)O
(a,ā)
j3

(1)O
(0,0)
j (0)

〉

〈
O

(0,0)
j (∞)O

(0,0)
j (0)

〉 + ... ,

(6.53)

with the left three-point function as in (6.37) and the right one given by [15]

〈
O

(b,b̄)
j3

(∞)O
(a,ā)
j2

(1)O
(0,0)
j1

(0)
〉
= gsδ

abδāb̄
[
(2j2 + 1)(2j3 + 1)

(2j1 + 1)

]1/2
, j3 = j1 + j2 .

(6.54)

For comparison with the corresponding boundary correlator, we restrict again

to the extremal case, d = 0 or j4 = j1+j2+j3. Then, the only non-vanishing term

in the sum over j is that for j = j1 + j2 (with Gj,0 = δ2j1+j2+j3,j4
) and GR

4 (x, x̄) as

given by (6.51) becomes independent of x,

GR
4 (x, x̄) = δab g2s

[
(2j3 + 1)(2j4 + 1)

(2j1 + 1)(2j2 + 1)

]1/2
(2j + 1) . (6.55)

The result precisely coincides with the one-particle contribution to (4.16) upon

identifying ni = 2ji + 1. At large N it is given by8

GR
4 (x, x̄) = δab

1

N

(n4n3)
1/2

(n1n2)1/2
ñ (6.56)

with ñ = n1 + n2 − 1. The result does not include possible contributions from

the exchange of two-particle states.

We expect that the remaining extremal spacetime four-point correlators (4.15)

and (4.17) can be reproduced by a similar worldsheet computation.

8This is the contribution from single-cycle operators in the intermediate channel. It is given

by (4.16) times the factor ñ/n4 [23].
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6.3 A particular non-extremal four-point func-

tion

In this section we consider the non-extremal four-point function

G4(x, x̄) = g−2
s

∫
d2z
〈
Õ(0)

j4
(∞)O(0)

j3
(1)Õ(0)

j2
(x, x̄; z, z̄)O(2)

j1
(0)
〉
, (6.57)

for, at first, arbitrary j-values. Later we will fix the j-labels in order to compare

the correlator with the corresponding boundary correlator (4.20).

We begin by substituting the explicit expressions for the chiral primary oper-

ators,

G4(x, x̄) = g−2
s

∫
d2z
〈(
(1− h4)̂(∞) + j(∞) + 2

k
ψ(∞)χaP

a
y4

)
Oj4

× e−φ(1)ψ(1)Oj3

×
(
(1− h2)̂(x) + j(x) + 2

k
ψ(x)χaP

a
y2

)
Oj2

× e−φ(0)χ(0)Oj1

〉
× c.c . (6.58)

Keeping only the nonvanishing terms, we get

G4(x, x̄) = g−2
s k−2

∫
d2z

[
(1− h4)〈̂(∞)ψ(1)ψ(x)〉〈2χaP

a
y2
χ(0)

4∏

i=1

Oji〉

+ 〈ψ(1)ψ(x)〉〈2χaP
a
y2
χ(0)j(∞)

4∏

i=1

Oji〉

+ (1− h2)〈̂(x)ψ(∞)ψ(1)〉〈2χaP
a
y4
χ(0)

4∏

i=1

Oji〉

+ 〈ψ(∞)ψ(1)〉〈2χaP
a
y4
χ(0)j(x)

4∏

i=1

Oji〉
]
× c.c . (6.59)

This can be simplified by means of the identity

2χaP
a
y = χ(y)∂y − j∂yχ(y) . (6.60)

We will also need the correlators

d
(4)
2 = 〈j(x)

4∏

i=1

Oji(xi, yi)〉 , d
(4)
4 = 〈j(∞)

4∏

i=1

Oji(xi, yi)〉 , (6.61)
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given by (6.16) with (6.19) and (6.18), and the relations

〈̂(∞)ψ(1)ψ(x)〉 = 2
z − 1

x− 1
〈ψ(1)ψ(x)〉 , (6.62)

〈̂(x)ψ(1)ψ(∞)〉 = 2
x− 1

z − 1
〈ψ(1)ψ(∞)〉 , (6.63)

∂y〈χ(y)χ(0)〉 =
2

y
〈χ(y)χ(0)〉 , (6.64)

lim
y4→∞

∂y4〈χ(y4)χ(0)〉 = lim
y4→∞

2

y4
〈χ(y4)χ(0)〉 . (6.65)

Substituting everything back into (6.59), we get

G4(x, x̄) = g−2
s k−2

∫
d2z

[(
(1− h4)2

z − 1

x− 1
+ d

(4)
4

)
2j2 − (j1 + j2 − j)

y

× 〈ψ(1)ψ(x)〉〈χ(y)χ(0)〉+ ...
]
〈

4∏

i=1

Oji(xi, yi)〉 × c.c ,

(6.66)

where the ellipsis indicates terms subleading in x. As before, we use the factor-

ization Ansatz (6.6) and change variables, z = ux. At small u and small x, we

obtain

G4(x, x̄) = g−2
s k2

∫
d2u

∫
dh
∑

j

C(h)C ′(j) |x|2(∆(h)+∆(j)+h−h1−h2+1)|u|2(∆(h)+∆(j))

×
∣∣∣∣
(2− h− h3 − h4)(j − j1 + j2)

u x
y

∣∣∣∣
2

. (6.67)

At this point we need to specify the chirality of the operators in the dual

boundary correlator. For this, we assign labels a1,2,3,4 ∈ {0, 1} to the boundary

operators. The label ai is zero (one), if the dual operator is chiral (antichiral).

Then, U(1) charge conservation,

∑4
i=1 qi = (−1)a1h

(2)
1 +

∑4
i=2(−1)aih

(0)
i = 0 , (6.68)

yields the following relation among the j-values,

(−1)a1(j1 + 1) + (−1)a2j2 + (−1)a2j3 + (−1)a4j4 = 0 . (6.69)

In view of the boundary correlator (4.20) let us consider the case a1 = a3 = 0

(chirals) and a2 = a4 = 1 (antichirals) and fix the j-labels as j1 = n−1
2
, j2 =

j3 =
1
2
and j4 =

n+1
2
. These values have been chosen to agree with the conformal

dimensions of the dual chiral operators appearing in the correlator (4.20). For
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instance, the spacetime conformal dimensions of the operators dual to O(2)
j1

and

Õ(0)
j4

are

h
(2)
1 = h1 = j1 + 1 = n+1

2
and h

(0)
4 = h4 − 1 = j4 =

n+1
2
, (6.70)

as required in (4.20). Using the relations (4.8) and hi = ji + 1, we find that

the non-extremality condition (4.22) translates into j4 = j1 + j2 + j3. Since

j2 = 1/2, this relation is equivalent to the U(1) charge conservation relation

j4 = j1 − j2 + j3 + 1.

For the above values of ji and ai (i = 1, 2, 3, 4), it was found in [23] that in the

boundary theory O
(0)
n+1 is the only operator running in the intermediate channel.

In the worldsheet theory this operator is dual to O(0)
j with j = j1 + 1 − j2 =

j1 + 1/2. If we assume that the one-to-one correspondence between worldsheet

and boundary operators also holds in the intermediate channel, then the sum

over j reduces to a single term for which j = j1 + 1/2.

Proceeding as before, we get

G4(x, x̄) = g−2
s k2

4∏

i=1

√
B(ji + 1)

cν
(2π)2

(2j4 + 1)2
2π2

2j + 1

|y|2
|x|2 . (6.71)

The corresponding rescaled correlator is9

G4(x, x̄) = g2s
(2j4 + 1)2∏4
i=1

√
2ji + 1

1

2(j1 + j2) + 1
|x|−2 (6.72)

or

G4(x, x̄) =
1

N

(n+ 2)3/2

2n1/2

1

n+ 1
|x|−2 . (6.73)

At large N this agrees with the non-extremal correlator (4.20).

Summarizing, we started this chapter computing a four point-function involv-

ing only NS chiral primaries in the unflowed sector by means of the factorization

ansatz for the SL(2, R) four-point function [78] and an analogous factorization

for the SU(2) four-point function. We were able to compute the whole four-point

function at small cross-ratio x where only ’single-particle’ chiral primaries prop-

agate into the intermediate channel. The result agrees with the single-particle

contribution of the corresponding four-point function in the conformal field the-

ory on the boundary of AdS3. We also showed that in the small x−limit, the

9 The operator O(0,0)
j2=1/2 is dual to the anti-chiral operator O

(0,0)†
2 . As compared to the

corresponding chiral operator, it is rescaled by an additional factor |y|−4j2 , which cancels |y|2
in the numerator.
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four-point function factorizes in space-time as expected for a conformal field the-

ory. Finally, we have applied the same procedure to compute other extremal

and non-extremal four point functions and we have obtained agreement with the

corresponding correlators in the dual field theory in all the cases considered.

As in the case of the three-point function in chapter 5, it is natural to expect

that a four-point function involving spectral flowed states will be just a copy of

the four-point function made out only of unflowed chirals, at least in the OPE

limit.

The results in this chapter confirm that the non-renormalization theorem [21]

is still valid for extremal four-point functions of chiral primary operators. Further-

more, since some non-extremal correlators also agrees with their dual correlators

in the dual field theory, it suggests that the non-renormalization theorem can be

extended to the non-extremal case.

