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Ariel Mart ı́n Salort

Director de tesis: Julián Fernández Bonder

Director asistente: Juan Pablo Pinasco

Buenos Aires, 2012





Para Mora& Robert.





Homogeneizacíon de autovalores en operadores elı́pticos
cuasilineales

(Resumen)

Distintos problemas clásicos de vibraciones mecánicas son modelados con ecuaciones diferen-
ciales, y las frecuencias de vibración corresponden a los autovalores de éstas. Estructuras tales
como columnas, placas, membranas o cuerdas, obedecen distintas clases de problemas eĺıpticos
(el sistema de ecuaciones de la elasticidad, el laplaciano,el bilaplaciano, ecuaciones de Sturm
Liouville). Estos operadores han sido muy estudiados y se conocen numerosas propiedades de
sus autovalores, ver por ejemplo los trabajos clásicos de Courant, Hormander, Timoshenko, Titch-
marsh, Weinstein [CoHi53, Hor68, Hor07, Ti46] entre otros.

Durante el siglo XX, la teorı́a no lineal generó nuevas herramientas y problemas, y los autoval-
ores son interpretados en este contexto como un parámetro de bifurcación, correponden a valores
crı́ticos para los cuales una estructura puede deformarse,colapsar o salir de equilibrio (buck-
ling, bending). Podemos citar como ejemplo los trabajos de Antman, Browder, Berger, y Amann
[Am72, An83, Be68, Br65].

En los últimos años, los nuevos materiales han creado nuevos desafı́os. En particular, cuando se
consideran mezclas de dos o más materiales se van obteniendo mejores propiedades especı́ficas, y
gracias a estas mejores caracterı́sticas los materiales heterogéneos reemplazan a los homogéneos.
Particularmente, materiales compuestos como por ejemplo los poĺımeros reforzados con fibras de
vidrio o fibras de carbono, presentan unas excelentes relaciones rigidez/peso y resistencia/peso que
los hace idóneos para determinados sectores productivos,esto hace que vayan desplazando a ma-
teriales tradicionales como el acero, la madera o el aluminio. Desde el punto de vista matemático
esto significa principalmente que las soluciones de un problema de valores de contorno, que de-
penden solo de un parámetro pequeño, convergen a la solución de un problema ĺımite de contorno
que puede ser expĺıcitamente descripto [Al02, CD99, OSY92, BCR06, SV93].

Un problema interesante, común a muchos problemas diferentes más, es obtener información
sobre la existencia de transiciones de fases, situaciones en las cuales la variación del parámetroε
provoca diferentes comportamientos de las soluciones.
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En este trabajo nos centramos en el estudio de la homogeneización de problemas de autovalores
en ecuaciones eĺıpticas con condiciones de contorno del tipo Dirichlet y Neumann.

Esta tesis se divide esencialmente en tres partes. Primero,recolectamos propiedades conocidas
sobre el espectro delp−Laplaciano, y luego las generalizamos a una familia mas general de op-
eradores. Hecho esto, definimos las nociones deH− y G−convergencia para operadores eĺıpticos.
Luego nos centramos en el estudio del comportamiento de integrales oscilantes, esto es, integrales
que involucran coeficientes rápidamente oscilantes. En una última parte aplicamos estos resulta-
dos al estudio de la homogeneización de problemas de autovalores eĺıpticos y la estimación las
tasas de convergencia de los autovalores.

Palabras Claves:p−Laplaciano; operadores monotonos; homogeneización; autovalores; tasas de
convergencia;G−convergencia; integrales oscilantes.



Eigenvalue homogenization for quasilinear elliptic
operators

(Abstract)

Different classical problems of mechanic vibration are modeledwith differential equations, and the
vibration frequencies correspond to the eigenvalues of these. Structures such as plates, membranes
and strings, obey different class of elliptic problems (the laplacian, the bilaplacian, Sturm Liouville
equations). Those operators have been extensively studiedand are known many properties of
their eigenvalues, see for instance the classical works of Hormander, Timoshenko, Titchmarsh,
Weinstein [CoHi53, Hor68, Hor07, Ti46].

Along the XX century, the non-linear theory has generated new tools and problems, and in
this context, eigenvalues are interpreted like a bifurcation parameter, corresponding to the critical
values for which a structure can be deformed, collapse or lose the equilibrium (buckling, bending).
We cite, for instance, works of Antman, Browder, Berger, y Amann [Am72, An83, Be68, Br65].

During the last years, new materials have created new challenges, Particularly, when are con-
sidered mixing of two or more materials, better specific properties are obtained. Due to this better
characteristics, heterogeneous materials replace to homogeneous ones. Particularly, materials like
polymers reinforced with glass fibers or carbon fibers, present excellent relations stiffness/ weight
and strength/ weight. For these characteristics are ideal to certain sectors of production, and they
are displacing to traditional materials like steel, wood oraluminum.

From a mathematical point of view, this means mainly that solutions of a boundary value prob-
lem, which only depend of a small parameter, converge to the solution of a limit boundary problem
which can be explicitly described [Al02, CD99, OSY92, BCR06, SV93].

Homogenization describes the global behavior of thecomposite materials. They are heteroge-
neous but the heterogeneities are very small compared to itsdimension. The aim of this theory
is to give macroscopic properties of the composite by takinginto account the properties of the
microscopic structure.
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In this work we focus in the study of the homogenization of elliptic eigenvalue problems either
with homogeneous Dirichlet or Neumann boundary conditions.

This thesis is divided in three parts. First, we collect known properties about the spectrum of the
p−Laplacian operator, and then, we extend them to a more general family of operators. Done this,
we define theH− andG−convergence for elliptic operators. Then, we focus in the study of the
behavior of rapidly oscillating integrals, i.e., integrals involving rapidly oscillating coefficients.
In the last part we apply these results to the study of the homogenization of elliptic eigenvalue
problems and estimate the eigenvalue convergence rates.

Key words: p−Laplacian; monotone operators; homogenization; eigenvalues; rate convergence;
G−convergence; oscillating integrals.
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Al CONICETpor haberme dado el sustento económico durante estos años, a laUniversidad de
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Notation

For convenience of the reader, we list some symbols used in the thesis.

‖u‖X : The norm ofu ∈ X,whereX is a normed space.

{uh} : A sequence of functionsuh.

uh→ u : {uh} converges strongly tou.

uh ⇀ u : {uh} converges weakly tou.

uh
∗
⇀ u : {uh} converges weakly* tou.

Ω : Any open bounded subset ofRN.

Mn : The linear space of square matrices of orderN.

Mα,β : The subespace ofMN made of coercive matrices with coercive inverses.

L∞(Ω,Mα,β) : Space of admissible coefficients onΩ.

List of the asymptotic notation.

φ(x) = O(ψ(x)) whenx→ x0 : mean that|φ(x)| ≤ Cψ(x) whenx→ x0 for someC > 0.

φ(x) = o(ψ(x)) whenx→ x0 : mean thatφ(x)/ψ(x) → 0 whenx→ x0.

φ(x) ∼ ψ(x) whenx→ x0 : mean thatφ(x)/ψ(x) → 1 whenx→ x0.

φ(x) ≍ ψ(x) whenx→ x0 : mean thatcψ(x) ≤ φ(x) ≤ Cψ(x) whenx→ x0 for somec,C > 0.

List of function spaces. All functionsuare assumed to be measurable.

Lp(Ω) : All functions u : Ω→ R such that

‖u‖Lp(Ω) =
( ∫

Ω

|u(x)|p
)1/p

< ∞, p ≥ 1.

L∞(Ω) : All functions u : Ω→ R such that

‖u‖L∞(Ω) = ess supx∈Ω|u(x)| < ∞.
W1,p(Ω) : All functions u ∈ Lp(Ω) such that their first-order distributional derivates are in Lp(Ω)

‖u‖W1,p(Ω) =
(
‖u‖pLp(Ω) + ‖∇u‖pLp(Ω)

)
< ∞.

W1,p
0 (Ω) : All functions u ∈W1,p(Ω) such thatu = 0 on∂Ω

‖u‖W1,p
0 (Ω) = ‖∇u‖Lp(Ω).

W−1,p′(Ω) : The dual space ofW1,p
0 (Ω), 1

p +
1
p′ = 1.
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Introduction

The mathematical theory of homogenization try to describe the behavior of composite materials.
This kind of materials are characterized by having two or more finely mixed constituents, for in-
stance, the fibred or layered structures are widely used. Some composites built are reinforced
concrete, plastic reinforced by glass or carbon fiber, but there exists some heterogeneous mate-
rials with a fine microstructure that occur naturally, such as in porous rocks. Although they are
heterogeneous, the heterogeneities are very small compared to its dimension. This fact allows
us to differentiate two scales that characterize the material: the microscopic one, describing the
heterogeneities, and the macroscopic one, describing the global behavior of the composite. From
a macroscopic point of view, the composite looks like a homogeneous material. The aim of the
homogenization is to give macroscopic properties of the composite by taking into account the
properties of the microscopic structure.

When we are studying some physical phenomenon like heat conduction, elasticity or fluid dy-
namics, differential equations are good tools to describe the process and its behavior. The main
difficulty when we try to solve the equations arises from the characteristics of the material. In the
case of a composite material due to the fine microstructure, the physical parameters describing it
are rapidly oscillating. For this reason, to handle with thecorresponding differential equation can
be very hard.

Figure 1.1: The process of homogenization of a microestructure.



2 Introduction

1.1 The simplest model problem

The idea of the method of homogenization is to describe how a material behave at the macroscopic
level from its microscopic structure.

To illustrate we study a simple model problem. Suppose we want to know the stationary tem-
perature in ahomogeneousbody occupying a bounded open subsetΩ ⊂ RN with constant heat
conductivityA, with a heat source given byf and zero temperature on the surface∂Ω of the body.
Then the temperature can be modelated by the following boundary value problem:


−div(A∇u) = f in Ω

u = 0 on∂Ω
(1.1.1)

where f is a given function onΩ and A : RN → RN satisfies certain suitable conditions that
guaranties the existence and uniqueness of the solution of (1.1.1).

Now, suppose that the material isheterogeneous, i.e.,A is not constant onΩ, A = A(x), here we
obtain:


−div(A(x)∇u) = f in Ω

u = 0 on∂Ω.
(1.1.2)

The dependence of (1.1.2) onx does more difficult to handle.

An interesting special case is the case of periodic homogenization. We will assume that the
bodyΩ is a heterogeneous material which is built by of identical cubes with side lengthε, where
ε is a small positive number.

Figure 1.2: A periodic heterogeneous material.

The heat conductivityA now is a periodic function which represents how the heat varies over
a reference cellY. For simplicity we can chooseY to be the unit cube. Substitutingy by x

ε
, we

obtain that the functionA( x
ε
) oscillates periodically with periodε asx go overΩ, i.e.,

Aε(x) := A( x
ε
), x ∈ Ω.

The variablex is called themacroscopic variable, and x
ε

themicroscopic variable. In this case the
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distribution of temperatureuε will be the solution of the problem


−div(Aε∇uε) = f in Ω

uε = 0 on∂Ω.
(1.1.3)

For each value of the parameterε there is a corresponding equation like (1.1.3), and asε tends to
zero we obtain a sequence{uε} of solutions.

From a numerical point of view, solving equation (1.1.3) by any method will require too much
effort if ε is small since the number of elements (of degree of freedom) for a fixed level of accuracy
grows like 1/εN. It is this preferable to average of homogenize the properties ofΩ and compute
an approximation ofuε on a coarse mesh.

Many natural questions arise:

Q1: Does the temperatureuε converge to some limit functionu? Is u a good approximation of
uε?

Let us observe the following example: letΩ = (0, 1), f (x) = x2 andA(x) = 1/(2+ sin(2πx)).
In figures 1.3, 1.4 and 1.5 we have plotted the limit solutionu of (1.1.3) (which can be
obtained explicitly) and the solutionuε calculated by a numerical method for different values
of ε. Moreover, it was plotted the difference between both solutions to appreciate how the
approximation improves as we letε get smaller.

Figure 1.3:u anduε for ε = 0.4.

Q2: If uε converges to a limit functionu, doesu solve some limit boundary value problem? Are
then the coefficients of the limit problem constant?

When we study the convergence of the solutionsuε asε go to zero we would expect that the
material behaves like a homogeneous one. From a macroscopicpoint of view, it would be
reasonable that the limitu be described by an equation of the form


−div(A∗∇u) = f in Ω

u = 0 on∂Ω
(1.1.4)
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Figure 1.4:u anduε for ε = 0.1.

Figure 1.5:u anduε for ε = 0.01.

with A∗ a constant matrix. Since this limit problem does not containany oscillation, it is
easier to solve than the original one. Thus, ifA∗ was known we could findu, which give us
a very good approximation of the temperature distribution in the limit material. But, how
can we findA∗?

Answering these questions is the aim of the mathematicaltheory of homogenization.

1.2 G− and H−convergence. Homogenization

Related to the convergence of the solution of elliptic problems of the type (1.1.3) are the notion
of H− andG−convergence. The main difference between these two notions of convergence is
thatG−convergence deals with symmetric matrices whileH−convergence is defined for general
sequences (not necessarily symmetric). Moreover,G−convergence supposes the convergence of
the solutionsuε only while H−convergence supposes not only the convergence of the solutionsuε

but also ofAε∇uε.

LetMN be the linear space of square real matrices of orderN with bounded coefficients. Given
α, β two positive constants, we define a space ofMN made of coercive matrices with coercive
inverses

Mα,β = {M ∈ MN : Mξ · ξ ≥ α|ξ|2, M−1ξ · ξ ≥ β|ξ|2 ∀ξ ∈ RN}.
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Figure 1.6:u′ and (uε)′ for some values ofε.

Figure 1.7:aε(x) = 1/(2+ sin(2π x
ε
)), ā =

∫ 1
0 a(x) dx anda∗.

Given a sequence of matrices{Aε} ∈ Mα,β we say thatAε H−convergesto A∗ if and only if for
every functionf ∈W−1,2(Ω) the solutionuε of (1.1.3) is such that


i) uε ⇀ u weakly inW1,2

0 (Ω),

ii ) Aε∇uε ⇀ A∗∇u weakly in (L2(Ω))N,

whereu is the unique solution of the problem (1.1.4).

In the particular case of symmetric matrices inMα,β we say that{Aε}G−convergesto A∗ if and
only if for every function f ∈W−1,2(Ω) the solutionuε of (1.1.3) is such that

uε ⇀ u weakly inW1,2
0 (Ω),

whereu is the unique solution of the problem (1.1.4). Let us observethat in the caseN = 1,
H−convergence always impliesG− convergence. WhenN > 1 this implication is true in the case
of symmetric matrices.

1.2.1 A one-dimensional example

In the following classical example we will see difficulties that arises when we try to obtain the ho-
mogenized equation asε tends to zero in (1.1.3). Here, in the one-dimensional case,the diffusion
matrixA(x) it is reduced to a real functiona(x) which we will assume be 1−periodic for simplicity.
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We will see that the main difficulty presents when we need to pass to the limit in products of
only weak convergent sequences. To overcome this problem itis used the notion of the called
compensated compactness. Particularly, in the one-dimensional case, we will be ableto obtain an
explicit formulation of the limit coefficienta∗ through algebraic manipulation ofa(x).

We considerΩ be a bounded interval inR, Ω = (0, 1) for simplicity. Let f be a function be-
longing toL2(Ω) and leta be a positive 1−periodic function inL∞(Ω) such that for some constants
α, β

0 < α ≤ a(x) ≤ β < +∞, for a.e.x ∈ R. (1.2.1)

We defineaε(x) := a( x
ε
) and consider the following sequence of equations


−(aε(uε)′)′ = f in Ω

uε(0) = uε(1) = 0,
(1.2.2)

where′ := d
dx.

The weak form of (1.2.2) is


∫ 1
0 aε(uε)′ϕ′ =

∫ 1
0 fϕ for everyϕ ∈W1,2

0 (Ω)

uε ∈W1,2
0 (Ω).

(1.2.3)

By a standard result in the existence theory of partial differential equations, using Lax-Milgram
Lemma (see for instance [Ev10]), there exists a unique solution of these problems for eachε.

Let us observe that by duality

α‖(uε)′‖2L2(Ω) ≤
∫ 1

0
aε|(uε)′|2 =

∫ 1

0
f uε ≤ ‖ f ‖W−1,2(Ω)‖uε‖W1,2

0 (Ω). (1.2.4)

By Poincaré inequality we have that

‖uε‖L2(Ω) ≤ ‖(uε)′‖L2(Ω)

which implies that

‖uε‖W1,2
0 (Ω) ≤

1
α
‖ f ‖L2(Ω). (1.2.5)

SinceW1,2
0 (Ω) is a reflexive space, there exists a subsequence still denoted byε such that

uε ⇀ u weakly inW1,2
0 (Ω) (1.2.6)

and sinceW1,2
0 (Ω) is compactly embedded inL2(Ω) we have by Rellich Embedding Theorem (for

instance, see [Ev10]) that
uε → u strongly inL2(Ω).

In general, however, we only have that

(uε)′ ⇀ u′ weakly inL2(Ω). (1.2.7)
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Sincea is a 1−periodic function we have that the sequence{aε} converges weakly* inL∞(Ω) (and
hence weakly inL2(Ω)) to its arithmetic mean, i.e.,

aε
∗
⇀ ā =

∫ 1

0
a weakly* in L∞(Ω). (1.2.8)

From (1.2.3),(1.2.6) and (1.2.8) it could be reasonable that in the limit we have thatu is solution
of: 

∫ 1
0 āu′ϕ′ =

∫ 1
0 fϕ for everyϕ ∈W1,2

0 (Ω)

u ∈W1,2
0 (Ω).

(1.2.9)

However thisis not true in general, sinceaε(uε)′ is the product of two weakly converging se-
quences. This is themain difficulty in the limit process. To obtain the correct answer we proceed
as follows.

Let ξε = aε(uε)′. According to (1.2.8) and (1.2.5),{ξε} is bounded inL2(Ω) and (1.2.3) implies
that−ξ′ε = f in Ω. Therefore, there exists a constantC independent ofk such that

‖ξ′ε‖L2(Ω) ≤ C.

Again, sinceW1,2(Ω) is reflexive, there exists a subsequence still denoted byε, such that

ξε → ξ strongly inL2(Ω).

Since{ 1
aε
} converges to1a weakly* in L∞(Ω) (and hence weakly inL2(Ω)), we can pass to the limit

in theweak-strongproduct

(uε)′ =
1
aε
ξε ⇀

1
a
ξ weakly inL2(Ω). (1.2.10)

Thus, by (1.2.6) and (1.2.10), we obtain that

ξ = (a−1)−1u′. (1.2.11)

Now we can pass to the limit in (1.2.3) obtaining


∫ 1

0
a∗u′ϕ′ =

∫ 1

0
fϕ for everyϕ ∈W1,2

0 (Ω)

u0 ∈W1,2
0 (Ω)

wherea∗ = (a−1)−1. Beingβ−1 ≤ a−1 ≤ α−1 we conclude that the homogenized equation has
a unique solution and thus that the whole sequence{uε} converges. Finallyu is solution of the
equation 

−(a∗u′)′ = f in Ω

u(0) = u(1) = 0.

Here, through algebraic manipulation, we have obtained thevalue of theG−limit a∗ explicitly.
However, whenN > 1 or the problem is non-linear the procedure can be much more difficult.
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1.3 Eigenvalue problems

Having defined the notion of convergence of problem (1.1.3),we are devoted to the study of the
eigenvalue problem and its behavior asε→ 0. Let us consider a sequence of symmetric matrices
in Mα,β(Ω) for a bounded domainΩ in RN. Fixed a positive value ofε, the constantλε is an
eigenvalueof the operatorAε = −div(Aε∇) with Dirichlet boundary conditions, if there exists
uε /≡ 0 solution of


−div(Aε∇uε) = λεuε in Ω

uε = 0 on∂Ω.
(1.3.1)

The functionuε is called aneigenfunctionof Aε, associated with the eigenvalueλε. The set of
the eigenvalues is called thespectrumofAε. The symmetry assumption implies that the spectrum
ofAε is a countable subset ofR+0 whose unique accumulation point is+∞, i.e., the spectrum is a
increasing sequence{λεk} with

0 < λε1 ≤ λ
ε
2 ≤ · · · → +∞.

Given the matrices{Aε}, let A∗ be the corresponding homogenized matrix in the sense of the
G−convergence. Obviously, from the symmetry ofAε, the matrixA∗ is symmetric too. Conse-
quently, there exists a sequence of eigenvalues{λk} corresponding to the operatorA∗ = −div(A∗∇)
such that

0 < λ1 ≤ λ2 ≤ · · · → +∞.

Some natural question arise:

Q1: Is {λk} the limit of {λεk} asε→ 0?

Q2: If the answer is positive, can the rate of the convergence be estimated?

When we mention the order of convergence of the eigenvalues,we refer to find explicit bounds
onε andk for the difference|λεk − λk|.

As we will see in Section 7.3.2, in the one-dimensional caseN = 1 whenaε is a 1−periodic
function, through a change of variables, problem


−(aε(uε)′)′ = λεuε in I := (0, 1)

uε(0) = uε(1) = 0,

can be converted in one of the form

−w′′

δ
= µδρδw in I := (0, 1)

wδ(0) = wδ(1) = 0
(1.3.2)

whereρ is a 1−periodic function defined by

ρ(y) = a(Ly), ρδ(y) := ρ( y
δ
),
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Figure 1.8: Behavior ofµδk, eigenvalues of (1.3.2).

with

Lε =
∫ 1

0

1
aε(s)

ds→ L = a−1.

The new parameter isδ = εL/Lε and the eigenvalue isµδ = L2
ελ

ε. From a computational point of
view, estimate of the eigenvalues is easier in equations involving only a weight function.

For example, let us considerρ(x) = 2 + sin(2πx). In this case, we obtain that ¯ρ =
∫

I
2 +

sin(2πx)dx = 2, and the eigenvalues of the limit problem associated to (1.3.2) are given byµk =

k2π2

2 . Whenδ tends to zero the value of
√
µδ1 tends to the limit value

√
µ1 = π/

√
2 ∼ 2.2214

displaying oscillations, as we see in Figure 1.8.

1.4 The Fŭcik spectrum

Consider the Laplacian eigenvalue problem with Dirichlet boundary conditions


−∆u = λm(x)u in Ω ⊂ RN

u = 0 on∂Ω.
(1.4.1)

As have been mentioned, (1.4.1) admits a sequence of eigenvalues{λk}k such that

0 < λε1 ≤ λ
ε
2 ≤ · · · → +∞. (1.4.2)

Given a functionu, it can be written asu = u+ − u−, beingu± the positive and negative part ofu
respectively. Now, instead considerλu in the right term of (1.4.1), we are interested in consider a
more general case. Letα andβ be two real parameters such that


−∆u = m(x)(αu+ − βu−) in Ω

u = 0 on∂Ω.
(1.4.3)
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We denote bỹΣ to thespectrumof (1.4.3), i.e., the set of points (α, β) ∈ R2 such that (1.4.3) has
non-trivial solution.

Observe that ifα = β we recover (1.4.1) then, eigenvalues (1.4.2) will be contained in the
spectrum of (1.4.3).

One can ask:

Q1: What happens with the spectrum of (1.4.3)? Is the spectrum a discrete sequence?

Taking a look to (1.4.3) we immediately observe that the spectrum is not a discrete sequence:
Σ contain the linesλ1(m)×R andR×λ1(m), which are called thetrivial lines of the spectrum.
Here, the sequence{λk(m)} denotes the eigenvalues of the weighted linear problem (1.4.1).
See figure 1.9.

Q2: Can the spectrum be characterized?

In the caseN = 1 (for instance, see [Ry00], [Dr92])̃Σ is made of the two trivial lines
R × λ1(m) andλ1(m) × R together with a sequence of hyperbolic like curve inR+ × R+
passing through (λk(m), λk(m)), k ≥ 2; one or two such curves emanate from (λk(m), λk(m)),
and the corresponding solutions of (1.4.3) along these curves have exactlyk − 1 zeros in
(0, 1).

When N > 1, the situation is different and a characterization of the full spectrum is not
known .

Understanding the behavior of problem (1.4.3) it is useful for the study of theFuc̆ik spectrum
with weights, that is, the following asymmetric problem:


−∆u = αm(x)u+ − βn(x)u− in Ω

u = 0 on∂Ω.
(1.4.4)

wherem andn are two positive functions.

What happens with the spectrumΣ of (1.4.4)?

In the one-dimensional caseN = 1 with constant coefficients (letm = n = 1 andΩ = (0, 1)
for simplicity) the spectrum of (1.4.4) can be characterized explicitly, for instance see [FH80].
Moreover, it is composed by the following curves:

Σ2i :
iπ
√
α
+

iπ
√
β
= 1,

Σ+2i−1 :
iπ
√
α
+

(i − 1)π
√
β
= 1,

Σ−2i−1 :
(i − 1)π
√
α
+

iπ
√
β
= 1,
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Figure 1.9: The Fuc̆ik spectrum

In Fig 1.9 we plot this spectrum, where the axes have been moved to
√
α/π and

√
β/π, respec-

tively.

In the case in whichm andn are non-constants weights, in [AG01] a characterization ofthe
spectrum is proved in terms of the so-called zeroes-functions. Unfortunately, such construction
does not provides an explicit characterization of the curves.

WhenN > 1, is only known a full description of the first nontrivial curve of Σ, which we will
denote byC1 := C1(m, n), see [ACCG02, ACCG08].

1.4.1 Homogenization of the spectrum

Let us consider two sequences of functions{mε(x)} and{nε(x)} depending on a real parameterε,
wherem, n are uniformly bounded away from zero.

We are interested in studying the spectrumΣε(mε, nε) of problem (1.4.4) with weightsmε and
nε, i.e.,


−∆uε = αεmε(x)u+ε − βεnε(x)u−ε in Ω

uε = 0 on∂Ω.
(1.4.5)

Particularly, for each value ofε there exists a curveCε1 := {αε, βε} in the spectrumΣε(mε, nε)
associated to problem (1.4.5).
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Having in mind these problems, we wonder:

Q1: There exists a limit curveC1 = {(α0, β0)} such thatCε1→ C1 asε→ 0?

Q2: Can this limit curve be characterized like a curve of a limit problem?

Q3: If the answer is positive, can be estimated a rate of convergence ofCε1?

WhenCε1→ C1 asε→ 0 we would like to obtain a estimate of the remainders|αε − α0| and
|βε−β0|, that is, ifCε1 can be described as{(αε(s), βε(s)), s ∈ R+} andC1 as{(α0(s), β0(s)), s ∈
R
+}, we want a estimate of the kind

|αε − α0| ≤ cτ(s)ε

with c a constant independent ofε ands, andτ a functions depending only ons.

Q4: What happens with other boundary conditions? Can a similar results be obtained ?

1.5 Outline of the thesis

In Chapter §2, we deal with the eigenvalue problem of the weightedp−Laplacian operator
∆pu := div(|∇u|p−2∇u) with Dirichlet boundary conditions in a bounded domainΩ ⊂ RN, N ≥ 1,
i.e.,


−∆pu = λρ|u|p−2u in Ω

u = 0 on∂Ω
(1.5.1)

whereρ is a weight bounded uniformly away from zero and infinity. Here, we define the concept
of eigenvalue and eigenfunction associated to (1.5.1) as well as its variational spectrum. Then,
we remember some useful properties about the (variational)eigenvalues: the first eigenvalueλ1 is
positive, simple (the eigenfunctions associated to it are one multiple of the other one) and isolated
(there is no eigenvalue betweenλ1 andλ1 + δ for a smallδ). Moreover, eigenfunctions associated
to the first eigenvalue do not change sign inΩ. The second eigenvalue is variational and an
eigenfunction associated to it has two nodal domains. In theone-dimensional caseN = 1 it is
well-known that thek-th eigenvalue are simple and its associated eigenfunctions havek− 1 zeroes
and the variational eigenvalues exhaust the full spectrum.

Also, we define the concept of monotone operators, which extends (1.5.1) to a more general
family of eigenvalue problems of the form


−div(a(x,∇u)) = λρ|u|p−2u in Ω

u = 0 on∂Ω
(1.5.2)

wherea(·, ·) satisfies certain properties that we made precise later (c.f Section 2.4). Here, we
generalize all the properties known for the eigenvalues of the p−Laplacian for the caseN = 1 and
N > 1.
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In Chapter §3 we study the asymptotic distribution of eigenvalues in one-dimensional open
sets. We consider a setΩ ⊂ R which is a disjoint union of bounded intervals,Ω =

⋃
j∈N I j such

that
|I1| ≥ |I2| ≥ · · · ≥ |I j | ≥ · · · ց 0,

and we assume that there exists some nonincreasing functiong : (0,∞)→ (0,∞) such that

|I j | = g( j).

We consider the two equivalent following problems:

• A Lattice Point Problem: to estimate, forx ր ∞, the number of lattice points below the
curvexg(t),

N(x) = #{( j, k) ∈ N × N : k ≤ xg( j)} =
∞∑

j=1

[xg( j)]. (1.5.3)

• An Eigenvalue Counting Problem: to estimate, forλ ր ∞, the number of eigenvalues less
than or equal toλ of −(|u′|p−1u′)′ = λ|u|p−2u in Ω with zero Dirichlet boundary conditions
on∂Ω,

N(λ) = #{ j ∈ N : λ j ≤ λ},

Indeed, both problems are the same:N(λ) = 1
πp

∑∞
j=1

[
g( j)λ1/p

]
.

We are interested in the asymptotic number of eigenvalues ofthe following problem inΩ:

− (|u′|p−2u′)′ = λ|u|p−2u, (1.5.4)

with zero Dirichlet boundary conditions on∂Ω, and 1< p < +∞.

In the linear case (p = 2) and when the measure ofΩ is finite, He, Lapidus and Pomerance
[HL97, La93] obtain that

N(λ) = #{ j ∈ N : λ j ≤ λ} =
|Ω|
π
λ1/2 +

ζ(d)

πd
f (λ1/2) + o( f (λ1/2))

where 0< d < 1, f (x) = g−1(1/x) andζ is the Riemann Zeta function.

In this Chapter we characterize the growth of the number of eigenvaluesN(λ) in terms of the
decay of the lengths of the intervals when the measure ofΩ is finite. WhenΩ ⊂ R is bounded and
p > 1, we obtain

N(λ,Ω) =
|Ω|
πp
λ1/p +

ζ(d)

πd
p

f (λ1/p) + o( f (λ1/p)) as λ→∞

where f (x) = g−1(1/x) and 0< d < 1. Moreover, when the measure ofΩ is not finite we obtain
the following non-standard asymptotic formula

N(λ) = #{ j ∈ N : λ j ≤ λ} =
ζ(d)

πd
p

f (λ1/p) + o( f (λ1/p)),
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where nowd > 1.

In Chapter §4 basically we discuss the definitions ofH− andG−convergencefor elliptic oper-
ators. Here, we deal with classical examples of homogenization in the one-dimensional case and
difficulties that arise. Furthermore, we defineG−convergence for elliptic monotone operators and
we review some essential results for the important case of periodic homogenization.

In Chapter §5 we prove some results concerning to the estimate of integrals involving rapidly
oscillating functions. They allows us to replace an integral involving a rapidly oscillating function
with one that involves its average in the unit cube. This kindof results will be very useful to
estimate the rate of convergence of eigenvalues in homogenization problems. Indeed, following
the ideas of Oleı̆nik [OSY92] we prove the following results. For everyu ∈W1,p(Ω) there exists a
constantC independent ofε such that

∣∣∣∣∣
∫

Ω

(g( x
ε
) − ḡ)u

∣∣∣∣∣ ≤ Cε‖u‖W1,p(Ω). (1.5.5)

whereg is aQ-periodic function and ¯g denotes the average ofg overQ

In the case of functions inu ∈W1,p
0 (Ω) we prove that

∣∣∣∣
∫

Ω

(g( x
ε
) − ḡ)|u|p

∣∣∣∣ ≤ C1ε‖∇u‖pLp(Ω). (1.5.6)

In both cases constantsC andC1 are unknown. The fact of enlarge the set of test functions is
reflected in the regularity of the domainΩ. In (1.5.5) we need little regularity, let us say Lipschitz
boundary or less. Instead, in (1.5.6) is necessary a more regularity, for instance a domain withC1

boundary.

In the one-dimensional case we can be more precise and we found an explicit value of the
constantsC andC1: for every functionu ∈W1,p

0 (I ), I := (0, 1) we have

∣∣∣∣
∫

I
(g( x

ε
) − ḡ)|u|p

∣∣∣∣ ≤ ‖g− ḡ‖L∞(R)ε‖u′‖pLp(I)

[ p

π
p−1
p

+
εp−1

p

]

whereḡ =
∫ 1

0
g. In the case of functionsu ∈W1,p(I ) we obtain that

∣∣∣∣
∫

I
(g( x

ε
) − ḡ)u

∣∣∣∣ ≤ ‖g− ḡ‖L∞(R)

(
(2p + p)

1
p (2

p
p−1 +

p−1
p )

p−1
p + 1

(p−1)πp

)
ε‖u‖W1,p(I).

In Chapter §6 we are devoted to study the asymptotic behavior (asε → 0) of the eigenvalues
of the following problems


−div(aε(x,∇uε)) = λερε|uε|p−2uε in Ω

uε = 0 on∂Ω,
(1.5.7)

whereε is a positive real number, andλε is the eigenvalue parameter.
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The weight functionsρε are assumed to be positive and uniformly bounded away from zero and
infinity and the family of operatorsaε(x, ξ) have precise hypotheses, but the prototypical example
is

− div(aε(x,∇uε)) = −div(Aε(x)|∇uε|p−2∇uε), (1.5.8)

with 1 < p < +∞, andAε(x) is a family of uniformly elliptic matrices (both inx ∈ Ω and inε > 0).

As ε tends to zero, eigenvalues of (1.5.7) tends to those of a limit problem of the kind

−div(a(x,∇u)) = λρ̄|u|p−2u in Ω

u = 0 on∂Ω,
(1.5.9)

wherea(x, ξ) is theG−limit of aε(x, ξ).

In this Chapter, we analyze the order of convergence of eigenvalues of (1.5.7) to the ones of its
limit problem and prove that

λε1→ λ1, λε2→ λ2 asε→ 0.

In the periodic framework the first result in this problem, for the linear case, can be found in the
work of Oleı̆nik, Shamaev and Yosifian [OSY92]. In the case inwhich the diffusion matrix does
not depends onε, using tools from functional analysis in Hilbert spaces, they deduce that

|λεk − λk| ≤
Cλεk(λk)2

1− λkβ
ε
k

ε
1
2 .

Here,C is a positive constant, andβk
ε satisfies

0 ≤ βk
ε < λ

−1
k , lim

ε→0
βk
ε = 0

for eachk ≥ 1.

