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MEJORAS A LA DEMOSTRACIÓN INTERACTIVA DE
PROPIEDADES ALLOY UTILIZANDO SAT-SOLVING

El análisis formal de especificaciones de software suele atacarse desde dos
enfoques, usualmente llamados: liviano y pesado. En el lado liviano en-
contramos lenguajes fáciles de aprender y utilizar junto con herramientas
automáticas de análisis, pero de alcance parcial. El lado pesado nos ofrece
lograr certeza absoluta, pero a costo de requerir usuarios altamente capaci-
tados.

Un buen representante de los métodos livianos es lenguaje de modelado
Alloy y su analizador automático: el Alloy Analyzer. Su análisis consiste
en transcribir un modelo Alloy a una fórmula proposicional que luego se
procesa utilizando SAT-solvers estándar.

Esta transcripción requiere que el usuario establezca cotas en los tamaños
de los dominios modelados en la especificación. El análisis, entonces, es
parcial, ya que está limitado por esas cotas. Por ello, puede pensarse que
no es seguro utilizar el Alloy Analyzer para trabajar en el desarrollo de
aplicaciones cŕıticas donde se necesitan resultados concluyentes.

En esta tesis presentamos un cálculo basado en álgebras de Fork que per-
mite realizar demostraciones en cálculo de secuentes sobre especificaciones
Alloy. También hemos desarrollado una herramienta (Dynamite) que lo
implementa. Dynamite es una extensión del sistema de demostración semi-
atomático PVS, método pesado ampliamente utilizado por la comunidad.
Aśı, Dynamite consigue complementar el análisis parcial que ofrece Alloy,
además de potenciar el esfuerzo realizado durante una demostración usando
el Alloy Analyzer para detectar errores tempranamente, refinar secuentes y
proponer términos para utilizar como testigos de propiedades cuantificadas
existencialmente.

Palabras clave: Demostración de teoremas interactiva, SAT-Solving, cálculo
para Alloy, PVS, Análisis de especificaciones de software.
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IMPROVEMENTS TO INTERACTIVE THEOREM
PROVING OF ALLOY PROPERTIES USING

SAT-SOLVING

Formal analysis of software models can be undertaken following two ap-
proaches: the lightweight and the heavyweight. The former offers languages
with simple syntax and semantics, supported by automatic analysis tools.
Nevertheless, the analysis they perform is usually partial. The latter pro-
vides full confidence analysis of models, but often requires interaction from
highly trained users.

Alloy is a good example of a lightweight method. Automatic analysis
of Alloy models is supported by the Alloy Analyzer, a tool that translates
an Alloy model to a propositional formula that is then analyzed using off-
the-shelf SAT-solvers. The translation requires user-provided bounds on the
sizes of data domains. The analysis is limited by the bounds, and is therefore
partial. Thus, the Alloy Analyzer may not be appropriate for the analysis
of critical applications where more conclusive results are necessary.

In this thesis we develop Dynamite, an extension of PVS that embeds a
complete calculus for Alloy. PVS is a well-known heavyweight method. It
provides a semi-automatic theorem prover for higher order logic. Dynamite
complements the partial automatic analysis offered by the Alloy Analyzer
with semi-automatic verification through theorem proving. It also improves
the theorem proving experience by using the Alloy Analyzer to provide au-
tomatic functionality intended for early detection of errors, proof refinement
and witness generation for existentially quantified properties.

Keywords: Interactive Theorem Proving, SAT-Solving, Alloy Calculus,
PVS, Specification Analysis.
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1. INTRODUCTION

Abstractions are foundational parts of the software development process. As
in many human activities, they are the first step of every significant software
project. Experience has shown that misconceptions in the abstractions re-
veal themselves as major bugs in the implementation, and many times they
are very hard to discover until it is too late. That is, until it is too expen-
sive or even impossible to repair them. Thus, such misconceptions must be
detected and corrected as soon as possible.

From simple and informal arrows and boxes diagrams to elaborated for-
mal methods, the variety of conceptual tools used to document, communi-
cate and analyze abstractions is vast and dynamic. Dynamic in the sense of
their evolution, whose trail may be seen in the many techniques and artifacts
that have appeared and have been left aside over the years.

Focusing on the analysis of abstractions, we may obtain better results as
we move from informal to formal methods. Natural language and diagram-
matic sketches with no formal semantics usually fit adequately to commu-
nicate basic ideas, but they are not a rich field to search for flaws.

If we just concentrate on the degree of automation offered by the formal
methods aimed at the analysis of abstractions, the spectrum ranges from
fully automatic to fully user-driven mechanisms. As examples of methods
that lie on the former side of the spectrum we can mention Model Check-
ing [Clarke et al. (1999)] using tools such as SPIN [Holzmann (2003)] and
SAT-Solving using, for instance, the Alloy Analyzer [Jackson (2012)]. Such
analysis methods require little effort on the part of the user, and are there-
fore usually called lightweight formal methods.

If we confine ourselves to the analysis technique of determining if a model
(specification) is appropriate by analyzing whether certain given properties
hold in the model, then both model checking and SAT-solving can be used
to automatically check it. But full automation has its price, often paid by
limitations on the kind of analysis provided, or by its lack of scalability. In
particular, both SAT-solving and model checking have limitations on the
expressiveness of the languages they can analyze. This is particularly clear
in the case of SAT-solving, where the source language is propositional logic.
Also, most model checkers support decidable fragments of logics.

Despite their limitations, automatic methods have qualities that make
them valuable. Even if the model we are working on is expressed in a more
expressive formalism, we could translate it to a propositional formula (in the
case of SAT-solving) or to an automaton (in the case of model checking).
The (probably weaker) model thus obtained can be automatically analyzed.
Notice that the result of the analysis of the weaker model can offer partial

2



1. Introduction 3

information about the original model.
As an example, let us consider the Alloy modeling language [Jackson

et al. (2001)]. Alloy is a formal specification language that allows one to
create data domains, and express properties of relations defined over those
domains. We will present Alloy in Section 2.1, but we point out here that
Alloy is not decidable since it extends classical first-order logic. It even in-
cludes reflexive-transitive closure of binary relations, which is not expressible
in classical first-order logic.

The Alloy Analyzer [Jackson (2012)] is a tool that allows one to auto-
matically analyze Alloy models by searching for counterexamples for a given
property using off-the-shelf SAT-solvers. There is a visible impedance mis-
match between the undecidable Alloy language and the decidable language
on which SAT-solvers operate. The gap is bridged by translating Alloy
models to propositional models.

The translation does not come for free, it requires users to provide
bounds (called scopes in the Alloy terminology) on the size of data domains.
The bounded model is the one translated. The result of the SAT-based
analysis is then valid for those semantic structures whose data domains are
constrained by the chosen scopes, i.e., if a counterexample is not found, one
might still exist if larger scopes were chosen. While this analysis technique
has obvious limitations, it is nevertheless very useful when creating a model.

According to the small scope hypothesis [Andoni et al. (2002)], although
possible, it is seldom the case that errors introduced in a model can only
be exhibited within large models1. The aforementioned hypothesis even
claims that most software errors can be made explicit by resorting to small
domain sizes. Therefore, if we assume that this hypothesis holds, we may
infer that many errors introduced when building a model can be discovered
by performing bounded analysis using small bounds.

On the other side of the spectrum of tools, we may find the so-called
heavyweight formal methods, named this way after the effort that tools and
techniques in this group impose on the user. Tools based on interactive
theorem provers, such as PVS [Owre et al. (1992)], Isabelle [Nipkow et al.
(2002)] or Coq [Bertot et al. (2004)], are good examples of this kind of
methods, which require a significant effort from the user. User guidance
offers more conclusive analysis techniques, but requires trained users. Also,
user-guided techniques are often time consuming.

The bright side of using heavyweight methods is that total analysis can
be performed with their assistance even on specifications from languages as
much expressive as Alloy, or even more expressive. For instance, there are
many complete theorem provers for classical first-order logic. These include

1 The discussion about the validity or not of the small scope hypothesis is beyond the
objectives of this work. We point the interested reader to [Andoni et al. (2002)] and
[Jackson and Damon (1996)], among others.



1. Introduction 4

techniques for automatically proving “easy” properties, but more complex
ones require creative steps that must be guided by a human user.

Proving a theorem can be a difficult and tedious activity, even more so if
incorrect hypotheses are introduced along the way. This situation, which is
more common than it is desirable, is both discouraging and time consuming.
Notice that every proof step that depends on the wrong hypothesis has to
be reconsidered when developing a new proof.

For instance, in order to prove in PVS that a collection of formulas
∆ = { δ1, . . . , δm } follows from a collection of hypotheses Γ = { γ1, . . . , γk },
one begins with the sequent Γ ⊢ ∆. Applying inference rules, from Γ ⊢ ∆
one must reach other sequents that can be recognized as valid (for example,
sequents of the form α ⊢ α). The intuition behind the sequent Γ ⊢ ∆ is that,
from the conjunction of the formulas in Γ, the disjunction of the formulas in
∆ must follow. The formulas in Γ (∆) are called the antecedent (consequent)
of the sequent.

When an inference rule is applied on a sequent S, new sequents S1, . . . ,Sn
are produced. Proving sequent S then reduces to finding proofs for the in-
termediate sequents S1, . . . ,Sn. Our experience as users of PVS is that,
when proving a given sequent, the number of antecedents and consequents
in intermediate sequents tends to grow. This often leads to sequents con-
taining formulas that are unnecessary for their proof. These formulas make
identification of new proof steps more complex. PVS provides a command
(hide) for hiding hypotheses and conclusions in sequents, yet its incorrect
use may lead to hiding necessary antecedents or consequents, making the
proof infeasible.

Even more, while dealing with propositional connectives is straightfor-
ward in calculi such as the one provided by PVS, quantifiers pose a challenge.
A particularly complex problem is that of finding witnesses when attempting
to prove existentially quantified assertions. In order to prove that a formula
∃x : α(x) holds, the user must present a term t, such that α(t) is always
true.

Returning to Alloy, for many modeling situations the kind of analysis
offered by the Alloy Analyzer is entirely satisfactory. In some cases, however,
this analysis may fall short. This is evident when building models for critical
systems. In those cases, knowing that no small errors exist in the model is
not enough. Therefore, in this thesis we propose to extend the SAT-solving
analysis provided by the Alloy Analyzer with a user-guided theorem prover
based on PVS.

However, although this seems a significant contribution because it gives
the user the possibility of reaching complete confidence in the Alloy model,
the heavyweight task of using an interactive theorem prover threatens the
usability of the tool. For that reason, we also developed automatic tech-
niques, relying on the Alloy Analyzer, in order to lighten the workload of
the task of proving.
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Contributions

The contributions of this thesis can then be summarized as follows:

• We present a complete proof calculus for the Alloy modeling language.

• We introduce an interactive theorem prover for Alloy assertions that
extends the PVS theorem prover so that Alloy assertions can be proved
using Alloy syntax. This theorem prover, called Dynamite, was devel-
oped by us as part of the work of this thesis.

• We facilitate the interaction between PVS and the Alloy Analyzer
in order to reduce the number of theorem proving errors induced by
introduction of false lemmas, hiding of necessary hypotheses, or intro-
duction of erroneous hypotheses.

• We present a heuristic to reduce the proof search space based on the
use of UnSAT cores to remove potentially unnecessary antecedents
and consequents in a sequent. The technique also allows us to remove
formulas from the underlying theories being considered.

• We present a technique based on SAT for automatic generation of
witness candidates for existentially quantified Alloy assertions.

• We present several examples, including some complex case-study [Ra-
mananandro (2008); Zave (2005, 2006)], that allow us to assess the
usefulness and usability of Dynamite.

These contributions have been presented in [Frias et al. (2007); Moscato
et al. (2010, 2014)]. This document presents revised and augmented versions
of the aforementioned contributions.

Organization

The thesis is organized as follows. In Chapter 2 we present a brief intro-
duction to the Alloy modelling language, the Alloy Analyzer, PVS and the
sequent calculus provided by it. In Chapter 3 we present the formal syntax
and semantics of Alloy, the Fork Algebras we used as background logic for
proving Alloy assertions, and the complete calculus for Alloy that will be
made accessible through our tool, Dynamite. In Chapter 4 we describe the
way in which the complete calculus presented in Chapter 3 is embedded in
PVS, as well as discuss important implementation details. Also in Chap-
ter 4, we describe the features of Dynamite. Chapter 5 is devoted to report
the results of the use of Dynamite on several case studies. Some of the goals
we envisioned when we started this work were previously addressed either
by colleagues or ourselves. In Chapter 6 we present a brief review of such
related work, and discuss some conclusions and further improvements to the
tool.



2. MODELING AND ANALYSIS OF ABSTRACTIONS

When dealing with abstractions, their construction and analysis, the minimum-
effort way to cope with these tasks is offered by lightweight methods. Lan-
guages with simple syntax and semantics, diagrammatic representations and
fully automatic tool support, among other characteristics, make them ap-
pealing to a wide spectrum of the public. Nevertheless, the power of the
analysis provided is, in most cases, not suited to critical developments.

On the other hand, heavyweight methods allow the user to perform com-
plete analysis on the abstractions, but at the cost of losing the automation.
Clever interactions at crucial points of the analysis process are often indis-
pensable to fulfill the task. This makes the application of such methods an
error-prone activity. Furthermore, besides requiring more user effort, they
usually demand a high level of training, which in turn reduces the spectrum
of public able and willing to use them.

This chapter is intended to contrast both approaches by showing rep-
resentatives of each kind. First we will present Alloy as an example of a
lightweight method. We will introduce rudiments about the language and
its associated analysis tool: the Alloy Analyzer. The way in which the ana-
lyzer can be used as an assistant in the modeling process will be explained.
Next, we will introduce the Prototype Verification System (PVS), an en-
vironment supporting the development and the analysis of specifications,
based in theorem proving for classical higher-order logic. We will discuss
the underlying formal machinery implemented by PVS: the sequent calcu-
lus.

2.1 An Introduction to Alloy

In this section we describe the Alloy modeling language and the Alloy Ana-
lyzer with the level of detail required in order to follow this work. For a thor-
ough description we point the reader to the book “Software Abstractions:
Logic, Language, and Analysis” [Jackson (2012)], which provides numerous
examples of varied complexity illustrating features of Alloy. Nevertheless,
a formal description of the syntax and semantics of the language will be
presented in the next chapter.

2.1.1 Alloy terms and formulas

As with every formal language, Alloy can be studied from a syntactic or
from a semantic point of view. On the semantic side, we will be working
with relations of arbitrary, but finite, arity. These relations, which can be

6



2. Modeling and Analysis of Abstractions 7

sig Name { }

(a)

aM (Name) = { 〈n0〉 , 〈n1〉 }

a′M (Name) = { 〈n0〉 }

a′′M (Name) = { }

(b)

Fig. 2.1: (a) A signature declaration and (b) three different instances for it.

seen as sets of tuples of atomic elements, will be the first order citizens of
the language.

The gap between the syntactic domain and the semantic domain is
bridged using instances, also called environments. Much the same as val-
uations from classical first-order logic map variables to semantic values,
environments map Alloy expressions to relations. Given an alloy model M ,
we denote by aM an instance for M .

Unary relations, along with the atoms that they contain, can be declared
in Alloy by defining so-called signatures. For example, the statement shown
in Fig. 2.1.a forces the existence of an unary relation Name holding all the
atoms of type Name in the range of each instance applicable in the model
M . In fact, the symbol Name can be used to denote that unary relation
in any expression of the specification. Fig. 2.1.b shows the value taken by
Name in three different and valid instances for the model M .

Alloy provides multiplicity keywords in order to restrict the relations
introduced by a signature. These keywords are: some (the relation can
not be empty), one (there can be only one tuple in the relation), lone (the
relation can have at most one tuple). The table 2.1 shows which of the
instances of Fig. 2.1.b are valid if each multiplicity keyword was added in
turn to the declaration in Fig. 2.1.a.

Let us suppose we want to model a simple file system using Alloy. The
main concepts are: directories can contain files and other directories, every
element inside a directory can be referred to using a name that can vary in

on
e
si
g
N
am
e
{
}

so
m
e
si
g
N
am
e
{
}

lo
ne
si
g
N
am
e
{
}

si
g
N
am
e
{
}

aM (Name) = { 〈n0〉 , 〈n1〉 } ✪ ✦ ✪ ✦

a′M (Name) = { 〈n0〉 } ✦ ✦ ✦ ✦

a′′M (Name) = { } ✪ ✪ ✦ ✦

✦ valid

✪ invalid

Tab. 2.1: Signature multiplicity keywords example.



2. Modeling and Analysis of Abstractions 8

other directories, there is only one root directory, every non-root directory
must have a parent, i.e. the directory containing it.

The directories could be represented by means of a signature Dir, as we
did it with the names previously. Now we have a distinguished directory:
the root. To embody this feature, Alloy allows us to establish inheritance
relationships between signatures. Then,

one sig Root extends Dir { }

declares a Root signature included in Dir. Notice that, because of the one
keyword, Root is a singleton in every instance.

To model the relationship between a directory and its parent, we could
use a binary relation parent ⊆ Dir × Dir. Relations of arity greater than
one are defined by declaring so-called fields in a signature. For example,
field parent in the signature Dir, shown below, denotes a binary relation
included in the cartesian product Dir ×Dir.

sig Dir { parent: Dir }

In fact, that declaration states an extra restriction on the tuples of parent:
for every atom d ∈ Dir, there must be one, and only one, tuple in parent
with d as its first element. Alloy allows us to include the multiplicity key-
words mentioned before in order to relax this constraint.

In our example, since every directory except for root must have one and
only one parent, we need that for every d ∈ Dir there be at most one tuple
in parent beginning with d. This restriction can be stated with the lone
keyword.

sig Dir { parent: lone Dir }

In addition to lone, one and some, previously presented, the keyword set
may be used to state no restriction at all on the tuples of parent.

Now, once the parent relation has been defined, we could write an Al-
loy expression that relates every directory with its “grandparent”, if it has
one. The operator for relational composition “.”, called navigation in Alloy
terminology, allows us to write that expression as parent.parent.

As described before, a directory can contain files and directories. Nat-
urally by now (we hope) the files will be represented as a new signature
File. So, using signature inheritance one can group directories and files in
an abstract concept. Let’s call it object.

abstract sig Object {}
sig File extends Object {}

The keyword abstract states that Object will only hold elements from in-
heriting signatures.
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aM (d) = {〈d0〉}

aM (contents) = {〈d0,n0, d0〉 , 〈d0,n0, f0〉 , 〈d1,n0, d0〉}

aM (d.contents) = {〈n0, d0〉 , 〈n0, f0〉}

Fig. 2.2: Example of navigation between non binary relations.

Recalling that every object must have a name local to the directory con-
taining it, the contents of a directory can be represented as a ternary relation
contents ⊆ Dir ×Name×Object. In Alloy, relations of arity greater than
2 are also declared as fields, but using the arrow operator “−>”.

sig Dir extends Object {
contents: Name −> Object,
parent: lone Dir

}

contents = {〈d0,n0, d0〉 ,

〈d0,n0, f0〉 ,

〈d1,n0, d0〉}

Every tuple 〈d,n, o〉 ∈ contents means that o is contained in1 d, under the
name n. Along the last showed declaration of Dir, a possible instance for it
is depicted. There, d0 and d1 are atoms from Dir, n0 from Name and f0
from File.

Lets assume we have an Alloy expression d denoting a singleton unary
relation that holds the atom d0. We can express the collection of objects
contained in d0, along with the respective name of each one of them in
d0, by using the composition operator in the following way: d.contents.
Composition of binary relations is well understood but, for relations of higher
arity, the following definition for the composition of relations is considered:

R .S = {〈a1, . . . , ai−1, b2, . . . , bj〉 :

∃b (〈a1, . . . , ai−1, b〉 ∈ R ∧ 〈b, b2, . . . , bj〉 ∈ S)} .

being R and S relations of arity i and j respectively. Then, the expression
d.contents denotes a binary relation where in every tuple can be found a
directory contained in d and the name for which it can be referenced in d
(see Fig. 2.2).

In general, Alloy terms are built from signatures, signature fields and
constants such as univ (set of all objects in the model), iden (identity binary
relation on the set univ), and none (the empty set). Relational operators

1 Notice that the phrase “o is contained in d” should not be read literally. As mentioned
above, since both o and d are atoms they do not contain anything, they are indivisible.
That phrase is intended to refer to the conceptual model being described by the Alloy
specification. Thus, it should be read as “the object represented by o is contained in the
directory represented by d”.



2. Modeling and Analysis of Abstractions 10

are used to build more complex terms. Difference, union, intersection and
composition of relations are denoted by −, +, & and ·, respectively. The
symbol ∼ denotes the transpose of a binary relation. This operation, also
known as inverse, flips around the elements in each pair of a binary relation.
Transitive closure and reflexive-transitive closure of binary relations are de-
noted byˆ and ∗, respectively. For example, denoting d a singleton in Dir,
the term d.ˆparent denotes the set containing the parent of d, the parent of
its parent, and so on.

