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Familias Playas de Foliaciones Algebraicas

En lo que sigue el autor desarrolla una teoŕıa para determinar la compati-
bilidad de la noción de familias de foliaciones algebraicas singulares definidas
a través de distribuciones involutivas de campos vectoriales, o a través de
ideales diferenciales de formas. Se definen, usando construcciones algebro-
geométricas, espacios de módulos para familias de ideales diferenciales y para
familias de distribuciones involutivas, con tales construcciones se recuperan,
en el caso algebraico, los espacios de módulos constrúıdos por Gomez-Mont
y Pourcin. Usando el enfoque algebro-geométrico, se puede mostrar que
los espacios de distribuciones involutivas InvP (X) y de ideales diferencia-
les iPfQ(X) son, de hecho, birracionales, ampliando aśı resultados obtenidos
por Pourcin al respecto. También se expone una caracterización de abiertos
de InvP (X) y iPfQ(X) donde el funtor Hom(−,OX) define un isomorfismo
entre los dos espacios, estos abiertos se caracterizan por los tipos de singu-
laridades de las foliaciones. Los resultados mostrados aqúı generalizan los
previamente obtenidos por Cukierman y Pereira en [FCJVP08] a foliaciones
definidas sobre variedades proyectivas regulares cualesquiera.

Palabras Clave: Haces coherentes, Familias Playas, Foliaciones Algebrai-
cas, Espacios de Moduli, Singularidades Kupka.
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Flat Families of Algebraic Foliations

The author develops a theory in order to establish compatibility between
the related notions of families of singular algebraic foliations given by invo-
lutive distributions of vector fields, and that given by differential ideales of
forms. Using algebro-geometric constructions, moduli spaces for families of
differential ideals and families of involutive distributions are defined, with
these constructions we recover, in the algebraic case, moduli spaces as de-
fined by Gomez-Mont and Pourcin. With the algebro-geometric approach
we can establish birationallity between the moduli spaces InvP (X) of in-
volutive distribution and iPfQ(X) of differential ideals, thus generalizing
Pourcin previous results. A characterization of open sub-spaces of InvP (X)
and iPfQ(X) where an isomorphism is defined by the functor Hom(−,OX)
is presented, this characterization is in terms of the singularities of the folia-
tions. The results of this work generalize previous ones by Cukierman and
Pereira in [FCJVP08] to foliations over regular projective varieties.

Keywords: Coherent Sheaves, Flat Families, Algebraic Foliations, Moduli
Spaces, Kupka Singularities.
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INTRODUCCIÓN

Desde sus oŕıgenes en el Analysis situs de Poincaré, la teoŕıa geométrica
de ecuaciones diferenciales en variedades se centró en la cuestión de la esta-
bilidad de diversas caracteŕısticas geométricas o topológicas del retrato de
fases de las ecuaciones.

Más especificamente, si consideramos, por ejemplo, el sistema lineal



df

dt
dg

dt


 = A ·

(
f

g

)
,

donde A = −Id, tenemos el sistema





df

dt
= −f

dg

dt
= −g

y sabemos que en este caso el punto (0, 0) constituye un punto atractor en el
diagrama de fases. Más aún, si perturbamos los coeficientes de la matriz A
por una cantidad pequeña, es decir si establecemos A′ = A+ ϵM con ϵ ∼ 0,
sabemos que la matriz A′ va a seguir teniendo dos autovalores negativos y
por lo tanto el sistema 


df

dt
dg

dt


 = A′ ·

(
f

g

)
,

va a seguir teniendo un atractor en el punto (0, 0).
Cuando se consideran sistemas no lineales de ecuaciones la situación

cambia. Lo que tenemos ahora es un sistema de la forma





df

dt
= F0(f(t), g(t))

dg

dt
= G0(f(t), g(t))

, (0.1)

con F0 y G0 funciones anaĺıticas, por ejemplo. En este caso la existencia
de un atractor en el diagrama de fases podŕıa no ser una caracteŕıstica
estable por perturbaciones. Con esto se quiere decir lo siguiente: podŕıan
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existir funciónes de tres variables F (x, y, s) y G(x, y, s) tales que F (x, y, 0) =
F0(x, y), G(x, y, 0) = G0(x, y) y tales que, para todo ϵ > 0 existe s, con
|s| < ϵ tal que el sistema





df

dt
= F (f(t), g(t), s)

dg

dt
= G(f(t), g(t), s)

(donde s permanece fijo) no tiene puntos atractores, o más aún, tal que no
tiene puntos singulares (ver [Dem00]).

Para poder plantear este problema con mayor generalidad conviene plan-
tearlo en términos más geométricos. En definitiva el sistema (0.1) tiene por
soluciones (f(t), g(t)) a las curvas integrales del campo de vectores

X0 = F0(x, y)
∂

∂x
+G0(x, y)

∂

∂y
.

Las cuestiones planteadas anteriormente entonces pueden formularse en térmi-
nos de la geometŕıa de la foliación singular definida por el campo X0. En
particular los puntos singulares del retrato de fase son los puntos (x, y)
tales que X0|(x,y) = 0 y las cuestiones relacionadas a la estabilidad de
los puntos singulares se traducen en preguntas sobre familias de campos
Xs = F (x, y, s) ∂

∂x
+G(x, y, s) ∂

∂y
dependiendo de un parámetro s.

Más en general, podemos estudiar familias de foliaciones singulares de
cualquier dimensión, en este caso estaŕıamos generalizando el estudio geométri-
co de sistemas de ecuaciones del tipo





∂f1
∂t1

= F 11(f1(t1, . . . , td), . . . , fn(t1, . . . , td))

...

∂f1
∂td

= F 1d(f1(t1, . . . , td), . . . , fn(t1, . . . , td))

...

∂fn
∂t1

= Fn1(f1(t1, . . . , td), . . . , fn(t1, . . . , td))

...

∂fn
∂td

= Fnd(f1(t1, . . . , td), . . . , fn(t1, . . . , td)),

(0.2)

cuyas soluciones (f1, . . . , fd) son variedades integrales de la distribución ∆ de
sub-espacios del tangente definida por ∆(p) =< X1|p, . . . , X

d|p >⊂ TpC
n,

donde

X i =
∑

j

F ji
∂

∂xj
.
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Una condición necesaria y suficiente para que el sistema (0.2) tenga solu-
ciones locales (o equivalentemente para que la distribución ∆ tenga varie-
dades integrales maximales) es la condición de Frobenius, que expresada en
términos del sistema (0.2) son condiciones sobre las F ij para asegurar que
∂fk

∂tl∂tm
= ∂fk

∂tm∂tl
. En términos de los campos Xi la condición de Frobenius

pide que el corchete de Lie de dos campos que definen la distribución cumpla
[Xi, Xj ]|p ∈ ∆(p), ∀p (ver [War83, cap 2]).

Quisieramos ahora estudiar las propiedades de familias de distribuciones
∆s =< X1

s , . . . , X
d
s > que cumplan la propiedad de Frobenius (que llama-

mos distribuciones involutivas) parametrizadas por un parámetro s. Es claro
en este caso que tenemos que tomar recaudos si queremos que propiedades
se mantengan entre miembros de una misma famila. Por ejemplo, si toma-
mos una familia completamente arbitraria de distribuciones de dimensión 2,
∆s =< X1

s , X
2
s > bien podŕıa suceder que para cierto s0 pase queX

1
s0

= X2
s0
,

en particular la dimensión de la distribución ∆s0 es menor que la de ∆s para
s ̸= s0 general. Para evitar esta y otras situaciones debemos pedir condicio-
nes extras a la distribución generada por campos Xi

s. Para describir estas
condiciones vale observar que, si denotamos OCn al haz de funciones holo-
morfas en Cn los campos Xi generan un sub-haz OCn(Xi) ⊂ TCn del haz
de campos tangentes.

Desde el punto de vista puramente geométrico estamos estudiando sub-
haces TF ⊂ TM del haz de campos de vectores en una variedad holomorfa
M que cumplen la condición de Frobenius, es decir, tales que [TF , TF ] ⊆
TF . Desde este punto de vista las familias de distribuciones parametrizadas
por un parámetro s son sub-haces TFS ⊂ TS(M ×S) del haz TS(M ×S) de
campos tangentes a las fibras de la proyección M × S → S, que cumplen la
condición de Frobenius. Aqúı, la distribución ∆s, para s ∈ S está dada por
el pull-back i∗s(TFS) de TFS por la inclusión is :M ∼=M × {s} ↩→M × S .

Desde este punto de vista está bien entendida cuál tiene que ser la condi-
ción a pedir para asegurar la “continuidad”de las familias de distribuciones
en el caso holomorfo/algebraico. Dado el sub-haz TFS ⊆ TS(M × S) la
condición a pedir es que en la sucesión exacta corta

0 → TFS → TS(M × S) → QS → 0

el haz QS sea playo sobre el espacio de parámetros S, cuando esto sucede
decimos que la familia es playa.

A partir de estos tecnicismos Gomez-Mont pudo, en [GM88], establecer
propiedades importantes de foliaciones por curvas generalizando los resulta-
dos fundacionales de Ilyashenko y, más aún, demostrar que, en el caso en que
M sea compacta, existe un espacio de parámetros universal para familias de
distribuciones involutivas, es decir que existe un espacio InvM y una fami-
lia playa TF ⊆ TInvM (M × InvM ) de distribuciones involutivas tales que,
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para cualquier otra familia TFS ⊆ TS(M × S), existe un único morfismo
f : S → InvM tal que TFS = (f × idM )∗(TF).

Por otra parte, otra manera de describir una distribución ∆ es co-
mo el núcleo de un conjunto de 1-formas diferenciales ω1, . . . , ωq, es decir
∆(p) = {v ∈ TpM : (ω1)p(v) = · · · = (ωq)p(v) = 0}. En este caso ∆ tiene
codimensión q. La condición de integrabilidad de Frobenius se expresa, en
estos términos como dωi ∧ ω1 ∧ · · · ∧ ωq = 0 ∀1 ≤ i ≤ q ([War83, cap. 3]).

Esta descripción de la distribución es conveniente cuando la codimen-
sión de la distribución es pequeña. Por ejemplo cuando la distribución tiene
codimensión 1 está dada por los ceros de una forma ω y es integrables si
ω ∧ dω = 0. En este caso si queremos estudiar familias de foliaciones pode-
mos estudiar simplemente familias de 1-formas ωs =

∑
i fi(x1, . . . , xn, s)dxi.

Con este enfoque Cerveau, Lins-Neto, Camacho, Calvo-Andrade, Cukier-
man, Pereira y otros autores han conseguido resultados de clasificación de
foliaciones de codimensión 1 en variedades algebraicas (ver [ALN07] y refe-
rencias ah́ı dentro). Más precisamente, puede probarse que, aśı como existe
un espacio de parámetros universal para familias TF ⊆ TM , también existe,
si M es compacta, un espacio de parámetros universal iPfM para familias
de formas integrables. Uno de los problemas principales en la teoŕıa de fo-
liaciones holomorfas consiste en clasificar las componentes irreducibles de
este espacio en el caso M = Pn(C), fueron resultados en este sentido que
describieron los autores mencionados.

Surge entonces la cuestión de relacionar estas dos nociones de fami-
lias de foliaciones. Pourcin plantea en [Pou87] este problema y construye
los espacios InvM y iPfM para M una variedad holomorfa compacta. En
[Pou88] observa que, en general, estos dos espacios no son isomorfos (lo que
equivale a decir que las dos nociones de familias de foliaciones dadas por
campos y formas no son equivalentes). Lo que sucede en general es que, si
TFS ⊆ TS(M × S) es una familia playa de campos, la familia de formas
I1S ⊆ Ω1

M×S|S que anulan a TFS no es en general una familia playa; o sea
que, aunque la familia de campos cumplan con la noción de continuidad,
la familia de 1-formas que anulan a esos campos no tiene por qué cum-
plir la condición de continuidad. Pourcin demuestra que, sin embargo, las
dos nociones son equivalentes si la familia es de foliaciones no singulares. De
cualquier manera el estudio de familias de foliaciones singulares tiene interés
intŕınseco, como ya vimos, y, además en muchas variedades holomorfas (por
ejemplo Pn(C)) todas las foliaciones poseen singularidades.

En esta tesis se avanza sobre las cuestiones planteadas en [Pou87] y
[Pou88] en el caso en que M sea una variedad algebraica y las foliaciones
estén dadas por distribuciones algebraicas. En primer lugar, en el caso en
que M sea una variedad proyectiva, se da una construcción distinta de los
espacios InvM y iPfM aprovechando la estructura natural de variedad alge-
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braica que tienen estos espacios. También se demuestra que las componentes
irreducibles de estos dos espacios están en biyección natural y son birracio-
nalmente equivalentes. Más aún, se demuestra que la noción de familia de
foliaciones dada por campos o formas es equivalente siempre y cuando el
sub-esquema singular sing(F) de la familia de foliaciones sea playo sobre el
espacio de parámetros S. El resultado más espećıfico de la tesis es el teore-
ma 4.5.10, que da un criterio para que el lugar singular de una familia de
foliaciones sea playo sobre la base; a partir de este teorema se obtiene como
corolario el resultado principal de [FCJVP08] (es decir que el teorema 4.5.10
puede considerarse como una generalización de [FCJVP08, Theorem 1] al
caso de una variedad algebraica proyectiva en general).

Pasamos ahora a describir el contenido de los caṕıtulos de la tesis.
El caṕıtulo 1 contiene preeliminares de geometŕıa algebraica, resultados

que van a usarse más adelante en el texto y cuyo contenido está enmarcado
en la teoŕıa general de esquemas. Este caṕıtulo comprende una resumen sobre
la construcción y las propiedades del esquema Quot(X,F ), que parametriza
cocientes de un haz dado F . También contiene una exposición sobre el
criterio valuativo de playitud, tal como aparece en [Gro65, 11.8], que es un
resultado usado intensivamente a lo largo de las demostraciones. Por último
hay en este caṕıtulo una exposición sobre el lema de Nakayama para funtores
semi-exactos en el sentido de [GBAO72].

En el caṕıtulo 2 se encuentran las definiciones clásicas de foliaciones y
foliaciones singulares, aśı como una pequeña disquisición acerca de la equ-
vialencia de las distintas descripciones de una foliación singular. La sección
2.4 es una exposición de resultados concernientes a las singularidades de
una foliación. Entre otras cosas contiene una demostración de una versión
“relativa”del clásico teorema de Kupka [dM77, Fundamental Lemma], cuya
demostración es esencialmente la que aparece en [dM77] con ligeras modi-
ficaciones. También se incluye en este caṕıtulo un resumen acerca de tres
familias clásicas de foliaciones en Pn(C) que representan ejemplos motiva-
dores para este trabajo, estas son las foliaciones logaŕıtmicas, pull-back y
racionales. Se incluye una clasificación de las singularidades de estos tipos
de foliaciones, esta clasificación va a ser relevante en cuanto establece que el
principal teorema del Caṕıtulo 4 aplica en particular a estas familias.

En el caṕıtulo 3 se desarrollan resultados originales sobre la relación
entre la playitud de un haz y la playitud del haz dual. Son resultados que
van a tener directa injerencia sobre el caso de foliaciones.

En el caṕıtulo 4 se da la construcción del espacio de moduli de ditribu-
ciones involutivas, aśı como la construcción del espacio de moduli de (ideales
de) formas integrables, a través de los esquemas Quot(TX) y Quot(Ω1

X). Se
usan resultados sobre haces coherentes aśı como el lema de Nakayama pa-
ra funtores semi-exactos de 1.5 para demostrar la equivalencia birracional
de las componentes irreducibles de estos dos espacios. A partir del teorema
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de Kupka relativo y el estudio de singularidades de Reeb se puede demos-
trar también el teorema 4.5.10. El teorema 4.5.10 junto con un estudio de
foliaciones con haz tangente escindido nos dan, a partir de un teorema de
Hilbert, el resultado principal de [FCJVP08] como corolario.



1. ALGEBRAIC GEOMETRIC PRELIMINARIES

1.1. Assorted generalities

Here we gather general results in algebraic geometry that will be usefull
in the rest of the following work.

1.1.1. Reflexive sheaves and Serre’s property S2

Property S2 can be viewed as an algebraic analog of Hartog’s theorem on
complex holomorphic functions. For this reason, it will be extermely usefull
to us, for it’ll allow us to conclude global statements on sheaves that a priori
holds for the restriction of this sheaves to (suitably large) open sets.

Definition 1.1.1. A module M over a ring R satisfies Serre’s condition Sk
if and only if

depthMP ≥ mı́n(k, dimMP).

for all P ∈ Spec(R), where dimMP is the Krull dimension of the support of
MP.

Proposition 1.1.2. Let X be a noetherian scheme and F a torsion-free
coherent sheaf with property S2. Let Y ⊂ X be a closed subset of codimen-
sion ≥ 2. Then the restriction map ρ : Γ(X,F ) → Γ(X \ Y,F ) is an
isomorphism.

Demostración. As F is torsion-free, the restriction map ρ is injective,
otherwise any section in the kernel would be anihilated by an f ∈ OX

such that f |Y = 0. Now let’s take a section s ∈ Γ(X \ Y,F ) and suppose s
does not extend to a global section. Define the subsheaf Js ⊆ OX as

Js(U) = {f ∈ OX(U) : fs ∈ Im(ρ|U\Y )}.

Note that Js is a sheaf of ideals. Suppose Js ̸= OX and denote by Z ⊆ X
the subscheme defined by Js. As s ∈ Γ(X \ Y,F ), and the codimension of
Y is ≥ 2, then codim(Z) ≥ 2. So let P ∈ Z be a point whose closure have
codimension bigger than 2. Then, as F is torsion free, dimFP ≥ 2. So by
property S2, depthFP ≥ 2. Lets take then an F -regular sequence (f1, f2)
in OX,P. Since f1 and f2 are part of a regular sequence, they belong to P.
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Then some power of f1 is in Js,P, respectively f2. Then there are a, b ∈ FP

such that
fn1 s = a, fm2 s = b,

for minimal n,m ∈ N such that fn1 , f
m
2 ∈ Js,P. So f

m
2 a = fn1 b. Then f

m
2 a ≡ 0

mód (f1). As (f1, f2) is a regular sequence this means a ∈ f1 ·FP. But then
fn−1
1 ∈ Js contradicting the minimality of n. Then Z = ∅ and s ∈ Im(ρ).

Corollary 1.1.3. Let X be a noetherian scheme and F a torsion-free cohe-
rent sheaf with property S2. Let Y ⊂ X be a closed subset of codimension
≥ 2. Denote U = X \ Y and j : U → X the inclusion. Then F = j∗(F |U ).

This corollary motivates the following definition due to Grothendieck
[Gro65, 5.10].

Definition 1.1.4. Let X be a noetherian scheme and F a coherent sheaf.
If for each closed subset Y ⊂ X of codimension ≥ 2, with U = X \ Y and
j : U → X the inclusion, the natural map

ρU : F = j∗(F |U )

is an epimorphism we say F is Z(2)-closed, if it is an isomorphism we say it
is Z(2)-pure.