More recently, Kenig, Lin and Shen [KLS11] studied the linear problem (allowing anε depen-
dance in the diffusion matrix of the elliptic operator) and proved that for Lipschitz domainsΩ one
has

|λεk − λk| ≤ Cε| log(ε)| 12+σ

for anyσ > 0, C depending onk andσ.

Moreover, the authors show that if the domainΩ is more regular (C1,1 is enough) they can get
rid of the logarithmic term in the above estimate. However, no explicit dependance ofC on k is
obtained in that work.

When the dependance onε only appears in an oscillating weightρε we prove that thekth-
variational eigenvalue of problem (1.5.7) converges to thekth-variational eigenvalue of the limit
problem (1.5.9). In this case we estimate the rate of convergence as

|λεk − λk| ≤ Ck
2p
N ε
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with C independent ofk andε. By λεk andλk we refer to the variational eigenvalues of problems
(1.5.7) and (1.5.9) respectively. This result generalizesthe mentioned bounds for the linear case.

Also, we prove that this estimates still holds for the Neumann boundary condition:

|λεk − λk| ≤ C̃k
2p
N ε

for someC̃ independent ofk andε, whereλεk andλk are the variational eigenvalues of problems
(1.5.7) and (1.5.9) with Neumann boundary condition, respectively.

In Chapter §7 we study problem (1.5.7) in the one-dimensional caseN = 1. Now, the function
aε(x, ξε) in (1.5.7) can be explicitly expressed asaε(x, ξε) = aε(x)|ξε|p−2ξε and itsG−limit (1.5.9)
is given byah(x, ξ) = ah(x)|ξ|p−2ξ. Moreover, in the periodic framework,ah(x) is constant and is
given by

a∗p =
( ∫

I
a(x)−

1
p−1

)−(p−1)
.

In this Chapter, we analyze the convergence of eigenvalues of (1.5.7) to the ones of its limit
problem and prove that for eachk ∈ N,

λεk → λk, asε→ 0

whereλεk andλk are the variational eigenvalues of problems (1.5.7) and (1.5.9) withN = 1.

The problem, in the linear and periodic setting, and in dimension N = 1, with a = 1, was
recently studied by Castro and Zuazua in [CZ00, CZ00b]. In those articles the authors, using the
so-called WKB method which relays on asymptotic expansionsof the solutions of the problem,
and the explicit knowledge of the eigenfunctions and eigenvalues of the constant coefficient limit
problem, proved

|λεk − λk| ≤ Ck4ε

Let us mention that their method needs higher regularity on the weightρ and on the diffusiona,
which must belong at least toC2 and that the bound holds fork ∼ ε−1. Also, the value of the
constantC entering in the estimate is unknown.

Our main result in this chapter is the following: in periodicsettings, i.e.,aε = a(x/ε) and
ρε = ρ(x/ε) are 1−periodic functions, there exists a constantC depending only onp, a andρ such
that

|λεk − λk| ≤ Ck2pε

whereλεk and λk are the variational eigenvalues of problems (1.5.7) and (1.5.9) with N = 1.
Moreover,C can be estimated explicitly in terms of the functionsa andρ.

Also, we study problem (1.5.7) in the one-dimensional caseN = 1 with Neumann boundary
conditions. We prove that for eachk ∈ N, λεk → λk asε → 0. In the periodic framework we find
an explicit expression of the constantC in the inequality

|λεk − λk| ≤ C̃(k− 1)2pε
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whereλεk and λk are the eigenvalues of problems (1.5.7) and (1.5.9) with Neumann boundary
conditions andN = 1, respectively.

In Chapter §8 we deal with the following asymmetric problem

−∆puε = αεmε(u
+
ε )p−1 − βεnε(u−ε )p−1 in Ω ⊂ RN (1.5.10)

either with homogeneous Dirichlet or Neumann boundary conditions. For eachε > 0, consider
the Fuc̆ik spectrum defined as the set

Σ(mε, nε) := {(αε, βε) ∈ R2 : (1.5.10) has nontrivial solution}.

It is known thatΣ contain the trivial linesλε1(m) × R andR × λε1(n). Also, only a characterization
of the first non-trivial curve in the spectrum, sayC1, is known:

Cε1 = {(αε(s), βε(s)), s∈ R
+} (1.5.11)

whereα(s) andβ(s) are continuous functions defined by in terms of a min-max quotient. Assuming
thatmε(x) ⇀ m(x) andnε(x) ⇀ n(x) weakly* in L∞(Ω), the natural limit of (1.5.10) asε→ 0 is

−∆pu0 = α0m(x)(u+0 )p−1 − β0n(x)(u−0 )p−1 in Ω (1.5.12)

either with homogeneous Dirichlet or Neumann boundary. Thefirst non-trivial curve in the spec-
trum of (1.5.12) is given by

C1 = {(α0(s), β0(s)), s∈ R+}. (1.5.13)

Under these considerations we prove that

Cε1(mε, nε)→ C1(m, n) asε→ 0

in the sense thatαε(s) → α(s) andβε(s) → β(s) ∀s ∈ R+. Moreover, when the weightsmε andnε
are given in terms ofQ−periodic functionsm, n in the formmε(x) = m( x

ε
) andnε(x) = n( x

ε
), being

Q the unit cube inRN, for eachs ∈ R+ we have the following estimates

|αε(s) − α0(s)| ≤ c(1+ s)τ(s)ε, |βε(s) − β0(s)| ≤ cs(1+ s)τ(s)ε (1.5.14)

wherec is a constant independent ofε andsandτ is a function depending only ons.
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Eigenvalues

2.1 Eigenvalues of the weightedp−Laplacian in RN

For 1< p < ∞ the p−Laplacian operator is defined as

∆pu := div(|∇u|p−2∇u) (2.1.1)

Obviously,∆2 = ∆ is the usual Laplace Operator. Note that forp , 2 the operator (2.1.1) is
(p− 1)−homogeneous but not additive. For this reason, some authorscall equations involving the
p−Lalacianhalf-linear equation.

Eigenvalue problems for thep−Laplacian operator subject to zero Dirichlet boundary condi-
tions on a bounded domain have been studied extensively during the past two decades and many
interesting results have been obtained. In this section we collect some of those one more important
to our purpouse.

We consider the following weighted eigenvalue problem withDirichlet boundary conditions

−∆pu = λρ(x)|u|p−2u in Ω

u = 0 on∂Ω
(2.1.2)

whereΩ is a bounded domain inRN andλ is a parameter. The weightρ is such that for two
positive constantsρ− < ρ+

0 < ρ− ≤ ρ(x) ≤ ρ+ < ∞ a.e. inΩ. (2.1.3)

The solution of problem (2.1.2) is understood in the weak sense; we say thatλ is aeigenvalueif
there exists a functionu ∈W1,p

0 (Ω), u /≡ 0, such that
∫

Ω

|∇u|p−2∇u · ∇ξ = λ
∫

Ω

ρ|u|p−2uξ

for everyξ ∈W1,p
0 (Ω). The functionu is called aneigenfunction.
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The first eigenvalueλ1 = λ1(Ω) is obtained as the minimum of the Rayleigh quotient

λ1 = inf
u

∫
Ω
|∇u|p

∫
Ω
ρ|u|p

(2.1.4)

where the infimum is taken over allu ∈ W1,p
0 (Ω), u /≡ 0. If u realizes the infimum in (2.1.4), so

does|u|, and this leads immediately to the following statement.

The followingstrong maximum principleholds:

Theorem 2.1. If u ∈W1,p
0 (Ω) is non-negative such that−∆pu ≥ 0 then either u/≡ 0 or u(x) > 0 for

all x ∈ Ω.

Proof. It follows from the Harnack’s Inequality, see [SePu84]. �

Theorem 2.2. The eigenfunction u associated with the first eigenvalueλ1 does not changes its
sign inΩ. We assume u≥ 0, then u> 0 in Ω.

Proof. The functionv = |u| minimizes (2.1.4) thenv ≥ 0 verifies−∆pv = λρ|v|p−2v ≥ 0. Then
from the Strong Maximum Principle given in Theorem (2.1) it follows thatv > 0 inΩ and sou > 0
in Ω. �

The first eigenvalueλ1 satisfies two important properties: it issimple(i.e., if u andv are two
eigenfunctions corresponding toλ1 thenu = αv for someα ∈ R), and it is isolated (i.e., there
existsδ > 0 such that in the interval (λ1, λ1 + δ) there are no other eigenvalues of (2.1.2)). These
results are proved in the following theorem.

Theorem 2.3. The first eigenvalue of(2.1.2) is simple and isolated for any bounded domain
Ω ⊂ RN.

We omit the proof, which can be found in [Cu01], Proposition 4.1 and Proposition 4.2, where
the more general case in which the weightρ may change sign inΩ and satisfies

ρ ∈ Lq(Ω) where


q > N

p if 1 < p ≤ N

q = 1 if p > N.
(2.1.5)

is considered.

We recall that anodal domainof an eigenfunctionu is a connected component ofΩ \ {x ∈ Ω :
u(x) = 0}. In the following result is given an estimate of the measure of the nodal domains of the
eigenfunctions for the general case in whichρ may changes of sign.

Theorem 2.4. Let ρ satisfying(2.1.5). Then any eigenfunction u associated to a positive eigen-
value0 < λ , λ1 changes signs. Moreover ifN is a nodal domain of u then

|N| ≥ (Cλ‖ρ‖Lq(Ω))
−γ

whereγ = qN
qp−N and C is some constant depending only on N and p if p, N and on N and q′ if

p = N.
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The result is proved in Theorem 3.2 of [Cu01]. In the case of positive weights, see [AP96]. As
corollary, it is obtained that each eigenfunction of (2.1.2) has a finite number of nodal domains.
Moreover, Theorems 2.2 and 2.9 say that an eigenfunction associated to the first eigenvalue of
(2.1.2) has only one nodal domain; and any eigenfunction associated to the second eigenvalue of
(2.1.2) has exactly two nodal domains.

The following definition will be useful to define the variational eigenvalues of (2.1.2).

Definition 2.5. Let A be a symmetric subset in a Banach space, i.e.,A = −A, we define the
Kranoselskii genusof A as

γ(A) = {the minimal integermsuch that there exists a continuous odd mapping ofA→ Rm \ {0}}.

If no such integer exists we setγ(A) = ∞, and for the empty set, we defineγ(∅) = 0, see [Ra74,
DSP03] for properties.

Let us denote
Γk = {C ⊂ W1,p

0 (Ω) : C compact,C = −C, γ(C) ≥ k}.

By means of the critical point theory of Ljusternik–Schnirelmann (see [Sz88],[Le06]) it is straight-
forward to obtain a discrete sequence of variational eigenvalues{λk}k∈N tending to+∞. Thek−th
variational eigenvalue is given by (see Theorem 6.1.2 in [DP05], for ρ ≡ 1 see [GAP88])

λk = inf
C∈Γk

sup
v∈C

∫
Ω
|∇v|p

∫
Ω
ρ|v|p

(2.1.6)

We denote the sequence of variational eigenvalues by

Σvar := {λk given by (2.1.6), k ∈ N}. (2.1.7)

Note that it is an open problem whether (2.1.6) described alleigenvalues of (2.1.2) (in contrast
to the scalar caseN = 1, see Theorem 2.13).

Remark2.6. Intuitively, the Kranoselskii genusγ provides a measure of the dimension of a sym-
metric set. For example, ifΩ is a bounded symmetric neighborhood of the origin inRm, then
γ(∂Ω) = m.

Remark2.7. One can also define another sequence of critical values minimaxing along a smaller
family of symmetric subsets ofW1,p

0 (Ω). The following result can be proved using the minimax
principle of [Cu03]. Let us denote bySk the unit sphere ofRk+1 and

O(Sk,W1,p
0 (Ω)) := {h ∈ C(Sk,W1,p

0 (Ω)) : h is odd}.

Then for anyk ∈ N the value

λ̃k := inf
h∈O(Sk−1,W1,p

0 (Ω))
max
z∈Sk−1

∫
Ω
|∇h(z)|p

∫
Ω
ρ|z|p

(2.1.8)
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is a eigenvalue of (2.1.2). Moreoverλk ≤ λ̃k and it is a trivial fact thatλ1 = λ̃1 is the infimum
given in (2.1.4). In Theorem 2.8 we also see thatλ2 = λ̃2. Whether or notλk = λ̃k for other values
of k is still an open question whenp , 2. Forp = 2 the proof thatλk = λ̃k is simple: whenN = 1,
ρ = 1 andp > 1 it is proved (for instance in [Cu98]) thatλk = λ̃k for all k ≥ 1 but this last equality
remains an open question whenN > 1.

Sinceλ1 is isolated in the spectrum and there exists eigenvalues different fromλ1, it makes
sense to define thesecond eigenvalueof (2.1.2) as

Λ2 = inf {λ : λ is eigenvalue of (2.1.2), andλ > λ1}.

There exist several variational characterizations ofλ2 through minimax formulas.

The following result it is obtained as a consequence of the construction of the firstFučik’s curve
in the paper [ACCG02] of Arias, Campos, Cuesta and Gossez (see Chapter§8).

Theorem 2.8. Assume thatρ satisfies(2.1.3). Then

Λ2 = inf
h∈F

max
u∈h([−1,1])

∫

Ω

|∇u|p

whereF := {γ ∈ C([−1, 1],W1,p
0 (Ω) : γ(±1) = ±ϕ1} andϕ1 is the positive eigenfunction associ-

ated toλ1. Moreover,

Λ2 = λ2 = µ2

whereλ2 is given by(2.1.6)andµ2 by (2.1.8).

From Theorem 2.2 it follows that an eigenfunction associated with λ1 has an only one nodal
domain. With respect to the number of nodal domains of eigenfunctions associated toλ2 we have
the following result.

Theorem 2.9. An eigenfunction associated to the second eigenvalue of problem (2.1.2)admits
exactly two nodal domains.

This result was proved by Cuesta,De Figueiredo and Gossez inthe caseρ = 1. For positive
weights, see Theorem 3.1 in [ACFK07].

2.2 Eigenvalues of thep−Laplacian in R

2.2.1 The one-dimensionalp−Laplace operator

For the one dimensionalp−Laplace operator inΩ

− (|u′|p−2u′)′ = λ|u|p−2u (2.2.1)
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with zero Dirichlet boundary conditions all the eigenvalues and eigenfunctions can be found ex-
plicitly.

To give such characterization, first we remember the definition of the generalized trigonometric
functions.

The function sinp(x) is the solution of the initial value problem

−(|u′|p−2u′)′ = |u|p−2u

u(0) = 0, u′(0) = 1,

and is defined implicitly as

x =
∫ sinp(x)

0

( p− 1
1− tp

)1/p
dt.

Moreover, its first zero isπp, given by

πp = 2
∫ 1

0

( p− 1
1− tp

)1/p
dt.

Note that
pπp = 2Γ(1/p′)Γ(1/p) = p′πp′ . (2.2.2)

WhereΓ is the Gamma function.

It is well known from the basic calculus that
∫ 1

0

1
√

1− t2
dt =

π

2

and that

arcsin(x) =
∫ x

0

1
√

1− t2
dt

define a differentiable function on [0, 1]. Since 1√
1−t2

is positive on (0, 1), the function is increasing
and one-to-one from [0, 1] to [0, π/2]. This function isarcsin(x) and can be used to define the
function sin on [0, π/2]. By standard symmetry arguments we can extend the sin function to the
wholeR. We extend this to 1< p < ∞. We define for 1< p < ∞ the function

Fp(x) =
∫ x

0

1
p√
1− tp

dt, x ∈ [0, 1].

ThenF2(x) = sin−1(x). As Fp is strictly increasing it is a one-to-one function on [0, 1] with range
[0, πp/2]. Then it has an inverse, which we denote by sinp to emphasize the confection with the
usual sine function. This is defined in the interval [0, πp/2], where

πp

2
= sin−1

p (1) =
∫ 1

0

1
p√
1− tp

dt =
1
p

∫ 1

0

1
p√
1− s

s−
1
p′ ds=

1
p

B

(
1
p′
,

1
p

)

whereB is the Beta function. Hence

πp =
2π

psin(π/p)
(2.2.3)
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Note thatπ2 = π. Moreover,πp decreases asp increases, and

lim
p→1

πp = ∞, lim
p→∞

πp = 2, lim
p→1

(p− 1)πp = lim
p→1

πp′ = 2

We see that sinp is strictly increasing on [0, πp/2], sinp(0) = 0 and sinp(πp/2) = 1. It may be
extended to [0, πp] by defining sinp(x) = sinp(πp − x) for x ∈ [πp/2, πp]; further extension to
[−πp, πp] is made by oddness, and finally sinp is extended to the whole ofR by 2πp-periodicity.

Let us call sinp(x) to the generalized sine function, the unique solution of



−(|u′(x)|p−2u′(x))′ = (p− 1)|u(x)|p−2u(x) in (0, 1)

u(0) = 0

u′(0) = 1.

(2.2.4)

The function sinp(x) has a zero if and only ifx = kπp, where

πp =
2π/p

sin(π/p)
. (2.2.5)

We define the function cosp by the rule

cosp(x) =
d
dx

sinp(x), x ∈ R.

Clearly cosp is even, 2πp-periodic and odd aboutπp; cos2 = cos. The following identity is derived
easily

| cosp(x)|p + | sinp(x)|p = 1.

Observe that ifp , 2, the derivative of cosp is not− sinp.

Now, we enunciate the characterization of eigenvalues and eigenfunctions of (2.2.1). The fol-
lowing result is duo to del Pino, Drábek and Manásevich [DDM99].

Theorem 2.10.The eigenvaluesλk and eigenfunctions uk of equation(2.2.1)on the intervalΩ :=
(0, ℓ) are given by

λk =
π

p
pkp

ℓp , (2.2.6)

uk(x) = sinp(πpkx/ℓ).

Remark2.11. In [DM99], Drábek and Manásevich proved that that they coincide with the varia-
tional eigenvalues given by equation (2.1.6). However, letus observe that the notation is different
in both papers.
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2.2.2 The weightedp−Laplacian in R

As we have seen, using minimax formulas it is possible to construct a sequence of variational
eigenvalues of (2.1.2) which approach infinity. In the linear casep = 2 those are the only eigen-
values of (2.1.2). In this section we will see that whenp , 2 andN = 1 the variational eigenvalues
exhaust the full spectrum.

Problem (2.1.2) is well understood in the one dimension caseN = 1,

−∆pu := −(|u′|p−2u′)′ = λρ(x)|u|p−2u in Ω := (0, ℓ)

u(0) = u(ℓ) = 0.
(2.2.7)

We denote to the spectrum of (2.2.7) by

Σ := {λ ∈ R : there existsu ∈W1,p
0 (Ω), nontrivial solution to (2.2.7)}.

By means of the critical point theory of Ljusternik–Schnirelmann, in (2.1.7) we have defined
the setΣvar of the variational eigenvalues. Moreover, they are given by(2.1.6).

In [ACM02], Anane, Chakrone, and Moussa studied problem (2.2.7) and, among other things,
it is proved that any eigenfunction associated toλk has exactlyk nodal domains (this result had
been proved in [Wa98] for the radialp-laplacian). As a consequence of this fact, it is obtained the
simplicity of every variational eigenvalue.

Theorem 2.12.The eigenvaluesλk ∈ Σvar of (2.2.7)satisfy that

1. Every eigenfunction corresponding to the k-th eigenvalue λk, has exactly k− 1 zeros inΩ.

2. For every k,λk is simple and verifies the strict monotonicity property withrespect to the
weightρ and the domainΩ.

3. The eigenvalues ofΣvar are ordered as0 < λ1 < λ2 < · · · < λk < · · · → +∞ as k→ +∞.

From Theorem 2.12 it follows that eigenvalues of problem (2.2.7) are given by the variational
ones, i.e.,Σvar = Σ.

Theorem 2.13.Every eigenvalue of(2.2.7)is given by(2.1.6).

Proof. See [FBP03], Theorem 1.1. �

2.3 The spectral counting function

We denote byN(λ) to the number of eigenvalues less than or equal toλ of (2.1.2), i.e.,

N(λ) = #{ j ∈ N : λ j ≤ λ}.
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When Ω := (0, ℓ) is a interval, by the characterization (2.2.1) of the eigenvalues of the
p−Laplacian, it is easy to see that

N(λ, (0, ℓ)) = #{ j ∈ N : λ j ≤ λ : λ eigvalalue of (2.2.1)}

=
ℓ

πp
λ1/p +O(1).

The case whereΩ is a disjoint union of intervals, was treated, for instance,in [FBP03]. There, the
authors proved the following.

Proposition 2.14. LetΩ =
⋃

j∈N I j , where{I j} j∈N is a pairwise disjoint family of intervals. Then,

N(λ,Ω) =
∞∑

j=1

N(λ, I j ). (2.3.1)

The following Theorem was proven in [FBP03] and is a suitablegeneralization of the Dirichlet–
Neumann bracketing method of Courant.

Theorem 2.15 ([FBP03], Theorem 2.1). Let U1,U2 ∈ Rn be disjoint open sets such that
(U1 ∪ U2)◦ = U and |U \ U1 ∪U2| = 0, then

ND(λ,U1 ∪U2) ≤ ND(λ,U) ≤ NN(λ,U) ≤ NN(λ,U1 ∪ U2).

Here, ND(λ,U) (resp., NN(λ,U)) is the spectral counting function of the Laplace operator in U
with Dirichlet boundary conditions on∂U (resp., with Neumann boundary conditions).

Remark2.16. In Chapter§3 is also considered the case in whichΩ ⊂ R is a open set which is a
disjoint union of bounded intervals,Ω =

⋃
j∈N I j . Let us suppose that the lengths of the intervals

are decreasing and goes to zero,

|I1| ≥ |I2| ≥ · · · ≥ |I j | ≥ · · · ց 0.

We can assume that there exists some nonincreasing functiong : (0,∞) → (0,∞) such that
|I j | = g( j). Here,Ω hasfractal boundary∂Ω with Minkowski dimensiond ∈ (0, 1). In that case,
in Section 3.3 it is obtained that

N(λ) = #{ j ∈ N : λ j ≤ λ : λ eigvalalue of (2.2.1)}

=
|Ω|
πp
λ1/p +

ζ(d)

πd
p

f (λ1/p) + o( f (λ1/p))

with f (λ1/p) = g−1(λ−1/p), for 0 < d < 1, andζ is the Riemann Zeta function.

For the weightedp−Laplacian (2.2.7) in an bounded intervalΩ ⊂ R, in [FBP03] Fernández
Bonder and Pinasco proved that

N(λ,Ω) =
λ1/p

πp

∫

Ω

ρ1/p + o(λ1/p). (2.3.2)
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Remark2.17. From (2.3.2) it is easy to prove the asymptotic formula for the eigenvalues of (2.2.7).
Sincek ∼ N(λk), it follows immediately that

λk ∼
( πp∫
Ω
ρ1/p

)p
kp.

2.4 Monotone operators

We start this section with the definition and some propertiesof the so-called monotone operators.

LetΩ ⊂ RN, N ≥ 1 be a bounded domain. We consider the operatorA : W1,p
0 (Ω)→ W−1,p′(Ω)

given by

Au := −div(a(x,∇u)), (2.4.1)

wherea: Ω × RN → RN satisfies, for everyξ ∈ RN and a.e.x ∈ Ω, the following conditions:

(H0) measurability: a(·, ·) is a Carathéodory function, i.e.a(x, ·) is continuous a.e.x ∈ Ω, and
a(·, ξ) is measurable for everyξ ∈ RN.

(H1) monotonicity:0 ≤ (a(x, ξ1) − a(x, ξ2))(ξ1 − ξ2).

(H2) coercivity:α|ξ|p ≤ a(x, ξ)ξ.

(H3) continuity: a(x, ξ) ≤ β|ξ|p−1.

(H4) p−homogeneity: a(x, tξ) = tp−1a(x, ξ) for everyt > 0.

(H5) oddness: a(x,−ξ) = −a(x, ξ).

Let us introduceΨ(x, ξ1, ξ2) = a(x, ξ1)ξ1 + a(x, ξ2)ξ2 for all ξ1, ξ2 ∈ RN, and allx ∈ Ω; and let
δ = min{p/2, (p− 1)}.

(H6) equi-continuity:

|a(x, ξ1) − a(x, ξ2)| ≤ cΨ(x, ξ1, ξ2)(p−1−δ)/p(a(x, ξ1) − a(x, ξ2))(ξ1 − ξ2)δ/p

(H7) cyclical monotonicity:
∑k

i=1 a(x, ξi)(ξi+1 − ξi) ≤ 0, for all k ≥ 1, andξ1, . . . , ξk+1, with
ξ1 = ξk+1.

(H8) strict monotonicity:let γ = max(2, p), then

α|ξ1 − ξ2|γΨ(x, ξ1, ξ2)1−(γ/p) ≤ (a(x, ξ1) − a(x, ξ2))(ξ1 − ξ2).
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As we will see in Chapter§6, the hypothesis (H1)–(H3) are necessary to ensure the”conver-
gence”of (2.4.1). On the other hand, the hypothesis (H4)–(H7) are all important in the context of
a well-posed eigenvalue problem. We assume (H8) for technical reasons.

We add that the conditions (H0)–(H8) are not completely independent of each other. It can be
seen easily that (H8) implies (H1)–(H2) and that (H4) implies (H3) in addition to the continuity
of the coefficient, for details see [BCR06].

Remark2.18. The prototype for such functions isa(x, ξ) = A(x)|ξ|p−2ξ, whereA(·) is a measurable
function with values in the set ofN × N symmetric matrices which satisfies

α′|ξ|2 ≤ A(x)ξ · ξ, |A(x)ξ| ≤ β′|ξ| ∀ξ ∈ RN, a.e.x ∈ Ω.

for some positive constantsα′ andβ′.

In particular, under these conditions, we have the following Proposition due to Baffico, Conca
and Rajesh [BCR06]

Proposition 2.19. Given a(x, ξ) satisfying(H0)–(H8)there exists a unique Carathéodory function
Φ which is even, p−homogeneous strictly convex and differentiable in the variableξ satisfying

α|ξ|p ≤ Φ(x, ξ) ≤ β|ξ|p (2.4.2)

for all ξ ∈ RN a.e. x∈ Ω such that

∇ξΦ(x, ξ) = pa(x, ξ)

and normalized such thatΦ(x, 0) = 0.

Proof. See Lemma 3.3 in [BCR06]. �

2.5 Eigenvalues of monotone operators

This section is devoted to the study of the following (nonlinear) eigenvalue problem inΩ ⊂ RN,
N ≥ 1 

−div(a(x,∇u)) = λρ|u|p−2u in Ω

u = 0 on∂Ω
(2.5.1)

wherea(x, ξ) verifies (H0)–(H8) and

0 < ρ− ≤ ρ(x) ≤ ρ+ < ∞ a.e. inΩ. (2.5.2)

The purpose of the section is to extend to (2.5.1) the resultsthat are well-known for the
p−Laplacian case, i.e. the existence of a sequence of variational eigenvalues, the simplicity and
isolation of the first eigenvalue, etc.
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The methods in the proofs here very much resembles the ones used for thep−Laplacian and we
refer the reader to the articles [ACM02, AT96, An87, KL06, Li90].

We denote by

Σ := {λ ∈ R : there existsu ∈W1,p
0 , nontrivial solution to (2.5.1)},

the spectrum of (2.5.1). It is immediate to check thatΣ ⊂ (0,+∞) and that it is closed.

By means of the critical point theory of Ljusternik–Schnirelmann it is straight forward to see
that we can obtain a discrete sequence ofvariational eigenvalues{λk}k∈N tending to+∞ (see
[CVD90]). We denote byΣvar the sequence of variational eigenvalues.

Thekth–variational eigenvalue is given by

λk = inf
C∈Γk

sup
v∈C

∫
Ω
Φ(x,∇v)
∫
Ω
ρ|v|p

whereΦ(x, ξ) is the potential function given in Proposition 2.19,

Γk = {C ⊂W1,p
0 (Ω) : C compact,C = −C, γ(C) ≥ k}

andγ(C) is the Kranoselskii genus.

Below, we define the capacity of a set with the intention of define a Maximum Principle for
quasilinear operators.

Definition 2.20. Given a compact setK contained in an open subsetU of RN and p ≥ 1, the
W1,p-capacityof the pair (K,U) is defined as

Capp(K,U) := inf
{ ∫

U
|∇ϕ|p : ϕ ∈ C∞0 (U), ϕ ≥ 1 onK

}
.

If U′ is an open subset ofU, the correspondingW1,p-capacity is defined as

Capp(U′,U) := sup{Capp(K,U) : K ⊂ U′,K compact},

and the definition is extended to a general setE ⊂ U as follows:

Capp(E,U) := inf {Capp(U′,U) : U′ open,E ⊂ U′ ⊂ U}.

A setE ⊂ RN is said to be ofW1,p-capacity zero, and we write Capp(E) = 0, if Capp(E∩U,U) =
0 for any open setU ⊂ RN.

For an extended discussion we also refer to the book of Evans-Gariepy [EG92].

The following maximum principle for quasilinear operatorsis a generalization of Theorem 2.1,
and it was proved in [KLP07] by Kawohl, Lucia and Prashanth. It will be most useful in the
sequel.
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Definition 2.21. A function u : Ω → R is W1,p−quasi continuousif for eachε > 0 there is an
open setU ⊂ Ω such that Capp(U,Ω) < ε and f |Ω\U is continuous.

Theorem 2.22.Assume that u∈W1,p
loc (Ω) satisfies

∫

Ω

a(x,∇u)∇φ + ρ|u|p−2uφ ≥ 0, ∀φ ∈ C∞0 (Ω), φ ≥ 0.

Consider its zero set

Z := {x ∈ Ω : ũ(x) = 0},

whereũ is the W1,p−quasi continuous representative of u.

Then, either Capp(Z) = 0 or u = 0.

Proof. See Proposition 3.2 in [KLP07]. �

The positivity of the first eigenfunction together with the simplicity of the first eigenvalue was
proved in [KLP07].

Theorem 2.23. Let u1 be an eigenfunction corresponding toλ1, then u1 does not changes sign
onΩ. Also, the first eigenvalue is simple, that is, any other eigenfunction u associated toλ1 is a
multiple of u1.

Proof. See Section 6.2 in [KLP07]. �

Next, we show that the first eigenvalueλ1 is isolated inΣ. The key step in the proof of the
isolation is the next result:

Proposition 2.24. Let λ ∈ Σ and let w be an eigenfunction corresponding toλ , λ1. Then,
w changes sign onΩ, that is w+ /≡ 0 and w− /≡ 0. Moreover, there exists a positive constant C
independent of w andλ such that

|Ω+| ≥ Cλ−γ, |Ω−| ≥ Cλ−γ,

whereΩ± denotes de positivity and the negativity set of w respectively, γ is a positive parameter,
and C depends on N, p, ρ+ and the coercivity constantα in (H2). Here,γ = (N − p)/p if p < N,
γ = 1 if p = N, andγ = (p− N)/N if p > N.

Proof. Let w be an eigenfunction corresponding toλ , λ1 and letu be an eigenfunction corre-
sponding toλ1.

Assume thatw does not changes sign onΩ. We can assume thatw ≥ 0 andu ≥ 0 inΩ. For each
k ∈ N, let us truncateu as follows:

uk(x) := min{u(x), k}
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and for eachε > 0 we consider the functionup
k/(w+ ε)

p−1 ∈W1,p
0 (Ω). We get

∫

Ω

a(x,∇u)∇u − a(x,∇w)∇
( up

k

(w+ ε)p−1

)
=

∫

Ω

λ1ρup − λρwp−1
up

k

(w+ ε)p−1
. (2.5.3)

We claim that the integral in the left hand side in (2.5.3) is non-negative. Indeed, letΦ be the
potential function given by Proposition 2.19. Then, asΦ is p−homogeneous in the second variable
we have (see [KLP07], p.19, 5.15)

a(x,∇u)∇u − a(x,∇w)∇
( up

k

(w+ ε)p−1

)
=

p
{
Φ(x,∇u) + (p− 1)Φ(x,

uk

w+ ε
∇w) − a(x,

uk

w+ ε
∇w)∇uk

}
.

(2.5.4)

By using the property thatξ 7→ Φ(x, ξ) is convex, we easily deduce that (2.5.4) is nonnegative.
Therefore, coming back to (2.5.3) we get

∫

Ω

λ1ρup − λρwp−1 up
k

(w+ ε)p−1
≥ 0. (2.5.5)

Since by the strong maximum principle for quasilinear operators (Theorem 2.22) the set{w̃ = 0},
wherew̃ is thep−quasi continuous representative ofw, is of measure zero then (2.5.5) is equivalent
to ∫

{w>0}
λ1ρup − λρwp−1 up

k

(w+ ε)p−1
≥ 0. (2.5.6)

Now, lettingε→ 0 andk→ ∞ in (2.5.6), we get

(λ1 − λ)
∫

Ω

ρ|u|p ≥ 0

which is a contradiction. Thereforew changes sign onΩ.

The second part of the proof follows almost exactly as in thep−Laplacian case. Let us suppose
first that p < N. In fact, asw changes sign, we can usew+ as a test function in the equation
satisfied byw to obtain

∫

Ω

a(x,∇w)∇w+ = λ
∫

Ω

ρ|w|p−2ww+

= λ

∫

Ω+
ρ|w|p

≤ λρ+
∫

Ω+
|w|p

≤ λρ+‖w+‖p
Lp∗ (Ω)

|Ω+|p/(N−p)

≤ λρ+Kp|Ω+|p/(N−p)
∫

Ω

|∇w+|p,

whereKp is the optimal constant in the Sobolev-Poincaré inequality.
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Now, by (H2), it follows that

∫

Ω

a(x,∇w)∇w+ ≥ α
∫

Ω

|∇w+|p.

Combining these two inequalities, we obtain

|Ω+| ≥
( α

Kpλρ+

)(N−p)/p
.

The estimate for|Ω−| follows in the same way.

The remaining cases are similar:p = N follows by using the Sobolev’s inclusionW1,N
0 (Ω) ⊂

LN(Ω), and the casep > N follows from Morrey’s inequality (see [Ev10]). �

Now we are ready to prove the isolation ofλ1.

Theorem 2.25. The first eigenvalueλ1 is isolated. That is, there existsδ > 0 such that(λ1, λ1 +

δ) ∩ Σ = ∅.

Proof. Assume by contradiction that there exists a sequenceλ j ∈ Σ such thatλ j → λ1 as j → ∞.
Let u j be the associated eigenfunctions normalized such that

∫

Ω

ρ|u j |p = 1.

By (H2) it follows that the sequence{u j} j∈N is bounded inW1,p
0 (Ω) so, passing to a subsequence

if necessary, there existsu ∈W1,p
0 (Ω) such that

u j ⇀ u weakly inW1,p
0 (Ω)

u j → u strongly inLp(Ω).

