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Sistemas diferenciales singulares de segundo orden.

Un enfoque topológico

Estudiamos el siguiente tipo de sistemas de segundo orden:

Lu+ g(u) = f(x) x ∈ Ω,

con g ∈ C(RN\S,RN) y S un conjunto acotado de singularidades; la
función f ∈ C(Ω,RN) tal que f := 1

|Ω|

∫

Ω
f(x) dx = 0 y u que satisfaga

alguna condición de borde.
Primero trabajamos con el problema Periódico: d = 1, Ω = (0, T ),

Lu = u′′ con condiciones de borde periódicas:

u(0) = u(T ), u′(0) = u′(T ).

En segundo lugar estudiamos el problema eĺıptico: Lu = ∆u, d > 1
con una condición de borde no local:

{

u ≡ C x ∈ ∂Ω
∫

∂Ω
∂u
∂ν
dS = 0,

dónde C es un vector desconocido constante. Esta condición de borde
puede verse como una generalización de la condición periódica cuando
d = 1 y Ω es un intervalo abierto.

En ambos casos usamos la teoŕıa de grado topológico para probar ex-
istencia de soluciones cuando g satisface una cierta condición geométrica
tanto cerca del conjunto S como en infinito.

Estudiamos por separado el caso en el que S = {0}, una singularidad
aislada. Aqúı buscamos soluciones de problemas no singulares aproxima-
dos. Finalmente buscamos algún tipo de convergencia de estas soluciones
a un candidato de solución para el problema original.

Palabras clave: problemas resonantes; teoŕıa de grado; sistemas eĺıpticos;
sistemas periódicos; singularidades repulsivas.
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Second Order Singular Differential Systems.

A Topological Approach

We study the following type of Second Order Systems:

Lu+ g(u) = f(x) x ∈ Ω,

with g ∈ C(RN\S,RN), and S a bounded set of singularities; the function
f ∈ C(Ω,RN) such that f := 1

|Ω|

∫

Ω
f(x) dx = 0 and u satisfying some

boundary condition.
We first work with the Periodic Problem: d = 1, Ω = (0, T ), Lu = u′′

with periodic boundary conditions:

u(0) = u(T ), u′(0) = u′(T ).

Secondly we study an Elliptic Problem: Lu = ∆u, d > 1 with a
nonlocal boundary condition:

{

u ≡ C x ∈ ∂Ω
∫

∂Ω
∂u
∂ν
dS = 0,

with C an unknown constant vector. This boundary conditions can be
seen as a generalization of a periodic condition when d = 1 and Ω is an
open interval.

In both cases we apply topological degree theory to prove existence
of solutions when g satisfies certain geometrical conditions both near the
set S and at infinity.

We study separately the case when S = {0}, an isolated singularity.
Here we look for solutions of the nonsingular problem and study approx-
imated problems. Finally, we look for some kind of convergence of the
solutions.

Keywords: resonant problems; degree theory; elliptic systems; periodic
systems; repulsive singularities.
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Introducción

El Análisis No lineal es un área en la Matemática que tiene un gran
número de aplicaciones. En este trabajo se estudian sistemas no lineales
de ecuaciones diferenciales de segundo orden. En particular, problemas
de contorno de la forma:

Lu = Nu en Ω,

en dónde Ω ⊂ R
d es un dominio acotado, L un operador diferencial lineal

y N un operador no lineal. Trabajamos solamente con operadores de
segundo orden y nuestros resultados principales son para el caso L = ∆, el
Lapalaciano. Trabajamos en su mayoŕıa con no linearidades de la forma
Nu = f − g(u). Dependiendo el contexto, fueron estudiadas diferentes
condiciones de borde.

Trabajaremos con g ∈ C(RN\S,RN), con S un conjunto acotado de
singularidades. El caso no singular (S = ∅) tiene, por supuesto, mucha
importancia y un caṕıtulo entero está dedicado a él (Caṕıtulo 3). Debido
al tipo de condiciones de contorno que serán explicadas más adelante,
asumiremos que el término forzante f ∈ C(Ω,RN) tiene promedio cero
en cada coordenada: f = 1

|Ω|

∫

Ω
f(x)dx = 0.

El objetivo principal de este trabajo fue, en primer lugar, generalizar
y extender resultados previos para el caso no singular, descripto en el
Caṕıtulo 3. Primero trabajamos con un sistema diferencial no lineal de
segundo orden:

u′′ + g(u) = p(t), t ∈ (0, T ),

con p ∈ C([0, T ],RN), y condiciones de borde periódicas:

{

u(0) = u(T )
u′(0) = u′(T )

.

El resultado seminal en este tema se debe a Nirenberg [29], quien
generalizó el trabajo pionero en el caso escalar, de Landesman y Lazer
[23], quienes llegaron a una condición que en pocas palabras ped́ıa a la
g tener ĺımites en el infinito g+ y g− de diferente signo. Nirenberg pidió

1



2 INTRODUCCIÓN

que la g tuviera ĺımites radiales en infinito uniformes diferentes de cero,
en todas las direcciones. Eso significa que para cada v ∈ SN−1, exista
gv = lims→+∞ g(sv) uniformemente y sea distinto de 0.

A partir de este punto hay diversas direcciones en las cuales se pueden
generalizar estos resultados. La reestricción en [29] que la g no pueda
anularse en infinito fue descartada por Ortega y Ward Jr en [32], en
dónde permitieron a la g tener las llamadas vanishing nonlinearities, es
decir, que tienda a cero en infinito.

Amster y De Nápoli, en [6], lidiaron con el problema de los ĺımites
radiales uniformes. A partir de resultados en el caso escalar en los que
se ped́ıan condiciones más débiles, los autores fueron motivados a in-
tentar debilitar dicha condición. Alcanzaron una condición geométrica
realmente interesante, bastante más débil que la condición de Nirenberg.
Se trata de cubrir a la esfera SN−1 con un número finito de abiertos Uj

y tomar direcciones wj ∈ SN−1 tales que el ĺımite uniforme exista, pero
en cada Uj :

lim sup
r→+∞

〈g(ru), wj〉 := Sj(u) < 0.

Esta tesis nace con la idea de juntar estas dos últimas generaliza-
ciones en el caso periódico, para obtener nuevos resultados de existen-
cia. La herramienta principal usada para este proposito son los métodos
topológicos, en particular trabajamos con métodos de punto fijo, grado
topológico y teoŕıa de continuación de Mawhin.

Nuestro resultado principal para este problema es el Teorema 3.2.1
en el cual alcanzamos este objetivo. También pudimos probar otro resul-
tado, con condiciones algo menos técnicas, realmente similares a aquellas
de Landesman y Lazer [23]. Nos referimos al Teorema 3.2.5.

Luego de tener éxito y lograr resultados de existencia, tuvimos la
grata visita en Buenos Aires del Profesor Rafael Ortega, de la Univer-
sidad de Granada. Nos sugirió considerar no linealidades con singu-
laridades, teniendo como motivación el problema de Kepler y el de un
potencial eléctrico, dado que ambos eran ejemplos de casos con vanishing
nonlinearities.

Esta nueva perspectiva nos llevó a nuevos horizontes y comenzamos
a estudiar problemas singulares, que en nuestro contexto es cuando el
conjunto singular S consiste de un único punto, y tomamos 0 como ese
punto, pero por supuesto podŕıa ser cualquier otro en R

N . Las principales
referencias con las que trabajamos fueron Coti Zelati [15], Solimini [34] y
Fonda y Toeder [18], en el cual encontramos las principales dificultades
y problemas abiertos en el área. Vale la pena mencionar un trabajo de
Zhang[40], en el cual son usados métodos topológicos. Decidimos trabajar

2



Introducción 3

con singularidades de tipo repulsivo, eso es, cuando 〈g(u), u〉 < 0 cerca
del origen.

Atacamos las singularidades perturbando el problema con aproxima-
ciones continuas de g. Para cada una de ellas hicimos uso de nuestros
resultados para el caso no singular, que fueron descriptos anteriormente,
y obtuvimos una sucesión de soluciones. Una tarea dificil fue la de hallar
cotas uniformes para estas sucesiones con el fin de asegurar existencia de
una función ĺımite, candidata a ser solución del problema original.

Logramos esto con el Teorema 4.2.4. Este resultado nos dió una
función ĺımite y un candidato a solución del problema original. Con
condiciones algo más fuertes, conseguimos probar en el Teorema 4.2.5
que este candidato era de hecho una solución generalizada (será explicada
más adelante, en el Caṕıtulo 4) del problema.

También a partir de este último teorema mencionado, obtuvimos un
resultado fuerte para el caso en el que g sea un gradiente (g = ∇G), con
limu→G(u) = +∞, que implica un tipo más fuerte de repulsividad. En
este caso probamos que el ĺımite de los problemas aproximados deb́ıa a
su vez ser una solución clásica del problema original.

Estas ideas fueron plasmadas en [7] y serán discutidas en profundidad
en el Caṕıtulo 4.

Nuestro próximo paso fue trabajar con el problema eĺıptico:

∆u+ g(u) = f(x), x ∈ Ω ⊂ R
d,

con g como antes y f ∈ C(Ω,RN), con las siguientes condiciones de
borde:

{

u ≡ C u ∈ ∂Ω
∫

∂Ω
∂u
∂ν
dS = 0,

en dónde C es un vector constante desconocido. Estas condiciones pueden
verse como una generalización de las condiciones periódicas pues, si d = 1
y Ω = (0, T ), la primera condición resulta u(0) = u(T ) y la segunda

indica que u′
∣

∣

T

0
= 0. Este tipo de condiciones fue estudiada por Berestycki

y Brézis en [11] y por Ortega en [30] y proviene de un problema de la
f́ısica del plasma, que fue estudiado exhaustivamente en un trabajo de
Temam [37].

Las técnicas que usamos para probar resultados para el caso no singu-
lar en el problema eĺıptico fueron similares a aquellas que usamos para el
problema periódico, obviamente teniendo en cuenta las dificultades que
surgen en el contexto de los problemas eĺıpticos. Aqúı es prudente men-
cionar que esto fue posible dada la naturaleza del operador diferencial,
sin importar el espacio en el que está definido. Tanto el operador u′′

3



4 INTRODUCCIÓN

con condiciones de borde periódico, como el operador ∆u con las condi-
ciones de borde no locales previamente mencionadas tienen núcleo de
una dimensión, las funciones constantes de R

N . Este hecho hace que la
extensión sea posible.

Sin embargo, cuando tratamos de extender los resultados obtenidos
en [7] para el caso singular tuvimos serias dificultades. La perdida de
compacidad hizo que no consigamos obtener el mismo tipo de resulta-
dos de convergencia de los problemas aproximados. No obstante, con
condiciones más fuertes, pudimos obtener resultados importantes. Estos
fueron probados en [8] y están disponibles el Caṕıtulo 5.

Este contratiempo nos llevó a estudiar tipos más generales de singu-
laridades. Comenzamos a considerar a S como un conjunto acotado ar-
bitrario. En [8] obtuvimos resultados de existencia usando una condición
geométrica introducida por Ruiz y Ward Jr en [33] y extendida por Am-
ster y Clapp en [5]. Está basada en aplicar la teoŕıa de continuación de
Mawhin [27] en conjuntos convenientes provenientes de cotas a-priori de
la solución del problema.

Primero, en el Teorema 3.3.1 probamos la versión no singular del
resultado, que fue una adaptación de los resultados recién comentados
para el sistema eĺıptico que estamos considerando, con condiciones no
locales.

El Teorema 5.2.2 fue nuestro principal resultado en este contexto,
debido a que trabajamos con un conjunto S general de singularidades y
obtuvimos soluciones clásicas en conjuntos convenientes.

Conseguimos probar resultados interesantes de existencia e incluso
encontramos una forma de detectar multiplicidad de soluciones, depen-
diendo del conjunto de singularidades. Desde ya, dado que el problema
depende esencialmente de los aspectos topológicos del operador, los re-
sultados que probamos también son válidos en el caso periódico.

Finalmente, también probamos un resultado similar al del caso perió-
dico en el caso que el conjunto S fuera un punto aislado y la singularidad
es de tipo repulsivo. Una noción distinta de solución generalizada tuvo
que ser definida debido a que la falta de compacidad de las inmersiones de
Sobolev no nos permitió obtener estimaciones uniformes fuertes para nue-
stros problemas aproximados. Probamos en el Teorema 5.3.4 que dadas
ciertas condiciones, la existencia de este tipo de soluciones generalizadas
puede ser asegurada.

Esta tesis está organizada de la siguiente manera:

En el próximo Caṕıtulo, se presenta la matemática necesaria para
entender por completo los resultados aqúı presentados. Está dividido en
una sección de preliminares anaĺıtcos y otra de preliminares topológicos.
En la primera se enuncian resultados de inmersión de espacios de Sobolev

4



Introducción 5

junto algunos otros resultados relevantes. En la segunda, se repasan los
teoremas de punto fijo y hay una introdcción autocontenida a la teoŕıa
de grado topológico hasta llegar a la teoŕıa de continuación de Mawhin.

El Caṕıtulo 2 es una breve historia de los dos principales problemas
tratados en este trabajo: Los problemas resonantes y los problemas sin-
gulares. Aqúı, las principales referencias son explicadas con más detalle
y se presentan las dificultades principales de los problemas.

En el Caṕıtulo 3 damos resultados para el problema cuando g es no
singular. Consisten en generalizaciones y extensiones de los previamente
enumerados resultados del Caṕıtulo 2. Los resultados provienen tanto de
[7] como de [8], ya que se trata el problema periódicos como el eĺıptico.
Este caṕıtulo será constantemente usado en los dos siguientes.

En el Caṕıtulo 4 el problema periódico es estudiado. La mayoŕıa del
mismo está dedicado al caso en el que se trata de una singularidad aislada
y repulsiva. El esquema de aproximación es explicado y los resultados
principales de [7] son probados.

Por último, el Caṕıtulo 5 trata el problema eĺıptico, tanto el caso de
la singularidad aislada y repulsiva como el caso del conjunto de singu-
laridades. Los resultados de este último caṕıtulo fueron publicados en
[8].

5
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Introduction

Nonlinear Analysis is an area of Mathematics that has a great number
of applications. The study of Second Order Nonlinear Differential Equa-
tions is the one treated in this work. In particular, our objects of study
will be Boundary Value Problems (BVP) of this type:

Lu = Nu in Ω,

where Ω ⊂ R
d will be a bounded domain, L a Linear Differential Operator

and N a nonlinear one. We will work only with Second Order Operators
and our main results will be for the case L = ∆, the Laplacian. We will
work mostly with nonlinearities of the form Nu = f − g(u). Different
boundary conditions are studied depending on the context.

We will work with g ∈ C(RN\S,RN), with S a bounded set of sin-
gularities. The nonsingular case (S = ∅) will of course have an im-
portant role and an entire chapter is dedicated to it (Chapter 3). Be-
cause of the type of boundary conditions that will be explained later,
the forcing term f ∈ C(Ω,RN) will have zero average in each coordinate:
f = 1

|Ω|

∫

Ω
f(x)dx = 0.

The main goal of this work was to, at first, generalize and extend
previous results in the nonsingular case, described in Chapter 3. We first
worked with a second order nonlinear ordinary differential system:

u′′ + g(u) = p(t), t ∈ (0, T ),

with p ∈ C([0, T ],RN) and Periodic Boundary Conditions:

{

u(0) = u(T )
u′(0) = u′(T )

.

The seminal result in this area is due to Nirenberg [29], who general-
ized the pioneer work in the area done by Landesman and Lazer [23], who
had worked on the scalar case, with the hypothesis that g had to have
limits at infinity g+ and g− with different sign. Nirenberg asked g to have
nonzero uniform radial limits at infinity in all directions. That means

7



8 INTRODUCTION

that for every v ∈ SN−1, the limit gv = lims→+∞ g(sv) exists uniformly
and it is not equal to zero.

From this point forth, there are several ways to generalize the results.
The restriction in [29] that g can not vanish at infinity was discarded
by Ortega and Ward Jr in [32], where they allowed g to have vanishing
nonlinearities at infinity.

Amster and De Nápoli, in [6], dealt with the uniform radial limit prob-
lem. Due to results with much weaker conditions for the scalar case, the
authors were motivated to try to weaken such condition. They reached
an interesting geometrical condition, much weaker than the classical con-
dition in [29]. It involves covering SN−1 with a finite number of open sets
Uj and taking directions wj ∈ SN−1 such that the uniform limit exists
for each u ∈ Uj :

lim sup
r→+∞

〈g(ru), wj〉 := Sj(u) < 0.

The genesis idea of this thesis was to mix these last two generaliza-
tions in the periodic problem, to obtain new existence results. Topo-
logical Methods are the main tools used for this purpose, in particular
we worked with Fixed point Methods, Topological Degree and Mawhin’s
Continuation Theory.

Our main result for this problem is Theorem 3.2.1 in which we achieved
this last goal. We were able to prove another result, with slightly less
technical conditions, and really similar to those of Landesman and Lazer
[23]. We are referring to Theorem 3.2.5.

After succeeding with this problem, we fortunately had the visit in
Buenos Aires of Professor Rafael Ortega. He suggested us to consider
nonlinearities with singularities, having as a motivation the Kepler prob-
lem and the electrical charges potential problem, as both were examples
of Vanishing Nonlinearities cases.

This took us to a quite different framework and we started to study
singular problems, that in our context is when the singular set consist of
an isolated point, S = {0}, and took 0 to be this point, but of course
it could be any point s ∈ R

N . The main references we worked with
were Coti Zelati [15], Solimini [34] and Fonda and Toeder [18], in which
we found the main difficulties and open problems in the area. It is also
worth mentioning a work of Zhang [40], in which topological methods
are used. We decided to work with repulsive type singularities, that is,
when 〈g(u), u〉 < 0 near the origin.

We attacked the singularities by perturbating the problem with con-
tinuous approximations of g. For each one of them we used the continuous
results we had studied in the beginning, and got a sequence of solutions.
A difficult task was to find uniform bounds to these sequences to ensure

8



Introduction 9

the existence of a limit function, candidate to be a solution of the original
problem.

We accomplished this with Theorem 4.2.4. This result gave us the ex-
istence of a limit function, and a candidate for a solution for the original
problem. With stronger conditions, we were able to prove in Theorem
4.2.5 that this candidate was in fact a generalized solution (this con-
cept will be explained in Chapter 4) of the problem. Also as a part of
this last theorem, we got a strong result for the periodic case: If the
nonlinearity g was a gradient (g = ∇G), with limu→G(u) = +∞, which
implies a stronger kind of repulsiveness, we proved that the limit function
was indeed a classical solution of the problem. These ideas, along with
the nonsingular results were done in [7] and are thoroughly discussed in
Chapter 4.

Our next step was to work with the Elliptic Problem:

∆u+ g(u) = f(x), x ∈ Ω ⊂ R
d,

with g as before and f ∈ C(Ω,RN) with the following Nonlocal Boundary
Conditions:

{

u ≡ C u ∈ ∂Ω
∫

∂Ω
∂u
∂ν
dS = 0,

where C is an unknown vector constant in R
N . This conditions can be

seen as a generalization of the periodic problem, because if d = 1 and
Ω = (0, T ), the first condition reads u(0) = u(T ) and the second one

u′
∣

∣

T

0
= 0. This type of condition was studied by Berestycki and Brézis

in [11] and by Ortega in [30] and comes from a Plasma Physics problem.
This problem is thoroughly studied in a work by Temam [37].

The techniques we used to prove results for the nonsingular case in
the Elliptic Problem were similar to those used for the periodic case,
obviously taking into account the difficulties that arise in the elliptic
framework. Here it is worth to mention that this was possible because
of the nature of the operator, regardless the space it is defined in. Both
the u′′ with periodic boundary conditions, and ∆u with the nonlocal
boundary conditions described before have a one dimensional Kernel,
the constant functions. This fact is the one that makes the extensions
possible.

Nevertheless, when trying to extend the results obtained in [7] for the
singular case, we had serious difficulties. The loss of compactness made it
impossible to obtain the same results of convergence of the approximate
solutions. Nevertheless, by strengthening some conditions we were able
to get some important results. These results were proved in [8] and are
available in Chapter 5

9
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This setback led us to study more general type of singularities. We
started to consider S as an arbitrary bounded set. In [8] we obtained
existence results of solutions using a geometrical condition introduced by
Ruiz and Ward Jr in [33] and extended by Amster and Clapp in [5]. It is
based in applying Mawhin’s Continuation Theory [27] in convenient sets
given by a priori bounds of the solutions.

First, in Theorem 3.3.1 we proved the nonsingular version, that was
an adaptation of the results just commented to the Elliptic System we
are considering, with the Nonlocal Boundary Conditions.

Theorem 5.2.2 was our main result in this context, because we worked
with a general set S of singularities and obtained classical solutions in
convenient sets.

We obtained interesting existence results and even found some way
of detecting multiple solutions, depending on the set of singularities. Of
course, because it is a problem that essentially depends on the topological
aspects of the spaces and operators, these results are valid for the periodic
case.

Finally, we also proved a result similar to that of the periodic case
when the set S is an isolated point and the singularity is of a repulsive
kind. A different notion of generalized solution had to be defined because
the lack of compactness of the Sobolev embeddings did not allow us to
have such strong estimates for the approximated problems. We proved
in Theorem 5.3.4 that given certain conditions, the existence of this type
of generalized solution can be ensured.

This thesis is organized as follows:

In the next Chapter, we give the mathematics needed to fully under-
stand the results here showed. It is divided in a topological section, in
which fixed point theorems, degree theory and continuation theory are
described; and an analytical section, where Sobolev spaces are revised
and the main classical results are enumerated.

Chapter 2 is a brief but thorough history of the two main type of
problems this thesis works with: Resonant Problems and Singular Prob-
lems. Here, the main references are described with more detail and the
difficulties of the problems are presented.

In Chapter 3 we give results for the case when g is nonsingular. They
consist on generalizations and extensions of the previous results enumer-
ated in Chapter 2. The results come both from [7] and [8] as they are
both on the periodic problem and the elliptic one. This chapter will be
constantly used in the last two chapters.