With this definitions we can state a partial reciprocal statement of the
above corollary

Proposition 1.1.5 ([Gro65, 5.10.14]). Let F be a coherent sheaf on X with
support equal to X. For F to have S2 is equivalent to F being Z(2)-pure
and having no associated primes of codimension 1.

Proof. [Gro65, 5.10.14]

Next we characterize sheaves with property S2 as reflexive sheaves. This
will come handy as so many of the sheaves we’ll deal with will be reflexive.

Proposition 1.1.6. Let X be a quasi-projective integral scheme. A coherent
sheaf F is reflexive if and only if it can be included in an exact sequence

0 → F → E → G → 0,

where E is locally free and G is torsion-free.

Proof. Suppose F is reflexive. Take F∨ the dual sheaf of F . As X is quasi-
projective then there is an exact sequence

L1 → L0 → F
∨ → 0,
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such that Li is locally free. Dualizing we get an exact sequence

0 → F
∨∨ ∼= F → L

∨
0

δ
−→ L

∨.

Then set E = L ∨, is locally free becauseX is integral, and G = Im(δ) ⊆ L
∨,

is torsion-free, being a subsheaf of a locally free sheaf.
Conversely suppose that there is an exact sequence

0 → F → E → G → 0,

with E is locally free and G is torsion-free. Then F is torsion free so the
natural map

F → F
∨∨

is injective. But, as E is reflexive, we also have a map F∨∨ → E . It is
injective, for is generically injective and F∨∨ is torsion-free. Then F∨∨/F
is a subsheaf of G as well as a torsion sheaf. Then F = F∨∨, for G is
torsion-free.

Corollary 1.1.7. Under the above circumstances, the dual of a coherent
sheaf is allways reflexive.

Proof. Take an exact sequence

L1 → L0 → F → 0,

with Li locally free. Dualize it to obtain an exact sequence

0 → F
∨ → L

∨
0 → L

∨
1

and take G the image of the second arrow inside L ∨
1 . Then L ∨

0 is locally
free and G is torsion free.

Proposition 1.1.8 ([Har94, Theorem 1.9]). Let X be a noetherian normal
integral scheme, and F a coherent sheaf on X. Then, if F is reflexive, it
has property S2.

Proof. The statement being local, we can assume X is quasi-projective. Gi-
ven a reflexive sheaf F , we take an exact sequence

0 → F → L → G → 0

with L locally free and G torsion-free. Since X is normal, OX satisfies
property S2 (this is [Gro65, 5.8.6]), and so does L , being locally free. Let
P be a point of dimension ≥ 2. Then depthLP ≥ 2 by S2, and as G is
torsion-free, depthGP ≥ 1. This in turn implies depthFP ≥ 2.
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1.1.2. Support of a sheaf, zeros of a section

In the course of this work some spaces will appear naturally as the zero
locus of a function (or more generally a section of a given sheaf). While
such notion may be intuitive and feel somehow natural, is important for us
to define a distinctive scheme structure on such loci. The interest in this
details arise as a scheme Y might be flat over a base S but its reduced
structure Yred might not.

Recall that, given a module M over a ring R we define the annihilator
ideal Ann(M) as the set {x ∈ R : xm = 0, ∀m ∈M}.

Definition 1.1.9. Let F be a quasi-coherent sheaf on a scheme X. We
define the support of F , supp(F ) as the closed sub-scheme defined by the
ideal sheaf given locally by

I(F )x := Ann(Fx) ⊂ OX,x.

note that, as taking annihilator ideal commutes with localization, this notion
is well defined.

We have the following usefull characterization of the support of a sheaf
in terms of a universal property:

Proposition 1.1.10. The support of a sheaf F represents the functor

SF : Sch −→ Sets

T 7→ {f ∈ hom(T,X) : Ann(f∗F ) = 0 ⊂ OT }.

Proof. A morphism f : T → X factorizes through supp(F ) if and only if
the map

f ♯ : f−1OX → OT

factorizes through f−1(OX/Ann(F )). But this happens if and only if
f−1(Ann(F )) = 0.

On the other hand we have the equality

Ann(f∗F ) = OT · f−1(Ann(F )),

indeed we may check this in every localization at any point p ∈ T , so if t ∈
Ann(f∗F )p in particular t annihilates every element of the formm⊗1 ∈ Fx,
so t = f−1(x)t′ where x ∈ Ann(F )f(p).

So Ann(f∗F ) = 0 if and only if f−1(Ann(F )) = 0 and we are done.

In other words we just proved that supp(F ) is the universal scheme with
the property that f∗F is not a torsion module. This simple observation will
be very usefull when discussing the scheme structure on the singular set of
a foliation.

A special case of support of a sheaf is the scheme theoretic image of a
morphism.
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Definition 1.1.11. The scheme theoretic image of a morphism f : X → Y
is the sub-scheme supp(f∗OX) ⊆ Y .

Now we turn our attention to sections and their zeros. So let X be a
scheme and E a locally free sheaf. Remember that having a global section
s ∈ Γ(X,E ) is the same as having a morphism (that, by abuse of notation,
we also call s)

s : OX −→ E .

Now, s : OX → E defines a dual morphism

s∨ : E
∨ −→ O∨

X = OX .

Definition 1.1.12. We define the zero scheme Z(s) of the section s as the
closed sub-scheme of X defined by the ideal sheaf Im(s∨) ⊆ OX .

Note that, with this definition, the zero scheme of a non-zero section
might be X. Indeed, if s ∈ E is a torsion element, then s∨ = 0, and so
Z(s) = X. We will, however, apply this definition in the better behaved
situation where OX (and therefore E ) is torsion-free.

Remark 1.1.13. Take the case X = Pnk and E = OPn
k
(n). A global section

s is a homogeneous polynomial s = F (x0, . . . , xn). The pairing

OPn(−n)⊗OPn(n) → OPn

is given locally by multiplication of rational functions. Therefore Im(s∨)(U) =
OPn(U) · (F ). So the scheme Z(s) is actually the scheme theoretic zero locus
(F (x0, . . . , xn) = 0) ⊆ Pnk .

Proposition 1.1.14. Let E be a locally free sheaf on X and s ∈ Γ(X,E ) a
global section. The scheme Z(s) represents the functor

Zs : Sch −→ Sets

T 7→ {f ∈ hom(T,X) : s⊗ 1 = 0 ∈ Γ(T, f∗E )}.

Proof. A morphism f : T → X factorizes through Z(s) if and only if the
map

(E ∨)⊗OT
s∨⊗1
−−−→ OT

is identically 0. Beign locally free we have

E
∨ ⊗OT = H om(E ,OX)⊗OT

∼= H om(E ⊗OT ,OT ).

So then we have
(f∗E )∨

s∨⊗1
−−−→ OT

is identically 0, as f∗E is locally free over T , this means
s⊗ 1 = 0 ∈ Γ(T, f∗E ).
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1.2. Flattening stratification

As the main problem in this thesis will be to establish the flatness of a
given family of sheaves, we will need a standard tool to aid us, this is the
flattening stratification introduced by Mumford in [Mum66].

Theorem 1.2.1. Let S be a noetherian scheme, and X → S a projective
morphism. Let F be a coherent sheaf on X over S. Then the set I of Hilbert
polynomials of restrictions of F to fibers of X → S is a finite set. Moreover,
for each P ∈ I there exist a locally closed subscheme SP of S, such that the
following conditions are satisfied.

(i) Point-set: The underlying set |SP | of SP consists of all points
s ∈ S where the Hilbert polynomial of the restriction of F to Xs is f . In
particular, the subsets |Sf | ⊂ |S| are disjoint, and their set-theoretic union
is |S|.

(ii) Universal property: Let S′ =
⨿
SP be the coproduct of the SP ,

and let i : S′ → S be the morphism induced by the inclusions SP ↩→ S.
Then the sheaf i∗(F ) on XS′ is flat over S′. Moreover, i : S′ → S has the
universal property that for any morphism φ : T → S the pullback φ∗(F ) on
XT is flat over T if and only if φ factors through i : S′ → S. The subscheme
SP is uniquely determined by the polynomial P .

(iii) Closure of strata: Let the set I of Hilbert polynomials be given
a total ordering, defined by putting P < Q whenever P (n) < Q(n) for all
n≫ 0. Then the closure in S of the subset |SP | is contained in the union of
all |SQ| where P ≤ Q.

For a general proof of this statement we refer to [FLG’Ll’+05, Section
5.4.2]. Here, however, we will present a proof for the special case X = S,
which will be more frequently used.

Proof of the case X = S. For any s ∈ S, the fiber F |s of F over s will
mean the pull-back of F to the subscheme Specκ(s), where κ(s) is the residue
field at s, i.e.: F |s = F ⊗OS,s

κ(s). The Hilbert polynomial of the restriction
of F to the fiber over s is the degree 0 polynomial e ∈ Q[λ], where e =
dimκ(s) F |s.

By Nakayama lemma, any basis of F |s prolongs to a neighbourhood U
of s to give a set of generators for F |U . Repeating this argument, we see that
there exists a smaller neighbourhood V of s in which there is a right-exact
sequence

O⊕m
V

ψ
−→ O⊕e

V

ϕ
−→ F → 0

Let Ie ⊂ OV be the ideal sheaf formed by the entries of the e ×m matrix

(ψi,j) of the homomorphism O⊕m
V

ψ
−→ O⊕e

V . Let Ve be the closed subscheme
of V defined by Ie. For any morphism of schemes f : T → V , the pull-back
sequence

O⊕m
T

f∗ψ
−−→ O⊕e

T

f∗ϕ
−−→ f∗F → 0
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is exact, by right-exactness of tensor products. Hence the pull-back f∗F is
a locally free OT -module of rank e if and only if f∗ψ = 0, that is, f factors
via the subscheme Ve ↩→ V defined by the vanishing of all entries ψi,j . Thus
we have proved assertions (i) and (ii) of the theorem.

As the rank of the matrix (ψi,j) is lower semi-continuous, it follows that
the function e is upper semi-continuous, which proves the assertion (iii) of
the theorem, completing its proof when X = S.

Remark 1.2.2. Note that, while property (i) on the point-set structure of
the stratification is a more or less direct consequence of the openness of flat-
ness ([GR03, IV, Téorème 6.10]), establishing the correct scheme structure
of the strata SP is a little subtler, in general the reduce structure won’t do
the trick.

Example 1.2.3. Probably the simplest non-trivial flattening stratification
one can think of is the following: Set k[ϵ] = k(x)/(x2) and let X = S =
Spec(k[ϵ]). We take F = k = k[ϵ]/(ϵ) consider as a k[ϵ]-module. Then
the stratification consist of only one stratum, that is the closed immersion
Spec(k) ↩→ Spec(k[ϵ]).

1.3. The scheme Quot(X,F )

The Quot(X,F ) scheme, representing the flat quotients of the sheaf F ,
is of great importance for algebraic geometry in general, for it allows to
construct other moduli schemes. Such will be the case here too. Indeed,
ahead we’ll construct two moduli schemes related to families of foliations
iPf(X) and Inv(X). This will be realized as closed sub-schemes of certain
Quot schemes.

1.3.1. The QuotS(X,F ) functor

In all generality, the QuotS(X,F ) functor might be defined for a scheme
X over S and a coherent sheaf F on X, no further assumtpions are required.
Let Sch/S the category of schemes over S. We define the functor

QuotS(X,F ) : Sch/S −→ Sets,

the following way, to an object g : T → S of Sch/S associate the set

QuotS(X,F )(T ) = {0 → K → g∗F → Q → 0: Q ∈ Coh(XT ) is flat over T}.

and to an arrow κ : T → T ′ over S, the function

QuotS(X,F )(κ) : QuotS(X,F )(T ′) −→ QuotS(X,F )(T )

(0 → K → g∗F → Q → 0) 7→ (0 → κ∗K → g′∗F → κ∗Q → 0).

Note that, as flatness is stable by base change, the functor is well-defined.
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1.3.2. Representability of Quot functors

The question then is: Under which conditions on X → S and F is the
functor QuotS(X,F ) representable?
The answer is provided by Grothendieck’s theorem.

To state Grothendieck’s theorem on the representability of Quot first we
recall a couple of definitions.

Remember that a morphism p : X → S is said to be projective if there
exist a relatively ample line bundle L i.e.: a line bundle such that, for every
coherent sheaf G there exist n >> 0 such that the natural map

p∗p∗(L
⊗n ⊗ G ) → L

⊗n ⊗ G

is an epimorphism.

We also recall the following. Let be a coherent sheaf F on a scheme X of
finite type and proper over a field k, of dimension n, take also a line bundle
L . Then we define the Hilbert polynomial Φ of F with respect to L as

Φ(m) =

n∑

i=0

(−1)i dimk(H
i(X,F ⊗ L

⊗m)).

Observe that properness ofX assures finite dimensionality ofH i(X,F ⊗ L
⊗m).

Then, when we have a projective morphism X → S with relative ample
sheaf L , we can decomposeQuotS(X,F ) in the sub-functorsQuot

P,L
S (X,F ),

where P (m) ∈ Q[m] is a polynomial and

Quot
P,L
S (X,F )(T ) =




0 → K → g∗F → Q → 0 s.t.: Q ∈ Coh(XT )
is flat over T and the Hilbert polynomial of Qt

with respect to Lt is P , for all t ∈ T closed.



 .

Clearly QuotS(X,F ) =
⨿
P∈Q[m]Quot

P,L
S (X,F ). Grothendieck’s theorem

can then be expressed as

Theorem 1.3.1. Let X and S be noetherian schemes, X → S a finite
type projective morphism with relative ample sheaf L , and F a coherent
sheaf on X. Then the functors Quot

P,L
S (X,F ) are representable by schemes

QuotP,LS (X,F ) o finite type and projective over S.

We won’t give here the proof of the above theorem, for which we refer to
[FLG’Ll’+05, chapter 5]. We will, however, otuline the steps of the proof in
the case S = Speck. From now on, when we talk about projective schemes
over a point Spec(k), we’ll often leave implicit the election of an ample line
bundle, therefore we’ll only write QuotP (X,F ) or even QuotP (F ) (when
no confusion is likely to arise) when we talk about quot schemes.

We now briefly comment on the construction of QuotP (X,F ).
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I) Castelnuovo-Mumford regularity and Boundedness. Following
Grothendieck, we say a certain set of sheaves (Ei)i∈I over X is bounded
if there exist a scheme T and a sheaf G on X×T such that, for all i ∈ I,
there is a morphism κi : Spec(k) → T such that Ei

∼= (idX × κi)
∗(G ).

Note that, as we’re only considering a particular set of sheaves, and
morphism from Spec(k) to T , the scheme T in the above definition
need not to be a moduli space of sheaves.

So the statement is that, given a polynomial P (m) ∈ Q[m] the set of
sheaves Q such that there is an epimorphism F → Q → 0 and such
that Q have Hilbert polynomial P is bounded. After [Mum66] this is
usually proved by mean of Castelnuovo-Mumford regularity of a sheaf
Q, defined as the minimal m ∈ N such that

H i(X,Q(m− i)) = 0, ∀i > 0.

The key lemmas here are the following two assertions, whose proofs
can be found in [BGI71, exp. XIII]

Lemma 1.3.2. Let (Ei)i∈I be a set of sheaves such that every Ei ha-
ve the same Hilbert polynomial and such that there exist a sheaf G

with epimorphisms G → Ei → 0 for all i ∈ I. Then the Castelnuovo-
Mumford regularity of the sheaves Ei is bounded from above.

Lemma 1.3.3. If E have C-M regularity m then for every n ≥ m,
E (n) is generated by global sections.

II) QuotP (X,F ) is a sub-functor of a Grassmann functor. Last two
lemmas tell us that we can take n ∈ N bigger than the C-M regularity
of every quotient Q of F with Hilbert polynomial P . We can take n to
be also bigger than the C-M regularity of F itself. So, fixed a suitable
n, now we can look at the epimorphism

H0(F (n)) → H0(Q(n)) → 0.

It’s not too hard to show that, as both F (n) and Q(n) are generated
by global sections, this epimorphism determines the sheaf epimorphism
F → Q i.e.: if F → Q′ is another such epimorphism, then the linear
maps H0(F (n)) → H0(Q(n)) and H0(F (n)) → H0(Q(n)) will have
different kernel. It is also not so hard to see, from the basic properties
of Castelnuovo-Mumford regularity, that for all such Q one must ha-
ve dimk(H

0(Q(n))) = P (n). From this one can conclude after a few
technicalities on flatness that the correspondence

(F → Q → 0) 7−→
(
H0(F (n)) → H0(Q(n)) → 0

)

defines a natural transformation from QuotP (X,F ) to the functor re-
presented byGP (n)(H0(F (n))), the Grassmannian of P (n)-dimensional
quotient vector spaces of the vector space H0(F (n)).
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III) QuotP (X,F ) is a closed sub-functor of GP (n)(H0(F (n))) Given a
functor G : Sch/k → Sets and a sub-functor F ⊆ G we say that F is
a closed sub-functor of G if and only if for each T ∈ Sch/k there is a
closed sub-scheme i : ZF ↩→ T and a natural map such that

F (T ) = Im(G(i)) ⊆ G(T ).

It is immediate that, if G is representable, F is also representable and
the inclusion F ⊂ G is respresented by a closed inclusion of schemes.
Grothendieck’s way to prove representability of GP (n)(H0(F (n))) is
to show that a finite number of rank conditions on maps H0(OX(j))⊗
H0(F (n)) → H0(F (n + j)) determines if a quotient H0(F (n)) →
V → 0 comes from a sheaf quotient F → Q → 0 such that Q have
Hilbert polynomial P .

From the details of the proof is posible, in principle, to give an explicit
immersion of QuotP (F ) into a grassmannian variety. In particular is posible
to give an explicit ample line bundle on QuotP (F ), it will be the restriction
of the Plücker line bundle on GP (n)(H0(F (n))) (the Plücker line bundle
is the line bundle determining the Plücker embedding of the grassmannian
into a projective space), so the fiber of this line bundle over a point [Q] ∈
QuotP (F ) will be naturally isomorphic to ∧P (n)H0(Q).

1.4. Valuative criterion for flatness

Here we’ll recall a suitable special case of the valuative criterion for
flatness of [Gro65, 11.8] and draw some corollaries from it.

Theorem 1.4.1 (Valuative criterion for flatness). Let f : X → Y a finite
presentation morphism between noetherian schemes, F a coherent sheaf over
X, x ∈ X a point, and y = f(x). Suppose Y is reduced. Then Fx is f -
flat if and only if for every discrete valuation ring A′ and every morphism
OY,y → A′ the following holds:
Taking the pull-back diagram

X ′ //

f ′

��

X

f

��
Y ′ = Spec(A′) // Y

the OX′-module F ′ = F ⊗ OY ′ is f ′-flat at every point x′ ∈ X ′ lying
over x.