Now, as the functional

v 7→
∫

Ω

Φ(x,∇v)

is weakly sequentially lower semicontinuous (see [BCR06]), it follows thatu is an eigenfunction
associated toλ1.

Now, by Theorem 2.23, we can assume thatu ≥ 0 and by Proposition 2.24 we have|{u = 0}| > 0.
But this is a contradiction to the strong maximum principle in [KLP07], Theorem 2.22. �

As a consequence of Theorem 2.25 it makes sense to define the second eigenvalueΛ2 as the
infimum of the eigenvalues greater thanλ1. Next, we show that this second eigenvalueΛ2 co-
incides with the second variational eigenvalueλ2. This result is known to hold for the weighted
p−Laplacian (see Theorem 2.8) and we extended here for the general case (2.5.1).
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Theorem 2.26.Letλ2 be the second variational eigenvalue, and letΛ2 be defined as

Λ2 = inf {λ > λ1 : λ ∈ Σ}.

Then

λ2 = Λ2.

Proof. The proof of this Theorem follows closely the one in [FBR02] where the analogous result
for the Steklov problem for thep−Laplacian is analyzed.

Let us call

µ = inf

{∫

Ω

Φ(x,∇u) : ‖ρu‖pLp(Ω) = 1 and|Ω±| ≥ cλ2

}
,

wherecλ2 := Cλ−γ2 andC, γ are given by Proposition 2.24.

If we takeu2 an eigenfunction of (2.5.1) associated withΛ2 such that‖ρu‖pLp(Ω) = 1, by Propo-
sition 2.24, we have thatu2 is admissible in the variational characterization ofµ. It follows that
µ ≤ Λ2. The proof will follows if we show thatµ ≥ λ2. The inverse ofµ can be written as

1
µ
= sup

{∫

Ω

ρ|u|p :
∫

Ω

Φ(x,∇u) = 1 and|Ω±| ≥ cλ2

}
.

The supremum is attained by a functionw ∈ W1,p
0 (Ω) such that

∫
Ω
Φ(x,∇w) = 1 and|Ω±| ≥ cλ2.

As w+ andw− are not identically zero, if we consider the set

C = span{w+,w−} ∩ {u ∈W1,p
0 (Ω) : ‖u‖W1,p

0 (Ω) = 1},

thenγ(C) = 2. Hence, we obtain
1
λ2
≥ inf

u∈C

∫

Ω

ρ|u|p (2.5.7)

but, asw+ andw− have disjoint support, it follows that the infimum (2.5.7) can be computed by
minimizing the two variable function

G(a, b) := |a|p
∫

Ω

ρ|w+|p + |b|p
∫

Ω

ρ|w−|p

with the restriction

H(a, b) := |a|p
∫

Ω

Φ(x,∇w+) + |b|p
∫

Ω

Φ(x,∇w−) = 1.

Now, an easy computation shows that

1
λ2
≥ min



∫
Ω
ρ|w+|p

∫
Ω
Φ(x,∇w+)

,

∫
Ω
ρ|w−|p

∫
Ω
Φ(x,∇w−)

 .
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We can assume that the minimum in the above inequality is realized withw+. Then, fort > −1
the functionw+ tw+ is admissible in the variational characterization ofµ, hence if we denote

Q(t) :=

∫
Ω
ρ|w+ tw+|p

∫
Ω
Φ(x,∇w+ t∇w+)

,

we get

0 = Q′(0) = p
∫

Ω

ρ|w|p−2ww+ − p
µ

∫

Ω

a(x,∇w)∇w+,

therefore ∫
Ω
ρ|w+|p

∫
Ω
Φ(x,∇w+)

=
1
µ

and the result follows. �

2.5.1 Monotone operators in one dimension

When we consider a functiona : Ω × R → R satisfying properties (H0)–(H8), it can be explicitly
expressed asa(x, ξ) = a(x)|ξ|p−2ξ, wherea is bounded uniformly away from zero and infinity.

In this case problem (2.5.1) is reduced to (for simplicity wetakeΩ = (0, 1))


−(a(x)|u′ |p−2u′)′ = λρ|u|p−2u in Ω := (0, 1)

u(0) = u(1) = 0,
(2.5.8)

whereρ satisfies (2.5.2) anda is such that forα < β positive constants,

0 < α ≤ a(x) ≤ β < +∞ a.e. inΩ. (2.5.9)

We denote by

Σ := {λ ∈ R : there existsu ∈W1,p
0 , nontrivial solution to (2.5.8)},

the spectrum of (2.5.1). It is immediate to check thatΣ ⊂ (0,+∞) and that it is closed.

Observe that here, ifλk is thek−th variational eigenvalue,

λk = inf
C∈Γk

sup
v∈C

∫
Ω

a(x)|u′ |p
∫
Ω
ρ(x)|v|p

. (2.5.10)

As we have seen in Section 2.1, the question of whetherΣvar = Σ or not is only known to hold
in the liner setting and also for thep−Laplacian in one space dimension. It is an open problem in
any other situation.

We have the following result about the simplicity of the eigenvalues of (2.5.8):
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Theorem 2.27.Every eigenfunction corresponding to the k−th eigenvalueλk of (2.5.8)has exactly
k − 1 zeroes. Moreover, for every k,λk is simple, consequently the eigenvalues are ordered as
0 < λ1 < λ2 < · · · < λk ր +∞.

Moreover, the spectrum of (2.5.8) coincides with the variational spectrum. In fact, we have:

Theorem 2.28.Σ = Σvar, i.e., every eigenvalue of problem(2.5.8)is given by(2.5.10).

In order to prove Theorems 2.27 and 2.28, in the following remark we observe that equations
of the kind (2.5.8) involving a diffusion functiona(x) and a weight functionρ can be converted in
one equation involving only a weight function.

Remark2.29. Through the following change of variables, problem (2.5.8)can be converted in one
of the form (2.2.7): we define

P(x) =
∫ x

0

1

a(s)1/(p−1)
ds

and be the change of variables (x, u) → (y, v) where

y = P(x), v(y) = u(x).

By simple computations we get

−(|v̇|p−2v̇)· = λQ(y)|v|p−2v, y ∈ [0, L]

v(0) = v(L) = 0

where· = d/dy, with

L =
∫ 1

0

1

a(s)1/(p−1)
ds= a

−1
p−1 ,

and
Q(x) = a(x)1/(p−1)ρ(x).

Now, we rescale to the unit interval defining

w(z) = v(Lz), z ∈ I

and get 
−(|ẇ|p−2ẇ)· = LpλQ(Lz)|w|p−2w in I

w(0) = w(1) = 0.

So if we denoteµ = Lpλ andg(z) = Q(Lz), we get thatw verifies

−(|ẇ|p−2ẇ)· = µg(z)|w|p−2w in I

w(0) = w(1) = 0.

Having in mind Remark 2.29, the proof of Theorem 2.27 it follows from Theorem 2.12 and the
proof of Theorem 2.28 it is completely analogous to that of Theorem 2.13.
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An application: Refined asymptotic for eigenvalues on
domains of infinite measure

3.1 Introduction

Can one hear the shape of a drum?asked M. Kac [Ka66] in 1966. What he meant was the
following inverse problem: consider the eigenvalue problem of the p−Laplacian with Dirichlet
boundary conditions 

−∆u = λu in Ω

u = 0 on∂Ω
(3.1.1)

whereΩ is a open bounded set inRN, N ≥ 1. As we have seen in Chapter§2, the spectrum
of (3.1.1) is a discrete sequence{λk}k ∈ R+ tending to+∞. Which geometrical information
concerningΩ could be recovered from the sole knowledge of the spectrum? All information about
the spectrum can be obtained from theeigenvalue counting function N(λ) defined as

N(λ) = #{ j ∈ N : λ j ≤ λ},

that is, it counts the number of eigenvalues of (3.1.1) up toλ, counted according to multiplicity
(see Section 2.3 for properties).

Generalizing Weyl’s classic asymptotic formula, Métivier [Me76] proves that

N(λ) = (1+ o(1))ϕ(λ), asλ→ +∞

where theWeyl termϕ(λ) is given by

ϕ(λ) =
1

(2π)N
ωN|Ω|NλN/2

with ωN is the volume of the unit ball inRN and|A|N denotes theN−dimensional Lebesgue mea-
sure ofA ⊂ RN. According to this formula, one can hear theareaof a drum. A conjecture about
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the second term in the asymptotic expansion ofN(λ) it was made by H. Weyl [We12] as follows

N(λ) = ϕ(λ) −CN|∂Ω|N−1λ
(N−1)/2 + o(λ(N−1)/2), asλ→ +∞ (3.1.2)

for the case of∂Ω sufficiently regular.

What happens if the boundary isnon-smooth? M. V. Berry [Be79, Be80] conjectured that if∂Ω
is fractal, then

N(λ) = ϕ(λ) −CH,NH(H; ∂Ω)λH/2 + o(λH/2), asλ→ +∞ (3.1.3)

whereCN,H is a positive constant depending only onN andH, H denotes the Hausdorff dimension
of the boundary∂Ω andH(H; ∂Ω) theH−dimensional Hausdorff measure of∂Ω. Observe that if
∂Ω is smooth, sayC1, thenH = N− 1 and we recover (3.1.2) from (3.1.3). Unfortunately, Berry’s
conjecture has turned out to be false. Brossard and Carmona [BC86] disproved it and suggested
that the Minkowski dimension was more appropriate than the Hausdorff dimension to measure
the roughnessof the boundary∂Ω. A reformulation of Berry’s conjecture onN(λ) was made by
Lapidus [La91]:

N(λ) = ϕ(λ) −CN,dM(d; ∂Ω)λd/2 + o(λd/2), asλ→ +∞ (3.1.4)

whereΩ has fractal boundary∂Ω with Minkowski dimensiond ∈ (N− 1,N) andCN,d is a positive
constant depending only onN andd.

In [La93], Conjecture (3.1.4) it was proved forN = 1: if Ω ⊂ R has fractal boundary∂Ω which
is Minkowski measurable and has Minkowski dimensiond ∈ (0, 1), then

N(λ) = ϕ(λ) −C1,dM(d; ∂Ω)λd/2 + o(λd/2), asλ→ +∞ (3.1.5)

where the constantC1,d is given by

C1,d =
1

21−dπd
(1− d)(−ζ(d)), ϕ(λ) =

1
π
|Ω|1λ1/2

andζ denotes the Riemann zeta function.

He and Lapidus in [HL97] extend these theorems by usinggauge functionsmore general than
power functions (see Section 3.2.1) as follows. Let us consider an open setΩ ⊂ R which is a
disjoint union of bounded intervals,Ω =

⋃
j∈N I j . Let us suppose that the lengths of the intervals

are decreasing and goes to zero,

|I1| ≥ |I2| ≥ · · · ≥ |I j | ≥ · · · ց 0.

We can assume that there exists some nonincreasing functiong : (0,∞)→ (0,∞) such that

|I j | = g( j).

Now, we may consider the following problems:
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• A Lattice Point Problem: to estimate, forx ր ∞, the number of lattice points below the
curvexg(t),

N(x) = #{( j, k) ∈ N × N : k ≤ xg( j)} =
∞∑

j=1

[xg( j)]. (3.1.6)

• An Eigenvalue Counting Problem: to estimate, forλ ր ∞, the number of eigenvalues less
than or equal toλ of −u′′ = λu in Ω with zero Dirichlet boundary conditions on∂Ω,

N(λ) = #{ j ∈ N : λ j ≤ λ},

The first one is called aplane multiplicative problem, following Krätzel [Kr88], and generalizes
the Dirichlet’s divisor problem, that is, to count the asymptotic number of divisors of the inte-
gers less than or equal tox, which is equivalent to count the number of lattice points below the
hyperbolay = x/t in the first quadrant.

The second one is a one dimensional variant of the old problem, Can one hear the dimension
of a drum?The idea behind this name is the following: the square root ofthe eigenvalues of the
Laplace operator inΩ ⊂ R2 coincide with the musical notes of a membrane with the shape of
Ω, and we can ask about the geometric properties ofΩ which can be inferred from the sequence
of eigenvalues Here, we are interested in the dimension of the boundary of afractal stringΩ, as
Lapidus called this kind of sets [La91].

Indeed, both problems are the same: the eigenvalues of−u′′ = λu in I j are{ π2k2

g( j)2 }k≥1, and we
have

N(λ) =
∞∑

j=1

#
{
k ∈ N :

π2k2

g( j)2
≤ λ

}

=

∞∑

j=1

#
{
k ∈ N : k ≤ g( j)λ1/2

π

}

=

∞∑

j=1

[g( j)λ1/2

π

]

(3.1.7)

So, callingx = λ1/2

π
, this expression coincides with equation (3.1.6), and we see that there exists

a connection between the Dirichlet problem and the asymptotic behavior of eigenvalues. Let us
mention that the eigenvalue counting problem for the Laplacian whenΩ is the unit square inR2

coincide with the Gauss Circle Problem, i.e., to estimate the number of lattice points inside an
expanding circle (see [He76]).

Under these considerations, He and Lapidus in [HL97] prove that for 0< d < 1,

N(λ) =
|Ω|1
π
λ1/2 − ζ(d)

πd
f (
√
λ) + o( f (

√
λ)), asλ→ +∞

whereg(x) := h−1(1/x) and f (x) := 1/h(1/x). Particularly, whenh(x) = xd it is recovered (3.1.5)
and the Minkowski dimension.
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Our aim in this chapter is extend the results of He and Lapidusfor the one-dimensional
p−Laplacian operator. When the measure ofΩ is finite and 0< d < 1, in Section 3.3 we ob-
tain that

N(λ) = #{ j ∈ N : λ j ≤ λ} =
|Ω|
πp
λ1/p +

ζ(d)

πd
p

f (λ1/p) + o( f (λ1/p))

with f (λ1/p) = g−1(λ−1/p) andζ is the Riemann Zeta function. The termf (λ1/p) is connected
with a generalized notion of fractal dimension, and we havef (λ1/p) = λd/p when the Minkowski
dimension of∂Ω is d. The precise definitions and properties ofg and related functions is given in
Section 3.2, together with the definitions of the generalized Minkowski content and dimension.

The proofs in those works depends on difficult estimates of the remainder terms of certain
convergent series. We present in Section 3.3 a simplified proof based on the equivalence of the
two problems stated above and some arguments from number theory. When the lengths of the
intervals satisfy|I j | ∼ j−1/d, as in [La93], this ideas were used in [Pi06].

However, as a by-product of the number theoretic methods, weare able to extend those results
to fractal stringsΩ with infinite measure, and this is the main aim of our work. Letus observe that
the sum in equation (3.1.7) is well defined wheneverg(t) ց 0 for t ր ∞, even when

∑∞
j=1 g( j)

diverges.

So, in Section 3.4 we characterize the growth of the number ofeigenvaluesN(λ) in terms of the
decay of the lengths of the intervals when the measure ofΩ is not finite. We obtain the following
non-standard asymptotic formula

N(λ) = #{ j ∈ N : λ j ≤ λ} =
ζ(d)

πd
p

f (λ1/p) + o( f (λ1/p)),

where nowd > 1.

In the finite measure case, the term depending onf can be thought as a boundary contribution.
The measure ofΩ gives the main term of the asymptotic of the number of latticepoints, and the
second term can be understood as the number of points which are close to the boundary and enter
when we dilate slightly the domain. Now, when the measure ofΩ is infinite, the main term is still
a boundary term, which shows the asymptotic growth of the measure of the domain; in this case,
when we dilate slightly the domain, a huge number of lattice points enter although it has exactly
the same form that the second term in the other case.

The discreteness of the spectrum of an elliptic operator is not well understood yet when the
domain has infinite measure. We refer the interested reader to [VL01, CH67, He74, He75, Si83]
where a special class of sets inRN is considered (horn-shaped domains, a N − 1 dimensional set
scaled in the other dimension). In [CH67, He74, He75], an upper bound for the growth ofN(λ) was
derived by using a trace estimate in the class of Hilbert-Schmidt operators, obtained with the aid of
some inequalities for the Green function of an elliptic operator. In [Si83] the asymptotic behavior
of eigenvalues was refined by using the Trotter product formula in order to obtain another trace
estimate by generalizing the Golden-Thompson inequality,and in [VL01] were obtained more
terms in the asymptotic expansion by exploiting certain self-similarity of the horns. In Section 3.5
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we apply our previous results to this kind of problems inR2. The main novelty here is the precise
order of growth ofN(λ,Ω) for horns which are not decaying as powers, although is lessprecise
for this kind of horns since the precise constant in the main term is known, see the paper of van
den Berg and Lianantonakis [VL01].

3.2 Generalized Minkowski content and Minkowski dimension

3.2.1 Minkowski dimension and content

We denote by|A| the Lebesgue measure of the setA ⊂ Rn. Let Aε denote the tubular neighborhood
of radiusε of a setA ⊂ Rn, i.e.

Aε = {x ∈ Rn : dist(x,A) ≤ ε}. (3.2.1)

We recall the classical definition of Minkowski dimension and content (see [Fa90, HL97, La91,
Tr82]).

Givend > 0, thed−dimensional upper Minkowski content of∂Ω is defined as

M∗(d; ∂Ω) := lim sup
ε→0+

ε−(n−d)|(∂Ω)ε ∩ Ω|. (3.2.2)

Similarly, thed−dimensional lower Minkowski content,M∗(d, ∂Ω), is defined changing the upper
by the lower limit in (3.2.2).

The Minkowski dimension of∂Ω is then defined by

dim(∂Ω) := inf {d ≥ 0: M∗(d; ∂Ω) < ∞} = sup{d ≥ 0: M∗(d; ∂Ω) = ∞}. (3.2.3)

We will further say that∂Ω is d−Minkowski measurable if

0 < M∗(d; ∂Ω) = M∗(d; ∂Ω) < ∞ for somed > 0,

and we call this valueM(d; ∂Ω) thed−dimensional Minkowski content of∂Ω. Following [La91],
we say that∂Ω is fractal if d ∈ (n− 1, n], andnon-fractalotherwise.

3.2.2 Dimension functions

In this paper we will be interested in a suitable generalization of the previous concepts. To this
end, given 0< d < 1 we defineGd to be the class of functionsh: (0,∞)→ (0,∞) continuous such
that

(H1) h is strictly increasing and

lim
x→0+

h(x) = 0, lim
x→∞

h(x) = ∞.



3.2 Generalized Minkowski content and Minkowski dimension 41

(H2) For anyt > 0,

lim
x→0+

h(tx)
h(x)

= td,

uniformly in t on compact subsets of (0,∞).

(H3) h is sublinear at 0, i.e.

lim
x→0+

h(x)
x
= ∞.

One can check that the functions

h(x) =
xd

(log(1
x + 1))a

andh(x) =
xd

(log(log(1
x + 1)))a

(3.2.4)

are inGd for all d ∈ (0, 1) anda ≥ 0.

Remark3.1. Let i : (0,∞) → (0,∞) be the functioni(x) = x−1. From now on, givenh ∈ Gd, we
will always let

g(x) := (h−1 ◦ i)(x) = h−1(1/x), f (x) := (i ◦ h ◦ i)(x) =
1

h(1/x)
. (3.2.5)

With this notations let us now define the generalized Minkowski content and dimension that
was introduced by He and Lapidus in [HL97].

Definition 3.2. Let Ω ⊂ Rn be an open set with finite Lebesgue measure. Leth ∈ Gd be a
dimension function. The upperh−Minkowski content of∂Ω is defined by

M∗(h; ∂Ω) := lim sup
ε→0+

ε−nh(ε)|(∂Ω)ε ∩ Ω|. (3.2.6)

We define the lowerh−Minkowski contentM∗(h; ∂Ω) by taking the lower limit in (3.2.6). We
further say that∂Ω is h−Minkowski measurable if

0 < M∗(h; ∂Ω) = M∗(h; ∂Ω) < ∞

and denote this value asM(h; ∂Ω) theh−Minkowski content of∂Ω.

Let Ω be an open set inR. Then,Ω =
⋃∞

j=1 I j , whereI j is an interval of lengthl j . We can
assume that

l1 ≥ l2 ≥ · · · ≥ l j ≥ · · · > 0.

In [HL97], the authors obtained the following relation between the lengthsl j and the Minkowski
measurability of∂Ω:

Theorem 3.3. LetΩ =
⋃∞

j=1 I j . Then,∂Ω is h−Minkowski measurable if and only if lj ∼ Lg( j).
Moreover, in this case, the h−Minkowski content of∂Ω is given by

M(h; ∂Ω) =
21−d

1− d
Ld.
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Note thatd being positive and less than one implies the integrability at infinity of the functiong,
which in turn implies that the Lebesgue measure of the setΩ is finite. Therefore, theh−Minkowski
content and dimension are well-defined concepts.

The following proposition, that can be found in [La93], is a usefull estimate in our arguments
in order to compute the constants appearing from the Euler-McLaurin formula.

Proposition 3.4. Suppose h∈ Gd for some d∈ (0, 1). Then,

lim
x→∞

∫ ∞
x

g(u) du

xg(x)
=

d
1− d

.

3.2.3 Nonintegrable Dimension Functions

We now consider the analogous of the dimension functions defined in the previous subsection to
the cased > 1.

To this end we define the classGd to be the class of functionsh: (0,∞) → (0,∞) continuous
such that (H1) and (H2) are satisfied and, instead of (H3) we require superlinearity at 0, i.e.

lim
x→0

h(x)
x
= 0. (H3’)

Remark3.5. As in the previous subsection, we leti : (0,∞)→ (0,∞) given byi(x) = x−1 and

g(x) := (h−1 ◦ i)(x) = h−1(1/x), f (x) := (i ◦ h ◦ i)(x) =
1

h(1/x)
.

Now we prove an analogous of Proposition 3.4 to this case.

Proposition 3.6. Suppose h∈ Gd for some d> 1. Then,

lim
x→∞

∫ x

1 g(u) du

xg(x)
=

d
d − 1

.

Proof. First, we need to show that hypotheses (H1), (H2) and (H3’) imply

lim
x→∞

g(sx)
g(x)

= s−1/d (3.2.7)

uniformly on [s0,∞) for any s0 > 0 and

lim
x→∞

xg(x) = ∞. (3.2.8)

Equation (3.2.8) is immediate from (H3’). Now, to prove (3.2.7) we first observe that it is
equivalent to

lim
x→0+

h−1(sx)

h−1(x)
= s1/d, (3.2.9)
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on compact sets of (0,∞). In order to prove (3.2.9), let us note that (H2) implies

h(sx) = sdh(x) + o(1),

uniformly on x and ins∈ [0, s0]. Then, by the monotonicity ofh,

h−1(sdh(x) − ε) ≤ sx≤ h−1(sdh(x) + ε).

Finally, if we cally = h(x) andt = sd,

h−1(ty− ε) ≤ t1/dh−1(y) ≤ h−1(ty+ ε),

which trivially implies (3.2.9) and hence (3.2.7).

With these observations, now the proof of the Proposition follows easily. In fact, by (3.2.8), it
is enough to prove

lim
x→∞

∫ x

x0
g(u) du

xg(x)
=

d
d − 1

for x0 large enough. Now, by (3.2.7),

∫ x

x0
g(u) du

xg(x)
=

∫ 1

x0/x

g(xs)
g(x)

ds=
∫ 1

x0/x
s−1/d + o(1)ds=

d
d − 1

+ o(1).

This fact completes the proof. �

Remark3.7. Let Ω =
⋃∞

j=1 I j whereI j are disjoint open intervals of lengthl j ≍ g( j) whereg is
associated to a functionh ∈ Gd with d > 1.

In this case, sinceg is not integrable at infinity, one can check that|(∂Ω)ε ∩ Ω| = ∞ for every
ε > 0. So, we cannot define the correspondingh−Minkowski content or dimension in this case.

Nevertheless, in the computation of the asymptotic behavior of the eigenvalues, we obtain an
order of growth forN(λ) which depends onf = (i ◦ h ◦ i).

So, in some sense,h can be considered as certainspectral dimensionfor ∂Ω. That is why we
refer toh as anonintegrable dimension functioneven though there is no concept of dimension
associated to it. See Remark 3.16 at the end of Section§5.

3.3 The finite measure case:0 < d < 1

To prove the results in this Section will be very useful the followings

We begin this section recalling the well known summation formula of Euler-MacLaurin, which
will be very useful in this Chapter, see [Kr88] for a proof:
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Theorem 3.8.Let f(t) be a non negative, continuous and monotonically decreasingfunction tend-
ing to zero when t→ +∞. Then, there exist C∈ R, depending only on f , such that

b∑

j=a

f ( j) =
∫ b

a
f (t) dt +C +O( f (b)), (3.3.1)

when b→ +∞. In particular

lim
b→+∞

( b∑

j=a

f ( j) −
∫ b

a
f (t) dt

)
= C. (3.3.2)

An estimate of the number of eigenvalues of thep−Laplacian equation (1.5.4) relies on Lemma
3.9 below. This Lemma has been proved in [HL97] but we providehere a different proof that will
allow us, in the next section, to deal with the infinite measure case.

Lemma 3.9. Let{l j} j∈N be an arbitrary nonincreasing positive sequence such that for some h∈ Gd

we have that lj = g( j). Then

∞∑

j=1

[l j x] =
∞∑

j=1

l j x+ ζ(d) f (x) + o( f (x)), as j→ ∞.

Proof. First, we need to control the difference between
∑

[l j x] and
∑

l j x.

To this end, we firs observe that [l j x] = 0 if l j x < 1. Therefore, the first sum is finite.

Let J ∈ R such thatxg(J) = 1. Therefore,

J = g−1
(1
x

)
=

1
h(1/x)

= f (x).

As [g( j)x] = 0 if j > J, we get

∞∑

j=1

[l j x] =
J∑

j=1

[g( j)x] =
J∑

j=1

g( j)x+O(J).

Observe that this equation immediately gives

∞∑

j=1

[l j x] =
∞∑

j=1

l j x+O( f (x)).

The rest of the proof will consists in refining the error term.

To improve the remainder estimate, we use Dirichlet’s argument for the number of lattice points
below the hyperbola: we count the points below the graph of the function xg(t) and below its
inverseg−1(t/x), up to the intersection point of these graphs and deleting the size of the square
which we counted twice.
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Figure 3.1: Symmetry argument in the proof.

So, letK ∈ R be such that

xg(K) = g−1
(K

x

)
= K.

Then
K = g−1

(K
x

)
=

1

h( K
x )
= f

( x
K

)
.

By symmetry we have:

J∑

j=1

[g( j)x] =
K∑

j=1

[g( j)x] +
J∑

j=K

[g( j)x]

=

K∑

j=1

[g( j)x] +
K∑

j=1

[
g−1

( j
x

)]
− [K]2

=

K∑

j=1

g( j)x+
K∑

j=1

g−1
( j
x

)
− K2 +O(K).

Applying the Euler-McLaurin summation formula (3.3.1)

J∑

j=1

[g( j)x] =
∫ K

1
g(t)xdt+ A(x) +O(g(K)x)

+

∫ K

1
g−1

( t
x

)
dt + B(x) +O

(
g−1

(K
x

))
− K2 +O(K).

Clearly

O(K) = O(xg(K)) = O
(
g−1

(K
x

))
.

By symmetry (see Figure 1)
∫ J

1
g =

∫ K

1
g+

∫ J

K
g =

∫ K

1
g+

∫ K

1
g−1 − K2 + J,
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then replacing
∫ K

1 g(t)x dt+
∫ K

1 g−1
(

t
x

)
dt in the previous equation we have

J∑

j=1

[g( j)x] =
∫ J

1
xg(t) dt − J + A(x) + B(x) +O

(
f
( x
K

))
. (3.3.3)

Being the integral convergent, we may write the equation (3.3.3) as

J∑

j=1

[g( j)x] =
∫ ∞

1
xg(t) dt −

∫ ∞

J
xg(t) dt − J + A(x) + B(x) +O

(
f
( x
K

))

and again, by using the Euler-MacLaurin summation formula (3.3.1), we obtain

J∑

j=1

[g( j)x] =
∞∑

j=1

xg( j) −
∫ ∞

J
xg(t) dt − J + B(x) +O

(
f
( x
K

))
. (3.3.4)

Using that asx→ ∞, K →∞ and by (H2), we obtainf (x/K) = K ∼ f (x)1/(1+d). Then

J∑

j=1

[g( j)x] = x


∞∑

j=1

g( j)

 − x
∫ ∞

J
g(t) dt − J + B(x) +O( f 1/(1+d)(x)). (3.3.5)

To compute the integral we use the Proposition 3.4 to obtain
∫ ∞

f (x)
g(u) du = f (x)g( f (x))

( d
1− d

+ o(1)
)
.

Hence, using thatJ = f (x) and thatg( f (x)) = 1
x we arrive at

x
∫ ∞

J
g(t) dt = f (x)

( d
1− d

+ o(1)
)
, asx→ ∞. (3.3.6)

Replacing in equation (3.3.5) we obtain

J∑

j=1

[g( j)x] = x


∞∑

j=1

g( j)

 −
1

1− d
f (x) + B(x) + o( f (x)). (3.3.7)

Our last task is to determinate the value ofB(x). Forb > 1 fixed, we have,

b∑

j=1

g−1
( j
x

)
−

∫ b

1
g−1

( t
x

)
dt = B(x) +O

(
g−1

(b
x

))

Taking x big enough and remembering thatg−1(t/x) = 1/h(t/x), f (x) = 1/h(1/x),

b∑

j=1

h(1
x)

h( j
x)h(1

x)
−

∫ b

1

h(1
x)

h( t
x)h(1

x)
dt = B(x) +O

(
g−1

(b
x

))
.
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By (H2), for x large we have
h
(

1
x

)

h
(

t
x

) = t−d + o(1).

Whenb→ ∞, asg−1 is decreasing,O(g−1(b
x))→ 0. Hence,

B(x) = f (x)(1+ o(1)) lim
b→∞

( b∑

j=1

j−d −
∫ b

1
t−ddt

)
, (3.3.8)

or equivalently,B(x) ∼ C f(x) as x → +∞. In order to find the constantC, we use the next
expression for the Riemann zeta function, see [La93]:

lim
b→∞

( b∑

j=1

j−d −
∫ b

1
t−ddt

)
= ζ(d) − 1

d − 1
.

Hence, replacing in (3.3.7) the expressionB(x) = f (x)(ζ(d) − 1
d−1 + o(1)) we have

∞∑

j=1

[g( j)x] =
J∑

j=1

[g( j)x]

= x


∞∑

j=1

g( j)

 −
1

1− d
f (x) + B(x) + o( f (x))

= x


∞∑

j=1

g( j)

 + ζ(d) f (x) + o( f (x))

and the proof is complete. �

Now, we can prove our first theorem:

Theorem 3.10.LetΩ =
⋃

j∈N I j ⊂ R where Ij are disjoint open intervals. Assume that there exist
d ∈ (0, 1) and h∈ Gd such that|I j | = g( j). Then,

N(λ,Ω) =
|Ω|
πp
λ1/p +

ζ(d)

πd
p

f (λ1/p) + o( f (λ1/p)) as λ→ ∞.

Proof. AsΩ =
⋃

j∈N I j with |I j | = g( j), from Proposition 2.14,

N(λ,Ω) =
∞∑

j=1

[g( j)
πp

λ1/p
]
.

Now the proof follows by a direct application of Lemma 3.9 with x = λ1/p/πp. In fact,

N(λ,Ω) =
∞∑

j=1

[g( j)
πp

λ1/p
]
=
|Ω|
πp
λ1/p + ζ(d) f

(λ1/p

πp

)
+ o( f (λ1/p)),

as we wanted to prove. �



48 Asymptotic for eigenvalues

Remark3.11. Observe that the assumptions of Theorem 3.10 implies the length of the intervalsI j

must be strictly decreasing. This is not desirable for many applications (for instance, complements
of Cantor-type sets).

However, a simple inspection of the arguments show that it suffices to assume that|I j | ∼ g( j).
Therefore, for example, complements of Cantor-type sets are included in our result. See [Pi06] for
the details and also the next section.

3.4 The infinite measure case:d > 1

We begin with a couple of lemmas in the spirit of Lemma 3.9.

Lemma 3.12. Given{l j} j∈N a sequence of positive numbers and h∈ Gd for some d> 1. Then, if
l j ≍ g( j), we have

∞∑

j=1

[l j x] ≍ f (x) as x→ +∞.

Proof. Sincel j ≍ g( j), there exist two positive constantsc1, c2 such thatc1g( j) ≤ l j ≤ c2g( j).
Then

c1xg( j) − 1 ≤ [c1xg( j)] ≤ [l j x] ≤ [c2xg( j)] ≤ c2xg( j).

So, if we denoteJi = f (ci x), i = 1, 2 we have thatl j x < 1 for j > J2. Then

J1∑

j=1

c1xg( j) − J1 ≤
J2∑

j=1

[l j x] =
∞∑

j=1

[l j x] ≤
J2∑

j=1

c2xg( j). (3.4.1)

From the summation formula (3.8), we get

Ji∑

j=1

ci xg( j) = ci x
∫ Ji

1
g(t) dt +Cx+O(xg(Ji )). (3.4.2)

Applying Proposition 3.6, sinceJi → ∞ as,x→ ∞
∫ Ji

1
g(t) dt

Jig(Ji)
=

d
d − 1

+ o(1).

Also, asJi = f (ci x), we have thatci xg(Ji) = 1. Moreover, by (H3’),x = o( f (x)). Collecting all
these facts, we arrive at

Ji∑

j=1

ci xg( j) =
d

d − 1
Ji + o(Ji).

Replacing in (3.4.1) we get

1
d − 1

J1 + o(J1) ≤
∞∑

j=1

[l j x] ≤ d
d − 1

J2 + o(J2).

Finally, it is easy to see (from (H2)) thatJi = f (ci x) ≍ f (x) so (1) follows. �
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Lemma 3.13. Given{l j} j∈N a sequence of positive numbers and h∈ Gd for some d> 1. Then, if
l j ∼ g( j), we have

∞∑

j=1

[l j x] = ζ(d) f (x) + o( f (x)) as x→ +∞.

Proof. Sincel j ∼ g( j), for a fixedǫ > 0 there existsj0 such that, forj > j0,

1− ǫ <
l j

g( j)
< 1+ ǫ. (3.4.3)

From Theorem 2.10 and Proposition 2.14

∞∑

j=1

[l j x] =
j0∑

j=1

[g( j)x] +
j0∑

j=1

(
[l j x] − [g( j)x]

)
+

∞∑

j= j0+1

[l j x]. (3.4.4)

Now, from (3.4.3) and (3.4.4) we get

∞∑

j=1

[(1 − ε)g( j)x] ≤
∞∑

j=1

[l j x] −
j0∑

j=1

(
[l j x] − [g( j)x]

)
≤
∞∑

j=1

[(1 + ε)g( j)x].