If we return to the figure 2.2 we may see an anomaly of the model: d0
contains two different objects with the same name n0. In order to avoid
such instances, we can add multiplicity keywords to the contents definition.
The following declaration

sig Dir extends Object {
contents: Name −> lone Object,
parent: lone Dir

}

states that for every name n in Name, there may be at most one tuple in
aM (d.contents) with n as its first element, avoiding the instance showed in
Fig. 2.2.

If we turn now to the parent field, we already constrained it to allow only
one parent per directory. But it remains to be said that every directory that
is not the root must have a parent and that the root must not have it.

To impose this kind of restrictions, we can add formulas to the model
and mark them as axioms, called facts in Alloy terminology. To construct
formulas, Alloy provides: unary cardinality testing predicates (such as the
ones explained for signatures: being e an Alloy expression one e, some e,
lone e and no e, for testing of emptiness), equality and inclusion between
expressions (= and in, respectively), all the usual boolean connectives (! for
negation, && for conjunction, || for disjunction, => for implication, <=>
for logical equivalence), and several flavors of quantifications.

The following facts express the aforementioned constrains.

fact RootHasNoParent { all r: Root | no r.parent }
fact OneParent { all d: Dir − Root | one d.parent }

As expected, the RootHasNoParent axiom says that for all root directories
r, the set (unary relation, in fact) of its parents is empty. Alloy allows us to
express restrictions on the range of the quantified variables as if it were the
declaration of a field. So, the variable d of the OneParent fact ranges over
all directories but the root. For all such directories, the fact assures that
they have exactly one parent each.

We may also add hypotheses about the model and test their validity.
These hypotheses are called assertions in Alloy. For example, the assertion
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NoDirAliases, shown below, states that every directory may be contained in
at most one other directory.

assert NoDirAliases { all o: Dir | lone (contents.o) }

Note that while o.contents represents all the objects contained in the direc-
tory o (along with each respective name), the expression contents.o denotes
all the directories which include o (along with the name by which it is known
in each of them).

Alloy also allows the user to define custom predicates and functions.
They act as named formulas and expressions that can be reused across the
specification. For example, the following axiom ensures that the directory
hierarchy has no loops.

fun ancestors[x: Dir]: Dir { x.ˆparent }

fact NoOwnAncestor { all d: Dir | d !in ancestors[d] }

The Alloy language provides support for integer numbers. But, in order
to be able to automatically analyze models, the user must provide a bound
to the count of integers being referenced in the specification. This bound,
called the bit width, is the number of binary digits used to represent integer
atoms using 2’s complement arithmetic. For instance, with 5 as bit width,
we can represent integers -16 through 15.

There is a built-in signature Int that denotes the set of all integers (up
to the user provided bound). So, integers can appear as atoms in relations.
For example, if we wanted to enrich the directories of our example with the
count of elements contained by them, we could write:

sig DetailedDir extends Dir { filesCount: Int }

Alloy offers arithmetic operators for addition (add), substraction (sub),
multiplication (mul), integer division (div) and remainder of an integer di-
vision (rem) as well as the usual operators for comparison between integers
(=, <, < =, >, > =). All these operators are defined using 2’s complement
arithmetic. For example, 15 + 1 = −16 holds when bit width 5 is cho-
sen. The latest version of Alloy includes a treatment of integers that avoids
some of the overflow issues that the user may face when dealing with such
a bounded representation of numbers.

Nevertheless, these operations may not be applied on sets of integers, not
even singletons, but on integer numbers themselves. Then, Alloy provides a
built-in function, called int, to cast from sets of integers to integers. So, the
addition between the count of files in directories d1 and d2 may be denoted
by the expression

int[d1.filesCount] add int[d2.filesCount]
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When applied to a relation R with cardinality greater than a singleton, int[R]
denotes the result of the sum of every numeric atom in R.

In order to force the field filesCount in the example to hold the count
of elements contained by every directory, we may use the Alloy operator #,
that returns the cardinality of its argument. Thus, the mentioned constraint
may be stated as the following fact.

fact { all d: DetailedDir | int[d.filesCount] = #(d.contents) }

The backward cast, i.e. from integer numbers to integer atom singletons,
is performed by the built-in function Int. So, the previous fact could be
written as shown below.

fact { all d: DetailedDir | d.filesCount = Int[#(d.contents)] }

2.1.2 The Alloy Analyzer

One of the more appealing features of Alloy is the support for validation
given by the Alloy Analyzer. Conceptually, the Alloy Analyzer may be
seen as an instance builder. Given an Alloy model and a scope specifica-
tion (basically bounds for the sizes of the signatures), the analyzer tries to
automatically build some instance of such size in which all the facts of the
model hold. We will say that such instance is a legal instance of the model.
The whole search space denoted by the scope specification is exhaustively
traversed so that, if any instance can be build under the given settings, the
analyzer will do it.

In order to perform this task, the Alloy Analyzer translates the model
to a propositional formula. The translation heavily depends on the bounds
declared in the check command. Once a propositional formula has been
obtained, the Alloy Analyzer employs off-the-shelf SAT-solvers, and in case
a model of the formula is obtained, it is translated back to an instance
of the source model and presented to the user using different visualization
algorithms.

Simulation. Recall that, in the previous section, we exemplified how a flaw
in a model can be detected by inspecting a specific instance. The Alloy
Analyzer allows the user to exercise this simulation strategy in order to
iteratively improve the specification being developed.

The language itself provides particular-purpose constructions to specify
instance-building requests and the bounds to be used on it. For example,
the following statement specifies a search for an instance in which all the
signatures may have at most three elements, but the directory signature is
forced to have exactly two:



2. Modeling and Analysis of Abstractions 13

run {} for 3 but exactly 2 Dir

It is worth noting that this simulation-assisted modeling technique can
only be carried out if the analyzer succeeds in the construction of an instance
for the given model and scope. Complementarily, the fail of the analyzer can
be understood as an indication of inconsistency of the model. Nevertheless,
this evidence is not conclusive because it may be the case that an instance
could be built if the scope is increased.

Testing of assertions. Besides the instance building feature, the Alloy An-
alyzer may be used to test the conjectures stated as assertions. This test is
done by searching for counterexamples of the assertion. In fact, this search
is another side of the instance builder feature explained earlier. The Al-
loy Analyzer tries to build an instance for which all the facts hold, but the
assertion does not.

Again, one may include specifications of these analyses in the model
itself. The following code determines a search for counterexamples of the
assertion NoDirAliases with the same scope of the run mentioned before.

check NoDirAliases for 3 but exacty 2 Dir

As in the run case, if a counterexample cannot be generated by the analyzer
with the provided scopes, it does not mean that no counterexample exists.
Perhaps an increasing of the scopes is needed in order to fulfil the coun-
terexample construction. But it may be the case that no counterexample
could be made, no matter how big the scopes would be set. So, even though
the Alloy Analyzer is so useful to develop a consistent specification without
errors that could be exposed by (generally) small examples, it cannot give
absolute certainty on the correctness of the specification.

2.2 A Step Further: Heavyweight Methods

In some cases, such as the development of safety-critical systems, the partial
assurance provided by lightweight methods is not enough, and more sophis-
ticated and complete methods must be used. These methods are called
heavyweight because they allow one to achieve full confidence in a model,
but usually require expertise and specific training from the user; these, many
times, discourages their use.

Semiautomatic theorem provers are good examples of heavyweight for-
mal methods, and they are one of the few available choices when dealing
with an undecidable logic, such as Alloy. One of the more prominent ex-
ponents of this family of tools is the Prototype Verification System (PVS)
[Owre et al. (1992)].
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2.2.1 The Prototype Verification System

The Prototype Verification System (PVS) provides an automated environ-
ment aimed at the development and verification of complex models. Its
features make it suitable for a wide variety of application domains, where it
has been used. A comprehensive, but perhaps not fully up-to-date as of the
writing of this document, list of publications about the application of PVS
to different fields and topics may be found in [Rushby (2000)].

Some of the more relevant characteristics of PVS are the specification
language and the semiautomatic theorem prover that serves as the main tool
for verification of the models. The PVS specification language is based on
classical typed higher-order logic. Besides the built-in available types (such
as booleans, integers, reals, etc.) the user may define new uninterpreted
basic types as well as complex types using constructors for functions, tuples,
sets, enumerations, etc. Since the type system defined by the user is not
forced to be decidable, the typechecking process may return obligations that
can be proven using the PVS prover. In fact, this feature gives much more
expressiveness to the models.

PVS’s theorem prover is a framework that allows the user to perform
proofs using sequent calculus. Since some of the highlights of Dynamite
are the automatic help offered in key steps of the proof, in the next section
we will explain basic concepts about the calculus. PVS’s support for user-
defined proof tactics allows us to define specific rules to take advantage of
some aspects of the Alloy logic.

A comprehensive library of PVS theories covering diverse topics provides
wide support to the application of PVS in different areas.

2.2.2 Sequent Calculus

We already introduced the notion of sequent in the introduction of this
work (chapter 1). Recall that a sequent is simply a pair of finite sequences
of formulas. Usually the formulas in the first list of the pair act as hypoth-
esis and the formulas in the second one act as thesis. These sequences are
respectively called antecedent (usually denoted by Γ) and consequent (Σ).

In the brief description given in the introduction, it may be noted that
the proofs in a sequent calculus can be seen as a tree. When the user starts
a proof, the proof tree has only one node. This tree will grow as the result
of the application of the so called proof rules. These rules are traditionally
depicted as:

Γ1 ⊢ ∆1 . . . Γn ⊢ ∆n
(R)

Γ ⊢ ∆

which states that the application of the rule R on a sequent with form Γ ⊢ ∆
results in n new sequents Γ1 ⊢ ∆1 to Γn ⊢ ∆n.
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Γ ⊢ α,β, ∆
(⊢∨)

Γ ⊢ (α ∨ β),∆

Γ,α ⊢ ∆ Γ,β ⊢ ∆
(∨⊢)

Γ, (α ∨ β) ⊢ ∆

Γ ⊢ α, ∆
(¬ ⊢)

Γ, (¬α) ⊢ ∆

Γ ⊢ α, ∆ Γ ⊢ β, ∆
(⊢∧)

Γ ⊢ (α ∧ β),∆

Γ,α,β ⊢ ∆
(∧⊢)

Γ, (α ∧ β) ⊢ ∆

Γ,α ⊢ ∆
(⊢ ¬)

Γ ⊢ (¬α),∆

Γ,α ⊢ β, ∆
(⊢⇒)

Γ ⊢ (α⇒ β),∆

Γ ⊢ α, ∆ Γ,β ⊢ ∆
(⇒⊢)

Γ, (α⇒ β) ⊢ ∆

Γ,α{x← t} ⊢ ∆
(∀⊢)

Γ, (∀x : α) ⊢ ∆

Γ ⊢ α{x← a}, ∆
(⊢∀)

Γ ⊢ (∀x : α),∆

Γ,α{x← a} ⊢ ∆
(∃⊢)

Γ, (∃x : α) ⊢ ∆

Γ ⊢ α{x← t}, ∆
(⊢∃)

Γ ⊢ (∃x : α),∆

Where t is a term, a

is a fresh constant, and
α{x ← t} is the formula
resulting from substitut-
ing all free occurrence of
the variable x in α with t.

Γ,α ⊢ ∆ Γ ⊢ α, ∆
(Cut)

Γ ⊢ ∆

Γ′ ⊢ ∆′
(W)

Γ ⊢ ∆
where:

∆′ ⊆ ∆, Γ′ ⊆ Γ

(Ax)
Γ ⊢ ∆

where:

∆ ∩ Γ 6= ∅

Γ1,α,α, Γ2 ⊢ ∆
(C ⊢)

Γ1,α, Γ2 ⊢ ∆

Γ ⊢ ∆1,α,α, ∆2
(⊢C)

Γ ⊢ ∆1,α, ∆2

Γ1,α,β, Γ2 ⊢ ∆
(X ⊢)

Γ1,β,α, Γ2 ⊢ ∆

Γ ⊢ ∆1,α,β, ∆2
(⊢X)

Γ ⊢ ∆1,β,α, ∆2

Fig. 2.3: Proof rules of sequent calculus.

Consider for instance the proof rules for conjunction ∧⊢ and ⊢∧ depicted
in Fig. 2.3. Rule ∧⊢ shows that proving a sequent that contains the con-
junction α ∧ β in the antecedent reduces to proving a sequent with both α
and β in the antecedent (in this case, a single new sequent has to be proved).
Similarly, rule ⊢∧ shows that proving a sequent with α∧β in the consequent
reduces to proving two different sequents: one with α in the consequent, and
another one with β in the consequent.

Besides the rules for conjunction, Fig. 2.3 shows examples of rules for
standard boolean connectives, quantifiers, structural rules intended to re-
order the formulas in the sequent (C⊢, ⊢C, X⊢, ⊢X, W) and the Cut rule,
which can be seen as the formalization of the introduction of some new hy-
pothesis or as a case separation. PVS provides support for a calculus such
as this. For details in how the proof rules are represented in PVS the reader
is pointed to [Owre et al. (2001b)].

2.2.3 Critical Points of Sequent Calculus Proofs

A closer look at the proof calculus shows that most of the rules in Fig. 2.3 can
be applied mechanically, as in the case of the rules for disjunctive connectives
explained earlier. Nevertheless, there are some rules in which creativity is
required. We say that the applications of these rules are critical points
because they materialize the most error-prone moments of the proof. Such
rules are the Cut rule, where an appropriate formula α has to be determined,
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and the rules for quantifiers.
There are theoretical results that would allow us to leave aside the cut

rule. The Cut-elimination theorem [Gentzen (1935)] states that proofs can
be replaced by (usually more complex) proofs that do not use this rule. But
it is of great practical significance in the task of performing a proof using
sequent calculus. For example, when attempting to prove a sequent Γ ⊢ ∆,
many times a new hypothesis α is introduced as a means to simplify and
modularize the proof. In the left new node after the application of the rule
(Γ,α ⊢ ∆) hypothesis α can be used in the proof of the sequent. But on
the other hand, starting from the right new node (Γ ⊢ α, ∆), it will have to
be proved that α follows from some formulas in Γ and possibly the negation
of some other formulas in ∆. This is, thus, a critical point of the proof,
because of the loss of time the user could suffer if, after finishing the proof
of the left subtree with the aid of formula α, it turns out that the new
hypothesis cannot be discharged from Γ and ∆, making the previous proof
effort useless.

In case we are confronted with a sequent with either an universally quan-
tified formula in the consequent, or an existentially quantified formula in the
antecedent, the quantifiers can be skolemized away through the application
of proof rules ⊢∀ and ∃ ⊢, respectively. The other two rules involving quanti-
fiers, ⊢ ∃ and ∀ ⊢, are intended to deal with the so called existential strength
quantifiers. Both rules require the presentation of a term that can be used
to replace the quantified variable. We will call it a witness of the validity
of the property. We say that the application of these rules is also a critical
point because the user has to provide the witness in order to complete the
proof.

Notice that these two critical points are applicable to any sequent calcu-
lus with rules akin to the ones in Fig. 2.3. Nevertheless, every logic has its
own features, which can expose more critical points in the proof process. In
fact, we will see aspects specific to the calculus we propose to verify Alloy
assertions in Section 4.2.

2.3 Towards a Symbiotic Approach

Jackson says about the use of heavyweight methods in the analysis of soft-
ware abstractions [Jackson (2012)]:

Completing a proof with the aid of a theorem prover usually
demands an effort an order of magnitude greater than the mod-
eling effort that preceded it, so for most applications, it’s not
cost-effective. For checking safety-critical abstractions, however,
the additional assurance obtained from proof may be worthwhile.

We wanted Dynamite to be more than just a tradeoff between both
approaches, the heavy one and the light one. We were aiming for a tool
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with the strength of a heavyweight method, but with simple syntax and
semantics in order to fit the necessities of (as much as possible) software
developments. We wanted to bring complete accuracy but reducing the
cost of applying this technique, so that it can be applied in many more
situations. Additionally, we intended to establish a synergistic relationship
between tools of both worlds, so that the human effort to develop a proof
could be supported in the critical steps by automated help.

In the next chapters we will describe Dynamite in detail. First, we will
present the formal foundations of the tool. Then, we will follow with the
implementation description and the explanation of prover helper features
included in Dynamite.



3. FORMAL BACKGROUND

One of the original and main objectives of this thesis was to provide a
mechanism to reach full confidence in the analysis of Alloy specifications. In
particular, by offering a mechanism to ensure that an assertion is valid for
all possible scopes. One way to reach this objective is to provide Alloy with
a complete calculus. That calculus would allow one to prove that a given
assertion can be deduced from the facts of the specification it comes from,
concluding that it is valid.

To reduce the amount of work needed to give Alloy a complete calculus,
we focus our effort in trying to reuse the calculus of a more powerful for-
malism. Such a formalism had to be able of mimic the semantics of every
possible Alloy specification and had to have its own complete calculus, so
that the theorems of that formalism state valid properties on the seman-
tic Alloy models. Once such a formalism was selected, we had to design a
semantic-preserving translation from Alloy to that formalism.

This chapter is intended to show that the aforementioned approach is
correct. First, we will exhibit the syntax and formal semantics of Alloy. The
notion of validity of an Alloy assertion will be formally stated as well. Then,
we will focus on the target of the mentioned translation: the class of “proper
point-dense omega closure fork algebras” (PDOCFA). The definition of this
class will be given along with the presentation of a complete calculus for
it. Later, we will define the translation F from Alloy models to PDOCFA
theories. Finally, we will prove that any theorem in the PDOCFA theory
resulting of the translation via F of some Alloy model is valid in it, and vice
versa (interpretability theorem).

3.1 Semantics and Syntax of Alloy

Signature and field symbols will be called relational variables, whilst vari-
ables bound by quantifiers will be called binding variables. We will denote
by Names the set of both variable symbols. Meanwhile the collection of
all relational values (sets of tuples of atomic values) used to interpret Alloy
specifications will be denoted by Rel .

There are two kinds of atomic values: uninterpreted atoms (A) and
numeric atoms (Z). They only differ in the existence of a bijection (named
intVal) from the latter to the set of integer numbers.

An Alloy instance, or Alloy environment, is a mapping

i : Names → Rel

that assigns meaning to variable symbols. We denote by I the collection of
all instances.

18
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Given an Alloy expression expr and an Alloy instance i, the function E
gives meaning to expr based on i. Correspondingly, given an Alloy formula
α and an Alloy instance i, we will define a metapredicate that will indicate
whether the formula α is true or false with respect to the instance i (noted
as i |= α). Both E and |= will be formally defined in the next section.

Notice that an instance does not need to be total, but we restrict the
domain of the instances with respect to a given specification in the next
definition.

Definition 3.1.1: (Legal instances of a specification) The collection of legal
instances of a given Alloy specification S (denoted by IS) contains every
instance i such that:

a) every constant symbol defined in S belongs to the domain of i.

b) there exists an n ∈ N s.t. all the integer numbers representable in a 2’s
complement representation of n bits are defined in i; more formally:

i(j) = {〈intV al−1(j)〉} for each integer j ∈ [−2n−1, 2n−1 − 1]

c) i |= α is true for every fact α in S.

Definition 3.1.2: (Consistence) An Alloy specification S is consistent if
IS is not empty. Correspondingly, S is inconsistent if IS is empty.

Definition 3.1.3: (Counterexample) Given an Alloy specification S, an
instance i ∈ IS is a counterexample for an assertion α in S if i |= α is false.

The rest of this section is devoted to give the formal details of the def-
initions just presented. We will begin with the function E and the meta-
predicate |= and then we will focus on how the declarations constrain the
instances.

Expressions and Formulas

Although in Section 2.1 we already gave an informal description of the main
characteristics of the Alloy language, we present here in detail its syntax
and semantics, as presented in [Jackson (2012)].

Diagram 3.1 shows the grammar for Alloy expressions. We denote by
E Alloy the collection of expressions generated by such grammar. Just a few
relational operators were not already presented in Chapter 2. They are: the
domain restriction <: (that behaves as a filter on the tuples of a relation,
keeping only those which have as a first component an element from a given
set), the range restriction :> (similar to the aforementioned operation, but
taking into account the last component of the tuples instead of the first),
and the relational override ++ (that allows to update a relation using the
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〈expression〉 ::= none | univ | iden | @ 〈field〉 | 〈rel〉 | 〈var〉
| [ # | ~ | * | ^ ] 〈expression〉
| 〈expression〉 [ + | & | - | ++ | <: | :> | . | -> ] 〈expression〉
| 〈expression〉 [ 〈expression〉,*]
| 〈formula〉 [=>|implies] 〈expression〉 else 〈expression〉
| let 〈let-binding〉,+| 〈expression〉
| { ([disj] 〈var〉,+: 〈expression〉),+[| 〈formula〉 | 〈conj-block〉] }
| Int | Int[〈numeric-expr〉]
| ( 〈expression〉 )

〈let-binding〉 ::= 〈name〉 = [ 〈expression〉 | 〈formula〉 | 〈numeric-expr〉 ]

〈conj-block〉 ::= {〈formula〉*}

〈rel〉 := 〈sig〉 | 〈field〉

〈sig〉 ::= [this | 〈identifier〉] [/ 〈identifier〉]*

〈field〉 ::= [this | 〈identifier〉] [/ 〈identifier〉]*

〈var〉 ::= 〈identifier〉

〈identifier〉 ::= [a-z]+[[a-z][0-9]_’"]*

〈numeric-expr〉 ::= 〈number〉
| - 〈numeric-expr〉
| # 〈expression〉
| 〈expression〉.sum | int[〈expression〉]
| 〈numeric-expr〉 [ add | sub | mul | div | rem ] 〈numeric-expr〉
| sum 〈bindings〉 | 〈numeric-expr〉
| 〈var〉
| let 〈let-binding〉,+| 〈numeric-expr〉

〈number〉 ::= [0–9]+

Grammar diagram 3.1: Alloy expression grammar
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tuples of another relation). Alloy also supports more complex syntactic
structures, such as macro expansions (using the let construct), if-then-else,
and comprehension expressions.