.
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Chapter 7

Semi-classical correlation

functions on AdS5

Unlike the case of strings on AdS3 × S3 × T 4, the quantum formulation of string

theory on AdS5 × S5 is not yet fully defined. However, there are regimes or sub-

sectors where we still can make some computations in the context of AdS/CFT .

Among those regimes, there are protected operators, namely BPS states (such

as chiral states), whose correlation functions could be computed in the dual field

theory from the supergravity approximation and the pp-wave limit of AdS5 (in

which case we can do a worldsheet quantization of the string [32]).

A nice regime that generalizes the BMN limit [32] (dual to the pp wave limit)

corresponds to operators with large quantum numbers, which allow us to perform

semiclassical computations on the string theory side of the correspondence.

In this chapter we are going to review some classical and semi-classical aspects

of string theory on AdS5
1, focusing on operators with large spin which correspond

to strings rotating on AdS5, known as GKP strings [34]. We shall compute semi-

classically the leading divergence for a n−point function of GKP strings and show

how null Wilson loops could be related to these correlators [81].

7.1 Polhmeyer reduction of classical strings in

AdS3 ⊂ AdS5

In this section we briefly review the Pohlmeyer reduction of strings on AdS3

proposed in [83, 84] (see also [85, 82] and references therein). We closely follow

1Actually, we are going to work in AdS3 but now thought as a subspace of AdS5.
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the notation of [82]. It is worth mentioning that along this chapter we will

consider only an AdS3 factor of the total AdS5 space. However, the results could

be straightforwardly generalized to AdS5.

AdSd spaces can be written as the following hyperboloid in R2,d−1

~Y · ~Y = −Y 2
−1 − Y 2

0 + Y 2
1 + ...+ Y 2

d−1 = −1 . (7.1)

In terms of these embedding coordinates, the equations of motion for the bosonic

string in an AdSd space are given by

∂∂̄~Y − (∂~Y · ∂̄ ~Y )~Y = 0 , (7.2)

and the Virasoro constraints read

∂~Y · ∂~Y = ∂̄ ~Y · ∂̄ ~Y = 0 . (7.3)

Let us start defining the reduced fields α and p in AdS3 as,

e2α(z,z̄) =
1

2
∂~Y · ∂̄ ~Y ,

p = −1

2
~N · ∂2~Y , p̄ =

1

2
~N · ∂̄2~Y ,

Na =
e−2α

2
ǫabcdY

b∂Y c∂̄Y d . (7.4)

From (7.4) and (7.2) it can be shown that p = p(z) is a holomorphic function 2,

where we have parametrized the world-sheet in terms of complex variables z and

z̄. Let us introduce the following basis of four-vectors in R2,2

~q1 = ~Y , ~q2 = e−α∂̄ ~Y , ~q3 = e−α∂~Y , ~q4 = ~N , (7.5)

which satisfies

~q 2
1 = −1 , ~q2.~q3 = 2, ~q 2

4 = 1 , (7.6)

with the remaining ~qi.~qj = 0. The last property along with the equivalence

between SO(2, 2) and SL(2) × SL(2) allows to write the basis vectors in the

following matrix representation

W =
1

2

(
~q1 + ~q4 ~q2

~q3 ~q1 − ~q4

)
, (7.7)

2For the real solutions considered here, p(z) and p̄(z̄) are complex conjugates. This condition

could in principle be relaxed.
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W being an SL(2)×SL(2) element. The components of this matrix have indices

Wαα̇,aȧ. The first two indices denote rows and columns in the above matrix, while

the other two are associated with the space-time bispinor representation of each

~qi, i.e,

(qi)aȧ = qi,µσ
µ
aȧ, σµ = (1, iσ3, σ1,−σ2) . (7.8)

The two SL(2) symmetries of the AdS3 target space correspond to the SL(2)

group acting on the index a and the SL(2) that acts on the index ȧ. The basis

vectors (7.5) define the SL(2) connections BL,R given by [84]

BL
z =

(
1
2
∂α −eα

−e−αp(z) −1
2
∂α

)
, BL

z̄ =

(
−1

2
∂̄α −e−αp̄(z̄)

−eα 1
2
∂̄α

)
(7.9)

BR
z =

(
−1

2
∂α e−αp(z)

−eα 1
2
∂α

)
, BR

z̄ =

(
1
2
∂̄α −eα

e−αp̄(z̄) −1
2
∂̄α

)
. (7.10)

The consistency conditions of the equations (7.2) imply that these connections

are flat

∂BL
z̄ − ∂̄BL

z + [BL
z , B

L
z̄ ] = 0 , ∂BR

z̄ − ∂̄BR
z + [BR

z , B
R
z̄ ] = 0 . (7.11)

These imply that p is a holomorphic function and that α satisfies the generalized

sinh-Gordon equation

∂∂̄α(z, z̄)− e2α(z,z̄) + |p(z)|2e−2α(z,z̄) = 0 . (7.12)

We are especially interested in the area of the worldsheet, which is given in terms

of the reduced fields by,

A = 4

∫
d2ze2α . (7.13)

Given a solution of the generalized sinh-Gordon model, one can find the associated

classical string worldsheet.

87



In order to do it, consider the auxiliary linear problem [82]

∂ψL
α + (BL

z )
β
α ψ

L
β = 0, ∂̄ψL

α + (BL
z̄ )

β
α ψ

L
β = 0 ,

∂ψR
α̇ + (BR

z )
β̇
α̇ ψ

R
β̇
= 0, ∂̄ψR

α̇ + (BR
z )

β̇
α̇ ψ

R
β̇
= 0 . (7.14)

We denote by ψL
α,a , a = 1, 2, and ψR

α̇,ȧ, ȧ = 1, 2, the two independent solutions

for the left and right linear equations respectively. Since the connections are in

SL(2), we can define an SL(2) invariant product and use it to normalize the pair

of solutions as

〈ψL
a , ψ

L
b 〉 ≡ ǫβαψL

α,aψ
L
β,b = ǫab, 〈ψR

ȧ , ψ
R
ḃ
〉 ≡ ǫβ̇α̇ψR

α̇,ȧψ
R
β̇,ḃ

= ǫȧḃ . (7.15)

It is easy to see from (7.14) that the normalizations (7.15) are both constant and

then they can be evaluated at any point. Now we can reconstruct the space-time

worlsheet coordinates from these solutions through the matrix Wαα̇,aȧ, as has

been explained in [82]

Wαα̇,aȧ = ψL
α,aψ

R
α̇,ȧ . (7.16)

This could be justified noticing that each component ofW in (7.7) is a null vector

in R2,2, so they can be written as a product of spinors. The explicit form of the

target coordinates is given by the element q1 in (7.7), which can be written as

Yaȧ =

(
Y−1 + Y2 Y1 − Y0

Y1 + Y0 Y−1 − Y2

)

a,ȧ

= ψL
α,aψ

R
β̇,ȧ

, (7.17)

and similarly for the other qi.

Hence, the problem is reduced to finding an α(z, z̄) and the pair p(z), p̄(z̄) which

satisfy (7.12) and use them to compute the solutions to the linear equations

(7.14).

7.2 Large spin limit of the GKP String in re-

duced fields

In global coordinates the GKP string at large spin S is given in worldsheet coor-

dinates (τ, σ) by [88, 86]

t = κτ, θ = ωτ, ρ = ρ(σ) ∼ κσ, ω → κ ∼ 1

π
lnS . (7.18)

88



In embedding coordinates its looks like

Y−1 + iY0 = eκτ cosh ρ(σ), Y1 + iY2 = e−κτ sinh ρ(σ) . (7.19)

As we can see from (7.18), in the limit S going to infinity the parameter κ also

goes to infinity and therefore it is convenient to make a reparametrization of the

cylinder coordinates as,

τ̃ = κτ σ̃ = κσ . (7.20)

Now the coordinates τ̃ ∈ (−∞,∞) and σ̃ ∈ (−∞,∞). Inserting the last coordi-

nates in (7.4), we get that the GKP strings are described by the following reduced

fields in cylindrical coordinates w = τ̃ + iσ̃,

p(w) = −1

4
, e2α(w,w̄) =

1

4
. (7.21)

Going to the plane through the conformal transformation z = ew, we have

p(z) = − 1

4 z2
, e2α(z,z̄) =

√
pp̄ . (7.22)

As we can see, p(z) encodes the information on the vertex positions, which in this

case appear at z = 0,∞. Now we would like to solve the linear problem (7.14)

associated to the GKP string. It is easier to solve it first in w-coordinates, since

the reduced fields do not depend on the coordinates there. Doing so we obtain

(see [87])

ψ̃ = Aψ =
1√
2
e±

i
2
(ζ−1w−ζw̄)

(
1

±1

)
, (7.23)

where A = diag(p−1/4 eα/2, p1/4 e−α/2) and we have introduced a spectral param-

eter ζ in order to write the solutions in a compact way. The actual space time

solutions are given by ζ = 1 for ψL and ζ = i for ψR. Taking z = r eiφ, on the

z−plane, the above solutions behave as

ηL± ∼ e±φ vL±, ηR± ∼ r± vR± , (7.24)

where the v′s are given by

vL+ =

(
−i
1

)
, vL− =

(
−1

i

)
, vR+ =

(
1

1

)
, vR− =

(
−1

1

)
. (7.25)

Every solution can be written as a linear combination of the above η solutions.