Now, if K± is such that
(1± ε)g(K±)x = g−1(K±/x(1± ε)) = K±,

arguing as in Lemma 3.9, we arrive at

∞∑

j=1

[(1 ± ε)g( j)x] =
K±∑

j=1

(1± ε)g( j)x+
K±∑

j=1

g−1( j/x(1± ε)) − K2
± +O(K±).

Applying the Euler-McLaurin summation formula (3.8), we get

∞∑

j=1

[(1 ± ε)g( j)x] =
∫ K±

1
(1± ε)g(t)x dt+

∫ K±

1
g−1(t/x(1± ε)) dt

+ A(x) + B(x) − K2
± +O(K±),

whereA(x) = C(1 ± ε)x and B(x) are the constants from the Euler-McLaurin formula (3.8) for
(1± ε)g(t)x andg−1(t/x(1± ε)) respectively.

Again, as in Lemma 3.9
∫ K±

1
g+

∫ K±

1
g−1 =

∫ J±

1
g+ K±(K± − 1)− J±,

whereJ± is given by (1± ε)xg(J±) = 1.

Therefore, we arrive at

∞∑

j=1

[(1 ± ε)g( j)x] =
∫ J±

1
(1± ε)xg(t) dt + A(x) + B(x) − J± +O(K±).
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Applying now Proposition 3.6 and the definition ofJ± we obtain

∞∑

j=1

[(1 ± ε)g( j)x] =(1± ε)xJ±g(J±)
( d
d − 1

+ o(1)
)

+ A(x) + B(x) − J± +O(K±)

=J±
( 1
d − 1

+ o(1)
)
+ A(x) + B(x) +O(K±)

=
1

d − 1
f ((1± ε)x) + B(x) + o( f (x)),

where we have used thatA(x) = C(1± ε)x, x = o( f (x)) andK± = f (x(1± ε)/K±) = o( f (x)).

It remains to estimateB(x), but this follows exactly as in the proof of the finite measure case,
Proposition 3.9. So

B(x) = f ((1± ε)x)(1+ o(1)) lim
b→∞

( b∑

j=1

j−d −
∫ b

1
t−d dt

)
.

In this case, both terms are convergent, and we easily get

B(x) =
(
ζ(d) − 1

d − 1

)
f ((1± ε)x) + o( f (x)).

Hence, we finally get

∞∑

j=1

[(1 ± ε)g( j)x] = ζ(d) f ((1 ± ε)x) + o( f (x)).

As ε > 0 is arbitrary, the proof follows. �

Now, we can prove our second theorem:

Theorem 3.14.LetΩ =
⋃

j∈N I j , and h∈ Gd for some d> 1. Then

1. if |I j |1 ≍ g( j), we have

N(λ,Ω) = O( f (λ1/p)) asλ→ +∞.

2. if |I j |1 ∼ g( j), we have

N(λ,Ω) =
ζ(d)

πd
p

f (λ1/p) + o( f (λ1/p)) asλ→ +∞.

Proof. The proofs follow from Lemmas 3.12 and 3.13 replacingx by λ1/p/π
1/p
p . �

We close this section with the following estimate for the eigenvalues.
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Corollary 3.15. Let h ∈ Gd for some d> 1 and letΩ =
⋃

j∈N I j be such that|I j | ∼ g( j). Let
{λk}k∈N be the sequence of eigenvalues of problem(1.5.4)in Ω. Then,

λk ∼
[
g
( πd

pk

ζ(d)

)]−p
.

Proof. Since

k = N(λk,Ω) ∼ ζ(d)

πd
p

f (λ1/p
k ) =

ζ(d)

πd
p

g−1(λ−1/p
k ),

we get
[
g
( πd

pk

ζ(d)

)]−p
∼ λk

and the proof is finished. �

Remark3.16. Let us note that, forh(t) = td, we have thatg(t) = t−1/d, so

λk ∼
( πd

pk

ζ(d)

)p/d
=
π

p
pkp/d

ζ(d)p/d
.

For p = 2, the eigenvalues of the Laplace operator with Dirichlet boundary condition in any
bounded open setU ⊂ RN satisfy

λk ∼ ck2/N.

Hence, seems natural to considerh as aspectral dimensionfor ∂Ω despite the fact thatΩ =⋃
j∈N I j ⊂ R andd > 1.

3.5 Two–dimensional horns

For simplicity, we only consider here two dimensional domains. First we derive a simple proof of
the upper bound for the eigenvalue counting function of the Laplace operator on horns. Then, we
give a lower bound with the same order of growth although witha different constant in the leading
term.

Let h ∈ Gd, with d > 1, andg(x) = h−1(1/x). LetΩ ⊂ R2 be defined as

Ω = {(x, y) ∈ R2 : x ≥ 1; |y| ≤ g(x)}.

Clearly, the measure ofΩ is infinite.

Let us consider the eigenvalue problem


−∆u = λu in Ω

u = 0 on∂Ω.
(3.5.1)
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Sinceg(x) ց 0 asxր ∞, the domain is quasibounded, namely,

lim
|x|→∞

d(x,R2 \ Ω) = 0,

and the spectrum is discrete, consisting of a sequence of eigenvalues 0< λ1 < λ2 ≤ · · · ր ∞,
repeated according their multiplicity.

We want to estimate the order of growth of

N(λ,Ω) = #{n ∈ N : λn ≤ λ}.

To this end, let us introduce a family of rectangles{Q j} j∈N, and an open setV such thatΩ ⊂ V:

Q j = [ j, j + 1] × [−g( j), g( j)], V =
( ∞⋃

j=1

Q j
)◦
.

Also, the setV is quasibounded and the spectrum of the Laplace operator inV is a sequenceµ1 ≤
µ2 ≤ · · · ր ∞, repeated according their multiplicity. Moreover, the monotonicity of eigenvalues
respect to the domain gives

µn ≤ λn, n ≥ 1.

We have the following inclusions of Sobolev spaces:

H1
0(Ω) ⊂ H1

0(V) ⊂
∞⊕

j=1

H1
∗ (Q

j),

where

H1
∗ (Q

j) = {u ∈ H1(Q j) : u(x,±g( j)) = 0}.

We can compute by separation of variables the eigenfunctions and eigenvalues of the Laplace
operator in eachQ j with mixed boundary conditions. We get

λ
Q j

h,k = h2π2 +
k2π2

4g( j)2
, u

Q j

h,k(x, y) = cos(hπy) sin(kπy/2g( j)), h ≥ 0, k ≥ 1.

Hence, we define the eigenvalue counting function

Nmixed(λ,Q
j) = #

{
(h, k) : h2π2 +

k2π2

4g( j)2
≤ λ, h ≥ 0, k ≥ 1

}
.

Let us note that we can assign to each eigenvalue a lattice point (h, k) with h > 0 and the square
(h−1, h] × (k−1, k], and the number of eigenvalues withh = 0 is [2g( j)λ1/2/π]. By using the area
of the ellipse which contains those squares, we get

Nmixed(λ,Q
j) ≤ g( j)

2π2
λ +

2g( j)
π

λ1/2 = g( j)
( λ

2π2
+

2λ1/2

π

)
. (3.5.2)
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Now, the Dirichlet-Neumann bracketing (2.15) together with Proposition 2.14 implies

N(λ,Ω) ≤
∞∑

j=1

Nmixed(λ,Q
j),

but we cannot replace the previous bound yet. Let us note thatNmixed(λ,Q j) = 0 if

λ
Q j

0,1 =
π2

4g( j)2
> λ,

i.e., for j > g−1(π/2λ1/2) = f (2λ1/2/π). Hence, by using the estimate (3.5.2), the Euler-McLaurin
formula (3.8) and Proposition 3.6, we obtain

N(λ,Ω) ≤
f (2λ1/2/π)∑

j=1

Nmixed(λ,Q
j)

≤
f (2λ1/2/π)∑

j=1

g( j)
( λ

2π2
+

2λ1/2

π

)

=
( λ

2π2
+

2λ1/2

π

) 
∫ f (2λ1/2/π)

1
g(t)dt + A+O

(
g
(
f
(2λ1/2

π

)))

=
( λ

2π2
+

2λ1/2

π

)
f
(2λ1/2

π

)
g
(
f
(2λ1/2

π

))( d
d − 1

+ o(1)
)
+O(λ1/2)

=
( λ

2π2
+

2λ1/2

π

)
f
(2λ1/2

π

) π

2λ1/2

( d
d − 1

+ o(1)
)
+O(λ1/2)

=
d

4π(d − 1)
λ1/2 f

(2λ1/2

π

)
+ o

(
λ1/2 f

(2λ1/2

π

))
.

Therefore, we have proved the following Theorem:

Theorem 3.17.Let h∈ Gd, with d> 1, andΩ ⊂ R2 be defined as

Ω = {(x, y) ∈ R2 : x ≥ 1; |y| ≤ g(x)}.

Then, the eigenvalue counting function of the eigenvalue problem(3.5.1)satisfies

N(λ,Ω) ≤ d
d − 1

λ1/2 f
(2λ1/2

π

)
+ o

(
λ1/2 f

(2λ1/2

π

))
.

Remark3.18. Whenh(t) = td with d > 1, theng(t) = t−1/d and f (t) = td. So, we have

N(λ,Ω) ≤ d
d − 1

(2
π

)d
λ

d+1
2 + o(λ

d+1
2 ).

Following [VL01], the order of growth cannot be improved, since this is the right one for horn-
shaped domains.

In much the same way we prove the following lower bound:
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Theorem 3.19.Let h∈ Gd, with d> 1, andΩ ⊂ R2 be defined as

Ω = {(x, y) ∈ R2 : x ≥ 1; |y| ≤ g(x)}.

Then, the eigenvalue counting function of the eigenvalue problem(3.5.1)satisfies

N(λ,Ω) ≥ 1
d − 1

λ1/2

π
f
(λ1/2

2π

)
+ o

(
λ1/2 f

(λ1/2

2π

))
.

Proof. As before, let us introduce a family of rectangles{Q j} j∈N andU ⊂ Ω, where

Q j = [ j, j + 1] × [−g( j + 1), g( j + 1)], U =
( ∞⋃

j=1

Q j

)◦
.

Then,
∞⊕

j=1

H1
0(Q j) ⊂ H1

0(U),

and the Dirichlet-Neumann bracketing (2.15) together withProposition 2.14 implies

∞∑

j=1

ND(λ,Q j) ≤ N(λ,Ω).

The eigenfunctions and eigenvalues of the Laplace operatorin Q j with Dirichlet boundary con-
ditions are

λ
Q j

h,k = h2π2 +
k2π2

4g( j + 1)2
, u

Q j

h,k(x, y) = sin(kπx/2g( j)) sin(hπy), h, k ≥ 1.

Therefore, the counting functionND(λ,Q j) is

ND(λ,Q j) = #
{
(h, k) : h2π2 +

k2π2

4g( j + 1)2
≤ λ, h, k ≥ 1

}
.

Let us assign to each eigenvalue the lattice point (h, k) with h, k ≥ 1, and the squareQh,k =

[h, h+ 1)× [k, k+ 1). Hence,

ND(λ,Q j) =
∣∣∣∣
( ⋃

λ
Qj
h,k≤λ

Qh,k

)∣∣∣∣.

Clearly,

ND(λ,Q j) ≥
g( j)λ

2π2
− λ

1/2

π
− 2g( j)λ1/2

π
− 1,

since in the first quadrant, the ellipse of semi-axesλ1/2/π and 2g( j)λ1/2/π is covered by the squares
Qh,k and the rectangles [0, 1)× [0, λ1/2), [0, [2g( j)λ1/2] + 1)× [0, 1).
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We consider onlyj ≤ f (λ1/2/2π) (if not, g( j)λ
2π2 − λ1/2

π
< 0, andND(λ,Q j) is nonnegative) and we

get

N(λ,Ω) ≥
∞∑

j=1

ND(λ,Q j) ≥
f (λ1/2/2π)∑

j=1

g( j)λ

2π2
− λ

1/2

π
− 2g( j)λ1/2

π
− 1.

Finally, as in the previous proof,

N(λ,Ω) ≥
f (λ1/2/2π)∑

j=1

g( j)λ

2π2
− f

(λ1/2

2π

)λ1/2

π
+O

( f (λ1/2/2π)∑

j=1

2g( j)λ1/2
)

=
λ

2π2
f
(λ1/2

2π

)
g
(
f
(λ1/2

2π

))( d
d − 1

+ o(1)
)
− λ

1/2

π
f
(λ1/2

2π

)

+ o
(
λ1/2 f

(λ1/2

2π

))

=
λ

2π2
f
(λ1/2

2π

) 2π

λ1/2

( d
d − 1

+ o(1)
)
− λ

1/2

π
f
(λ1/2

2π

)
+ o

(
λ1/2 f

(λ1/2

2π

))

=
λ1/2

π(d − 1)
f
(λ1/2

2π

)
+ o

(
λ1/2 f

(λ1/2

2π

))

and the proof is finished. �

Remark3.20. From Theorems 3.17 and 3.19 we obtain that

cλ1/2 f
(λ1/2

2π

)
≤ N(λ,Ω) ≤ Cλ1/2 f

(2λ1/2

π

)
,

for horn-shaped domains
Ω = {(x, y) ∈ R2 : x ≥ 1; |y| ≤ g(x)},

with f (x) = g−1(1/x), andg monotonically decreasing continuous function.

Observe that, ash satisfies (H2), we have

N(λ,Ω) ≍ λ1/2 f (λ1/2).

This result improves the upper bounds obtained in [CH67, He74, He75], which only gives an upper
bound forN(λ,Ω) wheneverg(x) = x−1/d.

It would be desirable to obtain a better knowledge of the asymptotic behavior, namely,
N(λ,Ω) ∼ cλ1/2 f (λ1/2) (for certain constantc) as in [Si83], and even a second term as in [VL01].
However, without imposing more restrictions on the functions h or g, we believe that this cannot
be possible, since the main term can oscillate, as the following one–dimensional example suggest.
This example is borrowed from [Pi06].

Example3.21. Let Ω =
⋃

k∈NΩk, whereΩk consist ofmk intervals of lengthsn1−k, for m > n.
Then, the spectral counting function of problem (1.5.4) satisfies

N(λ,Ω) =
λd/p

m
s(log(λ)) −O(λ1/p),

wheres(log(λ)) is a bounded periodic function, andd = log(m)
log(n) .
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Proof. Since

N(λ,Ω) =
∞∑

j=1

mj
[
λ1/p

πpn j−1

]
=

∞∑

−∞
mj

[
λ1/p

n j−1πp

]
−O(λ1/p).

By changing variables,

k =
log(λ1/p) − log(πp)

log(n)
,

we getnk = λ1/p/πp andmk = (λ1/p/πp)d, for d = log(m)
log(n) , and we obtain

N(λ,Ω) =
λd/p

m

∞∑

j=−∞
mj−k[ny−k] −O(λ1/p) =

λd/p

m
s(log(λ)) −O(λ1/p)

and, asj − (k+ 1) = ( j + 1)− k, s(log(λ)) is a periodic function with period equal to one. �

This example can be extended toR2, by definingΩ =
⋃

k∈NΩk, whereΩk consists ofmk

disjoints squares of sidesn1−k. WhenΩ has finite measure, similar examples were considered
in [FV93, LV96, VLe96], where oscillating second term were obtained for the spectral counting
function of the Laplace operator inΩ with Dirichlet boundary conditions in the boundary of each
square. It is not difficult to extend those arguments to the infinite measure case (that is,m2 > n),
to obtain in this way a quasibounded set with an oscillating main term. However, the set obtained
in this way is not a horn.
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Homogenization: preliminaries

In order to answer the questions formulated in the Introduction, and others related to a more gen-
eral class of problems, we follow the approach which uses thetheory ofH− andG−convergence.

The notion ofH−convergence was introduced by Murat and Tartar [Ta78] to study a wide class
of homogenization problem for possibly non-symmetric elliptic equations.G−convergence was
introduced by Spagnolo [Sp68], [Sp76], De Giorgi and Spagnolo [DS73], and it is restricted to
symmetric operators.

In the first part of this Chapter we introduce theH− andG−convergence for second order linear
uniformly elliptic operators.

Then, we emphasize in the important case of periodic homogenization, namely, when we deal
with families of matrices of the formAε(x) = A(x/ε), whereA(x) areQ−periodic functions,Q
being the unit cube inRN andε a real parameter tending to zero. Here, it is possible to find an
explicit form of the limit operator.

Finally, we define the notion ofG−convergence of nonlinear monotone operators in the general
setting, that is, a more general family of operatoraε(x, ξ) satisfying certain properties and whose
prototypical example isaε(x, ξ) = Aε(x)|ξ|p−2ξ, related with thep−Laplacian operator. Here, we
also deal with the periodic case and some remarks about the homogenization of nonlinear periodic
monotone operators.

4.1 H−convergence of linear equations

In this section, we deal with linear elliptic operators of the formAεu = −div(Aε(x)∇u) where
Aε(x) = (aεi j (x)) is an elliptic matrix. LetMN be the linear space of square real matrices of order
N. Givenα, β two positive constants, we define a subspace ofMN made of coercive matrices with
coercive inverses

Mα,β = {M ∈ MN : Mξ · ξ ≥ α|ξ|2, M−1ξ · ξ ≥ β|ξ|2 ∀ξ ∈ RN}. (4.1.1)
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A coercive matrix with coercive inverse is also bounded. Indeed, if M ∈ Mα,β, introducing
η = M−1ξ, we deduce from (4.1.1)

β|Mη|2 ≤ Mη · η.

Applying Cauchy-Schwarz inequality, we obtain

|Mη| ≤ β−1|η| ∀η ∈ RN. (4.1.2)

Similarly, we have

|M−1η| ≤ α−1|η| ∀η ∈ RN.

From (4.1.1) and (4.1.2) we deduce that a necessary condition for M ∈ Mα,β is that

α|ξ|2 ≤ Mξ · ξ ≤ β−1|ξ|2 ∀ξ ∈ RN.

Therefore,Mα,β is nonempty if and only if it is satisfied the conditionαβ ≤ 1.

H−convergence is a notion of convergence for the coefficients of an elliptic partial differential
equation, which is defined through some convergence properties of the solution of this equation.

Definition 4.1. It is said that a sequence of matricesAε(x) ∈ L∞(Ω,Mα,β) H−convergesto an
homogenized limit matrixA∗(x) ∈ L∞(Ω,Mα,β) (called H−limit) if, for any f ∈ W−1,2(Ω), the
sequenceuε of solutions of


−div(Aε(x)∇uε) = f in Ω

uε = 0 on∂Ω
(4.1.3)

satisfies

uε ⇀ u weakly inH1

0(Ω)

Aε∇uε ⇀ A∗∇u weakly inL2(Ω)N
(4.1.4)

whereu is the solution of the homogenized equation


−div(A∗∇u) = f in Ω

u = 0 on∂Ω.
(4.1.5)

This definition is justified by the following compactness theorem.

Theorem 4.2. For any sequence Aε(x) of matrices in L∞(Ω,Mα,β) there exist a subsequence, still
denoted by Aε, and an homogenized matrix A∗(x) ∈ L∞(Ω,Mα,β) such that Aε H-converges to A∗.

Proof. See Theorem 7.4 in [De]. �

Remark4.3. Let us observe the following remarks:
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1. By the definition ofH−convergence, the homogenized matrixA∗ does not depend on the
source termf .

2. Theorem 4.2 implies that the setL∞(Ω;Mα,β) is closed underH−convergence, i.e., the
coercivity constantsα, β are the same for the sequenceAε and itsH−limit A∗.

3. By definition, if a sequenceAε H−converges to a limitA∗, then any subsequence also
H−converges toA∗.

4. SinceL2(Ω) is dense inH−1(Ω) the source term in the Definition 4.1 can belong toL2(Ω)
insteadH−1(Ω).

The next theorem is about the localization of theH−convergence:

Theorem 4.4. Let Aε(x) and Bε(x) be two sequences of matrices in L∞(Ω;Mα,β), which
H−converges to A∗ and B∗, respectively. Letω be an open subset compactly embedded inΩ,
i.e., ω̄ ⊂ Ω. If Aε(x) = Bε(x) in ω, then A∗(x) = B∗(x) in ω.

Proof. See Proposition 1 in [MT97]. �

Remark4.5. Even though in Definition 4.1 we define theH−converge with Dirichlet boundary
conditions. It can be proved that theH−limit is independent of the boundary conditions (see, for
instance [Al02] Proposition 1.2.19).

4.1.1 The periodic case

To define the concept of homogenization in the periodic framework we need some definitions.

Definition 4.6. Let Y = (0, ℓ1)×· · · (0, ℓn) be an interval inRN, whereℓ1, · · · , ℓN are given positive
numbers. We will refer toY as thereference cell.

Definition 4.7. A function f defined a.e. onRN is calledY-periodicif and only if

f (x+ kℓiei) = f (x) a.e. onRN, ∀k ∈ Z, ∀i ∈ {1, · · · ,N},

where{e1, · · · , eN} is the canonical basis ofRN.

In the one-dimensional caseN = 1, we simply say thatf is ℓ1−periodic.

In the study of periodic oscillating functions is essentialthe definition of the average of a peri-
odic function.

Definition 4.8. LetΩ be a bounded open set ofRN and f a function inL1(Ω). Theaverageof f
overΩ is the real number̄f given by

f̄ =
1
|Ω|

∫

Ω

f (y)dy.
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The next result is related to the convergence in the weak sense of periodic functions inLp.

Theorem 4.9(Weak limit of rapidly oscillating periodic functions). Let 1 ≤ p ≤ +∞ and f be a
Y−periodic function in Lp(Y). Set

fε(x) = f ( x
ε
) a.e. onRN.

Then, if p< +∞, asε→ 0

fε ⇀ f̄ =
1
|Y|

∫

Y
f (y)dy weakly in Lp(ω)

for any bounded open subsetω of RN.

If p = +∞, one has

fε ⇀ f̄ =
1
|Y|

∫

Y
f (y)dy weakly* in L∞(ω).

Proof. See, for instance, Theorem 2.6 in [CD99]. See also Chapter§4 where the rate of that
convergence it is obtained. �

Remark4.10. Let us point out some features of the weak convergence. Let usconsider the fol-
lowing example. LetY = (0, 2π) and f (x) = sinx. Let ε be a sequence of positive real numbers
tending to zero. By Theorem 4.9 we have thatfε(x) = sin(x/ε) ⇀ 0 weakly* in L∞(Y) (hence
weakly inL2(Y)). Particularly,

∫ 2π

0
fε(x) dx→ 1

2π

∫ 2π

0
siny dy= 0,

i.e., the average offε converges to 0. Furthermore,

‖ fε − 0‖2L2(Y) =

∫ 2π

0
sin2( x

ε
) dx→

(1
π

∫ π

0
sin2 y dy

)
2π = π , 0,

which shows that we do not have convergence offε of f in the strong topology ofL2(Y).

This simple example shows a mathematical difficulty one meets by handling weak convergent
sequences. More precisely, if two sequences and their products converge in the weak topology,
the limit of the product is not equal, in general to the product of the limits. Indeed, this example
proves thatf 2

ε = fε fε does not converge weakly inL2(Y) to 0.

Let us consider functionsA : RN → RN×N, with A(x) = (ai j (x)) such thatA ∈ L∞(Ω;Mα,β) and
the functionsai j areY-periodic∀i, j = 1, . . . ,N.

We consider equation (4.1.3) in the periodic framework, i.e., Aε is aY−periodic matrix defined
by

Aε(x) = A( x
ε
) a.e. onRN (4.1.6)
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Figure 4.1: fε(x) = sin(2πx/ε) with Y = (0, 1) andε = 0.1.

whereA( x
ε
) = (aεi j (x))1≤i, j≤N a.e. onRN with aεi j (x) = ai j ( x

ε
) a.e. onRN, for all i, j = 1, . . . ,N.

Note that the functionsaεi j areεY−periodic onRN.

When we deal with a family ofY−periodic matrices of the form (4.1.6), it is possible to find an
explicit expression of the limit matrixA∗ in term of certain auxiliary functions. In the following
Theorem a characterization of thehomogenized coefficientsis given.

Theorem 4.11. The sequence Aε = A( x
ε
) H−converges to a constant homogenized matrix A∗ ∈

Mα,β defined by its entries

A∗i, j =
∫

Y
A(y)(ei + ∇ωi) · (ej + ∇ω j)dy,

where(ei)1≤i≤N is the canonical basis ofRN, and (wi)1≤i≤N is the family of unique solution in
H1

#(Y)/R of the cell problems


−divA(y)(ei + ∇ωi(y)) = 0 in Y

y→ ωi(y) Y-periodic
(4.1.7)

with

H1
#(Y) = { f ∈ H1

loc(R
N) such that f is Y-periodic}

Proof. See Theorem 1.3.18 in [Al02]. �

4.2 G−convergence of linear equations

In the case of symmetric operators, i.e., when the matrixAε is symmetric, a notion of operator
convergence was introduced by Spagnolo [Sp76] under the name of G−convergence. It is a little
simpler thanH−convergence due to the symmetry hypothesis. From a historical point of view, let
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us mention that theG stands forGreen, since the original proof of the compactness theorem for
G−convergence used Green functions.

LetMs
N be the linear space of symmetric real matrices of orderN. For any positive constants

α, β, we define a subspace made of coercive matrices with coerciveinverses,

Ms
α,β = {M ∈ Ms

N : Mξ · ξ ≥ α|ξ|2, M−1ξ · ξ ≥ β|ξ|2 ∀ξ ∈ RN}. (4.2.1)

GivenΩ ⊂ RN a bounded open set, we introduce the spaceL∞(Ω;Ms
α,β

) of admissible symmetric
coefficient matrices.

Definition 4.12. A sequence of matricesAε(x) ∈ L∞(Ω,Ms
α,β

) is said thatG−convergesto an
homogenized limit matrix,A∗(x) ∈ L∞(Ω,Ms

α,β
) (calledG−limit) if, for any f ∈ H−1(Ω), the

sequenceuε of solutions of

−div(Aε(x)∇uε) = f in Ω

uε = 0 on∂Ω
(4.2.2)

satisfies thatuε ⇀ u weakly inH1
0(Ω), whereu is the unique solution of the homogenized equation

−div(A∗∇u) = f in Ω

u = 0 on∂Ω.
(4.2.3)

This definition is justified by the following compactness theorem.

Theorem 4.13. For any sequence Aε of matrices in L∞(Ω,Ms
α,β

) there exist a subsequence, still
denoted by Aε, and an homogenized matrix A∗(x) ∈ L∞(Ω,Mα,β) such that Aε G-converges to A∗.

Proof. See [Al02], Lemma 1.3.9. �

The main difference betweenH− and G−convergence is that the latter does not require the
convergence of the fluxAε∇uε. ThenG−convergence is a weaker notion thanH−convergence in
the sense that if a sequence of symmetric matricesAε H−converges to a symmetric homogenized
matrix A∗, then it automaticallyG−converges to the same limit. This is an obvious consequence
of the following lemma.

Lemma 4.14. Let Aε be a sequence of (not necessarily symmetric) matrices in L∞(Ω;Mα,β). If
Aε H−converges to a limit A∗ in L∞(Ω;Mα,β), then the adjoint, or transposed, sequence(Aε)t

H−converges to the adjoint limit(A∗)t in L∞(Ω;Mα,β).

Proof. See [Al02], Lemma 1.3.10. �

By Lemma 4.14, ifAε is symmetric andH−converges toA∗, then automaticallyA∗ is symmetric,
and thusAε alsoG−converges toA∗. The following Proposition is the converse of that Lemma.
This fact give the equivalence betweenH− andG−convergence for symmetric matrices.
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Proposition 4.15. A sequence of Aε of symmetric matrices in L∞(Ω;Ms
α,β

) G−converges to a limit
A∗ ∈ L∞(Ω;Mα,β) if and only if it H−converges to A∗.

Proof. See [Al02], Proposition 1.3.11. �

Remark4.16. For symmetric matricesAε, the convergence of the fluxAε∇uε is a consequence of
the convergence of the solutionsuε. If the matricesAε are not symmetric, this is no longer true. In
particular, for nonsymmetric operator, the notion ofG−convergence is inconsistent, since it does
not guarantee the uniqueness of theG−limit.

4.2.1 The periodic case

Here we deal with functionsA : RN → RN×N, with A(x) = (ai j (x)) such thatA ∈ L∞(Ω;Ms
α,β

)
with ai j Y-periodic functions∀i, j = 1, . . . ,N.

First, we deal with the one-dimensional problem and then we will see difficulties that arises in
the generalization to the caseN > 1.

The one-dimensional case

This problem was studied by Spagnolo (1967). LetΩ = (0, 1) be an interval inR. In the one-
dimensional case equation (4.2.2) is reduced to


−(aε(x)(uε)′)′ = f enΩ

uε(0) = uε(1) = 0
(4.2.4)

where′ := d
dx andaε(x) := A( x

ε
). We assume thata is a positive 1−periodic function inL∞(Ω)

such that for some constantsα, β

0 < α ≤ a(x) ≤ β < +∞, for a.e.x ∈ R. (4.2.5)

The weak form of (4.2.4) is


∫ 1
0 aε(uε)′ϕ′ =

∫ 1
0 fϕ for everyϕ ∈W1,2

0 (Ω)

uε ∈W1,2
0 (Ω).

(4.2.6)

Let us observe that by duality

α‖(uε)′‖2L2(Ω) ≤
∫ 1

0
aε|(uε)′|2 =

∫ 1

0
f uε ≤ ‖ f ‖W−1,2(Ω)‖uε‖W1,2

0 (Ω). (4.2.7)

By the Poincaré inequality for functions with zero boundary values we have that

‖uε‖L2(Ω) ≤ ‖(uε)′‖L2(Ω).
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That implies that

‖uε‖W1,2
0 (Ω) ≤

1
α
‖ f ‖L2(Ω). (4.2.8)

SinceW1,2
0 is a reflexive space, there exists a subsequence still denoted by ε such that

uε ⇀ u weakly inW1,2
0 (Ω) (4.2.9)

and sinceW1,2
0 (Ω) is compactly embedded inL2(Ω), we have by the Rellich Embedding Theorem

(see for instance [Ev10]) that
uε → u strongly inL2(Ω).

Being that is an 1−periodic function we have that the sequenceaε converges weakly inL∞(Ω) to
its average (and hence weakly inL2(Ω)), i.e.,

aε
∗
⇀ ā =

∫ 1

0
a weakly* in L∞(Ω). (4.2.10)

From (4.2.6),(4.2.9) and (4.2.10) it would be reasonable that in the limit we have thatu must be a
solution of: 

∫ 1
0 āu′ϕ′ =

∫ 1
0 fϕ for everyϕ ∈W1,2

0 (Ω)

u ∈W1,2
0 (Ω).

(4.2.11)

However thisis not true in general, sinceaε(uε)′ is the product of two weakly converging se-
quences. This is the main difficulty in the limit process. To obtain the correct answer we proceed
as follows.

Let ξε = aε(uε)′. By (4.2.8) we have that the sequence{ξε} is bounded inL2(Ω) and (4.2.6)
implies that−ξ′ε = f in Ω. Moreover, from the estimate onuε and (4.2.5) one has

‖ξε‖L2(Ω) ≤
β

α
‖ f ‖L2(Ω.

Hence up to a subsequence we get

ξε ⇀ ξ weakly inL2(Ω).

Then, we can pass to the limit in (4.2.6) to get
∫ 1

0
ξϕ′ =

∫ 1

0
fϕ for everyϕ ∈W1,2

0 (Ω)

i.e.
−dξ

dx
= f in Ω.

Clearly, we obtain

‖ξε‖W1,2(Ω) ≤ ‖ f ‖L2(Ω)(1+
β

α
).

Hence,ξε is bounded inW1,2(Ω) and by Rellich’s Theorem there exists a subsequence still denoted
by ε, such that

ξε → ξ strongly inL2(Ω).
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Since{ 1
aε
} converges to1a weakly* in L∞(Ω) (and hence weakly inL2(Ω)), we can pass to the limit

in theweak-strongproduct

(uε)′ =
1
aε
ξε ⇀

1
a
ξ weakly inL2(Ω). (4.2.12)

Thus, by (4.2.9) and (4.2.12), we obtain that

ξ = (a−1)−1u′. (4.2.13)

Now we can pass to the limit in (4.2.6) obtaining



∫ 1
0 a∗u′ϕ′ =

∫ 1
0 fϕ for everyϕ ∈W1,2

0 (Ω)

u ∈W1,2
0 (Ω)

wherea∗ = (a−1)−1. Being 1/β ≤ a−1 ≤ 1/α we conclude that the homogenized equation has
a unique solution and thus that the whole sequence{uε} converges. Finallyu is solution of the
equation 

−a∗u′′ = f enΩ

u(0) = u(1) = 0.

Observe that in the one dimensional case sincea∗ is a constant, one can compute explicitly the
limit solution u:

u(x) = − 1
a∗

∫ x

0
dy

∫ y

0
f (t) dt +

1
a∗

( ∫ 1

0
dy

∫ y

0
f (t) dt

)
.

Remark4.17. Note that the value ofa∗ obtained is the particular casep = 2 of the homogenized
coefficient of thep−Laplacian equation

a∗ =
(
a

1
1−p

)−(p−1)

given in Section 4.3.1.

In theN-dimensional case withN > 1, it is more difficult to obtain an expression of the homog-
enized matrix and it is no longer obtained by means of algebraic formulas fromA.

The N−dimensional case

LetΩ be a bounded open subset ofRN. For a fixedε > 0, let us consider the Dirichlet boundary
value problem onΩ 

−div(Aε∇uε) = f enΩ

uε = 0 en∂Ω
(4.2.14)

where f ∈W−1,2(Ω) is a function onΩ.
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The variational weak formulation of (4.2.14) becomes then:find uε ∈W1,2
0 (Ω) such that



∫
Ω

Aε∇uε · ∇v =
∫
Ω

f v for all v ∈W1,2
0 (Ω)

uε ∈W1,2
0 (Ω).

(4.2.15)

Remark4.18. The existence and uniqueness of (4.2.15) it follows from theLax-Milgram lemma:
if we define the bilinear formaε : W1,2

0 (Ω) ×W1,2
0 (Ω)→ R by

aε(u, v) =
∫

Ω

Aεu · v for all u, v ∈W1,2
0 (Ω).

we observe that from the boundedness assumption and Holder’s inequality it follows

|aε(u, v)| ≤ c‖u‖W1,2
0 (Ω)‖v‖W1,2

0 (Ω) for all u, v ∈W1,2
0 (Ω).

Moreover, from the ellipticity condition we get

aε(u, v) ≤ α‖u‖2
W1,2

0 (Ω)
. (4.2.16)

Hence,aε defines a bilinear continuous and coercive form onW1,2
0 (Ω) and the existence and

uniqueness is guaranteed.