Grothendieck’s valuative criterion for flatness is a very powerfull method
and will be used throughout this work. Its usefullness rellies on the following
criterion for flatness on a DVR, whose proof can be found, for instance, in
[GR03, IV.1.3.2].
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Proposition 1.4.2. Let A be a domain such that every maximal M ⊂ A is
principal (e.g.: A a Dedekind domain) . Then an A-module M is flat if and
only if it is torsion-free.

Remark 1.4.3. Theorem 1.4.1 requires the base scheme Y to be reduced.
It’s easy to see that the criterion fails if this hypothesis doesn’t hold.

Let Y be Spec(k[T ]/(T 2)) and X the closed subcheme
X = Spec(k) ↩→ Y , take F = OX . Then for every domain A and every
morphism ϕ : k[T ]/(T 2) → A we have ϕ(x) = 0.
So ϕ♯ : Spec(k[T ]/(T 2)) → Spec(A) factorizes through X = Spec(k) ↩→ Y .
Then OX ⊗ϕ OSpec(A)

∼= OSpec(A) is flat.
Nevertheless, a closed immersion other than the identity is never flat.

It would be desirable, however, to have a flatness criterion working with
posible non-reduced base schemes. Such schemes would be fundamental to
develop a deformation theory for foliations. Moreover, we have no reason
to believe that the moduli schemes of foliations appearing below will, in
general, be reduced . So now we’ll patch-up this situation and develop a cri-
terion for flatness not demanding our base schemes to be reduced. They will
have to be essentially of finite type over an algebraically closed field, anyway.

First we’ll need a little

Lemma 1.4.4. Let A be a ring of finite type over an algebraically closed
field k, M a maximal ideal in A, and f ∈ Mn \ Mn+1. Then there is a
morphism ψ : A→ k[T ]/(Tn+1) such that ψ−1((T )) = M and ψ(f) ̸= 0.

Proof. Set a presentation A ∼= k[y1, . . . , yr]/I. By the Nullstelensatz we can
assume M = (x1, . . . , xr), where xi is the class of yimodI. Write the class
of f in Mn/Mn+1 as

f =
∑

|α|=n

aαx
α ∈ Mn/Mn+1,

where α = (α1, . . . , αr) and x
α = (x1

α1 , . . . , xr
αr).

As f /∈ Mn+1, the polynomial q(y1, . . . , yr) :=
∑

|α|=n aαy
α is not in I.

Now, k being algebraically closed there is an r-tuple (λ1, . . . , λr) ∈ kr such
that p(λ1, ..., λr) = 0 for every p ∈ I and q(λ1, ..., λr) ̸= 0.

Finally we can define ψ : A→ k[T ]/(Tn+1) as follows:

ψ(xi) = λiT.

The morphism is well defined because p(λ1, ..., λr) = 0 for every p ∈ I,
moreover ψ−1(T ) = M, and ψ(f) = q(λ1, ..., λr)T

n ̸= 0.

Proposition 1.4.5. Let f : X → Y a projective morphism between schemes
of finite type over an algebraically closed field, F a coherent sheaf over X,
x ∈ X a point, and y = f(x). Then Fx is f -flat if and only if the following
conditions hold:
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1. For every discrete valuation ring A′ and every morphism OY,y → A′

the following holds:
Taking the pull-back diagram

X ′ //

f ′

��

X

f

��
Y ′ = Spec(A′) // Y

the OX′-module F ′ = F ⊗OY ′ is f ′-flat at every point x′ ∈ X ′ lying
over x.

2. For every n ∈ N and every morphism OY,y → k[T ]/(Tn+1), if we take
the diagram analogous to the one above (with k[T ]/(Tn+1) instead of
A′) then the OX′-module F ′ = F⊗OY ′ is f ′-flat at every point x′ ∈ X ′

lying over x.

Proof. Clearly conditions 1 and 2 are necessary. Suppose then that 1 and 2
are satisfied.

Take the flattening stratification (see Theorem 1.2.1) of Y with respect
to F , Y =

⨿
P YP . As condition 1 is satisfied for F over Y , so is satisfied

for ι∗F over Yred, where ι : Yred → Y is the closed immersion of the reduced
structure. Then, by Theorem 1.4.1, ι∗F is flat over Yred, so by the universal
property of the flattening stratification there is a factorization

Yred
ι //

��

Y

⨿
P YP

<<
①
①
①
①
①
①
①
①
①

.

As Yred and Y share the same underlying topological set, the above fac-
torization is telling us that the flattening factorization consist on a single
stratum YP and that Yred → YP is a closed immersion.

Assume, by way of contradiction, YP ( Y , then there is an affine open
sub-scheme U ⊆ Y such that V = YP∩U ̸= U . Now take the coordinate rings
k[U ] and k[V ] and the morphism between them induced by the inclusion
ϕ : k[U ] ։ k[V ]. Let’s take f ∈ k[U ] such that ϕ(f) = 0. By Lemma 1.4.4
there exists, for some n ∈ N, a morphism ψ : k[U ] → k[T ]/(Tn+1) such that
ψ(f) ̸= 0, so ψ doesn’t factorize through ϕ.

On the other hand, let Z = Spec(k[T ]/(Tn+1)) and g : Z → Y be the
morphism induced by ψ, as condition 2 is satisfied, the pull-back g∗F is flat
over Z = Spec(k[T ]/(Tn+1)). So, by the universal property of Theorem 1.2.1,
g factorizes as

Z
g //

��

Y

YP

>>
⑥
⑥
⑥
⑥
⑥
⑥
⑥
⑥

,
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contradicting the statement of the above paragraph, thus proving the pro-
position.

Note that the hypothesis of this property on X and Y (aside from redu-
cedness) are quite stronger than the ones of the original theorem of Grot-
hendieck, such is the price we have paid to allow a criterion for possibly
non-reduced schemes. The price paid is ok with us anyway, considering that
we’ll work mostly with schemes of finite type over C.

Next we provide a criterion for a k[T ]/(Tn+1)-module to be flat.

Proposition 1.4.6. Let A = k[T ]/(Tn+1) and M an A-module. Then M is
flat if and only if for every m ∈M such that Tn ·m = 0 there exist m′ ∈M
such that m = T ·m′.

Proof. Flatness ofM is equivalent to the injectivity of the mapM ⊗I →M
for every ideal I ⊂ A (see e.g.:[GR03, IV.1]). In this case there are finitely
many ideals:

M = (T ), M2, . . . , Mn.

If M is flat is easy to see the second condition in our statement hold.
Suppose that for every m ∈M such that Tn ·m = 0 there exist m′ ∈M

such thatm = T ·m′. Let a ∈M⊗Mn−i be in the kernel ofM⊗Mn−i →M .
When i = 0, we have a = m ⊗ Tn, and m is such that Tn ·m = 0 so, by
hypothesis, m = T ·m′ and then m⊗ Tn = n⊗ Tn+1 = 0.

When i > 0, we have a =
∑i

j=n−imj ⊗ T j , so T i · a = mn−i ⊗ Tn ∈

M ⊗Mn. By hypothesis, mn−i = T ·m′. So a ∈ M ⊗Mn−i+1 and we are
done by induction.

The following will be usefull in the study of foliations of codimension
greater than 1.

Proposition 1.4.7. Let p : X → S a projective morphism between schemes
of finite type over an algebraically closed field k, f : S → Y another morp-
hism, with Y of finite type over k, and F a coherent sheaf over X. Take a
stratification

⨿
i Si ⊆ S of S such that F |Si

:= F ⊗S OSi
is flat for all i. If

the composition
⨿
i Si ↩→ S

f
−→ Y is a flat morphism, then F is flat over Y .

Proof. Invoking Proposition 1.4.5 we can, after applying base change, reduce
to the case where Y is either the spectrum of a DVR or Y = Spec(k[T ]/(Tn+1)).

(i) Case Y = Spec(A) with A a DVR. Suppose there is, for some point
x ∈ X a section s ∈ Fx that is of torsion over A. Consider Z = suppS(s) ⊆
S the support of s over S, that is the support of s as an element of Fx

considered as an OS,p(x)-module. Now take any stratum Si and suppose
Z ∩ Si ̸= ∅. Then there is a section of the pullback FSi

that is of torsion
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over A. But FSi
is flat over Si which is in turn flat over A, so FSi

is flat
and Z ∩ Si must be empty for every stratum Si, i.e.: s = 0.

(ii) Case Y = Spec(k[T ]/(Tn+1)). One can essentially repeat the ar-
gument above, now taking the section s to be such that Tns = 0 but
s /∈ T · Fx.

Corollary 1.4.8. Take the flattening stratification
⨿
P SP ⊆ S, of S with

respect to F . If the composition
⨿
P SP ↩→ S

f
−→ Y is a flat morphism, then

F is flat over Y .

1.5. Nakayama’s Lemma for semi-exact functors

In [GBAO72] Bergman and Ogus set up a general theory to deal with
base-change problems. A base-change problem is usually a question of the
type: Given a morphism f : X → Y and a functor Ff : Coh(X) → Coh(Y ),
and suppose we have an OX -module G and a pull-back

X ′ //

f ′

��

X

f

��
Y ′ // Y

.

How does the modules

Ff (G )⊗OY ′ , and Ff ′(GX′)

compares?
An example of a base-change theorem is Grothendieck base-change for

the functor Rif∗. As possed in [Mum08] is the following statement

Theorem 1.5.1 (Base-change for cohomology). Let f : X → Y be a proper
morphism of noetherian schemes, with Y = Spec(A) an affine scheme, and
F a coherent sheaf on X, flat over Y . Then, if B is a flat A-algebra,

Hp(X ×Y Spec(B),F ⊗A B) ∼= Hp(X,F )⊗A B.

Proof. This is [Mum08, II.5, Corollary 5].

In general Bergman and Ogus consider the following data as a setting for
base-change problems. Let R and T be rings, f : R→ T a morphism between
them and F a functor F : R−mod → T−mod between the corresponding
categories of finitely generated modules. We assume further that F is f -
linear, in the sense that for any two R-modules M and N , the map

homR(M,N) → homT (F (M), F (N))
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is a morphism ofR-modules, with theR-module structure in homT (F (M), F (N))
induced by the ring morphism f .

Remember that a middle-exact functor is one that takes exact sequences

0 →M → N → P → 0

and return exact sequences

F (M) → F (N) → F (P )

with no 0 in the sides. So with this in mind we can state Nakayama’s lemma
for middle-exact functors.

Theorem 1.5.2 (Nakayama’s lemma for middle-exact functors). With no-
tation as above, suppose R noetherian, if F is middle-exact and, for all
maximal ideals M of T , we have F (R/f−1(M)) = 0, then F = 0.

Proof. [GBAO72, Theorem 2.2]

In particular when we set R to be local and noetherian, T = R, f = idR
and F (M) = N ⊗R M for a fixed R-module N , we retrieve the classical
Nakayama’s lemma albeit only for noetherian rings.

Note that, every time we have an f -linear functor F , we also have a
natural comparison morphism

tF :M ⊗R F (R) → F (M).

Indeed, as we have the natural identifications

homT (M ⊗R F (R), F (M)) ∼= homR(M, homT (F (R), F (M))) ∼=
∼= homR(homR(R,M), homT (F (R), F (M))),

we obtain tF as the element in homT (M ⊗R F (R), F (M)) that correspond
to the R-module morphism

homR(R,M) −→ homT (F (R), F (M))

ϕ 7→ F (ϕ)

via the above isomorphisms.
Base-change problems in this setting consist in studying when is tF an

isomorphism. Theorem 1.5.2 can then be used to study this problems.

Proposition 1.5.3. As above F is an f -linear middle-exact functor F :
R−mod → T−mod, with R noetherian, then the following conditions are
equivalent:

1. F is isomorphic to − ⊗R F (R) (i.e.: the morphism tF above is an
isomorphism).
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2. The natural map F (R) → F (R/f−1(M)) is surjective for all maximal
ideals M ⊂ T .

3. F is right exact.

Proof. [GBAO72, Theorem 4.1]

Proposition 1.5.3 have important consequences. One of them concerns
cohomological δ-functors. Indeed, to have a δ-functor F • means having a
sequence (F i)i∈Z of functors such that for every short exact sequence 0 →
M → N → P → 0 one have an exact sequence

· · · → F i(M) → F i(N) → F i(P ) → F i+1(M) → F i+1(N) → . . .

In particular each functor F i is middle exact, so we can apply Theorem 1.5.2
to them and draw important conclusions.

Corollary 1.5.4. Let F • an f -linear δ-functor. Then for any q the following
are equivalent.

1. For every maximal ideal M ⊂ T the natural map F q(R) → F q(R/f−1(M))
is surjective.

2. For all M in R−mod the natural map F q(R) ⊗R M → F q(M) is an
isomorphism.

3. F q is right-exact.

4. F q+1 is left-exact.

If F extends to a functor F : R−Mod → T−Mod between the categories
of (not necesarilly finitely generated) modules, and F commutes with direct
limits then the above conditions are eqvuivalent to

• For all M in R−Mod the natural map F q(R) ⊗R M → F q(M) is an
isomorphism.

Proof. It follows at once applying Proposition 1.5.3 to the sequence

· · · → F i(f−1M) → F i(R) → F i(R/f−1(M)) → F i+1(f−1M) → F i+1(R) → . . .

Let us denote by P(q) the equivalent conditions (1)-(4) of the above
corollary. Since flatness of M is the necessary and sufficient condition for
M ⊗− to be left-exact we get:

Proposition 1.5.5. Let f : R→ T and F as in the above corollary. Then
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(a) If P(q + 1) holds then P(q) holds if and only if F q+1(R) is a flat R-
module.

(b) If P(q + 1) holds, and F q
′

(R) is a flat R-module for all q′ ≤ q + 1, then
P(q′) holds for all q′ ≤ q + 1.

(c) If for all maximal ideals M ⊂ T , F q+1(R/f−1M) = 0, then F q+1 = 0
and P(q) holds.

We now apply this results to the following situation. Let p : X → S be
a flat morphism between noetherian schemes, let G be a coherent sheaf on
X. Consider the following functors

Eq : Coh(S) −→ Coh(X)

F 7→ ExtqX(G , p
∗
F ).

Note that the Eq are δ-functors, indeed asX is flat over S, then ExtqX(G , p
∗F )

is the q-th derived functor of E0 = Hom(G , p∗F ). We can then localize at
a point x ∈ X, say p(x) = s ∈ S, and study the localized functors

Fs 7→ ExtqX(G , p
∗
F )s,

between categories of finitely generated modules.
Then, in this situation, Proposition 1.5.5 gives us

Proposition 1.5.6 (Property of exchange for local Ext’s). Let Eq : Coh(S) −→
Coh(X) be the above functors, and take points s ∈ S, x ∈ Xs assume that
the base-change map to the fiber

tqE(k(s)) : Ext
q
X(G ,OX)⊗ k(s) → ExtqXs

(G ⊗ k(s),OXs),

is surjective at x. Then the following statements are equivalent,

i) The morphism tq−1
E (k(s)) is surjective at x.

ii) Locally around x, Eq−1(F ) ∼= ExtqX(G ,OX)⊗ F .

iii) Locally around x, ExtqX(G ,OX) is flat over S.

Proof. Just apply Proposition 1.5.5 to the localization of the functors Eq

around x. Note, however, that this proof is different than the original one
in [ASK, Theorem 1.9].



2. PRELIMINARIES ON FOLIATIONS

In this section we work with varieties over C. We’ll sometimes abuse
notation and denote the same way a vector bundle and its sheaf of sections.

2.1. Distributions

Definition 2.1.1. Let p : E → X be a vector bundle, we define the asso-
ciated Grassmann bundle of dimension d, Gd(E), the following way:

Let X =
∪
i Ui be a trvializing covering of E, p−1(Ui) ∼= Ui × Cn, with

transition functions

ϕij : Ui × Cn −→ Uj × Cn

(x, v) 7→ (x, φij(x, v)),

being φij(x, v) linear in v.
Define π : Gd(E) → X as a bundle having {Ui} as trvializing covering,

with fibers π−1(Ui) ∼= Ui ×Gd(C
n), and transition functions

Φij : Ui ×Gd(C
n) → Uj ×Gd(C

n)

(x, [S]) 7→ (x, [φij(S)]),

where S ⊆ Cn is a dimension d sub-space, and [S] ∈ Gd(C
n) is the point of

the grassmannian represented by S . It’s routine to verify that the definition
doesn’t depend on the choice of a trivialization.

Remark 2.1.2. A global section s of Gd(E) determines a sub-bundle F ↩→
E of dimension d. A trivializing covering of F is given by a refinement Vj of
the covering Ui. The refinment is such that the image of

s : Vj → p−1(Vj) ∼= Vj ×Gd(C
n)

is contained in Vj ×W , where W is some afine coordinate open subset of
Gd(C

n). Transition functions of F are, of course, induced by those of E.

Definition 2.1.3. A singular distribution of dimension d on a variety X is
a rational section (i.e.: a section defined on an open sub-space of X) of the
bundle Gd(TX). The closed set Z = X \ U is called the singular set of the
distribution.
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Remark 2.1.4. A singular distribution then determines a sub-bundle

F � � //

��

TU

��

// TX

��
U U � � // X.

If X is a regular variety is in particular normal. Then the shaf OX have
Serre’s property S2 (see [Gro65, 5.8 – 5.10]), and, being locally free, so
does (the sheaf associated to) TX. If moreover codim(X \ U) > 2 then, by
property S2, every section of Γ(U,F ) extends to a global section of TX. So
in this way we get a sub-sheaf

F̃ ↩→ TX

such that it’s restriction to U is F , in particular, F̃ |U = F is a sub-locally
free sheaf of TX|U = TU .

Reciprocally, having a subsheaf F ⊂ TX such that its restriction to an
open set U is a sub-vector bundle of rank d gives rise to a rational section s
of Gd(TX). Indeed, take the short exact sequence

0 → F → TX → Q→ 0.

When restricted to U this is a s.e.s. of locally free sheaves, so Tor1(Q, k(x)) =
0 for every x ∈ U . Then F ⊗ k(x) ⊆ TX ⊗ k(x) = TxX is a d-dimensional
sub-space. So we can define

s(x) = [F ⊗ k(x)] ∈ Gd(TxX)

for every x ∈ U .

Remark 2.1.5. When X is regular of dimension n we can also give a dis-
tribution with a rational section t of Gn−d(T

∗X). Indeed, we can associate
to t a sub-sheaf I ⊆ Ω1

X that is a sub-vector bundle of rank q = n− d when
restricted to an open set U . To I we can associate the sheaf F ⊂ TX of
vector fields that annihilate I . Then F will be a rank d sub-bundle of TX
when restricted to U . So F will give, as above, a rational section of Gd(TX).