Previous to the definition of the function E, which gives meaning to Alloy
expressions, we state the notation we use in this document to represent well
known relational operations.

Definition 3.1.4: (Relational operations) Being R1 and R2 relations of
arbitrary but the same arity (say n), t a tuple of n elements, and A a
relation or arity 1, we define:

Set-union R1 ∪R2 = {t | t ∈ R1 or t ∈ R2}

Set-intersection R1 ∩R2 = {t | t ∈ R1 and t ∈ R2}

Set-difference R1 \R2 = {t | t ∈ R1 and t /∈ R2}

Cardinality #R1 = count of tuples in R1

Projection of a tuple Πi(〈a1, · · · , ai, · · · , an〉) = ai

Domain of a relation dom(R1) = {a | ∃t ∈ R1 and Π1(t) = a}

Range of a relation ran(R1) = {b | ∃t ∈ R1 and Πn(t) = b}

Domain restriction A ⊳ R1 = {t | t ∈ R1 and Π1(t) ∈ A}

Range restriction R1 ⊲ A = {t | t ∈ R1 and Πn(t) ∈ A}

Relational override R1 ⊕R2 = R2 ∪ ((dom(R1)− dom(R2)) ⊳ R1)

Identity idenA = {〈a, a〉 : a ∈ A}

Being R a n-ary relation and S a m-ary relation:

Cartesian product R1 ×R2 =

{〈a1, · · · , an, b1, · · · , bm〉 | 〈a1, · · · , an〉 ∈ R1 and 〈b1, · · · , bm〉 ∈ R2}

Additionally, if R is a binary relation s.t. R ⊆ A×A, we define:

Transpose ∼ R = {〈b, a〉 | 〈a, b〉 ∈ R}

Compositional closures

R∗ = smallest T s.t. idenA ⊆ T ∧ T .T ⊆ T ∧R ⊆ T

R+ = R.R∗

Definition 3.1.5: (Meaning of Alloy expressions) The function

E : E
Alloy → I → Rel

is defined as shown in tables 3.1 and 3.2.

Once defined the syntax and semantics of Alloy expressions, we can now
proceed to formally define the grammar of Alloy formulas and then turn to
their meaning. The Alloy formula grammar is depicted in Diagram 3.2.
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e E(e)i

none ∅
univ {〈a〉 | ∃ S ∈ Ran(i) s.t. 〈a〉 ∈ S}
iden {〈a, a〉 | 〈a〉 ∈ E(univ)i}

Int { 〈x〉 | 〈x〉 ∈ E(univ)i ∧ x ∈ Z}
Int[n] {〈intVal−1(cal(n)i)〉}

v i(v)
c i(c)

~e ∼ E(e)i
ê (E(e)i)+

∗e (E(e)i)∗

e1 & e2 E(e1)i ∩ E(e2)i
e1 + e2 E(e1)i ∪ E(e2)i
e1 − e2 E(e1)i \ E(e2)i
e1 . e2 E(e1)i.E(e2)i
e1 <: e2 E(e1)i ⊳ E(e2)i
e1 :> e2 E(e1)i ⊲ E(e2)i
e1 ++ e2 E(e1)i⊕ E(e2)i

e1 m1−>m2 e2 E(e1)i× E(e2)i (m1 and m2 are ignored)

e[e1, · · · ,en]











E(ef )
(

i⊕
⋃k

i=1{xi 7→ E(di)i}
)

if e is the function:

fun f [x1 : d1, · · · ,xk:dk] : df{ef}
E(e)i.E(e1)i . · · · . E(en)i otherwise.

let v = e1 | e E(e)(i⊕ {v 7→ E(e1)i})
let v = n | e E(e)(i⊕ {v 7→ {〈intVal−1(cal(n)i)〉}})

let v = α | e

{

E(e)(i⊕ {v 7→ ∅}) if i |= α.
E(e)i otherwise.

let v1=x1, · · · ,vn=xn | e E(let v1=x1| let v2=x2, · · · ,vn=xn|e)i

α => e1 else e2

{

E(e1)i if i |= α
E(e2)i otherwise

{v1:e1, ..., vn:en | α} {〈a1, · · · , an〉 |
(

i⊕
(
⋃

1≤i≤n(vi 7→ E(ei)i)
)

)

|= α}

The function cal:NumExpr → Z calculates the value of Alloy numeric expressions
using 2’s complement arithmetic. Its definition is given in the Table 3.2.

Notice that the multiplicity keywords in the arrow expression (m1 and m2 in

e1m1−>m2e2) are ignored here, but they will be used when such expressions par-

ticipate in field and quantified variable declarations, to be defined later.

Tab. 3.1: Meaning of Alloy expressions.
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n cal(n)i

#e #E(e)i

For numeric constant or variable n:

n intVal(x)
for the only x s.t. 〈x〉 ∈ i(n)

e1 add e2







n1 + n2 if mini ≤ n1 + n2 ≤ maxi

mini + n1 + n2 −maxi if n1 + n2 > maxi

maxi + n1 + n2 −mini if n1 + n2 < mini

e1 sub e2







n1 − n2 if mini ≤ n1 − n2 ≤ maxi

mini + (n1 − n2)−maxi if n1 − n2 > maxi

maxi + (n1 − n2)−mini if n1 − n2 < mini

e1 mul e2
[

n1n2

//

mini +
(

n1n2 − (maxi + 1)) % #Zi

)

]

e1 div e2































































[

⌊n1/n2⌋
//

mini

]

if n1 > 0 and n2 > 0

−1 if n1 > 0 and n2 = 0
[

⌈n1/n2⌉
//

maxi

]

if n1 > 0 and n2 < 0

0 if n1 = 0
[

⌈n1/n2⌉
//

maxi

]

if n1 < 0 and n2 < 0
[

1
//

− 1
]

if n1 < 0 and n2 = 0
[

⌊n1/n2⌋
//

mini

]

if n1 < 0 and n2 > 0

e1 rem e2







0 if n1 = 0
n1 if n1 6= 0 and n2 = 0

n1 % n2 otherwise

e.sum
int[e]

∑

v∈E(e)i

intVal(v) when #E(e)i = 1

sum x1:e1, · · · ,xz:ez| e
∑

v∈E(e)i′

i
′∈{i⊕{xi 7→ai}

z
i=1|ai∈E(ei)i, 1≤i≤z}

intVal(v)
when #E(ei)i = 1, ∀i, 1 ≤ i ≤ z

and #E(e)i′ = 1, for each i′

let v = e | n cal(n)
(

i⊕ {v 7→ E(e)i}
)

let v = n1 | n cal(n)
(

i⊕ {v 7→ {〈intVal−1(cal(n1)i)〉}}
)

let v = α | n

{

cal(n)
(

i⊕ {v 7→ ∅}
)

if i |= α.
cal(n)i otherwise.

let v1=x1, · · · ,vz=xz | n cal(let v1=x1| let v2=x2, · · · ,vz=xz|n)i

In this definition, each nj stands for the result of cal(ej)i, where ej is a numeric

expression; mini(maxi) denotes the minimum (maximum) integer defined in i; #Zi

denotes the number of integer values defined in i (note that #Zi = 2bw, where bw

is the so called bit width of the instance). Additionally, the expression
[

a
//

b
]

denotes a if mini ≤ a ≤ maxi and b in other case.

Tab. 3.2: Definition of the function cal:NumExpr → Z.
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〈formula〉 ::= 〈name〉
| let 〈let-binding〉,+ [| 〈formula〉 | 〈conjunction〉]
| 〈quant〉 〈bindings〉 [| 〈formula〉 | 〈conjunction-block〉]
| [! | not] 〈formula〉
| [ no | some | lone | one ] 〈expression〉
| 〈formula〉 〈boolean-op〉 〈formula〉
| 〈expression〉 [!|not]? [= | in] 〈expression〉
| 〈numeric-expr〉 [!|not]? [= | < | > | =< | >=] 〈numeric-expr〉
| 〈formula〉 [=>|implies] 〈formula〉 else 〈formula〉
| 〈pred〉 [ 〈expression〉,*]
| (〈formula〉)
| 〈conj-block〉

〈boolean-op〉 ::= [ [|| | or] | [&& | and] | [<=> | iff] | [=> | implies] ]

〈quant〉 ::= all | no | some | lone | one

〈conj-block〉 ::= {〈formula〉*}

〈bindings〉 ::= ([disj] 〈var〉,+ : 〈declaration-expr〉),+

〈declaration-expr〉 ::= 〈set-decl-expr〉 | 〈arrow-decl-expr〉

〈set-decl-expr〉 ::= 〈mult〉? 〈expression〉

〈arrow-decl-expr〉 ::= 〈arrow-decl-expr〉 [〈mult〉]? -> [〈mult〉]? 〈arrow-decl-expr〉
| 〈expression〉 [〈mult〉]? -> [〈mult〉]? 〈arrow-decl-expr〉
| 〈arrow-decl-expr〉 [〈mult〉]? -> [〈mult〉]? 〈expression〉
| 〈expression〉 [〈mult〉]? -> [〈mult〉]? 〈expression〉

〈mult〉 ::= some | one | lone |set

〈pred〉 ::= 〈identifier〉

Grammar diagram 3.2: Alloy grammar for formulas

The formulas in Alloy are mainly constructed from equalities and inclu-
sions (in operator) and combining formulas using usual boolean operators
(conjunction, disjunction, etc.) and quantifications. It is worth noting that
the Alloy language admits higher-order quantifications, although the Alloy
Analyzer does not perform analysis on specifications containing such kind of
formulas. The Alloy language also provides useful syntax constructs, such as
if-then-else formulas, let formulas, user-defined predicates, and conjunction
block formulas.

In order to improve the readability of the definition of the meaning of
Alloy formulas, we split it according to the complexity of the formula being
analyzed.
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Definition 3.1.6: (Satisfiability of Alloy formulas) We say that an Alloy
formula α in the context of a specification S is satisfiable w.r.t. an instance i
(noted as i |= α) according to the following statements:

i |= no e iff i(e) = ∅
i |= some e iff i(e) 6= ∅
i |= lone e iff #i(e) ≤ 1
i |= one e iff #i(e) = 1

i |= e1 = e2 iff E(e1)i = E(e2)i
i |= e1 [!|not] = e2 iff E(e1)i 6= E(e2)i

i |= e1 in e2 iff E(e1)i ⊆ E(e2)i
i |= e1 [!|not] in e2 iff E(e1)i * E(e2)i

i |= n1 = n2 iff cal(n1)i = cal(n2)i
i |= n1 [!|not] = n2 iff cal(n1)i 6= cal(n2)i

i |= n1 < n2 iff cal(n1)i < cal(n2)i
i |= n1 [!|not] < n2 iff cal(n1)i ≮ cal(n2)i

i |= n1 <= n2 iff cal(n1)i ≤ cal(n2)i
i |= n1 [!|not] = n2 iff cal(n1)i � cal(n2)i

i |= n1 > n2 iff cal(n1)i > cal(n2)i
i |= n1 [!|not] > n2 iff cal(n1)i ≯ cal(n2)i

i |= n1 >= n2 iff cal(n1)i ≥ cal(n2)i
i |= n1 [!|not] >= n2 iff cal(n1)i � cal(n2)i

i |= !α
i |= not α

iff not i |= α

i |= α || β
i |= α or β

iff i |= α or i |= β

i |= α && β
i |= α and β

iff i |= α and i |= β

i |= α <=> β
i |= α iff β

iff i |= α if and only if i |= β

i |= α => β
i |= α implies β

iff either i |= β , or not i |= α

i |= let v = e | α iff (i⊕ {v 7→ E(e)i}) |= α

i |= let v = α | α iff

{

i⊕ {v 7→ ∅} |= α when i |= α
i |= α otherwise

i |= let v = n | α iff (i⊕ {v 7→ {〈intVal−1(cal(n)i)〉}}) |= α
i |= let v1=x1, · · · ,vz=xz | α iff i |= let v1=x1 | let v2=x2, · · · ,vz=xz | α

i |= v iff v ∈ dom(i)

i |= α => β else δ iff
i |= β when i |= α,
and i |= δ when i 6|= α
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i |= p[e1, · · · ,en] iff

(

i⊕
⋃k

i=1 {xi 7→ ei}
)

|= α

where p is the predicate declared as:
pred p [x1:e1, · · · ,xk:ek]{α}

i |= {α1 · · ·αn} iff
i |= α1

and, when n > 1, i |= {α2 · · ·αn}

i |= all v : d | α iff
for all relation R ⊆

∏a(d)
1 E(univ)i,

i⊕ {v 7→ R} |= (v ind′ && R(v, d)) => α

i |= some v : d | α iff
exist a relation R ⊆

∏a(d)
1 E(univ)i such that

i⊕ {v 7→ R} |= v ind′ && R(v, d) && α

i |= no v : d | α iff
do not exist a relation R ⊆

∏a(d)
1 E(univ)i

s.t. i⊕ {v 7→ R} |= v ind′ && R(v, d) && α

i |= lone v : d | α iff
exist at most a relation R ⊆

∏a(d)
1 E(univ)i

s.t. i⊕ {v 7→ R} |= v ind′ && R(v, d) && α

i |= one v : d | α iff
exist exactly one relation R ⊆

∏a(d)
1 E(univ)i

s.t. i⊕ {v 7→ R} |= v ind′ && R(v, d) && α

i |= quant n1, · · · ,nm : d | f iff
i |= quant n1 : d | (all n2, · · · ,nm : d | f)
where quant is all, some, no, lone or one.

i |= quant bind1, · · · , bindn | f iff
i |= quant bind1 | (all bind2, · · · , bindn | f)
where quant is all, some, no, lone or one.

Where d′ is the result of removing multiplicity keywords from d if any,
and R(v, d) is the representation of the restriction stated by the declaration
written in Alloy in the following way:

d R(v, d)
one e one v
some e some v
lone e lone v
set e (v does not need further restrictions)

For n = a(d), n1 = a(dA1 ), n2 = a(dA2 )

dA1 m1 −> m2 dA2

all v1, · · · ,vn :univ |
let vleft = v.vn. · · · .vn2 , vright = vn1 .(· · ·.(v1.v)· · ·) |

m1 vleft && m2 vright && R(vleft, d
A
1 ) && R(vright, d

A
2 )

Being n = a(d), n1 = a(e1), n2 = a(dA2 )

e1 m1 −> m2 dA2

all v1, · · · ,vn :univ |
let vleft = v.vn. · · · .vn2 , vright = vn1 .(· · ·.(v1.v)· · ·) |

m1 vleft && m2 vright && R(vright, d
A
2 )

Being n = a(d), n1 = a(dA1 ), n2 = a(e2)

dA1 m1 −> m2 e2

all v1, · · · ,vn :univ |
let vleft = v.vn. · · · .vn2 , vright = vn1 .(· · ·.(v1.v)· · ·) |

m1 vleft && m2 vright && R(vleft, d
A
1 )

Being n = a(d), n1 = a(e1), n2 = a(e2)

e1 m1 −> m2 e2

all v1, · · · ,vn :univ |
let vleft = v.vn. · · · .vn2 , vright = vn1 .(· · ·.(v1.v)· · ·) |

m1 vleft && m2 vright

Now we can define the notion of semantic consequence of Alloy formulas.
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〈signature decl〉 ::= 〈primitive sig-decl〉 | 〈subset sig-decl〉

〈primitive sig-decl〉 ::= [〈sig.qual.〉] sig 〈sig〉,+ [extends 〈sig〉]
{〈fields〉} [〈conj-block〉]

〈subset sig-decl〉 ::= [〈sig.qual.〉] sig 〈sig〉,+ in 〈name〉 [+ 〈sig〉]*
{〈fields〉} [〈conj-block〉]

〈sig.qual.〉 ::= abstract | lone | one | some

〈fields〉 ::= [〈field〉,+: 〈declaration-expr〉],*]

Grammar diagram 3.3: Grammar of signature declarations.

Definition 3.1.7: (Semantic consequence) Let α an Alloy formula and Σ
a set of Alloy formulas. We will say that α is a semantic consequence of Σ
(denoted by Σ |= α) if for each instance a such that a |= σ for all σ ∈ Σ, it
also holds that a |= α.

Declarations and implicit facts

The declarations in the specification state which symbols belong to the do-
main of every legal instance and also determine facts that must be fulfilled
by the image of those symbols. In this section, we will explore how each
declaration affects the constraints imposed on an instance to be called legal.
Diagram 3.3 shows the grammar of the signature declarations.

For every signature definition sig S { } a legal instance i must meet that:

S ∈ dom(i) and Arity(i(S)) = 1 (3.1)

Alloy allows the definition of two kinds of signatures: primitive sig-
natures and subset signatures. The primitive signatures can be arranged
forming an inheritance hierarchy by using the keyword extends. Every legal
instance must obey this hierarchy, which is achieved by assuring that, for
each primitive signature S,

⋃

T s.t.

sig T extends S

i(T) ⊆ i(S) (3.2)

Additionally, if the definition of S bears the modifier abstract, for the in-
stance i to be considered legal the inverse inclusion must hold too.

⋃

T s.t.

sig T extends S

i(T) ⊇ i(S) when S is declared abstract (3.3)
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The subset signatures can be seen as a way to embrace atoms from one
or more other signatures. A legal instance i must then fulfill that, given a
definition such as sig S {· · · }in T1+· · ·+Tn

i(S) ⊆
n
⋃

i=1

i(Ti) (3.4)

The subset signatures can not be abstract.
The multiplicity qualifiers lone, one and some affects the cardinality of

the image of the signature symbol on i according to the following statements.

#i(S) = 1 if S is defined as one sig

#i(S) ≤ 1 if S is defined as lone sig (3.5)

#i(S) ≥ 1 if S is defined as some sig

Similarly to signatures, each field symbol must belong to the domain of
the legal instances and the relation mapped to it has to match the arity of
the declaring expression. A declaration such as sig S{· · · f : d · · · } establish
the following restrictions on i:

f ∈ dom(i) and i(f) ⊆

a(d)
∏

1

E(univ)i (3.6)

Additionally, it also imposes a restriction on i(f) similar to those imposed
by the declaring expression of a quantification.

i |= Ri(S− > one d)f if a(d) = 1 and has no multiplicity keyword

i |= Ri(S− > d)f otherwise
(3.7)

Finally, the conjunction block placed after the signature declaration
states restrictions on the elements denoted by the signature and fields de-
clared there. Given the declaration sig S{f1:d1, · · · , fm:dm}{α1 · · ·αn} a
legal instance for it must satisfy:

i |= r(αi) for every i s.t. 1 ≤ i ≤ n (3.8)

where r is a function that, given an Alloy formula, returns another Alloy
formula that only differs from the argument in that every symbol fj not
preceded by an @ is replaced by S.fj; when preceded by @, r just removes it.

Paragraphs and Modules

Every Alloy specification is constructed as a hierarchy of Alloy modules.
Each of them is intended to encapsulate a conceptual piece of the whole
specification. A module may contain signature, fact, function, predicate,
assertion, and run declarations, a shown in diagram 3.4.



3. Formal background 29

〈specification〉 ::= [ module 〈module name〉 ] 〈import declaration〉* 〈paragraph〉*

〈import declaration〉 ::= open 〈module name〉

〈paragraph〉 ::= 〈signature declaration〉
| 〈fact declaration〉
| 〈assertion declation〉
| 〈function declaration〉
| 〈predicate declaration〉
| 〈command declaration〉

〈command declaration〉 ::= 〈check declaration〉 | 〈run declaration〉

Grammar diagram 3.4: Grammar of Alloy specifications and modules.

The signature declarations were extensively discussed in the previous
section. The predicate and function declarations are the way to include
parametrized named schemes of formulas and expressions, in order to facil-
itate the reuse of concepts.