From the estimate of the Lax-Milgram lemma we get

‖uε‖W1,2
0 (Ω) ≤

1
α
‖ f ‖W−1,2(Ω).

Consequently, it follows that there exists a subsequence still denoted byε and an elementu ∈
W1,2

0 (Ω) such that
uε ⇀ u weakly inW1,2

0 (Ω).

Like in the one-dimensional case, to investigate the limitu we define

ξε = Aε∇uε

which satisfies ∫

Ω

ξε∇v =
∫

Ω

f v for all v ∈W1,2
0 (Ω). (4.2.17)

SinceA ∈ L∞(Ω;Ms
α,β

) and (4.2.16) it follows that

‖ξε‖L2Ω ≤
β

α
‖ f ‖W−1,2(Ω).

Then, there exist a subsequence, still denoted by{ξε}, and an elementξ ∈ L2(Ω) such that

ξε ⇀ ξ weakly in (L2(Ω))N.

Hence, we can pass to the limit in (4.2.17), to get
∫

Ω

ξ∇v =
∫

Ω

f v for all v ∈W1,2
0 (Ω),
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i.e.
−divξ = f in Ω.

To obtain the limit equation whichu is solution it is necessary to describeξ in terms ofu. In
the one-dimensional case one can easily give the relation betweenu and ξ as we have seen in
(4.2.13). In theN−dimensional case the situation is completely different since the coefficients of
A∗ are no longer obtained as algebraic formulas fromA. Indeed, they are defined by means of
some functions which are solutions in the reference cellY of certain boundary value problems.

The classical convergence result states that:

Theorem 4.19.Let f ∈W−1,2(Ω) and uε be the solution of(4.2.14)with Aε satisfying(H1)−(H4).
Then

1. uε ⇀ u weakly in W1,2
0 (Ω).

2. Aε∇uε ⇀ A∗∇u weakly in(L2(Ω))N.

where u0 is the unique solution in W1,20 (Ω) of the homogenized problem


−div(A∗∇u) = f enΩ

uε = 0 en∂Ω.

The matrix A∗ = (a∗i j ) is constant, elliptic and given by

a∗i j =
∫

Y
(ai j (y) +

N∑

k=1

aik(y)
∂ωk(y)
∂yk

dy)

whereωk is the unique solution to the local problem


∫
Y

A(y)(ek + ∇ωk(y)) · ∇v(y)dy = 0 for every v∈W1,2
per(Y)

ωk ∈W1,2
per(Y).

This well-known result can be proved by different methods. One of them is the variational
method of oscillating test functions due to Tartar [Ta77], [Ta78]. Another way to prove it is by
using the two-scale method of Nguetseng [Ng89] and Allaire [Al02]. Also, can be used the formal
method of asymptotic expansions, known as the multiple scale method.

Tartar’s methodis based on the construction of a suitable set of oscillatingtest functions which
allows us to pass to the limit in problem (4.2.14) and this is related to the notion of compensated
compactness.

In another way, the two-scale method take into account the two scales of the problem and
introduces a new notion of convergence, thetwo-scale convergence, tested on functions of the
form ψ(x, x/ε).
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Themultiple scale methodsuggests looking for a formal asymptotic expansion of the form

uε(x) = u(x, x
ε
) + εu1(x, x

ε
) + ε2u2(x, x

ε
) + · · ·

with u j(x, y) for j ∈ N such thatu j(x, y) is defined forx ∈ Ω andy ∈ Y, andu j(·, y) is Y−periodic.
The two variablesx and x

ε
take into account the two scales of the homogenization phenomenon; the

x variable is the macroscopic variable, whereas thex
ε

variable takes into account the microscopic
geometry.

4.3 G−convergence of monotone operators

In this section we deal with theG−convergence of sequences of nonlinear monotone operators.
Given a bounded domainΩ ⊂ RN, N ≥ 1 we consider the family of operatorsAε : W1,p

0 (Ω) →
W−1,p′(Ω) defined in Section 2.4 by

Aεu := −div(aε(x, ξ)), (4.3.1)

whereaε : Ω × RN → RN satisfies, for everyξ ∈ RN and a.e.x ∈ Ω conditions (H0)–(H8).

Definition 4.20. Let Ω be a bounded open domain inRN, N ≥ 1. We say thataε(x,∇u)
G−convergesto a(x,∇u) if for every f ∈ W−1,p′(Ω) and for everyfε strongly convergent tof
in W−1,p′(Ω), the solutionsuε of the problem


−div(aε(x,∇uε)) = fε in Ω

uε = 0 on∂Ω
(4.3.2)

satisfy the following conditions

uε ⇀ u weakly inW1,p
0 (Ω),

aε(x,∇uε) ⇀ a(x,∇u) weakly in (Lp(Ω))N,

whereu is the solution to the equation


−div(a(x,∇u)) = f in Ω

u = 0 on∂Ω.

For instance, in the linear periodic case, in Theorem 4.19 wehave seen that the familyA(x/ε)∇u
G−converges to a limitA∗∇u whereA∗ is a constant matrix.

Remark4.21. For each positive value ofε there exists a unique solutionuε ∈ W1,p
0 (Ω) of (4.3.2).

For a proof we refer, for instance, to [KS00], Chapter III, Corollary 1.8 or to [Li69], Chapter 2,
Theorem 2.1.
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Remark4.22. It can be proved that this definition ofG−convergence is independent of the bound-
ary condition. A proof of this fact can be found, for instance, in [CVD90], Theorem 3.8.

It is shown in [BCR06] that properties (H0)–(H8) are stable underG−convergence, i.e.

Theorem 4.23. If aε(x,∇u) G−converges to a(x,∇u) and aε(x, ξ) satisfies(H0)–(H8), then a(x, ξ)
also satisfies(H0)–(H8).

Proof. See [BCR06], Theorem 2.3. �

In the general case, one has the following compactness result due to [CVD90].

Proposition 4.24. Assume that aε(x, ξ) satisfies(H1)–(H3) then, up to a subsequence, aε(x, ξ)
G−converges to a maximal monotone operator a(x, ξ) which also satisfies(H1)–(H3).

Proof. See [CVD90], Theorem 4.1. �

Remark4.25. In the one-dimensional case, as we have seen in Chapter§2, Section 2.5.1, equation
(4.3.2) becomes 

−(aε(x)|(uε)′|p−2(uε)′)′ = fε in I := (0, 1)

uε(0) = uε(1) = 0
(4.3.3)

with aε satisfying (2.5.9).

4.3.1 The periodic case

Now, we deal with the homogenization of a sequence of nonlinear monotone operatorsAε defined
in (4.3.1) in the periodic case, i.e.,aε(x, ξ) = a(x/ε, ξ), anda(·, ξ) is Q−periodic for everyξ ∈ RN.

One has thatAε G−converges to the homogenized operatorAh = −div(ah(∇)). But now, due
to the periodicity,ah : RN → RN can be characterized in term of certain auxiliary functions. The
following result is a generalization of Theorem 4.19 statedfor linear periodic operators.

Theorem 4.26.Let f ∈W−1,2(Ω) such that fε strongly convergent to f in W−1,p′(Ω) and uε be the
solution of 

−div(a( x
ε
,∇uε)) = fε enΩ

uε ∈W1,p
0 (Ω).

(4.3.4)

with a(·, ·) satisfying (H1)–(H8). Then

1. uε ⇀ u weakly in W1,p
0 (Ω).

2. aε(x, ε∇uε) ⇀ a∗(∇u) weakly in(Lp(Ω))N.
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where u is the unique solution in W1,p0 (Ω) of the homogenized problem


−div(a∗(∇u)) = f enΩ

u = 0 en∂Ω.

where a∗ : RN → RN can be characterized by

a∗(ξ) = lim
s→∞

1
sN

∫

Qs(zs)
a(x,∇χξs + ξ)dx (4.3.5)

whereξ ∈ RN, Qs(zs) is the cube of side length s centered at zs for any family{zs}s>0 in RN, and
χ
ξ
s is the solution of the following auxiliary problem


−div(a(x,∇χξs + ξ)) = 0 in Qs(zs)

χ
ξ
s ∈W1,p

0 (Qs(z)),
(4.3.6)

Proof. See [BCD92], Section 2. �

An example ofG−convergence

We finish this section by explicitly computing theG−limit operator in one space dimension in the
periodic case.

In the periodic linear case, (see Section 4.2.1) it is known that the familya( x
ε
) G−converges to

a∗2 with

a∗2 =
( ∫

I
a(x)−1dx

)−1
.

In the non-linear casep , 2, theG−limit of (4.3.3) in the periodic case is given in the following
Proposition.

Proposition 4.27. Let a ∈ L∞(R) be 1−periodic function such that forα < β two constants it
holds that0 < α ≤ a(x) ≤ β < ∞. Then a(x/ε) G−converges to a∗p ∈ R given by

a∗p =
( ∫

I
a(x)−

1
p−1

)−(p−1)
.

Proof. Let fε ∈W−1,p′(I ) be such thatfε → f in W−1,p′(I ).

Let gε(x) := 〈 fε, χ(0,x)〉, thengε ∈ Lp(I ), g′ε = fε andgε → g := 〈 f , χ(0,x)〉 in Lp(I ).

Let uε be the weak solution to

−(a( x

ε
)|(uε)′|p−2(uε)′)′ = fε in I

uε(0) = uε(1) = 0.

Then, there exists a constantcε such thata(x/ε)|(uε)′|p−2(uε)′ = cε − gε.
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Let ϕp(x) = |x|p−2x. Thenϕp is invertible and so

(uε)′ = ϕ−1
p (cε − gε)a( x

ε
)

1
1−p . (4.3.7)

Since (uε)ε>0 is bounded inW1,p
0 (I ), we can assume that is weakly convergent to someu ∈W1,p

0 (I )

and, sincea( x
ε
)

1
1−p ⇀ a

1
1−p :=

∫
I
a

1
1−p weakly * in L∞(I ) andgε → g in Lp(I ), we can assume that

there existsc such thatcε → c.

Now we can pass to the limit in (4.3.7) and obtain

u′ = ϕ−1
p (c− g)a

1
1−p .

The proof is now complete. �
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Oscillating integrals

In this section we prove some results concerning to the estimate of integrals of periodic functions
with rapidly oscillating coefficients. They allows us to replace an integral involving a rapidly
oscillating function with one that involves its average in the unit cube. As we will see in Chapters
§6 and§7, it is essential to estimate the rate of convergence of eigenvalues in homogenization
problems.

Let u be a smooth function and letg be aQ-periodic function, beingQ the unit cube inRN. Let
us consider the following integral ∫

Q
g( x

ε
)u(x)dx, (5.0.1)

whereε is a real positive parameter. Note that ifε is small theng(x/ε) is a rapidly oscillating
function. Our propose is to obtain an expansion of the integral (5.0.1) in terms of theε. We recall
the well-known result of Bensoussan, Lions and Papanicolaou [BLP78], which characterize the
asymptotic behavior of (5.0.1) as

lim
ε→0

∫

Q
g( x

ε
)u(x) =

1
|Q|

∫

Q
g(x)dx

∫

Q
u(x)dx.

Figure 5.1:g( x
ε
) = sin(2πx/ε) for ε = 0.4 andε = 0.02.

We would wish to obtain more information about the second term in the expansion.
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There are some works related to the estimate of oscillating integrals. The following result gives
an asymptotic expansion of oscillating one-dimensional integrals in terms of the parameterε, here
ε = m−1 with ma positive integer.

Theorem 5.1. If g ∈ L1([0, 1]), u ∈ C1([0, 1]) then

∫ 1

0
g
( x
ε

)
u(x)dx=

∫ 1

0
g(x)dx

∫ 1

0
u(x)dx+ ε

∫ 1

0
p̃
( x
ε

)
u′(x)dx (5.0.2)

wherep̃(x) =
∫ x

0

[
ḡ− g(t)

]
dt andḡ =

∫ 1
0 g(t)dt.

Proof. See [BLL87], Corollary 3.3. �

In higher dimensions some similar results are known. When the parameterε is a negative power
of a positive integer, oscillating integrals can be estimated in the unit cube ofRN.

Theorem 5.2. Let g∈ Lp(Q), p > 1 be a Q-periodic function and u∈ C∞(Q) then
∫

Q
g
( x
ε

)
u(x) =

∫

Q
g
∫

Q
u+ εa(g)

∫

Q
Dγu (5.0.3)

where a(g) is a function depending on g andγ ∈ Rn is such that|γ| = 1.

Proof. See [IL88], Proposition 5. �

When the parameterε is not of the formm−1 with m a positive integer, up to our knowledge,
there are no equalities of the kind (5.0.2) or (5.0.3). However, whenε is a real positive parameter
the following result due to Oleı̆nik, Shamaev and Yosifian.

Theorem 5.3. Let g∈ L∞(RN) be a Q−periodic function such that0 < g− ≤ g ≤ g+ < ∞ and let
ḡ = –

∫
–

Q
g. Then,

∣∣∣∣
∫

Ω

(g( x
ε
) − ḡ)uv

∣∣∣∣ ≤ cε‖u‖W1,2(Ω)‖v‖W1,2(Ω)

holds for every u, v ∈W1,2(Ω) where c is a constant independent ofε, u and v.

Proof. See [OSY92], Lemma 1.6. �

Our aim in this Chapter is to give some generalizations of Oleı̆nik-Shamaev-Yosifian’s result
for p , 2.

We give two independent proofs for functions inW1,p
0 (Ω), the first one for the caseN ≥ 1 and

the second one forN = 1. The need for this second proof comes from estimate explicitly the
constants in our result. We are unable to do that in higher dimensions.
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Finally, requesting more regularly to the domain, we give a similar result to Theorem 5.3 for
functions belonging toW1,p(Ω) with p , 2 andN ≥ 1.

In the following, we assume that 1≤ p < +∞, the functiong ∈ L∞(RN) be aQ−periodic
function uniformly bounded away from zero and infinity, being Q the unit cube inRN, i.e., for
certain constantsg±,

0 < g− ≤ g ≤ g+ < ∞.

Also, we will denote by ¯g the average ofg overQ.

The first result reads:

Theorem 5.4. LetΩ ⊂ RN be a bounded domain such that Hardy’s inequality holds, for instance
Lipschitz boundary. Then,

∣∣∣∣
∫

Ω

(g( x
ε
) − ḡ)|u|p

∣∣∣∣ ≤ ‖g− ḡ‖L∞(RN)ε‖∇u‖pLp(Ω)

[ p

µ
p−1
1

c1 +CH,p(Ω)Np/2εp−1
]

≤ Cε‖∇u‖pLp(Ω),

for every u∈ W1,p
0 (Ω). The constant CH,p(Ω) is the best constant in Hardy’s inequality(5.1.1),

c1 is the optimal constant in Poincaré’s inequality in L1(Q) and µ1 is the first eigenvalue of the
p−Laplacian inΩ.

By the methods employed in the proof, the constant obtained in Theorem 5.4 can not be es-
timated. In one space dimension we can employ a more direct approach in order to obtain the
explicit constant in the caseΩ = I , whereI is the unit interval inR.

Theorem 5.5. Let I := (0, 1). Then, for every u∈W1,p
0 (I ) we have that

∣∣∣∣
∫

I
(g( x

ε
) − ḡ)|u|p

∣∣∣∣ ≤ ‖g− ḡ‖L∞(R)ε‖u′‖pLp(I)

[ p

π
p−1
p

+
εp−1

p

]
.

The case in which the space function isW1,p(Ω) with Ω ⊂ RN andN ≥ 1, the arguments of the
proof of Theorem 5.4 do not work. The fact that we enlarge the set of test functions is reflected
in the need for more regularity of the domainΩ. In Theorem 5.4 test functions are inW1,p

0 (Ω)
and the proof works in a domain with very little regularity, let us say Lipschitz boundary or less
(see Remark 5.10). Instead, when we want to prove a similar result for test functions belonging to
W1,p(Ω) it is necessary a little bit more of regularity in the domain, for instance a domain withC1

boundary.

We have the following result:

Theorem 5.6. LetΩ ⊂ Rn be a bounded domain with C1 boundary. Then for every u∈ W1,p(Ω)
there exists a constant C independent ofε such that

∣∣∣∣∣
∫

Ω

(g( x
ε
) − ḡ)u

∣∣∣∣∣ ≤ Cε‖u‖W1,p(Ω).
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Remark5.7. In fact, the regularity of the domains in Theorem 5.4 and Theorem 5.6 is given by
the regularity needed in Lemmas 5.9 and 5.19, respectively.

As in Theorem 5.4, we are not able to estimate the constant in Theorem 5.6 inN space dimen-
sion. However, in one space dimension, by similar techniques as in Theorem 5.5, we can get an
estimate for this constant.

Theorem 5.8. Let I := (0, 1). Then, for every u∈W1,p(I ) we have that

∣∣∣∣
∫

I
(g( x

ε
) − ḡ)u

∣∣∣∣ ≤ ‖g− ḡ‖L∞(R)ε‖u‖W1,p(I)β

(
4+ p

(p−1)πp

)
.

5.1 Proof of Theorem 5.4

We first prove a couple of lemmas in order to prove Theorem 5.4.

Lemma 5.9. LetΩ ⊂ RN be a bounded domain with Lipschitz boundary and, forδ > 0, let Gδ be
a tubular neighborhood of∂Ω, i.e. Gδ = {x ∈ Ω : dist(x, ∂Ω) < δ}.

Then
‖v‖pLp(Gδ)

≤ CH,p(Ω)δp‖∇v‖pLp(Ω),

for every v∈W1,p
0 (Ω), where CH,p(Ω) is the best constant in the Hardy inequality (see [Ma85])

∫

Ω

|v|p
dp ≤ CH,p(Ω)

∫

Ω

|∇u|p (5.1.1)

and d(x) = dist(x, ∂Ω).

Proof. The proof follows by noticing that ifx ∈ Gδ, thend(x) ≤ δ, so, by (5.1.1) we get
∫

Gδ

|v|p =
∫

Gδ

|v|p
dp dp ≤ δp

∫

Ω

|v|p
dp ≤ CH,p(Ω)δp

∫

Ω

|∇u|p.

The proof is now complete. �

Remark5.10. Observe that the only requirement on the regularity of∂Ω is the validity of Hardy’s
inequality (5.1.1). Therefore, much less than Lipschitz will do. We refer the reader to the book of
Maz’ja [Ma85].

Now we need an easy Lemma that computes the Poincaré constant on the cube of sideε in terms
of the Poincaré constant of the unit cube. Although this result is well known and its proof follows
directly by a change of variables, we choose to include it forthe sake of completeness.

Lemma 5.11. Let Q be the unit cube inRN and let cq be the Poincaré constant in the unit cube in
Lq, q≥ 1, i.e.

‖u− ūQ‖Lq(Q) ≤ cq‖∇u‖Lq(Q), for every u∈W1,q(Q),
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whereūQ is the average of u over Q. Then, for every u∈W1,q(Qε) we have

‖u− ūQε
‖Lq(Qε) ≤ cqε‖∇u‖Lq(Qε),

where Qε = εQ.

Proof. Let u ∈ W1,q(Qε). We can assume that (u)Qε
= 0. Now, if we denoteuε(y) = u(εy), we

have thatuε ∈W1,q(Q) and by the change of variables formula, we get
∫

Qε

|u|q =
∫

Q
|uε|qεN ≤ cq

qε
N
∫

Q
|∇uε|q = cq

qε
q
∫

Qε

|∇u|q.

The proof is now complete. �

The next Lemma is the final ingredient in the estimate of Theorem 5.4.

Lemma 5.12. Let Ω ⊂ RN be a bounded domain and denote by Q the unit cube inRN. Let
g ∈ L∞(RN) be a Q-periodic function such that̄g = 0. Then the inequality

∣∣∣∣∣∣

∫

Ω1

g( x
ε
)v

∣∣∣∣∣∣ ≤ ‖g‖L∞(RN)c1ε‖∇v‖L1(Ω)

holds for every v∈ W1,1
0 (Ω), where c1 is the Poincaré constant given in Lemma 5.11 andΩ1 ⊂ Ω

is given by
Ω1 =

⋃
Qz,ε, Qz,ε := ε(z+ Q) ⊂ Ω, z ∈ ZN.

Proof. Denote byI ε the set of allz ∈ ZN such thatQz,ε := ε(z+ Q) ⊂ Ω. Let us consider the
function v̄ε given by the formula

v̄ε(x) =
1
εN

∫

Qz,ε

v(y)dy

for x ∈ Qz,ε. Then we have
∫

Ω1

gεv =
∫

Ω1

gε(v− v̄ε) +
∫

Ω1

gεv̄ε. (5.1.2)

Now, by Lema 5.11 we get

‖v− v̄ε‖L1(Ω1) =
∑

z∈Iε

∫

Qz,ε

|v− v̄ε|dx

≤ c1ε
∑

z∈Iz,ε

∫

Qz,ε

|∇v(x)|dx

≤ c1ε‖∇u‖L1(Ω).

(5.1.3)

Finally, sinceḡ = 0 and sinceg is Q−periodic, we get
∫

Ω1

gεv̄ε =
∑

z∈Iε
v̄ε |Qz,ε

∫

Qz,ε

gε = 0. (5.1.4)
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Now, combining (5.1.3) and (5.1.4) we can bound (5.1.2) by

∣∣∣∣
∫

Ω1

gεv
∣∣∣∣ ≤ ‖g‖L∞(RN)c1ε‖∇v‖L1(Ω).

This finishes the proof. �

Now, we are ready to prove Theorem 5.4:

Proof of Theorem 5.4.Let ε > 0 be fixed, and letΩ1 be the set defined in Lemma 5.12.

Denote byG := Ω \ Ω1 and observe thatG ⊂ G√Nε. In fact, with the notations of Lemma
5.12, if x ∈ G then there exists a cubeQ = Qz,ε such thatx ∈ Q andQ ∩ ∂Ω , ∅. Therefore,
dist(x, ∂Ω) ≤ diam(Q) =

√
Nε.

Now, denote byh = g− ḡ and so, by Lemma 5.9,

∣∣∣∣
∫

G
hε|u|p

∣∣∣∣ ≤ CH,p(Ω)‖h‖L∞(RN)(
√

Nε)p‖∇u‖pLp(Ω). (5.1.5)

Now, to bound the integral inΩ1 we use Lemma 5.12 to obtain

∣∣∣∣
∫

Ω1

hε|u|p
∣∣∣∣ ≤ ‖h‖L∞(RN)c1ε‖∇(|u|p)‖L1(Ω). (5.1.6)

An easy computation shows that

‖∇(|u|p)‖L1(Ω) ≤ p‖u‖p−1
Lp(Ω)‖∇u‖Lp(Ω) ≤

p

µ
p−1
1

‖∇u‖pLp(Ω). (5.1.7)

Finally, combining (5.1.5), (5.1.6) and (5.1.7) we obtain the desired result. �

5.2 Proof of Theorem 5.5

The following lemma is well known, but we included it for the sake of completeness.

Lemma 5.13. Let J = (0, ℓ) be an interval inR and let v∈ W1,q(J), 1 ≤ q < ∞, be such that
v(0) = 0. Then

‖v‖qLq(J) ≤
ℓq

q
‖v′‖qLq(J).

Proof. We have

v(x) =
∫ x

0
v′ ≤ ‖v′‖Lq(J)x

1/q′ .

Integrating, we obtain

‖v‖qLq(J) ≤ ‖v
′‖qLq(J)

∫ ℓ

0
xq/q′ = ‖v′‖qLq(J)

ℓq

q
,

as we wanted to show. �
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Now, we can show two immediate consequences of Lemma 5.13

Corollary 5.14. Let v∈W1,q
0 (I ). Then

∫ δ

0
|v|q ≤ δq

q
‖v′‖qLq(I).

Proof. Immediate from Lemma 5.13. �

Corollary 5.15. Let J = (0, ℓ) and let v∈ W1,q(J), 1 ≤ q < ∞. Assume that there exists x0 ∈ I
such that u(x0) = 0. Then

‖v‖qLq(J) ≤
ℓq

q
‖v′‖qLq(J).

Proof. Let J1 = (0, x0) andJ2 = (x0, ℓ). Then, by Lemma 5.13 we have that

‖v‖qLq(J1) ≤
xp

0

p
‖v′‖qLq(J1) ≤

ℓp

p
‖v′‖qLq(J1) (5.2.1)

and

‖v‖qLq(J2) ≤
(ℓ − x0)p

p
‖v′‖qLq(J2) ≤

ℓp

p
‖v′‖qLq(J2). (5.2.2)

Now, adding (5.2.1) and (5.2.2) we obtain the desired result. �

From Corollary 5.15 we can obtain the following

Corollary 5.16. Let J= (0, ℓ) and let v∈W1,q(J). Then

‖v− v̄‖qLq(J) ≤
ℓq

q
‖v′‖qLq(J),

wherev̄ stands for the average of v over J

Proof. Just notice that forw = v − v̄ there existsx0 ∈ J such thatw(x0) = 0. Then, we use
Corollary 5.15. �

Remark5.17. Corollary 5.16 is the well known Poincaré inequality. As far as we known, the
optimal constant in the Poincaré inequality is unknown even in this one dimensional setting. See
[CW06] for a discussion on this. So, the purpose of Corollary5.16 is to provide with a rough
estimate on this constant and any improvements on the computation of the optimal constant will
automatically give an improvement in the constant enteringin our result.

Finally, we need a Lemma that controls the oscillating behavior of the weight function.

Lemma 5.18. Let v∈ W1,1(I ) and let g∈ L∞(R) be a1−periodic function such that̄g =
∫

I
g = 0.

Letε > 0 and denote by m= [1/ε] the integer part of1/ε. Then

∣∣∣∣
∫ mε

0
g( x

ε
)v

∣∣∣∣ ≤ ‖g‖L∞(R)ε‖v′‖L1(I).
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Proof. Let I εj = (( j − 1)ε, jε] and

Jε = (0,mε] =
m⋃

j=1

I εj .

Let vε be defined as

vε(x) =
1
ε

∫

Iεj

v(y) dy for x ∈ I εj .

Now, asḡ = 0 andvε is constant on eachI εj we have that

∫

Iεj

g( x
ε
)v =

∫

Iεj

g( x
ε
)(v− vε),

so, by Corollary 5.16, ∣∣∣∣
∫

Iεj

g( x
ε
)v

∣∣∣∣ ≤ ‖g‖L∞(R)ε

∫

Iεj

|v′|.

Therefore

∣∣∣∣
∫ mε

0
g( x

ε
)v

∣∣∣∣ ≤
m∑

j=1

∣∣∣∣
∫

Iεj

g( x
ε
)v

∣∣∣∣ ≤ ‖g‖L∞(R)ε

m∑

j=1

∫

Iεj

|v′| ≤ ‖g‖L∞(R)ε

∫

I
|v′|.

The proof is now complete. �

With these preliminaries, we arrive at the key estimate in our main result.

Proof of Theorem 5.5.For everyε > 0 we denote, as in the previous Lemma,I εj = (( j − 1)ε, jε]
and

Jε =
m⋃

j=1

I εj = (0, εm]

wherem= [1/ε] is the integer part of 1/ε.

It is immediate to see thatGε := I \ Jε = (εm, 1) ⊂ (1− ε, 1).

Then ∫

I
g( x

ε
)|u|p =

∫

Gε

g( x
ε
)|u|p +

∫

Jε
g( x

ε
)|u|p.

Now, by Corollary 5.14,

∣∣∣∣
∫

Gε

g( x
ε
)|u|p

∣∣∣∣ ≤ ‖g‖L∞(R)

∫ 1

1−ε
|u|p ≤ ‖g‖L∞(R)

εp

p
‖u′‖pLp(I).

If we notice that|u|p ∈W1,1
0 (I ), by Lemma 5.18 we get

∣∣∣∣
∫

Jε
g( x

ε
)|u|p

∣∣∣∣ ≤ ‖g‖L∞(R)ε

∫

I
|(|u|p)′|.
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Finally, the proof is complete once we observe that

∫

I
|(|u|p)′| = p

∫

I
|u|p−1|u′| ≤ p

(∫

I
|u|p

) p−1
p

(∫

I
|u′|p

) 1
p

= p‖u‖p−1
Lp(I)‖u

′‖Lp(I) ≤ pπ1−p
p ‖u′‖pLp(I).

The proof is finished. �

5.3 Proof of Theorem 5.6

The next lemma is a generalization forp ≥ 2 of Oleı̆nik-Shamaev-Yosifian’s Lemma [OSY92]
and it is essential to prove Theorem 5.6.

Lemma 5.19. LetΩ ⊂ Rn be a bounded domain with C1 boundary and, forδ > 0, let Gδ be a
tubular neighborhood of∂Ω, i.e. Gδ = {x ∈ Ω : dist(x, ∂Ω) < δ}. Then there existsδ0 > 0 such
that for everyδ ∈ (0, δ0) and every v∈W1,p(Ω) we have

‖v‖Lp(Gδ) ≤ cδ
1
p‖v‖W1,p(Ω),

where c is a constant independent ofδ and v.

Proof. LetGδ = {x ∈ Ω : dist(x, ∂Ω) < δ}, it follows thatSδ = ∂Gδ are uniformly smooth surfaces.

By the Sobolev trace Theorem we have

‖v‖pLp(Sδ)
=

∫

Sδ
|v|pdS ≤ c3‖v‖pW1,p(Ωδ)

≤ c3‖v‖pW1,p(Ω)
δ ∈ [0, δ0],

wherec3 is a constant independent ofδ. Integrating this inequality with respect toδ we get

‖v‖pLp(Gδ)
=

∫ δ

0

( ∫

Sτ
|v|pdS

)
dτ ≤ c3δ‖v‖pW1,p(Ω)

and the Lemma is proved. �

Now, we are able to prove the following key Theorem:

Theorem 5.20.LetΩ ⊂ Rn be a bounded domain with smooth boundary and denote by Q the unit
cube inRn. Let g be a Q-periodic function such thatḡ = 0 over Q and0 < α ≤ g ≤ β < +∞ for
α, β constants. Then the inequality

∣∣∣∣∣
∫

Ω

g
( x
ε

)
uv

∣∣∣∣∣ ≤ cε‖u‖W1,p(Ω)‖v‖W1,p′ (Ω)

holds for every u∈ W1,p(Ω) and v∈ W1,p′(Ω), where c is a constant independent ofε, u, v and
p, p′ are conjugate exponents.
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Proof. Denote byI ε the set of allz ∈ Zn such thatQz,ε := ε(z+ Q) ⊂ Ω. SetΩ1 =
⋃

z∈Iε Qz,ε and
G = Ω \ Ω̄1. As in Lemma 5.12 let us consider the functions ¯v andū given by the formulas

v̄(x) =
1
εn

∫

Qz,ε

v(x)dx, ū(x) =
1
εn

∫

Qz,ε

u(x)dx

for x ∈ Qz,ε. Then we have
∫

Ω

gεuv=
∫

G
gεuv+

∫

Ω1

gεuv

=

∫

G
gεuv+

∫

Ω1

gε(u− ū)v+
∫

Ω1

gεū(v− v̄) +
∫

Ω1

gεv̄ū.
(5.3.1)

The setG is aδ-neighborhood of∂Ω with δ = cε for c = diamQ1 =
√

n, and therefore according
to Lemma 5.9 we have

‖u‖Lp(G) ≤ cε
1
p‖u‖W1,p(Ω),

‖v‖Lp′ (G) ≤ cε
1
p′ ‖v‖W1,p′ (Ω).

(5.3.2)

Then we get
∫

G
gεuv≤ c‖u‖Lp(G)‖v‖Lp′ (G) ≤ cε‖u‖W1,p(Ω)‖v‖W1,p′ (Ω). (5.3.3)

Now, by Lema 5.11 we get

‖u− ū‖Lp(Ω1) =


∑

z∈Iε

∫

Qz,ε

|u− ū|pdx



1
p

≤ cpε


∑

z∈Iz,ε

∫

Qz,ε

|∇u(x)|pdx



1
p

= cpε‖∇u‖Lp(Ω1).

(5.3.4)

Analogously

‖v− v̄‖Lp′ (Ω1) ≤ cp′ε‖∇v‖Lp′ (Ω1). (5.3.5)

By the definition ofū(x) we get

‖ū‖pLp(Ω1) =
∑

z∈Iε

∫

Qz,ε

|ū|p =
∑

z∈Iε
εn

(
ε−n

∫

Qz,ε

u
)p

≤ εn−np
∑

z∈Iε
|Qz,ε|p/p′

∫

Qz,ε

|u|p = εn−np+np/p′
∑

z∈Iε

∫

Qz,ε

|u|p

=

∫

Ω1

|u|p = ‖u‖pLp(Ω1).

(5.3.6)

Finally, since
∫

Q1
g = 0 and sinceg is Q−periodic, we get

∫

Ω1

gεūv̄ =
∑

z∈Iε
ūv̄

∫

Qz,ε

gε = 0. (5.3.7)
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Now, combining (5.3.3), (5.3.4), (5.3.5), (5.3.6) and (5.3.7) we can bound (5.3.1) by
∫

Ω

gεuv≤ Cε‖u‖W1,p(Ω)‖v‖W1,p′ (Ω).

This finishes the proof. �

We are ready to proof Theorem 5.6:

Proof of Theorem 5.6:The result follows applying Theorem 5.20 to ˜gε = gε − ḡ and takingv ≡
1. �

5.4 Proof of Theorem 5.8

First, we prove two auxiliary lemmas.

Lemma 5.21. Let v∈W1,p(I ), where I= (0, 1). Then for each x0 ∈ I we have that

|v(x0)| ≤ ‖v‖W1,p(I).

Proof. For each 0< x0 < x < 1 we have that

|v(x0)| ≤ |v(x)| +
∣∣∣∣∣∣

∫ x

x0

v′
∣∣∣∣∣∣ .

Integrating between 0 and 1 and applying Hölder’s inequality we get

|v(x0)| ≤
∫ 1

0
|v(x)| +

∫ 1

0

∫ x

x0

|v′| ≤
∫ 1

0
|v(x)| +

∫ 1

0
|v′| (5.4.1)

≤
(∫ 1

0
|v(x)|p

) 1
p

+

(∫ 1

0
|v′|p

) 1
p

= ‖v‖W1,p(I). (5.4.2)

�

Lemma 5.22. Let v∈W1,p(I ), I = (0, 1) and forδ > 0 small let Gδ = (0, δ). We have that

‖v‖Lp(Gδ) ≤ 2δ
1
p ‖v‖W1,p(I).

Proof. For each 0< x < x0 < 1 we have that

|v(x)| ≤ |v(x0)| +
∫ x0

x
|v′|.

It follows that

|v(x)|p ≤ 2p−1

|v(x0)|p +
(∫ 1

0
|v′|

)p .
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Now, by Holder’s inequality we get

|v(x)|p ≤ 2p−1
(
|v(x0)|p +

∫ 1

0
|v′|p

)
.