As we allways have an inclusion

Gq(T
∗X) ↩→ P(∧qT ∗X)

V 7−→ [∧qV ],

then a rational section t of Gq(T
∗X) gives rise to a rational section of

P(∧qT ∗X). If I ⊂ Ω1
X is the sub-sheaf associated to t, then we have, as-

sociated to the rational section of G1(∧
qT ∗X) the sheaf ∧qI.

Now having a rational section, say defined over U ⊆ X, of P(∧qT ∗X)
is like having, for a covering U = ∪Vi, q-forms ωj ∈ ΩqX(Vj) such that
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ωj = gijωi on Vi ∩ Vj , with gij : Vi ∩ Vj → C∗. The set of functions (gij)
give a cocycle defining a line bundle L over U . If codim(X \ U) > 2 then
the gij extends to X and so does L. So we have that a rational section of
P(∧qT ∗X) gives a global section of ΩqX ⊗ L.

2.2. Foliations

Here we present the basics of the classical theory of holomorphic folia-
tions following [ALN07]. Although throughout this work we work mostly
with distributions satisfying Frobenius condition, and we keep integration
of distributions and manipulation with leaves to a minimum, it’s important
to remark that the geometric core of the results stated here are consequen-
ces of Frobenius theorem, notably Kupka’s theorem. Othewise we would
just be developing a theory of sub-sheaves of TX with some extra arbitrary
condition.

It’s worthwhile to mention that here we concentrate mostly on the geo-
metric characterizations of foliations and its singularities. We won’t mention
anything about the dynamic of foliations, for instance, holonomy of a leaf or
ergodicity of a foliation are concepts that won’t even be defined. Nevertheless
we remark their importance for, as was mentioned in the introduction, it was
the dynamics of differential equations that originally motivated the study
of foliations. For a treatment of this and more subjects on the dynamics of
holomorphic foliations we defer to [GMOB89] and [GM88].

Having concluded this section’s rant we can begin.

Definition 2.2.1. A regular complex holomorphic foliation F , of dimension
k over a complex regular variety X of dimension n (1 ≤ k ≤ n), is a de-
composition X =

∪
i∈I Li of X in connected holomorphic sub-varieties of

dimension k, called leaves of F , such that the following conditions hold:

1. For all x ∈ X there is a unique leaf Lx of F containing x. If y ∈ Lx,
then Lx = Ly.

2. For all x ∈ X there is a local holomorphic chart (U, ϕ) of X, with
x ∈ U , such that ϕ : U → Vk × Vn−k, where Vk and Vn−k are open
sets of Ck and Cn−k respectively. For all (z, w) ∈ Vk × Vn−k the k-
dimensional subvariety of U , ϕ−1(Vk × {w}), is an open set of Ly,
where y = ϕ−1(z, w).

We’ll also say that F is a foliation of codimension n− k. We’ll say that
the chart (U, ϕ) of the definition is an adapted chart to the foliation F , we’ll
also call it a trivializing chart.

Remark 2.2.2. From the definition follows the fact that, given two trivia-
lizing charts (U1, ϕ1) and (U2, ϕ2), the coordinate change

Φ12 : ϕ1(U1 ∩ U2) ⊆ Vk × Vn−k −→ ϕ2(U1 ∩ U2) ⊆ Vk × Vn−k
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has the expression
Φ12(z, w) = (f(z, w), g(w)).

Indeed, as ϕ1 and ϕ2 map leaves of F to sets Vk × {w}, then Φ12 must
preserve such sets i.e.: must map Vk×{w} to Vk×{w′}. Hence Φ12 must be
shaped as above.

Remark 2.2.3. We stress the fact that the leaves Li on the definition of
foliation need not to be immersed sub-manifolds, meaning that the topology
in a leaf L isn’t necesarilly induced by the inclusion map i : L→ X. In other
words, we only ask for the inclusion map i : L → X to be holomorphic,
injective, and such that the differential dix : TxL → Ti(x)X is injective for
all x.

Remark 2.2.4. A k-dimensional regular foliation F induces a rank k vector
bundle over X. This bundle is naturally embedded in the tangent bundle
TX.

Indeed, cover X by adapted charts (Ui, ϕi)i∈I , with coordinate change
maps Φij = (fij(z, w), gij(w)). Define the bundle with trivialization pi :
Ui × Ck → Ui and coordinate changes

φij : Uij × Ck −→ Uij × Ck

(x, v) 7→ (x, dfij |ϕi(x)(v)).

The bundle thus defined doesn’t depend on the choice of adapted charts
and, by looking at its coordinate changes, it’s clear that is a sub-bundle of
the tangent bundle.

Definition 2.2.5. The bundle defined in Remark 2.2.4 will be called tangent
bundle to the foliation, and denoted TF .

Note that, for any x ∈ X the inclusion i : L → X of the leaf passing
through x gives a canonical isomorphism TxL ∼= (TF)x with the fiber of TF
above x (which, stressing the analogy with the tangent bundle of a manifold,
we’ll also denote TxF).

Associated with any short exact sequence of vector bundles

0 → E → T → Q→ 0

we have the dual exact sequence

0 → Q∨ → T∨ → E∨ → 0.

Here Q∨ is the annihilator of E in T∨. Frobenius theorem can be seen as a
criterion for a sub-bundle E ⊆ TX to be the tangent bundle of a foliation,
in terms of conditions on E or Q∨.
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Theorem 2.2.6 (Frobenius). Let E be a rank k bundle, and 0 → E →
TX → Q → 0 be an exact sequence, denote I = Q∨. The following are
equivalent:

1. For every two sections v and v′ of E ⊆ TX, the lie bracket [v, v′] is
also a section of E. (We say that E is involutive.)

2. I ⊆ Ω1
X is locally generated by forms η1, . . . , ηn−k such that

dηi ∧
n−k∧

i=1

ηi = 0.

(We say that I is integrable.)

3. There is a foliation F such that TF = E as sub-bundles of TX.

Proof. See [Mal72, chapter II.5].

Definition 2.2.7. A singular foliation on X is a foliation F defined on an
open set U of X. The closed set X \ U is called the singular locus of the
foliation and noted sing(F).

Remark 2.2.8. Let F be a singular foliation of dimension k and F|U its
restriction to the maximal open set where is non-singular. As discused in
Remark 2.1.4, the tangent bundle TF|U defines a singular distribution and,
if codim(sing(F)) > 1, a unique coherent sub-sheaf TF ⊆ TX.

Likewise, set I(F|U ) the annihilator of TF|U in Ω1
U . Then, as in Re-

mark 2.1.5, I(F|U ) defines a section of Ωn−kX ⊗L, and, if codim(sing(F)) > 1,
a unique coherent sub-sheaf I(F) ⊆ Ω1

X .

Note further that, as the restriction TF|U is involutive, and involutive-
ness is a closed condition, so TF is an involutive sub-sheaf, meaning that
the C-linear map

TF ⊗C TF
[−,−]
−−−→ TX

have image in TF .
Likewise I(F) is integrable, meaning that the sheaf of C-modules

dI(F) ∧
∧n−k I(F) is zero.

2.3. Plücker relations

As is usually much easier to manipulate a single q-form than a subsheaf
I ⊂ Ω1

X of generic rank q or a subsheaf F ⊂ TX of generic rank d (well,
at least when d > 1) we’ll deal quite a lot with q-forms when working
with codimension q foliations. There’s some price to pay though, subsheafs
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F ⊂ TX have lots of well understood invariants, and those invariants may
not be so easy to trace back to the corresponding q-form.

Anyway, as our (twisted) q-forms comes from rational sections of P(∧qT ∗X)
that are in the image of the Plücker map

Gq(T
∗X) ↩→ P(∧qT ∗X),

we’ll need to characterize this image, i.e.: give equations determiningGq(T
∗X)

as a sub-variety of P(∧qT ∗X).
For this we follow [GH94, I.5] and first determine, for a vector bundle

E, and a global section of it Λ ∈ ∧qE(X), the minimal sub-bundle F ⊆ E
such that Λ is in the image of

∧qF → ∧qE.

If rank(F ) = l, then l ≥ q with equality holding if and only if Λ is locally
decomposable, i.e. for each x ∈ X there is a neighborhood U ∋ x and local
sections v1, . . . , vq ∈ E(U) such that, in U ,

Λ = v1 ∧ · · · ∧ vq.

First we state a well known lemma (see e.g.: [Har77, Exercise II.5.16]).

Lemma 2.3.1. Let 0 →M → P → N → 0 an exact sequence of A-modules.
Then for any p there is a filtration

∧pP = F 0 ⊇ F 1 ⊇ · · · ⊇ F p ⊇ F p+1 = 0

with quotients
F i/F i+1 ∼= ∧iM ⊗ ∧p−iN

for each i.

Proof. We simply set

F i = A · (m1 ∧ · · · ∧mi ∧ x1 ∧ · · · ∧ xp−i s.t. : mi ∈M).

Observe that this sub-modules verifiy the required conditions.

Definition 2.3.2. We denote by E∨ the dual sheaf of E, for a local section
v∗ ∈ E∨(U), we define the contraction operator

ιv∗ : ∧qE → ∧q−1E

by
< ιv∗(Λ),Θ >=< Λ, v∗ ∧Θ >

for all Θ ∈ ∧q−1E∨.
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Lemma 2.3.3. Let Λ ∈ ∧qE(U) be a local section. We associate to Λ the
sub-sheaves

Λ⊥ =< v∗ ∈ E∨(U) s.t.: ιv∗Λ = 0 >

and
W = Ann(Λ⊥) ⊆ E(U).

Then W is the minimal sub-sheaf of E|U such that Λ is in the image of
∧qW → ∧qE|U .

Proof. Replacing X by U we can assume that every section is global. We
have the short exact sequence

0 →W → E → N → 0.

It’s clear from the definitions that N ⊆ (Λ⊥)∨. Lets take on ∧qE the filtra-
tion (F i)q+1

i=0 given by Lemma 2.3.1. We want to show that Λ ∈ ∧qW (X).
Set p the minimum number such that Λ ∈ F p(X) \F p+1(X). Suppose p < q
and take [Λ] the image of Λ in

[Λ] ∈ F p/F p+1(X) ∼= ∧pW ⊗ ∧q−pN(X).

As N ⊆ (Λ⊥)∨, we can see [Λ] as an operator

[Λ] : ∧q−p(Λ⊥) → ∧pW.

But then from the definition of Λ⊥ we have that [Λ] = 0.
On the other hand, if T is a sub-sheaf such that Λ is in the image of

∧qT → ∧qE, then T ⊇ Ann(Λ⊥).

Lemma 2.3.4. Let’s define another sheaf W ′ by

W ′(U) = {w ∈W (U)s.t.: w ∧ Λ = 0}.

Then Λ is locally decomposable if and only if W ′ =W .

Proof. If Λ is locally decomposable, clearly W ′ =W . Conversely, if Λ is not
decomposable so that dimW > q, then, since the pairing
∧qW ⊗ ∧l−qW → ∧lW is nondegenerate, we deduce that W ′ ̸=W .

Now we extend the contraction operator to sections of ∧pE∨ in the only
sensible way. If Ξ ∈ ∧pE is a local section we define

ιΞ : ∧qE → ∧q−pE

< ιΞΛ, v
∗ > = < Λ,Ξ ∧ v∗ >

for all local sections v∗ of ∧q−pE∨.
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Proposition 2.3.5 (Plücker relations). The section Λ ∈ ∧qE(X) is locally
decomposable if and only if

ιΞ(Λ) ∧ Λ = 0 (2.1)

for every local section Ξ of ∧q−1E∨.

Proof. We may characterize W as being the image of

∧q−1E∨ → E

under the map
Ξ 7→ ιΞΛ, Ξ ∈ ∧q−1E ∨ (U).

Then the condition W ′ =W is equivalent to eq. (2.1).

2.4. Singularities of codimension-1 foliations

2.4.1. Kupka singularities

Studying the structural stability of foliations of codimension 1 Kupka
(in [Kup64]) made a most remarkable discovery. Namely, he found that in-
tegrable forms (i.e.: forms giving rise to involutive distributions) can have,
in general, a bigger zero locus than generic forms.

More specifically, given a form ω such that ω ∧ dω = 0 and such that
there’s a point x ∈ X such that

ωx = 0 dωx ̸= 0,

then the singular set of ω (the set of zeros of ω) around x form a codi-
mension 2 sub-manifold. Moreover, the condition ωx = 0 dωx ̸= 0 is an
open condition in the space of integrable 1-forms (endowed with a natural
topology).

Let us note that a generic 1-form (as any generic section of a bundle E
with rank(E) = dim(X)) have isolated zeros. In particular Kupka’s theorem
says that the closed sub-space of 1-forms with non-isolated zeros intersects
the closed sub-space of integrable forms non-transversaly.

Now we make use of the calculations made with Plücker relations and
use them to give a slightly simplified version of Medeiros’proof of Kupka’s
theorem ([dM77]).

Proposition 2.4.1. Let X be a regular variety over C and ω ∈ Ω1
X(U) an

integrable 1-form defined in a neighborhood U of a point x ∈ X. Then dω is
locally decomposable.
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Proof. We have to prove that dω verifies Plücker relations (eq. (2.1) in Pro-
position 2.3.5). This amounts to make two observations. The first is that, as
ω is integrable, we have

ω ∧ dω = 0 =⇒ d(ω ∧ dω) = dω ∧ dω = 0.

The second is that contraction with respect to a vector field is a degree −1
derivation in the algebra of exterior differential forms, i.e.:

ιv(η ∧ τ) = ιv(η) ∧ τ − η ∧ ιv(τ).

In particular, for every vector field v

ιvdω ∧ dω =
1

2
ιv(dω ∧ dω) = 0.

So eq. (2.1) is satisfied and dω is locally decomposable.

So now we have a locally decomposable 2-form, moreover this form is
closed, in particular is integrable. If dωx ̸= 0, then the codimension 2 folia-
tion defined by dω is non-singular in a neighborhood of x. We will now have
a closer look at the leaves of this foliation and relate them with the foliation
defined by ω.

Lemma 2.4.2. Suppose that dωx ̸= 0. Consider G the codimension 2 folia-
tion defined by dω. In the neighborhood V of x ∈ X where G is non-singular
we have the following The leaves of G are integral manifolds of ω (i.e.: if
L→ X is a leaf of G then ω|L = 0).

Proof. We know that, if v is a vector field tangent to G, ιv(dω) = 0. On the
other hand we have

0 = ιv(ω ∧ dω) = ιv(ω)dω.

Since dω ̸= 0, then ιv(ω) = 0 and we are done

Lemma 2.4.3. With the same hipothesis as Lemma 2.4.2. Let v be a vector
field tangent to G. Then the Lie derivative of ω with respect to v is zero.

Proof. The Lie derivative of ω with respect to v is given by Cartan formula

Lv(ω) = ιv(dω) + d(ιvω).

By definition of G, ιv(dω) = 0, and by Lemma 2.4.2, ιv(ω) = 0. Then
Lv(ω) = 0.

Lemma 2.4.4. Same hipothesis as Lemma 2.4.2 and 2.4.3, then sing(ω) is
saturated by leaves of G (i.e.: take y ∈ V a zero of ω, and L the leaf of G
going through y. Then the inclusion L→ V factorizes through sing(ω)).
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Proof. Let y ∈ sing(ω) and L the leaf of G going through y. Let p ∈ L and
v a vector field tangent to G such that the orbit γ(t) of v going through y
joins y with p. As Lv(ω) = 0 by Lemma 2.4.3, then

d

dt
(γ∗ω)(t) = Lv(ω)|γ(t) = 0.

And as ωγ(0) = 0, so ω|γ(t) ≡ 0. Then γ(t) ∈ sing(ω) for all t, so L ⊂
sing(ω).

Remark 2.4.5. In particular, if ωx = 0 and dωx ̸= 0, last lemma is telling
us that, locally around x, sing(ω) is a codimension 2 sub-variety. This is
quite remarkable if we consider that generic 1-forms in a domain V ⊆ Cn

have isolated zeros. Even more so if we observe that the condition dωx ̸= 0
is an open one.

So, for instance, lets take the space Ω1[Cn]d of algebraic 1-forms in Cn

whose coeficients are degree d polynomials. It has a natural structure of
affine space. A generic member η ∈ Ω1[Cn]d have isolated zeros. But if we
restrict ourselves to the closed algebraic sub-variety Int of 1-forms ω such
that ω ∧ dω = 0, then there is an open (non-void) subvariety U of Int such
that a generic member of U have non-isolated zeros. Namely, every 1-form
such that there exist x ∈ Cn with ωx = 0 and dωx ̸= 0 is in U .

Theorem 2.4.6 (Kupka). Let X be a regular variety over C and ω ∈ Ω1
X(U)

an integrable 1-form defined in a neighborhood U of a point x ∈ X. Suppose
further that dωx ̸= 0. Then there is an analytical coordinated neighborhood
V of x with coordinate functions y1, . . . , yn such that, in those coordinates,
ω can be written

ω = F (y1, y2)dy1 +G(y1, y2)dy2.

In more intrinsic terms, ω|V is the pull-back of an integrable 1-form in C2.

Proof. By Frobenius theorem we can take a coordinate neighborhood
(V, (y1, . . . , yn)) such that the leaves of the foliation G defined by dω are
the submanifolds y1 = ct., y2 = ct.

Now, in this coordinate system, the vector fields

vj =
∂

∂yj
, 3 ≤ j ≤ n,

are tangent to G. By Lemma 2.4.3 we have Lv3ω = Lv4ω = · · · = Lvnω = 0,
so in this coordinate system

ω =
∑

i

Fi(y1, y2)dyi.

On the other hand, by Lemma 2.4.2, ιvjω = 0, for all 3 ≤ j ≤ n. Then, in
the above expresion of ω, F3 = F4 = · · · = Fn = 0.
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Remark 2.4.7. Note that, aside from last theorem, we’ve never made use
of integration, Frobenius theorem or analytical coordinates in any of the
previous lemmas. So, in the case X is a regular algebraic variety and ω an
integrable algebraic 1-form, the conclusions of lemmas 2.4.2, 2.4.3 and 2.4.4
and Proposition 2.4.1 hold Zariski locally. On the other hand, the coordinate
neighborhood (V, (y1, . . . , yn)) in Kupka’s theorem will not, in general, be a
Zariski neighborhood, nor will the yi be algebraic morphisms.

Although we won’t use it later, we’ll include now a proof of Medei-
ros/Kupka’s theorem for p-forms, which is an analogous version of Kupka’s
theorem for integrable p-forms. The guiding lines are the same as in the
1-form case, and, as before, we can take advantage of Plücker relations to
replace some cumbersome manipulations in coordinates with intrinsic cum-
bersome manipulations.

Before we proceed we need to make a small obsevation.

Remark 2.4.8. Let Ξ ∈ ∧pTX , we have defined above the contraction
operator

ιΞ : ΩqX → Ωq−pX .

Note that, in the case Ξ = v1 ∧ · · · ∧ vp, this is just the composition

ιΞ = ιv1 ◦ · · · ◦ ιvp .