Hence, we choose the following arbitrary combinations as a basis of solutions

ψL
a = cl,aη

L,l, ψR
ȧ = cl,ȧη

R,l, a, ȧ = 1, 2 . (7.26)
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Our main interest in this chapter is the computation of correlation functions of

large spin GKP strings semi-classically. In order to do it, we should generalize the

GKP solution to solutions which asymptotically look like GKP. More explicitly,

we would like to find solutions with the topology of a sphere with n−insertions,

each insertion corresponding to a GKP on the cylinder. Unfortunately, we can not

find that kind of solutions analytically, although we believe they can be studied

by using integrability instead, but that is beyond scope of this work. However,

we can still use the known information in order to approximately compute the

correlator. Namely, generically we assume the function p(z) has n-singularities

at points zi, describing the insertion of vertex operators in the z−plane. More

explicitly, we assume the function p(z) behaves near singularities in the following

way

p(z) ∼ −
n∑

i=1

1

4(z − zi)2
. (7.27)

Hence, near each singular point, the basis of solutions behaves as

ψL
a i ∼ cl,a i η

L,l, ψR
ȧ i ∼ cl,ȧ i η

R,l, a, ȧ = 1, 2, i = 1, ..., n− 1 . (7.28)

In order to see how the solutions approach each vertex insertion in the generic

case, it is convenient to write them in (z, z̄) coordinates

ηR± ∼
n∏

i=1

[(z − zi)(z̄ − z̄i)]
±1/2, ηL± ∼

n∏

i=1

(
z − zi
z̄ − z̄i

)±i/2

. (7.29)

The target space coordinates can be recovered from the above solutions using

(7.17), such that in Poincare coordinates (Z, xµ) we have

1

Z
= Y11̇, x+ =

Y12̇
Y11̇

, x− =
Y21̇
Y11̇

, x± = x0 ± x1 . (7.30)

As we see from (7.29), some solutions get bigger and some get smaller when we

approach the vertex. Therefore the target coordinates will be dominated by the

big solutions when evaluated near the insertions. Then, from (7.17) and (7.28),

they are schematically approximated near the singularities by

Yaȧ = cL big
a i cR big

ȧ i fbig(z − zi, z̄ − z̄i) , (7.31)

where the label ’big’ on the coefficients means we keep only those multiplying the

ηR,L which become bigger near the given zi and fbig(z − zi, z̄ − z̄i) is the large

contribution coming from the ηR,L which grows up the most.

1

Z
= cL big

1 i cR big

1̇ i
fbig(z − zi, z̄ − z̄i) , x+ =

cR big

2̇ i

cR big

1̇ i

, x− =
cL big
2 i

cL big
1 i

. (7.32)
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7.3 Semi-classical correlation functions of large

spin operators at strong coupling

The calculation of n-point functions at strong coupling in the leading semiclassical

approximation is intrinsically related to finding an appropriate classical solution

of a string which ends on the boundary of AdS[93, 90, 91]. Let VHi
(zi), i = 1, ..., n

be the n−vertex operators inserted at points zi on the worldsheet corresponding

to a folded string.3 For large string tension, the n-point function should be

dominated by its semiclassical limit i .e. by the action evaluated at its stationary

point

〈
n∏

i=1

VHi
(zi)〉 ∼ e−

R2

2πα′
A , (7.33)

where A is the string action on AdS5×S5 in conformal gauge, which in the semi-

classical limit is reduced to the area of the worldsheet. The information provided

by the vertex operators on the left hand side is implicitly contained in the bound-

ary conditions for the classical solution. For the case of the two-point function,

the appropriate classical solution corresponds to some analytical continuation of

the GKP string [92, 93], which reaches the boundary of AdS when the spin of

the string goes to infinity. This implies that, in the limit we are considering, the

area of the worldsheet diverges and should be somehow regularized, in the same

way as for expectation values of Wilson lines at strong coupling. This should also

happen in the classical solutions corresponding to higher point functions. Hence,

the n-point functions split into a divergent contribution and a finite (regularized)

part,

〈
n∏

i=1

VHi
(zi)〉 ∼ e−

R2

2πα′
(Adiv+Areg) . (7.34)

In this section we will study the divergent part of the correlator and we will show

that it scales in the same way as the null polygonal Wilson loop associated with

it4. It is worth mentioning here that our approach to compute the divergent

factor of the correlation function is very much in the spirit of [94].

As we already mentioned, the source of divergences for the area comes from

the regions close to the insertions, which are precisely the regions where the string

3We consider planar AdS/CFT duality, i.e. tree-level string theory.
4 In a recent paper [87] the finite contribution Areg of the 3-point correlator has been com-

puted by exploiting the integrability of string theory on AdS3 through the use of the Pohlmeyer

reduced system.
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approaches the boundary of AdS. Therefore, it is obvious that putting a world-

sheet cutoff near each singularity is completely equivalent to putting a cutoff in

target space for the coordinate Z close to the boundary, which at the same time

corresponds, through AdS/CFT, to putting an ultraviolet cutoff on the energy

of the process. In this section we will show how the divergent contribution to the

correlator (7.34) at strong coupling, Adiv, is related to the space-time cutoff and

how it depends on the dynamics of the string at the boundary.

From equations (7.24) and (7.28) we can see the large spin solutions diverge

near φ = ±∞, r = ±∞, and therefore, the worldsheet is approaching the bound-

ary at those points. Moreover, as we will see, the worldsheet approaches the

boundary on light-like trajectories. This can be seen from equation (7.32), realiz-

ing that some coefficients cbiga,i are equal for consecutive i, i.e, the points i and i+1

have the same, lets say x+i coordinate and therefore they are joined by a null line.

The area is given by (7.13), and the divergent part of it comes from the regions

near singularities, and as we said, near each singularity e2α ∼ √
pp̄. We will

regularize the area by using a radial cut-off around each singularity |z − zi| > ǫi.

Moreover, as we can see from the mapping ew = z, the z−plane is actually an

infinite covering of the complex plane, and the integral over φ will introduce an-

other source of divergence for the area, and then we should regularize that by

putting a cut-off Λφ in φ. Since the leading contribution to the divergent area

comes from the regions very near the singularities of p(z), we are going to isolate

the contributions of each zi and approximate Adiv as

Adiv = 4
n∑

i=1

∫

|z−zi|>ǫi

d2 z
1

|z − zi|2
∼ −4

n∑

i=1

Λφi
lnǫi , (7.35)

As we mentioned, when we approach the singular points zi, the worldsheet gets

closer to the boundary, and hence the worldsheet cutoff ǫ should be related to

some physical cutoff 1/Z = 1/µ, µ << 1, which corresponds to putting a brane

very close to the boundary where the tips of the folded string will end in the

limit of infinite spin. In (7.35) we have left a label i for the cut-off in order to

track the corresponding singularity which will be associated to a given space-time

coordinate at the boundary. It will become clearer below.

Without loss of generality, let us start considering only three operator in-

sertions, taking κ1, κ3 > 0 and κ2 < 0. As we see from equation (7.31), the

behaviour of the target coordinates near the boundary is well approximated by
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the big solutions near each vertex. In order to visualize the behavior of the target

space coordinates near the insertions, we display the figures 2 and 3.

fig.2: z−plane with three holes of size ǫ representing the position of the

insertions.

As we will see, red lines and green lines map to the null directions defining the

Wilson loop. Therefore, the points 1, 2, ..., 6 correspond in space-time to the cusp

of the null Wilson loop. Let us denote the positions of those cusps as (Zl, x
±
l ),

and see how we approach the boundary around each cusp. Since κ1, κ3 > 0 and

κ2 < 0, we have according to (7.31) and (7.32),

1

Z1

= cL+
11 c

R−
1̇ 1

(
z − z1
z̄ − z̄1

)i/2

|z − z1|−1, x+1 =
cR−
2̇ 1

cR−
1̇ 1

, x−1 =
cL+
21

cL+
11

,

1

Z2

= cL−
1 1 c

R−
1̇ 1

(
z − z1
z̄ − z̄1

)−i/2

|z − z1|−1, x+2 =
cR−
2̇ 1

cR−
1̇ 1

, x−2 =
cL−
2 1

cL−
1 1

,

1

Z3

= cL+
12 c

R+
1̇ 2

(
z − z2
z̄ − z̄2

)i/2

|z − z2|−1, x+3 =
cR+
2̇ 2

cR+
1̇ 2

, x−3 =
cL+
22

cL+
12

, (7.36)

1

Z4

= cL−
1 2 c

R+
1̇ 2

(
z − z2
z̄ − z̄2

)−i/2

|z − z2|−1, x+4 =
cR+
2̇ 2

cR+
1̇ 2

, x−4 =
cL−
2 2

cL−
1 2

,

1

Z5

= cL+
13 c

R−
1̇ 3

(
z − z3
z̄ − z̄3

)i/2

|z − z3|−1, x+5 =
cR−
2̇ 3

cR−
1̇ 3

, x−5 =
cL+
23

cL+
13

,

1

Z6

= cL−
1 3 c

R−
1̇ 3

(
z − z3
z̄ − z̄3

)−i/2

|z − z3|−1, x+6 =
cR−
2̇ 3

cR−
1̇ 3

, x−6 =
cL−
2 3

cL−
1 3

.