As mentioned, the fact declarations impose constraints that must be
fulfilled by every legal instance of the specification. On the other hand, the
assertion declarations state hypotheses about the universe modeled by the
specification. These hypotheses can be checked using the Alloy Analyzer. To
do that, a check command declaration must be included in the specification.
The Alloy Analyzer also can be used to check the consistency of a predicate.
To do so, the specification must include a run command declaration.

The hierarchy of modules is constructed using the keyword open. The
modules are able to receive parameters. Then, when using another module,
the arguments must be given in the import declaration. As this is not a
key aspect for the present work, the interested reader is pointed to Jackson
(2012), where all the details on the matter can be found.

3.2 A Complete Calculus Useful for Alloy Users

In this section we will present a deductive calculus useful for the verification
of Alloy assertions. The procedure we will follow in order to present the
calculus is the following:

• We will present the class of “proper point-dense omega closure fork
algebras”. These algebras contain operations akin to Alloy operations.
We will also present a complete calculus for this class of algebras. The
deduction relation in this formalism will be denoted by ⊢Fork.

• We will present an interpretability theorem from Alloy theories to fork
algebra theories. An interpretability theorem, in this context, consists
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of a mapping F : AlloyForm→ ForkForm (mapping Alloy formulas
to fork formulas), and a theorem proving that:

Γ |=Alloy α ⇐⇒ {F (γ) : γ ∈ Γ } ⊢Fork F (α) .

Notice that checking the validity of an Alloy assertion in a specification
reduces to the problem of proving a property in the deductive calculus of
fork algebras. Since the fork-algebraic formalism is not exactly Alloy, it is
essential to discuss to what extent is the new formalism useful for Alloy
users. This discussion permeates Sections 3.2.1–3.2.3.

In Section 3.2.1 we present the fork formalism. In Section 3.2.2 we discuss
how Alloy quantification is modeled in a formalism where quantifiers range
over relations. In Section 3.2.3, we present the interpretability result. Notice
that a particular theory that has to be interpreted in the algebraic formalism
is the Alloy theory for integers (c.f. Section 3.2.2).

3.2.1 Proper Point-Dense Omega Closure Fork Algebras

We begin this section by introducing the class of proper point-dense omega
closure fork algebras. Qualifier “proper” refers to the fact that these algebras
are special in the sense that they are particularly close to the semantics of
Alloy. In effect, these algebras have (binary) relations (on a given set B) in
their universe, and operations for union, intersection, difference1, navigation,
transposition and closure of relations, as Alloy has.

Definition 3.2.1: (proper PDOCFA) A proper point-dense omega closure
fork algebra on a set B is a structure

〈R, +, &, –, ∅, univ , . , iden,∼, ∗, ∇ 〉

where:

R is a set of binary relations on the set B, closed under the operations.

– is set-complement, + is set-union and & is set-intersection.

∅ is the empty set, and univ is the binary relation B ×B.

. is composition between binary relations.

iden is the identity relation on B.

∼ is transposition of binary relations.

∗ is reflexive-transitive closure of binary relations.

1 Actually, these algebras have a complement operation, but the latter allows us to
define difference with the aid of intersection.



3. Formal background 31

∇ is the fork operation. It is defined as

S∇T = { 〈a, b ⋆ c〉 : 〈a, b〉 ∈ S ∧ 〈a, c〉 ∈ T } . (3.9)

Symbol ⋆ in (3.9) stands for an injective function of type B×B → B.
Therefore, we assume set B to be closed under ⋆.

Notation 1: We will often name proper-PDOCFA structures using capital gothic
letters (such as A) and the set of its binary relations using a bold capital R with
the proper-PDOCFA it belongs as a subscript (for example: RA).

Syntax and Semantics of the Language

Before going further, we formally present the languages we propose as the
target of the translation of Alloy specifications. As usual when working with
logical languages, we define a family of languages called L-PDOCFA. Their
main features are the following.

• A countable infinite collection of variables.

• A finite collection of constants.

• Symbols for the constants and operations from def. 3.2.1 (none, univ,
iden, ∼, ∗, , +, &, ., ∇).

• boolean connectives for negation (!), disjunction (||), conjunction (&&),
logical implication (⇒), and material equivalence (⇔).

• Universal and existential quantifiers (all and some).

• Syntax constructions resembling Alloy constructions, as let expressions
and if-then-else expressions.

The constants and variables in these languages are pairs formed by an
alpha-numeric word w and a natural number k. We write them as w(k).
Although to use such pairs as constants and variables may seem unnecessary,
their usefulness will be clear when the translation will be presented.

The grammar to construct expressions and formulas is shown in dia-
gram 3.5. As the reader can see, there are several aspects shared by Alloy
and the languages in L -PDOCFA. We look for this similarity in order to
simplify the translation process.

As with Alloy, we will use the notion of relational instance in order to
assign meaning to expressions.

Definition 3.2.2: (Relational instance for a L-PDOCFA language) Let L
be a language from L -PDOCFA, and A a proper-PDOCFA. A relational
instance for L on A (denoted by pLA) is a mapping that associates every
constant and variable symbol of L with a binary relation in RA.



3. Formal background 32

〈expression〉 ::= none | univ | iden | 〈constant-symbol〉
| [ ∼ | ∗ ] 〈expression〉 | 〈expression〉
| 〈expression〉 [ + | & | . | ∇ ] 〈expression〉
| let 〈variable-symbol〉 = [ 〈expression〉 | 〈formula〉 ] | 〈expression〉
| 〈formula〉 ⇒ 〈expression〉 else 〈expression〉

〈constant-symbol〉 ::= 〈word〉 (〈number〉)

〈variable-symbol〉 ::= 〈word〉 (〈number〉)

〈word〉 ::= [[A-Z][a-z]]+[[A-Z][a-z][0-9]]*

〈number〉 ::= [1-9]+[0-9]*

〈formula〉 ::= 〈expression〉 = 〈expression〉
| ! 〈formula〉
| 〈formula〉 [ || | && | ⇒ | ⇔ ] 〈formula〉
| let 〈variable-symbol〉 = [ 〈expression〉 | 〈formula〉 ] | 〈formula〉
| 〈formula〉 ⇒ 〈formula〉 else 〈formula〉
| all 〈variable-symbol〉 | 〈formula〉 | some 〈variable-symbol〉 | 〈formula〉

Grammar diagram 3.5: Basic PDOCFA grammar

The collection of all possible relational instances for a language L on a proper-

PDOCFA A will be denoted by IL,A. For the sake of clarity, the super and subscripts

in pLA and IL,A will be used only when necessary.

We will refer to E PDOCFA
L as the collection of all expressions that can be

generated by a L-PDOCFA L. We will define a meta-function that, given
an expression e ∈ E PDOCFA

L , for a L-PDOCFA L, and a relational instance pLA,
calculates the relation denoted by e in the context of the instance pLA. This
meta function can be seen as the homomorphic extension of the relational
instance pLA.

Definition 3.2.3: (Meaning of L -PDOCFA expressions) Let L be a lan-
guage from L -PDOCFA, A a proper-PDOCFA, and RA the set of binary
relations from A. The meta-function

XL
A : E

PDOCFA
L → IL,A → RA

whose detailed definition is shown in table 3.3, assigns meaning to L-PDOCFA
expressions based on a particular instance.
Symbolically, if e ∈ E PDOCFA

L and pLA ∈ IL,A, then X
L
A (e)pLA is the binary relation

denoted by e in the context of pLA.

The notion of semantic truth is defined similarly to the Alloy case.
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e XL
A (e)pLA

none ∅
univ univ
iden iden

c(k) pLA(c
(k))

v(k) pLA(v
(k))

∼e ∼ XL
A (e)pLA

∗e ∗XL
A (e)pLA

e XL
A
(e)pL

A

e1 + e2 XL
A (e1)p

L
A + XL

A (e2)p
L
A

e1&e2 XL
A (e1)p

L
A&X

L
A (e2)p

L
A

e1 .e2 XL
A (e1)p

L
A .X

L
A (e2)p

L
A

e1∇e2 XL
A (e1)p

L
A∇X

L
A (e2)p

L
A

let v = e1 | e2 XL
A (e2)

(

pLA ⊕ {v 7→ e1}
)

let v = α | e

{

XL
A (e)

(

pLA ⊕ {v 7→ ∅}
)

if α is true on pLA
XL

A (e)pLA otherwise

α⇒ e1 else e2

{

XL
A (e1)p

L
A if α is true on pLA

XL
A (e2)p

L
A otherwise

Note that the
operation
symbols in the
right column
represent the
operations of
Def. 3.2.1, with
the exception of
⊕ (representing
relational
override) and 7→
(representing a
maping).

Tab. 3.3: Meaning of L-PDOCFA expressions.

Definition 3.2.4: (Satisfiability of PDOCFA formulas) We will say that
a PDOCFA formula α in the context of a language L, L ∈ L -PDOCFA,
is satisfiable w.r.t. a proper-PDOCFA A and an instance pLA (denoted by
A, pLA |=PDOCFA

α) according to the following statements:
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A, pLA |=
PDOCFA

e1 = e2 iff XL
A (e1)p

L
A = XL

A (e2)p
L
A

A, pLA |=
PDOCFA

!α iff not A, pLA |=
PDOCFA

α

A, pLA |=
PDOCFA

α || β iff A, pLA |=
PDOCFA

α or A, pLA |=
PDOCFA

β

A, pLA |=
PDOCFA

α && β iff A, pLA |=
PDOCFA

α and A, pLA |=
PDOCFA

β

A, pLA |=
PDOCFA

α ⇒ β iff not A, pLA |=
PDOCFA

α or A, pLA |=
PDOCFA

β

A, pLA |=
PDOCFA

α ⇔ β iff A, pLA |=
PDOCFA

α if and only if A, pLA |=
PDOCFA

β

A, pLA |=
PDOCFA

let v=e | α iff A, pLA ⊕ {v 7→ X
L
A (e)pLA} |=

PDOCFA
α

A, pLA |=
PDOCFA

let v=δ | α iff

{

A, pLA ⊕ {v 7→ ∅} |=
PDOCFA

α when A, pLA |=
PDOCFA

δ

A, pLA |=
PDOCFA

α otherwise

A, pLA |=
PDOCFA

α⇒ β else γ iff

{

A, pLA |=
PDOCFA

β when A, pLA |=
PDOCFA

α

A, pLA |=
PDOCFA

γ otherwise

A, pLA |=
PDOCFA

all v | α iff for all relation R ∈ RA, A, p
L
A ⊕ {v 7→ R} |=

PDOCFA
α

A, pLA |=
PDOCFA

some v | α iff exists some relation R ∈ RA, A, p
L
A ⊕ {v 7→ R} |=

PDOCFA
α

We will say that a proper PDOCFA A satisfies a PDOCFA formula α
from the language L (denoted by A |= α) if there is a relational instance pLA
for A such that A, pLA |=PDOCFA

α.

3.2.2 Translating From Alloy to L-PDOCFA

The first step of the translation process, starting from an Alloy specification
S, will be to build a language L ∈ L-PDOCFA, where every Alloy constant
defined by the user in S has its PDOCFA counterpart in L. We will say
that the language L and the Alloy specification S are compatible when their
constants can be correlated in this way.

Although the languages in L-PDOCFA share most of the operations with
Alloy (at least intentionally and notationally), there are remarkable differ-
ences, such as: (a) while the relations defined in Alloy can have arbitrary
arity, using PDOCFA only binary relations can be manipulated; (b) PDOCFA
offers the fork operator, which is not directly tied to any Alloy operator;
(c) PDOCFA bears the request for point-density; (d) at least apparently,
PDOCFA lacks support for (bounded) integers; and (e) while quantification
in Alloy ranges over atomic elements from signatures, in PDOCFA, quanti-
fiers range over all the relations in the domain.

In the next sections we will show how these gaps can be bridged in order
to provide Alloy with a complete calculus. Thus, the family of languages
presented in this section serves as the core of the languages actually used
by the translation, and it will be augmented in the next sections in order to
support more suitably all the Alloy features.
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sig Dir extends Object {
contents: Name −> lone Object,
parent: lone Dir

}

Fig. 3.1: Declaration of signature Dir.

Codifying Alloy relations in proper-PDOCFA

Since the way to define basic elements in Alloy is to declare signatures, we
first turn to their translation. Notice that while function ⋆ in Definition 3.2.1
has to be injective, it need not be surjective. Therefore, there may exist ele-
ments in the base set B that do not encode pairs. These elements are called
urelements. Every Alloy unary relation will be paired with a binary partial
identity of urelements, i.e. a binary relation formed only by urelements,
contained in the identity iden. For example, the translation of the signature

Dir in Figure 3.1 will result in a PDOCFA constant iden
(2)
Dir.

Notice that translating Alloy unary relations in this way imposes a con-
straint on the proper-PDOCFAs that could be used as interpretations of
the L-PDOCFAs resulting from the translation of Alloy specifications. We
will say that a proper-PDOCFA A can support a language L ∈ L-PDOCFA
which is the outcome of the translation of a given Alloy specification S, if
it contains a partial urelement identity for each signature, and these par-
tial identities mimic the inheritance hierarchy of the Alloy signatures, as
explained in Section 3.1 (Pg. 27).

To relate more complex Alloy terms with PDOCFA terms we must find
an adequate means for modeling relations of arity greater than two as bi-
nary relations. The operator fork allows us to do this in a simple way.
For each Alloy relation of arity at least binary holding tuples of the form
〈a1, a2, . . . , an〉, the corresponding PDOCFA binary relation resulting from
the translation process will hold tuples of the form2 〈a1, a2 ⋆ · · · ⋆ an〉. Al-
though the latter relation is always binary, we will say its rank is n if it is
the result of the translation of an Alloy relation of arity n.

Notation 2: Being A an Alloy expression, and R its corresponding binary relation
in a proper-PDOCFA, we will call rank(R) the arity of A.

Let us illustrate this codification with an example. In section 2.1.1 we
showed the definition depicted in Figure 3.1. Alloy field contents is a ternary
relation. Then, its PDOCFA counterpart contents(3) satisfies that given an
alloy instance aS , it is possible to find a relational instance pLA, where S and
L are compatible, such that:

pLA(contents
(3)) = { 〈a, b ⋆ c〉 : 〈a, b, c〉 ∈ aS(contents) } .

2 Since ⋆ is not associative, an expression of the form a⋆b⋆c denotes the object a⋆(b⋆c).
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Furthermore, the domain restriction imposed on the field contents by its
declaration, assuring that the tuples in contents are formed by atoms from
signatures Dir, Name, and Object, in that order, can be stated on the corre-
sponding PDOCFA constant in algebraic terms forcing that pLA(contents

(3))
be included in
(

pLA(iden
(1)
Dir).univ .p

L
A(iden

(1)
Name)

)

∇
(

pLA(iden
(1)
Dir).univ .p

L
A(iden

(1)
Object)

)

.

Notice that the relations denoted by terms such as the one just depicted
belongs to each PDOCFA structure A that can support a language containing

the translation of the signatures, such as iden
(1)
Dir, iden

(1)
Name, and iden

(1)
Object,

since the set of relations RA of A is closed under the operations of the
algebra.

Regarding individual Alloy variables declared in first order quantifica-
tions, our convention is that these are modeled using relational variables
ranging over points. The Alloy language also allows the user to write higher
order quantifications, although the Alloy Analyzer rarely is able to check
them. Similarly to the translation of signatures and fields, the higher-order
Alloy variables are mapped to PDOCFA variables that are not restricted by
the constraint of being a point. Additionally, we use the number in the
PDOCFA variables and constants in order to express the codified rank of
the relation denoted by the corresponding symbol. In the previous example,
the number 3 in contents(3) indicates that this constant denotes a binary
relation codifying a ternary relation.

Given an Alloy instance, we can characterize those proper PDOCFA that
are candidates to interpret it. The way to formalize the correlation between
Alloy constants and variables and their corresponding PDOCFA elements, is
to show that it is possible to build a relational instance from an Alloy one,
so that the correlation between symbols holds. The construction is done as
follows.

Definition 3.2.5: Given an Alloy specification S and an instance aS for
it, we define a PDOCFA language L and a relational instance pLA for L such
that L is the smallest language fulfilling dom(pLA) ⊆ L, and:

• If S is a signature,

iden
(1)
S ∈ L and pLA(iden

(1)
S ) = { 〈s, s〉 : s ∈ aS(S) } .

• If F is an n-ary field (recall that n ≥ 2 is the only possible case) then
F(n) ∈ L and

pLA(F
(n)) = { 〈a1, a2 ⋆ · · · ⋆ an〉 : 〈a1, a2, . . . , an〉 ∈ aS(F) } .

• If v is an Alloy variable, then
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– if v range over Alloy atoms,

v(1) ∈ L and pLA(v
(1)) = { 〈aS(v), aS(v)〉 } .

(Notice that the resulting relation is indeed a point.)

– else, calling n the arity of the Alloy relation denoted by v, v(n) ∈ L
and

pLA(v
(n)) = { 〈a1, a2 ⋆ · · · ⋆ an〉 : 〈a1, a2, . . . , an〉 ∈ aS(v) } .

(The resulting relation pLA(v
(n)) will codify the arity of aS(v).)

Similarly, given a proper PDOCFA and a relational instance we can define
a sort of canonical Alloy instance.

Definition 3.2.6: Let L ∈ L -PDOCFA be an outcome of a translation
from an Alloy specification, A a proper PDOCFA that can support L, and
pLA a relational instance assigning meaning to constant and variable symbols
in L. We construct an Alloy specification S and an Alloy instance aS as
follows.

• For every partial identity symbol iden
(1)
s ∈ L, there is a signature s in

S such that:
aS(s) =

{

a : 〈a, a〉 ∈ pLA(iden
(1)
s )

}

,

• For each constant symbol c(k) ∈ L, not being a logical constant (such
as: univ, iden or none) there is a field c in S such that:

aS(c) =
{

〈a1, . . . , ak〉 : 〈a1, a2 ⋆ · · · ⋆ ak〉 ∈ pLA(c
(k))

}

.

• For every variable symbol v(k) ∈ dom(pLA),

aS(v) =

{ {

〈a〉 : 〈a, a〉 ∈ pLA(v
(k))

}

if k = 1,
{

〈a1, . . . , ak〉 : 〈a1, a2 ⋆ · · · ⋆ ak〉 ∈ pLA(v
(k))

}

otherwise.

Notice that since L is the outcome of the translation of an Alloy specification,
we can use that k above as the codified rank of the respective fields and
variables.

Definition 3.2.7: Let a be an Alloy instance. A proper PDOCFA F is
compatible with the instance a if the relational instance pF (as defined in
Def. 3.2.5), is correctly defined in F.
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In Def. 3.2.7, correctly defined means that for each symbol s, pF(s) yields
a relation in F. Lemmas assuring this correspondence are presented and
proved in Appendix A.

This way of codifying higher-arity relations also impacts in the trans-
lation of the constants univ and iden. Both of them must be related to a
binary relation that only holds urelements. We will denote such a relation
by idenU.

Another consequence is that some operations in PDOCFA must be mod-
ified in order to behave as expected for Alloy. Such operations are those
whose result differs in arity from their parameters, namely: navigation and
cartesian product. We define in PDOCFA two new operations denoted by •
(for navigation) and ⊠ (for cartesian product) that preserve the previously
given invariant. Before doing so, we introduce some notation.

Notation 3: In a proper PDOCFA the relations π and ρ defined by3

∼ (iden∇univ)
✍

= π and ∼ (univ∇ iden)
✍

= ρ

behave as projections with respect to the encoding of pairs induced by the injective
function ⋆. Their semantics in a proper PDOCFA A whose binary relations range
over a set B, is

XA(π)pA = { 〈a ⋆ b, a〉 : a, b ∈ B } and XA(ρ)pA = { 〈a ⋆ b, b〉 : a, b ∈ B }

where pA is any instance for A.
The binary operation cross (denoted by ⊗) performs a parallel product. Its

set-theoretical definition is given by

XA(e1⊗e2)pA = { 〈a ⋆ c, b ⋆ d〉 : 〈a, b〉 ∈ XA(e1)pA and 〈c, d〉 ∈ XA(e2)pA }

where e1 and e2 are arbitrary PDOCFA expressions. In algebraic terms, operation
cross is definable with the aid of fork via the equation

(π .e1) ∇ (ρ .e2)
✍

= e1⊗e2

By dom(e) we denote the partial identity over the elements in e’s domain.
Similarly, by ran(e) we denote the partial identity over the elements in e’s range.
In algebraic terms, we have

(e . ∼ e) & iden
✍

= dom(e), and (∼ e . e) & iden
✍

= ran(e) .