In Chapter 4 the periodic problem with a repulsive singularity is
studied. The main section deals with the case of the isolated singularity
of a repulsive type.The approximation scheme is explained and the main

10
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results from [7] are stated.
Finally, Chapter 5 deals with the Elliptic problem and both the sin-

gular repulsive nonlinearity as well as the general set of singularities are
studied. The results from this chapter were published in [8].

11
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Chapter 1

Preliminaries

This section is meant to present the mathematical background needed
to appreciate and understand the concepts that will be used throughout
the work.

We divide the preliminaries in two parts: An Analytical one with clas-
sical results in Sobolev spaces and Differential Equations, and a Topo-
logical one, where we give more than just the definitions and ideas from
the following areas: Fixed Point Theorems, Topological Degree Theory,
Mawhin’s Continuation Theory and some Nonlinear Functional Analysis.

1.1 Analytical Preliminaries

1.1.1 Sobolev Embeddings

Here we enumerate the main results in the classical theory. Let us recall
some notation and definitions:

Definition 1.1.1.

W k,p(U) := {u ∈ L1
loc(U) : D

αu ∈ Lp(U) ∀α : |α| ≤ k},

where α = (α1, · · · , αn) is a multi-index.
If p = 2 we write Hk(U) := W k,2(U).

In these spaces we define the following norms:

Definition 1.1.2.

‖u‖Wk,p(U) =







(

∑k
|α|=0

∫

U
|Dαu|pdx

)1/p

1 ≤ p <∞
∑k

|α|=0 ess supU |Dαu| p = ∞.

13
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We recall that with these norms, Sobolev spaces are Banach spaces,
while the Hk are also Hilbert spaces with the natural inner product:

〈f, g〉 :=
∑

0≤|α|≤k

∫

Ω

DαfDαgdx.

We have the classical Sobolev inequalities that give an answer to the
embedding problems. The three big results depend on the relationship
between p and n, the dimension. Another important fact for the theory
is the Sobolev conjugate, also known as the Sobolev critical exponent:

Definition 1.1.3. If 1 ≤ p < n, the Sobolev conjugate of p is

p∗ :=
np

n− p
.

Note that we have the following relations:

1

p∗
=

1

p
− 1

n
, p∗ > p.

Theorem 1.1.4 (Gagliardo-Nirenberg-Sobolev). Assume 1 ≤ p < n,
then there exists a constant C = C(n, p) such that

‖u‖Lp∗ (Rn) ≤ C‖Du‖Lp(Rn) ∀u ∈ C1
0(R

n).

This last results gives us estimates for bounded domains U ⊂ R
n for

the Sobolev spaces:

Theorem 1.1.5. Let U be a bounded, open subset of Rn, and suppose
∂U is C1. Assume 1 ≤ p < n, and u ∈ W 1,p(U). Then u ∈ Lp∗(U), with
the estimate

‖u‖Lp∗ (U) ≤ C‖u‖W 1,p(U),

with C = C(n, p, U).

And for the W 1,p
0 spaces we have the following important result:

Theorem 1.1.6. Let U be a bounded, open subset of Rn, and suppose
∂U is C1. Assume 1 ≤ p < n, and u ∈ W 1,p

0 (U). Then u ∈ Lq(U), for
each q ∈ [1, p∗], and we have the estimate:

‖u‖Lq(U) ≤ C‖Du‖Lp(U).

A particular case of this is the well-known Poincaré inequality:
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Theorem 1.1.7 (Poincaré). Assume 1 ≤ p ≤ ∞, and u ∈ W 1,p
0 (U).

Then there exists a constant C = C(p, n) such that we have the estimate

‖u‖Lp(U) ≤ C‖Du‖Lp(U)

The case n < p <∞ is due to Morrey:

Theorem 1.1.8 (Morrey). There exists a constant C = C(p, n) such
that

‖u‖C0,γ(Rn) ≤ C‖u‖W 1,p(Rn)

for all u ∈ C1(Rn,R), where γ := 1− n/p.

We now give the famous general Sobolev Inequalities (only for the
case k < n/p):

Theorem 1.1.9. Let U be a bounded open subset of Rn with a C1 bound-
ary. Assume that u ∈ W k,p(U) : If k < n/p, then u ∈ Lq(U), where
1
q
= 1

p
− k

n
and the following estimate holds:

‖u‖Lq(U) ≤ C‖u‖Wk,p(U),

and C = C(k, p, n, U).

Next, we focus on the compact embeddings. We first recall the defi-
nition:

Definition 1.1.10. Let X and Y be Banach spaces, X ⊂ Y . We say
that X is compactly embedded in Y , written X ⊂⊂ Y if there exist a
constant C such that:

• ‖x‖Y ≤ C‖x‖X for all x ∈ X.

• each bounded sequence in X is precompact in Y , that is that it has
a convergent subsequence in Y .

We can now state the Embedding Theorem:

Theorem 1.1.11 (Rellich-Kondrachov). Assume U is a bounded open
subset of Rn and ∂U is C1. Suppose 1 ≤ p < n. Then

W 1,p(U) ⊂⊂ Lq(U) ∀q ∈ [1, p∗).



16 CHAPTER 1. PRELIMINARIES

Remark 1.1.12. By letting p → n, we have that p∗ → ∞ since p∗ > p,
so we have in particular:

W 1,p(U) ⊂⊂ Lp(U) ∀p ∈ [1,∞].

We already knew this result if p ∈ [n,+∞] using Arzela-Ascoli’s The-
orem. Finally, note that

W 1,p
0 (U) ⊂⊂ Lp(U) ∀p ∈ [1,∞],

even without assuming ∂U to be C1.

Let us end this section of the preliminaries with an inequality we will
use throughout this work: Poincaré Inequality, a generalization of The-
orem 1.1.7. For the case n = 1 it is also known as Wirtinger Inequality.
First we recall the definition of the average:

Definition 1.1.13. We define the average of a function as

u :=
1

|U |

∫

U

u(x)dx.

If n = 1, U = (0, T ), then it becomes

u :=
1

T

∫ T

0

u(t)dt.

Note that if the function is periodic, i.e. u(t + T ) = u(t) for all t ∈ R,
then the average is also defined as before.

Remark 1.1.14. An important remark is that the average will be also
a projection to the Kernel for the operators we are going to work with,
for example, when L = u′′, n = 1 and we work with Periodic Boundary
Conditions.

Theorem 1.1.15. Let U be a bounded, connected, open subset of Rn,
n > 1 with a C1 boundary ∂U . Assume p ∈ [1,∞], then there exists a
constant C = C(n, p, U) such that

‖u− u‖Lp(U) ≤ C‖Du‖Lp(U), ∀u ∈ W 1,p(U).

If n = 1 and U = (0, T ) we have the so called Wirtinger Inequality:

‖u− u‖Lp(0,T ) ≤ C‖u′‖Lp(0,T ).

Finally, we recall the Dual Space H−1(U) :
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Definition 1.1.16. We denote by H−1(U) the dual space to H1
0 (U) and

we write 〈, 〉 the pairing between H−1(U) and H1
0 (U) as if 〈f, v〉 = f [v] In

other words, if f ∈ H−1(U) there exist functions f 0 and f̃ = (f 1, · · · , fn)
in L2(U) such that

〈f, v〉 =
∫

U

f 0v +
n
∑

i=1

∫

U

f ivxi
dx ∀v ∈ H1

0 (U).

For more on this, see Evans [17].

1.1.2 Elliptic Equations

In Chapter 5 we will deal with Elliptic equations of the form:

∆u+ g(u) = f(x), x ∈ Ω ⊂ Rd, (1.1)

with some kind of Boundary Conditions. We will work only with the
Laplacian in this work, although most of the results can be extended to a
broader type of operators, the so called p−Laplacian type Operator. For
example in the ordinary differential equation framework can be deffined
as:

Definition 1.1.17. Lu = φ(u′)′ is called a p−Laplacian if φ : RN → R
N

satisfies the following conditions:

• For every x1 6= x2 ∈ R
N , we have that

〈φ(x1)− φ(x2), x1 − x2〉 > 0.

• There exists a funcion α : (0,+∞) → (0,+∞) such that it verifies
α(s) → +∞ as s→ +∞ and

〈φ(x), x〉 ≥ α(|x|)|x| ∀ x ∈ R
N .

Both conditions imply that φ is an homeomorphism onto R
N . The

most standard example are the N−dimensional p−Laplacian given by

φ(x) = |x|p−2x p > 1.

or a system of one-dimensional p−Laplacians, namely:

φ(x) =
(

|x1|p1−2x1, · · · , |xN |pN−2xN
)

pj > 1.

Finally, we enumerate a series of results that we use freely in the rest
of this work, we begin by giving an important resut regarding the Strong
Maximum Principle, The Hopf’s Lemma. In these results, we consider
Lu = −∑n

i,j=1 a
ijuxi

uxj
+
∑n

i=1 b
iuxi

+ cu, with aij, bi, c continuous and
L uniformly elliptic.
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Theorem 1.1.18 (Hopf). Assume u ∈ C2(U)∩C1(U). Suppose further
that

Lu ≤ 0 in U,

and there exists a point x0 ∈ ∂U such that

u(x0) > u(x) for all x ∈ U.

Assume finally that U satisfies the interior ball condition at x0, that
is, there exists an open ball B ⊂ U with x0 ∈ ∂B.

i) If c ≡ 0 in U , then
∂u

∂ν
(x0) > 0,

with ν the outer unit normal to B at x0.

ii) Moreover, if c ≥ 0 in U, the same holds provided u(x0) ≥ u(x).

Mean-Value Theorem for Vector-Valued integrals:

Theorem 1.1.19. If γ ∈ C([0, T ],Ω), with Ω ⊂ R
n, then

γ =
1

T

∫ T

0

γ(t)dt ∈ co(Ω),

where co(Ω) is the convex hull of Ω.

Definition 1.1.20. Given A ∈ R
n, we define the Convex Hull of A as

the smallest convex set that contains A. Formally, the convex hull may
be defined as the intersection of all convex sets containing A or as the
set of all convex combinations of points in A.

Here we also recall Fredholm’s alternative Theorem:

Theorem 1.1.21. Let E be a Banach space and T : E → E a linear
compact operator. Then for any λ 6= 0, we have

1) The equation (T − λI)v = 0 has a nonzero solution.
or
2) The equation (T − λI)v = f has a unique solution v for any func-

tion f .
In the second case, the solution v depends continuously on f .

The Fredholm alternative can be restated as follows: any λ 6= 0
which is not an eigenvalue of a compact operator is in the resolvent, i.e.,
(T − λI)−1, is continuous.
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Next, let us define the Green’s Function for ordinary differential equa-
tions:

We will assume that the operator is in divergence form now, that is:
Lu = (−pu′)′ + qu, with p ∈ C1([a, b],R), p > 0 and q ∈ C([a, b],R), q ≥
0.

The problem is, given ϕ ∈ C([a, b],R) find u such that:

{

L[u](t) = ϕ(t) t ∈ (a, b)
B[u] = 0,

with B an operator indicating the boundary conditions, for example:

B[u] =
{

u(a)
u(b)

, B[u] =
{

u(a)− u(b)
u′(a)− u′(b)

, B[u] =
{

αu(a) + βu(b)
γu′(a) + δu′(b)

.

It is worth remarking that not for all boundary conditions there will
be a solution.

We state that u is given by:

u(t) =

∫ b

a

G(t, s)ϕ(s)ds,

with G : [a, b]× [a, b] → R the so called Green’s Function. This function
G has the following properies:

1) Lt[G](t, s) = 0 for a < t < s and for s < t < b.

2) It satisfy the boundary conditions.

3) G ∈ C([a, b] × [a, b],R). In particular, in t = s, which implies
G(s−, s) = G(s+, s).

4) G ∈ C1([a, b]× [a, b]\{t = s},R), and it has a jump:

∂G(s−, s)

∂t
− ∂G(s+, s)

∂t
=

1

p(t)
.

1.1.3 Resonant Problems

Finally, we give a short introduction to resonant problems. Let us con-
sider the general nonlinear problem:

Lu = Nu,

where L is a differential operator and N is a nonlinear operator, which
might involve also derivatives of less degree of those of L. Boundary
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conditions are also present, and they define the space where the operator
is defined. For example the scalar problem

u′′ = f(t, u, u′) t ∈ (0, T ),

with f ∈ C([0, T ]×R×R,R) a bounded function. If L is invertible in a
suitable space then the problem is called non resonant. A simple exam-
ple of a non resonant problem is the previous equation under Dirichlet
Boundary Conditions, u(0) = u(T ) = 0. In this case, Lu = u′′ and
ker(L) = 0. The problem reduces to a fixed point problem:

u = L−1Nu

and fixed point theory can be applied directly.
If on the other hand L is not invertible, then the problem is called

resonant. This is the case if in the previous example we consider Neu-
mann, or periodic conditions, where ker(L) is non trivial. If L = u′′ as in
the example, and L : D ⊂ C([0, T ],R) → D, with D the subspace of the
constant functions, the Kernel is in fact D. This is a case of resonance in
the first eigenvalue (in this case 0). This denomination comes from the
following:

If we consider the eigenvalue problem

−u′′ = λu

with periodic conditions, then it is not hard to see that the eigenvalues
are:

λk =

(

2kπ

T

)2

, k = 0, 1, · · · .

The first eigenvalue is 0, and the associated eigenspace is the space of
constant functions. More on this type of problems can be found below,
where an example of the Mawhin’s Continuation Theory is explained.
For more of this see Amster [3].

1.2 Topological Preliminaries

1.2.1 Fixed Point Theorems

We here give a brief enumeration of the most important fixed point theo-
rems, which are the cornerstones of the Topological Methods for solving
nonlinear problems.

The classical proof of existence and uniqueness of solution for an
ordinary differential equation with initial conditions relies in the Piccard
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method of successive approximation. In his PhD thesis (1917) Banach
proved that Piccard’s method was in fact a particular case of a much
more general result. First we recall the definition of a contraction:

Definition 1.2.1. LetX, Y be two metric spaces, we say that T : X → Y
is a contraction if there exists α < 1 such that:

∀ x, y ∈ X, dY (Tx, Ty) ≤ αdX(x, y).

We state here the famous Banach’s Fixed Point Theorem:

Theorem 1.2.2 (Banach). Let X be a complete metric space and let
T : X → X a contraction. Then, T has a unique fixed point x̂. Moreover,
x̂ can be calculated in an iterative way from the sequence xn+1 = T (xn),
starting from any x0 ∈ X.

Other important Fixed Point Theorem is due to Brouwer:

Theorem 1.2.3 (Brouwer). Let B = B1(0) ⊂ R
N and f ∈ C(B,B).

Then there exists x ∈ B such that f(x) = x.

The Brouwer Fixed Point Theorem was one of the early achievements
of algebraic topology, and is the basis of more general fixed point the-
orems which are important in functional analysis. The case N = 3
first was proved by Piers Bohl in 1904. It was later proved by L. E. J.
Brouwer in 1909. Jacques Hadamard proved the general case in 1910,
and Brouwer found a different proof in 1912. Since these early proofs
were all non-constructive and indirect, they ran contrary to Brouwer’s
intuitionist ideals. However, methods to construct (approximations to)
fixed points guaranteed by Brouwer’s Theorem are now known. It can
also be proven that it is equivalent to the axiom of completeness.

Although Theorem 1.2.3 is valid for any set homeomorphic to the unit
ball B ⊂ R

N , Kakutani (1943) showed that it is not true for infinite di-
mensional spaces. Some additional hypothesis is needed for the operator
T .

J. Schauder, around 1930, proved another Fixed Point Theorem, this
time for infinite dimensional spaces:

Theorem 1.2.4 (Schauder). Let (E, ‖·‖) be a normed space and let C be
a closed convex and bounded subset of E. If T : C → C is a continuous
function such that T (C) is relatively compact (T (C) is compact), then T
has at least a fixed point.

The last fixed point theorem in this enumeration is an extension of
the previous one, and has important applications in nonlinear problems,
in particular it is the starting point of the Continuation Theory which
will be explained later in this section. It was stated and proved by Leray
and Schauder in 1934. We give here a particular case, due to Schauder:
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Theorem 1.2.5 (Leray-Schauder). Let E be a Banach space and the
operator T : E → E is compact. If there exists R > 0 such that the
following property holds:

If x = λTx for some λ ∈ [0, 1] then, ‖x‖ < R.

Then T has at least a fixed point in X.

1.2.2 The Topological Mapping Degree

Introduction

Let us first of all recall the definition of two maps being Homotopic.
This property will be the key point in the definition of the Degree.

Definition 1.2.6. Two maps f1 : E → F and f2 : E → F are homotopic
if there is a continuous map h : E × [0, 1] → F such that h(x, 0) = f1(x)
and h(x, 1) = f2(x).

Given two topological spaces E and F , one can define an equivalence
relation on the continuous maps f : F → E using homotopies, by saying
that f1 ∼ f2 if f1 is homotopic to f2. Roughly speaking, two maps are
homotopic if one can be deformed into the other. This equivalence rela-
tion is transitive because these homotopy deformations can be composed
(i.e., one can follow the other). Thus, this relationship defines a class of
homotopy.

A simple example is the case of continuous maps from S1 to S1.
Consider the number of ways an infinitely stretchable string can be tied
around a tree trunk. The string forms the first circle, and the tree trunk’s
surface forms the second circle. For any integer n, the string can be
wrapped around the tree n times, for positive n clockwise, and negative
n counterclockwise. Each integer n corresponds to a homotopy class of
maps from S1 to S1.

After the string is wrapped around the tree n times, it could be
deformed a little bit to get another continuous map, but it would still be
in the same homotopy class, since it is homotopic to the original map.
Conversely, any map wrapped around n times can be deformed to any
other.

Let us start with a well known situation that will let us define the
degree for n = 2. Let Ω ⊂ C be a bounded domain, and for simplicity, let
Ω be simply connected and that it’s boundary γ := ∂Ω is a continuous
curve, with positive orientation. Given an analytic function f : Ω → C,
such that f 6= 0 in γ, we recall the following formula (a particular case
of the theorem of zeros and poles):
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d(f,Ω) :=
1

2πi

∫

γ

f ′

f
dz = #{zeros of f in Ω}.

We can make the following remarks concerning d(f,Ω):

• If f = Id and 0 /∈ γ then d(f,Ω) = 1 if 0 ∈ Ω and d(f,Ω) = 0 if
0 /∈ Ω .

• If d(f,Ω) 6= 0, then f has at least a zero in Ω. This trivial fact for
analytic functions will be the fundamental property and application
of the extension of this definition for a continuous f .

• Homotopy Invariance: If f ∼ g then d(f,Ω) = d(g,Ω).

• d(f,Ω) only depends on f |γ. This can be seen as a direct con-
sequence of the previous item. Because if f |γ = g|γ, the homo-
topy h(z, λ) = λf(z) + (1 − λ)g(z) is such that for every z ∈ γ,
h(z, λ) = f(z) = g(z) 6= 0, then f ∼ g.

Recalling the Index function from Complex Analysis we can remark:

d(f,Ω) =
1

2πi

∫

γ

f ′

f
dz =

1

2πi

∫

f◦γ

1

z
dz = I(f ◦ γ, 0).

This Index is defined for continuous curves, as long as the function is
not zero along this curve. This tells us that hλ := h(λ, ·) would not need
to be analytical. Therefore, we could be able to extend our definition
for a function f ∈ C(Ω,R) such that f 6= 0 in γ, just by defining this
degree as d(f,Ω) := I(f ◦ γ, 0). It is not hard to show that the previous
properties are still valid.

In the following section we will try to extend this definition for any
continuous function f : Ω → R

n, where Ω ⊂ R
n is a bounded domain.

For convenience, we will define for every y ∈ R
n − f(γ), the degree

d(f,Ω, y) ∈ Z that will count the number of solutions in Ω of the equation
f(x) = y. In C, d(f,Ω, y) = I(f ◦ γ, y), but this index is equal to that of
the function f − y with respect to 0. So we’ll define in general:

d(f,Ω, y) = d(f − y,Ω, 0).

Finally, knowing that this is the case when n = 2, we will need the
degree to have the additivity property: If Ω1∩Ω2 = ∅, f : Ω1 ∪ Ω2 → R

n

and f 6= y in ∂Ω1 ∪ ∂Ω2, then:

d(f,Ω1 ∪ Ω2, y) = d(f,Ω1, y) + d(f,Ω2, y).
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The Brouwer Degree The goal is to extend the last definition to
an arbitrary continuous function in an arbitrary finite dimensional space.
First let us define:

A(y) = {f ∈ C(Ω,Rn) : g 6= y in ∂Ω}
be the set of admissible functions. First of all one can prove that the set
is open:

Lemma 1.2.7. If f ∈ A(y) and g ∈ C(Ω,Rn) satisfies the inequality
‖g − f‖L∞ < d(y, f(∂Ω)) where d(·, ·) is the distance, then g ∈ A(y).

Now, let us define the concepts of Critical and Regular values. Our
fist definition of Degree will be only possible on Regular values.

Definition 1.2.8. Let m ≤ n, f ∈ C∞(Ω,Rm). The regular values and
critical values of f are defined as follow:

RV (f) = {y ∈ R
m : ∀x ∈ f−1(y), Df(x) : Rn → R

m is onto}.

CV (f) = R
m\RV (f)

We also note that if y ∈ RV (f), then the set f−1(y) is finite. With
this fact we give the definition of the degree function on regular points
of a function f ∈ C1(Rn,Rn):

Definition 1.2.9. Let y ∈ RV (f), the Brouwer Degree is defined as:

deg(f,Ω, y) =
∑

x∈f−1(y)

sgn(Jf (x)),

where Jf (x) = det(Df(x)).

For example, if f ∈ C1(R,R) and 0 ∈ RV (f), the degree over an
open interval (a, b) at 0 is equal to the times the function f crosses the
axis with positive slope minus the times it does it with negative slope.

We now give the tools that will allow us to have a good definition of
the degree not only on regular points. The first step is to state a version
of Sard’s Theorem:

Lemma 1.2.10. Let m ≤ n and f ∈ C∞(Ω,Rm). Then, the set of
critical values CV (f) has measure 0. In particular the set of regular
values RV (f) is dense in R

m.