As we mentioned in section 4, we can see from the equations above that the

target positions of points connecting red lines on the worldsheet (see fig.2) live

on the same null lines in space-time, i .e x+1 = x+2 , x
+
3 = x+4 , x

+
5 = x+6 .
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Fig. 2: Mapping of the boundaries of the half-worlsheet into space-time light-like

lines.

The coordinates displayed in (7.36) are good approximations to the exact string

solution only in the neighborhood of each insertion (think about each insertion

as an asymptotic state in target space). Each asymptotic state is connected to

each other through the worldsheet, but since we do not know the exact solution,

we cannot determine how these states are exactly correlated. One way to relate

each insertion to each other is by using the so-called monodromy matrix. As the

auxiliary linear problem has two independent solutions, with a basis given by

(ψ1, ψ2), we expect that as one analytically continues them around a singularity,

they get linearly transformed as
(
ψ′
1

ψ′
2

)
= S

(
ψ1

ψ2

)
. (7.37)

It is worth mentioning that the monodromy matrix should belong to SL(2, R),5

and therefore it satisfies det|S| = 1. Applying (7.37) to (7.28), we see that we

can reinterpret (7.37) as

cLαa,i = SLα
β cLβa,i , (7.38)

5We have written ~Y ∈ SO(2,2) as an element Yaȧ ∼ ψL
a ψ

R
ȧ of SL(2,R)×SL(2,R), or in other

words, the eigenvectors of S should live on a representation of SL(2,R).

94



with a similar relation for the cR coefficients and α, β = ±.

According to the discussion in section 2, we expect that the leading contribu-

tion to the correlator comes from the particles propagating between the operators

through nearly null trajectories. Let us start imposing a null trajectory condition

to the path connecting cusp two to cusp three

x−2 =
cL−2,1

cL−1,1
≡ x−3 =

cL+2,2

cL+1,2
=
SL+
β, 2→1c

Lβ
2,1

SL+
β, 2→1c

L−
1,1

, (7.39)

therefore, the SL−matrix should satisfy SL+
+, 2→1 = 0, and from the determinant

we get SL+
−, 2→1S

L−
+, 2→1 = −1, i.e

SL
2→1 =

(
0 ±1

∓1 γL2→1

)
, (7.40)

where we have defined SL−
−, 2→1 = γL2→1. Doing the same for the points connecting

cusps 4 and 5 and cusps 6 and 1, we end up with6

SL
3→2 =

(
0 ±1

∓1 γL3→2

)
, SL

1→3 =

(
0 ±1

∓1 γL1→3

)
. (7.41)

Now we would like to compute the distances between consecutive points, or the

separation length of points living on a null line. Let us start considering

x−1 − x−2 =
cL+2,1 c

L−
1,1 − cL+1,1 c

L−
2,1

cL+1,1 c
L−
1,1

= −〈ψL
1,1 , ψ

L
2,1〉

cL+1,1 c
L−
1,1

. (7.42)

Recalling we have normalized the basis of solutions in each sector as 〈ψL
1,i , ψ

L
2,i〉 =

1, we get7

x−1 − x−2 = − 1

cL+1,1 c
L−
1,1

≡ x−12 . (7.43)

On the other hand, we have x−2 ≡ x−3 , and then

x+2 − x+3 =
cR−
2̇,1

cR−
1̇,1

−
cR+
2̇,2

cR+
1̇,2

≡
aR
2̇,1̇

cR−
1̇,1
cR+
1̇,2

, (7.44)

where we have defined

aR
2̇,1̇

= cR−
2̇,1

(SR+
+2→1c

R+
1̇,1

+ SR+
− 2→1c

R−
1̇,1

)− cR−
1̇,1

(SR+
+2→1c

R+
2̇,1

+ SR+
− 2→1c

R−
2̇,1

)

= 〈ψR
1,1 , ψ

R
2,1〉SR+

+2→1 = γR2→1 , (7.45)

6These monodromy matrices take the form of the Stokes matrices considered in [82] by using

a different argument.
7We define x±i,j = x±i − x±j .
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with SR+
+2→1 = γR2→1. The parameters γR,L

i+1→i parametrize our ignorance on the

exact solution and we cannot compute them only using the approximated solu-

tions around the insertions. Notice that in the notation we have used we get

x−12 = x−13 = x−62 = x−63 and similar relations for the other cusps (see Fig. 2).

Introducing a cutoff µi given by the value of Zi closest to the boundary and re-

calling that the worldsheet radial cutoff is defined by |z − zi| > ǫi we have from

(7.36)

− lnµ1 = ln(cL+1,1 c
R−
1̇,1

)− lnǫ1 , (7.46)

− lnµ3 = ln(cL−1,2 c
R−
1̇,2

)− lnǫ2 , (7.47)

where we have taken an arbitrary finite φ. Summing up (7.46) and (7.47) and

using (7.43), we get

− lnǫ1ǫ3 = − lnµ1µ3 + ln
(
x−13x

+
13

)
+ lnγR2→1 = − lnµ1µ3 + ln

(
x−12x

+
23

)
+ lnγR2→1 .

(7.48)

In order to disentangle the divergence coming from small radius ǫ from the

one coming from large φ, we re-evaluate (7.46) and (7.47) at arbitrary but not

small |z − zi|. Then, we have,

−Λφ1−Λφ3 = − lnµ1µ3+ ln
(
x−13x

+
13

)
+ lnγR2→1 = − lnµ1µ3+ ln

(
x−12x

+
23

)
+ lnγR2→1 .

(7.49)

Doing the same for the other lines connecting consecutive cusps, we can see that,

− lnǫ3ǫ5 ∼ −Λφ3 − Λφ5 = − lnµ3µ5 + ln
(
x−34x

+
45

)
+ lnγR3→2

− lnǫ5ǫ1 ∼ −Λφ5 − Λφ1 = − lnµ5µ1 + ln
(
x−56x

+
61

)
+ lnγR1→3 .

We should take the same cut-off in all directions, i.e. µi = µ, ǫi = ǫ, Λφi
= Λφ

and putting this in (7.35) we get,

Adiv ∼
[
ln

(
x−12x

+
23

µ2

)
+ lnγR2→1

]2
+

[
ln

(
x−34x

+
45

µ2

)
+ lnγR3→2

]2

+

[
ln

(
x−56x

+
61

µ2

)
+ lnγR1→3

]2
. (7.50)

For the sake of simplicity, let us change the cusp indexing by line indexing in the

following way,

x−12 ≡ x−
1 , x

+
23 ≡ x+

2 , x
−
34 ≡ x−

3 , x
+
45 ≡ x+

4 , x
−
56 ≡ x−

5 , x
+
61 ≡ x+

6 . (7.51)
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Additionally, we are going to assume the contributions from the monodromy ma-

trices lnγRi→j are finite and can be neglected with respect to the factors containing

µ2. Doing the above and generalizing for n−points or 2n−cusp (lines) we have.

Adiv ∼
n∑

i=1

[
ln[

x−
i x

+
i+1

µ2
]

]2
, (7.52)

where n+ 1 = 1.

The most remarkable outcome of the above computation is that the leading

divergent factor
[
ln 1

µ2

]2
has the same scaling in terms of the cut-off as the corre-

sponding divergence of a null polygonal Wilson loop [82]. This type of log square

divergences are also usual in the collinear limit of deep inelastic scattering ampli-

tudes in QCD. It is also worth mentioning that although the vertices are inserted

at n−points on the worldsheet, they map to n−lines on the boundary of AdS

(red lines, fig. 2) very much like space-time points map to lines in twistor space.

However, those lines on the boundary do not touch each other, but are connected

by other light-like lines (blue lines, fig. 2) which come from the region φ → ±∞
on the worldsheet. Based on this, we suggest that an n−point function of single

trace twist-two large spin operators can be computed from the expectation value

of a polygonal Wilson loop when the spins of the operators go to infinity.

Surely the correlator depends on the quantum numbers of the operators, such

as the spin and energy. In the limit considered in (7.52) these quantities are

encoded in the length of, lets say, red lines in fig. 2 as well as in the position of

the operators. It would be interesting to study the exact mapping from spins and

positions of the operators to adjoint Wilson lines.

7.4 A heuristic weak coupling analysis

Twist two operators of the form8

OS = Tr(Φ▽{µ1 ...▽µS} Φ)V
µ1 ...V µS , (7.53)

with spin S and anomalous dimension for large spin given by

γS = ∆− S − 2 ∼ −f(λ) lnS, (7.54)

are described at strong coupling by a macroscopic rotating GKP string on AdS5.

8In this equation {· · · } means totally symmetrized and V µ is a priori an arbitrary vector.
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In this section we will give some field theoretical evidence suggesting the

relation between the large spin limit of correlators involving the fields (7.53) and

expectation values of null polygonal Wilson loops. We are considering operators

of the schematic form OS = Tr[Φ(V µ▽µ)
SΦ], which are characterized by the spin

number S and the conformal weight ∆. In the large spin limit, we will compute

the correlation functions in the region in which the emitted particles tend to

follow light-like directions. In order to make direct contact with Wilson loops,

we recall that the operator OS arises in a power series expansion of the following

gauge-invariant bi-local operator

W (V ) = Tr
(
Φ(0) e

∫ V

0 AµdV µ

Φ(V µ) e−
∫ V

0 AµdV µ

Φ(V µ)
)
=

∞∑

S=0

1

S!
OS(V

µ) . (7.55)

On one hand, we can compute the leading divergent factor of the following ex-

pectation value [95],

〈p|OS|p〉 ∼ (p · V )S
(
Λ

µ

)γS

, (7.56)

where Λ and µ are ultraviolet and infra-red cut-offs respectively. (7.56) means

we can compute the expectation value of WV as,

〈p|WV |p〉 =
S∑

0

1

S!
(p · V )S

(
Λ

µ

)−f(λ) lnS

=
∑

S

1

S!
(p · V )SS−f(λ) ln(Λ/µ) . (7.57)

By using the following identity,

∑

n

an
n!