Definition 3.2.8:

e1 • e2
✍

=











































ran(e1.e2) if rank(e1) = 1 ∧ rank(e2) = 2

∼ π .ran(e1.e2).ρ if rank(e1) = 1 ∧ rank(e2) > 2

dom(e1.e2) if rank(e1) = 2 ∧ rank(e2) = 1

e1.e2 if rank(e1) = 2 ∧ rank(e2) > 1

e1 .
(

iden⊗rank(e1)−3 ((iden⊗e2) .π)
)

if rank(e1) > 2 ∧ rank(e2) = 1

e1 .
(

iden⊗rank(e1)−3 (iden⊗e2)
)

if rank(e1) > 2 ∧ rank(e2) > 1

(3.10)

3 We use the construction a
✍

= b to express that b will stand as an abbreviation of a or
vice versa. The orientation should be clear by the context.
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where R ⊗0S = S and R ⊗n+1S = R ⊗ (R ⊗nS).

e1 ⊠ e2
✍

=







































(e1.univ).e2 if rank(e1) = 1 ∧ rank(e2) = 1

(e1.univ).(iden∇e2) if rank(e1) = 1 ∧ rank(e2) > 1

∼π . e1⊗e2 if rank(e1) = 2 ∧ rank(e2) = 1

∼π . e1⊗(iden∇e2) if rank(e1) = 2 ∧ rank(e2) > 1

e1 . ∼π . (iden∇e2) if rank(e1) > 2 ∧ rank(e2) = 1

e1 . ∼π . iden⊗(iden∇e2) if rank(e1) > 2 ∧ rank(e2) > 1

(3.11)

Following the previous example, if ob is an object atom (i.e., a unary
Alloy relation of the form { ob } for some ob from signature Object), the
navigation contents .ob produces as a result a binary relation contained in
Dir× Name. Let us analyze what is the result of applying • on the PDOCFA
representation of contents and ob. We obtain:

X (contents • ob)p
= (by Def. of •)

X (contents .(iden⊗ob).π)p
= (by Def. of “.”)

{〈d, a〉 : some x : Name, y : Object | 〈d,x ⋆ y〉 in contents ∧
some x′ : Name, y′ : Object | 〈x ⋆ y,x′ ⋆ y′〉 in iden⊗ob ∧
〈x′ ⋆ y′, a〉 ∈ π}

= (because 〈x,x′〉 ∈ iden ∧ 〈y, y′〉 ∈ ob ⊆ iden)
{〈d, a〉 : some x : Name, y : Object | 〈d,x ⋆ y〉 in contents ∧
〈y, y〉 ∈ ob ∧ 〈x ⋆ y, a〉 ∈ π}

= (by Def. of π, is x = a)
{〈d, a〉 : some y : Object | 〈d, a ⋆ y〉 in contents ∧ 〈y, y〉 ∈ ob}

= (due to the relationship between contents and contents, and ob and ob)
{〈d, a〉 : some y : Object | 〈d, a, y〉 in contents && y ∈ ob}

= (because ob is an atom from Object)
{〈d, a〉 : 〈d, a, ob〉 in contents}

It is worth emphasizing that, while Alloy formulas and PDOCFA formulas
are close, there are still differences between the formalisms. The differences
from the Alloy language arise when we need to prove properties of • or ⊠

that require using the underlying fork algebra definition that includes the
operator ∇ . We expect the number of properties involving the definition of
such operators to be small compared to the complete proof. For example, in
the case study we are reporting, 25 out of 60 proved lemmas required dealing
with the low-level representation of •. Yet 18 out of these 25 properties relate
to properties of • that may be reused along other proofs. For example,
among these 18 properties the following general properties are included:

all A:set univ, B:set univ, R:set(A->B), S:set(A->B), a:A |
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R in S implies a.R in a.S

all A:set univ, B:set univ, R:set(A->B), S:set(A->B) |

(R.B)+(S.B) = (R+S).B

all A:set univ, B:set univ, C:set univ, W:set(A->(B->C)), a:A |

a.W in B->C

We include a library with those properties of • and ⊠ that we consider
general and useful.

Constraining PDOCFA Quantifiers to Points

When we write an Alloy formula such as

all d, d′ : Domain | d.space! = d′.space => d! = d′

quantified variables d and d′ range over Domain objects. There is a single
signature in PDOCFA, namely, the one that holds all the relations. There-
fore, given an algebra in PDOCFA, quantifiers range over all the relations
in the domain of the algebra. Hence, while the Alloy operations have an
almost direct counterpart in PDOCFA, quantified formulas do not.

This is when the notion of point become necessary. A point is a rela-
tion of the form { 〈a, a〉 }. We constrain the PDOCFAs used to interpret
the outcomes of the translation of Alloy specifications, to be “point-dense”
[Maddux (1991)]. Point-density requires set RA to have plenty of these re-
lations. More formally speaking, for each nonempty relation I contained in
the identity relation, there must be a point p ∈ R satisfying p ⊆ I.

We then associate an Alloy singleton { a } with the point { 〈a, a〉 }. As
stated in Def. 3.2.5, we will associate Alloy signatures with partial identities
in PDOCFA.

Notation 4: We can characterize points as nonempty binary relations that satisfy
the property x .univ .x ⊆ iden. If we denote the inclusion relation by “in” (as in
Alloy), the predicate “point” defined by

point(p)
✍

= p != none && p .univ .p in iden

characterizes those relations that are points.

We can then map an Alloy formula of the form

all a : A| α

to a PDOCFA formula of the form

all a | (point(a) && a in idenA) => α′ (3.12)
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where α′ is the PDOCFA formula resulting from the translation of the Alloy
formula α. In order to retain the similarity between Alloy formulas and their
counterparts, we will introduce the following notation:

all a | (point(a) && a in idenA) => α′
✍
= all a : A | α′

Notice that the above abbreviation equates (up-to translation of terms) the
source Alloy formulas and their translation to PDOCFA.

As showed at the beginning of this chapter, there are several ways of
stating a restriction on a quantified variable in Alloy, but all of them can be
adequately expressed in PDOCFA. Further, Alloy syntax allows higher-order
quantifications, although the Alloy Analyzer is rarely able to manipulate
them. Following the idea presented, all those kinds of quantifications can
be expressed in PDOCFA, as we will show in section 3.2.3.

Alloy Integers in PDOCFA

Recall from Ch. 2 that Alloy integers are defined relative to a user-provided
bound [Jackson (2012)] called the bit width. We will denote by +bw the
arithmetic sum relative to a bit width bw. Numeric atoms may appear in
relations like regular atoms do. In fact, they both have the same status.

To support Alloy integers in Dynamite, we enrich PDOCFA theories with
new constants, functions, predicates, and their corresponding axioms. We
add a new partial identity idenZ, which models the set of Alloy integer
atoms in the range

[

−2bw−1, 2bw−1 − 1
]

determined by the bit width. In
our theory, idenZ is a set of urelements, and 0 and bw are constants that
denote the integer value 0 and the bit width, respectively. Notice that while
0 is always contained in idenZ, bw may not be when bw ∈ {1, 2}. Therefore,
we will focus on the general case (bw > 2), and come back to the cases in
which bw ∈ {1, 2} after the presentation of the general case. Axiomatically,

idenZ in idenU

point(0)

point(bw)

0 in idenZ

bw in idenZ (3.13)

We introduce a binary predicate symbol < which stands for a linear order
with endpoints, over idenZ.

In order to simplify the notation, quantifications over Z are indeed quan-
tifications over points contained in idenZ. For example:

all a | (Point(a) && a in idenZ)⇒ α′
✍
= all a : Z | α′

some a | (Point(a) && a in idenZ) && α′
✍
= some a : Z | α′
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We will denote byMax(x) the integer unary predicate !some a : Z | x < a.
A predicate Min(x) is symmetrically defined. Binary predicate < is charac-
terized by the axioms

all a, b : Z | a < b || b < a || a = b

all a : Z | !(a < a)

all a, b, c : Z | (a < b && b < c)⇒ a < c

some a : Z | Min(a)

some a : Z | Max(a) .

We next introduce the unary function succ, which models the successor
function (+1) according to 2’s complement arithmetic:

all a, b : Z | (Max(b) && a < b)⇒ a < succ(a),

all a : Z | !some b : Z | a < b && b < succ(a),

all a, b : Z | (Max(a) && Min(b))⇒ succ(a) = b.

Having defined the successor of a numeric point n, defining its prede-
cessor (noted prev(n)), additive inverse (−bwn), addition of numeric points
n and m (n +bw m), subtraction (n −bw m), multiplication (n ·bw m), in-
teger division (n /bw m), the remainder of the integer division (n %bw m)
and power ([nm]bw) becomes an easy exercise. We present the definition of
addition, as an example:

all a : Z | a+bw 0 = a, all a, b : Z | a+bw succ(b) = succ(a+bw b).

From now on, when referring to these operations we will omit the subscript
bw where possible to improve readability.

Once the operations have been defined, we can axiomatize the proper
value of the endpoints, as well as remark that bw must be greater than 2:

Min(−2bw−1)

Max(2bw−1 − 1)

bw > succ(succ(0))

Supporting the Alloy cardinality operator # requires the addition of a
new function card to PDOCFA. As expected, points have cardinality 1. The
cardinality of an arbitrary relation is defined by formulas that, for finite
relations, make card return the number of tuples4:

all r | Point(r) ⇒ card(r) = succ(0),

4 Unary predicate Some characterizes nonempty relations. ǫ(A) retrieves a pair con-
tained in A, and \ stands for set difference.
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card(∅) = 0, all r | Some(r)⇒ card(r) = succ(0) +bw card(r\ǫ(r)) .

Since numeric constants in a specification cannot take values off the
range determined by bw, for each numeric constant symbol c in the Alloy
specification we add axioms:

−2bw−1 ≤ c and c ≤ 2bw−1 − 1 .

Given an Alloy integer expression e, the Alloy expression Int[e] denotes
the integer atom holding the integer value of e. Conversely, the Alloy func-
tion int returns the sum of the integer values corresponding to the integer
atoms included in a given Alloy expression. For example, Int[2] denotes
the numeric atom corresponding to the integer 2, which in turn is the result
of int[Int[2]].

In PDOCFA we make no distinction between integer values and integer
atoms. We will use points contained in idenZ to represent both kinds on
entities. We model function Int in PDOCFA with an unary function Int,
which is defined as the identity. We also introduce the function int, also
unary, which models int. Axioms

all a : Z | int (a) = a

all a : idenU − idenZ | int (a) = 0

int (∅) = 0

state that int behaves as the identity on integer atoms, and returns 0 for
non integer atoms or the empty relation. For more complex relational ex-
pressions, int must add the values of the integer points contained in the
expression. This is captured by the following axiom:

all r | Some(r)⇒ int (r) = int (ǫ(r)) +bw int (r\ǫ(r)) .

To support the functionality provided by the Alloy construction sum,
that allows the user to express a summation of Alloy numeric expressions
with free variables ranging over sets, we will include specific functions and
axioms for every such construction present in the user specification. If the
expression

sum v1:E1, · · · ,vn:En | ν

(where ν is a numeric expression with n free variables: v1 to vn) appears in
the Alloy specification, we will include in the final PDOCFA specification: n
function symbols sum1

ν , sum
2
ν , · · · , sum

n
ν and the n axioms

all X1, · · · ,Xn |
(

X1 = ∅ ⇒ sum1
ν(X1, · · · ,Xn) = 0

)

&&
(

Some(X1)⇒
sum1

ν(X1, · · · ,Xn) = sum1
ν(X1\ǫ(X1), · · · ,Xn) +bw sum2

ν(ǫ(S1),X2, · · · , Sn)
)

...
all x1, · · · ,Xn |

(

Xn = ∅ ⇒ sumn
ν (x1, · · · ,Xn) = 0

)

&&
(

Some(Xn)⇒
sumn

ν (x1, · · · ,Xn) = sumn
ν (x1, · · · ,Xn\ǫ(Xn)) +bw TJv1 7→x1,··· ,vn 7→ǫ(Xn)K(ν)

)
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where TJv1 7→x1,··· ,vn 7→ǫ(Xn)K(ν) is the result of applying the usual term trans-
lation T (to be detailed below) on ν, but replacing each Alloy variable vi by
the corresponding PDOCFA expression ei, as stated by every vi 7→ ei.

The theories that model Alloy integers in PDOCFA when bw ∈ {1, 2}, are
obtained by adequately instantiating the above theory, while at the same
time removing axioms (3.13) and (3.14). For instance, for bw = 1, the
axiomatization of the end points becomes Min(succ(0)) and Max(0). Notice
that, in this case, succ(0) is indeed −1.

For PDOCFAmodels in which the set of integer points is finite, the theory
correctly captures Alloy’s semantics. Notice that since the theory admits
arbitrarily large finite models, by compactness it must admit infinite models
as well. We leave the study of such models as further work.

Unlike [Ulbrich et al. (2012)], which departs from Alloy’s semantics and
considers the standard infinite model for integers, we consider 2’s comple-
ment arithmetic on integers representable using a finite bit width. For Dy-
namite this is not an optional feature of the language, but rather the only
possible choice. In Section 4.2 we will present the main features of Dynamite.
One such feature is the use of the Alloy Analyzer to look for counterexam-
ples of properties being verified. To be useful, counterexamples provided
by the Alloy Analyzer must agree with Alloy’s semantics as captured in
Dynamite’s calculus. Otherwise, counterexamples generated by the Alloy
Analyzer would fail as counterexamples for the property being verified with
the aid of Dynamite.

The Point-dense Omega Closure Fork Algebras

We now introduce a larger class of algebras as the class of models of a finitely
axiomatized theory. These algebras, called point-dense omega closure fork
algebras (we will denote the class by PDOCFA) are closely related (as will
be shown in Thm. 3.2.10) to their “proper” counterpart. In order to present
the theory we will present the axioms and the proof rules.

The axioms and inference rules for the calculus are given in the following
definition.

Definition 3.2.9: (PDOCFA calculus) The calculus for point-dense omega
closure fork algebras is characterized by the following axioms and proof rules:

1. Axioms for Boolean algebras characterizing +, &, –, none and univ:
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all x | x+ x = x,
all x | x & x = x,

all x, y | x+ y = y + x,
all x, y | x & y = y & x,

all x, y, z | x+ (y + z) = (x+ y) + z,
all x, y, z | x &(y & z) = (x & y)& z,
all x, y, z | x+ (x & y) = x,
all x, y, z | x &(x+ y) = x,
all x, y, z | x &(y + z) = (x & y) + (x & y),
all x, y, z | x+(y & z) = (x+ y)&(x+ y),

all x | x & none = none,
all x | x+ univ = univ,
all x | x & x = none,
all x | x+ x = univ.

2. Formulas defining composition of binary relations, transposition, re-
flexive–transitive closure and the identity relation:

all x, y | x . (y .z) = (x .y) .z,
all x | x . iden = iden .x = x,

all x, y, z | (x .y) &z = none⇔ (z . ∼ y) &x = none⇔ (∼ x .z) &y = none,
all x | ∗x = iden+ (x . ∗ x),

all x, y | ∗x .y .univ in (y .univ) +
(

∗x .(y .univ & (x .y .univ))
)

.

3. Formulas defining the operator ∇ :

all x, y | x∇y = (x . ∼ π) & (y . ∼ ρ),
all x, y | (x∇y) . ∼ (w∇z) = (x . ∼ w) & (y . ∼ z),
π∇ρ in iden.

4. A formula enforcing point-density:

all x | (x != none && x in iden)⇒ (some p | Point(p) && p in x) .

5. Term univ . (univ∇univ) & iden (to be abbreviated as idenU) defines a
partial identity on the set of urelements. Then, the following formula
forces the existence of a nonempty set of urelements:

univ . idenU .univ = univ.

6. The axioms supporting the numeric part of the translation, showed in
the previous section.

The inference rules for the closure fork calculus are those for classical
first-order logic (choose your favorite ones), plus the following equational
(but infinitary) proof rule for reflexive-transitive closure (given i > 0, by xi

we denote the relation inductively defined as follows: x1 = x, and xi+1 =
x .xi):

⊢ iden in y xi in y ⊢ xi+1 in y (ω−Rule)

⊢ ∗x in y
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The axioms and rules given above define a class of models. Proper
PDOCFA belong to this class, but there might be models for the axioms
that are not proper PDOCFA. Fortunately, the following theorem, which
follows from [Frias et al. (1997), (Frias, 2002, Thm. 4.2) and (Maddux,
1991, Thm. 52)], states that if a model is not a proper PDOCFA, then it is
isomorphic to one.

Theorem 3.2.10: Every PDOCFA A is isomorphic to a proper PDOCFA
B. Moreover, there exist relations { 〈a0, a0〉 } , . . . , { 〈ai, ai〉 } . . . (possibly
infinitely many of them) that belong to B, such that

iden = { 〈a0, a0〉 , . . . , 〈ai, ai〉 , . . . }

While this theorem is important in itself, since it implies that the calculus
is complete with respect to the properties valid in proper PDOCFAs, it is
necessary in order to prove theorems on the appropriateness of the deductive
mechanism we will provide for Alloy in Section 3.2.3.

3.2.3 Interpretability of Alloy in PDOCFA

One of the (main) goals of this thesis is to present a complete deductive
mechanism for Alloy. In order to fulfill this task we will prove an inter-
pretation theorem of Alloy specifications as PDOCFA theories. An inter-
pretation theorem of Alloy in PDOCFA (as described in the introduction to
Section 3.2), allows us to map semantic entailment in Alloy to deductions
in PDOCFA. Said result allows us to use the calculus for PDOCFA in the
following way. If we want to prove a given assertion α in an Alloy model
(specification) M , we construct a L-PDOCFA L compatible with M , using
L we translate α and the facts in M to PDOCFA formulas α′ and axioms
M ′, and prove that α′ follows from M ′ according to the PDOCFA calculus.

The initial part of the translation process was already discussed: based
on the user Alloy specification S we construct a compatible language L by
relating fresh constant, function and predicate symbols to every signature,
field, function and predicate defined in S. Then, we collect all the facts in S
and translate them into PDOCFA axioms. Furthermore, all the implicit re-
strictions imposed, for example, by the declarations of signatures and fields,
are also stated in PDOCFA terms and incorporated to the resulting theory
as new axioms. Additionally, the PDOCFA theory must possess all the ax-
ioms mentioned when we presented the calculus and in the Alloy integers
representability section. The assertions declared in the original specification
S are included also as conjectures, and available to the user to be used as
lemmas (to be proven later).

As we discussed in Chapter 1, the idea of mapping Alloy to an expressive-
enough formalism in which to carry proofs on is not entirely new. It has
already been done for instance with Prioni [Arkoudas et al. (2004)]. The
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(essential) advantage of the mapping we propose in this thesis is that the
resulting formalism is extremely close to Alloy, and therefore easier to grasp
by standard Alloy users. While this feature may be useless in the context of
fully automated tools (for which the language target of the translation may
be ignored by the user), it is of utter importance for user-guided tools. In
fact, our L-PDOCFAs are so close to Alloy that they allow us to only present
Alloy formulas and expressions to the user during the whole proving process.
In the remaining parts of this section we give a proof of the interpretability
theorem.

The main part of an interpretability theorem is a mapping from Alloy
formulas to formulas in the language of PDOCFA. The mapping is defined
in two stages, since Alloy terms must be mapped as well. We will present
maps T (mapping terms), and F (mapping formulas). As reader will see,
both mappings participate in each other’s definition.

Comprehension expressions

The comprehension expressions allow the user to define anonymous relations
with specific restrictions imposed on its tuples. We try to keep the target
language as simple as possible, so in order to cope with the translation of
such expressions, we add to the target language L: (1) a fresh constant
symbol for each such definition in the source Alloy specification, and (2) a
new axiom that states the restriction imposed in the definition of the com-
prehension expression. Let us see an example. Suppose we have an Alloy
comprehension expression such as:

{ d: Dir | d.contents != none }

with relation contents from signature Dir. In order to translate it, we add
a fresh constant to the target PDOCFA language, let’s call it C1, and the
following axiom to the resulting theory:

all d | d in C1 ⇔ d • contents ! = none

Mapping of Alloy terms to PDOCFA expressions

The following definition introduces the mapping for terms.

Definition 3.2.11: (Translation of Alloy terms) Let M be an Alloy spec-
ification and L a PDOCFA language compatible with it. The function

TM ·L : E
Alloy
M → E

PDOCFA
L

maps Alloy terms to expressions in the language L. The detailed definition
is given in table 3.4. As usual, we will omit the subscripts wherever possible.
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e T(e)

none none

univ idenU
iden idenU

Being s a signature:

s idens
Being f a field:

f f

e T(e)

Int idenZ
Int[n] Int (T(n))

~e ∼T(e)
∗e ∗T(e)
ê T(e). ∗T(e)
#e card(T(e))

vi Vi

e T(e)

e1 + e2 T(e1) +T(e2)
e1 & e2 T(e1) & T(e2)

e1 − e2 T(e1) & T(e2)
e1 . e2 T(e1) • T(e2)

e1 <: e2 T(e1) & (T(e2).univ)
✍

= T(e1) <: T(e2)
e1 :> e2 T(e1) & (univ.T(e2))
e1 ++ e2

((

dom(T(e1))− dom(T(e2))
)

<: T(e1)
)

+T(e2)
e1 − > e2 T(e1) ⊠ T(e2)

e1[e2]

{

T(e1)(T(e2)) if e1 is a function symbol
T(e2) • T(e1) otherwise

α [ => | implies ] e1 else e2 F(α) => T(e1) else T(e2)
let v1=e1, · · · ,vn=en | e let T(v1)=T(e1), · · · ,T(vn)=T(en) | T(e)
{v1:e1, · · · ,vn:en | α} Ci

where Ci is a fresh constant symbol, and i is

the count of comprehension expressions formerly

seen.