Proposition 2.4.9. Let X be a regular variety over C and ω ∈ ΩpX(U) a
locally decomposable and integrable p-form defined in a neighborhood U of a
point x ∈ X. Then dω is also locally decomposable.

Proof. Take a local decomposition ω = η1∧· · ·∧ηp. Integrability of ω means
we have

ηi ∧ dω = 0, ∀1 ≤ i ≤ p. (2.2)

We want to check Plücker relations, which are in this case ιΞ(dω)∧ dω = 0
for all Ξ ∈ ∧pTX. It is sufficient to check this for every fundamental tensor
Ξ = v1 ∧ · · · ∧ vp. So we compute

dω = d(η1 ∧ · · · ∧ ηp) =
∑

i


(−1)idηi ∧

∧

j ̸=i

ηj


 .

And in this case we have

ιv1∧···∧vpdω =
∑

χijιvi(dηj) +
∑

ϕkηk,

where χij and ϕk are functions. By eq. (2.2) is enough to show

ιvi(dηj) ∧ dω = 0.
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To show this equation holds is enough to verify it for every point
z ∈ U \ sing(ω). As ω is integrable, in the dense open set U \ sing(ω) we
have that

dηj =
∑

f jklηk ∧ ηl,

where f jkl are holomorphic functions. Then

ιvi(dηj) ∧ dω =
(∑

ιvi(f
j
klηk ∧ ηl)

)
∧ dω =

=
∑

f jkl ιviηk ∧ ηl ∧ dω +
∑

f jkl ηk ∧ ιviηl ∧ dω.

So, again by eq. (2.2), we are done.

Lemma 2.4.10. Suppose that dωx ̸= 0. Consider G the codimension p + 1
foliation defined by dω. In the neighborhood V of x ∈ X where G is non-
singular we have the following The leaves of G are integral manifolds of ω.

Proof. Analogously to Lemma 2.4.2, for v tangent to G, and with the nota-
tion of the last proposition we have

0 = ιv(η ∧ dω) = ιv(η) ∧ dω.

Since dω ̸= 0 we conclude.

Lemma 2.4.11. With the same hipothesis as last lemma. Let v be a vector
field tangent to G. Then the Lie derivative of ω with respect to v is zero.

Proof. Proceed exactly as in Lemma 2.4.3.

Lemma 2.4.12. Same hipothesis as Lemma 2.4.10 and 2.4.11, then sing(ω)
is saturated by leaves of G.

Proof. Follows from Lemma 2.4.11 (c.f.: proof of Lemma 2.4.3) .

Theorem 2.4.13 (Kupka’s theorem for p-forms ([dM77])). Let X be a re-
gular variety over C and ω ∈ ΩpX(U) an integrable p-form defined in a
neighborhood U of a point x ∈ X. Suppose further that dωx ̸= 0. Then there
is an analytical coordinated neighborhood V of x with coordinate functions
y1, . . . , yn such that, in those coordinates, ω can be written

ω = F1(y1, y2, . . . , yp+1)dy1+F2(y1, y2, . . . , yp+1)dy2+· · ·+Fp+1(y1, y2, . . . , yp+1)dyp+1.

In more intrinsic terms, ω|V is the pull-back of an integrable p-form in Cp+1.

Proof. Use Lemma 2.4.10, Lemma 2.4.11,and Lemma 2.4.12 to proceed as
in the proof of Theorem 2.4.6.



2. Preliminaries on Foliations 41

2.4.2. Reeb singularities

We have commented before that Kupka singularities might be viewed as
an unexpected phenomenon among 1-forms, ocurring suddenly in the case
where the 1-form ω is integrable. On the other side it may be the case that
a 1-form ω have the type of zeros one would expect in a generic 1-form
or, more generally, in a generic section of a rank-n vector bundle over a
variety of dimension n. Reeb singularities are exactly that, although not
every integrable 1-form have Reeb singularities.

Definition 2.4.14. Let X be an n-dimensional regular variety and ω ∈ Ω1
X

an integrable 1-form. We say that a point p ∈ X is a Reeb singularity of ω
if ωp = 0 and, moreover, there is an analytical neighbourhood U of p, with
local coordinates xi such that in U , ω can be written as

ω =

n∑

i=1

fi(x)dxi,

where the fi are such that df1|p, . . . , dfn|p are linearly independent elements
of the vector space T ∗

pX.

Remark 2.4.15. In particular a Reeb singularity is an isolated singularity.
Indeed, the zeros of ω are given in U by the equations (f1(x) = 0, . . . , fn(x) =
0). Now the tangent space of the (analytical) scheme defined by the ideal
(f1, . . . , fn) on p is given by

{v ∈ TpX : dfi(v) = 0, 1 ≥ i ≥ n}.

As the dfi’s are linearly independent this tangent space is zero dimensional
so the ideal (f1, . . . , fn) actually defines a reduced 0-dimensional scheme on
X.

Remark 2.4.16. At a Reeb singularity one necessarily have dωp = 0. Ot-
herwise p would be a Kupka singularity and p woudn’t be an isolated zero
of ω.

2.5. Codimension 1 foliations on Pn(C)

In this section we gather results mostly about foliations defined on Pn(C).
This results are the main motivation for the present work.

To deal with foliations on Pn(C) we’ll use global twisted 1-forms, and
global twisted vector fields. Indeed, a foliation is, in general, given by, eit-
her a sub-sheaf TF ⊆ TPn(C) or a sub-sheaf I(F) ⊆ Ω1

Pn(C). So we’ll be
considering their associated graded modules

⊕

i

H0(Pn(C), TF(i)) ⊆
⊕

i

H0(Pn(C), TPn(C)(i))



2. Preliminaries on Foliations 42

and ⊕

i

H0(Pn(C), I(F(i))) ⊆
⊕

i

H0(Pn(C),Ω1
Pn(C)(i))

over the homogeneous coordinate ring C[x0, . . . , xn]. To describe sheaves in
Pn is sufficient to determine their associated graded modules from a big
enough degree on. So we’ll usually describe foliations over Pn(C) by a vec-
tor space H0(Pn(C), TF(m)) ⊆ H0(Pn, TPn(m)) containing generators of⊕

i≥mH
0(Pn(C), TF(i)), or the analogous for H0(Pn(C), I(F)(m)). We’ll

need then a suitable description of this global sections, for this we have
Euler’s exact sequence.

2.5.1. Euler’s short exact sequence

Remember (from [GH94] for instance) that, given a vector space V and a
line l ⊂ V in it, we can naturally identify the tangent vector space to P(V )
on a point [l] ∈ P(V ) as homC(l, V/l). Moreover, this identification being
natural, we have the isomorphism of sheaves

TP(V ) ∼= Hom(OP(V )(−1),OP(V ) ⊗C V /OP(V )(−1)).

Note that OP(V )(−1) is the sheaf associated to the canonical line bundle over
P(V ), and thatOP(V )⊗CV is the (sheaf associated to the) trivial vector bund-
le with fiber V , so the fiber of Hom(OP(V )(−1),OP(V ) ⊗C V /OP(V )(−1)) on
a point [l] is indeed homC(l, V/l).

On the other hand we have the canonical short exact sequence of sheaves

0 → OP(V )(−1) → OP(V ) ⊗C V → OP(V ) ⊗C V /OP(V )(−1) → 0.

So, as OP(V )(−1) is locally free, applying the functor Hom(OP(V )(−1),−)
gives the short exact sequence

0 → OP(V ) → OP(V )(1)⊗C V → TP(V ) → 0.

This is the Euler exact sequence for the tangent sheaf.
Dualizing Euler’s exact sequence for the tangent sheaf we get the se-

quence
0 → Ω1

P(V ) → OP(V )(−1)⊗C V
∨ → OP(V ) → 0.

Which is Euler’s short exact sequence for the cotangent sheaf.

Now, lets fix coordinates (x0, . . . , xn) in V . So we are identifying V ∼=
Cn+1.

Applying the global section Euler’s sequence for the tangent sheaf beco-
mes

0 → H0(Pn,OPn) → H0(Pn,OPn(1)⊕n+1) → H0(Pn, TPn) → 0

0 → C → (C[xo, . . . , x1]=1)
n+1 → H0(Pn, TPn) → 0,
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where C[xo, . . . , x1]=1 is the space of homogeneous polynomials of degree 1.
Now fixing an affine open set An = Ui ⊂ Pn we identify OPn(Ui) with

rational forms in C[x0, . . . , xn,
1
xi
] of degree 0. Likewise TPn(Ui) is identi-

fied with derivations of this rational forms, so TPn(Ui) is generated as an
OPn(Ui)-module by xi

∂
∂xj

, 0 ≥ i, j ≥ n. This gives a realization of the epi-

morphism OPn(1)⊕n+1 → TPn in Ui,

(C[x0, . . . , xn,
1

xi
]=1)

n+1 −→ TPn(Ui)

(l0, . . . , ln) 7→
∑

j

lj
∂

∂xj
.

We know the kernel of this map is the image of OPn so is generated by
a single element. On the other hand Euler’s lemma tells us that if f is a
homogeneous polynomial of degree d then

n∑

i=0

xi
∂f

∂xi
= d · f(x0, . . . , xn),

so the kernel of OPn(1)⊕n+1 → TPn in Euler’s spectral sequence is, under
the above identification, generated by the n+1-tuple (x0, . . . , x1). Note that
the above identification glues well throughout the different Ui’s, so it carries
over to global sections. Moreover tensoring Euler’s sequence with OPn(m)
and taking global sections we have

0 → H0(Pn,OPn(m)) −→ H0(Pn,OPn(m+ 1)⊕n+1) → H0(Pn, TPn(m)) → 0

0 → C[xo, . . . , x1]=m
·(x0,...,xn)
−−−−−−→ (C[xo, . . . , x1]=m+1)

n+1 → H0(Pn, TPn(m)) → 0.

Henceforth when we speak of degree m sections of the tangent sheaf of
Pn we’ll represent them as equivalence classes of polynomial vector fields

v ∈ H0(Pn, TPn(m)), v =

n∑

i=0

Fi
∂

∂xi
,

where Fi ∈ C[x0, . . . , xn]=m+1, such that

R =
n∑

i=0

xi
∂

∂xi

is equivalent to 0.
Applying duality we have that in Euler’s sequence for the cotangent sheaf

says that a degree m global section of the cotangent sheaf may be identified
with a polynomial 1-form

ω ∈ H0(Pn,Ω1
Pn), ω =

n∑

i=0

Gidxi
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where Gi ∈ C[x0, . . . , xn]=m−1, such that ιR(ω) = 0, where, as before,
R =

∑n
i=0 xi

∂
∂xi

.
Note that, by Euler’s lemma, the condition that each one of the Gi above

must be homogenous of degree m− 1 may be stated as

LR(ω) = (m− 1)ω

so we can say that projective global forms of degree m on Pn are polynomial
forms in n+ 1 variables such that ιR(ω) = 0 and LR(ω) = (m− 1)ω.

2.5.2. Singular set

So now when we talk about a codimension 1 foliation on Pn we know
we can describe it with a 1-form ω =

∑n
i=0 fi(x)dxi with fi a degree d

homogeneous polynomial, such that ω ∧ dω = 0 and such that iR(ω) = 0.
In this setting the singular set of the foliation determined by ω is the set of
common zeros of f0, . . . , fn. We have the following proposition.

Proposition 2.5.1. Let ω ∈ H0(Pn,Ω1
Pn(m)) be an integrable 1-form of

degree m. Then the singular set of the foliation F it represents have at least
one component of codimension ≤ 2.

Proof. Set ω =
∑n

i=0 fi(x)dxi. As was said before the singular set sing(F)
is given by ωx = 0 i.e.: by the variety defined by the ideal (f0, . . . , fn) ⊂
C[x0, . . . , xn]. As the codimension of a scheme and its reduced structure is
the same, we may deal directly with the ring S = C[x0, . . . , xn]/(f0, . . . , fn).
To this ring we can apply the Koszul complex K•(f0, . . . , fn),

0 → C[x0, . . . , xn] → · · · →

p∧
C[x0, . . . , xn]

−∧(f0,...,fn)
−−−−−−−−→

p+1∧
C[x0, . . . , xn] → . . .

· · · → (C[x0, . . . , xn])
n+1 <−.(f0,...,fn)>

−−−−−−−−−→ C[x0, . . . , xn] → S → 0

Note that we can identify this complex with K•(ω):

0 → OAn+1

−∧ω
−−−→ Ω1

An+1

−∧ω
−−−→ Ω2

An+1 → . . .

. . .
−∧ω
−−−→ ΩnAn+1

−∧ω
−−−→ Ωn+1

An+1 → S → 0.

The n − 1-th homology group Hn−1(K•(ω)) is non-trivial. Indeed, as ω is
integrable, dω is a cycle in Kn−1(ω). Suppose dω is a border in Kn−1(ω)
(i.e.: there exist η ∈ Kn(ω) such that dω = ω∧ η), then dω = ω∧ η for some
polynomial 1-form η. Then we would have

(m− 1)ω = LRω = dιR(ω) + ιR(dω) = ιR(dω) =

= ιR(ω ∧ η) = −ω ∧ ιR(η),
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then ιR(η) = 1−m which is impossible because of degree considerations on
the coefficients of η.

As Hn−1(K•(ω)) ̸= 0, this implies ([Ser02, chap. IV] or [Eis95, chap.17])
that a maximal S-regular sequence in C[x0, . . . , xn] has length ≤ 2, so S has
codimension ≤ 2 in C[x0, . . . , xn], and so has sing(F) ⊂ Pn.

2.5.3. Rational foliations

Any dominant rational map ϕ : X → Y gives rise to a singular foliation
where the leaves are f−1(y)reg, that is, the regular open set of the pre-image
of any point y ∈ Y . In particular we can consider rational maps

Pn(C) −→ P1(C),

(x0 : · · · : xn) 7→ (F (x0, . . . , xn) : G(x0, . . . , xn))

where F and G are two homogeneous polynomials such that degF =
degG = d. The foliation this map defines is also determined by the form
ω = FdG−GdF ∈ H0(Pn(C),Ω1

Pn(C)(2d)). Note that this foliation may be

identyfied with the pencil of degree d hypersurfaces {(µF +λG) st : (µ : λ) ∈
P1}.

The singular set

The singular set of this foliation, the points x such that ωx = 0, have in
general two distinctive types. On one side there are the points corresponding
to the base locus of the pencil, this are the zeros of the ideal (F,G) ⊂
C[x0, . . . , xn]; on the other side we have the singularities of the members of
the pencil.

Indeed, suppose x is a singular point, if x is in neither of the above
mentioned sets, then there is a member (µF + λG) of the pencil such that
x ∈ V ((µF + λG)) and is a regular point. So V ((µF + λG))reg is a leaf of
the foliation passing through x, but then x woudn’t be singular. It is easy
to see that every point of the above two types is singular.

V ((F,G)) ⊂ sing(F) is a codimension 2 subvariety, for generic choices of
F and G this subvariety will be regular and irreducible. The regular points
of the variety V ((F,G)) defined by the ideal (F,G) are Kupka singularities
of the foliation.

Indeed, dω = 2dF∧dG, and the coefficients of dF∧dG are the 2×2 minors
of the jacobian matrix ( ∂F

∂xi
| ∂G
∂xi

)0≤i≤n. If x is a regular point of V ((F,G)),
then ωx = 0 and dωx ̸= 0.

Conversely, suppose x is a Kupka singularity of the foliation, as ωx = 0
then, if x is not on V ((F,G)), there must be a point (µ, λ) ∈ P1 such
that x is a singular point in the hypersurface µF + λG = 0. But then
(µdF + λdG)x = 0, so dωx = 0 as well.
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On the other hand one have the singularities of the members of the
pencil. If the polynomials F and G are generic, the pencil generated by F
and G will be a Lefschetz pencil, meaning that the singularities of members
of the pencil are isolated and, moreover, if x ∈ V (µF + λG) is a singular
point, then hess(µF + λG)x ̸= 0, where hess(H) is the determinant of the

Hessian matrix ( ∂2H
∂xi∂xj

)0≤i,j≤n (see [GH94, chap. 4.2]).

In the case where the map (F : G) : Pn → P1 defines a Lefschetz pencil,
then the singularities of the members of the pencil are Reeb type singulari-
ties.

Indeed, we may assume without loss of generality that x ∈ V ((G)) is
an isolated singularity. Say ω = FdG − GdF =

∑
fidxi, as x is isolated

dωx = 0. We have to prove that the dfi are linearlly independent at x. The
coefficients fi of ω are

∂F

∂xi
G+ F

∂G

∂xi

So dfi is

∑(
∂2F

∂xi∂xj
G+

∂F

∂xi

∂G

∂xj
−
∂G

∂xi

∂F

∂xj
+ F

∂2G

∂xj∂xi

)
dxj .

As x ∈ V ((G)) then G(x) = 0, so the leftmost summand between parenthesis
vanishes when evaluated in x. The term ∂F

∂xi
∂G
∂xj

− ∂G
∂xi

∂F
∂xj

is a coefficient in

dω so it also vanishes at x. So dfi, 0 ≤ i ≤ n are columns in a multiple of
the Hessian matrix of G, it is a nonzero multiple because x is not on the
base locus of the pencil. Then the dfi’s are linearlly independent and x is a
Reeb singularity.

Summing up we can say that in the generic situation where F and G
form a Lefschetz pencil the singular set of FdG−GdF is of the form K∪R.
Where K is the codimension 2 sub-variety given by the closure of the Kupka
singularities, and R is the discrete set of Reeb singularities.

Families.

The set of rational foliations have a natural structure of algebraic variety,
namely if we associate to every pair (F,G) of polynomials the integrable form
FdG − GdF we have for every point of
P(C[x0, . . . , xn]=m)× P(C[x0, . . . , xn]=m) an associated foliation. More pre-
cisely, we have the subscheme

Fol(n, 2m) = {ω ∈ P(H0(Pn,Ω1
Pn(2m))) : ω∧dω = 0} ⊂ P(H0(Pn,Ω1

Pn(2m))),

(although we will call it differently bellow, for now we stick to the more cus-
tomary notation of [ALN07]). In this projective scheme we have a subscheme
isomorphic to P(C[x0, . . . , xn]=m)×P(C[x0, . . . , xn]=m) corresponding to ra-
tional foliations. We’ll see bellow that this can be better stated by saying
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that rational foliations determine a subscheme of the moduli space of inte-
grable Pfaff systems. For now we’ll just state the following important result
whose proof can be found in [ALN07, 3.2]

Theorem 2.5.2. The space of rational foliations is an irreducible compo-
nent of the scheme Fol(n, 2m).

Proof. As we said before a proof can be found in [ALN07, 3.2], a different
proof can be found in [CPV09].

2.5.4. Logarithmic foliations

Definition 2.5.3. A logarithmic form on a regular variety X is a local
section ω of Ω1

X defined on the complement of a hypersurface Y = Y1∪· · ·∪Yk
such that ω can be written locally as

ω = η +
∑

λi
dfi
fi
,

where η is holomorphic, λi ∈ C, and Yi = V ((fi)). We say this ω is logarith-
mic with poles on Y or that ω is meromorphic with logarithmic singularities
in Y .