(x)n = xα ex , (x→ ∞) if an ∼ nα , (n→ ∞) (7.58)

we can conclude that

〈p|WV |p〉 = eP ·V
(
Λ

µ

)−f(λ) ln(p·V )

. (7.59)

On the other hand, we can compute 〈p|WV |p〉 directly in perturbation theory as

explained in [96, 97] and from there we expect the leading divergent contribution

to be given by,

〈p|WV |p〉 = ep·V
(
L

ǫ

)−2Γ ln(p·V )

, (7.60)

where L and ǫ are ultraviolet and infra-red cut-offs respectively. By doing the

identification 2Γ = f(λ), we can see that (7.59) and (7.60) agree, which means

that the leading contribution to the divergence of the expectation value of WV is
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coming from the operators in the power expansion with the largest spin.

We will choose the vector V µ along a null direction x+ which means we are

taking the Wilson line along the given null direction. That will not necessarily

happen for finite spin S, but it is certainly the case for infinite spin limit. In that

limit, correlators of Wilson lines of the type above should be dominated by the

operators with large spin. Hence we will consider correlators of Wilson lines along

null directions. Alternatively, as it has been argued in [98] and can be deduced

through AdS/CFT considerations, the insertion of an operator OS produces a

displacement between fields Φ along the x+ direction joined by an adjoint Wilson

line connecting the two-operators. Moreover, the larger the spin the larger the

distance between fields and they become displaced along the null direction as the

spin goes to infinity.

In this section we will follow the lines of [96] in order to compute the correlator

between Wilson lines (7.55) along null directions. Let us suppose one of the line

operators emits a particle of momentum p as shown in figure 39, and compute

its propagator at one loop. Consider the absorption of a gluon with momentum

k and gauge potential Aµ(k) emitted by the Wilson line. In the momentum

representation, this process contributes to the correlator the following vertex10

g

∫
d4k

(2π)4
(2 p′ − k)µ

((p′ − k)2 + iǫ)
Aµ(k) . (7.61)

In the massless limit or light-like trajectories, this vertex has singularities when

k is collinear to p and for soft gluons k ∼ 0. It has been argued in [96] that

when the momentum k is collinear to p, the components of Aµ(k) transverse to

k contribute to higher twist and can be neglected in the limit we are considering.

Fig. 3: One loop correction to the propagator of the emitted particle.

9The particle p is a single particle state of the scalar Φ.
10Here we have used the scalar-vector vertex, see appendix in [99] .
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Hence only longitudinal polarization survives and Aµ becomes pure gauge,

Aµ(k) = kµ
(
y · A(k)
y · k + iǫ

)
, (7.62)

yµ being a vector along the path followed by the particle. Since the on-shell

emitted particle is supposed to be massless, the vector yµ should be null, i.e, it

should be along some x− direction. Inserting (7.62) into (7.61), the absorption

vertex is now given by,

g

∫
d4k

(2π)4

(
y · A(k)
y · k + iǫ

)
= g

∫ ∞

0

dτ yµA
µ(yτ) = g

∫ ∞

0

dx− · A(x−) . (7.63)

Summing all contributions at any number of loops of p′−collinear gluons, we

should finally obtain that the propagator corresponding to the emitted particle

in the light-cone limit due to the interaction with gluons turns out to be

G(∆x−) = Gfree(∆x
−)Pexp

(
ig

∫ x−

2

x−

1

dx− · A(x−)
)
, (7.64)

where Gfree corresponds to the propagator for the free particle propagating be-

tween points x−1 and x−2 separated by a light-like distance ∆x−. This can be

justified in the following way. Since the Wilson line (7.55) is dominated by the

contributions of local operators at large spin S, it could be thought of as a very

fast particle propagating in the x− direction which after a given threshold starts to

emit particles and gluons. When the gluons and particles emitted are collinear,

a divergence in the propagator of the emitted particle occurs, dominating the

whole propagator. Since collinear gluons are pure gauge, they cannot change the

state of the particle but only its phase. That pure phase is given by the Wilson

line (7.64) along the light-like direction x−.

Another way to see this is based on the arguments given in [101]. The propa-

gator of a scalar particle propagating between points x−i and x−i+1 interacting with

a gauge field is given by replacing the free scalar propagator by the propagator

in the background gluon field S(x−i , x
−
i+1;A), which satisfies the Green equation

iDµDµS(x, y;A) = δ4(x− y) , (7.65)

with Dµ = ∂µx − ig[Aµ(x), ]. In the light-cone limit, it is convenient to look for a

solution of the above equation of the form (7.64) times some function of x which

goes to one when x tends to x±.

Concerning the divergences coming from soft gluons, we expect they cancel

against virtual gluon corrections as in deep inelastic scatterings in QCD.
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In principle, besides the gluon absorption vertex, we should consider scalar

absorption vertices also. However it has been claimed in [100, 101], using OPE

arguments, that such kind of vertices only contribute at higher twist and conse-

quently their contributions are suppressed in the light-like limit.

Finally, putting all the Wilson lines together, i.e, replacing particle propaga-

tors by Wilson lines of the type (7.64), the entire correlator becomes a polygonal

Wilson loop with light-like edges, which in the very large spin limit we expect

to be dominated by the contributions of local operators in the expansion (7.55)

with large S, in a similar way like in the expectation value of a Wilson line with

a single cusp [102].

Summarizing, we have computed semi-classically the leading divergence of an

n−point function in string theory on AdS3 ⊂ AdS5 involving rotating strings

with large angular momentum which corresponds to the strong coupling regime

of twist-two large spin operators in N = 4 super-Yang-Mills theory. We have

seen that this divergence scales as the leading divergent factor of the expectation

value of a null-polygonal Wilson loop, which suggests a possible relation between

n−point functions of large spin operators and the mentioned expected values of

Wilson loops. In order to support the given suggestion, we have presented a

heuristic perturbative analysis which shows how the Wilson loop could arise from

the correlator.
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Chapter 8

Conclusions

In this work, we have studied correlation functions of strings propagating on

AdS spaces in the context of the AdS/CFT correspondence. We have mainly

focused on three- and four-point correlation functions of type IIB superstring

theory on AdS3 × S3 × T 4 at tree level for chiral primary operators and we have

found agreement with the corresponding correlators in the dual two-dimensional

conformal field theory living on the boundary of AdS3.

More specifically, we have evaluated spectral flow conserving three-point func-

tions containing spectral flow images of chiral primary states in type IIB su-

perstring theory and showed that they agree with the corresponding correlators

in the dual boundary CFT. These results provide an additional verification of

the AdS3/CFT2 correspondence, widening similar conclusions of previous works

[14, 15, 17] to the non-trivial spectral flow sectors of the theory and also confirm

the non-renormalization theorem for three-point functions of chiral operators in

the field theory side [21]. Moreover, the agreement between three-point functions

of spectral flowed chiral vertex operators with the correlator of their proposed

dual fields, confirms the bulk-boundary dictionary relating both sides of the cor-

respondence which also solves the problem of missing states [70] (see section 5.1).

We discussed extremal and non-extremal four-point correlators of unflowed

chiral primary states in the worldsheet theory at small cross-ratios x where we

were allowed to ignore subleading contributions from global SL(2) and SU(2)

descendants in the intermediate channel (in the boundary theory this corresponds

to neglecting spacetime descendants.) For simplicity, we also ignored possible

contributions from current algebra descendants. This is certainly allowed for

extremal correlators, for which the N = 2 chiral ring structure ensures that
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there are only chiral primary operators in the intermediate channel. For non-

extremal correlators, however, there are in principle further contributions coming

from current algebra descendants, which we have not computed. We found that

the integrated non-extremal correlators GNS
4 (x, x̄) and GR

4 (x, x̄) factorize into

the product of two spacetime three-point functions involving chiral primaries,

see (6.36) and (6.53). Other than in the spacetime CFT, the factorization is

non-trivial in the worldsheet theory because of the integration over the moduli

space. If there were only chiral primary operators running in the intermediate

channel, the factorization property would imply the non-renormalization of the

correlator, at least at small x. However, as just stated, there can be additional

terms coming from current algebra descendants, which would renormalize the

four-point function.

We also evaluated GNS
4 (x, x̄) and GR

4 (x, x̄) for the extremal case and found

agreement with the single-particle contribution to the corresponding extremal

boundary correlators computed in [23]. This had been expected from the non-

renormalization theorem of [21, 22]. Note that in contrast to their non-extremal

cousins, extremal four-point correlators also have two-particle states in the inter-

mediate channel, whose contribution to the correlator is not suppressed at large

N . Clearly, it would be desirable to also derive these two-particle additional

terms by taking into account nonlocal contributions on the worldsheet. We think

such contributions are presently not very well understood.