Being n a positive numeric constant:

n















0 if n = 0
succ(0) if n = 1
succ(succ(0)) if n = 2
...

# e card(T(e))
−ne −bwT(ne)

[e.sum | int[e]] int (T(e))
ne1 add ne2 T(ne1) +bw T(ne2)
ne1 sub ne2 T(ne1)−bw T(ne2)
ne1 mul ne2 T(ne1) ·bw T(ne2)
ne1 div ne2 T(ne1) /bw T(ne2)
ne1 rem ne2 T(ne1) %bw T(ne2)

sum v1:d1, · · · ,vn:dn | ne sum1
ne(T(d1), · · · ,T(dn))

Tab. 3.4: Definition of mapping of Alloy terms to PDOCFA expressions.
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Translation of Alloy formulas

Once the translation of terms has been presented, we introduce the transla-
tion from Alloy formulas to PDOCFA formulas. The translation differs from
the one presented in [Frias et al. (2004)] in that the target of the translation
is a first-order language rather than an equational language, and therefore it
is no longer necessary to encode quantified variables because they are kept
explicit. This will greatly improve the readability of the translated formulas
by Alloy users.

Prior to presenting the formal definition of the formula mapping, we
introduce more notation with the aim of improving its readability.

Notation 5: We will use predicates for testing cardinality analogous to those pro-
vided by Alloy.

no(e)
✍

= e= none

some(e)
✍

= e! = none

one(e)
✍

= card(e)= succ(0)

lone(e)
✍

= no(e) || one(e)

The operator of inclusion, which was already used, is in fact an abbreviation.

e1 in e2
✍

= e2 = e1 + e2

Also, we will use abbreviations for the negation of equality, inclusion and numeric
comparison.

e1 != e2
✍

= !
(

e1 = e2
)

e1 !in e2
✍

= !
(

e1 in e2
)

e1 !< e2
✍

= !
(

e1 < e2
)

e1 !> e2
✍

= !
(

e1 > e2
)

e1 ≤ e2
✍

= e1<e2 || e1=e2

e1 > e2
✍

= !
(

e1 ≤ e2
)

e1 ≥ e2
✍

= e1>e2 || e1=e2

e1 !≤ e2
✍

= !
(

e1 ≤ e2
)

e1 !≥ e2
✍

= !
(

e1 ≥ e2
)

Definition 3.2.12: (Translation of Alloy formulas) Let M be an Alloy
specification and L a PDOCFA language compatible with it. The function

FM ·L : ΓAlloy
M → ΓPDOCFA

L

maps Alloy formulas to PDOCFA formulas in L. The detailed definition of
FM ·L can be seen in table 3.5. For the sake of clarity, we will be omitting
the subscripts when possible.

Notice that the result of the translations of Alloy quantifications over
atoms, although different from those explained in formula 3.12, are equiva-
lent to them.

We next will prove the following completeness theorem (recall that the
turnstile symbol ⊢ notes the derivability relation in the calculus of PDOCFAs).
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α F(α)

no e no(T(e))
some e some(T(e))
lone e lone(T(e))
one e one(T(e))

e1 = e2 T(e1) = T(e2)
e1 [!|not] = e2 T(e1) != T(e2)

e1 in e2 T(e1) in T(e2)
e1 [!|not] in e2 T(e1) !in T(e2)

n1 = n2 T(n1) = T(n2)
n1 [!|not] = n2 T(n1) != T(n2)

n1 < n2 T(n1) < T(n2)
n1 [!|not] < n2 T(n1) !< T(n2)

n1 <= n2 T(n1) ≤ T(n2)
n1 [!|not] = n2 T(n1) !≤ T(n2)

n1 > n2 T(n1) > T(n2)
n1 [!|not] > n2 T(n1) !> T(n2)

n1 >= n2 T(n1) ≥ T(n2)
n1 [!|not] >= n2 T(n1) !≥ T(n2)

!α !α
α || β α || β

α && β α && β
α <=> β α ⇔ β
α => β α ⇒ β

let v = e | α let T(v) = T(e) | F(α)
let v = β | α let T(v) = F(β) | F(α)
let v = n | α let T(v) = T(n) | F(α)

let n1=x1, · · · ,nm=xm| α F(let n1=x1 | let n2=x2, · · · ,nm=xm | α)

α => β else δ F(α) => F(β) else F(δ)

{α1 · · ·αn} F(α1) && · · · && F(αn)

all v : d | α
all v | F((v ind′ && R(v, d)) => α)

✍

= all v:T(d) | F(α)

some v : d | α
some v | F(v ind′ && R(v, d) && α)

✍

= some v:T(d) | F(α)

no v : d | α
!F(some v : d | α)

✍

= no v:T(d) | F(α)

lone v : d | α
F(all v, v′ : d | (α && α[v\v′]) =>v = v′)

✍

= lone v:T(d) | F(α)

one v : d | α
F((some v : d | α && (all v′ : d | α[v\v′]=> v = v′)))

✍

= lone v:T(d) | F(α)
v′ is a fresh variable, α[v\v′] is the result of replacing each free occurrence of v by v′ in α.

Tab. 3.5: Definition of mapping of Alloy formulas to PDOCFA formulas.
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Theorem 3.2.13: Let Σ ∪ {ϕ } be a set of Alloy formulas. Then,

Σ |= ϕ ⇐⇒ {F (σ) : σ ∈ Σ } ⊢ F (ϕ) .

Proof. =⇒) If {F(σ) : σ ∈ Σ } 0 F(ϕ), then there exists a PDOCFA F such
that F |= {F(σ) : σ ∈ Σ } and F 6|= F(ϕ). From Thm. 3.2.10 there exists
a proper PDOCFA F′ isomorphic to F. Clearly, F′ |= {F(σ) : σ ∈ Σ } and
F′ 6|= F(ϕ). Then, there must be a relational environment pF′ such that
A, pF′ |=

PDOCFA
{F(σ) : σ ∈ Σ } and pF′ 6|=

PDOCFA
F(ϕ) . From Lemma A.0.5, there

exists an Alloy instance a such that a |= Σ and a 6|= ϕ. Thus, Σ 6|= ϕ.
⇐=) If Σ 6|= ϕ, then there exists an Alloy instance a such that a |= Σ and
a 6|= ϕ. From Lemma A.0.6 there exists a proper PDOCFA F compatible
with a. From Lemma A.0.4, F, pF′ |=

PDOCFA
{F(σ) : σ ∈ Σ } and pF′ 6|=

PDOCFA
F(ϕ).

Then, {F(σ) : σ ∈ Σ } 0 F(ϕ).

PDOCFA for Alloy eyes

Taking into account all the notation remarks introduced along the chapter,
the reader may note how similar the PDOCFA formulas resulting from the
translation process are to the original Alloy formulas. A few minimum
changes could make those formulas practically indistinguishable from each
other. These changes could be encapsulated in a process of pretty printing
to be applied on the resulting PDOCFA formulas. In fact, this technique was
used in Dynamite, the tool in which we implement all the ideas presented
in this chapter.

The pretty-printing process could do the following: if idenS is a PDOCFA
constant from an Alloy signature S, it could be swapped for S; every appear-
ance of idenU could be replaced by univ or iden, depending on the original
Alloy expression; idenZ could be pretty-printed as Int; the application of
the predicates no, some, lone, and none could be expressed as the juxta-
position of the name and the argument, but keeping aside the parenthesis;
finally, all the numeric operations can be rewritten to appear familiar to the
Alloy-trained eye.



4. DYNAMITE

4.1 Implementation remarks

Implementing Dynamite required solving two tasks, namely:

1. Providing a shallow embedding into PVS of the PDOCFA theories re-
sulting from the translation of Alloy specifications.

2. The careful design of the interaction between PVS and the Alloy An-
alyzer required in order to provide the user with the new commands
offered by Dynamite.

The proposed solutions are reported in Sections 4.1.1 and 4.1.2, respectively.

4.1.1 Embedding the Alloy Calculus in PVS

Proving Alloy assertions using Dynamite involves generating a PVS spec-
ification. Said specification is obtained as a shallow embedding [Gordon
(1989)] of the PDOCFA theory resulting from the translation presented in
Def. 3.2.12. PDOCFA theories obtained from Alloy models have in common
their logical part (operations, their meaning and inference rules) presented
in Defs. 3.2.1 and 3.2.9, while they may differ in the extralogical elements
(constants, axioms, theorems) that are directly related to the actual Alloy
specification used as input of the translation. Accordingly, the resulting
PVS specifications are also composed of two parts, one for handling the log-
ical elements of PDOCFA theories, and another for handling the extralogical
ones.

Embedding of the Logical Aspects of a PDOCFA theory

In the general part of the specification the following elements are defined:

• A data type (called Carrier) representing the setR of binary relations
from Def. 3.2.1.

• Constants and functions representing the constants and operators from
Def. 3.2.1. See table 4.1 for a comprehensive list of the PVS elements
representing each proper PDOCFA operator and constant.

• PVS axioms capturing the axioms and inference rules presented in
Def. 3.2.9. For instance,

RA_1 :AXIOM

FORALL (x, y, z: Carrier): composition(x, composition(y,z))

=composition(composition(x, y), z)

52
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PDOCFA

element
PVS embedding

+ sum(x?0,x?1: Carrier) : Carrier

& product(x?0,x?1: Carrier) : Carrier
– complement(x?0: Carrier) : Carrier

∅ zero : Carrier

univ one : Carrier

. composition(x?0,x?1: Carrier) : Carrier

iden one prime : Carrier

∼ converse(x?0: Carrier) : Carrier

∗ RTC(x?0: Carrier) : Carrier

(Notice that the question mark is a valid character for an identifier in PVS.)

Tab. 4.1: Embedding of PDOCFA symbols and constants from Def. 3.2.1 in PVS.

• Auxiliary constants, operators and predicates, as the ones presented
in the previous section (π, ρ, univU, ⊗, in, Point), and a few more
intended to facilitate the translation process. All of these elements
are defined using the elements mentioned in the preceding items. For
example, the binary operation ⊗ is defined as follows:

Cross(x,y: Carrier): Carrier =

fork(composition(Pi,x),composition(Rho,y))

PVS natively provides a standard sequent calculus (see [Owre et al.
(2001b)] for details). The only rule that has to be incorporated is the ω-rule
(see Def. 3.2.9). Using the support for natural numbers offered by PVS, this
rule is expressed as a PVS axiom.

Embedding of the Extra-logical Aspects of a PDOCFA theory

We present the translation of the extralogical part of the specification in two
steps. We focus first on PDOCFA constants (coming from Alloy signatures
and fields) and their properties. We subsequently deal with the translation
of functions, predicates, axioms and assertions.

When translating an Alloy signature definition it is necessary to intro-
duce a new symbol for the partial universal relation over atoms from that
domain, and another new symbol for the partial identity formed with those
atoms. For instance, the translation of signature Agent yields the PVS
definitions1:

univ_this?Agent: Carrier % the partial universal of Agent atoms
iden_this?Agent: Carrier % the partial identity of Agent atoms

1 Notice that in PVS everything at the right of the % symbol is considered a comment,
and that ? is a valid character in identifiers.
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In addition, axioms enforcing that these constants have the characteristics
mentioned before (being a partial universal relation or a partial identity)
must be included. Notice that this part of the translation may generate more
axioms depending on the characteristics of the signature being translated
(abstract, one sig, extension, etc.).

Restricting quantifiers to range over atoms, as explained in Section 3.2.2,
requires adding for each signature a predicate stating that a relation is a
point and it is included in the partial universal relation corresponding to
that signature. For signature Agent, the predicate is2:

this?Agent(R: Carrier): bool= Point(R) AND Leq(R,univ_this?Agent)

When translating field definitions, besides the declaration of the corre-
sponding constant, it is necessary to add appropriate axioms stating the
restrictions that the definition imposes on the field. For example, the trans-
lation of field routing from signature Domain leads to the definition of con-
stant this?Domain?routing and to the inclusion of the following axiom3:

this?Domain?routing: AXIOM FORALL (this: (this?Domain)) :

Leq(this?Domain?routing,

CartesianProduct(univ_this?Domain,

CartesianProduct(

Navigation(this,this?Domain?space),

Navigation(this,this?Domain?endpoints))))

This axiom establishes that this?Domain?routing denotes a relation in
which, for each tuple 〈d, i ⋆ g〉, address i is in the space of domain d, and
agent g is an endpoint for d.

The translation of predicates, functions, facts and assertions is direct.
It is sufficient to translate the formula (or expression) that defines each
of these constructs and add the corresponding predicate, function, theo-
rem or axiom to the resulting PVS specification. For example, assertion
BindingPreservesReachability (shown in Fig. 5.9) is translated to the
PVS theorem shown in Fig. 4.1

Pretty-printing of PDOCFA embeddings in PVS

On top of this notation pretty-printing algorithms are applied to PVS for-
mulas occurring during the development of proofs. Therefore, the user only
sees Alloy syntax while working within Dynamite. This is one of the impor-
tant features of Dynamite because it makes it unnecessary for Alloy users
to learn another formalism in order to prove the given assertions.

With the aim of illustrate this feature, the Fig. 4.2 shows the sequent
obtained after a few rule applications from the beginning of the proof of

2 Leq is the predicate corresponding to the set inclusion operator in.
3 Navigation is the operator corresponding to •, and CartesianProduct simulates the

behaviour of Cartesian product between relations of arbitrary arity.
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BindingPreservesReachability :THEOREM

FORALL (

d: (this?Domain2),

d??_: (this?Domain2),

newBinding: Carrier | Leq(newBinding,

CartesianProduct(univ_this?Identifier,univ_this?Identifier))

):

(this?IdentifiersUnused(d,Navigation(newBinding,univ_this?Identifier))

AND this?AddBinding(d,d??_,newBinding))

IMPLIES ( FORALL (i: (this?Identifier), g: (this?Agent)) :

this?ReachableInDomain(d,i,g) IMPLIES

this?ReachableInDomain(d??_,i,g) )

Fig. 4.1: PVS embedding of the PDOCFA theorem corresponding to the Alloy as-
sertion BindingPreservesReachability (see Fig. 5.9).

the theorem BindingPreservesReachability, both with and without the
application of the pretty-printing procedure.

It is worth noting that not any PDOCFA embedded formula nor expres-
sion can be pretty printed as a valid Alloy element. For instance, quantifi-
cations with no constraints on the quantified variables (such as the axiom
RA\_1 previously shown) or expressions containing PDOCFA specific opera-
tors (such as ∇) can not be pretty-printed. Nevertheless, we have defined
carefully the embedding so that all PDOCFA formula or expression resulting
from the translation of an Alloy element, may be pretty-printed.

Embedding Alloy integers

The characterization of Alloy integers in PDOCFA presented in Section 3.2.2
can be easily embedded in PVS as a new PVS theory. Such an embedding
would be suboptimal, since it would miss all the support provided by PVS
for reasoning about integer arithmetic. We will instead use a new PVS
theory fint (for finite ints), parameterized by the bit width. This theory
profusely uses theory int provided by PVS. For example:

• the bit width (noted as bitwidth), is a formal parameter of the theory
and has type posnat (i.e., positive natural).

• the minimum and the maximum of the interval determined by the bit
width are modeled by the integer constants min fint and max fint

defined as

−exp2(bitwidth− 1) and exp2(bitwidth− 1)− 1,

respectively.

• a PVS predicate is defined for delimiting the numbers in this interval:
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(a)

(b)

Fig. 4.2: Screenshots of Dynamite at one of the first sequents of a proof: (a) without
pretty-printing, and (b) with pretty-printing.
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inRange_fint(n: int): bool= min_fint<=n and n<=max_fint

• this PVS theory includes the definition of a subtype of int, called
fint, that represents the Alloy integers in the interval:

fint: TYPE= { n: int | inRange_fint(n) }

• all the integer operations supported in Alloy (addition, subtraction,
multiplication, integer division and remainder) are modeled as PVS
functions on fint. For example, addition is defined as

add_fint(n1, n2: fint): fint =

IF inRange_fint(n1+n2) THEN n1+n2

ELSIF n1+n2 > max_fint

THEN (min_fint-1)+(n1+n2)-max_fint

ELSE max_fint+(n1+n2)-(min_fint-1)

ENDIF

As discussed at the end of section 3.2.2, it must be noted that this theory
does not support models in which the set of integer atoms is not finite.

4.1.2 Overview of Dynamite’s Architecture

The current prototype of the Dynamite Proving System was developed as
an extension of PVS. Therefore, we wrote Emacs extensions (for system
commands such as those for opening and editing an Alloy specification),
Lisp routines that interact with the PVS prover engine (to implement the
Dynamite-specific commands, the pretty-printing of the formulas, etc.) and
Java code (whose purpose is the translation and validation of formulas,
goals and specifications, as well as the postulation of witness candidates for
existentially quantified assertions, among others).

A component-and-connector view diagram of Dynamite’s architecture
showing the interactions between the main components of the system4 is
depicted in Fig. 4.3.

As explained by Owre (2008), the PVS prover engine runs as a subpro-
cess of Emacs, through an ad-hoc ILISP interface [Kaufmann et al. (2002)].
We added the implementation of the Dynamite-specific commands, to be

4 It is worth noting that, as usual in C&C diagrams, despite being of the same type,
not all the client-server connectors showed in the figure are implemented in the same way.
For example, the connectors between the “Dynamite Translator” and the Alloy Analyzer
are implemented using the API exposed by the latter, while the connectors linking the
“Dynamite proof commands processor” and the “Dynamite Translator” are implemented
through the OS standard input/output subsystem.
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Formula/Goal Validator

Dynamite Translator

PVS - ILISP

Alloy Mode

PVS 
Typechecker

DPS pretty 
printer

Specification Translator

Client/Server connector

Legend

Function Call connector

Request/Reply connector

Alloy Analyzer

Dynamite proof 
commands 
processor

User

Expression/Formula Translator

Candidate Postulator

PVS
Prover

Dynamite 
system 

commands 
processor

Emacs

off-the-shelf component

Dynamite specific component subsystem

existent component

Fig. 4.3: C&C view of the Dynamite architecture.

explained in following sections, to this engine as PVS strategies and rules.
“Dynamite proof commands processor” in the diagram. These extensions
are conservatively sound with respect to the logic of PVS.

We also modified the PVS function for pretty-printing in order to allow
the user to see Alloy formulas in the sequents as long as it can be done. At
any point during a proof the user can deactivate and activate the pretty-
printer, when the translation back is possible.

The “Dynamite proof commands processor” is responsible for the in-
teraction with the Java processes that, using the Alloy Analyzer, validate
formulas and goals during the proof, suggest the elimination of (presumably)
unnecessary formulas from the sequent, and postulate expressions that can
be used to instantiate existential quantifiers. These Java processes are col-
lectively referred to as “Dynamite Translator”5.

As Dynamite is an extension of PVS, all the regular PVS proof com-
mands are available to the user. Some of them, such as case and inst, take
formulas or expressions as parameters. When the pretty-printer is activated,
the user can write Alloy formulas and expressions as parameters for these
commands. The “Dynamite proof commands processor” is also responsi-
ble for the translation of those parameters to the corresponding PDOCFA
formulas and expressions, via the “Dynamite Translator”.

Dynamite includes Emacs extensions that allow the user to open an Al-
loy specification, generate the corresponding PDOCFA theories and start,

5 Besides inaccuracy, the name is maintained for historical reasons.
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or redo, the proof of any of its assertions (among other system-level func-
tionalities). All these functions can be accessed through the user menu.
Additionally, Dynamite has an Emacs major mode (“Alloy mode”) that
provides syntax highlighting for the manipulation of Alloy code.

4.2 Features of Dynamite

Proving properties can be seen as a handcraft discipline. It usually requires
a high level of training on the methods adopted to develop the proofs, a
deep understanding of the concepts formalized in the theory and, most of
the time, lots of patience. Even more so if we consider that the person in
charge of proving the correctness of the assertions is (many times) not the
person who wrote the model.

Automatic verification of proofs is somewhat comparable to the spell
checker in text editors. It does not help you compose a text, it just guar-
antees the absence of syntactic mistakes. To be considered useful, an inter-
active theorem prover must be capable of helping the user with the proving
process.

We already mention in section 2.2.3 a couple of critical points of the proof
process where the user might need assistance. Those points heavily rely on
specific rules, nevertheless there are other aspects related to the mechanic of
the calculus, to the way in which the current sequent is evolving, that also
obstruct the developing of the proof.

Dynamite is intended to be more than a proof checker. It offers help
in situations such as the previously mentioned. In order to do so, it uses
the Alloy Analyzer in different ways that are to be detailed in the following
sections. This makes Dynamite much more than syntactic sugar on top of
PVS.