Integrating between 0 andδ and applying Lemma 5.21 we obtain
∫ δ

0
|v(x)|p ≤ 2p−1δ

(
|v(x0)|p +

∫ 1

0
|v′|p

)

≤ 2pδ‖v‖p
W1,p(I)

.

It follows that
‖v‖Lp((0,δ)) ≤ 2δ

1
p ‖v‖W1,p(I).

Now, the proof is complete. �

Now, we are able to prove the following Theorem which is essential to prove Theorem 5.8.

Theorem 5.23. Let I = (0, 1) and g be a1−periodic function such that̄g = 0 over (0, 1) and
0 < α ≤ g ≤ β < +∞ for α, β constants. Then the inequality

∣∣∣∣∣
∫

Ω

g( x
ε
)uv

∣∣∣∣∣ ≤ cε‖u‖W1,p(I)‖v‖W1,p′ (I)

holds for every u∈W1,p(I ) and v∈W1,p′(I ), where

c := β
(
4+ p

(p−1)πp

)
.

Proof. Now the proof is similar to that of Theorem 5.20. LetI εj = (( j − 1)ε, jε] and

Jε = (0,mε] =
m⋃

j=1

I εj , Gε = I \ Jε = (ℓ − ε, ℓ).

For x ∈ I εj let uε, vε be defined as

uε(x) =
1
ε

∫

Iεj

u(y) dy, vε(x) =
1
ε

∫

Iεj

v(y) dy.

We have that
∫

I
gεuv=

∫

Gε

gεuv+
∫

Jε
gεuv

=

∫

Gε

gεuv+
∫

Jε
gε(u− uε)v+

∫

Jε
gεuε(v− vε) +

∫

Jε
gεvεuε.

(5.4.3)

By using Lemma 5.22 we have

‖u‖Lp(Gε) ≤ 2ε
1
p‖u‖W1,p(I),

‖v‖Lp′ (Gε) ≤ 2ε
1
p′ ‖v‖W1,p′ (I).

(5.4.4)
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Then we get
∫

Gε

gεuv≤ β‖u‖Lp(Gε)‖v‖Lp′ (Gε) (5.4.5)

≤ 4βε‖u‖W1,p(I)‖v‖W1,p′ (I). (5.4.6)

Now, by Lema 5.11 we get

‖u− uε‖Lp(Jε) =


m∑

j=1

∫

Iεj

|u− uε|pdx



1
p

≤ cpε


m∑

j=1

∫

Iεj

|u′(x)|pdx



1
p

= cpε‖u′‖Lp(Jε).

(5.4.7)

Analogously

‖v− vε‖Lp′ (Ω1) ≤ cp′ε‖v′‖Lp′ (Jε). (5.4.8)

By the definition ofuε we get

‖uε‖pLp(Jε) =

m∑

j=1

∫

Iεj

|uε|p =
m∑

j=1

ε
(
ε−1

∫

Iεj

u
)p

≤ ε1−p
m∑

j=1

|I εj |p/p′
∫

Iεj

|u|p = ε1−p+p/p′
m∑

j=1

∫

Iεj

|u|p

=

∫

Jε
|u|p = ‖u‖pLp(Jε).

(5.4.9)

Finally, sinceg is 1−periodic withḡ = 0, we get

∫

Jε
uεvε =

m∑

j=1

uεvε

∫

Iεj

gε = 0. (5.4.10)

Now, combining (5.4.5), (5.4.7), (5.4.8), (5.4.9) and (5.4.10) we can bound (5.4.3) by
∫

Ω

gεuv≤ β(4+ cp + cp′ )ε‖u‖W1,p(I)‖v‖W1,p′ (I),

wherecp = 1/πp, cp′ = 1/πp′ .

By using the relation (2.2.2) it follows thatπp′ = (p− 1)πp and this finishes the proof. �

We are ready to proof Theorem 5.8:

Proof of Theorem 5.8:The result follows applying Theorem 5.23 to ˜gε = gε − ḡ and takingv ≡
1. �



6

Eigenvalue homogenization for quasilinear elliptic
operators

In this Chapter we study the asymptotic behavior (asε → 0) of the eigenvalues of the following
problem 

−div(aε(x,∇uε)) = λερε|uε|p−2uε in Ω

uε = 0 on∂Ω,
(6.0.1)

whereΩ ⊂ RN is a bounded domain,ε is a positive real number, andλε is the eigenvalue parameter.

The weight functionsρε(x) are assumed to be positive and uniformly bounded away from zero
and infinity and the family of operatorsaε(x, ξ) satisfies hypothesis (H0)–(H8) of Section 2.4,
Chapter§2, but the prototypical example is

− div(aε(x,∇uε)) = −div(Aε(x)|∇uε|p−2∇uε), (6.0.2)

with 1 < p < +∞, andAε(x) is a family of uniformly elliptic matrices (both inx ∈ Ω and inε > 0).

The study of this type of problems have a long history due to its relevance in different fields
of applications. The problem of finding the asymptotic behavior of the eigenvalues of (6.0.1) is
an important part of what is calledHomogenization Theory. Homogenization Theory is applied
in composite materials in which the physical parameters such as conductivity and elasticity are
oscillating. Homogenization Theory try to get a good approximation of the macroscopic behavior
of the heterogeneous material by letting the parameterε→ 0. The main references for the homog-
enization theory of periodic structures are the books by Bensoussan-Lions-Papanicolaou [BLP78],
Sanchez–Palencia [SP70], Oleı̆nik-Shamaev-Yosifian [OSY92] among others.

In the linear setting (i.e.,aε(x, ξ) as in (6.0.2) withp = 2) this problem is well understood. It is
known that, up to a subsequence, there exists a limit operator ah(x, ξ) = Ah(x)ξ and a limit function
ρ̄ such that the spectrum of (6.0.1) converges to that of the limit problem (see Section 4.2.1)


−div(ah(x,∇u)) = λρ̄|u|p−2u in Ω

u = 0 on∂Ω,
(6.0.3)
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In the important case of periodic homogenization, i.e. whenρε(x) = ρ(x/ε) andAε(x) = A(x/ε)
whereρ(x) andA(x) areQ−periodic functions,Q being the unit cube inRN, the limit problem can
be fully characterized and so the entire sequenceε→ 0 is convergent. See Section 4.2.1.

In the general nonlinear setting, recently Baffico, Conca and Donato [BCR06], relying on the
G−convergence results of Chiadó Piat, Dal Maso and Defranceschi [CVD90] for monotone op-
erators, study the convergence problem of the principal eigenvalue of (6.0.1). The concept of
G−convergence of linear elliptic second order operators was introduced by Spagnolo in [Sp68].
See Section 4.3 for the precise definitions.

Up to our knowledge, no further investigation was made in thequasilinear non-uniformly elliptic
case. One of the reasons why in [BCR06] only the principal eigenvalue was studied is that, as long
as we know, no results are available for higher order eigenvalues of (6.0.1).

The principal eigenvalue of (6.0.1) was studied by Kawohl, Lucia and Prashanth in [KLP07]
where, among other things, they prove its existence together with the simplicity and positivity of
the associated eigenfunction.

In Section 2.5, we have continued with this investigation. We have extended some results for
higher eigenvalues that are well known in thep−Laplacian case, to (6.0.1). Namely, the isolation
of the principal eigenvalue, the existence of a sequence of (variational) eigenvalues growing to+∞
and a variational characterization of the second eigenvalue.

Using the results of Section 2.5, in Section 6.2 we give a new simpler proof of the convergence
of the principal eigenvalues of (6.0.1) to the principal eigenvalue of the limit problem (6.0.3).
Moreover we can prove the convergence of the second eigenvalues of (6.0.1) to the second eigen-
value of (6.0.3). These two results rely on a more general onethat says that the limit of any
sequence of eigenvalues of (6.0.1) is an eigenvalue of (6.0.3). Although this result was already
proved in [BCR06], we provide here a simplified proof of this fact.

Convergence of eigenvalues in the multidimensional linearcase was studied in 1976 by Boc-
cardo and Marcellini [BM76] for general bounded matrices. Kesavan [Ke79b] studied the problem
in a periodic setting.

Now, we turn our attention to the order of convergence of the eigenvalues. Clearly, the question
of order of convergence cannot be treated with the previous generality. To this end, we restrict
ourselves to the problems


−div(a(x,∇uε)∇uε) = λερε|uε|p−2uε in Ω

uε = 0 on∂Ω,
(6.0.4)

where the family of weight functionsρε are given in terms of a single boundedQ−periodic func-
tion ρ in the formρε(x) := ρ(x/ε), Q being the unit cube ofRN.

The limit problem is then given by

−div(a(x,∇u)∇u) = λρ̄|u|p−2u in Ω

u = 0 on∂Ω,
(6.0.5)
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whereρ̄ is the average ofρ in Q.

The first result in this problem, for the linear case, can be found in Chapter III, section 2 of
[OSY92]. By estimating the eigenvalues of the inverse operator, which is compact, and using
tools from functional analysis in Hilbert spaces, they deduce that

|λεk − λk| ≤
Cλεk(λk)2

1− λkβ
ε
k

ε
1
2 < Ckk

6
N ε

1
2 .

Here,C is a positive constant,Ck is a constant depending onk andβk
ε satisfies

0 ≤ βk
ε < λ

−1
k ,

and

lim
ε→0

βk
ε = 0

for eachk ≥ 1.

Again, in linear case withε dependence in the operatora(x, ξ), Santonsa and Vogelius [SaVo93]
by using eigenvalues expansion proved that

|λεk − λk| ≤ Cε

whereC depends onk.

More recently, Kenig, Lin and Shen [KLS11] studied the linear problem in any dimension
(allowing anε dependance in the diffusion matrix of the elliptic operator) and proved that for
Lipschitz domainsΩ one has

|λεk − λk| ≤ Cε| log(ε)| 12+σ

for anyσ > 0, C depending onk andσ.

Moreover, the authors show that if the domainΩ is more regular (C1,1 is enough) they can get
rid of the logarithmic term in the above estimate. However, no explicit dependance ofC on k is
obtained in that work.

In Section 6.3, we analyze the order of convergence of eigenvalues of (6.0.4) (either with Dirich-
let or Neumann boundary conditions) to the ones of the correspondent limit problem, and prove
that

|λεk − λk| ≤ Ck
2p
N ε

with C independent ofk andε. In this result, byλεk andλk we refer to the variational eigenvalues
of problems (6.0.4) and (6.0.5) respectively with the correspondent boundary data.

Some remarks are in order:

1. Classical estimates on the eigenvalues of second order,N-dimensional problems, show that
λk andλεk behaves likeck

2
N , with c depending only on the coefficients of the operator andN.
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Hence, the order of growth of the right-hand side in the estimate of [OSY92] is

λεk(λk)2ε
1
2

1− λkβ
ε
k

∼ k
6
N ε

1
2

1− λkβ
ε
k

≥ k
6
N ε

1
2 .

Moreover, the constant involved in their bound are unknown.

2. In our result very low regularity on the domainΩ is assumed in this work. We only required
the validity of the Hardy inequality (see [Ma85])

∫

Ω

|u|p
dp ≤ C

∫

Ω

|∇u|p,

whered(x) = dist(x, ∂Ω) andu ∈W1,p
0 (Ω). For instance, Lipschitz regularity will do. So we

get an improvement of the result in [KLS11]. However, we recall that the result in [KLS11]
allows for a dependence inε on the operator. Nevertheless, our result includes nonlinear
eigenvalue problems, such as thep−Laplacian eigenvalues.

6.1 About the convergence of the spectrum

In this section we analyze the convergence of the spectrumΣε of (6.0.1) to the spectrumΣh of the
homogenized limit problem (6.0.3)

In the linear case, it is known (see [Al02]) that theG−convergence of the operators implies the
convergence of their spectra in the sense that thekth–variational eigenvalueλεk converges to the
kth–variational eigenvalue of the limit problem.

We want to study the convergence of the spectrum in the non-linear case. We begin with a
general result for bounded sequences of eigenvalues. This result was already proved in [BCR06]
but we present here a simpler proof.

Here, and in all this Chapter we will assume thatρ is a Q−periodic function defined over a
bounded domainΩ ⊂ RN, beingQ the unit cube inRN, such that for some constantsρ− < ρ+,

0 < ρ− ≤ ρ(x) ≤ ρ+ < +∞ a.e.Ω.

We will assume that the family of operatorsa(·, ξ) satisfies properties (H0)–(H8) defined in Section
2.4 and the associated potentialΦε(x, ξ) satisfies (2.4.2).

Theorem 6.1. LetΩ ⊂ RN be bounded. Letλε ∈ Σε be a sequence of eigenvalues of the problems
(6.0.1)with {uε}ε>0 associated normalized eigenfunctions.

Assume that the sequence of eigenvalues is convergent

lim
ε→0+

λε = λ.

Then,λ ∈ Σh and there exists a sequenceε j → 0+ such that

uε j ⇀ u weakly in W1,p
0 (Ω)

with u a normalized eigenfunction associated toλ.
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Remark6.2. In most applications, we take the sequenceλε to be the sequence of thekth–
variational eigenvalue of (6.0.1). In this case, it is not difficult to check that the sequence{λεk}ε>0

is bounded and so, up to a subsequence, convergent.

In fact, by using the variational characterization ofλεk, (2.4.2) and our assumptions onρ we have
that

α

ρ+

∫
Ω
|∇v|p

∫
Ω
|v|p

≤
∫
Ω
Φε(x,∇v)
∫
Ω
ρε|v|p

≤ β

ρ−

∫
Ω
|∇v|p

∫
Ω
|v|p

,

therefore
α

ρ+
µk ≤ λεk ≤

β

ρ−
µk

whereµk is thekth variational eigenvalue of thep−Laplacian.

Proof. As λε is bounded anduε is normalized, by (H2) it follows that the sequence{uε}ε>0 is
bounded inW1,p

0 (Ω).

Therefore, up to some sequenceε j → 0, we have that

uε j ⇀ u weakly inW1,p
0 (Ω)

uε j → u strongly inLp(Ω).
(6.1.1)

with u also normalized.

We define the sequence of functionsfε := λερε|uε|p−2uε. By using the fact thatρε ⇀ ρ̄ *-weakly
in L∞(Ω) together with (6.1.1) it follows that

fε j ⇀ f := λρ̄|u|p−2u weakly inLp(Ω)

and therefore
fε j → f strongly inW−1,p′(Ω).

By Proposition 4.24 we deduce thatuε j converges weakly inW1,p
0 (Ω) to the unique solutionv

of the homogenized problem

−div(ah(x,∇v)) = λρ̄|u|p−2u in Ω

v = 0 on∂Ω.

By uniqueness of the limit,v = u is a normalized eigenfunction of the homogenized problem.�

Remark6.3. In the case where the sequenceλε is the sequence of thekth–variational eigenvalues
of (6.0.1) it would be desirable to prove that it converges tothekth–variational eigenvalue of the
homogenized problem (6.0.3) (see Remark 6.2).

Unfortunately, we are able to prove this fact only for the first and second variational eigenvalues
in the general setting.

In the one dimensional case, one can be more precise and this fact holds true. See Chapter§7.
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In section 6.3, we address this problem (even with Neumann boundary conditions) in the more
specific situation ofaε(x, ξ) = a(x, ξ) andρε(x) = ρ(x/ε) and prove that this fact also holds true
and, moreover, we provide with an estimate for the error term|λεk − λk|.

6.2 Convergence of the first and second eigenvalue

The first eigenvalue of (6.0.1) is the infimum of the Rayleigh quotient (see Section 2.5)

λε1 = inf
v∈W1,p

0 (Ω)

∫
Ω
Φε(x,∇v)
∫
Ω
ρε|v|p

.

In the following result we prove the convergence ofλε1 whenε tends to zero.

Theorem 6.4. Let beλε1 the first eigenvalue of(6.0.1) and λ1 the first eigenvalue of the limit
problem(6.0.3), then

lim
ε→0

λε1 = λ1.

Moreover, if uε1 and u1 are the (normalized) nonnegative eigenfunctions of(6.0.1) and (6.0.3)
associated toλε1 andλ1 respectively, then

uε1 ⇀ u1 weakly in W1,p
0 (Ω).

Remark6.5. In [BCR06] using the theory of convergence of monotone operators the authors obtain
the conclusions of Theorem 6.4. We propose here a simple proof of this result which exploits the
fact that the first eigenfunction has constant sign.

Proof. Let uε1 be the nonnegative normalized eigenfunction associated toλε1, the uniqueness ofuε1
follows from Theorem 2.23.

By Theorem 6.1, up to some sequence,uε1 converges weakly inW1,p
0 (Ω) to u, an eigenfunction

of the homogenized eigenvalue problem associated toλ = limε→0 λ
ε
1.

But then,u is a nonnegative normalized eigenfunction of the homogenized problem (6.0.3) and
so u = u1. Thereforeλ = λ1 and the uniqueness imply that the whole sequencesλε1 anduε1 are
convergent. �

Now we turn our attention to the second eigenvalue. For this purpose we use the fact that
eigenfunctions associated to the second variational eigenvalue of problems (6.0.1) and (6.0.3)
have, at least, two nodal domains (cf. Proposition 2.24).

Theorem 6.6. Let λε2 be the second eigenvalue of(6.0.1)andλ2 be the second eigenvalue of the
homogenized problem(6.0.3). Then

lim
ε→0

λε2 = λ2.
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Proof. Let u2 be a normalized eigenfunction associated toλ2 and letΩ± be the positivity and the
negativity sets ofu2 respectively.

We denote byuε± the first eigenfunction of (6.0.1) inΩ± respectively. Extendinguε± to Ω by 0,
those functions have disjoint supports and therefore they are linearly independent inW1,p

0 (Ω).

Let S be the unit sphere inW1,p
0 (Ω) and we define the setCε

2 as

Cε
2 := span{uε+, uε−} ∩ S.

ClearlyCε
2 is compact, symmetric andγ(Cε

2) = 2. Hence,

λε2 = inf
C∈Γ2

sup
v∈C

∫
Ω
Φε(x,∇v)
∫
Ω
ρε|v|p

≤ sup
v∈Cε

2

∫
Ω
Φε(x,∇v)
∫
Ω
ρε|v|p

.

As Cε
2 is compact, the supremum is achieved for somevε ∈ Cε

2 which can be written as

vε = aεu
ε
+ + bεu

ε
−

with aε, bε ∈ R such that|aε|p + |bε|p = 1. Since the functionsuε+ anduε− have disjoint supports,
we obtain, using thep−homogeneity ofΦε (see Proposition 2.19),

λε2 ≤
∫
Ω
Φε(x,∇vε)
∫
Ω
ρε|vε|p

=
|aε|p

∫
Ω+
Φε(x,∇uε+) + |bε|p

∫
Ω−
Φε(x,∇uε−)∫

Ω
ρε|vε|p

.

Using the definition ofuε±, the above inequality can be rewritten as

λε2 ≤
|aε|pλε1,+

∫
Ω+
ρε|uε+|p + |bε|pλε1,−

∫
Ω−
ρε|uε−|p∫

Ω
ρε|vε|p

≤ max{λε1,+, λ
ε
1,−} (6.2.1)

whereλε1,± is the first eigenvalue of (6.0.1) in the nodal domainΩ± respectively.

Now, using Theorem 6.4, we have thatλε1,± → λ1,± respectively, whereλ1,± are the first eigen-
values of (6.0.3) in the domainsΩ± respectively. Moreover, we observe that these eigenvaluesλ1,±
are both equal to the second eigenvalueλ2 in Ω, therefore from (6.2.1), we get

λε2 ≤ λ2 + δ

for δ arbitrarily small andε tending to zero. So,

lim sup
ε→0

λε2 ≤ λ2. (6.2.2)

On the other hand, suppose that limε→0 λ
ε
2 = λ whereλ ∈ Σh. We claim thatλ > λ1.

In fact, we have thatuε2 ⇀ u in W1,p
0 (Ω) whereu is a normalized eigenfunction associated toλ.

As the measure of the positivity and negativity sets ofuε2 are bounded below uniformly inε > 0
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(see Proposition 2.24), we have that eitheru changes sign or|{u = 0}| > 0. In any case, this implies
our claim.

Then, asλ > λ1 it must beλ ≥ λ2. Then

λ2 ≤ λ = lim
ε→0

λε2. (6.2.3)

Combining (6.2.2) and (6.2.3) we obtain the desired result. �

6.3 Rate of convergence

In this section we consider the eigenvalue problem in which the operator is independent onε and
the dependance onε only appears in the oscillating weights. We consider the equation

− div(a(x,∇uε)) + Vε|u|p−2u = λερε|uε|p−2uε in Ω (6.3.1)

either with Dirichlet or Neumann boundary conditions. We assume that the weightsρ and V
satisfies

0 < ρ− ≤ ρ(x) ≤ ρ+ < ∞ a.e. inΩ
0 < V− ≤ V(x) ≤ V+ < ∞ a.e. inΩ.

(6.3.2)

Whenε→ 0 we obtain the following limit problem

− div(a(x,∇uε)) + V̄|u|p−2u = λερ̄|uε|p−2uε in Ω (6.3.3)

with Dirichlet or Neumann boundary conditions, respectively. We will prove that in this case the
kth–variational eigenvalue of problem (6.3.1) converges tothe kth–variational eigenvalue of the
limit problem (6.3.3).

Our goal is to estimate the rate of convergence between the eigenvalues. That is, we want to
find explicit bounds for the error|λεk − λk|.

Using the results of Section 5 concerning to oscillating integrals, we prove our main result of
this section.

Theorem 6.7. Let λεk be the kth–variational eigenvalue associated to equation(6.3.1)and let be
λk be the kth–variational eigenvalue associated to the limit problem (6.3.3). Then there exists a
constant C> 0 independent of the parametersε and k such that

|λk − λεk| ≤ Ck
2p
N ε.

Proof of Theorem 6.7.Let us observe that variational eigenvalues of (6.3.1) and (6.3.3), according
to Section 2.5, are characterized as

λεk = inf
C∈Γk

sup
v∈C

∫
Ω
Φ(x,∇v) + Vε|v|p∫

Ω
ρε|v|p

, λk = inf
C∈Γk

sup
v∈C

∫
Ω
Φ(x,∇v) + V̄|v|p

∫
Ω
ρ̄|v|p

(6.3.4)
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where, in the case of Dirichlet boundary conditions

Γk = {C ⊂W1,p
0 (Ω) : C compact,C = −C, γ(C) ≥ k}

however, when Neumann boundary conditions are considered

Γk = {C ⊂ W1,p(Ω) : C compact,C = −C, γ(C) ≥ k}.

The proofs in both cases are very similar. We prove the Neumann case and then we note the main
differences in the proof of the Dirichlet case.

Let δ > 0 and letGk
δ
⊂W1,p(Ω) be a compact, symmetric set of genusk such that

λk = sup
u∈Gk

δ

∫
Ω
Φ(x,∇u) + V̄|u|p

ρ̄
∫
Ω
|u|p

+O(δ). (6.3.5)

We use now the setGk
δ
, which is admissible in the variational characterization of the kth–

eigenvalue (6.3.1) in order to found a bound for it as follows,

λεk ≤ sup
u∈Gk

δ

∫
Ω
Φ(x,∇u) + Vε|u|p

ρ̄
∫
Ω
|u|p

ρ̄
∫
Ω
|u|p

∫
Ω
ρε|u|p

. (6.3.6)

To boundλεk we look for bounds of the two quotients in (6.3.6). For every function u ∈ Gk
δ
⊂

W1,p(Ω) we can apply Theorem 5.6 and we obtain that
∫
Ω
Φ(x,∇u) + Vε|u|p

ρ̄
∫
Ω
|u|p

≤
∫
Ω
Φ(x,∇u) + V̄|u|p

ρ̄
∫
Ω
|u|p

+Cε
‖|u|p‖W1,1(Ω)

ρ̄
∫
Ω
|u|p

. (6.3.7)

By using Young’s inequality

‖|u|p‖W1,1(Ω) = ‖|u|p‖L1(Ω) + p‖|u|p−1∇(u)‖L1(Ω)

= ‖u‖pLp(Ω) + p‖|u|p−1∇u‖L1(Ω)

≤ p‖u‖pLp(Ω) + ‖∇u‖pLp(Ω)

≤ p‖u‖p
W1,p(Ω)

.

Now, by (2.5.2) and (2.4.2), we have for eachu ∈ Gk
δ

‖|u|p‖W1,1(Ω)

ρ̄
∫
Ω
|u|p

≤ p
‖u‖p

W1,p(Ω)

ρ̄
∫
Ω
|u|p

≤ p

V̄

V̄
∫
Ω
|u|p + V̄

α

∫
Ω
Φ(x,∇u)

ρ̄
∫
Ω
|u|p

≤ c1

V̄
∫
Ω
|u|p +

∫
Ω
Φ(x,∇u)

ρ̄
∫
Ω
|u|p

(6.3.8)
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wherec1 =
p
V̄

max{ V̄
α
, 1}.

Then, by (6.3.8) and (6.3.5)

‖|u|p‖W1,1(Ω)

ρ̄
∫
Ω
|u|p

≤ c1 sup
v∈Gk

δ

V̄
∫
Ω
|v|p +

∫
Ω
Φ(x,∇v)

ρ̄
∫
Ω
|v|p

= c1(λk +O(δ)).

(6.3.9)

Moreover, by (6.3.5) we get
∫
Ω
Φ(x,∇u) + V̄|u|p

ρ̄
∫
Ω
|u|p

≤ sup
v∈Gk

δ

∫
Ω
Φ(x,∇v) + V̄|v|p

ρ̄
∫
Ω
|v|p

= λk +O(δ). (6.3.10)

Again, sinceu ∈ Gk
δ
⊂W1,p(Ω), by applying Theorem 5.6 we obtain that

ρ̄
∫
Ω
|u|p

∫
Ω
ρε|u|p

≤ 1+Cε
‖|u|p‖W1,1(Ω)∫
Ω
ρε|u|p

, (6.3.11)

and by (6.3.9),
‖|u|p‖W1,1(Ω)∫
Ω
ρε|u|p

≤ ρ̄

ρ−
‖|u|p‖W1,1(Ω)∫
Ω
ρ̄|u|p

≤ ρ̄

ρ−
c1(λk +O(δ)). (6.3.12)

Then combining (6.3.6), (6.3.9), (6.3.10) and (6.3.12) we find that

λεk ≤ (λk +O(δ) +Cε(λk +O(δ))) (1+Cε(λk +O(δ))) .

Letting δ→ 0 we get

λεk − λk ≤ Cε(λ2
k + λk) +Cε2λ2

k. (6.3.13)

In a similar way, interchanging the roles ofλk andλεk, we obtain

λk − λεk ≤ Cε((λεk)
2 + λεk) +Cε2(λεk)

2. (6.3.14)

So, from (6.3.13) and (6.3.14), we arrive at

|λεk − λk| ≤ Cεmax{λ2
k + λk, (λ

ε
k)2 + λεk}.

In order to complete the proof of the Theorem, we need an estimate onλk andλεk. But this
follows by comparison with thekth–variational eigenvalue of thep−Laplacian,µk and the bound
for µk proved in [GAP88].

In fact, from (2.4.2) we have

min{α, V̄}
ρ̄

∫
Ω
|∇u|p + |u|p
∫
Ω
|u|p

≤
∫
Ω
Φ(x,∇u) + V̄|u|p

∫
Ω
ρ̄|u|p

≤ max{β, V̄}
ρ̄

∫
Ω
|∇u|p + |u|p
∫
Ω
|u|p

,
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min{α,V−}
ρ+

∫
Ω
|∇u|p + |u|p
∫
Ω
|u|p

≤
∫
Ω
Φ(x,∇u) + Vε|u|p∫

Ω
ρε|u|p

≤ max{β,V+}
ρ−

∫
Ω
|∇u|p + |u|p
∫
Ω
|u|p

,

from where it follows that

min{α, V̄}
ρ̄

µk ≤ λk ≤
max{β, V̄}

ρ̄
µk,

min{α,V−}
ρ+

µk ≤ λεk ≤
max{β,V+}

ρ−
µk,

whereµk is thek−th eigenvalue of

−∆pu+ |u|p−2u = µ|u|p−2u in Ω
∂u
∂η
= 0 on∂Ω.

(6.3.15)

Observe thatu ∈W1,p(Ω) is solution of (6.3.15) if and only ifu is solution of

−∆pu = µ̃|u|p−2u in Ω
∂u
∂η
= 0 on∂Ω,

whereµ̃ = µ − 1, which satisfies that [GAP88]

µ̃k ≤ Ckp/N, (6.3.16)

and so the proof is complete in the Neumann boundary condition case.

The main difference in the Dirichlet case is the fact that in the variational characterization (6.3.4)
of the eigenvalues, functions are taken inW1,p

0 (Ω) instead ofW1,p(Ω). This leads to use Theorem
(5.6) instead Theorem 5.4 to estimate the oscillating integrals.

Being functions belonging toW1,p
0 (Ω) we can apply Theorem 5.4 and obtain an analogous

equation to (6.3.7)
∫
Ω
Φ(x,∇u) + Vε|u|p

ρ̄
∫
Ω
|u|p

≤
∫
Ω
Φ(x,∇u) + V̄|u|p

ρ̄
∫
Ω
|u|p

+Cε
‖∇u‖pLp(Ω)

ρ̄
∫
Ω
|u|p

. (6.3.17)

Moreover, instead (6.3.11) we have

ρ̄
∫
Ω
|u|p

∫
Ω
ρε|u|p

≤ 1+Cε
‖∇u‖pLp(Ω)∫
Ω
ρε|u|p

, (6.3.18)

Now, the only difference appears in the estimate of the quotients‖∇u‖pLp(Ω)/ρ̄
∫
Ω
|u|p and

‖∇u‖pLp(Ω)/
∫
Ω
ρε|u|p.

By (2.5.2), (2.4.2) we get

‖∇u‖pLp(Ω)∫
Ω
ρε|u|p

≤ ρ̄

ρ−

‖∇u‖pLp(Ω)∫
Ω
ρ̄|u|p

≤ ρ̄

ρ−
1
α

∫
Ω
Φ(x,∇u) + V̄|u|p

∫
Ω
ρ̄|u|p

≤ ρ̄

ρ−
1
α

(λk +O(δ)).

(6.3.19)
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and

‖∇u‖pLp(Ω)

ρ̄
∫
Ω
|u|p

≤ ρ+

ρ̄

‖∇u‖pLp(Ω)∫
Ω
ρε|u|p

. (6.3.20)

Changing equations (6.3.7), (6.3.11), (6.3.8) and (6.3.12) by (6.3.17), (6.3.18), (6.3.19) and
(6.3.20) the result in the Dirichlet case follows. �

Remark6.8. Observe that the result holds even forV ≡ 0. Actually, in this caseu is solution of
equation (6.3.1) (either with Dirichlet or Neumann boundary conditions) if and only ifu is solution
of

−div(a(x,∇uε)) + ρε|u|p−2u = λ̃ερε|uε|p−2uε in Ω

with the corresponding boundary condition, whereλ̃ε = λε + 1.

In relation to equation (6.3.1) with Dirichlet boundary condition we make the following re-
marks.

Remark6.9. As we mentioned in the introduction, in the linear case and inone space dimension
Castro and Zuazua [CZ00b] prove that, fork < Cε−1,

|λεk − λk| ≤ Ck4ε.

If we specialize our result to this case, we get the same bound. The advantage of our method is
that very low regularity onρ is needed (onlyL∞). However, the method in [CZ00b], making use
of the linearity of the problem, gives precise information about the behavior of the eigenfunctions
uεk.

Remark6.10. In [KLS11], Kenig, Lin and Shen studied the linear case in anyspace dimension
(allowing a periodic oscillation diffusion matrix) and prove the bound

|λεk − λk| ≤ Cε| logε|1+σ.

for someσ > 0 andC depending onσ andk. The authors can get rid off the logarithmic term
assuming more regularity onΩ). If we specialize our result to this case, we cannot treat anε

dependance on the operator, but we get an explicit dependance onk on the estimate and assuming
very low regularity onΩ (Lipschitz is more than enough) we get a better dependance onε.
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Eigenvalue homogenization for quasilinear elliptic
operators in one space dimension

7.1 Introduction

In this Chapter we study the asymptotic behavior (asε → 0) of the eigenvalues of the following
problem 

−(a( x
ε
)|(uε)′|p−2(uε)′)′ = λερ( x

ε
)|uε|p−2uε in I := (0, 1)

uε(0) = uε(1) = 0,
(7.1.1)

where the diffusion coefficienta(x) and the weight functionρ(x) are 1−periodic functions, bounded
away from zero and infinity andε > 0 is a real parameter. In this Chapter we will denote byI to
the unit interval (0, 1).

This type of problems have been considered extensively in the literature due to its many appli-
cations in different fields.

Homogenization of one-dimensional periodic linear problems was studied in the late 60’s by
Spagnolo [Sp68] and De Giorgi [DS73] and generalized to the linear multi-dimensional case in
the mid-70’s by Sanchez-Palencia [SP70], Bensoussan, Lions and Papanicolaou [BLP78] among
others. Likewise, the study of eigenvalue problems with oscillating coefficients started with the
works of Boccardo and Marcellini [BM76], and Kesavan [Ke79b, Ke79]. See Chapter§4.

Problem (7.1.1) has a natural limit problem asε→ 0 given by


−(a∗p|u′|p−2u′)′ = λρ̄|u|p−2u in I

u(0) = u(1) = 0
(7.1.2)

whereρ̄ is the average ofρ in the intervalI anda∗p is given by

a∗p :=
( ∫

I

1

a(s)1/(p−1)
ds

)−(p−1)
,
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see Proposition 4.27.

Now, what we are interested in is on the convergence of the eigenvalues of problem (7.1.1) to
the ones of problem (7.1.2); more specifically, on the order of convergence of the eigenvalues, i.e.
we find explicit bounds onε andk for the difference

|λεk − λk|

whereλεk andλk are thek−th eigenvalue of problem (7.1.1) and (7.1.2) respectively.

In the Chapter§6 we have dealt of theN−dimensional case for the quasilinear problem with
diffusion coefficients independent ofε, and we obtain the bound

|λεk − λk| ≤ Ck
2p
N ε

with C independent onk andε for any Lipschitz domain. The constantC is unknown.

It is expected that in the one dimensional case one can be moreprecise with the estimates.
In fact, Castro and Zuazua in [CZ00, CZ00b], for the linear problem using the so-called WKB
method which relays on asymptotic expansions of the solutions of the problem, and the explicit
knowledge of the eigenfunctions and eigenvalues of the constant coefficient limit problem, proved

|λεk − λk| ≤ Ck4ε

and they also presented a variety of results on correctors for the eigenfunction approximation. Let
us mention that their method needs higher regularity on the weightρ and on the diffusiona, which
must belong at least toC2 and that the bound holds fork ∼ ε−1. Also, the value of the constantC
entering in the estimate is unknown.