We also computed a particular non-extremal four-point correlator, defined

in (6.57). This correlator is not covered by the non-renormalization theorem

of [21] and therefore need not necessarily agree with its boundary counterpart.

Nevertheless, we find exact agreement, cf. our result (6.72) or (6.73) agrees with

(4.20), again under the premise that we may ignore possible contributions from

current algebra descendants in the intermediate channel, suggesting and extension

of the non-renormalization theorem to non-extremal correlators.

Concerning the AdS5/CFT4 duality, a full quantum formulation of string the-

ory is still missing in order to compute correlation functions similar to those in the

AdS3/CFT2 correspondence. Nevertheless, we can perform some computations

where the semi-classical approximation to the correlators is still reliable. One

such situation occurs when operators get large quantum numbers. In this work

we have considered large spin operators in N = 4 super-Yang-Mills which cor-

respond to classical rotating strings in AdS5. On the string theory side we have
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performed a semi-classical computation of the leading ultra-violet divergence of

an n−point function of rotating GKP strings and we have found the same scaling

as the leading divergence of the expectation value of a null polygonal Wilson loop

[82].

We also have presented a heuristic perturbative analysis which shows how the

expectation value of a null-polygonal Wilson loop could arise from the large spin

limit of the correlator of twist two composite operators.

In order to confirm the correspondence between Wilson loops and large spin

correlation functions, at least at semi-classical level, we should find an exact

classical solution of a string in AdS which contains GKP classical states and has

the topology of a sphere with n-vertex insertions. As far as we know, that solution

is unknown. However, the correlator could be computed semi-classically by using

integrability, as has been done at strong coupling for the finite part in [87] and at

weak coupling in [104]. The next interesting step could be to use the results in

[87] in order to extract the finite part of the Wilson loops from the correlators.

Carlos Andrés Cardona Carmen Núnẽz
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Appendix A

Clebsch-Gordan Coefficients

In this appendix we compute the Clebsch-Gordan coefficients (CG) expanding

the product representation (H ⊗ ĥ) of the SL(2,R) algebra 1. We consider the

case H ∈ D+,w
H , ĥ ∈ Dĥ, where

D+
H : {|H,M〉 ; H ∈ R, M = H + n, n = 1, 2, 3.....} , (A-1)

is an infinite discrete representation and

D+

ĥ
: {|ĥ, m̂〉 ; −ĥ ≤ m̂ ≤ ĥ , m̂ ∈ Z} , (A-2)

is a finite representation of the SL(2,R)−2 algebra. We use the following normal-

ization

j±|H,M >= (M ∓H)|H,M ± 1 > (A-3)

and similarly for |ĥ, m̂ >. A state living in the product representation may be

expanded as

|H ⊗ ĥ〉 ≡ |H, ĥ;H,M〉 =
∑

M,m̂

|H,M ; ĥ, m̂〉〈H,M ; ĥ, m̂|H, ĥ;H,M〉δM,M+m̂ .

(A-4)

Applying the raising operator H+ = j+
1
+ j+

2
and equating the coefficients on

both sides of (A-4), the following recursion relation is obtained

(M−H)〈M+ 1− m̂, m̂|H,M+ 1〉 = (M− m̂−H)〈M− m̂, m̂|H,M〉
+ (m̂− 1− ĥ)〈M− m̂+ 1, m̂− 1|H,M〉 ,

(A-5)

1For a review of the techniques used here see e.g [106]
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where the indices H, ĥ have been dropped for short. A similar recursion relation

is obtained applying the lowering operator H− = j−
1
+ j−

2
, namely

(M+H)〈M− 1− m̂, m̂|H,M− 1〉 =
(M− m̂+H)〈M− m̂, m̂|H,M〉+ (m̂+ ĥ+ 1)〈M− m̂− 1, m̂+ 1|H,M〉 .

(A-6)

The last term in (A-5) vanishes for m̂ = −ĥ, i.e.

〈M+ ĥ+ 1,−ĥ|H,M+ 1〉 = M+ ĥ−H

M−H 〈M+ ĥ,−ĥ|H,M〉 , (A-7)

and for M = H + 1, this reads

〈H + ĥ+ 2,−ĥ|H,H + 2〉 = (H + 1 + ĥ−H)〈M ′,−ĥ|H,H + 1〉 . (A-8)

Then, taking successively M = H + 2, · · · ,H + n, one finds

〈M,−ĥ|H,M〉 = (ĥ−H +M− 1)!

(M−H− 1)!(H + ĥ−H)!
〈M ′

1,−ĥ|H,H + 1〉. (A-9)

Defining q(m̂,M) ≡ (−1)m̂(m̂+ĥ)!(M−m̂+H)!
(M+H)!

, (A-6) may be recast as

q(m̂+ 1,M)〈M− (m̂+ 1), m̂+ 1|H,M〉 = q(m̂,M)〈M− m̂, m̂|H,M〉
−q(m̂,M− 1)〈M− 1− m̂, m̂|H,M− 1〉

≡ ∆M[q(m̂,M)〈M ′, m̂|H,M〉] . (A-10)

Applying this successively for m̂− 1, · · · , m̂− n and using

∆n
x[f ](x) =

∑n
s=0(−1)s

(
n

s

)
f(x− s), we get

〈M− m̂, m̂|H,M〉 = 1

q(m̂,M)
∆m̂+ĥ

M [q(−ĥ,M)〈M ′,−ĥ|H,M〉]

=
1

q(m̂,M)

m̂+ĥ∑

s=0

(−1)s

(
m̂+ ĥ

s

)
q(−ĥ,M− s)〈M− s+ ĥ,−ĥ|H,M− s〉 .

Substituting q(m̂,M) and 〈M − s + ĥ,−ĥ|H,M − s〉 in this equation, we

obtain

〈M− m̂, m̂|H,M〉 = (M+H)!

(m̂+ ĥ)!(M− m̂+H)!

×
m̂+ĥ∑

s=0

(−1)s−ĥ

(
m̂+ ĥ

s

)
(M− s+ ĥ+H)!

(M− s+H)!

× (ĥ−H +M− s− 1)!

(M− s−H− 1)!(H + ĥ−H)!
〈H + 1 + ĥ,−ĥ|H,H + 1〉 .
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Therefore, all the CG coefficients in the expansion (A-4) are expressed in

terms of just one coefficient, which can be set to one 2. As a consistency check,

we compute some known cases.

In the unflowed sector, we need to decompose the product representation with

ĥ = 1. In this case, there are three possible combinations of H, according to the

angular momentum selection rules, namely H = H + 1, H = H, H = H − 1. In

the first case, one gets

(ψΦ)ω=0
H+1,M =

∑

M,m̂

(Φω=0
H,Mψ

m̂)〈M − m̂, m̂|H + 1,M〉

=
1

2
(H −M)(1 +H −M)Φω=0

H,M+1ψ
−

+(H + 1−M)(1 +H +M)Φω=0
H,Mψ

3

+
1

2
(H +M)(1 +H +M)Φω=0

H,M−1ψ
+ . (A-11)

For H = H, the following field expansion is obtained

(ψΦ)ω=0
H,M = (M −H)Φω=0

H,M+1ψ
− − 2MΦω=0

H,Mψ
3 + (H +M)Φω=0

H,M−1ψ
+ .

And finally, for H = H − 1, which satisfies the chirality condition in the

unflowed sector,

(ψΦ)ω=0
H−1,M = Φω=0

H,M+1ψ
− − 2Φω=0

H,Mψ
3 + Φω=0

H,M−1ψ
+ , (A-12)

in agreement with the decomposition given in [60], up to the global phase factor

mentioned above.

2 Recall that the CG are determined up to a global phase factor (which is a global multi-

plicative factor for all remaining CG).
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Appendix B

Correlators in SL(2)k and SU(2)k′

WZW models

B.1 Two- and three-point functions in the SL(2)k

WZW model

The chiral primaries of the SL(2) WZW model are denoted by1

Φh(z, z̄; x, x̄) = Φh(z, x) Φ̄h(z̄, x̄) with ∆(h) = ∆̄(h) = −h(h− 1)

k − 2
,

(B-1)

where k is the level of the affine Lie algebra. In the current context only half-

integer h will be relevant.

The two- and three-point functions of Φh(z, z̄; x, x̄) were computed in [?, ?].

The two-point function is given by

〈Φh1(z1, z̄1; x1, x̄1)Φh2(z2, z̄2; x2, x̄2)〉

=
1

|z12|4∆(h1)

[
1

(2π)2
δ(x12) δ(x̄12) δ(h1 + h2 − 1) +

B(h1)

|x12|4h1
δ(h1 − h2)

]
,

(B-2)

with coefficient

B(h) =
k − 2

π

ν1−2h

γ(2h−1
k−2

)
and γ(x) =

Γ(x)

Γ(1− x)
, ν =

π

cν

Γ(1− 1
k−2

)

Γ(1 + 1
k−2

)
.

(B-3)

1In this appendix we only deal with the bosonic currents; k and k′ therefore refer to the

bosonic levels.
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The parameter cν is free.