Now, calling C∞
reg(Ω,R

m) the set of functions in C∞(Ω,Rm) for which
0 ∈ RV (f), as a consequence of Sard’s Theorem, we have the density of
the functions that have 0 as a regular point:
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Lemma 1.2.11. C∞
reg(Ω,R

m) is dense in C(Ω,Rm).

Now we state a result that says that for a function f and a set Ω, the
degree is constant in a ball sufficiently small around 0 (we take 0 without
loss of generality):

Lemma 1.2.12. Let f ∈ C1(Ω, Rn) such that 0 ∈ RV (f) and f 6= 0 in
∂Ω. Then, there exists a neighborhood V of 0 such that if y ∈ V , then
y ∈ RV (f), f 6= y in ∂Ω and deg(f,Ω, y) = deg(f,Ω, 0).

The next Lemma shows that deg(f,Ω, 0) is constant in the connected
components of A(0) ∩ C∞

reg(Ω,R
n).

Lemma 1.2.13. Let f ∈ C∞
reg(Ω, R

n), then there exists ε > 0 such that
if g ∈ C∞(∂Ω,Rn) is such that ‖g − f‖L∞ < ε then, 0 ∈ RV (g), g 6= 0
in ∂Ω and deg(g,Ω, 0) = deg(f,Ω, 0).

With all the previous results and remarks, is is possible to prove the
good definition of the topological degree.

Definition 1.2.14. Let Ω ⊂ R
n be an open and bounded set, and let

y ∈ R
n. Then there exists one, and only one continuous function

deg(·,Ω, y) : A(y) → Z

called the Brouwer’s degree with the following properties:

1. Normalization: If y ∈ Ω, then deg(id,Ω, y) = 1.

2. Translation invariance: deg(f,Ω, y) = deg(f − y,Ω, 0).

3. Additivity: If Ω1, Ω2 are two open disjoint subsets of Ω, then the
following is true:

If y /∈ f(Ω− (Ω1 ∪ Ω2)), then:

deg(f,Ω, y) = deg(f |Ω1
,Ω1, y) + deg(f |Ω2

,Ω2, y).

4. Excision: If Ω1 is an open subset of Ω, y /∈ f(Ω− Ω1), then

deg(f,Ω, y) = deg(f,Ω1, y).

5. Solution: If deg(f,Ω, y) 6= 0, then y ∈ f(Ω), moreover, f(Ω) is a
neighborhood of y.
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6. Homotopy invariance: If h : Ω × [0, 1] → R
n is continuous and

h(x, λ) 6= y for all x ∈ ∂Ω, λ ∈ [0, 1], then deg(h(·, λ),Ω, y) does not
depend on λ ∈ [0, 1]. Moreover, y can be replaced by a continuous
function y : [0, 1] → R

n such that the previous condition is valid.

Theorem 1.2.15. There exist function as the one defined before and it
is unique.

For a proof of this and all the Lemmas stated in this section refer to
the books of Amster [3] or Teschl [38], where they give a more detailed
analysis of this subject. The first appearence of this notion was in 1911
in a work from Brower [13]

The Leray-Schauder Mapping Degree

The objective of this section is to extend the mapping degree form R
n

to general Banach spaces E. It is not possible to define a general degree
for continuous functions from closed domains Ω ⊂ E.

We first remark that the Brouwer degree can be trivially generalized
to finite dimensional Banach spaces, simply by identifying the space E
with R

n, where n = dim(E). This degree can also be defined for functions
f ∈ C(Ω,Rm), with Ω ⊂ R

n, with m ≤ n:

Lemma 1.2.16. Let Ω ⊂ R
n a bounded domain, f ∈ C(Ω,Rm) and let

m < n. Let also be g : Ω → R
n in which we think R

m as a subspace of
R

n by the following identification (x1, · · · , xm) = (x1, · · · , xm, 0, · · · , 0).
Then, for every y ∈ R

m\g(∂Ω) we have

deg(g,Ω, y) = deg(g|Ω∩Rm ,Ω ∩ R
m, y).

For infinite dimensional spaces we will limit ourselves to consider
operators T of the form T = I − K, where K : Ω → E is a compact
operator. This kind of operators are called Fredholm Operators and can
be approximated by finite range operators:

Lemma 1.2.17. Let K : Ω → E be a compact operator, and let T =
I − K. Given ε > 0 there is an operator Tε : Ω → E continuous such
that Rg(Tε) ⊂ Vε, with dim(Vε) <∞ and such that ‖T (x)− Tε(x)‖ < ε,
for all x ∈ Ω.

The proof of this Lemma is a consequence of the proof of Schauder’s
fixed point Theorem (Theorem 1.2.4). An important fact is that this
does not depend on the approximation Kε chosen.

From now on, E will be a Banach space, Ω ⊂ E a bounded domain
and K : Ω → E a compact operator. The following result is immediate
from the compactness.
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Lemma 1.2.18. If Kx 6= x, for all x ∈ ∂Ω, then

inf
x∈∂Ω

‖x−Kx‖ > 0.

Having stated all the results and remarks, we are now able to define
the Leray-Schauder degree:

Definition 1.2.19. Let Ω, E and K as before such that (I −K)x 6= 0,
for all x ∈ ∂Ω and let

ǫ <
1

2
inf
x∈∂ω

‖x−Kx‖.

We can define the Leray-Schauder’s degree as

degLS(I −K,Ω, 0) := deg((I −Kε)|Vǫ ,Ω ∩ Vε, 0)
where Kε is such that Rg(Kε) ⊂ Vε and that ‖K(x) − Kε(x)‖ < ε, for
all x ∈ Ω.

Finally we state that the definition does not depend on the approxi-
mation we take.

The properties of the Leray-Schauder mapping degree are analogous
to the ones of the Brouwer degree. It is interesting to note that the ho-
motopy invariance requires the additional hypothesis that the homotopy
h is of the form h(·, λ) = I −Kλ with Kλ compact.

Another Definition of the Degree

Another way to define the Topological Degree is by means of Algebraic
Topology. For more on this refer to Dold [16]. Every endomorphism φ
of a free cyclic group is given by an integer. Applying this remark to
homology groups defines the notion of degree in algebraic topology:

Definition 1.2.20. If f : Sn−1 → Sn−1 is a map, then the induced
endomorphism f∗ of H̃n−1(S

n−1) ∼= Z is given by f∗(x) = deg(f) · x,
where deg(f) ∈ Z is a uniquely determined integer. This integer is called
the degree of f .

In this context, we can enumerate the main properties:

Proposition 1.2.21. This definition of degree has the following proper-
ties:

1. deg(Id) = 1.

2. deg(f ◦ g) = deg(f)deg(g).

3. f ≃ g ⇒ deg(f) = deg(g).
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4. The degree of a homotopy equivalence is ±1.

We give this last definition because throughout this thesis we will work
in both environments. Here, a connection between the two settings:

Proposition 1.2.22. Let g : RN → R
N a continuous function and let

R > 0 and ΦR : SN−1 → SN−1 defined by:

ΦR(v) =
g(Rv)

|g(Rv)| ,

and suppose this limits exist. If BR(0) ⊂ R
N is the open ball of radius R

and center in the origin, the following equivalence holds:

deg(g, BR(0), 0) = deg(ΦR),

with the expresion on the left being the Brouwer degree and the the one
on the right being the degree just defined.

1.2.3 Mawhin’s Continuation Theory

Let us give a formal overview of the subject, mainly following Mawhin’s
classical book [27]. The objective is to have existence results for the
following problem:

Lu = Nu.

We consider X,Z two normed spaces, U ⊂ X a bounded set. The
operator L : Dom(L) → Z, N : U → Z such that L is Fredholm of index
0. That is:

i) L is linear and Im(L) is closed.

ii) dim(ker(L)) = dim(coker(L)) = n <∞.

Let us recall the definition of co-dimension (the dimension of the co-
Kernel):

Definition 1.2.23. Co-dimension is a term used in a number of algebraic
and geometric contexts to indicate the difference between the dimension
of certain objects and the dimension of a smaller object contained in it.
For example

codim(W ) = dim(V )− dim(W )

gives the co-dimension of a subspace W of a finite-dimensional abstract
vector space V .
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For infinite-dimensional spaces, the co-dimension is the dimension of
the quotient space:

codim(W ) = dim(V/W ),

that agrees with the definition in the finite case.

Note that (i)-(ii) imply that there exist P : X → X and Q : Z → Z
continuous projectors such that the following sequence is exact.

X → Dom(L) → Z → Q.

Remember that being an exact sequence means that Im(P ) = ker(L)
and Im(L) = ker(Q). Moreover, Π : Z → coker(L) with Πz = z+Im(L)
is continuous. We then need N to be L−compact. That is:

iii) N continuous and bounded.

iv) KP,QN : U → X is compact in U .

with KP,Q := KP (Id − Q) and KP being the local inverse operator of
LP , with LP : Dom(L) ∩ ker(P ) → Im(L). In this context we have the
following

Proposition 1.2.24. If i)-iv) hold and ∧ : coker(L) → ker(L) exists,
then if u ∈ Dom(L) ∩ U the following are equivalent:

a) u is a solution of Lu = Nu.

b) u is a solution of (I − P ) u = (∧Π+KP,Q)Nu.

c) u is a fixed point of M = P + (∧Π + KP,Q)N . Moreover, M is
compact.

d) u is a zero of I −M i.e.

0 = u− Pu+ (∧Π+KP,Q)Nu.

Finally, if the following holds:

v) 0 /∈ (L−N)(Dom(L) ∩ ∂U)

or equivalently, there is no u ∈ Dom(L) ∩ ∂U such that Lu = Nu, then
the Leray-Schauder degree (1.2.19) degLS(I −M,U, 0) is well defined. It
is also important that this degree is independent of the choice of P and
Q:



30 CHAPTER 1. PRELIMINARIES

Proposition 1.2.25. If i)-v) hold:

• degLS(I−M,U, 0) only depends on L,N,U and the homotopy class
of ∧ in L = {∧ : coker(L) → ker(L) : ∧ is an isomorphism}.

• | degLS(I −M,U, 0)| only depends on L,N and U .

The idea of this theory is to give something of a recipe to prove
existence of solutions of nonlinear problems:

Given, L and N as before (i)-iv)) we consider the following family of
operators Ñ : U × [0, 1] → Z such that N = Ñ(·, 1).

For λ ∈ [0, 1], we have the following family of problems:

(Pλ) Lu = Ñ(u, λ).

We now state Mawhin’s famous Continuation Theorem:

Theorem 1.2.26. Let L, Ñ as before and U a bounded domain. Suppose
that the following two conditions hold:

• ∀λ ∈ [0, 1], u ∈ ∂UDom(L) ⇒ Lu 6= Nu.

• dLS(I −M,U, 0) 6= 0.

with M = P + (∧Π + KP,Q)N and P and K as before. Then, for all
λ ∈ [0, 1] (Pλ) has a solution.

An Example of the use of the C.T.

Let us show how all this technology is used. Let us consider the
following scalar periodic problem:







u′′ + g(u) = p(t) t ∈ (0, T )
u(0) = u(T )
u′(0) = u′(T ),

(1.2)

where g ∈ C(R,R), p ∈ C([0, T ],R). We shall assume that the average

of p, denoted by p = 1
T

∫ T

0
p(t)dt is zero. Let ϕ ∈ C([0, T ],R) with ϕ = 0,

Linear Theory assures us that there exist a unique u solution of problem














u′′ = ϕ t ∈ (0, T )
u(0) = u(T )
u′(0) = u′(T )

u = 0.

(1.3)

With this construction in mind, it is possible to define an operator
K that given ϕ as before, Kϕ = u. It is not hard to prove that this
operator K is in fact compact.
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If we call Nu = p−g(u), and take λ ∈ [0, 1] we consider the following
problems:

u′′ = λNu.

We have the following particular case of Proposition 1.2.24 and we
show a proof to it.

Proposition 1.2.27. For λ ∈ (0, 1], u is a solution of (Pλ) if and only
if u is a solution of

u = u+Nu+ λK
(

Nu−Nu
)

:= Tλu,

Proof:
On one hand, if u is a solution of u′′ = λNu taking average it holds that
Nu = 0, so λK(Nu−Nu) = λKNu = Ku′′ = u− u because K is a left
inverse of u′′ and Kϕ = 0. So the second equation holds.

On the other hand, if u = u − Nu + λK
(

Nu−Nu
)

, also taking

average, we have that u = u+Nu+ λK
(

Nu−Nu
)

. As Kv = 0 for all
v, we have the following:

u = u+Nu.

So again, Nu = 0, and u is a solution of

u = u+ λK(Nu).

Applying L, we have u′′ = λNu, and the result holds.
�

This two statements are also equivalent to the existence of a zero of
the operator Fλ = I − Tλ.

As Fλ is a Fredholm operator, Leray-Schauder Degree can be applied.
Taking λ ∈ [0, 1], if we now consider the family of operators Fλ such

that

Fλu = u−
[

u−Nu+ λK
(

Nu−Nu
)

= (I − Tλ)u
]

we have that F = F1 and F0u = u− (u−Nu).
Note also that Rg(T0) = R ⊂ C([0, T ],R), the constant functions,

with dim(Rg(T0)) = 1.
Given U = BR(0) ⊂ C([0, T ],R) we have, by the definition of the

degree:

degLS(F0, U, 0) = deg(F0|U∩R, U ∩ R, 0),

this last being the Brouwer degree.
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Note also that in R, u = u so, F0|U∩Ru = Nu.
Then we can consider the function f : R → R defined as:

f(u) = F0|R = Nu =
1

T

∫ T

0

p(t)− g(u)dt = p− g(u) = −g(u).

Then, if the first condition of Theorem 1.2.26 holds, the only thing
to prove to assure existence of a solution of (1.2) is that:

deg(g, (−R,R), 0) 6= 0

where (−R,R) = U ∩ R, as U = BR(0) is a bounded open domain.
A classical condition, that will be described in the next chapter is due

to Landesman and Lazer in [23]:
Assume that the limits lims→±∞ g(s) = g± exist and are finite and

that the inequality g−∞ < 0 < g+∞ hold.
For example, if g(u) = arctan(u) the result will be valid. Indeed, the

fact that deg(g, (−R,R), 0) 6= 0 is trivial because in this case, as seen
in (1.2.15), the degree of a real function is the sum of the signs of the
slopes of the tangent at the points where g(u) = 0. In this case, g(u) = 0
only at u = 0 and g increases, so deg(g, (−R,R), 0) = 1 for every R > 0.
Another way to show this is to see that g ∼ id.

Now, we need an R for which the other condition holds: Let R be
large enough, and consider λ ∈ (0, 1]. Let u ∈ ∂U , with

U = {u ∈ C([0, T ],R), ‖u‖∞ ≤ R},
a T−periodic solution of

u′′ = λ(p(t)− g(u)).

Suppose that this R does not exists, hence, there exists un and λn
such that

u′′n = λnNun ‖un‖∞ → ∞.

Taking the average, as
∫ T

0
u′′ndt = 0 and λn 6= 0, for all n

0 =
1

T

∫ T

0

Nun(t)dt = p− 1

T

∫ T

0

g(un(t))dt =
1

T

∫ T

0

g(un(t))dt.

This implies that
∫ T

0
g(un)dt = 0, but Landesman-Lazer conditions

imply that g−∞ < 0 < g+∞. This is a contradiction because one can
prove that ‖un − un‖ is bounded, so that ‖un‖L∞ → ∞ implies that
|un| → ±∞.



Chapter 2

A brief survey of the

problems

2.1 Resonant Problems

2.1.1 The Landesman-Lazer Conditions

The pioneer work on resonant problems in the direction of our studies
is from Landesman and Lazer [23]. They studied the following scalar
problem: Let Ω ⊂ R

d a bounded domain, we find a function u : Ω → R

such that
{

Lu+ αu+ g(u) = h(x) in Ω

u = 0 ∂Ω,
(2.1)

where L =
∑n

i,j=1
∂
∂xi
aij
(

∂
∂xj

)

is a second order, self adjoint, uniformly

elliptic operator.
By a weak solution of (2.1) the authors mean an H1

0 (Ω) solution of

u = αTu+ T [g(u)− h], (2.2)

where T : L2(Ω) → L2(Ω) and Tf is the unique solution of the linear
problem:

{

Lu = −f in Ω

u = 0 ∂Ω.
(2.3)

The following result is proven:

Theorem 2.1.1. Let w ∈ H1
0 (Ω), a non trivial solution (w 6= 0) of

u = αTu, that is, a weak solution of

{

Lu+ αu = 0 in Ω

u = 0 ∂Ω
(2.4)

33
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Assume that the space of solutions of u = αTu has dimension 1, i.e.
every solution is of the form cw; that the limits

lim
s→+∞

g(s) = g+, lim
s→−∞

g(s) = g−

exist and are finite and that

g− ≤ g(s) ≤ g+ ∀s. (2.5)

Define Ω+ = {x ∈ Ω : w(x) > 0}, Ω− = {x ∈ Ω : w(x) < 0}. The
inequalities

g−

∫

Ω+

|w|dx− g+

∫

Ω−

|w|dx ≤ 〈h, w〉 ≤ g+

∫

Ω+

|w|dx− g−

∫

Ω−

|w|dx,
(2.6)

are necessary and the strict inequalities are sufficient for the existence of
a weak solution of the boundary value problem (2.1).

Moreover, if (2.5) is replaced by the slightly stronger condition:

g− < g(s) < g+ ∀s, (2.7)

then the strict inequalities are both necessary and sufficient for the exis-
tence of at least one solution of the boundary value problem (2.1).

Go to the last section of Chapter 1 for a proof of this result in an
example.

Remark 2.1.2. The assumption that there exists a nontrivial solution
of (2.4) is not that strict. It has been proved by the authors that if L
is such that for α1 ≤ α ≤ α2, the boundary value problem (2.4) has no
nontrivial solution. Let p(x, u), h(x, u) ∈ C(Ω× R,R). If h is uniformly
bounded and α1 ≤ p(x, u) ≤ α2 in Ω× R, then the boundary problem

{

Lu+ p(x, u)u = h(x, u) in Ω

u = 0 on ∂Ω

has at least one weak solution. In particular, if (2.4) has no nontrivial
weak solutions and g is merely assumed to be continuous and bounded,
then the problem (2.1) has a weak solution.

Note also that the case g ≡ 0 is included, and (2.6) reduces to the
well known orthogonality condition 〈h, w〉 = 0 for the linear boundary
problem.
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The authors finally give the following example: If K is a constant
function and Ω = (0, π)× (0, π) ⊂ R

2 :

{

∆u+ 2u+ arctg(u) = K in Ω

u = 0 on ∂Ω,

here, L = ∆, g = arctg, α = 2 and h ≡ K.
It is not difficult to show that the linear boundary problem:

{

∆u+ 2u = 0 in Ω

u = 0 on ∂Ω

has the strictly positive solution w(x, y) = 2
π
sin(x) sin(y), that any other

solution is of the form cw and that g(u) = arctg(u) clearly satisfies
condition (2.7). Noting that Ω+ = Ω, and Ω− is empty, the nonlinear
problem has a weak solution if and only if −π

2
< K < π

2
.

Another important remark is that if only (2.5) is assumed, then the
strict inequalities need not hold. They give the following example:

g(s) = χ{s≥0} + χ{s<0}e
−s2 ,

where χA(x) = 1 if x ∈ A and otherwise, χA(x) = 0. Let Ω, w be as
before and suppose that all solutions are of the form cw. If we define
h(x, y) = g(w(x, y)), then w is also a strict solution of

{

∆u+ 2u+ g(u) = h(x, y) in Ω

u = 0 on ∂Ω.

As before, Ω+ = Ω, Ω− is empty and h ≡ 1 on Ω, hence we have:

〈h, w〉 = g+

∫

Ω+

|w|dx− g−

∫

Ω−

|w|dx,

so the strict inequalities do not hold, although the problem has a weak
solution.

2.1.2 Nirenberg’s Extension to Systems

In [29], Nirenberg showed the use of some topological techniques for
solving nonlinear problems. In the introduction, a simple problem is
stated: Let B ⊂ R

N be the closed unit ball and T : B → R
M a continuous

mapping, the problem is to obtain an x such that Tx = 0.
There are some conditions on the boundary values of T0 = T |∂B which

ensure that for every extension T of T0 inside B, the equation Tx = 0 is
always solvable. Assume that T0 6= 0 in ∂B, then one has the following



36 CHAPTER 2. A BRIEF SURVEY OF THE PROBLEMS

result, in terms of the normalized map Ψ : ∂B ⊂ SN−1 → SM−1, defined
as:

Ψ(x) =
T0(x)

|T0(x)|
.

.

Proposition 2.1.3. For every extension T of T0, the equation Tx = 0
is always solvable if and only if the homotopy class (see 1.2.6) of Ψ is
nontrivial.

This theorem gives useful results only in the caseM ≤ N . If N =M ,
the fact that the homotopy class of Ψ is nontrivial, means that the degree
of the map Ψ, i.e. the number of times the image sphere is covered
(counted algebraically), deg(Ψ) (see Definition 1.2.20 in Chapter 1) is
different form zero. This number is also equal to the degree of a map
T at the origin in the image space, i.e, the number of times the origin
is covered (counted algebraically) deg(T,B, 0), as it was stated in the
Proposition 1.2.22.

In an infinite dimensional Banach space X, the previous result can
be generalized. Let B ⊂ X be the closed unit ball (B could be the
closure of any open set in X), and T : B → X, with K = (I − T ),
a compact operator. The Leray-Schauder theory states that if T0 6= 0,
then the mapping T has an integral valued degree at the origin and if it
is different than zero, then Tx = 0 is solvable in B. The degree depends
only on T0 (the value at the boundary), in fact only in the homotopy
class of T0 within the class of operators such that (I − T0) is compact
and T0 6= 0 in ∂B.

It is useful to remark that if the Rg(T ) ⊂ Y ⊂ X where Y 6= X is
a linear subspace, then the degree of T at the origin is zero, since it is
the same for all points in a neighborhood of the origin and, at a point
outside Y , i.e. outside the range of T , it vanishes.

Here the author describes a generalization of the Leray-Schauder The-
orem (Theorem 1.2.5) to such a situation and an application to a non-
linear elliptic boundary value problem.