Logarithmic forms with poles in a fixed hypersurface Y form a coherent
sheaf Ω1

X(log Y ). We will need to state certain properties of this sheaves
in order to establish that certain features hold generically for logarithmic
foliations. The following notions will be important here. Anyway, as this
notions won’t appear away from this section, we won’t get much into them
and use facts related to them as “black boxes”.

Definition 2.5.4. A divisor Y in a regular variety X over C is a normal
crossing divisor (n.c.d. for short) if for each x ∈ Y there is an analyti-
cal neighbourhood U ⊂ X containing x and local analytical coordinates
x1, . . . , xn in X such that Y = V ((

∏k
i=1 xi)) for some 1 ≤ k ≤ n.

Definition 2.5.5. A vector bundle E on a variety X is positive if it admits
a hermitian metric h such that its associated curvature form ωh ∈ Ω2

X ⊗
End(E)(X) defines a definite positive operator ωh(v,−) in Ex for each x ∈
X, and every v ∈ TxX.

The following result that will be usefull to us can be found in [Del70].

Proposition 2.5.6. If Y is a normal crossing divisor then the sheaf Ω1
X(log Y )

of logarithmic forms with poles along Y is a positive locally free sheaf of rank
equal to the dimension of X.

Proof. [Del70, chap. 3]
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When X = Pn a logarithmic form can be expressed using Euler’s sequen-
ce for the cotangent. Giving that a logarithmic form ω is a form defined in
U = Pn \ Y , we apply the sequence

0 → Ω1
Pn(U) → OPn(−1)⊕n+1(U)

ιR−→ OPn(U) → 0.

Using Euler’s sequence and the local expression of ω we see that we can
write ω as

ω =

n∑

i=0

λi
dFi
Fi

,

where Yi = (Fi = 0), and
∑
λi deg(Fi) = 0.

A logarithmic foliation is a foliation defined by a global tiwsted form
that is a multiple of a logarithmic form. That is a form ω ∈ Ω1

Pn(d),

ω = (

k∏

i=1

Fi)

k∑

i=0

λi
dFi
Fi

,

such that
∑

deg(Fi) = d and
∑

i λi deg(Fi).

Singularities.

Again, as in the case of rational foliations, singularities of logarithmic
foliations are divided in two distinctive parts. On one hand we have the
zeros of the form that correspond to the points x where Fi(x) = Fj(x) = 0
for i ̸= j. On the other hand we have the zeros of the logarithmic form∑k

i=0 λi
dFi

Fi
. There is a third kind of singularity appearing only in degenerate

cases, when some of the irreducible components Yk of the divisor Y are
singular, the singular set of this components are also singularities of the
foliation. Indeed, if x ∈ Pn \ Y is a singularity of the foliation, then as∏
Fi(x) ̸= 0, x is also a zero of the logarithmic form

∑k
i=0 λi

dFi

Fi
. If x ∈ Y ,

say x ∈ Y1, then

ωx = (
∏

j ̸=1

Fj(x))λ1(dY1)x

so if x is a regular point of Y1 and x /∈ Yk for k ̸= 1 then x is a regular point
of the foliation.

Yi ∩ Yj = V ((Fi, Fj)) is a codimension 2 subvariety. For generic choices
of F1, . . . , Fk the divisor Y will have normal crossings. Suppose then Y is a
n.c.d. and take x a regular point of ∈ Yi∩Yj and that x /∈ Yl for l ̸= i, j. Then
in an analytical neighbourhood U of x there are coordinates (x1, . . . , xn) such
that Y ∩ U = Yi ∩ Yj ∩ U = V ((x1 · x2)). Then, in U dωx is written as

dωx = (λi − λj)(
∏

l ̸=i,j

Fl(x))dx1 ∧ dx2.
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So, for generic choices of λ1, . . . , λk, x is a Kupka singularity.

If Y is a normal crossing divisor and x is a zero of the logarithmic form∑n
i=0 λi

dFi

Fi
then for generic choices of λ1, . . . , λk, x will be a Reeb singularity.

Indeed this follows at once from the following theorem

Theorem 2.5.7. Let E be a rank k positive vector bundle on a regular
variety X. The zero scheme Z(s) of a generic section s is a regular subvariety
of codimension k.

Summing up we have that the singular set of a generic logarithmic fo-
liation is a union K ∪ R, where K are Kupka singularities and R are Reeb
singularities.

Families.

The set of logarithmic foliations have a natural structure of algebraic
variety. Namely, if we call the vector spaces Vi = C[x0, . . . , xi]=di (1 ≤ i ≤ k)
and W = {(λ1, . . . , λk)st :

∑
λidi = 0} then we have the map

P(V1)× · · · × P(Vk)× P(W ) −→ P(H0(Pn,Ω1
Pn(d))

([F1], . . . , [Fk], (λ1 : · · · : λk) 7→

[
(

k∏

i=1

Fi)

k∑

i=0

λi
dFi
Fi

]
.

The image of this map is clearly inside the scheme of integrable forms.
The following result of Omegar Calvo-Andrade says that its image is an
irreducible component

Theorem 2.5.8. The space of logarithmic foliations is an irreducible com-
ponent of the scheme Fol(n, d) where d =

∑
di.

Proof. We refer to [ALN07, 3.3] for a proof of this fact.

2.5.5. Pull-back foliations.

Every (twisted) form η in P2 is integrable, as defines a 1 dimensional
distribution, which is allways involutive. Therefore for a linear projection
ϕ : Pn → P2 we can take the pull-back ω = ϕ∗η and it will be an integrable
form as well. Foliations defined by such forms are called pull-back foliations.

Tangent sheaf.

As described in [FCJVP08], one can give a characterization of pull-back
foliations in terms of their tangent sheaves.
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Proposition 2.5.9 ([FCJVP08]). A foliation F on Pn is a pull-back folia-
tion if and only its tangent sheaf decomposes as

TF = OPn(d)⊕
n−2⊕

i=1

OPn(−1).

Proof. Assume F is given by a form ω = ϕ∗η for some linear projection
ϕ : Pn → P2 and some η ∈ Ω1

P2(m). We may take homogeneous coordinates
in Pn so that ϕ((x0 : · · · : xn)) = (x0 : x1 : x2). Then the vector fields
∂
∂xi

∈ H0(TPn(−1)) are tangent to the foliation for 3 ≤ i ≤ n. Then we
have

OPn · (
∂

∂x3
, . . . ,

∂

∂xn
) ∼=

n−2⊕

i=1

OP2(−1) ⊂ TF .

The quotient sheaf G = TF/
⊕n−2

i=1 OP2(−1) is generically of rank 1. Suppose
G is not locally free, then there is a line L ⊂ Pn such that G|L have torsion.
Take a constants c1, . . . , cn−2 in such way that the plane Π = {(x0 : x1 : x2 :
c1 : · · · : cn−2)} intersects the line L. Then G|Π is not locally free. On the
other hand G|Π is generated by a vector field v ∈ TP2(d) (with the obvious
identification Π = P2) such that η(v) = 0, so G|Π is locally free, and so must
be G. Now as there are no non-trivial extensions between line bundles in
projective space TF must split as in the statement of the proposition.

Conversely suppose TF = OPn(d) ⊕
⊕n−2

i=1 OPn(−1). Then we can take
coordinates such that

n−2⊕

i=1

OPn(−1) = OPn · (
∂

∂x3
, . . . ,

∂

∂xn
) ⊂ TF .

With this coordinates, we may take a plane Π = {(x0 : x1 : x2 : c1 :
· · · : cn−2)} and take η ∈ Ω1

Π(m) defining the restriction of F to Π, and
ϕ : Pn → Π the projection onto the first coordinates. With this choices is
clear that ω = ϕ∗η as required.

Singularities.

The singular set of a generic pull-back foliation only have codimension
2 components which are, nevertheless, of two different nature. On one side
there is the base locus of the projection ϕ : Pn → P2. On the other hand, if
η ∈ Ω1

P2(m) is generic, then it will only have isolated zeros p1, . . . , pr such
that dηpi ̸= 0 for all 1 ≤ i ≤ r, then ϕ−1(pi) is a codimension 2 linear variety
inside sing(F). Is easy to see, taking suitable homogeneous coordinates, that
the singular set of a pull-back foliation is the closure of the Kupka points.
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Families.

Pull-back foliations form an algebraic variety isomorphic to the product

{Linear projections Pn → P2} × P(H0(P2,Ω1
P2(m))).

A result that appears in a number of works is the following

Theorem 2.5.10. Pull-back foliations form an irreducible component of the
space of integrable forms in Pn.

Proof. A proof of this statement can be found on [FCJVP08].



3. FAMILIES OF SUB-SHEAVES AND THEIR DUAL FAMILIES

Definition 3.0.11. Given a short exact sequence of sheaves

0 → G
ι
−→ F → H → 0,

we apply to it the left-exact contravariant functor F 7→ F∨ := HomX(F ,OX)
to obtain exact sequences:

0 → H
∨ →F

∨ → Im(ι∨) → 0, (3.1)

0 → Im(ι∨) → G
∨ →Ext1X(H ,OX) → Ext1X(F ,OX).

We say that the exact sequence (3.1), is the dual exact sequence of 0 → G
ι
−→

F → H → 0.

Lemma 3.0.12. Let 0 → N
ι
−→ T

π
−→ M → 0 be a short exact sequence of

R-modules such that T is reflexive and M is torsion free. Then Im(ι∨)∨ = N
and M = Im(π∨∨).

Proof. First we take the duals in the short exact sequence to get a sequence

0 → homR(M,R)
π∨

−−→ homR(T,R)
ι∨
−→ Im(ι∨) → 0

Then we take duals one more time and, given that T is reflexive and that
M is torsion-free, we get the diagram

0 // Im(ι∨)∨ // T∨∨ π∨∨

//M∨∨ // ext1R(Im(ι∨), R)

0 // N

OO

// T //M
?�

OO

// 0,

whose rows are exact.
Chasing arrows we readily see that the leftmost vertical arrow must be

an isomorphism. Indeed, since the monomorphism N → T∨∨ factorizes as

N → Im(ι∨)∨ → T∨∨,

the second arrow being a monomorphism, so must N → Im(ι∨)∨ be. On
the other hand, given a ∈ Im(ι∨)∨, we can regard it, via the inclusion,
as an element in T∨∨ = T , so we can compute π(a). As the canonical
map θ : M → M∨∨ is an inclusion we have that, θ ◦ π(a) = π∨∨(a) = 0,
then π(a) = 0, so a ∈ N . From this we have N ∼= Im(ι∨)∨, wich implies
M = Im(π∨∨).
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3.1. Exterior Powers

When dealing with foliations of codimension/dimension greater than 1
is usually convenient to work with p-forms. We’ll need then to compare sub-
sheaves I ⊂ Ω1

X with their exterior powers ∧pI ⊂ ΩpX . In order to do that
we include the following statements, valid in a wider context.
We’ll concentrate on flat modules and their exterior powers. This will be
important when dealing with flat families of Pfaff systems of codimension
higher than 1 (see Remark 4.0.5).

Lemma 3.1.1. Let A be a ring containing the field Q of rational numbers,
and let M be a flat A-module. Then, for every p, ∧pM is also flat.

Proof. If tensoring with M is an exact functor, so is its iterate
− ⊗ M ⊗ · · · ⊗ M . So M⊗p is flat. As A contains Q, there is an anti-
symmetrization operator

M⊗p → ∧pM

which is a retraction of the canonical inclusion ∧pM ⊂ M⊗p. This makes
∧pM a direct summand ofM⊗p, setM⊗p = ∧pM⊕R for some module R. As
the tensor power distributes direct sums (i.e.: (∧pM ⊕R)⊗N ∼=(∧pM ⊗N)⊕ (R⊗N)),
so does their derived functors. In particular we have, for every module N ,

0 = Tor1(M
⊗p, N) = Tor1(∧

pM,N)⊕ Tor1(R,N).

So ∧pM is flat.

Finally, we draw some conclusions regarding flat quotient. When dealing
with Pfaff systems, we’ll be interested in short exact sequence of the form

0 → ∧pI → ΩpX → G → 0,

arising from short exact sequences of flat modules

0 → I → Ω1
X → Ω → 0.

Note that, in general G ̸= ∧pΩ. Nevertheless, we can state:

Proposition 3.1.2. Let A be a ring containing Q. Given an exact sequence

0 →M → P → N → 0

of flat A-modules, we have an associated exact sequence

0 → ∧pM → ∧pP → Q→ 0.

Then Q is also flat.
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Proof. By Lemma 2.3.1 Q inherit a filtration from ∧pP :

Q = ∧pP/ ∧pM = F
0
⊇ F

1
⊇ · · · ⊇ F

p
= 0,

with quotients
F i/F i+1 ∼= ∧iM ⊗ ∧p−iN.

Then Q have a filtration all of whose quotients are flat, so Q itself is flat.



4. FAMILIES OF DISTRIBUTIONS AND PFAFF SYSTEMS

Throughout this section we will work with a smooth morphism between
schemes (of finite type over a field of characteristic 0) p : X → S. We
will consider subsheaves of the relative tangent sheaf TSX and the relative
differentials Ω1

X|S .

Definition 4.0.3. A family of distributions is a short exact sequence

0 → TF → TSX → NF → 0.

The family is called flat if NF is flat over the base S.
A family of distributions is called involutive if it’s closed under Lie bracket
operation, that is, if for every pair of local sections X, Y ∈ TF(V ), we have
[X,Y ] ∈ TF(V ) where [−,−] is the Lie bracket in TSX(V ).

Likewise, a family of Pfaff systems is just a s.e.s.

0 → I(F) → Ω1
X|S → Ω1

F → 0.

It’s called flat if Ω1
F is flat.

We will say that a family of Pfaff systems is integrable if
d(I(F)) ∧

∧r I(F) = 0 ⊂ Ωr+2
X|S ; where d : Ωj

X|S → Ωj+1
X|S is the relative

de Rham differential, and r is the generic rank of the sheaf Ω1
F .

Remark 4.0.4. Observe that the relative differential d : Ωj
X|S → Ωj+1

X|S

is not an OX -linear morphism. It is, however, f−1OS-linear, so the sheaf
d(I(F)) ∧

∧r I(F), whose anihilation encodes the integrability of the Pfaff
system, is actually a sheaf of f−1OS-modules.

In particular the dual to a family of distributions is a family of Pfaff
systems and viceversa.

Remark 4.0.5. The dual of an involutive family of distributions is an
integrable family of Pfaff systems. Reciprocally, the dual of an integrable
family of Pfaff systems is a family of involutive distributions. This is just a
consequence of the Cartan-Eilenberg formula for the de Rham differential
of a 1-form applied to vector fields

dω(X,Y ) = X(ω(Y ))− Y (ω(X))− ω([X,Y ]).

Indeed, as involutiveness and integrability can be checked locally over sec-
tions, we can proceed as in [War83, Prop. 2.30].
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Definition 4.0.6. The dimension of a family of distribution is the generic
rank of TF . Likewise, the dimension of a family of Pfaff systems is the
generic rank of Ω1

F .

If p : X → S is moreover projective, S is connected, and the family is
flat, then TF is a flat sheaf over S. Therefore for every s ∈ S the Hilbert
polynomial of TFs is the same, and so is its generic rank (being encoded in
the principal coeficient of the polynomial). The same occurs with families of
Pfaff systems.

Remark 4.0.7. Frequently, in the study of foliations of codimension higher
than 1, is more convenient and better adapted to calculations to work with
an alternative description of foliations. Namely, one can define a codimension
q foliation on a variety X as in [dM77], with a global section ω of ΩqX ⊗ L
such that:

ω is locally decomposable, i.e.: there is, for all x ∈ X an open set such
that

ω = η1 ∧ · · · ∧ ηq,

with ηi ∈ Ω1
X .

ω is integrable, i.e.: ω ∧ dηi = 0, 1 ≤ i ≤ q.

With this setting, studying flat families of codimension q foliations (meaning
here families of integrable Pfaff systems) as in [FCJVP08] and [CPV09],
parametrized by a scheme S, amounts to studying short exact sequences of
flat sheaves:

0 → L−1 → Ωq
X|S → G → 0,

that are locally decomposable and integrable. By the results of section 3.1 a
flat family of codimension q Pfaff systems given as a sub-sheaf of Ω1

X|S give
rise to a flat family in the above sense.

4.1. Universal families

Now lets take a regular projective scheme X, a polynomial P ∈ Q[t], and
consider the following functor

InvP (X) : Sch −→ Sets

S 7→




flat families 0 → TF → TS(X × S) → NF → 0
of involutive distributions such that NF have
Hilbert polynomial P (t).



 .

Say p : X×S → X is the projection, so TS(X×S) = p∗TX. Clearly one
have InvP (X) is a sub-functor of QuotP (X,TX). We are going to show that
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InvP (X) is actually a closed sub-functor of QuotP (X,TX) and therefore
also representable.

So take the smooth morphism given by the projection

p1 : QuotP (X,TX)×X → QuotP (X,TX).

Here we are taking as base scheme S = QuotP (X,TX), then on the total
space S×X = QuotP (X,TX)×X we have the natural short exact sequence

0 → F → p∗2TX = TS(S ×X) → Q → 0.

Now we consider the push-forward of this sheaves by p1, as X is proper,
this push-forwards are coherent sheaves over S. In particular we have maps
of coherent sheaves over QuotP (X,TX)

p1∗F ⊗S p1∗F
[−,−]
−−−→ p1∗TS(S ×X) → p1∗Q

induced by the maps over S×X. Note that while the Lie bracket on TS(S×
X) is only p−1

1 OS-linear, the map induced on the push-forwards is OS-linear,
so is a morphism of coherent sheaves. We then also have for any m,n ∈ Z

the twisted morphisms

p1∗F (m)⊗S p1∗F (n)
[−,−]
−−−→ p1∗TS(S ×X)(m+ n) → p1∗Q(m+ n).

Note also that, as p1 is a projective morphism, then there exist an n ∈
Z such that for any m ≥ n the natural sheaves morphism over S × X,
p∗1p1∗(F )(m) → F (m) is an epimorphism. So if for some f : Z → S and
some m ≥ n one have that the composition

f∗p1∗F (m)⊗Z f
∗p1∗F (m)

[−,−]
−−−→ f∗p1∗TS(S ×X)(2m) → f∗p1∗Q(2m)

is zero, then the map

(f×id)∗F (m)⊗π−1

1
OZ

(f×id)∗F (m)
[−,−]
−−−→ TZ(Z×X)(2m) → (f×id)∗Q(2m)

is zero as well, here π1 : Z ×X → Z is the projection, which is by the way
the pull-back of p1.

Now to conclude the representability of InvP (X) we need one important
lemma.