The main result of this Chapter is the following Theorem:

Theorem 7.1. There exists a constant C depending only on p, a andρ such that

|λεk − λk| ≤ Ck2pε.

Moreover, C can be estimated explicitly in terms of the functions a andρ, and p.

A useful tool used in the proof of Theorem 7.1 is the variational characterization of the eigen-
values of (7.1.1) and (7.1.2). Also, it will be essential that thevariational eigenvalues, for the one
dimensional problem, exhaust the whole spectrum of (7.1.1)and (7.1.2). These facts are collected
in Section 2.5.

In the course of our arguments, a general result on the convergence of eigenvalues is used.
Namely, we prove that the eigenvalues of


−(aε(x)|(uε)′|p−2(uε)′)′ = λερε(x)|uε |p−2uε in I

uε(0) = uε(1) = 0,
(7.1.3)
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converges to the ones of the limit problem

−(ah(x)|(uε)′|p−2(uε)′)′ = λερh(x)|uε |p−2uε in I

uε(0) = uε(1) = 0,
(7.1.4)

whereρh is the weak* limit ofρε andah is theG−limit of aε.

In the linear case (p = 2), and inN−dimensional space, Kesavan in [Ke79b, Ke79] proved that
if aε G−converges toah andρε ⇀ ρh weakly* in L∞ then the sequence of thek−th eigenvalues of
(7.1.1) converges to thek−th eigenvalue of (7.1.2).

In the general quasilinear setting, forN−dimensional space, the first result we are aware of is
by Baffico, Conca and Rajesh, [BCR06], where the authors prove that the limit of any convergent
sequence of eigenvalues of (7.1.1) is an eigenvalue of (7.1.2) and, moreover, that the sequence of
the first eigenvalues of (7.1.1) converges to the first eigenvalue of (7.1.2).

In Chapter§6 we studied the same problem, again inN−dimensional space, and prove that the
first and second eigenvalues of (7.1.1) converges to those ofthe limit operator (7.1.2). Moreover,
when the diffusion coefficient aε is independent ofε, we prove that the sequence of thek−th
variational eigenvalues of (7.1.1) converges to thek−th variational eigenvalue of (7.1.2).

In one space dimension one can be more precise and we can provethe following

Theorem 7.2. Assume that aε G−converges to ah and thatρε ⇀ ρh weakly* in L∞(I ).

For each k≥ 1 let λεk be the k-th eigenvalue of(7.1.1). Then we have that

lim
ε→0

λεk = λk,

whereλk the k−th eigenvalue of(7.1.2).

Moreover, up to a subsequence, an eigenfunction uε
k associated toλεk converges weakly in

W1,p
0 (I ) to uk, an eigenfunction associated toλk.

7.2 Convergence of eigenvalues

In order to prove Theorem 7.2 we need some preliminaries.

From Chapter§2, according to Theorem 2.28, we denote byΣε := {λεk}k∈N the full sequence of
eigenvalues of problem (7.1.3) and byΣh := {λk}k∈N those of its limit problem (7.1.4). They can
be written as

λεk = inf
C∈Γk

sup
u∈C

∫
I
aε(x)|u′|p

∫
I
ρε(x)|u|p

, λk = inf
C∈Γk

sup
u∈C

∫
I
ah(x)|u′ |p

∫
I
ρh(x)|u|p

.

We assume thata andρ are 1−periodic functions defined onI such that for some constants
α < β, ρ− < ρ+,

0 < α ≤ a(x) ≤ β < +∞ a.e.I
0 < ρ− ≤ ρ(x) ≤ ρ+ < +∞ a.e.I .

(7.2.1)
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We begin by stating a general result for bounded sequences ofeigenvalues that can be found in
[BCR06] (see also Theorem 7.3, where a simplified proof of this result is given).

Theorem 7.3. Letλε ∈ Σε be a sequence of eigenvalues of the problem(7.1.3)with {uε}ε>0 asso-
ciated normalized eigenfunctions. Assume that the sequence of eigenvalues is convergent

lim
ε→0+

λε = λ.

Then,λ ∈ Σh and there exists a sequenceε j → 0 such that

uε j ⇀ u weakly in W1,p
0 (I )

with u a normalized eigenfunction associated toλ.

Assume now that we take the family of thek−th eigenvalue of (7.1.1){λεk}ε>0. It is not difficult
to see that this family is bounded, in fact as

α

ρ+

∫ 1
0 |v

′|p
∫ 1
0 |v|p

≤
∫ 1
0 aε(x)|v′|p
∫ 1
0 ρε(x)|v|p

≤ β

ρ−

∫ 1
0 |v

′|p
∫ 1
0 |v|p

,

we have
α

ρ+
µk ≤ λεk ≤

β

ρ−
µk (7.2.2)

whereµk = π
p
pkp is thek−th eigenvalue of the one dimensionalp−Laplacian (see Chapter§2,

Theorem 2.10).

Therefore, up to a subsequence,λεk converges toλ ∈ Σh. The main tool that allows us to prove
thatλ = λk is Theorem 2.27 that says that any eigenfunction associatedto thek−th eigenvalue of
(7.1.1) has exactlyk nodal domains.

Moreover, we need a refinement of this result, namely an estimate on the measure of each nodal
domain independent onε. This is the content of the next Lemma.

Lemma 7.4. Let λεk be a eigenvalue of(7.1.3)with corresponding eigenfunction uεk. LetN =
N(k, ε) be a nodal domain of uεk. We have that

|N| > C

where C= C(k) is a positive constant independent ofε.

Proof. We can writeλεk as

λεk(I ) = λ
ε
1(N) = inf

u∈W1,p
0 (N)

∫
N aε(x)|u′ |p
∫
N ρε(x)|u|p

,

by our assumptions (2.5.2) we get

λεk(I ) ≥
α

ρ+
µ1(N) =

α

ρ+

π
p
p

|N|p
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whereµ1(N) is the first eigenvalue of thep−Laplacian onN . Moreover,

λεk(I ) ≤ β

ρ−
µk(I ) =

β

ρ−
π

p
pkp.

Combining both inequalities we get

|N|p ≥ α

ρ+

π
p
p

λεk(Ω)
≥ α

β

ρ−
ρ+

1
kp

and the result follows. �

Now we are ready to establish the main result of this section:

Proof of Theorem 7.2.Let uk be a normalized eigenfunction associated toλk and according to
Theorem 2.27, letI i , i = 1, . . . , k be the nodal domains ofuk.

We denote byuεi the first eigenfunction of (7.1.3) inI i respectively. Extendinguεi to I by 0,
these function have disjoint supports and therefore they are linearly independent inW1,p

0 (I ).

Let S be the unit sphere inW1,p
0 (I ) and we define the setCε

k as

Cε
k := span{uε1, . . . , u

ε
k} ∩ S.

ClearlyCε
k is compact, symmetric andγ(Cε

k) = k. Hence,

λεk = inf
C∈Γk

sup
v∈C

∫
I
aε(x)|v′ |p
∫

I
ρε|v|p

≤ sup
v∈Cε

k

∫
I
aε(x)|v′|p
∫

I
ρε|v|p

.

As Cε
k is compact, the supremum is achieved for somevε ∈ Cε

k which can be written as

vε =
k∑

i=1

aεi u
ε
i

with aεi ∈ R such that
∑k

i=1 |aεi |p = 1. Since the functionsuεi have non-overlapping supports, we
obtain

λεk ≤
∫

I
aε(x)|vε′|p
∫

I
ρε|vε|p

=

∑k
i=1 |aεi |p

∫
I i

aε(x)|uεi
′|p

∫
I
ρε|vε|p

.

Using the definition ofuεi , the above inequality can be rewritten as

λεk ≤
∑k

i=1 |aεi |pλε1,i
∫

I i
ρε|uεi |p∫

I
ρε|vε|p

≤ max
1≤i≤k
{λε1,i} (7.2.3)

whereλε1,i is the first eigenvalue of (7.1.1) in the nodal domainΩi respectively.
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Now, using thatλε1,i → λ1,i respectively , whereλ1,i are the first eigenvalues of (7.1.2) in the do-
mainsI i respectively (see Theorem 4.4, [FBPS12]). Moreover, we observe that these eigenvalues
λ1,i are all equal to thek−th eigenvalueλk in I , therefore from (7.2.3), we get

λεk ≤ λk + δ

for δ arbitrarily small andε tending to zero. So

lim sup
ε→0

λεk ≤ λk. (7.2.4)

On the other hand, suppose that limε→0 λ
ε
k = λ. By Lemma 7.4 thek nodal domains ofuεk have

positive measure independent ofε. Then it must beλ ≥ λk. It follows that

λk ≤ λ = lim
ε→0

λεk. (7.2.5)

Combining (7.2.4) and (7.2.5) we obtain the desired result. �

7.3 Rates of convergence. The periodic case

In this section, we focus on the limit behavior of eigenvalues of

− (a( x
ε
)|(uε)′|p−2(uε)′)′ = λερ( x

ε
)|uε|p−2uε in I (7.3.1)

either with Dirichlet or Neumann boundary conditions, where a andρ are 1−periodic functions
satisfying (7.2.1). In fact, from the results of Section 7.2, it follows that thek−th eigenvalue of
(7.3.1) converges to thek−th eigenvalue of the limit problem

− (a∗p|(u)′ |p−2(u)′)′ = λρ̄|u|p−2u in I (7.3.2)

with the corresponding boundary condition.

In order to clarify the statement of the main Theorem we introduce the following notation:

Definition 7.5. Let g : R → R be a measurable function such that 0< g− ≤ g ≤ g+ < ∞. We
define the oscillation ofg as

ωg =
g+

g−
.

The main results of this Section are the following Theorems:

Theorem 7.6.Letλεk be the k−th eigenvalue of problem(7.3.1)with Dirichlet boundary conditions
and letλk be the k−th eigenvalue of its limit problem(7.3.2). Then we have

|λεk − λk| ≤(a∗p)p/(p−1)ωρω
1/(p−1)
a − 1

ρ−α1/(p−1)
ωρω

1/(p−1)
a π

2p
p εk

2p
[ p

π
p−1
p

+
εp−1

p

]

+
β

ρ−
pπp

pkpε(1+ ε)p−1C(ε),
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whereωρ andωa are given by Definition 7.5 and

C(ε) =


0 if ε = 1/ j, j ∈ N
1 else.

(7.3.3)

Remark7.7. As a consequence of Theorem 7.6 we obtain the rate of convergence of the nodal
domains of the eigenfunctions of problem (7.3.1) to those ofthe limit problem, c.f. Theorem 7.15.

We state a simple corollary of Theorem 7.6.

Corollary 7.8. Let C(p, a, ρ) = (a∗p)p/(p−1)ωρω
1/(p−1)
a −1

ρ−α1/(p−1) ωρω
1/(p−1)
a pπp+1

p then forε < ε0 we have

|λεk − λk| ≤ 2C(p, a, ρ)εk2p. (7.3.4)

Remark7.9. The constant 2 in (7.3.4) can be replaced by any other constant greater than 1.

Remark7.10. Corollary 7.8 is exactly Theorem 7.1.

We obtain similar results for the Neumann problem.

Theorem 7.11.Letλεk be the k−th eigenvalue of problem(7.3.1)with Neumann boundary condi-
tions and letλk be the k−th eigenvalue of its limit problem(7.3.2). Then we have

|λεk − λk| ≤4(a∗p)p/(p−1)cεpmax{ 1
ρ−α

1
1−p , ωρω

1
p−1
a }3π2p

p (k − 1)2p

+
β

ρ−
pπp

p(k − 1)pε(1+ ε)p−1C(ε),

whereωρ andωa are given by Definition 7.5,

c ≤ β
(
4+

p
(p− 1)πp

)

and C(ε) is given in(7.3.3).

Corollary 7.12. Let

C(p, a, ρ) = 4pβ

(
4+

p
(p− 1)πp

)
(a∗p)p/(p−1) max{ 1

ρ−α
1

1−p , ωρω
1

p−1
a }3π2p

p

then forε < ε0 we have

|λεk − λk| ≤ 2C(p, a, ρ)ε(k − 1)2p. (7.3.5)

7.3.1 Proof of Theorem 7.6. The casea = 1

In order to deal with Theorem 7.6 we first analyze the case where the diffusion coefficient is equal
to 1 and then show how the general case can be reduced to this one.
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Theorem 7.13.Let g∈ L∞(R) be a1−periodic function such that

0 < g− ≤ g ≤ g+ < ∞. (7.3.6)

Consider the eigenvalue problem


−(|u′|p−2u′)′ = g( x

ε
)λε|u|p−2u in I

u(0) = u(1) = 0
(7.3.7)

and its limit problem 
−(|u′|p−2u′)′ = ḡλ|u|p−2u in I

u(0) = u(1) = 0.
(7.3.8)

Let {λεk}k≥1 and {λk}k≥1 be the eigenvalues of(7.3.7)and (7.3.8)respectively.

Then, we have

|λεk − λk| ≤
g+ − ḡ
g−ḡ

g+

g−
π

2p
p εk

2p
[ p

π
p−1
p

+
εp−1

p

]
.

Proof. The proof follows from Theorem 5.5. In fact, for everyδ > 0, letGk
δ
∈ Γk be such that

λk =
π

p
pkp

ḡ
= inf

G∈Γk

sup
v∈G

∫
I
|v′|p

ḡ
∫

I
|v|p
= sup

v∈Gk
δ

∫
I
|v′|p

ḡ
∫

I
|v|p
+O(δ). (7.3.9)

We bound the eigenvalues of (7.3.7) as follows

λεk = inf
G∈Γk

sup
v∈G

∫
I
|v′|p

∫
I
g( x

ε
)|v|p

≤ sup
v∈Gk

δ

∫
I
|v′|p

ḡ
∫

I
|v|p

ḡ
∫

I
|v|p

∫
I
g( x

ε
)|v|p

≤ (λk +O(δ)) sup
v∈Gk

δ

ḡ
∫

I
|v|p

∫
I
g( x

ε
)|v|p

.

(7.3.10)

Now, by Theorem 5.5 we bound the quotient

ḡ
∫

I
|v|p

∫
I
g( x

ε
)|v|p

≤ 1+ (g+ − ḡ)ε
[ p

π
p−1
p

+
εp−1

p

]
∫

I
|v′|p

∫
I
g( x

ε
)|v|p

. (7.3.11)

By (7.3.6) we have, asv ∈ Gk
δ
,

∫
I
|v′|p

∫
I
g( x

ε
)|v|p

≤ ḡ
g−

∫
I
|v′|p

∫
I
ḡ|v|p

≤ ḡ
g−

(λk +O(δ)). (7.3.12)
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By using (7.3.12) we bound (7.3.11) as

1+
(g+ − ḡ)ḡ

g−
ε
[ p

π
p−1
p

+
εp−1

p

]
(λk +O(δ)). (7.3.13)

Finally, combining (7.3.10), (7.3.11) and (7.3.13) and letting δ→ 0 we find that

λεk − λk ≤
g+ − ḡ

g−
ḡελ2

k

[ p

π
p−1
p

+
εp−1

p

]
. (7.3.14)

Arguing in much the same way, we get the inequality

λk − λεk ≤
g+ − ḡ

ḡ
g+ε(λεk)

2
[ p

π
p−1
p

+
εp−1

p

]
. (7.3.15)

Now, from (7.3.6) and the variational characterization of the eigenvalues, we get the estimates

ḡ
g+
λk ≤ λεk ≤

ḡ
g−
λk. (7.3.16)

Using (7.3.16) in (7.3.15), together with (7.3.14), we obtain

|λεk − λk| ≤
g+ − ḡ

g−
g+

g−
ḡελ2

k

[ p

π
p−1
p

+
εp−1

p

]
(7.3.17)

and from the explicit form of the eigenvalues

λk =
π

p
pkp

g
,

we arrive at

|λεk − λk| ≤
g+ − ḡ
g−ḡ

g+

g−
π

2p
p εk

2p
[ p

π
p−1
p

+
εp−1

p

]
,

as we wanted to proved. �

Remark7.14. If we replace the unit intervalI = (0, 1) by Iℓ = (0, ℓ) by a simple change of
variables, the estimates of Theorem 7.13 are modified as

|λεk(Iℓ) − λk(Iℓ)| = ℓp|λεk(I ) − λk(I )|. (7.3.18)

7.3.2 Proof of Theorem 7.6. The general case

Now we are ready to prove the main result of the section, namely Theorem 7.6
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Proof of Theorem 7.6.The proof of the Theorem follows by converting problem (7.1.1) into
(7.3.7) by a change of variables.

In fact, if we define

Pε(x) =
∫ x

0

1

aε(s)1/(p−1)
ds= ε

∫ x/ε

0

1

a(s)1/(p−1)
ds= εP( x

ε
)

and perform the change of variables

(x, u)→ (y, v) (7.3.19)

where

y = Pε(x) = εP( x
ε
), v(y) = u(x).

By simple computations we get


−(|v̇|p−2v̇)· = λεQε(y)|v|p−2v, y ∈ [0, Lε]

v(0) = v(Lε) = 0

where

· = d/dy,

with

Lε =
∫ 1

0

1

aε(s)1/(p−1)
ds→ L = a

−1
p−1 ,

and

Qε(y) =aε(x)1/(p−1)ρε(x)

=a(P−1( y
ε
))1/(p−1)ρ(P−1( y

ε
))

=Q( y
ε
).

Observe thatQ is anL−periodic function.

Moreover, it is easy to see that

|Lε − L| ≤ εL (7.3.20)

and thatLε = L if ε = 1/ j for some j ∈ N.

In order to apply Theorem 7.13 we need to rescale to the unit interval. So we define

w(z) = v(Lεz), z ∈ I

and get 
−(|ẇ|p−2ẇ)· = Lp

ελ
εQε(Lεz)|w|p−2w in I

w(0) = w(1) = 0.
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So if we denoteδ = εL/Lε, µδ = Lp
ελ

ε andg(z) = Q(Lz), we get thatg is a 1−periodic function
and thatw verifies 

−(|ẇ|p−2ẇ)· = µδg( z
δ
)|w|p−2w in I

w(0) = w(1) = 0.

Now we can apply Theorem 7.13 to the eigenvaluesµδ to get

|µδk − µk| ≤
g+ − ḡ
g−ḡ

g+

g−
π

2p
p δk

2p
[ p

π
p−1
p

+
εp−1

p

]
. (7.3.21)

In the case whereε = 1/ j with j ∈ N we directly obtain

|λεk − λk| ≤
1
Lp

g+ − ḡ
g−ḡ

g+

g−
π

2p
p εk

2p
[ p

π
p−1
p

+
εp−1

p

]
.

Now we observe thatL−p = (a∗p)p/(p−1) and that we have the bounds

ρ−α
1

p−1 ≤ g− ≤g ≤ g+ ≤ ρ+β
1

p−1 , (7.3.22)

α
1

p−1 ρ̄ ≤ḡ ≤ β
1

p−1 ρ̄. (7.3.23)

Therefore, we get

|λεk − λk| ≤ (a∗p)
p

p−1

ρ+

ρ̄
( β
α
)1/(p−1) − 1

ρ−α1/(p−1)

ρ+

ρ−

( β
α

)1/(p−1)
π

2p
p εk

2p
[ p

π
p−1
p

+
εp−1

p

]
.

In the general case, one has to measure the defect betweenL andLε. So,

|λεk − λk| ≤
1
Lp (|µδk − µk| + λεk|L

p
ε − Lp|)

≤ (a∗p)
p

p−1 (|µδk − µk| +
β

ρ−
π

p
pkp|Lp

ε − Lp|).

From (7.3.20) it is easy to see that

|( Lε
L )p − 1| ≤ p(1+ ε)p−1ε.

so
|Lp
ε − Lp| = Lp|( Lε

L )p − 1| ≤ (1+ ε)p−1 p

(a∗p)p/(p−1)
ε. (7.3.24)

Finally, using (7.3.21), (7.3.22) and (7.3.23) we obtain the desired result. �

7.3.3 Convergence of nodal domains

To finish with this section, as a consequence of Theorem 7.1, we prove a result about the conver-
gence of the nodal sets and of the zeroes of the eigenfunctions.
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Theorem 7.15.Let (λεk, u
ε
k) and (λk, uk) be eigenpairs associated to equations(7.1.1)and (7.1.2)

respectively. We denote byNε
k andNk to a nodal domains of uεk and uk respectively. Then

|Nε
k | → |Nk| asε→ 0

and we have the estimate ∣∣∣|Nε
k |
−p − |Nk|−p

∣∣∣ ≤ cε(k2p + 1).

Proof. By using Theorem 7.1, together with (7.3.18) and the explicit form of the eigenvalues of
the limit problem we obtain that

λεk(I ) = λ
ε
1(Nε

k ) ≤ λ1(Nε
k ) + c|Nε

k |
p−1ε ≤

π
p
p

ρ|Nε
k |p
+ cε. (7.3.25)

Also,

λεk(I ) ≥ λk(I ) − ck2pε =
kpπ

p
p

ρ
− ck2pε. (7.3.26)

As uk(x) = sinp(kπpx) (see Chapter§2, Theorem 2.10) hask nodal domain inI we must have
|Nk| = k−1. Then by (7.3.25) and (7.3.26) we get

π
p
p

ρ|Nk|p
− ck2pε ≤ 1

|Nε
k |p

π
p
p

ρ
+ cε

it follows that

|Nk|−p − |Nε
k |
−p ≤ cε(k2p + 1). (7.3.27)

Similarly we obtain that

π
p
p

ρ|Nk|p
= λ1(Nk) = λk(I ) ≥ λεk(I ) − cεk2p ≥ λε1(Nε

k ) − cεk2p

and using again Theorem 7.1 we get

λε1(Nε
k ) ≥ λ1(Nε

k ) − cε =
π

p
p

ρ|Nε
k |p
− cε

it follows that

|Nε
k |
−p − |Nk|−p ≤ cε(k2p + 1). (7.3.28)

Combining (7.3.27) and (7.3.28) the result follows. �

Finally, as a corollary of Theorem 7.15 we are able to prove the individual convergence of the
zeroes of the eigenfunctions of (7.1.1) to those of the limitproblem (7.1.2).
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Corollary 7.16. Let (λεk, u
ε
k) and(λk, uk) be eigenpairs associated to equations(7.1.1)and (7.1.2)

respectively. Denote xεj and xj, 0 ≤ j ≤ k its respective zeroes. Then for each1 < j < k

xεj → x j whenε→ 0

and
|xεj − x j | ≤ jcε(k2p + 1).

In particular xε0 = x0 = 0 and xεk = xk = 1 by the boundary condition.

Proof. With the notation of Theorem 7.15 we have that|Nε
k | → |Nk|. For the first pair of nodal

domains we get

|xε1 − x1| = |xε1 − xε0 − x1 + x0| =
∣∣∣|Nε

k,1| − |Nk,1|
∣∣∣ ≤ cε(k2p + 1)

for the second couple

|(xε2 − x2) − (xε1 − x1)| =
∣∣∣|Nε

k,2| − |Nk,2|
∣∣∣ ≤ cε(k2p + 1)

then
|xε2 − x2| ≤ cε(k2p + 1)+ |xε1 − x1| ≤ 2cε(k2p + 1).

Inductively, for j < k
|xεj − x j | ≤ jcε(k2p + 1)

and the proof is complete. �

7.3.4 Proof of Theorem 7.11.

In order to deal with Theorem 7.11 we first analyze the case where the diffusion coefficient is equal
to 1. The general case follows by using the same change of variables before given by (7.3.19)

Theorem 7.17.Let g∈ L∞(R) be a1−periodic function such that

0 < g− ≤ g ≤ g+ < ∞. (7.3.29)

Consider the eigenvalue problem

−(|u′|p−2u′)′ = g( x

ε
)λε|u|p−2u in I

u′(0) = u′(1) = 0
(7.3.30)

and its limit problem 
−(|u′|p−2u′)′ = ḡλ|u|p−2u in I

u′(0) = u′(1) = 0.
(7.3.31)

Let {λεk}k≥1 and {λk}k≥1 be the eigenvalues of(7.3.30)and (7.3.31)respectively.
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Then, we have
|λεk − λk| ≤ 4cεpmax{ 1

g− , ωg}3π2p
p (k− 1)2p,

whereωg is given in Definition 7.5 and

c ≤ β
(
4+ p

(p−1)πp

)

is the constant given in Theorem 5.8.

Remark7.18. Let us observe thatu ∈W1,p(I ) is a solution of (7.3.30) if and only ifu is a solution
of the following equation


−(|u′|p−2u′)′ + gε|u|p−2u = gελ̃ε|u|p−2u in I

u′(0) = u′(1) = 0
(7.3.32)

wheregε(x) = g( x
ε
) andλ̃ε = λε +1. For convenience, we will work with equation (7.3.32) instead

(7.3.30).

Proof of Theorem 7.17.The proof follows the same lines of Theorem 6.7. Thekth variational
eigenvalue of (7.3.32) and its limit problem can be written as

λ̃εk = inf
G∈Γk

sup
u∈G

∫
I
|u′|p + gε|u|p∫

I
gε|u|p

, λ̃k = inf
G∈Γk

sup
u∈G

∫
I
|u′|p + ḡ|u|p

ḡ
∫

I
|u|p

(7.3.33)

whereΓk = {C ⊂W1,p(I ) : C compact,C = −C, γ(C) ≥ k}.

Let δ > 0 and letGk
δ
⊂W1,p(I ) be a compact, symmetric set of genusk such that

λ̃k = sup
u∈Gk

δ

∫
I
|u′|p + ḡ|u|p

ḡ
∫

I
|u|p

+O(δ). (7.3.34)

Being the setGk
δ

admissible in the variational characterization of thekth–eigenvalue of the limit
problem of (7.3.32), we have

λ̃εk ≤ sup
u∈Gk

δ

∫
I
|u′|p + gε|u|p

ḡ
∫

I
|u|p

ḡ
∫

I
|u|p

∫
I
gε|u|p

. (7.3.35)

To boundλ̃εk we look for bounds of the two quotients in (7.3.35). For everyfunction u ∈ Gk
δ
⊂

W1,p(I ) we can apply Theorem 5.8 and we obtain that
∫

I
|u′|p + gε|u|p

ḡ
∫

I
|u|p

≤
∫

I
|u′|p + ḡ|u|p

ḡ
∫

I
|u|p

+ cε
‖|u|p‖W1,1(I)

ḡ
∫

I
|u|p

. (7.3.36)

wherec is given explicitly in Theorem 5.8. By using Young’s inequality,

‖|u|p‖W1,1(I) ≤ p‖u‖p
W1,p(I)

.
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Now, by (7.3.29) we have for eachu ∈ Gk
δ
,

‖|u|p‖W1,1(I)

ḡ
∫

I
|u|p

≤ p
‖u‖p

W1,p(I)

ḡ
∫

I
|u|p

≤ c1
ḡ
∫

I
|u|p +

∫
I
|u′|p

ḡ
∫

I
|u|p

(7.3.37)

wherec1 = pmax{1, 1
ḡ}. Then, by (7.3.37) and (7.3.34)

‖|u|p‖W1,1(I)

ḡ
∫

I
|u|p

≤ c1 sup
v∈Gk

δ

ḡ
∫

I
|v|p +

∫
I
|v′|p

ḡ
∫

I
|v|p

= c1(λ̃k +O(δ)). (7.3.38)

Again, sinceu ∈ Gk
δ
⊂W1,p(I ), by applying Theorem 5.8 we obtain that

ḡ
∫

I
|u|p

∫
I
gε|u|p

≤ 1+ cε
‖|u|p‖W1,1(I)∫

I
gε|u|p

, (7.3.39)

and by (7.3.38),
‖|u|p‖W1,1(I)∫

I
gε|u|p

≤ ḡ
g−
‖|u|p‖W1,1(I)∫

I
ḡ|u|p

≤ ḡ
g−

c1(λ̃k +O(δ)). (7.3.40)

Then combining (7.3.35), (7.3.38), (7.3.40) and lettingδ→ 0 we find that

λ̃εk − λ̃k ≤ cc1ε(
ḡ
g− λ̃

2
k + λ̃k) + c2c2

1
ḡ
g− ε

2λ2
k. (7.3.41)

In a similar way, interchanging the roles ofλ̃k andλ̃εk, we obtain

λ̃k − λ̃εk ≤ cc̃1ε(
g+

g− (λ̃εk)2 + λ̃εk) + c2c̃2
1

g+

g− ε
2(λ̃εk)2 (7.3.42)

with c̃1 =
p

g− max{1, g+}. So, from (7.3.41) and (7.3.42), we arrive at

|λ̃εk − λ̃k| ≤ cεpmax{ 1
g− ,

g+

g− }max{1, g+

g− }max{λ̃2
k + λ̃k, (λ̃

ε
k)

2 + λ̃εk}. (7.3.43)

In order to complete the proof of the Theorem, we need an estimate onλ̃k andλ̃εk. In fact, from
(7.3.29) it follows that

min{1, 1
ḡ}µk ≤ λ̃k ≤ max{1, 1

ḡ}µk, min{1, 1
g+ }µk ≤ λ̃εk ≤ max{1, 1

g− }µk. (7.3.44)

whereµk is thek−th eigenvalue of

−|u′|p−2u′ + |u|p−2u = µ|u|p−2u in I

u′(0) = u′(1) = 0.
(7.3.45)

Observe thatu ∈W1,p(I ) is solution of (7.3.45) if and only ifu is solution of

−(|u′|p−2u′)′ = µ̃|u|p−2u in I

u′(0) = u′(1) = 0

whereµ̃ = µ − 1, and its explicit form is

µ̃k = π
p
p(k− 1)p. (7.3.46)

From (7.3.43),(7.3.44) and (7.3.46) and using that|λ̃εk − λ̃k| = |λεk − λk| we arrive to the desired
result. �
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Now we are ready to prove Theorem 7.11.

Proof of Theorem 7.11.The proof follows in the same way of the proof of Theorem 7.13 for the
Dirichlet case. The only difference is that we use bounds obtained in Theorem 7.17 insteadof the
ones from Theorem 7.13. �

7.4 Some examples and numerical results

We consider equation (7.1.1) with weightr anda ≡ 1, i.e.,


−(|u′|p−2u′)′ = λr(x)|u|p−2u in I := (0, 1)

u(0) = u(1) = 0.
(7.4.1)

In this section we present some numerical experiments in thehomogenization of the eigenvalues
of (7.1.1) in the caseaε(x) ≡ 1. Using the Prüfer transformation method introduced by Elbert
[El82] for the p−Laplacian we design an algorithm in order to estimate the eigenfunctions and
eigenvalues of (7.1.1).

We define the following Prüfer transformation:



(
λr(x)
p−1

)1/p
u(x) = ρ(x)Sp(ϕ(x)),

u′(x) = ρ(x)Cp(ϕ(x)).
(7.4.2)

As in [Pi07], we can see show thatρ(x) andϕ(x) are continuously differentiable functions satisfy-
ing


ϕ′(x) =

(
λr(x)
p−1

) 1
p
+ 1

p
r ′(x)
r(x) |Cp(ϕ(x))|p−2Cp(ϕ(x))Sp(ϕ(x))

ρ′(x) = 1
p

r ′(x)
r(x) ρ(x)|Sp(ϕ(x))|p

(7.4.3)

and we obtain that

uk(x) =

(
λkr(x)
p− 1

)−1/p

ρk(x)Sp(ϕk(x)), k ≥ 1

is a eigenfunction of problem (7.4.1) corresponding toλk with zero Dirichlet boundary conditions.
We propose the following algorithm to compute the eigenvalues of problem (7.4.1) based in the
fact that the eigenfunction associate toλk hask nodal domain inI , so the phase functionϕ must
vary between 0 andkπp. It consists in a shooting method combined with a bisection algorithm (a
Newton-Raphson version can be implemented too).
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Let a < λ < b and let τ be the tolerance

Solve the ODE 7.4.3 and obtain ϕλ and ρλ

Let w(x) = (p− 1)1/p (λr(x))−1/p ρλ(x)Sp(ϕλ(x))

Let α = w(1)

while (|α| ≥ τ)
λ = (a+ b)/2

Solve the ODE 7.4.3 and obtain ϕλ and ρλ

Let w(x) = (p− 1)1/p (λr(x))−1/p ρλ(x)Sp(ϕλ(x))

Let β = w(1)

If (αβ < 0)

b = (a+ b)/2

else

a = (a+ b)/2

end while

Then λ is the aproximation of eigenvalue with error ≤ τ

For example, let us considerr(x) = 2 + sin(2πx). In this case we obtain thatr =
∫

I
2 +

sin(2πx)dx = 2, and the eigenvalues of the limit problem are given byλ
1/p
k =

kπp

21/p . Whenε
tends to zero the value ofλε tends to the limit valueλ displaying oscillations.

When p = 2 the first limit eigenvalue is
√
λ1 = π/

√
2 ∼ 2.221441469. We see the oscillating

behavior when plot
√
λε1 as function ofε in Figure 7.1

Figure 7.1: The square root of the first eigenvalue as a function of ε.

A more complex behavior can be found in Figure 7.2, where we considered the weightr(x) =
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1
2+sin 2πx. We observe that the sequence tends to

λ1 = π
2/

∫

I

1
2+ sin 2πx

dx=
√

3π ∼ 17.09465627.

Figure 7.2: The square root of the first eigenvalue as a function of ε.

It is not clear why the convergence of the first eigenvalue display the oscillations and the mono-
tonicity observed (although the monotonicity is reversed for the weightr(x) = 2 − sin 2πx). We
believe that some Sturmian type comparison theorem with integral inequalities for the weights
(instead of point-wise inequalities as usual) is involved.However, we are not able to prove it, and
for higher eigenvalues it is not clear what happens.

Turning now to the eigenfunctions, with the weightr(x) = 2+ sin(2πx), the normalized eigen-
function associated to the first eigenvalue of the limit problem is given byu1(x) = π−1 sin(πx).
Applying the numerical algorithm we obtain that the graph ofan eigenfunction associated to the
first eigenvalueλε1 intertwine with the graph ofu1(x). Whenε decreases, the number of crosses in-
creases, and the amplitude of the difference between them decreases. In Figure 7.3 we can observe
this behavior and the difference betweenu1 anduε1 for different values ofε.

To our knowledge, it is not known any result about the number of the oscillations asε decreases,
nor it is known if those oscillations disappear forε sufficiently small.

The same behavior seems to hold for the higher eigenfunctions, see in Figure 7.4 the behavior
of the fourth eigenfunctionuε4 when the parameterε decrease.