Definition 2.1.4. Let T : B → Y ⊂ X with I − T a compact operator,
Tx 6= 0 in ∂B, and Y a closed subspace having finite co-dimension i.
If T0 = T∂B is such that the equation Tx = 0 is solvable in B for any
extension T of T0 inside B of the form I − K with K compact, and
Rg(T ) ⊂ Y , we call T0 essential. Whether T0 is essential or not depends
only on its homotopy class, always of the form I − K, of maps into
Y ∗ = Y \{0}.
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It can be shown that T0 has this very special form (with V ⊕Z = W ,
Y = W1 ⊕ V and X = Y ⊕ Z):

T0x = T0(w1 + w) = w1 + Φ(w),

with Φ a continuous map of the closed unit ball in W into the linear
subspace V of W . We shall express the condition for T0 to be essential
in terms of the map Φ which does not vanish for ‖w‖ = 1. Suppose
dim(W ) = N , dim(V ) =M , i = N −M , set

Ψ(w) =
Φ(w)

‖Φ(w)‖ , for ‖w‖ = 1.

We may consider Ψ : SN−1 → SM−1.

Theorem 2.1.5. T0 is essential if and only if the map Ψ has nontrivial
stable homotopy.

Let us explain the main application of the above Theorem: We recall
the problem given in [23], and Theorem 2.1.1 with α = 0 and the strict
inequalities.

Here, the author gives a generalization of the result, based on Theo-
rem 2.1.5 concerning elliptic systems ofN equations for u = (u1, · · · , uN),
uj : Ω ⊂ R

d → R, with Ω an open domain. Let L be a linear elliptic
operator of order m, and consider vector functions u satisfying the ho-
mogeneous conditions Bu = 0.

An important fact is that ker(L) =< w1, w2, · · · , wd >, furthermore,
Rg(L) =< w′

1, w
′
w, · · · , w′

d∗ >
⊥. Then, the elliptic operator L has index

i = ind(L) = d− d∗.
We shall assume that i ≥ 0. We shall also make the following hypoth-

esis concerning the Kernel: w ≡ 0 is the only w ∈ ker(L) that vanishes
on a set of positive measure in Ω.

We note that this is the analogue of asking in [23] the existence of
a nontrivial solution of the linearized problem. The nonlinear system to
be solved is of the form:

{

Lu = g(x,Dαu) in Ω

Bu = 0 on ∂Ω,
(2.8)

where Dαg ∈ C(Ω,RN) for 0 ≤ |α| ≤ m − 1 and Dαg ∈ C(Ω,RN) for
|α| = m. For all arguments η = {ηα} 6= 0 (and Dα is symmetric). We
suppose that

h(x, η) = lim
s→∞

g(x, sη), (2.9)
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and that the convergence is uniform in Ω × {|η| = 1}. Nirenberg gives
sufficient conditions on h to ensure solvability of (2.8).

For a ∈ Sd−1 define the map φ : Sd−1 → R
d∗−1 by

φk(a) = 〈h(x,Dα

d
∑

j=1

ajwj(x)), w
′
k〉 k = 1, · · · , d∗.

As a consequence of the hypothesis that the only w ∈ ker(L) that
vanishes in a set of positive measure is the trivial solution, one may
prove that the mapping φ is continuous. Now assume that φ(a) 6= 0 for
a ∈ Sd−1 and set:

ψ : Sd−1 → Sd∗−1, ψ(a) =
φ(a)

|φ(a)| .

Theorem 2.1.6. If ψ has nontrivial stable homotopy then (2.8) is solv-
able.

By a solution, we mean a function in Cm−1 with derivatives of order
m in Lp(Ω) for large p. If g is smooth then using regularity theory, it
follows that these solutions are smooth.

Remark 2.1.7.

• If d = d∗, then ψ has a nontrivial stable homotopy and it means
that ψ is homotopically nontrivial (deg(ψ) 6= 0). In this case, the
result is proven using the Leray-Schauder degree.

• When N = 1, d = d∗ = 1, and g = g(x, u), then h(x, η) corresponds
to

h±(x) = h(x,±1) = lim
u→±∞

g(x, u),

and in this case, being homotopically nontrivial means that

A1 =

∫

Ω+

h+w
′dx+

∫

Ω−

h−w
′dx, A2 =

∫

Ω−

h+w
′dx+

∫

Ω+

h−w
′dx

have opposite signs, so the theorem contains the result of Landes-
man and Lazer described above (Theorem 2.1.1) as a special case.

• Since it is not known how to determine whether a map ψ has non-
trivial stable homotopy, the theorem is not readily applicable.
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2.1.3 Generalizations of the Nirenberg Result

Another interesting work is due to Krasnoselskii and Mawhin [22]. It has
an introduction that gives a perfect insight of the interesting problems
of the area. In this work they consider the 2π-periodic problem for the
equation

− x′′ − n2x+ g(x) = p(t), (2.10)

where n is a positive integer, p(t) is continuous and 2π-periodic, and
g(x) is bounded and continuous. They give a new formulation for the
Lazer-Leach conditions for the existence of 2π-periodic solutions, and
new sufficient conditions for the existence of unbounded sequences of
such solutions.

The corresponding pioneering work is due to Lazer and Leach [25],
who proved the existence of at least one 2π-periodic solution under one
of the conditions

|p| < 2
(

lim inf
x→+∞

g(x)− lim sup
x→−∞

g(x)
)

or
|p| < 2

(

lim inf
x→−∞

g(x)− lim sup
x→+∞

g(x)
)

,

where p =
∫ 2π

0
eitp(t)dt.

In the same paper [25], Lazer and Leach have also proved that if g is
not constant and if

|p| ≥ 2
(

sup
R

g − inf
R

g
)

,

then equation (2.10) has no 2π−periodic solution. Alonso and Ortega in
[1] have shown that when local uniqueness of the Cauchy problem holds,
this last condition implies that every solution of (2.10) satisfies

lim
|t|→∞

[x2(t) + x′2(t)] = +∞,

and that the unboundness of sufficiently large solutions follows from a
weaker condition involving the asymptotic properties of g.

Here, we considered important to comment two important works for
this thesis, extensions of the seminal Nirenberg results [29]. One is due to
Amster and De Nápoli [6] in the context of a p−Laplacian type operator
(1.1.17) in an ordinary differential system and the other is a work from
Ortega and Ward Jr [32] in the context of an ellpitic problem with Neu-
mann boundary conditions. These important results will be explained in
detail in the next Chapter, as they were the motivation of some of the
results discussed in this work.
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A much more recent work, by Amster and Clapp [5] studies in depth
the geometric nature of the conditions for the nonlinearity g. They start
form a work of Lazer, [24], who considered the scalar differential equation

x′′ + cx′ + g(x) = p(t), (2.11)

where c is a constant and p(t) is a continuous and T−periodic function
with zero average (p = 0). Lazer, in [24] proved the existence of a
T−periodic solution of (2.11) assuming that g ∈ C(R,R) satisfying

xg(x) ≥ 0 for |x| sufficiently large, (2.12)

and

g(x)

x
→ 0 as |x| → ∞. (2.13)

When one interprets the equation as an oscillator, condition (2.12)
means that the force −g(x) points toward the origin outside a compact
set. Condition (2.13) is required in order to avoid the linear resonance

occurring at c = 0 and g(x) = λnx, n = 1, 2 · · · , where λn =
(

2πn
T

)2

is the n-th eigenvalue of the T -periodic problem for the linear operator
Lx = −x′′.

Very soon after the publication of [24], a work by Mawhin [27] ap-
peared, extending the result to systems. If one considers (2.11) as a
system in R

N , p(t) = (p1(t)), · · · , pN(t)) with pi = 0 for all 1 ≤ i ≤ N
and g = (g1, · · · , gN) ∈ C(RN ,RN), Mawhin’s result replaced (2.12) and
(2.13) by

ukgk(u1, · · · , uN) ≥ 0, or ukgk(u1, · · · , uN) ≤ 0 for |uk| sufficiently large.
(2.14)

There are of course many other possible extensions of (2.12) with
strict condition, and we refer to the literature around the seventies. From
a topological point of view, a natural extension to R

N of the condition
ug(u) > 0 for |uj| large could be:

g(u) 6= 0 for |u| ≥ R (2.15)

and

deg(g, BR(0), 0) 6= 0, (2.16)

where deg is the Brouwer degree (see 1.2.15).
Let us finally mention some generalizations of the Landesman and

Lazer conditions for systems. In [31] Ortega and Sanchez, study the
analogous problem as before (2.11):
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u′′ + cu′ + g(u) = p(t), (2.17)

where u ∈ R
N, c ≥ 0, g ∈ C(RN ,RN) bounded, and p ∈ C(R,RN) is

T−periodic.
Their starting point is a well-known result which is valid for scalar

equations:

Theorem 2.1.8. Assume that N = 1 and that g has limits at infinity,

g(±∞) := lim
s→±∞

g(s),

then (2.17) has a T−periodic solution if

g− < p < g+.

Moreover, if g− < g(s) < g+ for all s ∈ R, then the previous condition
is also necessary.

This condition is of course of the Landesman-Lazer type, which we
have studied in the Dirichlet problem for an elliptic equation in [23], in
Theorem 2.1.1. In [29], Theorem 2.1.5 extended the result to system of
elliptic equations, this theorem was adapted to the T−periodic setting
in the work of Ortega and Sanchez:

Theorem 2.1.9. Assume that N > 1, and that the radial limits

gv := lim
s→∞

g(sv)

exist uniformly with respect to v ∈ SN−1, then (2.17) has a T−periodic
solution if the following conditions hold:

(N1) gv 6= p, ∀v ∈ SN−1.

(N2) deg(Φ) 6= 0, where Φ : SN−1 → SN−1

Φ(v) =
gv − p

|gv − p| .

They show an example where this result applies:

z′′ + cz′ +
zn

1 + |z|n = p(t),

where n = 1, 2, · · · and z ∈ C (identified with R
2). In this case z ∈ S1

implies z = eiθ, θ ∈ [0, 2π) so:
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gv = geiθ = einθ

and Theorem 2.1.9 can be used whenever |p| < 1.
Notice also that this condition is sharp, because if z(t) is a T−periodic

solution, then by the periodic boundary conditions,

∣

∣

∣

∣

∫ T

0

p(t)dt

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ T

0

z(t)n

1 + |z(t)|ndt
∣

∣

∣

∣

< T.

So, the conditions given are also necessary for the existence of the
solutions (the strict inequalities hold).

Remark 2.1.10. The preceding estimate can also be obtained in a more
indirect way by applying the Mean-Value Theorem for Vector-Valued
Integrals (1.1.19). With this result, the arguments from the previous
example can be extended to the general equation (2.17). In this way, one
can deduce that if (2.17) has a T−periodic solution, then p must lie in
the closed convex hull of g(RN). For N = 1, this convex hull coincides
with g(R) because connected sets of R (intervals) are always convex.
Obviously, this is not true for N ≥ 2, and this geometrical fact must be
taken into account when studying (2.17) for N ≥ 2.

In this paper, Ortega and Sanchez intended to generalize Theorem
2.1.8 and Theorem 2.1.9:

First, they considered a class of functions g having a convex range and
such that p ∈ g(RN) becomes a necessary and sufficient condition for the
existence of T−periodic solutions. This can be seen as an extension of
Theorem 2.1.8 to N ≥ 2. They also showed that if g(RN) is not convex,
then one can not decide the solvability of the periodic problem only in
terms of p.

Finally, they discuss some tentative extensions of Theorem 2.1.9 which
are motivated by classical results for the scalar case.

Remark 2.1.11. The origin of Theorem 2.1.8 can be traced back to the
theory of forced oscillations developed in the sixties. In fact, it can be
obtained as a corollary of the main result in [24]. Here it is shown that,
in the scalar case, the existence of a T−periodic solution is guaranteed
by the condition:

g(−u) < p < g(u), u ≥ R for some R > 0. (2.18)

This is an improvement of Theorem 2.1.8, because (2.18) is less re-
strictive than the condition by Landesman and Lazer, and the existence
of the limits g(±∞) is not required.
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Going back to the case N ≥ 2, they state two conditions which seem
a natural extension of (2.18) to systems. Namely, for some R > 0,

(N1)w g(u) 6= p , if |u| ≥ R.

(N2)w deg(Φ) 6= 0, where Φ : SN−1 → SN−1

Φ(v) =
g(Rv)− p

|g(Rv)− p| .

Despite the analogy, it is shown that there are systems of the type
(2.17) in R

2 which satisfy (N1)w and (N2)w but have no T−periodic solu-
tions. These examples show, in some sense, the necessity of the existence
of radial limits of g in Theorem 2.1.9. They also indicate that some
results in the theory of scalar periodic problems can not be translated
literally to systems. They prove the following result:

Theorem 2.1.12 (Ortega-Sanchez). Assume that g is bounded continu-
ous with g(0) = 0 and satisfying

(OS1) For each v ∈ SN−1, the limit gv := lims→+∞ g(sv) exists and is
uniform with respect to v in SN−1.

(OS2) g(S
N−1
∞ ) ∩ g(RN) =, where g(SN−1

∞ ) = {gv : v ∈ SN−1}.

(OS3) deg(Φ) 6= 0, for Φ : SN−1 → SN−1 given by

Φ(v) =
gv
|gv|

.

then, (2.17) has at least one T−periodic solution if p ∈ g(RN). Moreover,
if g(RN) is convex, this condition is also necessary.

A similar result of that of Lazer [24], can be obtained for a force
pointing to infinity, that is when (2.12) is replaced by

xg(x) ≤ 0, if |x| ≥ R. (2.19)

When the inequality is strict in (2.12) or (2.19), one is led to the
condition:

g(x) 6= 0, if |x| ≥ R and g(R)g(−R) < 0. (2.20)

For N = 1, Theorem (2.1.12) is a corollary of Lazer’s result. This is
easily seen because, if g and p satisfy the conditions, then g∗(x) = g(x)−p
satisfies (2.20), while p∗(t) = p(t)− p has zero mean value.
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In view of this, it seems a good idea to look for an extension of Lazer’s
result to systems. Such an extension should contain Theorem 2.1.12 as
a corollary, and the assumptions should be natural extensions of (2.12),
(2.19) or (2.20). The authors have been unable to find a result like this,
and the following example shows why:

Example 2.1.13. Let N = 2 and consider in C ≡ R
2 the following

equation:

z′′ + g(z) = p(t) t ∈ R,

with p ∈ C(R/2πZ,C), p = 0 and g ∈ C(C,C) bounded and such that

g(z) 6= 0 if z ∈ C\D and deg(g,D, 0) 6= 0,

where D is certain open disk in the complex plane centered at the origin.
This condition is in a way comparable to condition (2.20).

Let g(z) = g0(z)− γ, where γ is a fixed complex number, 0 < |γ| < 1
and

g0(z) = eiRe z z
√

1 + |z|2
.

It is not hard to verify that deg(g0, D, 0) = 1 in any disk containing
the origin and that g ∼ g0 in large disks, so one has:

deg(g,D, 0) = deg(g0, D, γ) = deg(g0, D, 0) = 1.

The authors prove that if the p is chosen to be p(t) = λ sin(t), then
the problem has no 2π−periodic solutions for λ large.

The problem of extending and generalizing the Landesman-Lazer con-
ditions for systems was the first big problem we studied for this thesis
and Chapter 3 is dedicated to it.

2.2 Singular Problems

There exists a vast bibliography on this kind of dynamical systems. Here,
we try to show which are the main problems when dealing with singu-
larities for this kind of systems. Since we introduced a set of boundary
conditions (the Nonlocal Boundary Conditions) not that common in the
field, we could not find results of systems of elliptic equations with that
kind of boundary conditions in the case of singular nonlinearities. We
give a series of results for the periodic case, the first being from the Italian
school from the late 80’. Consider the following problem:
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{

u′′ + g(u) = p(t) t ∈ R

u T − periodic,

with, g ∈ C(RN\S,RN). We also note that in the references here men-
tioned, only the case S = {0} is studied, the case of an isolated singular-
ity.

One of the pioneer works in this line of research is due to Lazer and
Solimini [26]. They considered the scalar case N = 1, with g(u) → −∞
as u → 0, and

∫ 1

0
g(t)dt = −∞. Using a result by Lazer [24], it is

shown that a necessary and sufficient condition for the existence of a
weak solution when g < 0 and p ∈ L1([0, T ],R), is that p < 0.

In [34], Solimini studied the case g = ∇G, where the potential G
has a singularity of repulsive type at zero: for example, the electrostatic
potential between two charges of the same sign. More precisely, they
work with two sets of conditions.

In one of them it is assumed that there exist constants c1, c2 such that

∀x ∈ R
d\{0} : 〈g(x), x〉 ≤ c1 + c2|x|. (2.21)

In the other one it is assumed that G ∈ C1(RN\{0},R) satisfies
lim|u|→0G(u) = +∞, and g = ∇G is strictly repulsive at the origin,
namely:

lim sup
u→0

〈

g(u),
u

|u|

〉

< 0.

and that

∃ δ > 0 such that, if

∣

∣

∣

∣

u

|u| −
v

|v|

∣

∣

∣

∣

< δ, then 〈g(u), v〉 < 0. (2.22)

Condition (2.21) is, in a sense, weaker than condition (2.22), it says
that the outward radial component of g(x) can grow at most as |x|−1 as
x→ 0.

In this work, the existence is shown of a constant η > 0 such that
if ‖p‖L∞ < η and p = 0, then the problem has no classical solution
if g satisfies the second condition (2.22). This includes the case of the
repulsive central motion, where G(u) = 1

|u|
.

In the same work, the existence of a solution for p 6= 0 under the
weaker assumption (2.21) is proved.

Also, it is remarked that if ‖p‖L∞ is large enough, then condition
p = 0 does not imply that the problem is unsolvable. This is different
from what happens in the case N = 1, in which u cannot turn around
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zero; thus, if the repulsive condition g(u)u < 0 is assumed for all u 6= 0,
then the condition p 6= 0 is necessary. Saddle Point variational techniques
are used throughout this work.

In a recent paper, Fonda and Toader [18] made an exhaustive analysis
on radially symmetric Keplerian-like systems u′′ + g(t, |u|)u = 0, where
g : R × (0,+∞) → R is T -periodic in t. Using a topological degree
approach, the existence of classical T -periodic solutions is studied. This
work provides also an excellent survey of the known results on the subject.
It is focused in the attractive case, in which the main difficulty consists
in avoiding collisions. It is also remarked that, for the repulsive case, the
difficulty relies in the case p = 0, which is consistent with our studies.

In general the first works in this area worked with this Strong Force
condition:

Definition 2.2.1. The system u′′ +∇G(u) = p(t) is said to satisfy the
strong force condition if and only if there exist a neighborhood C of S
and a C2 function H on C\S such that:

i) U(x) → −∞ as x→ S.

ii) −G(x) ≥ |∇H(x)|2 for all x ∈ C\S.

Roughly speaking, this condition means that the potential G behaves
as 1

|u|γ
near the origin, with γ ≥ 2; thus, it is not satisfied by the Keplerian

potential.
In [40], Zhang employed topological techniques in order to study the

T -periodic problem for the system

u′′ + (∇F (u))′ +∇G(u) = p(t). (2.23)

When F ≡ 0, the problem has variational structure and, as men-
tioned, the repulsive case was studied in [34]. The attractive case with
p ≡ 0 and N = 2 was solved by Gordon [19], using critical point theory
and imposing a strong force condition on G (see 2.2.1) in order to get
compactness properties for the involved functionals.

We here state the main result on this work:

Theorem 2.2.2. If the following conditions hold (we call g = ∇G):

(G1) limx→0〈u, g(u)〉 = −∞.

(G2) Habets-Sanchez’s Strong Force Condition at 0: there exists a func-
tion ϕ ∈ C1(RN\{0},R) such that:

i) limu→0 ϕ(u) = +∞.
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ii) |∇ϕ|2 ≤ 〈u, g(u)〉+ c1, near 0, with c1 > 0.

(G3) There exist constants c2, c3 such that

〈u, g(u)〉 ≤ c2|u|2 + c3 ∀ u 6= 0.

(G4) There exists a constant R1 such that for any solution u of the
T−periodic problem

u′′ + λ ((∇F (u))′ +∇G(u)) = λp(t) λ ∈ (0, 1],

one has |u(τ)| < R1 for some τ ∈ [0, T ].

(G5) deg(g,Dr,R, 0) 6= 0, for all 0 < r < 1 and some sufficiently large R,
where Dr,D is the annulus {r < |x| < R}.

Then, the T−periodic problem (2.23) has at least one solution.

Note that the condition (G2) is of the same nature as the one given
by Definition 2.2.1.

Condition (G1) says that the singularity is of repulsive type. Con-
dition (G3) is concerned with the growth of ∇G at infinity. Conditions
(G4), (G5) are the type of conditions when using Mawhin’s Continuation
Theory (see Chapter 1). They are difficult to verify though, especially
(G4), that says that there are no solutions in the inner boundary of the
domain. We found this result really interesting because it combined sin-
gularities and Continuation Theory. The idea of applying the theory in
more general sets will be the same idea we use in this thesis when dealing
with a general set of singularities S, in Chapter 5.

Zhang remarks the following: The result says that if G(u) satisfies
some strong force condition at the singularity 0, the existence of periodic
solutions can be obtained provided that the potentialG(u) is smaller than
the first eigenvalue of the corresponding Dirichlet problem at infinity.
Meanwhile, no restriction on the damping term F (u) is imposed.

The same kind of assumptions (Strong Force) are made in a work
from Coti Zelati [15] for the repulsive case.



48 CHAPTER 2. A BRIEF SURVEY OF THE PROBLEMS



Chapter 3

Nonsingular Problems

3.1 Introduction

Throughout this chapter we will leave for a moment the idea of a singular
nonlinearity. We will focus instead on problem stated in the introduction:
Lu = Nu, when Nu = f − g(u) with g ∈ C(RNmR

N) and appropriate
Boundary Conditions, depending on the context.