The three-point function is

〈Φh1(z1, z̄1; x1, x̄1) Φh2(z2, z̄2; x2, x̄2) Φh3(z3, z̄3; x3, x̄3)〉 = C(h1, h2, h3)
∏

i<j

1

|xij|2hij |zij|2∆ij
,

(B-4)

with ∆12 = ∆(h1) + ∆(h2)−∆(h3), h12 = h1 + h2 − h3, etc. and coefficients

C(h1, h2, h3) =
k − 2

2π3

G(1− h1 − h2 − h3)G(−h12)G(−h23)G(−h31)
νh1+h2+h3−2G(−1)G(1− 2h1)G(1− 2h2)G(1− 2h3)

,

(B-5)

where

G(h) = (k − 2)
h(k−1−h)
2(k−2) Γ2(−h|1, k − 2) Γ2(k − 1 + h|1, k − 2) , (B-6)

and Γ2(x|1, ω) is the Barnes double Gamma function. G(h) has poles at h =

n +m(k − 2) and h = −n− 1− (m + 1)(k − 2) with n,m = 0, 1, .... In Ch1,h2,h3

the poles h1 + h2 + h3 = n+ k, n = 0, 1, ... are excluded by the condition

h1 + h2 + h3 ≤ k − 1 . (B-7)

The function G(h) satisfies the recursion relation

G(h+ 1) = γ(−h+1
k−2

)G(h) . (B-8)

B.2 Four-point function in the SL(2)k WZW model

The four-point function of the SL(2) chiral primary Φhi
(z, z̄; x, x̄) is given by

[105]

〈
4∏

i=1

Φhi
(zi, z̄i; xi, x̄i)〉 = |x24|−4h2 |x14|2(h2+h3−h1−h4)|x34|2(h1+h2−h3−h4)|x13|2(h4−h1−h2−h3)

× |z24|−4∆2 |z14|2ν1 |z34|2ν2 |z13|2ν3 FSL(2)(z, z̄; x, x̄) (B-9)

with

ν1 = ∆2 +∆3 −∆1 −∆4 , ν2 = ∆1 +∆2 −∆3 −∆4 , ν3 = ∆4 −∆1 −∆2 −∆3 ,

and

z =
z12z34
z14z32

, x =
x12x34
x14x32

. (B-10)
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The function FSL(2)(z, z̄; x, x̄) is given by

FSL(2)(z, z̄, x, x̄) = M(h1, h2, h3, h4) |z|−
4h1h2
k−2 |1− z|−

4h1h3
k−2 Γ(2h1)b

−1µ−2h1×
(B-11)

×
∫ ∏

i=1

dtidt̄i
(2πi)

|ti − z|−
2β1
k−2 |ti|−

2β2
k−2 |ti − 1|−

2β3
k−2 |x− ti|2 |D(t)| −4

k−2 ,

where

D(t) =
∏

i<j

(ti − tj) , (B-12)

and

β1 = h1 + h2 + h3 + h4 − 1 ,

β2 = h1 + h2 − h3 − h4 − 1 + k ,

β3 = h1 + h3 − h2 − h4 − 1 + k . (B-13)

The normalization is

M =
πC2

W (b)

b5+4b2Υ2
0

(ν(b))s

(πµγ(b2)b4)−2h1

G(1− h1 − h2 − h3 − h4)

G(1− 2h1)

×
4∏

i=2

G(−h2 − h3 − h4 + h1 + 2hi)

G(1− 2hi)
, (B-14)

where s = 1−∑4
i=1 hi, b

2 = 1
k−2

, γ(x) = Γ(x)/Γ(1− x) and

ν(b) = −b2γ(−b2) = Γ(1− b2)

Γ(1 + b2)
. (B-15)

B.3 Two- and three-point functions in the SU(2)k′

WZW model

The chiral primaries of the SU(2)k′ WZW model are denoted by

Φ′
j(z, z̄; y, ȳ) = Φ′

j(z, y) Φ̄
′
j(z̄, ȳ) , (B-16)

and have conformal dimension

∆(j) = ∆̄(j) =
j(j + 1)

k′ + 2
, 0 ≤ j ≤ k′

2
, (B-17)

where j is the SU(2) representation label and k′ the level of the affine Lie algebra.
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The two- and three-point functions of Φ′
j(z, z̄; y, ȳ) are then [103, ?]

〈Φ′
j1
(z1, z̄1; y1, ȳ1)Φ

′
j2
(z2, z̄2; y2, ȳ2)〉 = δj1,j2

|y12|4j1
|z12|4∆(j1)

, (B-18)

and

〈Φ′
j1
(z1, z̄1; y1, ȳ1)Φ

′
j2
(z2, z̄2; y2, ȳ2)Φ

′
j3
(z3, z̄3; y3ȳ3)〉 = C ′

j1,j2,j3

∏

i<j

|yij|2jij
|zij|2∆ij

,

(B-19)

with ∆12 = ∆(j1) + ∆(j2)−∆(j3), etc. The relevant coefficients are

C ′
j1,j2,j3

=

√
γ( 1

k′+2
)

γ(2j1+1
k′+2

)γ(2j2+1
k′+2

)γ(2j3+1
k′+2

)

P (j1 + j2 + j3 + 1)P (j12)P (j23)P (j31)

P (2j1)P (2j2)P (2j3)

(B-20)

and

P (j) =

j∏

m=1

γ( m
k′+2

) , P (0) = 1 , γ(x) =
Γ(x)

Γ(1− x)
. (B-21)

The functions P (j) are nonvanishing for 0 ≤ j ≤ k′ + 1. Therefore, C ′
j1,j2,j3

6= 0,

if

j1 + j2 + j3 ≤ k′ . (B-22)

B.4 Four-point function in the SU(2)k′ WZW model

The four-point function of the SU(2) chiral primary Φ′
ji
(z, z̄; y, ȳ) is given by [76]

〈
4∏

i=1

Φ′
ji
(zi, z̄i; yi, ȳi) 〉 = |y24|4j2 |y14|2(j1+j4−j2−j3)|y34|2(j3+j4−j1−j2)|y13|2(j1+j2+j3−j4)

× |z24|−4∆′

2 |z14|2ν
′

1 |z34|2ν
′

2 |z13|2ν
′

3FSU(2)(z, z̄, y, ȳ) ,

(B-23)

with

ν ′1 = ∆′
1 +∆′

3 −∆′
2 −∆′

4 , ν ′2 = ∆′
1 +∆′

2 −∆′
3 −∆′

4 , ν ′3 = ∆′
4 −∆′

1 −∆′
2 −∆′

3 ,

and

z =
z12z34
z14z32

, y =
y12y34
y14y32

. (B-24)

113



The function FSU(2)(z, z̄, y, ȳ) is given in terms of the Dotsenko-Fateev integral

FSU(2)(z, z̄, y, ȳ) = N (j1, j2, j3, j4) |z|
4j1j2
k′+2 |1− z|

4j1j3
k′+2 × (B-25)

×
∫ 2j1∏

i=1

dt′idt̄
′
i

(2πi)
|t′i − z|−

2β′1
k′+2 |t′i|−

2β′2
k′+2 |t′i − 1|−

2β′3
k′+2 |y − t′i|2 |D(t′)| 4

k′+2 ,

where

D(t′) =
∏

i<j

(t′i − t′j) , (B-26)

and

β′
1 = j1 + j2 + j3 + j4 + 1 ,

β′
2 = j1 + j2 − j3 − j4 + 1 + k′ ,

β′
3 = j1 + j3 − j2 − j4 + 1 + k′ . (B-27)

The normalization is

N (j1, j2, j3, j4) =
[
γ
(

1
k′+2

)]2j1+1 P (j1 + j2 + j3 + j4 + 1)

γ
(
2j1+1
k′+2

)1/2
P (2j1)

×
4∏

i=2

P (j2 + j3 + j4 − j1 − 2ji)

γ
(
2ji+1
k′+2

)1/2
P (2ji)

, (B-28)

with

P (n) =
n∏

m=1

γ
(

m
k′+2

)
, P (0) = 1 . (B-29)
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Appendix C

Some correlators

In this appendix we give some more details on the computation of some correlators

used in the main text.

For the computation of these correlators we will need the following OPEs (the

dependence of the fields on z is suppressed):

j(xk)Φhi
(xi) = (−j+ + 2xkj

3 − x2kj
−)Φhi

(xi)

∼ 1

zik

(
−D+

xi
+ 2xkD

3
xi
− x2kD

−
xi

)
Φhi

(xi)

=
1

zik

(
−x2i ∂xi

− 2hixi + 2xk(xi∂xi
+ hi)− x2k∂xi

)
Φhi

(xi)

= D(hi)
ki Φhi

(xi) , (C-1)

j(x1)j(x2) ∼ (k + 2)
x212
z212

+D(−1)
12 j(x2) , (C-2)

̂(x1)̂(x2) ∼ −2
x212
z212

+D(−1)
12 ̂(x2) , (C-3)

̂(x1)ψ(x2) ∼ D(−1)
12 ψ(x2) , (C-4)

where we defined the operator D(h)
ki as

D(h)
ki ≡ 1

zki

(
x2ki ∂xi

− 2hxki
)
. (C-5)

Recall that j(x) generates a bosonic SL(2) affine algebra at level kb = k + 2 (k

is the supersymmetric level), while ̂(x) forms a supersymmetric SL(2) model at

level −2.

We first show that an n-point correlator involving j(xk) (k ∈ {1, ..., n}) and
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n SL(2) primaries Φhi
(xi) (i = 1, ..., n) satisfies

d
(n)
k = 〈j(xk)

n∏

i=1

Φhi
(xi)〉 =

n∑

i=1
i 6=k

D(hi)
ki 〈

n∏

i=1

Φhi
(xi)〉 . (C-6)

This follows directly from (C-1).