Lemma 4.1.1. Let S be a noetherian scheme, p : X → S a projective
morphism and F a coherent sheaf on X. Then F is flat over S if and only
if there exist some integer N such that for all m ≥ N the push-forwards
p∗F (m) are locally free.
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Proof. The statement being local on S we can assume S = Spec(A) where
A is a local ring. Then we can consider the graded A-module

⊕
m≥N Mm,

where Mm = Γ(S, p∗F (m)). The sheaf F is isomorphic to the (projective)
sheafification of the graded module M .

If every p∗F (m) is flat over S, so is every Mm over A and thus so is M ,
and therefore F is flat.

Conversely, if F is flat, then its global sections module
⊕

m∈Z Γ(S, p∗F (m))
will be flat from sufficiently large degree on. That is, there will be an integer
N such thatM is a flat A-module. So each direct summand ofM will be flat
as well. Then each Mm are flat and, as p is projective, finitely generated. So
Mm are free, and so are p∗F (m).

We can then take m ∈ Z big enough so p1∗F (m) and p1∗Q(2m) are
locally free and the morphism p∗1p1∗(F )(m) → F (m) is epimorphism. Then
we can regard the composition

p1∗F (m)⊗S p1∗F (m)
[−,−]
−−−→ p1∗TS(S ×X)(2m) → p1∗Q(2m)

as a global section σ of the locally free sheafHomS(p1∗F (m)⊗Sp1∗F (m),Q(2m)).
We can then make the following definition.

Definition 4.1.2. We define the scheme InvP (X) to be the zero scheme
Z(σ) (cf.: Definition 1.1.12) of the section σ defined above.

A direct aplication of Proposition 1.1.14 to this definition together with
the discusion so far immediately gives us the following.

Proposition 4.1.3. The subscheme InvP (X) ⊆ QuotP (X,TX) represents
the functor InvP (X).

Similarly we can consider the sub-functor iPfP (X) of QuotP (X,Ω1
X).

iPfP (X) : Sch −→ Sets

S 7→




flat families 0 → I(F) → Ω1X|S → Ω1

F → 0 of
integrable Pfaff systems such that Ω1

F have Hil-
bert polynomial P (t).



 .

Then as before we take S = QuotP (X,Ω1
X) and consider the map

p1∗(d(I ) ∧
r∧

I )(m) −→ p1∗Ω
r+2
S×X|S(m).

Which is, for large enough m a morphism between locally free sheaves
on S.



4. Families of distributions and Pfaff systems 59

Definition 4.1.4. We define the scheme iPfP (X) to be the zero scheme
of the above morphism, viewed as a global section of the locally free sheaf
Hom(p1∗(d(I ) ∧

∧r
I )(m), p1∗Ω

r+2
S×X|S(m)).

And then by Proposition 1.1.14 we have representability.

Proposition 4.1.5. The subscheme iPfP (X) ⊂ QuotP (X,Ω1
X) represents

the functor iPfP (X).

4.2. Duality

Definition 4.2.1. The singular locus of a family of distributions
0 → TF → TSX → NF → 0 is the (scheme theoretic) support of Ext1X(NF ,OX).
Its points are the points where NF fails to be a fiber bundle.

Similarly, for a family of Pfaff systems 0 → I(F) → Ω1
X|S → Ω1

F → 0,

its singular locus is supp(Ext1X(Ω
1
F ,OX)).

Remark 4.2.2. Call i : TF → TSX the inclusion. We have an open non-
empty set U where, for every x ∈ U , dim(Im(i ⊗ k(x))) is maximal. More
precisely, U is the open set where TorX1 (NF , k(x)) = 0, which is the maximal
open set such that NF |U is locally free, and therefore so is TF . Then, when
restricted to U , TF can be given locally as the subsheaf of TSX generated
by k linearly independent relative vector fields, i.e.: TF defines a family of
non-singular foliations. In U , one have that Ext1X(NF ,OX) = 0. Then, the
underlying topological space of the singular locus of the family given by TF
is the singular set of the foliation in a classical (topologial space) sense.

The above discussion translates verbatim to families of Pfaff systems.

Proposition 4.2.3. Let be a family of Pfaff systems

0 → I(F) → Ω1
X|S → Ω1

F → 0

such that Ω1
F is torsion-free. Its singular locus and the singular locus of the

dual family
0 → TF → TSX → NF → 0

are the same sub-scheme of X. We denote this sub-scheme by sing(F)

Proof. We are going to show that the immersions Y1 := supp(Ext1X(Ω
1
F ,OX)) ⊆

X and Y2 := supp(Ext1X(NF ,OX)) ⊆ X represent the same sub-functor of
Hom(−, X), thus proving the proposition.

First note that, if Ext1X(NF ,OX) = 0, then Ext1X(Ω
1
F ,OX) = 0.

Indeed, if Ext1X(NF ,OX) = 0, NF is locally free and then so is TF . Mo-
reover, since Ω1

F is torsion free, we can dualize the short exact sequence
0 → TF → TSX → NF → 0 and, by lemma 3.0.12, obtain the equality
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Ω1
F = TF∨.

So Ω1
F is locally free and Ext1X(Ω

1
F ,OX) = 0.

Now, given a quasi-coherent sheaf G of X, its support supp(G ) ⊆ X re-
presents the following sub-functor of Hom(−, X):

T 7−→ {f : T → X s.t.: f∗G is not a torsion sheaf} ⊆ Hom(T,X).

So, let’s take a morphism f : T → Y1 ⊆ X.

(i) f : T → Y1 is an immersion: Suppose f∗Ext1X(NF ,OX) is a torsion
sheaf.
Then there’s a point t ∈ T such that

Ext1X(NF ,OX)⊗ k(t) = 0.

By Nakayama’s lemma this implies that there’s an open subset U ⊆ X
containing t such that Ext1X(NF ,OX)|U = 0. This in turn implies
Ext1X(Ω

1
F ,OX)|U = 0 contradicting the fact that t ∈ T ⊆ Y1. Then

T ⊆ Y2.
Similarly one prove that if T ⊆ Y2 then T ⊆ Y1.

(ii) General case: Taking the scheme theoretic image of f we can reduce
to the above case where T is a sub-scheme of X.

4.3. The codimension 1 case

We now treat the case of families of codimension 1 foliations. From now
on we’ll suppose that X → S is a smooth morphism.

Definition 4.3.1. A family of involutive distributions

0 → TF → TSX → NF → 0,

is of codimension 1 iff NF is a sheaf of generic rank 1.
Likewise a family of Pfaff systems

0 → I(F) → Ω1
X|S → Ω1

F → 0,

is of codimension 1 if the sheaf I(F) have generic rank 1.

Lemma 4.3.2. Let be a family of codimension 1 Pfaff systems

0 → I(F) → Ω1
X|S → Ω1

F → 0,

over an integral scheme X, such that Ω1
F is torsion-free. Then I(F) is a

line-bundle over X.
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Proof. If Ω1
F is torsion-free, by Lemma 3.0.12 we have I(F) ∼= N∨

F . In par-
ticular I(F) is the dual of a sheaf, then is reflexive and observes property
S2. Write I = I(F) and consider now the sheaf I∨ ⊗ I together with the
canonical morphism

I∨ ⊗ I → OX .

The generic rank of I∨ ⊗ I is 1. As I is reflexive, I∨ ⊗ I is self-dual. So the
canonical morphism above induces the dual morphism OX → I∨ ⊗ I. The
composition

OX → I∨ ⊗ I → OX

must be invertible, otherwise the image of I∨ ⊗ I in OX would be a torsion
sub-sheaf. Then I is an invertible sheaf.

Proposition 4.3.3. In the case of codimension 1 Pfaff systems, if Ω1
F is

torsion-free over X and the inclusion I(F) → Ω1
X|S is nowhere trivial on S

(meaning that I(F)⊗OT → Ω1
X|S ⊗OT is never the zero morphism for any

T → S) then the family is automatically flat.

Proof. Indeed, Ω1
F being torsion free implies that the rank-1 sheaf I(F)

must be a line bundle. Then if we take any morphism f : T → S and take
pull-backs we’ll have an exact sequence

0 → TorS1 (Ω
1
F , T ) → f∗I(F) → f∗Ω1

X|S → f∗Ω1 → 0.

Now, as I(F) is a line bundle, the cokernel f∗I(F)/TorS1 (Ω
1
F , T ) must be a

torsion sheaf over XT . But, X being smooth over S, the annihilator f∗Ω1
X|S

is of the form p∗(J), with J ⊂ OT , so f
∗I(F) → f∗Ω1

X|S must be the zero

morphism when restricted to OT /J , contradicting the nowhere triviality
assumption.

Remark 4.3.4. In the codimension 1 case, we can calculate the sing(F) by
noting that Ext1X(Ω

1
F ,OX) is the cokernel in the exact sequence

TSX → I(F)∨ → Ext1X(Ω
1
F ,OX) → 0.

We can then tensor the sequence by I(F) and obtain

(Ω1
X|S ⊗ I(F))∨ → OX → Ext1X(Ω

1
F ,OX)⊗ I(F) → 0.

Now, I(F) being a line bundle, the support of Ext1X(Ω
1
F ,OX) and that of

Ext1X(Ω
1
F ,OX) ⊗ I(F) is exactly the same. Note then that, in the second

exact sequence, the cokernel is the scheme theoretic zero locus of the twisted
1-form given by

OX
ω
−→ Ω1

X|S ⊗ I(F)∨
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as defined in section 1.1.2. So, if we have a family of codimension 1 Pfaff
systems given locally by a twisted form

ω =

n∑

i=1

fi(x)dxi

then sing(F) is the scheme defined by the ideal (f1, . . . , fn).

The above proposition and remark tell us that our definition of flat family
for Pfaff systems of codimension 1 is esentially the same as the one used in
the now classical works of Lins-Neto, Cerveau, et. al.

Theorem 4.3.5. Given two families

0 → I(F) →Ω1
X|S → Ω1

F → 0

0 → TF →TSX → NF → 0.

Of codimension 1, dual to each other, such that NF is torsion free (or,
equivalently, such that Ω1

F is torsion free). And such that sing(F) is flat
over S.
Then one of the families is flat if and only if its dual family is also flat.

Proof. Let Σ = sing(F).
Let’s suppose first that the family

0 → I(F) → Ω1
X|S → Ω1

F → 0

is flat. We have to prove that NF is also flat.To do this we note that applying
the functor HomX(−,OX) to the family of distributions not only gives us
the family of Pfaff systems but also the exact sequence

0 → NF → I(F)∨ → Ext1X(Ω
1
F ,OX) → 0.

Being Ω1
F torsion-free, I(F) must be a line bundle, and so must I(F)∨,

let’s call I(F)∨ = L to ease the notation. Now L have a NF as a sub-
sheaf generically of rank 1, so NF = I · L for some Ideal sheaf I. Then
Ext1X(Ω

1
F ,OX) ∼= L ⊗ OX/I. As Σ = supp(Ext1X(Ω

1
F ,OX)) one necesarilly

have Ext1X(Ω
1
F ,OX) ∼= LΣ. Then LΣ, being a locally free sheaf over Σ wich

is flat over S, is flat over S. Therefore, as L is also flat over S, flatness for
NF follows.

Let’s suppose now that the family

0 → TF → TSX → NF → 0

is flat. We have to prove that Ω1
F is also flat. By the above proposition it’s

enough to show that the morphism I(F)
ι
−→ Ω1

X|S is nowhere zero. Suppose
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there is T → S such that ιT = 0. Take an open set U ⊂ X where Ω1
F is

locally free. In that open set we can apply base change with respect to the
functor HomX(−,OX) ([ASK] or [GBAO72]) so, restricting everything to
U we have (ιT )

∨ ∼= (ι∨)T . But, in U , ι∨ is the morphism TSX → NF and so
it cannot become the zero morphism under any base change.

Corollary 4.3.6. Every irreducible component of the scheme InvP is bira-
tionally equivalent to an irreducible component of iPfP .

4.4. The arbitrary codimension case

To give an analogous theorem to 4.3.5 in arbitrary codimension we’ll
have to deal with finer invariants than the singular locus of the foliation.
In the scheme X we’ll consider a stratification naturally associated with
F . This stratification have been already studied and described by Suwa in
[Suw88]. To deal with flatness issues we have to provide a scheme structure to
Suwa’s stratification, this will be a particular case of flattening stratification.
Before going into that, we begin with some generalities. Remember that we
are working over a smooth morphism X → S.

Lemma 4.4.1. Let X → S be a smooth morphism,F a coherent sheaf on
X that is Z(2)-closed. Then, for any s ∈ S, the sheaf Fs = F ⊗ k(s) is
Z(2)-closed over Xs.

Proof. We have to show that for every U ⊂ Xs such that codim(X \U) ≥ 2
the restriction

Fs
ρU−−→ Fs|U

is surjective. As the formal completion ÔXs,x of OXs with respect to any
closed point x is faithfully flat [GR03, IV.3.2], we can check surjectivity of
ρU by looking at every formal completion. As X → S is smooth, formally
around a point x we have OX

∼= OS ⊗k k[z1, . . . , zd] so we can take an open
subset V ⊆ X, to be V = U × S. Then, with this choice of V , we have an
epimorphism

F̂ |V → F̂s|U → 0.

Then we have a diagram with exact rows and columns

F̂ //

ρV
��

F̂s

ρU
��

// 0

F̂ |V //

��

F̂s|U // 0

0

.
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So ρU must be an epimorphism as well.

Lemma 4.4.2. Suppose X is a normal scheme. Let be a family of distribu-
tions

0 → TF → TSX → NF → 0.

If codim(sing(F)) ≥ 2 then, for every map T → S, one have

HomX(TF ,OX)⊗OT
∼= HomXT

(TFT ,OT ).

The analogous statement is true for I(F)∨ in a flat family of Pfaff systems.

Proof. By Theorem 1.5.2 and Proposition 1.5.3 we only have to prove that,
for every closed point s ∈ S, the natural map

HomX(TF ,OX)⊗ k(s) → HomXs(TF ⊗ k(s),OX ⊗ k(s))

is surjective. Being the dual of some sheaves, both HomX(TF ,OX) and
HomXs(TF⊗k(s),OX⊗k(s)) possess property S2 ( Proposition 1.1.8), and
so are Z(2)-closed, and so is HomX(TF ,OX)⊗ k(s) by the above lemma.

Let U = X \ singF and j : U ↩→ X the inclusion. As TF|U is locally free
over U , so is TF∨|U . Then, in U , we have

Ext1(TF|U ,OX |U ⊗S G) = 0,

for every G ∈ Coh(S). Then from Proposition 1.5.6 we get surjectivity on

HomX(TF|U ,OX |U )⊗ k(s) → HomXs(TF|U ⊗ k(s),OX |U ⊗ k(s)).

But, as codim(sing(F)) > 1 and both sheaves are S2, then surjectivity holds
in all of Xs.

Lemma 4.4.3. As above, suppose X is normal. Given a flat family

0 → TF → TSX → NF → 0.

Such that codim(sing(F)) ≥ 2. Suppose further that the flattening stratifi-
cation of X over TF is flat over S (c.f.: Proposition 1.4.7). Then TF∨ is
also a flat OS-module.

The analogous statement is true for I(F)∨ in a flat family of Pfaff sys-
tems.

Proof. The proof works exactly the same for distributions or Pfaff systems
mutatis mutandi.

Take
⨿
P XP the flattening stratification of X with respect to TF . The

restriction TFXP
(being coherent and flat over XP ) is locally free over XP ,
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then so is its dual HomXP
(TFXP

,OXP
). By Lemma 4.4.2, in each stratum

XP we have the isomorphism

HomXP
(TFXP

,OXP
) ∼= HomX(TF ,OX)⊗OXP

= TF∨ ⊗OXP
.

So TF∨ is flat when restricted to the filtration
⨿
P XP , which is in turn flat

over S. Then, by Theorem 1.2.1, TF∨ is flat over S.

Definition 4.4.4. For a family of distributions consider the flattening stra-
tification ⨿

P (F)

XP (F) ⊆ X

of X with respect to TF ⊕ NF . We call this the Suwa stratification of X
with respect to TF .

Remark 4.4.5. Note that the flattening stratification of TF ⊕ NF is the
(scheme theoretic) intersection of the flattening stratification of TF with
that of NF . This is because (TF ⊕ NF ) ⊗ OY is flat if and only if both
TF ⊗OY and NF ⊗OY are.

This tells us, in particular, that each stratum is indexed by two natural
numbers r and k such that

x ∈ Xr,k ⇐⇒ dim(TF ⊗ k(x)) = r and dim(NF ⊗ k(x)) = k.

In [Suw88], Suwa studied a related stratification associated to a foliation.
Given a distribution on a complex manifold M , D ⊂ TM he defines the
strata M (l) as

M (l) = {x ∈M s.t. : Dx ⊂ TxM is a sub-space of dimension l }.

Here D is spanned pointwise by vector fields v1, . . . , vr, and Dx =< vi(x) >.
Clearly if D is of generic rank r the open stratum is M (r).

Note that, in the setting of distribution as sub-sheafs i : TF ↩→ TX of
the tangent sheaf of a variety, the vector space TxF is actually the image of
the map

TF ⊗ k(x)
i⊗k(x)
−−−−→ TX ⊗ k(x),

whose kernel is TorX1 (NF , k(x)). Moreover we have the exact sequence

0 → TxF = Im(i⊗ k(x)) → TX ⊗ k(x) → NF ⊗ k(x) → 0.

In particular, in a variety X of dimension n, if dim(TxF) = l then dim(NF⊗
k(x)) = n− l. So what we call Suwa stratification of X is actually a refine-
ment of the stratification studied in [Suw88].

Our main motivation for defining this refinement of the stratification of
[Suw88] is the following result.
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Theorem 4.4.6. Let be a flat family

0 → TF → TSX → NF → 0,

parametrized by a normal scheme S of finite type over an algebraically closed
field, such that NF is torsion free and codim(sing(F)) ≥ 2. Suppose each
stratum Xr,k of the Suwa stratification is flat over S. Then the dual family

0 → I(F) → Ω1
X|S → Ω1

F → 0

is also flat over S. Moreover, for each point s ∈ S we have

I(F)s = (NFs)
∨,

in other terms “the dual family is the family of the duals”.

Proof. Considering the exact sequence

0 → Ω1
F → TF∨ → Ext1X(NF ,OX) → 0.

Is clear that to prove flatness of the dual family it’s enough to show Ext1X(NF ,OX)
is flat over S.

Also, by Lemma 4.4.2, we have for every s ∈ S the diagram with exact
rows and columns,

Hom(I(F),OX)⊗ k(s) //

��

Hom(I(F)s,OXs) //

��

0

Ext1X(Ω
1
F ,OX)⊗ k(s) //

��

Ext1X(Ω
1
F ⊗ k(s),OXs)

��
0 0

.