The periodic problem,

{

u′′ + g(u) = p(t) t ∈ R

u(t+ T ) = u(t) t ∈ R,
(3.1)

was in fact the first problem that we studied in the early stages of this
work. As mentioned in the Chapter 2, there were many results extending
a well-known result by Nirenberg [29]: Theorem 2.1.5, or Theorem 2.1.9
, which in this context can be stated as follows:

Theorem 3.1.1. Let p ∈ C(R,RN) be T -periodic such that p = 0, and let
g ∈ C(RN ,RN) be bounded. Then problem (3.1) has a solution, provided
that:

(N1) The radial limits gv := limr→+∞ g(rv) exist uniformly for v ∈ SN−1

and

gv 6= 0 ∀v ∈ SN−1.

(N2) There exists a constant R0 > 0 such that deg(Φr) 6= 0 for r ≥ R0,

where Φr : S
N−1 → SN−1 is given by Φr(v) :=

g(rv)
|g(rv)|

.

Here, deg(Φr) is the degree defined as a function of the sphere, as
explained in (1.2.20).

Our main result in this Chapter is based on two previous extensions
of Theorem 3.1.1. On the one hand, a result by Ortega and Ward Jr [32],

49
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originally in the context of partial differential equations, where (N1) is
replaced by the following condition, that allows g to vanish at infinity:

(H1) The radial limits limr→+∞ Φr(v) exist uniformly for v ∈ SN−1.

On the other hand, a result by Amster and De Nápoli [6], for a p-
Laplacian type operator (1.1.17), in which the asymptotic condition (N1)
is weakened to:

(F1) There exists a family {(Uj, wj)}Kj=1, with Uj open subsets of SN−1

and wj ∈ SN−1 such that {Uj}j covers SN−1, the upper limit

lim sup
r→+∞

〈g(ru), wj〉 := Sj(u)

is uniform for u ∈ Uj, and Sj(u) < 0.

Remark 3.1.2. (N2) is similar to the original condition deg(Φ) 6= 0 in
[29], where Φ : SN−1 → SN−1 is given by Φ(v) := gv

|gv |
in the first case,

and by Φ(v) := limr→+∞ Φr(v) in the second case. However, (N2) makes
sense also when the weaker assumption (F1) is assumed, for which radial
limits for g or g

|g|
do not necessarily exist.

It is worth mentioning that, using the equivalence (1.2.22), (N2) can
be also expressed in terms of the Brouwer degree of g, namely:

(N ′
2) There exists a constant R0 > 0 such that deg(g, Br(0), 0) 6= 0 for
r ≥ R0.

Indeed, the equivalence between (N2) and (N ′
2) is clear from the identity

(1.2.22) introduced in Chapter 1 valid for any mapping g ∈ C(B1(0),R
N)

such that g does not vanish on SN−1:

deg(g, B1(0), 0) = deg(φ),

where φ : SN−1 → SN−1 is given by φ(v) := g(v)
|g(v)|

.

We will adapt a condition used by Amster and De Nápoli in [6]. They
introduced condition (F1), that weakened condition (N2). They reached
to an interesting geometrical condition, weaker than the classical condi-
tion in Nirenberg [29]. It involves covering SN−1 with a finite number
of open sets Uj and taking directions wj ∈ SN−1 such that the uniform
limit exists for each u ∈ Uj :

(P1) There exists a family F = {(Uj, wj)}Kj=1 where {Uj}Kj=1 is an open
cover of SN−1 and wj ∈ SN−1, such that for some Rj > 0 and
j = 1, . . . , K:

〈g(ru), wj〉 < 0 ∀r > Rj ∀u ∈ Uj.
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3.2 A generalization of a Nirenberg result

We will work with continuous nonlinearities g bounded at infinity, i.e.
g ∈ L∞(RN\B1(0),R

N). For convenience, the boundedness condition on
g shall be expressed as:

(B) lim sup|u|→∞ |g(u)| <∞.

Note that if g is nonsingular, condition (B) is equivalent to g being
bounded at infinity. Moreover, it shall be seen that (B) may be replaced
by

(B′) lim sup|u|→∞〈g(u), u〉 <∞.

In particular, if lim inf |u|→∞ |g(u)| > 0, then condition (B′) says that

lim inf
|u|→∞

A(u) ≥ π

2
, (3.2)

where A(u) denotes the angle between g(u) and u, as cos(A(u)) = 〈g(u),u〉
|g(u)||u|

.
This is because

lim sup
|u|→∞

cos(A(u)) ≤ 0.

Our result for the nonsingular case, reads:

Theorem 3.2.1 (Amster, M. - I). Let p ∈ C(R,RN) be T -periodic such
that p = 0, and let g ∈ C(RN ,RN) satisfy either (B) or (B′). Then
problem (3.1) has a solution, provided that (N2) and (P1) hold.

Remark 3.2.2. It is easily seen that (P1) generalizes (F1), since the
upper limits may vanish, or may not be uniform as r → +∞.

On the other hand, following the ideas in [33] it is seen that (P1) can
be replaced by the following condition, of geometric nature:

(P̃1) There exists an open cover {Uj}j=1,...,K of SN−1 such that for some
Rj > 0 and j = 1, . . . , K:

0 /∈ co (g (Cj)) , Cj :=
⋃

r>Rj

rUj,

where co(A) denotes the convex hull of A ⊂ R
N (see Definition

1.1.20).



52 CHAPTER 3. NONSINGULAR PROBLEMS

Indeed, from the geometric version of the Hahn-Banach theorem, for
any compact subset C ⊂ Cj we deduce the existence of a vector wj such
that 〈g(u), wj〉 < 0 for every u ∈ C and, as we shall see, this suffices for
obtaining a priori bounds for the average of the solution, |u|. This, plus
the a priori bound for ‖u − u‖∞ will give us the a priori bound needed
for the solutions.

We are now in condition to show a proof of Theorem 3.2.1:
Proof:
It suffices to verify that the hypotheses of Mawhin’s Continuation The-
orem [27], studied in Chapter 1, are satisfied over the domain Ω, with
Ω = {u ∈ C([0, T ],RN) : ‖u‖L∞ < R}. As (N2) holds, we know that
deg(g, BR(0), 0) 6= 0 for large values of R. Thus, we only need to prove
that for λ ∈ (0, 1], the problem

u′′ = λ(p(t)− g(u)) (3.3)

does not have a T -periodic solution on ∂BR(0) ⊂ C([0, T ],RN), for some
R large enough.

Assume firstly that (B) holds, and let us suppose that problem (3.3)
has an unbounded sequence of solutions; namely, there exist λn ∈ (0, 1]
and T -periodic functions un such that ‖un‖∞ → ∞ and

u′′n(t) = λn(p(t)− g(un(t)).

Taking average on both sides, we have

1

T

∫ T

0

u′′n(t)dt =
1

T

∫ T

0

λn(p(t)− g(un(t))dt = λnp− λn
1

T

∫ T

0

g(un(t))dt.

As un is periodic,
∫ T

0
u′′n(t)dt = 0 for all t. It follows that

∫ T

0

g(un(t))dt = 0. (3.4)

On the other hand, from the boundedness of g we obtain:

‖u′n‖L∞ ≤ T‖u′′n‖L∞ ≤ T (‖p‖L∞ + ‖g‖L∞) =M.

Hence, un − un is bounded; in particular, as ‖un‖L∞ → ∞, writing

un(t) = (un(t)− un) + un,

we conclude that |un| → ∞ and rn(t) := |un(t)| ≥ |un| − ‖un − un‖L∞ . It
is clear that this expression goes to infinity uniformly.



3.2. A generalization of a Nirenberg result 53

Next, define

zn(t) =
un(t)

|un(t)|
∈ SN−1.

Passing to a subsequence, we may assume that un

|un|
converges to some

u ∈ SN−1, and hence zn → u ∈ SN−1 uniformly. From (P1), u ∈ Uj for
some j = 1, . . . , K.

Also, fixing n0 such that rn(t) > R0, with R0 coming from hypothesis
(N2), implies that zn(t) ∈ Uj for all n ≥ n0 and all t ∈ [0, T ]. For n ≥ n0,
we deduce that

〈g(rn(t)zn(t)), wj〉 < 0 (3.5)

for all t ∈ [0, T ]. Hence, as (3.4) holds, it also holds that

0 =

〈
∫ T

0

g(un(t))dt, wj

〉

=

∫ T

0

〈g(un(t)), wj〉dt.

The last equality holds because wj does not depend on t. Next as

un(t) = rn(t)zn(t),

and using (3.5), we arrive to the desired contradiction:

0 =

∫ T

0

〈

g(rn(t)zn(t)), wj

〉

dt < 0 for n ≥ n0.

Finally, if condition (B′) holds instead of (B), we multiply the equality

u′′n = λn(p− g(un)),

by un − un and integrate:

∫ T

0

〈u′′n, un − un〉dt = λn

∫ T

0

〈p− g(un), un − un〉dt.

Just like we did before, using that the fact that g(un) = 0 (see 3.4)
we deduce:

‖u′n‖2L2 ≤ ‖p‖L2‖un − un‖L2 + λn

∫ T

0

〈g(un), un〉dt.

Using now the inequality (3.2), we have:

‖p‖L2‖un − un‖L2 + λn

∫ T

0

〈g(un), un〉dt ≤
T

2π
‖p‖L2‖u′n‖L2 + kT.
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Hence, ‖u′n‖L2 is bounded which, in turn implies that ‖un − un‖L∞ is
bounded, and the rest of the proof follows as before.

�

Remark 3.2.3. Under an appropriate Nagumo [28] type condition, a
more general result could be obtained for g = g(t, u, u′).

Perhaps it is hard to see the improvement in the previous technical
hypothesis (P1). The crucial point is that we can guarantee existence of
solutions in the absence of radial limits for g or even for g

|g|
. To visualize

this fact, let us consider the following Landesman-Lazer type condition
(see [23]), introduced and studied in Chapter 2 motivated by an analogous
result in the work from Amster and De Nápoli [6]:

(P ′
1) Let {ei}Ni=1, {wj}Nj=1 ⊂ SN−1 be two bases of RN , and assume there

exists s0 > 0 such that

〈g(x− sei), wi〉 > 0 > 〈g(x+ sei), wi〉, ∀ s ≥ s0,

for all x ∈ span{ej : j 6= i} and 1 ≤ i ≤ N .

It is easy to prove that one condition implies the other:

Proposition 3.2.4. Condition (P ′
1) implies condition (P1).

Proof:

Indeed, let u ∈ SN−1, u = x + αei, with x ∈ span{ej : j 6= i}, α 6= 0.
Now, fix δ < |α| and consider ũ = x̃+ α̃ei ∈ U := Bδ(u)∩SN−1. If α > 0,
then as sx̃ ∈ span{ej : j 6= i} we obtain:

〈g(sũ), wi〉 = 〈g(sx̃+ sα̃ei), wi〉 < 0 for sα̃ ≥ s0.

In the same way, for α < 0:

〈g(sũ),−wi〉 = −〈g(sx̃− s|α̃|ei), wi〉 < 0 for s|α̃| ≥ s0.

As |α̃| > α− δ, both inequalities hold for ũ ∈ U when s ≥ s0
α−δ

.

The result follows now from the compactness of SN−1.
�

With this implication, we state another existence result.

Theorem 3.2.5 (Amster M. - II). Let g ∈ C(RN ,RN) satisfy either (B)
or (B′), and p ∈ C(R,RN) be T -periodic with p = 0. If condition (P ′

1) is
satisfied, then problem (3.1) has at least one solution.
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Proof:
From the previous proposition, we only need to prove (N2). Without
loss of generality we may assume that {wi}Ni=1 = {ei}Ni=1 is the canonical
basis. Hypothesis (P ′

1) says that there exists s0 such that if s ≥ s0, then

gi(x− sei) > 0 > gi(x+ sei) ∀x ∈ span{ej : j 6= i}, i = 1, . . . , N.

Let R ≥ s0, and consider the cube QR := [−R,R]N and following
homotopy:

h(λ, u) := λg(u)− (1− λ)u.

Suppose there exists u ∈ ∂QR such that h(λ, u) = 0 for some λ ∈
[0, 1]; for example u = x+ Rei with x ∈ span{ej : j 6= i}. Then, looking
at the i−th coordinate:

λgi(x+Rei) = (1− λ)R,

and we have that, from (P ′
1), the left hand-side term is negative, unless

λ = 0, a contradiction. An analogous argument can be used in the case
u = x − Rei. We then conclude that for any R ≥ s0, as we found an
homotopy between g and −Id and because of the homotopy invariance
property of the degree (see Chapter 1):

deg(g,QR, 0) = deg(−Id,QR, 0) 6= 0.

This is obviously equivalent to (N2), and so all the assumptions of The-
orem 3.2.1 hold. �

We show in the next Example a case in which our result gives us a
solution, but it does not fulfill the conditions of either [6] nor [32].

Example 3.2.6. Let N = 2 and g given by

g(x, y) =

(

1 + x+ r(y)

1 + x2
,
1 + y

1 + y2

(

1 +
sin x

1 + |y|

))

,

where r ∈ C(R,R) is a bounded function.
Taking e1 = (1, 0) = −w1; e2 = (0, 1) = −w2, we have that for all y:

〈g(s, y), w1〉 = −1 + s+ r(y)

1 + s2
< 0 ∀s > ‖r‖L∞ − 1,

〈g(−s, y), w1〉 =
s− 1− r(y)

1 + s2
> 0 ∀s > ‖r‖L∞ + 1,

and for all x:
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〈g(x, s), w2〉 = − 1 + s

1 + s2

(

1 +
sin x

1 + s

)

< 0 ∀s > 0,

〈g(x,−s), w2〉 =
s− 1

1 + s2

(

1 +
sin x

1 + s

)

> 0 ∀s > 1.

Thus, g verifies (P ′
1), although it does not verify the assumptions

of Ortega and Ward Jr [32]. Indeed, the radial limits for g
|g|

do not

necessarily exist. For example, let us consider the direction (1, 0) ∈ S1:
then, (sx, sy) = (s, 0) and

g(s, 0) =

(

1 + s+ r(0)

1 + s2
, 1 + sin s

)

;

|g(s, 0)| =
√

(

1 + s+ r(0)

1 + s2

)2

+ (1 + sin s)2.

Let s = 4k−1
2
π, k ∈ N, γ 4k−1

2

=
g( 4k−1

2
π,0)

|g( 4k−1

2
π,0)|

. Here, sin(4k−1
2
π) = −1,

then

γ 4k−1

2

= (1, 0) for k large enough.

Now, let s = kπ, k ∈ N, γk =
g(kπ,0)
|g(kπ,0)|

. As sin(kπ) = 0,

γk → (0, 1) as k → ∞.

This shows that the limit of g(s,0)
|g(s,0)|

as s → +∞ does not exist. Note

also that g does not satisfy the assumptions in [6], because g vanishes as
|x| and |y| tend to infinity.

3.3 A result involving a geometrical condi-

tion

Consider now the Elliptic problem with the nonlocal boundary condition,
previously discussed in the Introduction:







∆u+ g(u) = f(x) in Ω
u = C on ∂Ω

∫

∂Ω
∂u
∂ν
dS = 0.

(3.6)

As the nature of this problem is on the resonance of the operator,
as was in the periodic problem, an analogous for Theorem 3.2.1 can be
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easily proven. In Chapter 5 we shall prove a more general version of this
result.

When studying the more general elliptic singular problem (3.6) with
g having a set S of singularities, we changed a little the conditions on g
and studied some other generalization of the classical condition given by
Nirenberg in [29] which implied that g cannot rotate around the origin
when |u| is large. These conditions were first introduced by Ruiz and
Ward Jr in [33] and extended by Amster and Clapp in [5]. They have
a geometric nature and involve the convex hull of the image of g over
a certain ball. In this section we state a result for the nonsingular case
using this type of conditions.

We use from now on the geodesic distance on Ω, namely:

d(x, y) := inf{lenght(γ) : γ ∈ C1([0, 1],Ω) : γ(0) = x, γ(1) = y}. (3.7)

Indeed, we shall fix a number r:

r := k diamd(Ω)(‖f‖L∞ + ‖g‖L∞), (3.8)

where k is a constant such that

‖∇u‖L∞ ≤ k‖∆u‖L∞

for all u ∈ C2(Ω,RN) satisfying the nonlocal boundary conditions of
(3.6). The existence of this k will be shown in Lemma 5.2.1 in Chapter
5.

Then we shall assume, for a certain D ⊂ R
N :

(D1) For all v ∈ ∂D, 0 /∈ co(g(Br(v))).

(D2) deg(g,D, 0) 6= 0.

Condition (D1) is weaker than Nirenberg’s in the sense that it allows
g to rotate, although not too fast since r cannot be arbitrarily small.
Condition (D2) is an analogous of condition (N2). It is worth mentioning
that (D1) is even weaker than (P1) because of the following argument:
Suppose g satisfy (P1). Taking R0 = max{1≤j≤K}Rj and D = BR0

(0), If
v ∈ ∂D, v = R0u with u ∈ SN−1 and there is a j0 such that u ∈ Uj0 , we
then have that 〈g(v), wj0〉 < 0. As this is uniform in Uj0 one can always
take a slightly bigger R0 such that 0 /∈ co(g(Br(v))).

The main result of this section is the following:

Theorem 3.3.1 (Amster M. - III). Let g ∈ C(RN ,RN) satisfying (B)
and f ∈ C(Ω,RN) such that f = 0. Let r be as in (3.8). If there exists a
bounded domain D ⊂ R

N such that (D1) and (D2) hold, then (3.6) has
at least one solution u with u ∈ D and ‖u− u‖L∞ ≤ r.
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Proof:

Let U = {u ∈ C(Ω,RN) : ‖u − u‖L∞ < r, u ∈ D} and consider, for
λ ∈ (0, 1], the problem







∆u+ λg(u) = λf(x) in Ω
u = C on ∂Ω

∫

∂Ω
∂u
∂ν
dS = 0,

(3.9)

It is clear that if u ∈ U solves (3.9) for λ = 1 then u is a solution of
(3.6).

Indeed, if u ∈ U then u ∈ D and ‖u − u‖∞ ≤ r. These both things
imply that u(x) ∈ D.

For the reader’s convenience, let us briefly describe how the standard
continuation methods [27], Theorem (1.2.26), explained in Chapter 1 can
be adapted to our problem.

Let C̃ := {u ∈ C(Ω,RN) : u = 0} and K : C̃ → C̃ be defined as
a right inverse of ∆; specifically, for ϕ ∈ C̃ we define u := Kϕ as the
unique solution of the linear problem















∆u = ϕ in Ω
u = C on ∂Ω

∫

∂Ω
∂u
∂ν
dS = 0,

u = 0.

(3.10)

A classical way to show the existence of a unique solution of the above
problem is by considering the Linear Dirichlet problem:

{

∆u0 = ϕ in Ω
u0 = 0 on ∂Ω

(3.11)

This problem has a unique solution u0. Defining u = u0 − u0, it is
easy to see that it that satisfies (3.10). Note here that C = −u0.

The compactness of K follows from the standard Sobolev embeddings
as seen also in Chapter 1.

Next, let Nu = f − g(u) and define the homotopy h(u, λ) as

h(u, λ) = u−
[

u+Nu+ λK(Nu−Nu)
]

.

For λ > 0, it is easy to check that u ∈ C(Ω,RN) is a solution of (3.9)
if and only if h(u, λ) = 0. Thus, it suffices to prove that (3.9) has no
solutions on ∂U for 0 < λ < 1. Indeed, in this case problem (5.2) has a
solution on ∂U or either

deg(h(·, 1), U, 0) = deg(h(·, 1), U, 0) = deg(g,D, 0) 6= 0.

Let u ∈ ∂U be a solution of (3.9), then u ∈ D and ‖u− u‖L∞ ≤ r.
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This implies that

‖∇u‖L∞ ≤ k‖∆u‖L∞ < k(‖f‖L∞ + ‖g‖L∞),

and thus

‖u− u‖L∞ ≤ diamd(Ω)‖∇u‖L∞ < r.

Hence, u ∈ ∂D. Moreover, it follows from the Mean-Value Theorem
for Vector Integrals (1.1.19) that

1

|Ω|

∫

Ω

g(u(x)) dx ∈ co(g(u(Ω))) ⊂ co(g(Br(u))).

On the other hand, simple integration shows that

∫

Ω

g(u(x)) dx = 0,

so 0 ∈ co(g(Br(u))), a contradiction.
�
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Chapter 4

Singular Periodic Problems

4.1 Motivation, The Central Motion Prob-

lem

When studying the problem presented in the previous Chapter, in a visit
to Buenos Aires, Professor Ortega pointed out that a really important
nonlinearity that had the property of vanishing at infinity was the Kep-
lerian Central Motion Problem in Classical Mechanics, or the Coulomb
Central Motion Problem in Electrostatic.

A fact that both of these problems have in common, and that was
never considered in our previous studies is the fact that the nonlinearities
involved have singularities. Refer to Chapter 2 for a brief survey on
singular problems.

Let us firstly recall the T -periodic Perturbed Central Motion Problem
in R

3:

{

u′′ ∓ u
|u|3

= p(t) t ∈ R

u(t+ T ) = u(t) t ∈ R
(4.1)

where u : R → R
3. We shall assume that the perturbation p has null

average, that is p := 1
T

∫ T

0
p(t)dt = 0, and that p is T−periodic, namely

p(t + T ) = p(t). The ∓ sign leads to two essentially different physical
problems; we shall focus on the ‘−’ sign, which corresponds to the repul-
sive case. This is the case of the electrostatic Coulomb Central Motion
Problem with a charge being repelled by the source.

With this problem in mind, we study the more general problem for a
function u : R → R

N :

{

u′′ + g(u) = p(t) t ∈ R

u(t+ T ) = u(t) t ∈ R
(4.2)

61
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where p ∈ C(R,RN) is T -periodic, p = 0, and g ∈ C(RN\{0},RN) has a
repulsive type singularity at u = 0. By this, we mean that 〈g(u), u〉 < 0
when u is near the origin. We will define this formally in the next section
(see Definition 4.2.1).

In order to present our results, let us start making some simple com-
ments on the central motion repulsive problem stated above (4.1).