Acting with j(xm) (m ∈ {1, ..., n}) on (C-6), we find the n-point correlator

d
(n)
k,m = 〈j(xk)j(xm)

n∏

i=1

Φhi
(xi)〉 =

(
D(−1)

km +
n∑

i=1
i 6=k

D(hi)
ki

)
d(n)m . (C-7)

Similarly, we may compute the fermionic correlators using1

〈ψ(x1)ψ(x2)〉 = k
(x12)

2

z12
,

〈̂(x3)ψ(x1)ψ(x2)〉 =
2∑

i=1

D(−1)
3i 〈ψ(x1)ψ(x2)〉 ,

〈̂(x4)̂(x3)ψ(x1)ψ(x2)〉 =
3∑

j=1

D(−1)
4j 〈̂(x3)ψ(x1)ψ(x2)〉 . (C-8)

1In the third equation we ignore a term of the type 〈̂(x4)̂(x3)〉〈ψ(x1)ψ(x2)〉. It turns out

to be subleading at small u.
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Appendix D

Comments on SU(2) four-point

function

In this appendix we derive the factorization (6.12) of the SU(2) four-point func-

tion.

We start from the SU(2) four-point function in y-space,

〈
Φ′

j1
(0)Φ′

j2
(y2, ȳ2)Φ

′
j3
(y3, ȳ3)Φ

′
j4
(∞)

〉
, (D-1)

in which we fixed y1 = 0, y4 = ∞. This corresponds to choosing states with

m1 = j1 and m4 = −j4. This will now be expanded by means of the general OPE

[103]

Φ′
j2
(y2, ȳ2; z2, z̄2)Φ

′
j1
(0) =

∑

j

|z2|2(∆(j)−∆(j1)−∆(j2))

|y2|2(j−j1−j2)
C ′j

j1,j2
[Φ′

j](y2, ȳ2; z2, z̄2) ,

(D-2)

where C ′j
j1,j2

are the SU(2) structure constants given by (B-20) and the square

brackets [Φ′
j] denote the contributions to the OPE from the primary field Φ′

j and

all its descendants. This quantity can be presented in the form

[Φ′
j](y2, ȳ2; z2, z̄2) = Rj

j1,j2
(y2, z2)R̄

j
j1,j2

(ȳ2, z̄2)Φ
′
j(y2, ȳ2; z2, z̄2) , (D-3)

where the operator R is given by

Rj
j1,j2

(y2, z2) =
∞∑

n′=0

zn
′

2

yn
′

2

3∏

αi=1

∑

{nipi}=n′

Rn′(ni, pi, j)(J
αi
−ni

(y2, z2))
pi (D-4)

where i = 1 = +, i = 2 = −, i = 3 = 3 and {nipi} = n′ means all combinations of

nipi (partitions of n
′) such that n+p++n−p−+n3p3 = n′. In order to determine the
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coefficient Rn′(ni, pi, j), let us take without loss of generality, a single combination

of nipi for each given n′ (i.e. let us look at the contribution to the OPE from a

single descendant for each level n′). In that case

Φ′
j2
(y2, ȳ2; z2, z̄2)Φ

′
j1
(0) =

∑

j,n′,n̄′

|z2|2(∆(j)−∆(j1)−∆(j2))zn
′

2 z̄
n̄′

2

|y2|2(j−j1−j2)yn
′

2 ȳ
n̄′

2

C ′j
j1,j2

Rn′(ni, pi, j)R̄n̄′(n̄i, p̄i, j)Φ
′jn′n̄′

J,J̄
(y2, ȳ2; z2, z̄2) ,

(D-5)

where Φ
′jn′n̄′

J,J̄
defined by

Φ
′jn′n̄′

J,J̄
=




3∏

αi=1

∑

{nipi}=n′

(Jαi
−ni

(y2, z2))
pi

∑

{n̄ip̄i}=n̄′

(J̄αi
−n̄i

(ȳ2, z̄2))
p̄i


Φ′

j (D-6)

is the descendant of Φ′
j at level (n

′, n̄′). Let us now consider a three-point function

with a descendant inside. Such a three-point function has the general form

〈Φ′
j1
(y1, z1)Φ

′
j2
(y2, z2)Φ

′j3n′

3
J3

(y3, z3)〉 = C ′
j1,j2,j3

D(j1, j2, J3)
∏

i<j

|yij|2Jij
|zij|2∆̃ij

, (D-7)

with J12 = j1 + j2 − J3, ∆̃12 = ∆12 − n′, etc., where we have taken n′ = n̄′ for

the sake of simplicity. Using the OPE (D-5) on the left hand side of (D-7) and

putting y1 = z1 = 0 , y2 = z2 = 1 , y3 = z3 = ∞, we find

D(j1, j2, J3) = Rn′

3
(ni, pi, j3)R̄n′

3
(ni, pi, j3) . (D-8)

This allows us to write

Φ′
j2
(y2, ȳ2; z2, z̄2)Φ

′
j1
(0)

=
∑

j,n′

|z2|2(∆(j)−∆(j1)−∆(j2)+n′)

|y2|2(j−j1−j2+n′)
C ′j

j2,j3
D(j1, j2, J) Φ

′jn′

J (y2, ȳ2; z2, z̄2) . (D-9)

Inserting this into the SU(2) four-point function, we get

〈
Φ′

j1
(0)Φ′

j2
(y2, ȳ2)Φ

′
j3
(y3, ȳ3)Φ

′
j4
(∞)

〉

=
∑

j,n′

|z2|2(∆(j)−∆(j1)−∆(j2)+n′)

|y2|2(j−j1−j2+n′)
C ′j

j1,j2
D(j1, j2, J) 〈Φ′

j4
(∞)Φ′

j3
(y3, ȳ3)Φ

′jn′

J (y2, ȳ2)〉

=
∑

j,n′

C ′(j)
|z2|2(∆(j)−∆(j1)−∆(j2)+n′)

|z23|2(∆(j)+∆(j3)−∆(j4)+n′)

|y23|2(j+n′+j3−j4)

|y2|2(j+n′−j1−j2)
D(j1, j2, J)D(j3, j4, J) ,

(D-10)
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with C ′(j) = C ′j
j1,j2

C ′
j,j3,j4

.

We now convert the SU(2) four-point function to the m−basis. This will be

accomplished by the field transformation [103]

Φ′
j,m,m̄ =

1

2πi

∮
d2y|y|2(m−j−1)cj+m

2j Φ′
j(y, ȳ) , (D-11)

where c are the inverse of the binomial coefficients,

cj+m
2j =

Γ(j +m+ 1)Γ(j −m+ 1)

Γ(2j + 1)
. (D-12)

We have restricted the quantum numbers to m = m̄. We then get

〈Φ′
j1,j1

Φ′
j2,m2

Φ′
j3,m3

Φ′
j4,−j4

〉 = 1

(2πi)2

∑

j,n′

[
C ′(j)D(j1, j2, J)D(j3, j4, J)c

j2+m2

2j2
cj3+m3

2j3

|z2|2(∆(j)−∆(j1)−∆(j2)+n′)

|z23|2(∆(j)+∆(j3)−∆(j4)+n′)

∮
d2y2d

2y3|y2|2(j1+m2−j−n′−1)|y3|2(m3−j3−1)|y2 − y3|2(j+n′+j3−j4)

]

or, after changing variables from y2 to y = y2/y3,

1

(2πi)2

∑

j,n′

[
C ′(j)D(j1, j2, J)D(j3, j4, J)c

j2+m2

2j2
cj3+m3

2j3

|z2|2(∆(j)−∆(j1)−∆(j2)+n′)

|z23|2(∆(j)+∆(j3)−∆(j4)+n′)

(D-13)

×
∮
d2y|y|2(j1+m2−j−n′−1)|1− y|2(j+n′+j3−j4)

∮
d2y3|y3|2(j1+m2+m3−j4−1)

]
.

Both integrals can be carried out using the formula

1

2πi

∮
dy

yn
1

(1− y)m
=

Γ(n+m− 1)

Γ(n)Γ(m)
(D-14)

such that the SU(2) four-point function in the m−basis becomes

〈Φ′
j1,j1

Φ′
j2,m2

Φ′
j3,m3

Φ′
j4,−j4

〉 =
∑

j,n′

[
C ′(j)D(j1, j2, J)D(j3, j4, J)c

j2+m2

2j2
cj3+m3

2j3

(D-15)

× |z2|2(∆(j)−∆(j1)−∆(j2)+n′)

|z23|2(∆(j)+∆(j3)−∆(j4)+n′)

Γ(j4 − j1 −m2 − j3)
2

Γ(j + n′ − j1 −m2 + 1)2Γ(j4 − j − n′ − j3)2
δ2j1+m2+m3−j4,0

]
.

We may eventually take m2 = j2 − d, m3 = j3 with d ≥ 0 and set z1,2,3,4 =

0, z, 1,∞. Then, cj3+m3

2j3
= 1 (since m3 = j3) and (D-15) reduces to (6.12). Note

that in the small z limit, the factor |z23|2(∆(j)+∆(j3)−∆(j4)+n′) with z23 = z − 1 is

just one.
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