So Ext1X(Ω
1
F ,OX)⊗k(s) → Ext1X(Ω

1
F ⊗k(s),OXs) is surjective for every s ∈

S so by Proposition 1.5.5 the exchange property is valid for Ext1X(Ω
1
F ,OX)

(c.f. section 1.5). If moreover Ext1X(NF ,OX) is flat over S, then, by Propo-
sition 1.5.5,

I(F)s = HomX(NF ,OX)⊗ k(s) ∼= HomX(NFs,OXs) = (NFs)
∨.

By Proposition 1.4.7 is enough to show the restriction of Ext1X(NF ,OX) to
every Suwa stratum is flat over S. So let Y ⊆ X be a Suwa stratum, if we can
show that Ext1X(NF ,OX)⊗OY is locally free then we’re set. By hypothesis,
one have the isomorphism HomX(TF ,OX) ⊗ OY

∼= HomY (TFY ,OY ). So
we can express Ext1X(NF ,OX)⊗OY as the cokernel in the OY -modules exact
sequence

HomY (TXY ,OY ) → HomY (TFY ,OY ) → Ext1X(NF ,OX)Y → 0.
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So, localizing in a point y ∈ Y , we can realize the local OY,y-module
Ext1X(NF ,OX)Y,y as the set of maps TFY,y → OY,y modulo the ones that
factorizes as

TFY,y //❴❴❴

��

OY,y

TXY,y

;;
✈
✈
✈
✈
✈
✈
✈
✈
✈

.

To study Ext1X(NF ,OX)Y,y this way, note that we have the following exact
sequence.

0 → TorX1 (NF ,OY,y) → TFY,y → TXY,y → (NF )Y,y → 0.

Wich we split into two short exact sequences,

0 → K → TXY,y → (NF )Y,y → 0 and (4.1)

0 → TorX1 (NF ,OY,y) → TFY,y → K → 0. (4.2)

Now, as Y is a Suwa stratum, then QY and TFY are flat over Y , and
coherent, so they are locally free. As a consequence, short exact sequence
(4.1) splits, so TXY,y

∼= (NF )Y,y ⊕K. So

HomY (TXY ,OY )y ∼= HomY (K,OY,y)⊕HomY ((NF )Y ,OY )y

and we get Ext1X(NF ,OX)Y,y as the cokernel in

HomY (K,OY,y) → HomY (TFY ,OY )y → Ext1X(NF ,OX)Y,y → 0. (4.3)

Being (NF )Y and TXY locally free over Y , so is K. Then short exact
sequence (4.2) splits, so TFY,y ∼= TorX1 (NF ,OY,y)⊕K. Also, as TFY and K
are locally free over Y , so is TorX1 (NF ,OY ) . Sequence (4.3) now reads

HomY (K,OY,y) → HomY (Tor
X
1 (NF ,OY,y),OY )y⊕HomY (K,OY,y) → Ext1X(NF ,OX)Y,y → 0.

So we have

HomY (Tor
X
1 (NF ,OY,y),OY )y ∼= Ext1X(NF ,OX)Y,y.

Now, as TorX1 (NF ,OY,y) is locally free over Y , so is its dual. In other words,
we just proved Ext1X(NF ,OX)Y is locally free over Y , which settles the
theorem.

Remark 4.4.7. During the proof of last statement we have actually obtai-
ned this stronger result:

Proposition 4.4.8. Ext1X(NF ,OX) is flat over Suwa’s stratification.
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In particular, if
⨿
XQ denotes the flattening stratification of Ext1X(NF ,OX),

there is a morphism ⨿

P (F)

XP (F) →
⨿

Q

XQ.

Now, by the construction of flattening stratification,
⨿
XQ consist of an

open stratum U such that Ext1X(NF ,OX)|U = 0, and closed strata whose
closure is sing(F). So the morphism

⨿
P (F)XP (F) →

⨿
QXQ actually defines

a stratification of sing(F).

4.5. Singularities

Theorem 4.3.5 gives a condition for a flat family of integrable Pfaff sys-
tems to give rise to a flat family of involutive distributions in terms of the
flatness of the singular locus. We have then to be able to decide when can
we apply the theorem. More precisely, say

0 → I(F) → Ω1
X|S → Ω1

F → 0

is a flat family of codimension 1 integrable Pfaff systems, and let s ∈ S. How
do we know when sing(F) is flat around s? In this section we adress this
question and give a sufficient condition for sing(F) to be flat at s in terms of
the classification of singular points of the Pfaff system 0 → I(F)s → Ω1

Xs
→

Ω1
Fs

→ 0.

From now on, we will only consider Pfaff systems such that Ω1
F is torsion-

free.
Remember that, if we have a Pfaff system of codimension 1,

0 → I(F)s → Ω1
Xs

→ Ω1
Fs

→ 0, such that Ω1
Fs

is torsion-free, we can consi-
der, locally on X, that is given by a single 1-form ω and that is integrable
iff ω ∧ dω = 0.

Remark 4.5.1. Note that Kupka singularities and Reeb singularities are
singularities in the sense of 4.2.1 i.e.: they are points in sing(F).

We now give a version for families of the fundamental result of Kupka.

Proposition 4.5.2. Let

0 → I(F) → Ω1
X|S → Ω1

F → 0

be a flat family of integrable Pfaff systems of codimension 1, and let Σ =
sing(F) ⊂ X. Let s ∈ S, and x ∈ Σs be such that x is a Kupka singularity
of 0 → I(F)s → Ω1

Xs
→ Ω1

Fs
→ 0. Then, locally around x I(F) can be given

by a relative 1-form ω(z, s) ∈ Ω1
X|S such that

ω = f1(z, s)dz1 + f2(z, s)dz2,
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i.e.: ω is locally the pull-back of a relative form η ∈ Ω1
Y |S where Y → S is

of relative dimension 2.

The proof is esentially the same as the proof of the classical Kupka
theorem, as in Theorem 2.4.6. One only needs to note that every ingredient
there can be generalized to a relative setup.

For this we note that, as p : X → S is a smooth morphism, the relative
tangent sheaf TSX is locally free and is the dual sheaf of the locally free sheaf
Ω1
X|S . We note also that, if v ∈ TSX(U), and ω ∈ Ω1

X|S(U), the relative Lie

derivative Lv(ω) is well defined by Cartan’s formula

LSv = dSιv(ω) + ιv(dSω),

where ιv(ω) =< v, ω > is the pairing of dual spaces (and by extension also
the map Ωq

X|S → Ωq−1
X|S determined by v), and dS is the relative de Rham

differential. Also Ωq
X|S = ∧qΩ1

X|S .

Finally we observe that, if p : X → S is of relative dimension d and X is
regular over C of total dimension n, a family of integrable Pfaff systems gives
rise to a foliation on X whose leaves are tangent to the fibers of p. Indeed,
we can pull-back the subsheaf I(F) ⊂ Ω1X|S by the natural epimorphism

f∗Ω1
S → Ω1

X → Ω1
X|S → 0,

and get J = I(F) + f∗Ω1
S ⊂ Ω1

X , wich is an integrable Pfaff system in X,

determining a foliation F̂ . As f∗Ω1
S ⊂ J , the leaves of the foliation F̂ are

contained in the fibers Xs of p.
In the general case, where p is smooth but S and X need not to be

regular over C, Frobenius theorem still gives foliations Fs in each fiber Xs.
Indeed, as p : X → S is smooth, each fiber Xs is regular over C and, Ω1

F

being flat, I(F)s ⊂ Ω1
Xs

is an integrable Pfaff system on Xs.

Proposition 4.5.3. Let p : X → S a smooth morphism over C and

0 → I(F) → Ω1X|S → Ω1
F → 0

a codimension 1 flat family of Pfaff systems. Let ω ∈ Ω1
X|S(U) be an integra-

ble 1-form such that I(F)(U) = (ω) in a neighborhood U of a point x ∈ X.
Then dω is locally decomposable.

Proof. As TSX = (Ω1X|S)∨, and Ωq
X|S = ∧qΩ1

X|S we can apply Plücker
relations to determine if dω is locally decomposable and proceed as in Pro-
position 2.4.1.

Lemma 4.5.4. Suppose that dωx ̸= 0. Consider Gs the codimension 2 fo-
liations defined by dω in Xs. In the neighborhood V of x ∈ X where Gs is
non-singular for every s we have the following. The leaves of Gs are integral
manifolds of ω|Xs.
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Proof. We only have to prove that, for evey v ∈ TSX such that ιv(dω) = 0,
then ιv(ω) = 0. We can do this exactly as in Lemma 2.4.2.

Lemma 4.5.5. With the same hipothesis as Lemma 4.5.4. Let v be a vector
field tangent to G. Then the relative Lie derivative of ω with respect to v is
zero.

Proof. Like the proof of Lemma 2.4.3.

Lemma 4.5.6. Same hipothesis as Lemma 4.5.4 and 4.5.5, then sing(ω)
is saturated by leaves of (Gs)s∈S (i.e.: take y ∈ V a zero of ω such that
p(y) = s, and L the leaf of Gs going through y. Then the inclusion L → V
factorizes through sing(ω)).

Proof. We can do this entirely on Xs. Then this reduces to Lemma 2.4.4.

Proof of Proposition 4.5.2. We can take an analytical neighborhood V of
x ∈ X such that V ∼= U × Dd with U ⊆ S an open set, Dd a complex
polydisk, and

p|V : V ∼= U ×Dd −→ U.

(s, z1, . . . , zd) 7→ s

Also, by Frobenius theorem, we can choose the coordinates zi in such a way
that

vi =
∂

∂zi
∈ TSX(V ), 3 ≤ i ≤ d,

are tangent to dω. Then, as LSviω = 0 and ιviω = 0, we can write ω as

ω = f1(z, s)dz1 + f2(z, s)dz2.

Proposition 4.5.7. Let

0 → I(F) → Ω1
X|S → Ω1

F → 0,

s ∈ S, and x ∈ Σ be as in the above proposition. Then Σ → S is smooth
around x.

Proof. By 4.5.2 above, we can determine Σ around x as the common zeroes
of f1(z, s) and f2(z, s). The condition ω ∧ dω ̸= 0 implies Σ is smooth over
S (remember that we are using the relative de Rham diferential and that
means the variable s counts as a constant).

Proposition 4.5.8. Let 0 → I(F) → Ω1
X|S → Ω1

F → 0 and s ∈ S be as

above, and x ∈ Σs be such that s is a Reeb singularity of 0 → I(F)s →
Ω1
Xs

→ Ω1
Fs

→ 0. Then Σ → S is étalé around x.
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Proof. The condition on x means we can actually give I(F) locally by a
relative 1-form ω ∈ Ω1

X|S , ω =
∑n

i=1 fi(z, s)dzi, with n the relative dimension
of X over S and the dfi’s linearlly independent on x. Then Σ is given by the
equations f1 = · · · = fn = 0 and is therefore étalé over S.

With this two proposition we are almost in condition to state our con-
dition for flatness of the dual family, we just need a general

Lemma 4.5.9. Let X
p
−→ S be a morphism between schemes of finite type

over an algebraically closed field k. Let U ⊆ X be the maximal open sub-
scheme such that U

p
−→ S is flat, and s ∈ S a point such that Xs is without

embedded components. . If Us ⊆ Xs is dense, then Us = Xs.

Proof. By Proposition 1.4.5 we must check that, for A either a discrete
valuation domain or an Artin ring of the form k[T ]/(Tn+1), and every arrow
Spec(A) → S, the pull-back scheme XSpec(A) is flat over Spec(A). In this
way the problem reduces to the case where S = Spec(A).

(i) Case A DVD. In this case, A being a principal domain, flatness of
X over Spec(A) is equivalent to the local rings OX,x being torsion-free Ap(x)-
modules for every point x ∈ X ([GR03, IV.1.3] , so it suffices to consider
the case Ap(x) = A.

Now, let f ∈ OX,x and J = AnnA(f) ⊆ A. Suppose J ̸= (0) and consider
V (J) ⊆ Spec(A), clearly supp(f) ⊆ p−1(V (J)) ⊆ X. So U ∩ supp(f) = ∅.
But then the restriction f |s of f to Xs have support disjoint with Us. On
the other hand

supp(f |s) = {P1} ∪ · · · ∪ {Pm} ⊆ Xs,

where {P1, . . . ,Pm} = Ass(OXs,x/(f |s)) ⊆ Ass(OXs,x).
As Xs is without immersed components, the Pi’s are all minimal, so Xk∩Pi

is an irreducible component of Xk, but

Us ∩Pi = ∅.

Contradicting the hipotesis that Us is dense in Xs.
(ii) Case A = k[T ]/(Tn+1). Using Proposition 1.4.6 works just as the

first case taking f ∈ OX,x as a section such that Tnf = 0 but f /∈ TOX,x.

We have already said that, in a Pfaff system, Kupka singularities, if
exists, form a codimension 2 sub-scheme of X. We will call K(F) this sub-
scheme, and K(F) its closure.

Theorem 4.5.10. Let

0 → I(F) → Ω1
X|S → Ω1

F → 0
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be a flat family, for s ∈ S consider the Pfaff system 0 → I(F)s → Ω1
Xs

→
Ω1
Fs

→ 0. If sing(Fs) is without embedded components and sing(Fs) =

K(Fs)∪{p1, . . . , pm} where the pi’s are Reeb-type singularities, then sing(F) →
S is flat in a neighborhood of s ∈ S.

Proof. Indeed, by Proposition 4.5.7, sing(F) is flat in a neighborhood of
K(Fs), and, as sing(Fs) is without embedded components, we can apply
Lemma 4.5.9 to conclude that sing(F) is flat in a neighborhood of K(Fs).

Lastly, from Proposition 4.5.8, follows that sing(F) is flat in a neighbor-
hood of {p1, . . . , pm}.

4.6. Applications

Let X = Pn(C). It’s well known that the class of sheaves F that splits as
a direct sum of line bundles F ∼=

⊕
iO(ki) have no non-trivial deformations.

Indeed, as deformation theory teach us, first order deformations of F are
parametrized by Ext1(F ,F ), in this case we have

Ext1(F ,F ) ∼=
⊕

i,j

Ext1(O(ki),O(kj)) ∼=

∼=
⊕

i,j

Ext1(O,O(kj − ki)) ∼=
⊕

i,j

H1(Pn,O(kj − ki)) = 0

In particular, given a flat family of ditributions

0 → TF → TS(P
n × S) → NF → 0,

such that, for some s ∈ S, TFs ∼=
⊕

iO(ki), then the same decomposition
holds true for the rest of the members of the family.

When we deal with codimension 1 foliations it’s more common, however,
to work with Pfaff systems or, more concretely, with integrable twisted 1-
forms ω ∈ Ω1

Pn(d), ω ∧ dω = 0 (see [ALN07]). It’s then than the following
question emerged: Given a form ω ∈ Ω1

Pn(d) such that the vector fields that
anihilate ω generate a split sheaf (i.e.: a sheaf that decomposes as direct
sum of line bundles), will the same feature hold for every deformation of ω?
Such question was adressed by Cukierman and Pereira in [FCJVP08]. Here
we use our results to recover the theorem of Cukierman-Pereira as a special
case.

4.6.1. Codimension 1 Foliations with split tangent sheaf on Pn(C)

As was observed before, every time we have a codimension 1 Pfaff system

0 → I(F) → Ω1
X → Ω1

F → 0

such that Ω1
F is torsion-free, then I(F) must be a line bundle. In the case

X = Pn(C), then I(F) ∼= OPn(−d) for some d ∈ Z. Is then equivalent to
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give a Pfaff system and to give a morphism 0 → OPn(−d) → Ω1
Pn wich is in

turn equivalent to 0 → OPn → Ω1
Pn(d) that is, to give a global section ω of

the sheaf Ω1
Pn(d).

We can explicitly write such a global section as

ω =
n∑

i=0

fi(x0, . . . , xn)dxi

with fi a homogeneous polynomial of degree d−1 and such that
∑

i xifi = 0.
Such an expression gives rise to a foliation with split tangent sheaf if and

only if there are n− 1 polynomial vector fields

X1 = g01
∂

∂x0
+ · · ·+ gn1

∂

∂xn
,

...

Xn−1 = g0n−1

∂

∂x0
+ · · ·+ gnn−1

∂

∂xn
;

such that ω(Xi) = 0, for all 1 ≤ i ≤ n− 1, moreover on a generic point the
vector fields must be linearly independents.

The singular set of this foliation is given by the ideal I = (f0, . . . , fn).
The condition ω(Xi) = 0 means that the ring C[x0, . . . , xn]/I admits a
syzygy of the form

0 → C[x0, ..., xn]
n−1











g01 · · · gn1
...

. . .
...

g0n−1 · · · gnn−1











−−−−−−−−−−−−−−−−−→ C[x0, . . . , xn]
n+1 (f0,...,fn)

−−−−−−→

(f0,...,fn)
−−−−−−→ C[x0, . . . , xn] → C[x0, . . . , xn]/I → 0.

For such rings a theorem of Hilbert and Schaps tells us the following.

Theorem 4.6.1 (Hilbert, Schaps). Let A = k[x0, ...xn]/I be such that there
is a 3-step resolution of A as above by free modules. Then the ring A is
Cohen-Macaulay, in particular, is equidimensional.

Proof. This is theorem 5.1 in [MA76]

We thus recover the theorem of Cukierman and Pereira ([FCJVP08,
Theorem 1]).

Theorem 4.6.2 ([FCJVP08]). Let

0 → I(F) → Ω1
Pn×S|S → Ω1

F → 0
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be a flat family of codimension 1 integrable Pfaff systems. And suppose 0 →
I(F)s → Ω1

Pn → Ω1
F → 0 define a foliation with split tangent sheaf. If

sing(Fs)\K(Fs) have codimension greater than 2, then every member of the
family defines a split tangent sheaf foliation.

Proof. By the above theorem sing(Fs) is equidimensional. The singular locus
of a foliation on Pn always have an irreducible component of codimension 2
(see [ALN07, Teorema 1.13]), if sing(Fs) \ K(Fs) have codimension greater
than 2, then it must be empty. So sing(Fs) = K(Fs) and we can then apply
Theorem 4.5.10. So the flat family

0 → I(F) → Ω1
Pn×S|S → Ω1

F → 0

gives rise to a flat family

0 → TF → TSX → NF → 0,

so TF must be flat over S, and then TFs splits, for every s ∈ S.
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de France, 1957 - 1958, Lecture Notes in Mathematics, Springer, 2002.

[Suw88] T. Suwa, Structure of the singular set of a complex analytic foliation,
Preprint series in mathematics. Hokkaido University 33 (1988).

[War83] F.W. Warner, Foundations of Differentiable Manifolds and Lie Groups,
2nd ed., Graduate Texts in Mathematics, Springer, 1983.

[Zhi03] Michail Zhitomirskii, Singularities of foliations and vector fields, ICTP,
2003.


	Portada
	Resumen
	Abstract
	Índice General
	Introducción
	1. Algebraic geometric preliminaries
	2. Preliminaries on foliations
	3. Families of sub-sheaves and their dual families
	4. Families of distributions and Pfaff  systems
	Bibliography