We started working with this problem when studying the 2-body pe-
riodic problem:















x′′ − y−x
|x−y|3

= p1(t) t ∈ R

y′′ − x−y
|x−y|3

= p2(t) t ∈ R

x(t+ T ) = x(t) t ∈ R

y(t+ T ) = y(t) t ∈ R

(4.3)

with p1, p2 ∈ C(R,RN), and p1 = p2 = 0.
Here, u(t) = (x(t), y(t)) ∈ C(R,R2N) and the nonlinearity reads

g(x, y) = − 1

|x− y|3 (x− y, y − x) , p(t) = (p1(t), p2(t)). (4.4)

This is easily transformed into a central motion problem by the change
of variables















w = x− y
v = x+ y
P = p1 + p2
Q = p1 − p2.

Then, we have:

{

v′′ = P (t)

w′′ − 2 w
|w|3

= Q(t).

The first equation is easily integrable, and the second one is non
other than the Central Motion Problem. Degree Theory would not be
possible to apply directly without some restrictions, since there are no
a-priori bounds for the first equation, namely v′′ = P (t) with periodic
conditions. In fact, if v is a solution, v+ const is also a solution for every
constant. Also, an interesting remark is that, besides the singularity of g
at 0, it’s asymptotic behavior makes it different from the Nirenberg case
[29], as the nonlinearity goes to zero at infinity.

The first problem that arises is that when |x− y| goes to zero, g goes
to infinity. So we consider continuous perturbations of the nonlinearity.
Letting ε > 0, we take a continuous gε. Next, we try to avoid the fact
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that gε is zero in the diagonal subspace {x = y} of dimension N . We do
so by restraining ourselves to the subspace:

V = {u ∈ Cper(R,R
2N) : x+ y = 0},

whith Cper(R,R
2N) := {v : R → R

2N : v(t) = v(t + T ), ∀ t ∈ R} are the
T−periodic continuous functions.

Working only in this subspace we attack two problems at once: On
one hand we avoid possible collisions. On the other hand, viewing the
problem as two different problems after changing variables, we would be
able to find a-priori bounds for v, in V . That is somehow the idea behind
the degree approach we will use. The perturbation gε is carefully defined
later on in (4.10).

The second equation, w′′−2 w
|w|3

= Q(t), lead us to the Central Motion
Problem taking u = w

23/2
. The first difficulty arises on the fact that g is

singular at 0; a reasonable way to overcome it consists in considering, for
ε > 0, the function gε(u) = − u

ε+|u|3
and then studying the convergence

of the solutions uε of the perturbed systems

{

u′′ − u
ε+|u|3

= p(t) t ∈ R

u(t+ T ) = u(t) t ∈ R.
(4.5)

The second difficulty relies on the fact that gε vanishes at infinity;
however, in this case the existence of at least one solution uε of (4.5)
for each ε > 0 follows as an immediate consequence of the results we
obtained for the nonsingular case, Theorem 3.2.1. Indeed, as

〈gε(u), u〉 =
〈

− u

ε+ |u|3 , u
〉

= − |u|2
ε+ |u|3 < 0,

for u 6= 0, it follows that conditions (B′) and (N2) are trivially satisfied.
Moreover, for every w ∈ SN−1 define Uw = {u ∈ SN−1 : 〈u, w〉 > 0}.
Then {Uw}w covers SN−1, and clearly 〈g(ru), w〉 < 0 for u ∈ Uw and
r > 0.

It is important here to recall the different conditions we studied in
Chapter 3 as we are going to refer to them often in this Chapter and the
next one.

From the compactness of SN−1, condition (P1) is satisfied. Thus, we
may pass to the next step. The following computations provide some
information concerning the behavior of the family {uε}ε as ε→ 0:

Multiplying in L2 the equation in (4.5) by uε, we have:

〈u′′ε , uε〉 −
〈

uε
ε+ |uε|3

, uε

〉

= 〈p(t), uε〉 .
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Integrating by parts the first term on the left and rearranging the
terms we get:

〈u′ε, u′ε〉 = −
〈

uε
ε+ |uε|3

, uε

〉

− 〈p(t), uε〉 .

Noting that
〈

− uε

ε+|uε|3
, uε

〉

≤ 0, we reach to:

‖u′ε‖2L2 ≤ −〈p(t), uε〉 .
Here, note that 〈p, uε〉 = 0, as p = 0, so last equation can be written:

‖u′ε‖2L2 ≤ −〈p(t), uε − uε〉 .
Finally, taking absolute value we get the bound:

‖u′ε‖2L2 ≤ ‖p‖L2‖uε‖L2 .

Wirtinger inequality (Theorem 1.1.15) tells us that the following bound
also holds:

‖uε − uε‖L∞ ≤ C‖u′ε‖L2 .

So we have the following important uniform bounds:

‖u′ε‖L2 ≤ C, ‖uε − uε‖L∞ ≤ C (4.6)

where the constant C does not depend on ε. On the other hand, it is easy
to prove that the family {uε}ε ⊂ R

N is also bounded. Indeed, integrating
the main equation in (4.5) we obtain

∫ T

0

uε
ε+ |uε|3

dt = 0,

and we deduce that

−
∫ T

0

uε
ε+ |uε|3

dt =

∫ T

0

uε − uε
ε+ |uε|3

dt.

Now, taking norm in R
N :

|uε|
∫ T

0

1

ε+ |uε|3
dt ≤ ‖uε − uε‖L∞

∫ T

0

1

ε+ |uε|3
dt.

Thus, |uε| ≤ C for all ε > 0. Hence, for every sequence εn → 0 we may
choose a solution un := uεn and from the previous bounds there exists
a subsequence (still denoted {un}n) and a function u such that un → u
uniformly and weakly in H1. Moreover, the following property is easy to
see in this case and will be generalized later in this Chapter (see Lemma
4.3.1).
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Proposition 4.1.1. If u is obtained as before and u 6= 0 over an open
interval I, then u′′ − u

|u|3
= p in I, in the classical sense.

Our last problem concerns the study of the set of zeros of the limit
function u. As we shall prove for a more general case (Lemma 4.3.3), the
boundary of the zero set Z = {t ∈ [0, T ] : u(t) = 0} is finite. However,
in the central motion problem it can be seen, further, that if u 6≡ 0 then
the zero set is empty, i.e. u is a classical solution.

A detailed proof of these last remarks will be done in the next section,
for the previously stated general singular case (4.2).

4.2 Main Results

From now on, we shall always consider nonlinearities with singularities
of repulsive type at the origin, namely:

Definition 4.2.1. The function g ∈ C(RN\{0},RN) is said to be repul-
sive at the origin if, for some κ > 0

〈g(u), u〉 < 0 for 0 < |u| < κ. (4.7)

If, furthermore

lim sup
u→0

〈

g(u),
u

|u|

〉

:= −c, (4.8)

with c a positive constant, then g shall be called strictly repulsive at the
origin.

In order to study the general problem (4.2), we shall proceed in two
steps. Firstly, given ε > 0 we introduce the approximated problem

{

u′′ + gε(u) = p(t) t ∈ R

u(t+ T ) = u(t) t ∈ R,
(4.9)

where gε is a continuous (nonsingular) perturbation of g, and obtain
sufficient conditions for the existence of a family of solutions {uε}ε.

In this Chapter we work mainly with the following type of approxi-
mations:

Definition 4.2.2. We shall say that a family of nonsingular approxima-
tions {gε}ε ∈ C(RN ,RN) of a function g ∈ C(RN\{0},RN) is admissible
if gε → g uniformly over compact subsets of RN\{0} as ε→ 0.

Secondly, we study the convergence of particular sequences {uεn}n as
εn → 0, and study some properties of the limit function u. If u 6≡ 0, then
it shall be defined as a generalized solution of the problem:
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Definition 4.2.3. A function u ∈ H1
per(R,R

N) is said to be a generalized
solution of (4.2) if u 6≡ 0, and for some admissible choice of gε there exists
a sequence εn → 0 and {uεn}n solutions of (4.9) for εn such that uεn → u
uniformly and weakly in H1.

In some cases, we shall consider specific choices of gε, for instance

gε(u) =











g(u) |u| ≥ ε

ρε(|u|)g
(

ε u
|u|

)

0 < |u| < ε

0 u = 0,

(4.10)

where ρε ∈ C([0, ε], [0,+∞)) is continuous and satisfies ρε(0) = 0, ρε(ε) =
1 (more details shall be given below).

For the first step, that is proving existence results for nonsingular
problems, we will use the results studied in Chapter 3.

With Theorem 3.2.1 in mind, we proceed to the second step. Our
main existence results can be stated as follows. The first one:

Theorem 4.2.4 (Amster, M. - IV). Let p ∈ C(R,RN) be T -periodic
such that p = 0, and let g ∈ C(RN\{0},RN) be repulsive at the origin.
Further, assume that g satisfies (B) or (B′), and that conditions (P1)
and (N2) hold. Then either (4.2) has a classical solution, or else for any
choice of gε as in (4.10) there exists a sequence {un}n of solutions of
problem (4.9) with εn → 0 that converges uniformly and weakly in H1.

The second one, with stronger hypotheses but that gives a stronger
result:

Theorem 4.2.5 (Amster, M. - V). Let p ∈ C(R,RN) be T -periodic such
that p = 0, and assume that g ∈ C(RN\{0},RN) is repulsive at the origin
and satisfies (B) or (B′). Further, assume that condition (P1) holds, that

‖p‖L∞ + sup
|u|=r̃

〈

g(u),
u

|u|

〉

< 0 (4.11)

for some r̃ > 0 and that the following condition holds:

(P2) There exists a constant R0 > 0 such that deg(g, BR(0), 0) 6= (−1)N

for R ≥ R0,

then either (4.2) has a classical solution, or a generalized solution u such
that ‖u‖L∞ ≥ r̃.

Moreover, if g is strictly repulsive at the origin (see Definition 4.2.1),
then the boundary of the set of zeros of u in [0, T ] is finite.

Finally, if g = ∇G with limu→0G(u) = +∞, then (4.2) has a classical
solution.
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Throughout the rest of this Chapter we shall always assume that
p ∈ C(R,RN) is T -periodic, and p = 0.

In order to define the perturbed problem (4.9) in an appropriate way,
let us firstly observe that the natural extension of the previous situation
would consist in considering

gε(u) =

{

|u|
ε|g(u)|+|u|

g(u) u 6= 0

0 u = 0.
(4.12)

Nevertheless, there are other possible choices of gε such as the ones de-
fined by (4.10). In particular, for the central motion problem, taking
ρε(s) =

s
ε
the expression simply reduces to gε(u) = − u

(max{|u|,ε})3
.

Remark 4.2.6. For convenience, in the previous situation we shall adopt
the following notation. We shall denote un := uεn , and gn := gεn .

Remark 4.2.7. When g = ∇G, a different concept of solution (called
collision solution) was introduced in [10] (see also [2]). As we shall prove
(see Proposition 4.3.4 below), under the assumption that G(u) → +∞
as u → 0, both generalized and collision solutions are in fact classical.
Conversely, taking gε as in (4.10), it is obvious that classical solutions
are also generalized solutions.

4.3 The Approximation Scheme

Before giving a proof to the main results of this Chapter, we shall prove
some lemmas concerning the properties of those functions defined as the
limit of a sequence of perturbed problems.

Lemma 4.3.1. Let {un}n and u be defined as before, and assume that
u 6= 0 over an open interval I. Then u satisfies

u′′ + g(u) = p(t), ∀ t ∈ I

in the classical sense.

Proof:

Let φ ∈ C∞
0 (I,RN), multiplying the last equation in L2, then

∫

I

〈u′′n + gn(un), φ〉dt =
∫

I

〈p, φ〉dt.

Integrating by parts the first term on the left we have

−
∫

I

〈u′n, φ′〉dt+
∫

I

〈gn(un), φ〉dt =
∫

I

〈p, φ〉dt.
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Now, because of weak convergence of un to u in H1, we deduce that
the following is valid:

∫

I

〈u′n, φ′〉dt→
∫

I

〈u′, φ′〉dt (as n→ ∞).

Thus, to prove that u is in fact a weak solution of the problem, it
suffices to check that the following limit holds:

∫

I

〈gn(un), φ〉dt→
∫

I

〈g(u), φ〉dt (as n→ ∞).

As un → u uniformly on I, we may assume that M ≥ |un| ≥ c > 0
on the support of φ. Moreover, as gn → g uniformly on the annulus
{c ≤ |u| ≤M} ⊂ R

N\{0}, taking norm, it follows that

∣

∣

∣

∫

I

〈gn(un)−g(u), φ〉dt
∣

∣

∣
≤
∫

I

|〈gn(un)−g(un), φ〉|dt+
∫

I

|〈g(un)−g(u), φ〉|dt.

And this expression goes to zero, as n goes to infinity. This proves
that u is a weak solution, and the result follows from standard regularity
argument. �

Remark 4.3.2. Condition (4.8) is the same as in Solimini [34] for the
case g = ∇G. It is observed that it does not imply the strong force
condition (2.2.1). In particular, for any value of γ > −1 the nonlinearity
g(u) = −u

|u|γ+2 is strictly repulsive, with c = +∞.

In such a situation, it can be proved that the boundary of the set of
zeros of the limit function u is discrete; more generally:

Lemma 4.3.3. Let {un}n and u be defined as before, and assume that
g is strictly repulsive at the origin. Then the boundary of the set defined
by Z = {t ∈ [0, T ] : u(t) = 0} is finite, provided that ‖p‖L∞ < c, with
c ∈ (0,+∞] as in (4.8).

Proof:

Suppose u(t0) = 0, and fix µ > 0 such that ‖p‖L∞ +
〈

g(u), u
|u|

〉

< 0 for

0 < |u| < µ.
Next, fix δ > 0 such that |u(t)| < µ for t ∈ (t0 − δ, t0 + δ), and

suppose for example that u does not vanish in (a, b) for some non-trivial
interval [a, b] ⊂ [t0, t0 + δ). By Lemma 4.3.1 u is a classical solution of
the equation u′′ = p − g(u) in (a, b). Moreover, if φ(t) = |u(t)|2 then on
(a, b) we have:

φ′′ = 2〈u′′, u〉+ 2|u′|2 ≥ 2〈p− g(u), u〉 =
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2[〈p, u〉 − 〈g(u), u〉] ≥ −2|u|
[

‖p‖L∞ +

〈

g(u),
u

|u|

〉]

> 0.

Thus, φ cannot vanish both on a and b, and it follows that either u does
not vanish on (t0, t0 + δ) or u ≡ 0 on [t0, t1] for some t1 > t0. The
same conclusion holds for (t0 − δ, t0], and the result follows from the
compactness of [0, T ].

�

The following result improves Lemma 4.3.3 for the variational case
studied in [34]. However, we do not make use of the variational structure
of the problem: more generally, it may be assumed that g = ∇G only
near the origin.

Proposition 4.3.4. Assume there exists a neighborhood U of the origin
and a function G ∈ C1(U\{0},R) such that g = ∇G on U\{0}. Further,
assume that

lim
|u|→0

G(u) = +∞.

Then every generalized solution of (4.2) is classical.

Proof:
Let u be a generalized solution, and suppose that u vanishes at some
point. Fix t̃ such that u(t̃) 6= 0, and define t1 = inf{t > t̃ : u(t) = 0}.
Next, fix a value t0 ∈ (t̃, t1) such that u(t) ∈ U\{0} and G(u(t)) > 0
for t ∈ [t0, t1). As u is a classical solution of the equation on [t0, t1),
multiplying by u′ we deduce, for t ∈ [t0, t1) that

|u′(t)|2
2

+G(u(t)) =
|u′(t0)|2

2
+G(u(t0)) +

∫ t

t0

〈p(s), u′(s)〉 ds. (4.13)

As G(u(t)) > 0, for any t̃1 ∈ (t0, t1) and t ∈ [t0, t̃1] we obtain:

|u′(t)|2
2

≤ A+B‖u′|[t0,t̃1]‖L∞ .

where the constants A := |u′(t0)|2

2
+G(u(t0)) and B := (t1 − t0)‖p‖L∞ do

not depend on the choice of t̃1, so we can choose t̃1 arbitrarily close from
below to t1 and have the following:

‖u′|[t0,t1]‖2∞ ≤ |u′(t0)|2 + 2G(u(t0)) + 2(t1 − t0)‖p‖∞‖u′|[t0,t−1 )‖L∞ .

So, u′(t) is bounded on [t0, t1). Now, taking limit as t→ t−1 in (4.13)
we have that the right term is bounded and G(u(t)) → +∞ when t→ t1

-,
so a contradiction yields.

�
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Remark 4.3.5. It is worth noting that in this context the repulsive con-
dition (4.7) implies that G(u) increases when u moves on rays that point
towards the origin. However, this specific condition was not necessary in
the preceding result, which only uses the fact that G(0) = +∞, since it
is not required for the proof of Lemma 4.3.1.

Taking into account the previous comments on the central motion
problem, we are able to establish an existence result for the particular
radial case g(u) = h(|u|)u:

Theorem 4.3.6. Let g(u) = h(|u|)u, with h ∈ C((0,+∞), (−∞, 0)),
and let

gε(u) =
h(|u|)u

1− εh(|u|) .

Then there exists a sequence {un}n of solutions of (4.9) with εn → 0 that
converges uniformly and weakly in H1 to some limit function u.

Furthermore, if

lim sup
r→0+

rh(r) + ‖p‖L∞ < 0,

then ∂{t ∈ [0, T ] : u(t) = 0} is finite, and if
∫ 1

0
sh(s)ds = −∞, then

either u ≡ 0 or u is a classical solution.

Proof:
As in the particular case of the central motion problem, existence of solu-
tions of (4.9) follows from Theorem 3.2.1 with condition (B′). Moreover,
a bound for ‖u′ε‖L2 is also obtained as before and, again, the fact that
∫ T

0
gε(uε)dt = 0 implies that

−
∫ T

0

h(|uε|)uε
1− εh(|uε|)

dt =

∫ T

0

h(|uε|)(uε − uε)

1− εh(|uε|)
dt.

Thus, a bound for uε is also obtained. If we consider a the sequence
εn → 0 we have weak convergence in H1 and subsequence that converges
strongly in L2‘. This conclusions follow from the Banach-Alaoglu and
the Arzelá-Ascoli Theorems.

Moreover, if
〈

g(u), u
|u|

〉

= h(r)r < −‖p‖L∞ for |u| = r small, then

Lemma 4.3.3 applies. Finally, as g = ∇G, with G(u) = f(|u|) for the
function f(σ) :=

∫ σ

1
sh(s)ds, let us see that Proposition 4.3.4 applies.

Indeed, here we have that G(u) =
∫ |u|

1
sh(s)ds, so we are in the case

g(u) = ∇G(u) = h(|u|)u:

∇G(u) = f ′(|u|) u|u| = h(|u|)u, |u| > 0.
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Note also that changing the limits of integrationG(u) = −
∫ 1

|u|
sh(s)ds,

so, as h < 0, G is aways positive, and lim supr→0 rh(r) < −‖p‖L∞ also
imply that h(r) → −∞ when r → 0, so for this choice of G, we have
that lim|u|→0G(u) = +∞ and the Proposition 4.3.4 applies.

�

Remark 4.3.7. It is worth mentioning that assumption p ∈ C(R,RN)
could be weakened and the previous result would also hold if p is a
piecewise continuous periodic function.

Example 4.3.8. The following elementary example shows that the as-
sumption

lim
|u|→0

G(u) = +∞,

in Proposition 4.3.4 is sharp. Let us consider the equation

u′′ =
u

|u|γ+2
+ p(t), (4.14)

which corresponds to the potential

G(u) =

{ 1
γ|u|γ

if γ 6= 0

− log |u| if γ = 0.

If γ > −1, the equation is singular, although for γ ∈ (−1, 0) the
potential is continuous up to 0. For simplicity, let us consider the case
N = 1, and p = χ[T

2
,T ] − χ[0,T

2
).

As remarked before, Proposition 4.3.4 still applies for this choice of p
and G. As p = 0, there are no classical solutions, in the sense of having
u ∈ H2(Ω,RN) satisfying the variational problem. Moreover, if we set gε
as

gε(u) = − |u|γ−2u

(ε+ |u|γ)2
,

then from the energy conservation law, E = K + V with K = |u′

ε|
2

2
the

kinetic energy, and V = uε +
1

γ(ε+|uε|γ)
the potential energy:

u′2ε
2

= Eε − uε −
1

γ(ε+ |uε|γ)
, 0 < t <

T

2
.

A standard computation proves that if T is sufficiently large, then there
exist Mε > 0 and vε a positive solution of the equation over (0, T

2
) such

that vε(0) = vε(
T
2
) = 0, with energy Eε = Mε +

1
γ(ε+Mγ

ε )
and with norm

‖vε‖L∞ = vε(
T
4
) =Mε.
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We obtain a periodic solution of the perturbed problem by reflection,
namely:

uε(t) =

{

vε(t) if 0 ≤ t ≤ T
2

−vε(t− T
2
) if T

2
< t ≤ T.

In particular, for ε = 0 we obtain a solution u of the problem with a
collision at t = T

2
. Furthermore, it is easily checked that uε → u; thus, u

is a generalized but non-classical solution.

Remark 4.3.9. Proposition 4.3.4 can be regarded as an alternative, in
the following way: for g satisfying the assumption, if a sequence {un}n
of solutions of (4.9) for ε = εn → 0 converges uniformly and weakly in
H1 to some function u, then either u ≡ 0, or u is a classical solution of
the problem.

It is worth seeing that both situations may occur: for instance, we
may consider again equation (4.14), now with γ ≥ 0. If p ≡ 0, then
there are no generalized solutions, since they should be classical, be-
cause of Lemma 4.3.1. In some sense, this is expectable since if gεn is
given as in (4.12) or (4.10), then uε ≡ 0 is the unique solution of the
perturbed problem. On the other hand, for N = 2 we may consider
p(t) = −λ(cos(ωt), sin(ωt)) with ω = 2π

T
, and the circular solution given

by u(t) = r(cos(ωt), sin(ωt)), where λ = rω2 + 1
rγ+1 . After a simple

computation, we conclude that the problem has classical solutions for

λ ≥ (γ + 2)
(

ω2

(γ+1)

)
γ+1

γ+2

.

Following the ideas in [34], for the preceding case (4.14) with γ ≥ 0
a non-existence result holds when ‖p‖L∞ is small. It is interesting to
observe that this result can be extended for the L1-norm: if ‖p‖L1 ≤ η for
some η sufficiently small, then the problem admits no classical solutions.