4.2.1 Introduction of Hypotheses and Lemmas

As explained in section 2.2.3, the application of the Cut rule can represent
the introduction of a new hypothesis. In PVS the user can introduce a new
hypothesis in such a way using the rule case. Still, we may want to go a
step further and gain some confidence on the suitability of the introduced
hypothesis. Does it actually follow from some of the formulas already in the
sequent? It is frustrating to realize, after finishing the proof with the aid
of the new hypothesis, that it cannot be discharged, deeming the previous
proof effort useless. In order to reduce the risk of introducing inappropriate
hypotheses, Dynamite introduces the rule dps-hyp:

Γ,α ⊢ ∆ Γ′ ⊢ α, ∆′

Γ ⊢ ∆
dps-hyp(α)

where Γ′ ⊆ Γ, ∆′ ⊆ ∆ and at least one of Γ 6= Γ′ and ∆ 6= ∆′ holds.
The use of rule dps-hyp triggers a call to the Alloy Analyzer in order to
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|-------

{1} lone (contents.o)

(a) (b)

Fig. 4.4: Example of use of the rule (dps-hyp).

analyze whether sequent Γ′ ⊢ α, ∆′ follows from the model. If a counterex-
ample is found within the provided scopes, it is reported to the user and the
hypothesis is removed.

Example 1: Assume we are trying to prove the assertion NoDirAliases pre-
sented in Section 2.1.1 (Pg. 11). This assertion, shown below, states that
all directory may be contained at most in one directory.

assert NoDirAliases { all o: Dir | lone (contents.o) }

As the first step of our proof we need to apply the command corresponding
to the rule (⊢∀) (see Figure. 2.3) in order to get rid of the universal quantifi-
cation. After the application of such command, we would face the sequent
depicted in Figure 4.4.a.

Sometimes, stronger properties are easier to prove. We could try to prove
that one contents.o holds, or that no contents.o holds. In other words, if we
could prove that contents.o is always empty or it always has only one element,
we could complete the proof of the assertion. In order to test this strategy,
we can use the Dynamite command (dps-hyp "one contents.o").

Under this configuration, the sets of formulas mentioned in the descrip-
tion of the rule dps-hyp are the following: Γ = ∅, ∆ = {“lone contents.o”},
α =“one contents.o”. As its default behaviour, this rule takes Γ′ = Γ and
∆′ = ∅. So, Dynamite will use the Alloy Analyzer to validate the sequent we
should address to prove that this conjecture follows from the original set of
hypothesis, i.e. ∅ ⊢“one contents.o”. The Alloy Analyzer will find the coun-
terexample shown in Figure 4.4.b, where can be seen that the root directory
is not included in any other directory, thus invalidating the sequent under
analysis. Consequently, the application of the rule is aborted.

Notice that the user has to provide the new hypothesis α and the formu-
las from Γ and ∆ suspected to be the ones which α follows from. It could
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Γ,¬α ⊢ ∆
W on α

Γ,¬α ⊢ α, ∆

Ax

Γ,α ⊢ α, ∆
⊢ ¬

Γ ⊢ ¬α,α, ∆
(Cut using ¬α)

Γ ⊢ α, ∆

Fig. 4.5: Strategy to transform the sequent Γ ⊢ α, ∆ into Γ,¬α ⊢ ∆

seem a requirement for an extra effort from the user, but this selection of
formulas from Γ and ∆ is usually performed at the moment of choosing α
even it is generally revealed a few steps after the application of the Cut rule,
when the specific proof of Γ′ ⊢ α, ∆′ begins.

4.2.2 Introduction of cases

As the Cut rule in conventional sequent calculus (see Fig. 2.3), the appli-
cation of the Dynamite dps-case command splits the current branch into
two branches, using a provided formula α as a parameter. In one of the
branches α appears as a new formula in the antecedent, and it is placed in
the consequent in the other branch:

Γ,α ⊢ ∆ Γ ⊢ ∆,α

Γ ⊢ ∆
dps-case(α) .

Notice that, following the strategy depicted in Fig. 4.5, having α as
a proof obligation can be seen as having ¬α as a hypothesis. Thus, any
application of the Cut rule can be seen also as the separation in cases of the
proof. In the first of them α holds, and in the other it does not.

The Dynamite dps-case command improves over the regular PVS case
command, which implements the Cut rule, by using the Alloy Analyzer in
order to automatically search for models of the formulas
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¬δ
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∧ α, and





∧

γ∈Γ′′

γ



 ∧
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∧

δ∈∆′′

¬δ

)

∧ ¬α

where, Γ′∪Γ′′ ⊆ Γ, ∆′∪∆′′ ⊆ ∆ and at least one of Γ 6= Γ′, Γ 6= Γ′′, ∆ 6= ∆′

and ∆ 6= ∆′′ holds. Notice that if the original sequent is valid, there can
not be models for those conjunctions with Γ′ = Γ′′ = Γ and ∆′ = ∆′′ = ∆.
It is expected that the introduction of α (and ¬α) may drop formulas from
Γ and ∆ in each new branch. Again, the selections Γ′, Γ′′, ∆′ and ∆′′ from
Γ and ∆ must be given by the user. By default, Dynamite assumes that
Γ = Γ′ = Γ′′ and ∆′ = ∆′′ = ∅.

The existence of the models guarantees that formula α indeed splits into
meaningful cases. If the Alloy Analyzer does not yield a model for any of
the formulas, this is reported to the user.
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{-1} (a!1 in (i!1 . (*(d!1 . dstBinding!1))))

[-2] (IdentifiersUnused (d!1, (newBinding!1 . Identifier)))

[-3] (all i : Identifier| ((i in (newBinding!1 . Identifier)) =>

(((i in Address) => (i in (d!1 . space!1))) &&

((i in AddressPair) => ((i . addr!1) in (d!1 . space!1))))))

[-4] ((d’!1 . endpoints!1) = (d!1 . endpoints!1))

[-5] ((d’!1 . space!1) = (d!1 . space!1))

[-6] ((d’!1 . routing!1) = (d!1 . routing!1))

[-7] ((d’!1 . dstBinding!1) = ((d!1 . dstBinding!1) + newBinding!1))

[-8] (g!1 in (a!1 . (d!1 . routing!1)))

|-------

{1} (a!1 in (i!1 . (*((d!1 . dstBinding!1) + newBinding!1))))

[2] (a!1 in (i!1 . (*(d’!1 . dstBinding!1))))

[3] (a!1 in ((d!1 . dstBinding!1) . Identifier))

Fig. 4.6: Example of a sequent obtained after the application of several proof com-
mands.

4.2.3 Hiding sequent formulas

During the development of a proof the amount of formulas in the sequent
tends to grow. For example, new hypotheses are introduced when a case
splitting is performed. The information expressed in these hypotheses may
be useful for closing some branches and useless for some others. Thus, a se-
quent may contain formulas that are irrelevant to close branches originating
in the sequent. For example, after a branch splitting some formulas may
no longer be needed for some of the sub-goals, and be necessary to prove
others.

In Fig. 4.6 we show an open branch that was obtained during the proof of
property BindingPreservesReachability, reached after a few applications
of proof commands. Notice that, even when the only relevant formulas of the
sequent are 1 and -1, the other 9 formulas in the sequent obfuscate the job
of proving the assertion, turning the sequent very difficult to understand
at first glance. This is a situation that occurs quite often. For instance,
predicates are typically used to wrap several related concepts which apply
in different sub-goals. Using one of those concepts requires us to expand the
predicate. Doing this will not only result in the appearance of the desired
formula as hypothesis, but the rest of the sub-formulas will also appear as
part of the sequent.

To solve this, it is common for interactive theorem provers to provide
commands for hiding formulas from a goal, under the assumption that they
will not be used. On the other hand, the use of this command also presents
a risk. If, by mistake, a relevant formula is hidden, the user will not be able
to close the branch. Given a sequent Γ ⊢ ∆ (with Γ = { γ1, . . . , γk } and
∆ = { δ1, . . . , δm }) result of hiding some formulas, the Dynamite command
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dps-validate-goal automatically searches for counterexamples of the logical
implication between the conjunction of the formulas in the antecedent and
the disjunction of the formulas in the consequent:





∧

1≤i≤k

γi



⇒





∨

1≤j≤n

δj



 . (4.1)

In this way, if a counterexample is found, it means that the proof ob-
jective cannot be reached because the hypotheses are not sufficient to prove
the desired property. If that goal is the result of hiding some formulas from
a sequent for which a similar analysis did not return a counterexample, it
means that some of the newly hidden formulas were necessary.

4.2.4 Pruning of goals

As we explained in Section 4.2.3, sequents can grow up to a point in which
they get very difficult to be understood. A handy and time-saving feature
is the use of the Alloy Analyzer that Dynamite does to prune goals.

Let us assume we are proving a sequent Γ ⊢ ∆ (where Γ = { γ1, . . . , γk }
and ∆ = { δ1, . . . , δm }) from a theory Ω = {ω1, . . . ,ωn }. In order to reduce
the proof search space we will try to identify formulas from Γ, ∆ and Ω that
can be safely removed. Notice that having fewer formulas actually reduces
the proof search space. Many proof attempts that could depend on the
removed formulas (rules for instantiation, rewriting, or applying strategies)
are now avoided. This reduces the number of instantiations of inference
rules that the theorem prover has to consider, as well as helps the user stay
focused on the relevant parts of the sequent.

Iterative Approach

The first approach we tempted was a rudimentary strategy, implemented by
the Algorithm 1. It allows us to determine a set of formulas candidate to be
removed. The algorithm attempts to remove each formula ϕ, and analyzes
(using the Alloy Analyzer) whether the sequent obtained after formula ϕ
has been removed is valid or not. If the sequent is valid, then ϕ can be
(safely?) removed.

The previous Alloy analysis requires providing a scope for data domains.
Therefore, it might be the case that the analysis of formula (4.1) does not
return a counterexample, yet the formula indeed has counterexamples in
larger scopes. This shows that this technique is not complete, since a neces-
sary formula might be removed (this explains the question mark on “safely”
above) and a valid sequent may no longer be derivable. This is not a prob-
lem in itself. Hiding formulas based on the user’s intuition is not complete
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1 iterativeRemove(Γ,∆,Ω)
2 for each γ ∈ Γ do

3 if proves(Γ - γ, ∆, Ω) then /* Procedure ‘proves(Γ, ∆, Ω)’
checks, using the Alloy Analyzer, whether sequent ∆ ⊢ Γ holds

in model Ω. In Alloy terms, this amounts to checking, having

as facts the formulas in Ω, the assertion 4.1. Procedure

‘proves’ returns true whenever the Alloy Analyzer does not

produce a counterexample. */

4 Γ = Γ - γ;
5 end

6 end

7 for each δ ∈ ∆ do

8 if proves(Γ, ∆ - δ, Ω) then
9 ∆ = ∆ - δ;

10 end

11 end

12 for each ω ∈ Ω do

13 if proves(Γ, ∆, Ω - ω) then
14 Ω = Ω - ω;
15 end

16 end

17 end

Algorithm 1: The iterative pruning algorithm.

either. Since removing formulas does not allow us to prove previously un-
derivable sequents, refining sequents and theories as explained is a sound
rule.

UnSAT Core Approach

Some SAT-solvers, such as MiniSat [Eén et al. (2006)] among the ones
provided by the Alloy Analyzer, allow one to obtain upon completion of
the analysis of an inconsistent propositional theory, an UnSAT-core. An
UnSAT-core is a subset of clauses from the original inconsistent theory that
is also inconsistent. The UnSAT-core extraction algorithm implemented
in MiniSat mostly produces small UnSAT-cores. The Alloy Analyzer con-
verts the propositional UnSAT-core into an Alloy UnSAT-core [Torlak et al.
(2008)] (i.e., a subset of the Alloy model that is also inconsistent if the source
model was inconsistent). Notice that the Algorithm 1 actually computes an
Alloy UnSAT-core. Moreover, it computes a minimal Alloy UnSAT-core.

This feature allow us to implement an improved approach for the pruning
of sequents. When the Dynamite proof command dps-hide is applied on
sequent Γ ⊢ ∆, the system builds an Alloy model containing the original
Alloy model Ω under analysis and an assertion on the validity of formula
(4.1). Notice that analyzing with the Alloy Analyzer the newly built model
Ω′ will not return counterexamples, otherwise sequent Γ ⊢ ∆ would not
be valid. We then request the Alloy Analyzer for an UnSAT-core of Ω′.
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(-1) (a in (i . ^ ((newBinding + (d.dstBinding)))))

(-2) no (((Identifier . (d.dstBinding)) & (newBinding . Identifier)))

(-3) no ((((d.dstBinding) . Identifier) & (newBinding . Identifier)))

(-4) (not (a in (i . ^ newBinding)))

(-5) (not (a in (i . ^ (d.dstBinding))))

|---

(1) some ai: Identifier |

ai in i.^newBinding && a in ai.^(d.dstBinding)

Fig. 4.7: Sequent with existentially quantified conclusion.

An Alloy UnSAT-core [Torlak et al. (2008)] of Ω′ is a subset of Ω′ that is
also inconsistent (notice that inconsistency is defined up-to the considered
scopes). The UnSAT-cores retrieved by the Alloy Analyzer do not need to be
minimal, but many times are proper subsets of the premises and consequents
of the sequent and theory under analysis. Command dps-hide then hides all
those formulas in Ω, Γ and ∆ that are not part of the retrieved UnSAT-core.

The relevant formulas in the sequent depicted in Fig. 4.6 (formulas -1
and 1) are automatically identified by applying this command.

4.2.5 Automated Witness Generation

When proving the property BindingPreservesDeterminism, the sequent depicted
in Fig. 4.7 is produced. Notice that the formula in the consequent is exis-
tentially quantified. According to the proof calculus depicted in Fig. 2.3, in
order to prove the sequent we must find a suitable witness (i.e., a term that,
when substituted for variable ai, makes the resulting sequent provable):

Γ ⊢ A{x← t}, ∆

Γ ⊢ (∃x : A),∆
⊢ ∃

In order to reduce user intervention, in this section we will present an
effective technique that uses the Alloy Analyzer in order to automatically
generate witness candidates. Also, we will present several examples where
the application of the proposed technique yields the required witnesses.

In Alg. 2 we present the algorithm we use for witness candidate genera-
tion. Recall that environments are the semantic structures in which Alloy
models are evaluated.

In the following paragraphs we will explain the algorithm and argue
about its correctness, as well as discuss in what conditions the algorithm may
fail to produce a candidate. Afterwards we will describe several experiments
we performed.
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1 witnessCandidate(Γ, δ) /* δ has the form some x : α[x] */

2 DW ← ∅; /* DW will store the discarded witnesses found so far */

3 result ← ∅;
4 E ← E0; /* E0 is an environment such that E0 |= Γ */

5 α′ ← α;
6 while (result == ∅ ∧ E != null) do
7 if there exists a witness precandidate t in E then

8 if t is a valid witness precandidate then

9 result ← result ∪ { t };
10 else

11 DW ← DW ∪ { t };
12 E ← Ei; /* Ei is the environment in which t failed */

13 for each t′ ∈ shrunkenWitnessesFrom(t) do
/* shrunkenWitnessesFrom(t) are the witnesses with the

same syntactic structure as t but with every constant c
replaced by a constant denoting a subset of c */

14 if t′ is a valid witness precandidate then

15 result ← result ∪ { t′ };
16 end

17 end

18 if (result == ∅) then
19 if in every environment t contains atom a such that α′[a]

holds then

20 α′ ← α′[t & x]; /* α′ has been relativized */

21 else

22 if there is a coverage C ⊆ DW then

23 result ← C;
24 end

25 end

26 end

27 end

28 else

29 if α′ has been relativized then

30 α′ ← α;
31 else

32 E ← null;
33 end

34 end

35 end

36 end

Algorithm 2: Algorithm for witness candidate generation.
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sig A {}
sig B in A {}
one sig x1, x2 in A {}

fact { x1 in B || x2 in B }

assert needsCoverage { some x : A | x in B }

Fig. 4.8: Simple Alloy model where coverage is needed to prove the assertion.

The Inputs to the Algorithm (line 1)

Given a sequent Γ ⊢ some x : T | α(x) that has to be proved, the algorithm
receives as inputs the set Γ and the formula some x : T | α(x) for which the
witness must be produced.

Initialization (lines 2–5)

Variable DW will store those witness precandidates that are eventually dis-
carded. Variable result stores the output of the algorithm, and its content
will be discussed in Section 4.2.5. Variable E is initialized with E0, any envi-
ronment in which Γ holds. E0 is produced by invoking the Alloy Analyzer.

The Output (variable result)

Variable result returns a coverage for the formula under analysis. A coverage
is a set of terms { t1, . . . , tk } such that the Alloy Analyzer is able to verify
the sequent Γ ⊢ α(t1) || · · · || α(tk).

The simple Alloy model in Fig. 4.8 shows that coverages are many times
necessary. In Alloy notation, signature B denotes a subset of A, and objects
x1 and x2 belong to A (and since B is contained in A, also perhaps to B).
Notice that the fact guarantees that the assertion is indeed valid. Yet no
single witness exists. In some environments x1 will be a witness, and in
others the witness will be x2. Notice also that:

• x1 in B || x2 in B holds as per the fact, and

• (x1 in B || x2 in B) => (some x: A | x in B) holds.

Therefore, the coverage { x1, x2 } allows us to prove the existential formula.
This reasoning is easily generalized. The proof-schema in Fig. 4.9 shows
that a coverage allows us to prove the existentially quantified formula.

Building a Witness Precandidate (line 7)

This is one of the main contributions of Section 4.2.5. The precandidate is
built by internalizing Alloy’s syntax inside an Alloy model. We will present
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(Ax)
Γ,α(t1) ⊢ α(t1)

(⊢ ∃)
Γ,α(t1) ⊢ some x: d | α

(Ax)
Γ,α(tn) ⊢ α(tn)

(⊢ ∃)
Γ,α(tn) ⊢ some x: d | α

... (same applications as below)×n
(|| ⊢)

Γ,α(t2) || . . . || α(tn) ⊢ some x: d | α
(|| ⊢)

Γ,α(t1) || . . . || α(tn) ⊢ some x: d | α

(Coverage)
Γ ⊢ α(t1) || . . . || α(tn)

(W)
Γ ⊢ α(t1) || . . . || α(tn), some x: d | α

(Cut)

Γ ⊢ some x: d | α

Fig. 4.9: Use of coverage { t1, . . . , tn } for proving an existential formula.
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sig A { }
one sig cA extends A { }
sig B { f : A }

assert existentialAssert { some x : B | α(x) }

Fig. 4.10: A Sample Alloy Model.

the technique by means of a simple running example. Let us consider the
Alloy model presented in Fig. 4.10. The model is instrumented with ap-
propriate signatures, functions and predicates. In Fig. 4.11 we present a
fragment of the resulting Alloy model.

The instrumented model introduces new signatures that model syntac-
tic internalizations of the source model signatures and fields, as well as of
the relational operators (in Fig. 4.11 we only include the union of unary
relations and the intersection of binary relations). The first three lines are
exactly the same as the original model. They are the semantic base. Then,
the abstract signature Term represents the syntactic terms. Its children
UnaryTerm and BinaryTerm represent terms denoting sets and terms denot-
ing binary relations, respectively. Fields unaryValue and binaryValue relate
each term with its intended meaning. For example, we define a signature
A Syntax representing the syntactic representation of the signature A in
the original module. So, A Syntax is a one signature, because there is only
one symbol for A, and A Syntax and A are related with each other trough
the field unaryValue. In the case of operators, see for example the signature
UnarySum. It represents the union between two terms denoting sets. The
signature axiom takes care of the meaning of the term, restricting the field
unaryValue to be the union of the meaning of the sub terms, and takes care
of its complexity, stating that it is equal to the sum of the complexity of
both sub terms plus one.

We also include a number of facts that preclude redundant instances. For
example, fact UnarySumOperand0IsNotUniv states that the first operand in
a sum cannot be the universal relation (after all, the result of the union
would be the set univ). Several other properties of this kind are included.