Here, the convergence of the nodal domains and the fact that the restriction of an eigenfunction
to one of its nodal domainsN coincides with the first eigenfunction of the problem inN , together
with the continuous dependence of the eigenfunctions on theweight and the length of the domain,
suggest that the presence or not of oscillations for the higher eigenfunctions must be the same as
for the first one. However, the computations show very complex patterns in the oscillations.
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Figure 7.3: The first eigenfunctions and the difference between them for different values ofε.

Figure 7.4: The fourth eigenfunctions and the difference between them. for different values ofε.
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Homogenization of the Fŭcik spectrum

8.1 The Fŭcik spectrum

Given a bounded domainΩ in RN, N ≥ 1 we study the asymptotic behavior asε → 0 of the
spectrum of the following asymmetric elliptic problem

−∆puε = αεmε(u
+
ε )p−1 − βεnε(u−ε )p−1 in Ω (8.1.1)

either with homogeneous Dirichlet or Neumann boundary conditions.

Here,∆pu = div(|∇u|p−2∇u) is the p−Laplacian with 1< p < ∞ andu± := max{±u, 0}. The
parametersαε andβε are reals and depending onε > 0. We assume that the family of weight
functionsmε andnε are positive and uniformly bounded away from zero.

For a moment let us focus problem (8.1.1) for fixedε > 0 with positive weightsm(x), n(x):

−∆pu = αm(x)(u+)p−1 − βn(x)(u−)p−1 in Ω (8.1.2)

with Dirichlet or Neumann boundary conditions.

Consider the Fuc̆ik spectrum defined as the set

Σ(m, n) := {(α, β) ∈ R2 : (8.1.2) has a nontrivial solution}.

Let us observe that whenr = n = m andλ = α = β, equation (8.1.2) becomes

−∆pu = λr |u|p−2u in Ω (8.1.3)

with Dirichlet or Neumann boundary conditions, which is theeigenvalue problem for the
p−Laplacian. These has been widely studied. See for instance [CFG99, ET06, DGT10] and
Chapter§2 of this thesis for more information.

It follows immediately thatΣ contain the linesλ1(m) × R andR × λ1(n). For this reason, we
denote byΣ∗ = Σ∗(m, n) the setΣ without these trivial lines. Observe that if (α, β) ∈ Σ∗ with α ≥ 0
andβ ≥ 0 thenλ1(m) < α andλ1(n) < β.
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The study of problem (8.1.2) with Dirichlet boundary conditions have a long history that we
briefly describe below. The one-dimensional case with positive constant coefficients (i.e.,m, n ∈
R
+ and p = 2) was studied in the 1970s by Fuc̆ik [Fu76] and Dancer [Da77]in connection with

jumping nonlinearities. Properties and descriptions of the first non-trivial curve on the spectrum of
(8.1.2) onRN for the general case (p , 2) without weights can be found in Cuesta, de Figueiredo
and Gossez [CFG99], Dancer and Perera [DP01], Drábek and Robinson [DRo02], Perera [Pe04].

The case with positive weightsm(x) andn(x) was recently studied, see for instance Rynne and
Walter [RW00], Arias and Campos [AC96], Drabek [Dr92], Reichel and Walter [LW99]. For
indefinite weightsm(x) andn(x) see Alif and Gossez[AG01], Leadi and Marcos [LM07].

The main problem one address is to obtain a description as accurate as possible of the setΣ∗. In
the one–dimensional case,p = 2, without weights this description is obtained in a precisemanner:
the spectrum is made of a sequence of hyperbolic like curves inR+ ×R+, see for instance [FH80].
Whenm(x) andn(x) are non-constants weights, in [AG01] it is proved a characterization of the
spectrum in terms of the so-called zeroes-functions.

8.1.1 Dirichlet boundary conditions

GivenΩ ⊂ RN with N > 1 let us consider (8.1.2) with Dirichlet boundary conditions, i.e.

−∆pu = αm(x)(u+)p−1 − βn(x)(u−)p−1 in Ω

u = 0 on∂Ω.
(8.1.4)

Here, only a full description of the first nontrivial curve ofΣ is known, which we will denote by
C1 = C1(m, n). Assuming thatm, n ∈ Lr(Ω) with

r > N
p if p ≤ N and r = 1 if p > N, (8.1.5)

in [ACCG02] (see Theorem 33) is proved thatC1 can be characterized by

C1 = {(α(s), β(s)), s ∈ R+} (8.1.6)

whereα(s) andβ(s) are continuous functions defined by

α(s) = c(m, sn), β(s) = sα(s) (8.1.7)

andc(·, ·) is given by

c(m, n) = inf
γ∈Γ

max
u∈γ(I)

A(u)
B(u)

. (8.1.8)

whereI := [−1,+1]. Here, the functionalsA andB are given by

A(u) =
∫

Ω

|∇u|pdx, Bm,n =

∫

Ω

m(x)(u+)p + n(x)(u−)pdx, (8.1.9)

with
Γ = {γ ∈ C([−1,+1],W1,p

0 (Ω)) : γ(−1) ≥ 0 andγ(1) ≤ 0}.

The functionsα(s) andβ(s) defined in (8.1.7) satisfy some important properties.
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Proposition 8.1. The functionsα(s) andβ(s) are continuous. Moreover,α(s) is strictly decreasing
andβ(s) is strictly increasing. One also has thatα(s)→ +∞ if s→ 0 andβ(s)→ +∞ is s→ +∞.

Proof. See [ACCG02], Proposition 34. �

If we denoteα∞ := lims→∞ α(s) andβ∞ := lims→0 β(s), we have the following characterization.

Proposition 8.2. The asymptotic valuesα∞ andβ∞ are equal toᾱ and β̄ respectively, where

ᾱ := inf

{∫

Ω

|∇u+|p : u ∈W1,p
0 (Ω),

∫

Ω

m(u+)p = 1 and
∫

Ω

n(u−)p > 0

}
,

β̄ := inf

{∫

Ω

|∇u−|p : u ∈W1,p
0 (Ω),

∫

Ω

n(u−)p = 1 and
∫

Ω

m(u+)p > 0

}
.

Moreover if p≤ N, thenᾱ = λ1(m) and β̄ = λ1(n).

Proof. See [ACCG02], Proposition 35. �

8.1.2 Neumann boundary conditions

Let Ω be a bounded domain inRN, N ≥ 1 with Lipschitz boundary and letm, n be two weights
satisfying (8.1.5) and bounded uniformly away from zero. Wealso assume thatm/≡ 0 andn /≡ 0 in
Ω. We consider (8.1.2) with Neumann boundary conditions


−∆pu = αm(x)(u+)p−1 − βn(x)(u−)p−1 in Ω
∂u
∂η
= 0 on∂Ω.

(8.1.10)

where∂u/∂η = ∇u · η denotes the unit exterior normal.

The Fuc̆ik spectrumΣ = Σ(m, n) clearly contains the lines{0} ×R andR× {0} and we denote by
Σ∗ = Σ∗(m, n) the setΣ(m, n) without these two lines.

In this case, whenN > 1 only a full description of the first nontrivial curve ofΣ is known, which
we will denote byC1 = C1(m, n). Moreover, in [ACCG08] (see Theorem 6.1) a characterization
similar to the Dirichlet case is given:

C1 = {(α(s), β(s)), s ∈ R+} (8.1.11)

whereα(s) andβ(s) are continuous functions defined byα(s) = c(m, sn), β(s) = sα(s) andc(·, ·) is
given by

c(m, n) = inf
γ∈Γ

max
u∈γ(J)

A(u)
B(u)

(8.1.12)

whereJ := [0, 1], the functionalsA andB are given by (8.1.9) and

Γ = {γ ∈ C(J,W1,p(Ω)) : γ(0) ≥ 0 andγ(1) ≤ 0}.
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In this case, for a weight functionr(x) satisfying (8.1.5) and uniformly bounded away from zero
and infinity, clearly 0 is a principal eigenvalue of


−∆pu = λr(x)|u|p−2u in Ω
∂u
∂ν
= 0 on∂Ω

(8.1.13)

with the constants as eigenfunctions. Moreover, the condition r > 0 guaranties that 0 is the unique
nonnegative principal eigenvalue, see [GGP02].

Remark8.3. In the Neumann case Proposition 8.1 still being valid.

8.2 Homogenization of the spectrum

Up to our knowledge, no investigation was made in the homogenization and rates of convergence
of the Fuc̆ik Spectrum. We are interested in studying the behavior asε → 0 of problem (8.1.1)
whenmε(x) andnε(x) are general functions depending onε, and in the special case of rapidly os-
cillating periodic functions, i.e.,mε(x) = m(x/ε) andnε(x) = n(x/ε) for two Q−periodic functions
m, n uniformly bounded away from zero (see assumptions (8.2.1)), Q being the unit cube ofRN.

Let Ω ⊂ RN be a bounded domain andε a real positive number. We consider functionsmε, nε
such that for constantsm− ≤ m+, n− ≤ n+

0 < m− ≤ mε(x) ≤ m+ ≤ +∞ and 0< n− ≤ nε(x) ≤ n+ ≤ +∞. (8.2.1)

Also, we assume that there exist functionsm(x) andn(x) satisfying (8.2.1) such that, asε→ 0,

mε(x) ⇀ m(x) weakly* in L∞(Ω)
nε(x) ⇀ n(x) weakly* in L∞(Ω).

(8.2.2)

First we address the problem with Dirichlet boundary conditions.

Whenε→ 0 the natural limit problem for (8.1.1) is the following

−∆pu0 = α0m(x)(u+0 )p−1 − β0n(x)(u−0 )p−1 in Ω

u0 = 0 on∂Ω
(8.2.3)

wherem andn are given in (8.2.2).

Our main aim is to study the limit asε → 0 of the first nontrivial curve in the spectrum
Σε := Σ(mε, nε), sayCε1 = {(αε(s), βε(s)), s ∈ R+}. We wonder: there exists a limit curve
C1 = {(α0(s), β0(s)), s ∈ R+} such that

Cε1→ C1, asε→ 0 ?

Can this limit curve be characterized like a curve of a limit problem? We will see that the answer
is positive.
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Therefore, a natural question arises: can the rate of convergence ofCε1 be estimated? I.e., can
we give an estimate of the remainders

|αε(s) − α0(s)| and |βε(s) − β0(s)|?

We give positive answers to these questions in the periodic setting . In fact, in Theorems 8.7 and
8.11 we obtain bounds:

|αε(s) − α0(s)| ≤ C(1+ s)τ(s)ε, |βε(s) − β0(s)| ≤ Cs(1+ s)τ(s)ε, s ∈ R+

whereC is a constant independent ofsandε, andτ is a explicit function depending only ofs (see
(8.2.6)).

Particularly, for the limit values of the coordinates, we get

|α∞ε − α∞0 | ≤ Cε, |β0
ε − β0

0| ≤ Cε

whereα∞ε = lim
s→∞

αε(s), α∞0 = lim
s→∞

α0(s), β0
ε = lim

s→∞
βε(s), β0

0 = lim
s→∞

β0(s). The constantC is

independent ofsandε.

The main result is the following:

Theorem 8.4. Let mε, nε satisfying(8.2.1),(8.2.2)and (8.1.5). Then the first non-trivial curve of
problem(8.1.1)

Cε := C1(mε, nε) = {αε(s), βε(s), s∈ R+}

converges to the first non-trivial curve of the limit problem(8.2.3)

C := C1(m0, n0) = {α0(s), β0(s), s ∈ R+}

asε→ 0 in the sense thatαε(s)→ α0(s) andβε(s)→ β0(s) ∀s ∈ R+.

Remark8.5. Let us consider the weightedp−Laplacian problem


−∆pu = λrε(x)|u|p−2u in Ω

u = 0 on∂Ω
(8.2.4)

whererε is a function such thatrε(x) ⇀ r(x) weakly* in L∞(Ω) asε tends to zero. It is well-known
that the first eigenvalue of (8.2.4) converges to the first eigenvalue of thep−Laplacian equation
with weight r(x), see for instance [BCR06]. The fact that the trivial lines of Σ are defined by
λ1(mε) × R andR × λ1(nε) it allows us to affirm the convergence of the trivial lines to those of the
limit problem.

Remark8.6. Using the variational characterization of the second variational eigenvalue given in
Theorem 2.8, Theorem 8.4 implies the convergence of the second variational eigenvalue of (8.2.4)
to those of the limit problem which recover Theorem 6.6 as a particular case.



8.2 Homogenization of the spectrum 121

In the important case of periodic homogenization, i.e., when mε(x) = m(x/ε) andnε(x) = n(x/ε)
wherem andn areQ−periodic functions,Q being the unit cube inRN, problem (8.2.3) becomes


−∆pu0 = α0m0(u+0 )p−1 − β0n0(u−0 )p−1 in Ω

u0 = 0 on∂Ω
(8.2.5)

where the real numbersm0, n0 are the averages ofm andn over Q. In this case besides the con-
vergence of the first nontrivial curve of the spectrum given in Theorem 8.4, we obtain the rate of
convergence:

Theorem 8.7. Under the same considerations of Theorem 8.4, if the weightsmε and nε are given
in terms of Q−periodic functions m, n in the form mε(x) = m( x

ε
) and nε(x) = n( x

ε
), for each s∈ R+

we have the following estimates

|αε(s) − α0(s)| ≤ c(1+ s)τ(s)ε, |βε(s) − β0(s)| ≤ cs(1+ s)τ(s)ε

where c= c(Ω, p,m, n) is a constant independent ofε and s andτ is defined by

τ(s) =


1 s≥ 1

s−2 s< 1.
(8.2.6)

Particularly, with the same arguments uses in the proof of Theorem 6.6 we are able to compute
the rate convergence of the trivial lines ofΣε:

Theorem 8.8. The trivial curves converges. Moreover, if the point pε = (αε, βε) ∈ R2 belongs to
a trivial curve of (8.1.1)then

|pε − p0| ≤ cε

where p0 = (α0, β0) ∈ R2 is the limit point belonging to the trivial curve of(8.2.5)and c= c(p,Ω)
in a constant independent ofε.

Remark8.9. Whens>> 1 is a real fixed number, Theorem 8.7 reads

|αε(s) − α0(s)| ∼ csε, |βε(s) − β0(s)| ∼ cs2ε

and whens<< 1 is fixed,

|αε(s) − α0(s)| ∼ cε/s2, |βε(s) − β0(s)| ∼ cε/s.

According to Proposition 8.1 and Proposition 8.2, whenp ≤ N the limits of αε(s), α0(s) as
s→ ∞ andβε(s), β0(s) ass→ 0 can be characterized in terms of the first eigenvalues of weighted
p−Laplacian problems. Following the same argument for the estimate of the difference of eigen-
values used in the proof of Theorem 8.7, we are able to computethe rate of convergence in the
limit cases, namely:

lim
s→∞
|αε(s) − α0(s)| = |λ1(mε) − λ1(m0)| ≤ cε

lim
s→0
|βε(s) − β0(s)| = |λ1(nε) − λ1(n0)| ≤ cε

wherec is a constant independent ofε.
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Now we focus our attention on the Neumann boundary conditions case.

As we made with the Dirichlet problem (8.1.1), we want to study the behavior of the first non-
trivial curve in the spectrum of (8.1.1) with Neumann boundary conditions asε → 0. Whenε
tends to zero the natural limit problem is the following


−∆pu0 = α0m(x)(u+0 )p−1 − β0n(x)(u−0 )p−1 in Ω
∂u0
∂ν
= 0 on∂Ω.

(8.2.7)

Analogously to Theorem 8.4, we obtain the following result of convergence:

Theorem 8.10. Let mε, nε satisfying(8.2.1)and (8.2.2)such that m/≡ 0 and n/≡ 0. Then the first
non-trivial curve of problem(8.1.1)

Cε1 := C1(mε, nε) = {αε(s), βε(s), s ∈ R+}

converges to the first non-trivial curve of the limit problem(8.2.7)

C1 := C1(m0, n0) = {α0(s), β0(s), s∈ R+}

asε→ 0 in the sense thatαε(s)→ α0(s), βε(s)→ β0(s) ∀s∈ R+.

When the case of periodic homogenization is considered, like in the Dirichlet case, in addition
to the convergence of the first non-trivial curve in the spectrum enunciated in Theorem 8.10, we
obtain the order of convergence:

Theorem 8.11. Under the same considerations of Theorem 8.10, if the weights mε and nε are
given in terms of Q−periodic functions m, n in the form mε(x) = m( x

ε
) and nε(x) = n( x

ε
), for each

s∈ R+ we have the following estimates

|αε(s) − α0(s)| ≤ c(1+ s)τ(s)ε, |βε(s) − β0(s)| ≤ cs(1+ s)τ(s)ε

where c= c(Ω, p,m, n) is a constant independent ofε and s, andτ is given by(8.2.6).

To prove Theorem 8.11 the arguments of the proof of Theorem 8.7 fail. This is due to the fact
that now the functions space isW1,p(Ω) but Theorem 5.4 holds only for functions inW1,p

0 (Ω).
Then, we use Theorem 5.6 which allow us to consider functionsin W1,p(Ω). Observe that the fact
of enlarge the set of test functions is reflected in the need for more regularity of the domainΩ.

8.3 Proof of the Dirichlet results

We begin with the proof of the Theorem 8.8 which is analogous to the proof of Theorem 6.7.
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Proof of Theorem 8.8:The trivial lines of the spectrumΣε are given by

Cε0,1 = {(λ1(mε), t), t ∈ R} and Cε0,2 = {(t, λ1(nε), t ∈ R}.

The first limit eigenvalueλ1(m0) can be characterized variationally as

λ1(m0) = inf
u∈W1,p

0 (Ω)

∫
Ω
|∇u|p

∫
Ω

m0|u|p
=

∫
Ω
|∇u1|p∫

Ω
m0|u1|p

+ o(1) (8.3.1)

for someu1 ∈W1,p
0 (Ω). We can bound

λ1(mε) = inf
u∈W1,p

0 (Ω)

∫
Ω
|∇u|p

∫
Ω

mε|u|p
≤

∫
Ω
|∇u1|p∫

Ω
m0|u1|p

∫
Ω

m0|u1|p∫
Ω

mε|u1|p
. (8.3.2)

By using Theorem 5.4 it follows that
∫
Ω

m0|u1|p∫
Ω

mε|u1|p
≤ 1+ cε

‖∇u1‖pLp(Ω)∫
Ω

mε|u1|p
. (8.3.3)

Now, by (8.2.1) and (8.3.1) we have

‖∇u1‖pLp(Ω)∫
Ω

mε|u1|p
≤ c(λ1(m0) + o(1)). (8.3.4)

By replacing (8.3.4) and (8.3.1), in (8.3.2) we get

λ1(mε) − λ1(m0) ≤ cε. (8.3.5)

In a similar way, interchanging the roles ofλ1(mε) andλ1(m0) we obtain

λ1(m0) − λ1(mε) ≤ cε. (8.3.6)

From equations (8.3.5) and (8.3.6) it follows that

|pε − p0| ≤ cε

for pε ∈ Cε0,1, p0 ∈ C0,1 with c = c(p,Ω) a constant independent ofε. Analogously is obtained a
bound for the points ofCε0,2. This implies the convergence of the trivial lines of the spectrum. �

In the next Lemma we obtain upper bounds for the coordinates of the first curve ofΣ∗(m, n).

Lemma 8.12. Let m, n satisfying(8.2.1)and let(α(s), β(s)) ∈ C1(m, n). Then for each s∈ R+,

α(s) ≤ min{m−1
− , n

−1
− }µ2τ(s), β(s) ≤ min{m−1

− , n
−1
− }µ2sτ(s)

with τ defined by

τ(s) =


1 s≥ 1

s−1 s≤ 1.
(8.3.7)

where m−, n− are given by(8.2.1)andµ2 is the second eigenvalue of the p−Laplacian equation
without weights onΩ with Dirichlet boundary conditions.
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Proof. Let s∈ R+. When the parameters≥ 1 we can bound

λ1(m) ≤ α(s) ≤ α(1) = c(m, n).

Let λ2(m) be the second eigenvalue of the problem (8.1.3) with weightm(x). It satisfies that
α(1) ≤ min{λ2(m), λ2(n)}. By using the assumptions (8.2.1) overm(x), we can boundλ2(m)
by µ2m−1

− , whereµ2 is the second eigenvalue of thep−Laplacian equation without weights with
Dirichlet boundary conditions onΩ. Analogously forλ2(n). We get

α(s) ≤ α(1) ≤ min{m−1
− , n

−1
− }µ2, s≥ 1 (8.3.8)

Whens≤ 1 the following bound holds for the second coordinate ofCε

Figure 8.1: The first curve of the spectrum.

λ1(n) ≤ β(s) ≤ β(1). (8.3.9)

By multiplying (8.3.9) bys−1 and by using thatβ(s) = sα(s) we have

s−1λ1(n) ≤ α(s) ≤ s−1β(1).

Beingα(1) = β(1), it follows that

α(s) ≤ s−1α(1) ≤ s−1 min{m−1
− , n

−1
− }µ2, s≤ 1. (8.3.10)

By using (8.3.8), (8.3.10) and the relationβ(s) = sα(s) the conclusions of the lemma follows.

�

The following Proposition gives the monotonicity ofc(·, ·):
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Proposition 8.13. If m ≤ m̃ and n≤ ñ a.e., then

c(m̃, ñ) ≤ c(m, n),

where c(·, ·) is defined by(8.1.8).

Proof. See [ACCG02], Proposition 23. �

In the next Lemma we obtain lower bounds for the coordinates of the first curve ofΣ∗(m, n).

Lemma 8.14. Let m, n satisfying(8.2.1)and let(α(s), β(s)) ∈ C(m, n). Then for each s∈ R+,

α(s) ≥ 1
sCω(s), β(s) ≥ Cω(s)

withω defined by

ω(s) =


1 s≥ 1

s s≤ 1
(8.3.11)

where C is a positive constant depending only of the bounds given in(8.2.1).

Proof. Let s∈ R+. When the parameters≥ 1 we can bound bellow

β(s) ≥ β(1) = c(m, n), s≥ 1.

Using the relationβ(s) = sα(s) we obtain

α(s) ≥ s−1c(m, n), s≥ 1.

Similarly, whens≤ 1 we have

α(s) ≥ α(1) = c(m, n), s≤ 1,

and again, by the relation betweenα(s) andβ(s) we get

β(s) ≥ sc(m, n), s≤ 1.

Using the bounds (8.2.1) ofm,n and Proposition 8.13 we can bound bellow

c(m, n) ≥ c(m+, n+).

and the result follows. �

Now we are able to prove Theorem 8.7.
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Proof of Theorem 8.7:For each fixed value ofε > 0, by (8.2.1) together with the monotonicity
of c(·, ·) provided by Proposition 8.13 we can assert that there existtwo curvesC+1(m+, n+) and
C−1(m−, n−) such that delimit above and below to the curveCε1(mε, nε). It follows that for each
fixed value ofs, αε(s) andβε(s) are bounded.

Let (αε, βε) be a point belonging to the curveCε1(mε, nε) and let (α0, β0) be the point obtained
whenε→ 0. Let us see that it belongs toC1(m0, n0).

Fixed a value ofε > 0 and by using (8.1.8) the inverse ofc(mε, nε) can be written as

1
c(mε, nε)

= sup
γ∈Γ

inf
u∈γ[−1,+1]

Bmε,nε(u) (8.3.12)

where
Γ = {γ ∈ C(I ,H) : γ(−1) ≥ 0 andγ(1) ≤ 0}

for I := [−1,+1] and
H = {u ∈W1,p

0 (Ω) : A(u) = 1}

A andB being the functionals defined in (8.1.9).

By (8.1.7) and (8.3.12) we have the following characterization for the inverse ofαε(s)

1
αε(s)

=
1

c(mε, snε)
= sup

γ∈Γ
inf

u∈γ(I)
Bmε,snε(u). (8.3.13)

Similarly, we can consider an equation analog to (8.3.13) for the representation of the inverse of
α0(s). Let δ > 0 andγ1(δ) ∈ Γ such that

1
α0(s)

= inf
u∈γ1(I)

Bm0,sn0(u) +O(δ). (8.3.14)

In order to find a bound foraε we useγ1 ∈ Γ1, which is admissible in its variational characteriza-
tion,

1
αε(s)

≥ inf
u∈γ1(I)

Bmε,snε(u). (8.3.15)

As u ∈ W1,p
0 (Ω) it follows that (u+)p and (u−)p belong toW1,1

0 (Ω). This allows us to estimate the
error by replacing the oscillating weights by their averages by using Theorem 5.4. For each fixed
functionu ∈ γ1(I ) we bound

Bmε,snε(u) ≥ Bm0,sn0(u) − cε‖∇u+‖pLp(Ω) − cεs‖∇u−‖pLp(Ω) (8.3.16)

wherec the constant given in Theorem 5.4. Asu ∈ H we have

‖∇u+‖pLp(Ω) ≤ 1, ‖∇u−‖pLp(Ω) ≤ 1. (8.3.17)

So, from (8.3.17) and (8.3.16) we get

Bmε,snε(u) ≥ Bm0,sn0(u) − cε(1+ s). (8.3.18)
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Taking the infimum over the functionsu in γ1(I ) together with (8.3.14) and (8.3.15) we obtain

α−1
ε (s) − α−1

0 (s) ≥ −cε(1+ s) +O(δ).

Letting δ→ 0 we get

α−1
ε (s) − α−1

0 (s) ≥ −cε(1+ s). (8.3.19)

In a similar way, interchanging the roles ofαε andα0 we obtain the inequality

α−1
ε (s) − α−1

0 (s) ≤ cε(1+ s). (8.3.20)

From equations (8.3.19) and (8.3.20) it follows that

|αε(s) − α0(s)| ≤ cε(1+ s)αε(s)α0(s). (8.3.21)

By using Lemma 8.12 we can bound the expression (8.3.21) as

|αε(s) − α0(s)| ≤ c(min{m−1
− , n

−1
− }µ2)2(1+ s)τ(s)2ε,

whereτ(s) is given by (8.3.7).

From the convergence ofαε it follows the convergence ofβε and of the whole curve. �

The proof of Theorem 8.4 is similar to that of Theorem 8.7 but now we need a result analogous
to Theorem 5.4 that works without assuming periodicity. This is the content of the next theorem.

Theorem 8.15. LetΩ ⊂ Rn be a bounded domain with Lipschitz boundary. Let gε be a function
such that0 < g− ≤ gε ≤ g+ < +∞ for g± constants and gε ⇀ g weakly* in L∞(Ω). Then for every
u ∈W1,p(Ω),

lim
ε→0

∫

Ω

(gε − g)|u|p = 0

where1 < p < +∞.

Proof. The weak* convergence ofgε in L∞(Ω) says that
∫
Ω

gεϕ →
∫
Ω

gϕ for all ϕ ∈ L1(Ω).
Particularly,u ∈ W1,p(Ω) implies that|u|p ∈ W1,1(Ω), it follows that |u|p ∈ L1(Ω) and the result is
proved. �

Proof of Theorem 8.4:The argument follows exactly as in the proof of Theorem 8.7 using the
Theorem 8.15 instead of the Theorem 5.4. �

8.4 Proof of the Neumann results

Let us start with a simple remark.
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Remark8.16. Let us observe thatu ∈ W1,p(Ω) is solution of equation (8.1.10) if and only ifu is
solution of equation

− ∆pu+m(u+)p−1 + n(u−)p−1 = α̃m(u+)p−1 − β̃n(u−)p−1 in Ω. (8.4.1)

with Neumann boundary conditions, where ˜α = α−1 andβ̃ = β+1. The main advantage between
consider equations (8.1.10) and (8.4.1) is the fact that in the second one the functionalA(u) defined
in (8.1.9) becomes in

Am,n(u) =
∫

Ω

|∇u|p +m(u+)p + n(u−)pdx, (8.4.2)

which involves both∇u and the functionu.

Having in mind the remark (8.16), the proof of Theorem 8.11 issimilar to that of Theorem 8.7
for the Dirichlet case.

Proof of Theorem 8.11:The proof is similar to that of Theorem 8.7 for the Dirichlet case. Accord-
ing to Remark 8.16 we consider equation (8.4.1). Let ( ˜αε, β̃ε) be a point belonging to the curve
Cε1(mε, nε) and let (α̃0, β̃0) be the point obtained whenε → 0. It follows that (α̃0, β̃0) belongs to
the spectrum of the limit equation. Let us see that it belongsto C(m0, n0). The main difference is
that in the characterization (8.1.12) ofc(mε, nε), now we are considering

Γ = {γ ∈ C(J,W1,p(Ω)) : γ(0) ≥ 0 andγ(1) ≤ 0}.

with J := [0, 1]. Fixed a value ofε > 0 we write

c(mε, nε) = inf
γ∈Γ

sup
u∈γ

Amε,nε(u)

Bmε,nε(u)
. (8.4.3)

By (8.1.7) and (8.4.3) we have the following characterization of α̃ε(s)

α̃ε(s) = c(mε, snε) = inf
γ∈Γ

sup
u∈γ

Amε,nε(u)

Bmε,snε(u)
. (8.4.4)

Similarly, we can consider an equation analog to (8.4.4) forthe representation of ˜α0(s). Let δ > 0
andγ1 = γ1(δ) ∈ Γ such that

α̃0(s) = sup
u∈γ1

Am0,n0(u)

Bm0,sn0(u)
+O(δ). (8.4.5)

In order to find a bound for ˜aε we useγ1 ∈ Γ, which is admissible in its variational characterization,

α̃ε(s) ≤ sup
u∈γ1

Amε,snε(u)

Bm0,sn0(u)

Bm0,sn0(u)

Bmε,snε(u)
. (8.4.6)

To boundα̃ε we look for bounds of the two quotients in (8.4.6). Sinceu ∈ W1,p(Ω), by Theorem
5.6 we obtain that

Amε,nε(u)

Bm0,sn0(u)
≤ Am0,n0(u)

Bm0,sn0(u)
+

cε‖|u+ |p‖W1,1(Ω) + cε‖|u− |p‖W1,1(Ω)

Bm0,sn0(u)
.
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For every functionu ∈ γ1 we have that

Am0,n0(u)

Bm0,sn0(u)
≤ sup

u∈γ1

Am0,n0(u)

Bm0,sn0(u)
= α̃0(s) +O(δ). (8.4.7)

By using Young inequality

‖|v|p‖W1,1(Ω) = ‖|v|p‖L1(Ω) + p‖|v|p−1∇v‖L1(Ω)

= ‖v‖pLp(Ω) + p‖|v|p−1∇v‖L1(Ω)

≤ p‖v‖pLp(Ω) + ‖∇v‖pLp(Ω).

(8.4.8)

From (8.4.8) it follows that

‖|u+|p‖W1,1(Ω)

Bm0,sn0(u)
≤

p‖u+‖pLp(Ω) + ‖∇u+‖pLp(Ω)

Bm0,sn0(u)

≤ c
Am0,n0(u)

Bm0,sn0(u)

≤ csup
u∈γ1

Am0,n0(u)

Bm0,sn0(u)

= c(α̃0(s) +O(δ)),

(8.4.9)

and similarly
‖|u− |p‖W1,1(Ω)

Bm0,sn0(u)
≤ c(α̃0(s) +O(δ)). (8.4.10)

To bound the second quotient in (8.4.6), let us observe that
∫
Ω

m0|u+|p

Bmε,snε(u)
≤

∫
Ω

mε|u+|p

Bmε,snε(u)
+ cε
‖|u+ |p‖W1,1(Ω)

Bmε,snε(u)

≤
∫
Ω

mε|u+|p

Bmε,snε(u)
+ cε
‖|u+ |p‖W1,1(Ω)

Bm0,sn0(u)
,

(8.4.11)

and similarly
∫
Ω

sn0|u−|p

Bmε,snε(u)
≤

∫
Ω

snε|u+|p

Bmε,snε(u)
+ scε

‖|u−|p‖W1,1(Ω)

Bm0,sn0(u)
. (8.4.12)

Now, from equations (8.4.11),(8.4.12) together with (8.4.9) and (8.4.10) we get

Bm0,sn0(u)

Bmε,snε(u)
=

∫
Ω

m0|u+|p +
∫
Ω

sn0|u−|p

Bmε,snε(u)

≤ 1+ (1+ s)cε(α̃0(s) +O(δ)).

(8.4.13)

Then combining (8.4.6),(8.4.9),(8.4.10) and ,(8.4.13) wefind that

α̃ε(s) ≤ ((α̃0(s) +O(δ)) + cε(α̃0(s) +O(δ))) (1+ (1+ s)cε(α̃0(s) +O(δ))) .
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Letting δ→ 0 we get
α̃ε(s) − α̃0(s) ≤ cε(α̃2

0(1+ s) + α̃0). (8.4.14)

In a similar way, interchanging the roles of ˜α0 andα̃ε, we obtain

α̃0(s) − α̃ε(s) ≤ cε(α̃2
ε(1+ s) + α̃ε). (8.4.15)

From (8.4.14) and (8.4.15) we arrive at

|α̃0(s) − α̃ε(s)| ≤ cε(1+ s) max{α̃0(s)2, α̃ε(s)
2}.

Now, using Lemma 8.12,

|αε(s) − α0(s)| ≤ c(1+ s)τ(s)2ε,

wherec is a constant independent ofε ands, andτ(s) is given by (8.3.7). Here, Lemma 8.12 holds
in the Neumann case, but now we have

α(s) ≤ min{m−1
− , n

−1
− }µ2τ(s), β(s) ≤ min{m−1

− , n
−1
− }µ2sτ(s)

with µ2 the second eigenvalue of thep−Laplacian equation onΩ with Neumann boundary condi-
tions. From the convergence ofαε it follows the convergence ofβε and of the whole curve. �

Proof of Theorem 8.10:The proof is analogous to the proof of Theorem 8.4. �
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[Le06] A. Lê. Eigenvalue problems for the p-Laplacian. Nonlinear Anal., vol. 64 (2006),
no. 5, pp. 1057–1099. URLhttp://dx.doi.org/10.1016/j.na.2005.05.056.

[LM07] L. Leadi and A. Marcos.On the first curve in the Fučik spectrum with weights for a
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21–43 (Birkhäuser Boston, Boston, MA, 1997).

http://dx.doi.org/10.2307/2001638
http://dx.doi.org/10.1016/j.na.2005.05.056
http://dx.doi.org/10.1080/00036819908840737
http://dx.doi.org/10.2307/2048375


138 BIBLIOGRAPHY

[Ng89] G. Nguetseng.A general convergence result for a functional related to thetheory
of homogenization. SIAM J. Math. Anal., vol. 20 (1989), no. 3, pp. 608–623. URL
http://dx.doi.org/10.1137/0520043.

[OSY92] O. A. Oleı̆nik, A. S. Shamaev and G. A. Yosifian.Mathematical problems in elasticity
and homogenization, Studies in Mathematics and its Applications, vol. 26 (North-
Holland Publishing Co., Amsterdam, 1992).
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Poincaré constant, 75
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