For simplicity, we shall consider only the case γ = 1 and prove that

η ≥
(

16
T

)1/3
. On the other hand, as we always have circular solutions for

any λ ≥ 3
(

2π2

T 2

)2/3

(and any N ≥ 2), we also know that η ≤ 3
(

4π4

T

)1/3

.

In order to obtain the previously mentioned explicit lower bound for
η, let us assume that u is a classical solution, and fix t0 the maximal
time; i.e. such that |u(t0)| = ‖u‖L∞ . Multiplying the equation by u and
integrating, it follows that

‖u′‖2L2 = −
∫ T

0

(

1

|u| + 〈p, u〉
)

dt ≤ − T

‖u‖L∞

+ ‖p‖L1‖u‖L∞ ,

and in particular, as u is non-constant,

‖p‖L1 >
T

‖u‖2∞
.
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Also, for the j-th coordinate of u we have:

uj(t)− uj(t0) =

∫ t

t0

u′j(s)ds ≤
∫ T

0

(u′j)
+(s)ds =

1

2
‖u′j‖L1 ≤ T 1/2

2
‖u′j‖L2 ,

and an analogous inequality follows using (u′j)
−. Then

‖u− u(t0)‖2L∞ ≤ T

4
‖u′‖2L2 ≤ T

4

(

‖p‖L1‖u‖L∞ − T

‖u‖L∞

)

and in particular

|u(t)| ≥ |u(t0)| −
[

T

4

(

‖p‖L1‖u‖L∞ − T

‖u‖L∞

)]1/2

.

Thus,

〈u(t), u(t0)〉 =
1

2

(

|u(t)|2 + |u(t0)|2 − |u(t)− u(t0)|2
)

≥

≥ ‖u‖L∞

(

‖u‖L∞ −
[

T

4

(

‖p‖L1‖u‖L∞ − T

‖u‖L∞

)]1/2
)

.

If ‖p‖3L1 ≤ 16
T
, we deduce that ‖p‖2L1 ≤ 16

T 2

T
‖p‖L1

<
(

4
T
‖u‖L∞

)2
. Hence

we have the inequality T
4
‖p‖L1‖u‖L∞ < ‖u‖2L∞ , and we conclude that

〈u(t), u(t0)〉 > 0 for every t.
Finally, integrating the equation we obtain

0 =

〈

u(t0),

∫ T

0

u′′(t) dt

〉

=

∫ T

0

1

|u(t)|3 〈u(t0), u(t)〉 dt > 0,

a contradiction.

Remark 4.3.10. It might be worth observing that the geometric idea
behind the last proof is that for any w ∈ R

N\{0} the range of a classical
solution of the problem cannot be contained in the half-space

Hw := {u : 〈u, w〉 > 0}.

Together with the preceding results, the previous computations imply

that, for the central motion case, if ‖p‖L1 ≤
(

16
T

)1/3
and gε(u) = − u

ε+|u|3

the solutions of the perturbed problems (4.9) {uε}ε go to 0 uniformly as
ε → 0. Indeed, if there existed a sequence εn → 0 such that {un}n did
not go to zero, we could assume that ‖un‖∞ ≥ c > 0, but with this gε
we already showed that there were subsequences for which un → 0, a
contradiction.
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However, it is worth to observe that this can always be done if we
do not impose restrictions on the choice of gε. Indeed, we may recall
that for any λ > 0, the unique T -periodic solution of the linear problem
u′′ − λ2u = p is given by

u(t) =

∫ T

0

G(t, s)p(s)ds,

where G is the Green Function (see Chapter 1) defined by

G(t, s) =
− cosh

(

λ
(

T
2
− |t− s|

))

2λ sinh
(

λT
2

) .

A simple computation shows, moreover, that ‖G(t, ·)‖L1 = 1
λ2 . Thus,

if µ : R+ → R
+ is any continuous function satisfying εµ(ε) → +∞ as

ε → 0, then we may define, using Tietze’s Theorem, gε ∈ C(RN ,RN)
such that

gε(u) =

{

g(u) if |u| ≥ 2ε
−µ(ε)u if |u| ≤ ε.

Then, for every ε > 0 with εµ(ε) > ‖p‖L∞ , the unique solution of the
linear problem u′′ − µ(ε)u = p satisfies:

|u(t)| ≤ ‖p‖L∞

µ(ε)
< ε,

and hence it solves (4.9).

4.4 Proof of Main Results

The rest of this Chapter is devoted to the particular case in which gε
is defined by (4.10) for some ρε. This is a family of admissible approxi-
mations (see 4.2.2). The reason of this specific choice is that, unlike the
case of Theorem 4.3.6, the existence of a priori bounds for uε cannot be
established for a general nonlinearity g. Note also that, if g(u) = h(|u|)u,
then the ‘linear’ cutoff function defined by ρε(s) =

s
ε
in (4.10) would lead

to the previous situation, with µ = −h, and the conclusions in our exis-
tence results would become trivial. However, we do not need to impose
any restriction on the function ρ(ε) := ρε.

Theorem 4.4.1. Let g ∈ C(RN\{0},RN) and assume that (4.7) holds.
Further, assume that g satisfies (B) or (B′). Then either problem (4.2)
has a classical solution, or else for every sequence {un}n of solutions of
(4.9) with εn → 0 and gn as in (4.10), there exists a subsequence that
converges uniformly and weakly in H1.
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Proof:
If the problem has a classical solution, then there is nothing to prove.
Next, assume that (4.9) admits no classical solutions, and let un be a
T -periodic solution of

u′′n + gn(un) = p(t).

Multiplying by un − un and integrating:

∫ T

0

〈u′′n, un − un〉dt+
∫ T

0

〈gn(un), un − un〉dt =
∫ T

0

〈p(t), un − un〉dt.

Hence

−
∫ T

0

|u′n|2dt+
∫ T

0

〈gn(un), un − un〉dt =
∫ T

0

〈p(t), un − un〉dt.

Then, we have the following inequality:

‖u′n‖2L2 ≤ ‖p‖L2‖un − un‖L2 +

∫ T

0

〈gn(un), un − un〉dt. (4.15)

If (B) holds, then we may split the last term in two terms as:

∫

{|un|>κ}

〈gn(un), un − un〉dt+
∫

{|un|≤κ}

〈gn(un), un − un〉dt,

with κ given by the repulsiveness in (4.7).
For the first term, we use the definition of gn:

gn(u) = g(u) if |u| > εn.

We may assume that εn < κ:

∣

∣

∣

∣

∫

{|un|>κ}

〈gn(un), un − un〉dt
∣

∣

∣

∣

≤
∫

{|un|>κ}

|g(un)||un−un|dt ≤ C‖un−un‖L2 .

The remaining term can be written as:

∫

{|un|≤κ}

〈gn(un), un〉dt−
〈
∫

{|un|≤κ}

gn(un)dt, un

〉

.

Condition (4.7) implies that the first term is non-positive; moreover,
as gn(un) = 0 we deduce that

∫

{|un|≤κ}

gn(un)dt = −
∫

{|un|>κ}

gn(un)dt
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.
Hence,

∫

{|un|≤κ}

〈gn(un), un − un〉dt ≤ |un|
∫

{|un|>κ}

|gn(un)|dt.

Again, the integral in the right-hand side term is bounded, because
gn may be replaced by g. Gathering all together:

‖u′n‖2L2 ≤ C1‖un − un‖L2 + C2|un|.

Finally, using Wirtinger’s inequality we obtain:

‖u′n‖L2 ≤ C|un|
1

2 , ‖un − un‖L∞ ≤ C|un|
1

2 .

At this point we can state that {un}n is bounded.
If this was not the case, we would have, for some value of n, that

|un|
1

2 > C + 1 ≥ εn. Then

|un(t)| ≥ |un| − ‖un − un‖L∞ ≥ |un| − C|un|
1

2 > C + 1.

Thus, un would be a classical solution of the original problem, a contra-
diction.

If, instead, we assume that (B′) holds, from the fact that gn(un) = 0
we deduce that the last term of (4.15) is bounded, and uniform bounds
for ‖u′n‖L2 and for ‖un − un‖∞ yield. As before, this implies that {un}n
is also bounded. Hence, there is a subsequence (still denoted {un}n) and
a function u ∈ H1 such that un → u uniformly and weakly in H1. �

In the previous proof, note that the bounds for ‖un‖H1 do not de-
pend on the choice of ρε. This is the reason why Theorem 4.2.4, with ρ
arbitrarily chosen, follows as an immediate consequence of the preceding
results:
Proof of Theorem 4.2.4:

Given 0 < εn → 0 then either gn ∈ C(RN ,RN) is bounded or satisfies
(B′) for each n. Theorem 3.2.1 guarantees the existence of a sequence
{un}n of classical solutions of problem (4.9). Finally, Theorem 4.4.1 is
applied.

�

The last part of this section is devoted to Theorem 4.2.5, which as-
sumes a different asymptotic condition on g. In order to understand its
meaning, let us firstly observe that if

‖p‖L∞ + sup
|u|=ε

〈

gε(u),
u

|u|

〉

≤ 0 (4.16)



4.4. Proof of Main Results 77

then a Hartman type condition (see [21]) holds, and the existence of
a solution uε of (4.9) with ‖uε‖L∞ ≤ ε is deduced. In particular, if g
satisfies (4.8) with c > ‖p‖L∞ , then condition (4.16) holds strictly when
ε is small and, again, there exists a sequence of solutions of (4.9) that
converges to 0. However, in this case we may take advantage of the fact
that deg(Φε) = (−1)N , and replace condition (N2) by (P2), namely that
deg(ΦR) 6= (−1)N for R sufficiently large. Indeed, if we consider now the
Brouwer degree of gε, from the excision property it follows that

deg(gε, BR(0)\Bε(0), 0) = deg(ΦR)− deg(Φε) 6= 0.

Thus, Mawhin’s Continuation Theorem (Theorem 1.2.26) [27] implies the
existence of a second solution uε of (4.9) such that ‖uε‖L∞ > ε, provided
that the homotopy does not vanish when ‖u‖L∞ = ε or ‖u‖L∞ = R. More
generally, if we assume only that (4.16) holds strictly for some fixed r̃,
then we are able to prove Theorem 4.2.5.

Proof of Theorem 4.2.5:
From Theorem 4.4.1, it suffices to show that for each ε ≤ r̃ problem

(4.9) has a solution uε such that ‖uε‖L∞ > r̃. To this end, we may follow
the general outline of the proof of Theorem 3.2.1, from Chapter 3, but
now taking the domain U = {u ∈ C([0, T ],RN) : r̃ < ‖u‖L∞ < R}. The
proof of the fact that u′′ 6= λ(p − gε(u)) for any T -periodic function u
with ‖u‖L∞ = R > 0 big enough and λ ∈ (0, 1] follows as in the proof of
Theorem 3.2.1. On the other hand, if u is T -periodic and satisfies

u′′ = λ(p− gε(u)),

with ‖u‖L∞ = r̃, then consider φ(t) := |u(t)|2 and t0 a maximum of φ.
Hence |u(t0)| = r̃, and

0 ≥ φ′′(t0) ≥ −2λr

[

‖p‖L∞ +

〈

g(u(t0)),
u(t0)

|u(t0)|

〉]

> 0,

a contradiction. Finally, from the remarks previous to this proof we
deduce that deg(g, {t̃ < |u| < R}, 0) 6= 0, and the conclusion of the
Theorem follows.

�

Example 4.4.2. If there exist v ∈ SN−1 and r0 > 0 such that g(u) ∈ Hv

for |u| ≥ r0, where Hv is the half-space defined as before, then condition
(P1) is satisfied taking w = −v and F = {(SN−1, w)}. Moreover, it is
also clear that deg(ΦR) = 0 for R ≥ r0. Hence, if g satisfies (B) or
(B′) and (4.8), the existence of a generalized solution follows for any p
continuous and T -periodic such that p = 0 and ‖p‖L∞ < c.
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More generally, if g satisfies (B) or (B′), (P1) and condition (4.8) with
‖p‖L∞ < c, then it suffices to assume that g(u) 6= λv for |u| ≥ r0 and
λ ≥ 0.

Remark 4.4.3. Under the assumptions of Theorem 4.4.1, if (P1) and
(P2) are satisfied, and g is Sequentially Strongly Repulsive at the origin,
namely

sup
|u|=rn

〈

g(u),
u

|u|

〉

→ −∞ for some rn → 0, (4.17)

then existence of a generalized solution holds for any p continuous and
T -periodic such that p = 0.

Remark 4.4.4. It is interesting to observe that condition (2.22), intro-
duced by Solimini in [34] and discussed in Chapter 2:

∃ δ > 0 such that, if

∣

∣

∣

∣

u

|u| −
v

|v|

∣

∣

∣

∣

< δ, then 〈g(u), v〉 < 0

implies that deg(Φr) = (−1)N for all values of r; thus, Theorem 4.2.5
does not apply here. This is consistent with the non-existence result
obtained in [34]. On the other hand, condition (P1) is still satisfied if
(2.22) is reversed, namely:

∃ δ, r0 > 0 : if |u|, |v| ≥ r0 and

∣

∣

∣

∣

u

|u| −
v

|v|

∣

∣

∣

∣

< δ, then 〈g(u), v〉 > 0.

(4.18)
In some sense, (4.18) says that g is repulsive at infinity, and that it

cannot rotate too fast. We have already used the fact that repulsiveness
at the origin implies that the Brouwer degree of gε over small balls is
(−1)N ; on the other hand, repulsiveness at infinity implies that its degree
over large balls is 1. Hence, if the assumptions of Theorem 4.4.1 are
satisfied and g is (sequentially) strongly repulsive at the origin (4.17) and
(4.18) holds, then there exist generalized solutions for any p continuous
and T -periodic such that p = 0, provided that N is odd. Here having
the following two degrees:

deg(g, Bε(0), 0) = −1, deg(g, BR(0), 0) = 1.

The excision property would assure existence of solutions.

In particular, for the radial case we have:

Corollary 4.4.5. let N be odd, p as before, and let g be given by

g(u) = ϕ(|u|)ψ
(

u

|u|

)
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with ψ ∈ C(SN−1, SN−1), ϕ ∈ C(R+,R) and bounded from below, and

〈ψ(v), v〉 < 0 ∀v ∈ SN−1,

lim
r→0+

ϕ(r) = +∞, ϕ(r) < 0 if r > r0

for some r0 > 0.
Then, for any p as before, either (4.2) has a classical solution, or a

generalized solution u. Moreover, the boundary of the set of zeros of u
is finite. For the case ψ(v) = −v, if furthermore

∫ 1

0
ϕ(s)ds = +∞, then

(4.2) has a classical solution.

Proof:

Condition (B) is clear. Moreover, as ψ is continuous, for each u ∈ SN−1

there exists an open neighborhood U ⊂ SN−1 of u such that :

〈ψ(w), u〉 < 0 ∀w ∈ U.

Then taking wu = −u, for r > r0 and w ∈ U we obtain:

〈g(rw), wu〉 = |ϕ(r)|〈ψ(w), u〉 < 0.

From the compactness of SN−1, condition (P1) is satisfied.
Finally, define the homotopy h : RN\{0} × [0, 1] → R

N given by

h(u, λ) = λg(u) + (1− λ)u

.
Then, for |u| = R > r0 we have that

〈h(u, λ), u〉 = λ〈g(u), u〉+ (1− λ)R2 > 0.

By the homotopy invariance of the degree, we conclude that

deg(ΦR) = deg(Id) = 1 6= (−1)N ,

as N was supposed to be odd. Hence, condition (P2) is then also satisfied,
and the conclusion follows from Theorem 4.2.5.

�
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Chapter 5

Singular Elliptic Problems

5.1 Introduction and Motivation

Although the previous Chapter could have be included as a particular
case of the theory developed in this Chapter, we decided to treat it as a
separate one. First of all because the techniques used in both cases are
different, but mainly because it is faithful to the history of how this thesis
evolved. It is also true that the results obtained in the previous chapter
were stronger, because some of the proofs used techniques of ordinary
differential equations which are not true in Elliptic Problems

As it was told in the Introduction, after obtaining the main results
for the Periodic case (see Chapter 4), we started to think in a possible
generalization for Elliptic problems:

∆u+ g(u) = f(x) in Ω,

with Ω ∈ R
d f : Ω → R

N a continuous function a g : U ⊂ R
N → R

N a
nonlinearity.

There are many possible ways of extending a periodic conditions for
an ordinary differential equation system, to an Elliptic system of partial
differential equations. As it was also stated in the Introduction, and re-
visited in Chapter 3, we came across to one boundary condition for the
Elliptic case that seemed odd at first sight, but indeed generalized the pe-
riodic conditions in one dimension. The Nonlocal Condition, introduced
in the Introduction:

{

u ≡ C u ∈ ∂Ω
∫

∂Ω
∂u
∂ν
dS = 0.

(5.1)

The problem we studied was already stated in (3.6) for the nonsingu-
lar case in Chapter 3), is the following: Let Ω ⊂ R

d be a smooth bounded
domain and consider the following elliptic system:

81
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∆u+ g(u) = f(x) in Ω
u = C on ∂Ω

∫

∂Ω
∂u
∂ν
dS = 0,

(5.2)

with C ∈ R
N an unknown constant vector, f : Ω → R

N continuous. and
g ∈ C(RN\S,RN), with S ⊂ R

N bounded. Without loss of generality
we may assume that f := 1

|Ω|

∫

Ω
f(x)dx = 0

Here, we shall consider two different problems. In the next section we
shall allow the (bounded) set S of singularities to be arbitrary and focus
our attention on the behavior of the nonlinear term g over the boundary
of an appropriate domain D ⊂ R

N\S. In this case we will try to use
Continuation Theory on these sets D.

Next, we will study the case in which S consists in a single point;
without loss of generality, it may be assumed S = {0}, as we did in
Chapter 4. We shall focus our attention on the way g behaves near the
singular point. We shall assume that g is repulsive (4.7), as defined in
(4.2.1) and we will look for strong results in the direction of Theorem
4.2.4 and Theorem 4.2.5. Unfortunately, if d > 1 it is no longer true that
H1(Ω,RN) is compactly embedded in C(Ω,RN), so we could not be able
to obtain such strong results. Nevertheless we defined a different kind of
generalized solution of a distributional nature and in this context we did
prove interesting results for this case.

5.2 Singular Set

In this section, S ⊂ R
d will denote a bounded set of singularities and

we will assume the same boundness condition we worked with in the last
Chapter:

(B) lim sup|u|→∞ |g(u)| <∞.

The tools and ideas used in this section are similar of those used in
the last section of Chapter 3. We will also use the geodesic distance
introduced before (3.7):

d(x, y) := inf{lenght(γ) : γ ∈ C1([0, 1],Ω) : γ(0) = x, γ(1) = y}. (5.3)

Next, we shall fix a compact neighborhood C of S and a number r
(recall (3.8)) defined by:

r := k diamd(Ω)(‖f‖L∞ + ess sup
u/∈C

|g(u)|, ) (5.4)

where diamd(Ω) is the diameter with respect to the distance (5.3) and k
is a constant such that
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‖∇u‖L∞ ≤ k‖∆u‖L∞ (5.5)

To verify the existence of this estimate let us prove the following:

Lemma 5.2.1. There exist k such that (5.5) holds for all u ∈ C2(Ω,RN)
satisfying the nonlocal boundary conditions of (5.2).

Proof:

By standard regularity results (see e.g. [20]), if u ∈ C(Ω,RN) is a
solution of (5.2) then u ∈ A(Ω), where

A(Ω) =

{

u ∈ C1(Ω,RN) : ‖∆u‖L∞ <∞, u ≡ C on ∂Ω,

∫

Ω

∂u

∂ν
dS = 0

}

.

with C a constant vector in R
N . Note that A(Ω) ⊂ W 2,s(Ω,RN), for any

s <∞.

Next, suppose that, for a sequence {un}n ⊂ A(Ω), ‖∇un‖∞ > n‖∆un‖∞.
Let vn := un/‖∇un‖∞, then ‖∆vn‖∞ → 0 and hence ‖∆vn‖L2 → 0.

This implies that ‖∇vn‖L2 → 0 and, consequently, ‖vn − vn‖H1 → 0.
Thus ‖vn − vn‖H2 → 0 which, in turn, implies that ‖vn − vn‖W 1,2∗ → 0.

Again, we conclude that ‖vn − vn‖W 2,2∗ → 0 and by a standard boot-
strapping argument we deduce that ‖vn − vn‖W 2,s → 0 for some s > N .

By the Sobolev embedding (see Chapter 1): W 2,s(Ω,RN) is continu-
ously embedded in C1(Ω,RN), this implies ‖∇vn‖∞ → 0, a contradiction.
�

Having done that, we shall assume, as in the last part of Chapter 3,
the existence of a set D ⊂ R

N\(C + Br(0)) such that the following two
conditions hold:

(D1) For all v ∈ ∂D, 0 /∈ co(g(Br(v))), were co(A) stands for the convex
hull of A (see Definition 1.1.20).

(D2) deg(g,D, 0) 6= 0.

Condition (D1) was introduced by Ruiz and Ward in [33] and ex-
tended in [5] by Amster and Clapp. It generalizes a classical condition
given by Nirenberg in [29] which, in particular, implies that g cannot
rotate around the origin when |u| is large. (D1) allows g to rotate but
not too fast since r cannot be arbitrarily small.

The main result of this section reads as follows:
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Theorem 5.2.2 (Amster, M. - VI). Let g ∈ C(RN\S,RN) satisfying
(B) and f ∈ C(Ω,RN) such that f = 0. Let C be a compact neighborhood
of S and let r be as in (5.4). If there exists a bounded domain D such
that D ⊂ R

N\(C + Br(0)) such that (D1) and (D2) hold, then (5.2) has
at least one solution u with u ∈ D and ‖u− u‖L∞ ≤ r.

Proof:

The proof has great resemblance with the proof of Theorem 3.3.1.
Let

U = {u ∈ C(Ω,RN) : ‖u− u‖L∞ < r, u ∈ D}
and consider, for λ ∈ (0, 1], the problem







∆u+ λĝ(u) = λf(x) in Ω
u = C on ∂Ω

∫

∂Ω
∂u
∂ν
dS = 0,

(5.6)

where ĝ ∈ C(RN ,RN is a bounded extension of g with ĝ = g over
D +Br(0). It is clear that if u ∈ U solves (5.6) for λ = 1 then u is
a solution of (5.2).

Indeed, if u ∈ U then u ∈ D and ‖u − u‖L∞ ≤ r. This implies that
u(x) ∈ D +Br(0) so that ĝ(u(x)) = g(u(x)).

Now, using the same Continuation Method as the one used in the
proof of Theorem 3.3.1, we define u as the solution of (5.6).

As d(u, C) ≥ r, we deduce that u(x) ∈ RN\C and hence the inequality
|g(u(x))| ≤ ess supz /∈C |g(z)| holds for all x. This implies

‖∇u‖L∞ ≤ k‖∆u‖L∞ < k(‖f‖L∞ + ess sup
z /∈C

|g(z)|),

and thus

‖u− u‖L∞ ≤ diamd(Ω)‖∇u‖L∞ < r.

Hence, u ∈ ∂D. Moreover, it follows from the Mean-Value Theorem
for Vector Integrals (see Theorem 1.1.19 in Chapter 1) that

1

|Ω|

∫

Ω

g(u(x)) dx ∈ co(g(u(Ω))) ⊂ co(g(Br(u))).

On the other hand, simple integration shows that
∫

Ω

g(u(x)) dx = 0,

so 0 ∈ co(g(Br(u))), a contradiction.
�
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Remark 5.2.3. It is worth noticing that the previous result can be
extended for g sublinear:

lim
|u|→∞

g(u)

|u| = 0. (5.7)

Indeed, for any given ε > 0, there exist a constant Mε,C such that

|g(u)| ≤ ε|u|+Mε,C ∀u ∈ R
N\C.

Thus, if u is a solution of problem (5.2), then

‖∇u‖L∞ ≤ k‖∆u‖L∞ ≤ k (‖f‖L∞ + ε‖u‖L∞ +Mε,C) ,

and hence

‖∇u‖L∞ ≤ k (‖f‖L∞ +Mε,C + ε(diamd(Ω)‖∇u‖L∞ + |u|)) .

Suppose now that |u| = R < αKdiamd(Ω) for some constants α > 1,
K > 0. If ‖∇u‖ ≥ K, then:

K (1− kεdiamd(Ω)(1 + α)) ≤ k (‖f‖L∞ +Mε,C) .

Consequently, taking these constants such that

ε <
1

kdiamd(Ω)(1 + α)
, K >

k (‖f‖L∞ +Mε,C)

1− kεdiamd(Ω)(1 + α)
, r := Kdiamd(Ω),

(5.8)
it follows that any solution u such that |u| = R < αr satisfies:

‖∇u‖L∞ < K, ‖u− u‖L∞ < r.

We then have proved the following result for the sub linear case:

Corollary 5.2.4. Let g ∈ C(RN\S,RN) be sub linear and f ∈ C(Ω,RN)
such that f = 0. Let C be a compact neighborhood of S and assume that
α > 1, ε > 0, K > 0 and r satisfying (5.8), there exists a bounded
domain D ⊂ Bαr(0)\(C + Br(0)) ⊂ R

N such that (D1) and (D2) hold.
Then (5.2) has at least one solution u with u ∈ D and ‖u− u‖L∞ ≤ r.

Let us show an example that illustrates the possibility of obtaining
multiple solutions. We note Bρ := Bρ(0) = {u ∈ R

N : |u| < ρ}.

Example 5.2.5. Let A ∈ C(RN ,RN) be bounded, a = ‖A‖L∞ and b > 0.

Define g(u) = A(u)
|u|(b−|u|)

, so S = {0} ∪ ∂Bb. Let η > 0 and consider the
following compact set:
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C = Bη ∪
(

Bb+η\Bb−η

)

.

We have that R
N\C = (Bb−η\Bη) ∪ (RN\Bb+η). From the previous

computations, if u is a solution of the problem, the following estimate
holds:

‖∇u‖∞ ≤ K := k

(

‖f‖L∞ +
a

η(b+ η)

)

.

Thus,

r = diamd(Ω)k

(

‖f‖L∞ +
a

η(b+ η)

)

.

If also b > 2(r+ η), then we might be able to obtain two disjoint sets
D1, D2 ⊂ R

N\ (C +Br) such that:

D1 ⊂ Bb−η−r\Bη+r, D2 ⊂ R
N\Bb+η+r,

leading to two different solutions u1, u2 with u1 ∈ D1 and u2 ∈ D2

respectively.
In order to apply our previous result, observe that condition (D1)

requires η + 2r < b− η − 2r, that is: b > 4r + 2η.
For example, let T > 0 be large enough and define g : Bb+T\S → R

N

by

g(u) :=
(|u| − x1)(|u| − x2) u

|u|(|u| − b)
,

for some numbers x1, x2 > 0. The numerator of this function can be
extended continuously to R

N\S in such a way that a ≤ (b+T )3. Taking
diamd(Ω) small enough, the preceding inequalities for r are satisfied, so
we may fix x1 ∈ (η + 2r, b− η − 2r) and x2 ∈ (b+ η + 2r, b+ T − 2r).

Thus, all the assumptions are satisfied for D1 and D2; hence, by
Theorem 5.2.2 we deduce the existence of classical solutions u1 6= u2 of
problem (5.2) such that ui ∈ Di, for i = 1, 2.

Remark 5.2.6. This example shows that if the assumptions of Theorem
5.2.2 are verified, then the distance between different connected compo-
nents of S cannot be too small, because the open sets chosen to cover
them must be sufficiently large to contain them, but sufficiently small to
allow sets D to be in between.

5.3 Isolated Repulsive Singularity

This section focus on the case where S = {0}. Note that the same
analysis can be made for a general isolated point S = {s} with s ∈ R

N .
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The philosophy of this section is similar to that of the first sections of
Chapter 4.

We shall proceed as follows: firstly, we will appropriate the nonlinear-
ity g with continuous ones; secondly we swill prove existence of at least
one solution of the approximated problems that come from this approx-
imations of g; and finally we will obtain accurate estimates and deduce
the existence of a convergent sequence of these solutions.

In order to define the approximated problems, fix a sequence εn → 0
and consider the problem

∆u+ gn(u) = f(x) in Ω, (5.9)

together with the nonlocal boundary conditions of (5.2). Although more
general perturbations are admitted, in fact our results will be true for
admissible families of perturbations (see 4.2.2), for convenience we shall
define gn as in (4.10), with gn := gεn .

The conditions on g shall be, as before, of geometric nature. We will
again assume g is such that conditions (P1) and (P2) hold. These where
studied in the last two Chapters, but they are worth repeating:

(P1) There exists a family F = {(Uj, wj)}Kj=1 where {Uj}Kj=1 is an open
cover of SN−1 and wj ∈ SN−1, such that for some Rj > 0 and
j = 1, . . . , K:

〈g(ru), wj〉 < 0 ∀r > Rj ∀u ∈ Uj.

(P2) There exists a constant R0 > 0 such that deg(g, BR(0), 0) 6= (−1)N

for R ≥ R0.

We will also ask the singularity at the origin to be of a repulsive kind
(see 4.2.1). However, a stronger assumption than the ones we worked
on the last Chapter is needed in order to obtain uniform estimates: The
Strongly Repulsive condition:

Definition 5.3.1. The nonlinearity g is said to be strongly repulsive at
the origin if:

lim
u→0

〈g(u), u〉 = −∞. (5.10)

Note that this kind of repulsiveness is stronger than the one defined as
sequentially strongly repulsiveness condition (4.17), which ensured that
the degree over certain small balls centered at the origin is (−1)N . This
will allow as to work with condition (P2) instead of condition (D2).

We remark that, although g is not defined in 0, we may still use the
expression deg(g, BR(0), 0) as a notion to refer to the Brouwer degree
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deg(ĝ, BR(0), 0), where ĝ : BR(0) → R
N is any continuous function such

that ĝ = g on ∂BR(0), as the degree only depends on the value in the
boundary (refer to Definition 1.2.9 in Chapter 1).

The preceding conditions will allow us to construct a sequence {un}n
of solutions of the approximated problems that converges weakly in H1

to some function u. It is easy to see that if u does not vanish on Ω, then
u is a classical solution of the problem.

If u 6≡ 0 but possibly vanishes in Ω, then we shall call it a generalized
solution. It will be a different concept of generalized solution as that
of the last Chapter (4.2.3), and it will be clear which definition is used
given the context.

Let us first make some comments on what we are going to ask the
generalized solution to be.

Let {un}n be a sequence of weak solutions of (5.9) such that un → u
weakly in H1. From the equality

∫

Ω

∆unϕdx+

∫

Ω

gn(un)ϕdx =

∫

Ω

fϕdx ∀ϕ ∈ H

we deduce that the operator A : H → R
N given by

Aϕ = lim
n→∞

∫

Ω

gn(un)ϕdx

is well defined and continuous, that is: A ∈ H−1 (refer to Chapter 1 to
the basics of the Dual Sobolev Spaces). In fact,

Aϕ =

∫

Ω

fϕdx+
d
∑

j=1

∫

Ω

∇uj∇ϕjdx.

We may regard it as a pair (f,∇u) ∈ H−1, namely

Aϕ := (f,∇u)[ϕ].

Thus, we are able to define the operator G : H → H−1 by

G(u) := (f,∇u); i.e. G(u)[ϕ] = Aϕ. (5.11)

Remark 5.3.2. As shown in Chapter 4, it is always possible to find
approximations in such a way that u ≡ 0, this is why we need to exclude
this case in the definition of generalized solution.

Indeed, for λ > 0 let Gλ be the Green’s Function associated to the
operator −∆u + λu for the nonlocal boundary conditions. Defining the
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function c(λ) := supx∈Ω ‖Gλ(x, ·)‖L1 , then c(λ) is well defined and tends
to 0 as λ→ +∞. Next, define gn in such a way that

gn(u) =

{

g(u) if |u| ≥ 2
n

−λnu if |u| ≤ 1
n

,

with λn satisfying c(λn)‖f‖L∞ ≤ 1
n

for all n. Let un be the unique
solution of the linear problem ∆u − λnu = f satisfying the nonlocal
boundary conditions, then

|un(x)| =
∣

∣

∣

∣

∫

Ω

Gλn(x, y)f(y) dy

∣

∣

∣

∣

≤ c(λn)‖f‖L∞ ≤ 1

n
.

Thus, un is a solution of (5.9) and un → 0 uniformly.
A similar statement was done in (4.3.10) for the periodic problem.

Here the argument it is slightly different:
Let Gλ(x, y) the Green function associated to −∆u + λu and let us

see that supx∈Ω ‖Gλ(x, ·)‖L1 → 0 for λ→ +∞.
It can be seen that Gλ > 0, and this implies that

ϕ =
G

|G| = 1 ∈ R
N .

Then, the norm we wanted to calculate is the unique solution of prob-
lem −∆u + λu = 1 with the boundary condition. This is indeed the
constant function u ≡ 1/λ. The order of convergence to 0 is then 1/λ.

Also, observe that if u does not vanish in Ω then for any ϕ ∈ H, then

G(u)[ϕ] = Aϕ = lim
n→∞

∫

Ω

gn(un)ϕdx =

∫

Ω

g(u)ϕdx.

Definition 5.3.3. A generalized solution is a nontrivial distributional
solution of the equation

∆u+ G(u) = f.

We now state the main result of this section.

Theorem 5.3.4 (Amster, M. VII). Let g ∈ C(RN\{0},RN) satisfying
the boundary condition (B), repulsive at the origin (4.7), sequentially
strongly repulsive at the origin (4.17) and let f ∈ C(Ω,RN) with f = 0.
Suppose that (P1) and (P2) hold and let {gn}n be as in (4.10).

Then there exist a sequence {un}n of solutions of (5.9), a positive con-
stant r̃ such that ‖un‖L∞ ≥ r̃ and a subsequence of {un}n that converges
weakly in H1 to some function u.

If furthermore, the singularity is strongly repulsive (5.10), then u is
a generalized solution of the problem.
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In order to prove this theorem, firstly let us state an existence result
for the approximated problems.

Proposition 5.3.5. Let Ω ⊂ R
d a bounded domain with ∂Ω ∈ C2. Let

g ∈ C(RN\{0},RN) satisfying (B), (4.7), (4.17) and let f ∈ C(Ω,RN)
with f = 0. Suppose that (P1) and (P2) hold and let {gn}n be as in (4.10).
Then there exist {un}n solutions of (5.9) and a constant r̃ > 0 such that
‖un‖L∞ ≥ r̃.

Proof:
With the help of (4.17), fix r̃ > 0 such that

〈

g(u),
u

|u|

〉

+ ‖f‖L∞ < 0 for |u| = r̃, (5.12)

and n0 ∈ N such that gn ≡ g in R
N\Br̃(0) for n ≥ n0. As before, we

shall apply once again Mawhin’s Continuation Method, now over the set

U := {u ∈ C(Ω,RN) : r̃ < ‖u‖L∞ < R}

for some R > r̃ to be specified.
Suppose that for some λ ∈ (0, 1) there exists u ∈ ∂U a solution of

(5.6) with ĝ = gn.
If ‖u‖∞ = r̃, then we may fix x0 such that ‖u‖∞ = |u(x0)| = r̃ and

define φ(x) := |u(x)|2

2
.

As gn(u(x0)) = g(u(x0)), if x0 ∈ Ω then it can be seen that

∆φ(x0) = |∇u(x0)|2 + 〈u(x0),∆u(x0)〉 ≥ 〈u(x0), λ(f(x0)− g(u(x0)))〉 =

= λ

[

〈u(x0), f(x0)〉 − |u(x0)|〈g(u(x0)),
u(x0)

|u(x0)|
〉
]

≥

≥ λr̃

[

−‖f‖L∞ −
〈

g(u(x0)),
u(x0)

|u(x0)|

〉]

> 0,

a contradiction.
If x0 ∈ ∂Ω, then r̃ = |C|. Moreover,

∫

∂Ω

∂φ

∂ν
dS =

∫

∂Ω

〈

u,
∂u

∂ν

〉

dS =

〈

C,

∫

∂Ω

∂u

∂ν
dS

〉

= 0. (5.13)

From the continuity of φ, arguing as before we deduce that, ∆φ > 0 in
B2δ(x0) ∩ Ω for some δ > 0.

From standard regularity theory, it follows that u ∈ C2(Ω) ∩ C1(Ω).
Moreover, we may consider a C2 domain Ω0 ⊂ Ω such that Bδ ∩Ω ⊂ Ω0

and Ω0 ⊂ B2δ ∩ Ω; then φ(x0) > φ(x) for every x ∈ Ω0, and from Hopf’s
Lemma (see (1.1.18) in Chapter 1) we obtain
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∂φ

∂ν
(x0) > 0.

As u ≡ C on the boundary, then |u(x)| ≡ r̃ and so ∂φ
∂ν
(x) > 0 for each

x ∈ ∂Ω. This contradicts (5.13) and thus ‖u‖L∞ = R.
Also, ‖u− u‖L∞ < r, then from condition (P1) we deduce (D1) with

D = BR(0) when R is sufficiently large.
Indeed, assume that (P1) holds and fix a positive constant c < cj for

all j and R0 such that

〈g(Ru), wj〉 < −c, for all u ∈ Uj, R ≥ R0.

In particular, for |v| = R with R > R0 + r large enough, there exists
j ∈ {1, . . . , J} such that if z ∈ Br(v) then

z
|z|

∈ Uj, and 〈g(z), wj〉 ≤ −c.
By taking the hyperplane v+ < wj >

⊥, with v = −αwj, 0 < α << 1,

it is clear that it separates 0 and g(Br(v)). Thus, condition (D1) holds
for D = BR(0). Then, using the same arguments as in Theorem 5.2.2, it
follows that ‖u‖∞ < R.

Finally, observe that the repulsiveness condition implies that the de-
gree

deg(gn, Br̃(0), 0) = (−1)N

so, by the excision property of the degree, condition (P2) ensures that

deg(gn, {r̃ < |u| < R}, 0) 6= 0

and so, the proof is complete.
�

The following Lemma shows that the solutions of the perturbed prob-
lems are also bounded for the H1 norm.

Lemma 5.3.6. In the situation of Proposition 5.3.5, there exists a con-
stant C independent of n such that ‖un‖H1 ≤ C for all n.

Proof:
As ∆un + gn(un) = f(x) in Ω and un ≡ Cn on ∂Ω, we may multiply by
un − Cn and integrate to obtain:

∫

Ω

〈∆un + gn(un), un − Cn〉 dx =

∫

Ω

〈p, un − Cn〉 dx.

Integrating by parts, the left hand side is equal to:

−
∫

Ω

|∇un|2 dx+
∫

∂Ω

〈

∂un
∂ν

, un − Cn

〉

dS +

∫

Ω

〈gn(un), un − Cn〉 dx
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As un ≡ Cn on ∂Ω, it follows that

‖∇un‖2L2 =

∫

Ω

〈gn(un), un − Cn〉 dx−
∫

Ω

〈p, un − Cn〉 dx.

Now, taking absolute value and using the Cauchy-Schwarz inequality,
we get

‖∇un‖2L2 ≤
∣

∣

∣

∣

∫

Ω

〈gn(un), un − Cn〉 dx
∣

∣

∣

∣

+ ‖p‖L2‖un − Cn‖L2 .

Let c be the constant in condition (4.7) and write:

∣

∣

∣

∣

∫

Ω

〈gn(un), un − Cn〉 dx
∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

{|un|<c}

〈gn(un), un − Cn〉 dx
∣

∣

∣

∣

+

+

∣

∣

∣

∣

∫

{|un|≥c}

〈gn(un), un − Cn〉 dx
∣

∣

∣

∣

Fix n0 ∈ N such that 1
n
< c for every n ≥ n0. Then we have that

gn(un(x)) = g(un(x)) if |un(x)| > c > 1
n
and hence, on the one hand

∣

∣

∣

∣

∫

{|un|≥c}

〈gn(un), un − Cn〉 dx
∣

∣

∣

∣

≤ |Ω|1/2γc‖un − Cn‖L2 ,

where γc := ess sup|u|>c |g(u)| and, on the other hand:

∫

{|un|<c}

〈gn(un), un − Cn〉 dx ≤ −
∫

{|un|<c}

〈gn(un), Cn〉 dx.

Moreover, as
∫

Ω
gn(un) dx = 0, we deduce that

∫

{|un|<c}

〈gn(un), un − Cn〉 dx ≤
〈

Cn,

∫

{|un|≥c}

gn(un)dx

〉

≤ |Ω|1/2γc|Cn|.

Gathering all together,

∣

∣

∣

∣

∫

Ω

〈gn(un), un − Cn〉 dx
∣

∣

∣

∣

≤ |Ω|1/2γc (‖un − Cn‖L2 + |Cn|) .

Thus,
‖∇un‖2L2 ≤ C1‖un − Cn‖L2 + C2|Cn|,

for some constants C1,C2. Using Poincaré inequality, we deduce the
existence of a constant C such that
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‖∇un‖2L2 ≤ C|Cn|
and hence

‖un − Cn‖2H1 ≤ A+B|Cn| for some A,B > 0.

Suppose that |Cn| is unbounded, then taking a subsequence (still
denoted Cn) we may assume that |Cn| → +∞, Cn

|Cn|
→ η ∈ SN−1. From

the inequality

∥

∥

∥

∥

∥

un − Cn
√

|Cn|

∥

∥

∥

∥

∥

2

H1

≤ A

|Cn|
+B ∀n ≥ n0,

we may take again a subsequence and thus assume that un−Cn√
|Cn|

converges

almost everywhere and weakly in H1 to some w ∈ H1.
Let ε > 0 and fix M large enough so that |Ω\ΩM | < ε, where

ΩM := {x ∈ Ω : |w(x)| ≤M}.

Then un−Cn

|Cn|
→ 0 and un

|un|
→ η almost everywhere in ΩM .

Fix Uk ⊂ SN−1 as in (P1) such that η ∈ Uk, then writing

〈g(un(x)), wk〉 =
〈

g

(

|un(x)|
un(x))

|un(x)|

)

, wk

〉

,

we deduce that
lim sup
n→∞

〈g(un(x)), wk〉 ≤ −ck,

almost everywhere in ΩM . Thus we obtain, from Fatou’s Lemma:

lim sup
n→∞

∫

ΩM

〈g(un(x)), wk〉 dx ≤
∫

ΩM

lim sup
n→∞

〈g(un(x)), wk〉 dx ≤ −ck|ΩM |.

We may assume that M ≥ c, then taking ε < ck|Ω|
γc

we conclude:

lim sup
n→∞

∫

Ω

〈g(un(x)), wk〉 dx ≤ −ck|ΩM |+ lim sup
n→∞

∫

Ω\ΩM

〈g(un(x)), wk〉 dx

≤ −ck|ΩM |+ γc|Ω\ΩM | < 0,

which contradicts the fact that
∫

Ω
g(un(x)) dx = 0.

�

We now are in condition to give a proof of Theorem 5.3.4.
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Proof of Theorem 5.3.4:
From the preceding results, there exists a sequence (still denoted {un}n)
of solutions of the approximated problems converging almost everywhere
and weakly in H1 to some function u, and also such that ‖un‖∞ ≥ r̃. It
remains to prove that if (5.10) holds then u 6≡ 0.

Suppose that u ≡ 0, then from (5.9) we obtain

∫

Ω

〈∆un(x), un(x)〉+ 〈g(un(x)), un(x)〉 dx =

∫

Ω

〈p(x), un(x)〉 dx→ 0,

as n→ ∞. Moreover,

∫

Ω

〈∆un(x), un(x)〉 dx = −
∫

Ω

|∇un(x)|2 dx

is bounded, and from (5.10) and Fatou’s Lemma we obtain

lim sup
n→∞

∫

Ω

〈g(un(x)), un(x)〉 dx ≤
∫

Ω

lim sup
n→∞

〈g(un(x)), un(x)〉 dx = −∞,

a contradiction.
We have proved that u is in fact a generalized solution (5.3.3) of the

problem.
�
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