Finally, using the Alloy Analyzer we look for an environment that satis-
fies formula witnessSearch. The environment allows us to retrieve a term
t that denotes a nonempty set in which all objects satisfy formula alpha.
This is the witness precandidate. In order to prevent the analysis from
returning previously discarded terms, the model includes a fact that is iter-
atively enriched in order to prevent previously discarded terms from being
produced.
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sig A {}
one sig cA extends A {}
sig B { f : A }

abstract sig Term {
complexity : Int

}
abstract sig UnaryTerm extends Term {
unaryValue : set univ

}
abstract sig BinaryTerm extends Term {
binaryValue : univ −> univ

}
one sig UnivSyntax extends UnaryTerm{}{ unaryValue = univ }
one sig A Syntax extends UnaryTerm{}{ unaryValue = A }
one sig cA Syntax extends UnaryTerm{}{ unaryValue = cA }
one sig B Syntax extends UnaryTerm{}{ unaryValue = B }
one sig f Syntax extends BinaryTerm{}{ binaryValue = f }

fact sigComplexity{
A Syntax.complexity=1 and cA Syntax.complexity=1 and

B Syntax.complexity=1 and f Syntax.complexity=2}

sig UnarySum extends UnaryTerm {
operand0, operand1 : UnaryTerm
}{ complexity = operand0.complexty +operand1.complexity +1

unaryValue = operand0.unaryValue +operand1.unaryValue }

sig BinaryIntersection extends BinaryTerm {
operand0, operand1 : BinaryTerm
}{ complexity = operand0.complexty +operand1.complexity +1

binaryValue = operand0.binaryValue & operand1.binaryValue }

fact UnarySumOperand0IsNotUniv {
(all t : UnarySum | t .operand0 !in UnivSyntax)) }

run witnessSearch {
some t : UnaryTerm |
some t.unaryValue and all v : t.unaryValue | α(v) }

Fig. 4.11: Fragment of Alloy model with internalized Alloy syntax.
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Validating a Witness Precandidate (lines 8–9)

A witness precandidate t is valid in an environment. In contrast, a witness
candidate must be valid in all environments. In order to analyze whether t
can be considered as a witness candidate, we modify the Alloy model from
Fig. 4.10 by replacing assert existentialAssert by the following:

assert witnessPrecandidateValidation { some t and all v : t | α(v) }

The assertion requires t to denote a nonempty set in which all the ele-
ments satisfy formula alpha in all environments. If no counterexamples are
produced by the Alloy Analyzer, term t is stored in the algorithm output
variable result and promoted to witness candidate.

Witness Precandidate Failure by Over-Approximation (lines 13–20)

Let us assume that witness precandidate t fails in environment Ei. According
to Section 4.2.5, this implies that either t is empty in Ei or some value from
the set denoted by term t does not satisfy α. The second condition may hold
even if t provides at least one value that satisfies α in each environment.
In this case we say that term t over-approximates a witness candidate. In
order to avoid this over approximation we will use two techniques:

1. Recalling that Alloy signatures are constants that may appear in term
t, term t may fail to be a witness candidate because it includes a
signature that is larger than necessary. For instance, in [Zave (2006)]
we have as part of the signature hierarchy

sig Domain3 extends sig Domain2 extends sig Domain .

Semantically, the sets denoted by the signatures satisfy

Domain3 ⊆ Domain2 ⊆ Domain .

Therefore, given a term t of the form Domain.routing that fails to be
candidate, Dynamite explores whether the terms Domain2.routing or
Domain3.routing are indeed candidates. The technique is applied in
lines 13–17.

2. The witness candidate could then be the intersection of t with another
term. We explore this possibility in lines 18–20.

Over-approximation can be checked with the aid of the Alloy Analyzer by
checking the assertion

assert overApproximation { some v : t | α(v) }



4. Dynamite 72

Witness Precandidate Failure by Under-Approximation (lines 22–23)

As explained in Section 4.2.5, term t may fail to be a witness precandidate
because in some environment e it denotes a set that contains an object that
does not satisfy α. Yet there might be an already discarded witness t’ that
satisfies α in environment e. We then explore if there is a subset of the
discarded witnesses that jointly with t form a coverage. If a coverage exists,
it is returned in variable result. A coverage is determined with the aid of
the Alloy Analyzer by checking assertion

assert underApproximation { all v: univ |
(v in t1 => alpha(v)) || · · · || (v in tn => α(v))}

Lack of Witness Precandidates (lines 29–33)

If a new witness precandidate is not found in the selected environment, it
may be due to, essentially, four reasons:

1. the existentially quantified formula is not true within the prescribed
scopes,

2. the bound on the complexity of terms considered is smaller than re-
quired (new witness precandidates might be found if the complexity
bound were increased),

3. formula α′ is relativized, and therefore part of the available complexity
is spent on the relativization term, and not enough complexity is left
to build a new precandidate,

4. the included strategies fail to produce a witness.

In the first case the lack of precandidates may be due to the exhaustion
of all the witness precandidates, and the algorithm should terminate without
returning a precandidate. Similarly, in the second case the algorithm should
be run again but with an increase in the complexity bound. The third
case will occur when formula α′ is relativized. Therefore, we will remove the
relativization in order to enable the search for further witness precandidates.
In the fourth case, new strategies should be added to the algorithm.

Termination and Correctness

Termination is guaranteed because in each loop iteration a new witness
precandidate must be generated; due to the bound on term complexity only
finitely many terms can be generated. Correctness, understood as producing
a witness regardless of the analysis scopes, cannot be achieved due to the
undecidability of classical first-order logic. Therefore, the algorithm may
produce witness candidates that are not suitable for finishing the proof.
The effectiveness of the algorithm is evaluated experimentally below.
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Limitations

This technique heavily relies on the model-finding ability of the Alloy Ana-
lyzer. Consequently, it shares the same limitations. When the search for a
candidate begins, limits on the search space must are established by fixing
a scope. Unlike standard Alloy models where the scope only constrains the
explored semantic environments, Alloy models used for witness generation
internalize Alloy’s syntax as well. Therefore, besides providing scopes for
data domains, we must also provide scopes for syntactic domains (maximum
amount of occurrences of each operator symbol in the candidates, for exam-
ple). If the limits imposed to the search are too restrictive, no admissible
candidate will be generated. Otherwise, if the limits are too lax, the search
can take too much time or lead to an out of memory exception.



5. EVALUATION

In order to evaluate Dynamite, we proceeded in two stages. First, we took
an Alloy model of addressing in the context of computer networks, by Zave
(2005), and prove five of its assertions using Dynamite without the helping
features. We call Dynamite 1.0 this version of the theorem prover. Then, we
evaluated the features detailed in Sec. 4.2 working on the proofs of assertions
from some toy models, a specification of the Mondex electronic purse system
[Ramananandro (2008)], and an Alloy model of binding in network domains
[Zave (2006)].

This chapter shows the results we found in these evaluations and some
remarks about it. In the next section we explain the test of Dynamite 1.0.
The evaluation of the helping features is detailed in Sec. 5.2. Both Sections
include a description of the models by Zave (2005, 2006), since the most of
the proofs we performed were taken from those works.

5.1 Evaluating Dynamite as a plain prover for Alloy

Besides the features explained in Sec. 4.2, we wanted to know if Dynamite,
as a regular sequent calculus theorem prover for Alloy assertions, was a
usable tool and how many of the lemmas of a significant case study could
be proved without having to switch to PDOCFA language. We choose to
work on the model detailed below because it is a formal model interesting
by itself, not especially made for this evaluation. In this way, we try to
reduce the possibility of take a biased case study1.

5.1.1 Case Study: Addressing for Interoperating Networks

Zave (2005) presented a formal model of addressing for interoperating net-
works. These networks connect agents, which might be hardware devices or
other software systems. Agents can be divided between users of the network-
ing infrastructure, called client agents, or being part of the infrastructure,
called server agents. Agents can use resources from domains, to which they
must be attached. In order to be able to reach clients from domains, pairs
〈address, domain〉 are assigned to clients. Different sorts of objects can be
distinguished in the previous description.

Domains can create persistent connections between agents. Such con-
nections are called hops. Besides the domain that created it, a hop contains
information about the initiator and acceptor agents taking part in the con-
nection, and also source and target addresses. A fact forces these addresses

1 These results were previously reported in [Frias et al. (2007)].
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to correspond to the agents (according to the domain map).
Multi-hop connections are enabled by the servers. These connections

are called links. Links contain information about the server enabling the
connection, and about the connected hops. The reflexive-transitive closure
of the accessibility relation determined by links is kept by an object “Con-
nections”, which also keeps the relation established by the links.

Interoperation is considered a feature of networks. Features are installed
in domains and have a set of servers from that domain that implement them.
Among the facts related to features, we find that each feature has at least one
server, and that each server implements exactly one feature. Interoperation
features are then characterized by signatures Feature and InteropFeature in
Fig. 5.1, where a simplified2 description of the signatures that formalizes
the model detailed here is presented.

An interoperation feature translates addresses (by means of the relation
interTrans) between different domains. This is necessary because whenever a
client from the feature’s domain wishes to connect to a client attached to a
different domain, it must have a target address it can use in its own domain
space. Of course, the target client must have an address in each domain from
which it is to be reached. Different facts are introduced in order to fully
understand an interoperation feature behavior, and the following assertions
are singled out:

• ConnectedIsEquivalence, asserting that field connected is indeed an equiv-
alence relation (reflexive, symmetric and transitive).

• UnidirectionalChains, asserting that two hops are connected through a
link in an ordered manner (one can be identified as initiator and the
other one as acceptor).

• Reachability, asserting that whenever a client c publishes an address
a in a domain d (〈a, d〉 ∈ c.knownAt), clients c′ from domain d can
effectively connect to c.

• Returnability, asserting that if a client c accepted a connection from
another client c′, then a hop from c can be extended to a complete
connection to client c′.

The Alloy description of the previous assertions is given in Fig. 5.2.

5.1.2 Evaluation

We proved the properties in Fig. 5.2 using Dynamite. Fig. 5.3 illustrate the
pretty printer feature. In the left side can be seen the initial node of the proof
of the assertion Returnability as the plain PVS embedding of the corresponding

2 The complete model can be obtained from http://www2.research.att.com/~pamela/

svcrte.html.
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sig Agent{ attachments: set Domain }
sig Server extends Agent { }
sig Client extends Agent { knownAt: Address −> Domain }
sig Domain{ space: set Address, map: space −> Agent }

sig Hop {
domain: Domain,
initiator, acceptor: Agent,
source, target: Address
}

abstract sig End { }
one sig Init, Accept extends End { }

sig Link {
agent: Server,
oneHop,anotherHop: Hop,
oneEnd,anotherEnd: End
}{
oneHop != anotherHop
oneEnd in Init => agent=oneHop.initiator
oneEnd in Accept => agent=oneHop.acceptor
anotherEnd in Init => agent=anotherHop.initiator
anotherEnd in Accept => agent=anotherHop.acceptor
}

one sig Connections {
atomConnected, connected: Hop −> Hop
}

abstract sig Feature {
domain: Domain,
servers: set Server
}
sig InteropFeature extends Feature {
toDomain: Domain,
exported, imported, remote, local: set Address,
interTrans: exported some −> some imported
}{
domain != toDomain &&

exported in domain.space && remote in exported
imported in toDomain.space && local in imported
remote.interTrans = local
}

Fig. 5.1: Simplified model for addresses, agents and domains.
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assert ConnectedIsEquivalence { all c: Connections |
(all h: Hop | h in h.(c.connected) ) &&

(all h1,h2: Hop | h1 in h2.(c.connected) => h2 in h1.(c.connected)) &&

(all h1,h2,h3: Hop | h2 in h1.(c.connected) && h3 in h2.(c.connected)
=> h3 in h1.(c.connected) ) }

assert UnidirectionalChains { all l: Link |
(l.agent = l.oneHop.acceptor && l.agent = l.anotherHop.initiator) ||
(l.agent = l.oneHop.initiator && l.agent = l.anotherHop.acceptor) }

assert Reachability {
all c: Connections, g1, g2: Client, h: Hop, a: Address, d: Domain |

g1 = h.initiator && d = h.domain && a = h.target &&

(a−>d) in g2.knownAt
=> (some h2: Hop | g2 = h2.acceptor && (h−>h2) in c.connected) }

assert Returnability {
all c: Connections, g1, g2: Client, h1, h2, h3: Hop |
h1.initiator = g1 && h2.acceptor = g2 && (h1−>h2) in c.connected &&

h3.initiator = g2 && h3.domain = h2.domain && h3.target = h2.source
=> (some h4: Hop | h4.acceptor = g1 && (h3−>h4) in c.connected) }

Fig. 5.2: Assertions by Zave (2005).

PDOCFA theorem. In the right side, the pretty printed version of the same
sequent is depicted. Notice that the pretty printed version closely resembles
the Alloy definition. Furthermore, it can even be compiled with the Alloy
Analyzer.

We have shown that it is possible to make proofs within the presented
calculus with the aid of Dynamite. We now present some empirical data
that will allow readers to have a better understanding of the usability of the
tool.

The proofs were carried out by a student who had just graduated, and
had no previous experience neither with Alloy, nor with PVS. The estimated
time he spent in order to master the proof process is the following:

• 5 days to learn Alloy’s syntax and semantics.

• 15 days to learn PVS, including the understanding of the proof rules.

• 40 days to prove all the assertions contained in the Alloy model.

• 15 days to prove the nontrivial required lemmas about PDOCFAs.
These lemmas can be considered as infrastructure lemmas, that will
be reused in future proofs.
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FAL_Returnability :

|-------

{1} FORALL (hDm: (hop_domain), fDm: (feature_domain),

tDm: (toDomain), tar: (target), rem: (remote),

aCn: (atomConnected), con: (connected), oHp: (oneHop),

aHp: (anotherHop), rBy: (reachedBy), map: (map),

acc: (acceptor), srv: (servers), exp: (exported),

imp: (imported), loc: (local), iTr: (interTrans),

spc: (space), agn: (agent), oEd: (oneEnd),

aEd: (anotherEnd), ini: (initiator),

att: (attachments), src: (source)):

FORALL (g1, g2: (Client), h1, h2, h3: (Hop)):

Navigation_2(h1, ini)=g1 AND Navigation_2(h2, acc)=g2

AND Leq(composition(composition(h1, one), h2),

Navigation(cConnections, con))

AND Navigation_2(h3, ini)=g2

AND Navigation_2(h3, hDm)=Navigation_2(h2, hDm)

AND Navigation_2(h3, tar)=Navigation_2(h2, src)

IMPLIES

(EXISTS (h4: (Hop)):

Navigation_2(h4, acc)=g1 AND

Leq(composition(composition(h3, one), h4),

Navigation(cConnections, con)))

(a)

FAL_Returnability :

|-------

{1} all g1,g2: Client, h1,h2,h3: Hop |

(h1.ini)=g1 AND (h2.acc)=g2 AND

(h1->h2) in (cConnections.con) AND

(h3.ini)=g2 AND (h3.hDm)=(h2.hDm) AND

(h3.tar)=(h2.src)

IMPLIES

(some h4: Hop |

(h4.acc)=g1 AND

(h3->h4) in (cConnections.con))

(b)

Fig. 5.3: The initial node of the proof of the assertion Returnability (a) without
pretty printing process being applied, and (b) after the application of the
pretty printing routine.

Recall that relations of rank greater than 2 are encoded as binary ones.
Therefore, it may be necessary to prove properties that deal with the repre-
sentation. These are the only proofs that would not be completely natural
to an Alloy user. The proof of all the assertions in the model comprises
285 lemmas, of which only 12 use this kind of properties. Moreover, the 12
lemmas actually use 8 different properties of the representation because 3
properties are used at least twice.

Table 5.1 shows some numerical information about the proofs of the
specific assertions. The rightmost column shows the time in days the user
spent in the proof of each assertion and the lemmas used in it. Notice that
the sum of the total of lemmas amounts to 365. Therefore, 365− 285 = 80
lemmas were re-used in the proof of different assertions. For the count of
the time effort, the time spent in proving each re-used lemma only is taken
into account once in all the table.

Assertion Total Model Algebra Time
Lemmas Lemmas Lemmas (days)

ConnectedIsEquivalence 79 4 75 10
UnidirectionalChains 52 28 24 5
Reachability 121 62 59 23
Returnability 113 66 47 17

Tab. 5.1: Distribution of the workload.
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5.2 Evaluating characteristic features of Dynamite

The features detailed in Sec. 4.2 were evaluated mainly using assertions for
an Alloy model by Zave (2006). We begin this section with a explanation
of that model. Then, the evaluation of the features are presented in the
following order: Sec. 5.2.2 presents the evaluation of the sequent pruning
techniques, Sec. 5.2.3 detail the results of testing of the witness generation
feature. Sec. 5.2.4 outlines some remarks about the use of the Alloy Analyzer
to validate lemmas, new hypothesis and sequents, at a given point of the
proof.

5.2.1 A Running Example: Binding in Network Domains

The model, presented in Zave (2006), deals with the formal definition of a
mechanism for binding of identifiers in the delivery of messages in computer
networks. Thus, the model is not a specification of an isolated software
or hardware artifact, but rather the specification of network services whose
implementation may involve several software and hardware agents. The
model describes how communicating agent identifiers are bound so that the
messages reach their correct destination. Properties about the possibility
of reaching an agent, determinism in the delivery of messages, existence
of cycles in the routing of messages and the possibility of constructing a
return path for a message are formally specified in the model. In particular,
the model studies how these properties are affected by the addition of new
bindings between identifiers.

When an agent wants to send a message to another agent a communica-
tion is established. That communication may involve intermediary agents
that just forward the message in its way to its destination. The original
sender of the message and its intended final receiver are called the endpoints
of the communication. Endpoints are organized into domains. Each do-
main has its own set of endpoints, and uses identifiers to recognize them.
Identifiers are called addresses. Additionally, a domain keeps track of how
agents are identified by particular addresses. Paths describe connections
from a generator agent to an absorber agent assuming the generator can be
recognized by address source and the absorber by address dest. A simplified
version of these concepts in Alloy takes the form depicted by Fig. 5.4.

A domain supports a path if the connections described by the path are
consistent with the domain. The predicate whose declaration is shown in
Fig. 5.5 characterizes when a domain supports a path.

When a message has to be send to an endpoint, the identifier used by the
initiator to indicate the destination must be bound to the identifier used by
the domain to locate the receiver. This binding is done in three ways. The
simplest one is when the initiator is responsible for performing the binding.
The message sent has as destination the actual identifier of the receiver. The
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sig Agent { }

abstract sig Identifier { }

sig Address extends Identifier { }

sig Domain { endpoints: set Agent,
space: set Address,
routing: space −> endpoints }

sig Path { source, dest: Address,
generator, absorber: Agent }

Fig. 5.4: Main signatures in the model by Zave (2006).

second scenario occurs when the message sent by the initiator is delivered to
an agent that is not the intended receiver. This agent, called handler, looks
up the corresponding binding, updates the destination address and forwards
the message. The third one is basically the same as the second one, but the
original destination identifier is composed of two parts which are used by
the handler to locate the next agent in the forwarding chain.

These communication patterns show the need for some distinction in the
identifiers used in the model, which are stated in the model by extending
the previous signatures as depicted in Fig. 5.6. Besides addresses, there
will be unrestricted identifiers called names, and complex identifiers used
in the third kind of communications. Thus, signature Identifier is extended
by signatures Name (modeling unrestricted identifiers) and AddressPair (for
compound identifiers). Two fields in the latter, addr and name, are defined
to formalize the structure of complex identifiers. The possible bindings in
each domain are specified by a ternary relation

dstBinding ⊆ Domain× Identifier× Identifier .

We introduce dstBinding (destination binding) by extending the signature
Domain, and constraining its meaning with a signature axiom. Paths are also
extended in order to include a new field origDst representing the identifier
originally given as destination.

pred DomainSupportsPath [d: Domain, p: Path] {
p.source in (d.routing).(p.generator) and
p.absorber in (p.dest).(d.routing)

}

Fig. 5.5: Declaration of predicate DomainSupportsPath.
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sig Name extends Identifier { }
sig AddressPair extends Identifier { addr: Address, name: Name }

sig Domain2 extends Domain { dstBinding: Identifier −> Identifier } {
all i: Identifier | i in dstBinding.Identifier implies

( (i in Address implies i in space) and
(i in AddressPair implies i.addr in space) )}

sig Path2 extends Path { origDst: Identifier }

Fig. 5.6: Extension to signatures in Fig. 5.4.

pred AddBinding[d,d’: Domain2, newBinding: Identifier −> Identifier] {
−− Precondition: the new bindings can be applied in the domain.

all i: Identifier | i in newBinding.Identifier implies

( (i in Address implies i in d.space) and
(i in AddressPair implies i.addr in d.space)

) and
−− Postconditions:

d’.endpoints = d.endpoints and
d’.space = d.space and

d’.routing = d.routing and

d’.dstBinding = d.dstBinding +newBinding
}

Fig. 5.7: Alloy predicate modeling the addition of a new binding (newBinding) to a
domain (d). The variable d’ represents the resulting domain, that contains
newBinding and all the bindings from d if the new binding could be added
to d according to the preconditions stated in the predicate.

A predicate AddBinding states how a domain is affected by the addition
of new bindings (Fig. 5.7).

In the context of this model, an agent g is considered “reachable in a
domain d from an identifier i” if:

• i is connected to an address a in the reflexive–transitive closure of the
binary relation formed by all the bindings corresponding to d,

• a cannot be bound to another identifier in d, and

• in domain d, a can route messages to g.

In Alloy, reachability is modeled by the predicate shown in Fig. 5.8.
Figure 5.9 presents assertion BindingPreservesReachability. This assertion

states that if an agent is reachable in a domain d, it is also reachable in the
domain resulting from adding a new binding to d, provided that the newly
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pred ReachableInDomain [d: Domain2, i: Identifier, g: Agent] {
some a: Address |

a in i.∗(d.dstBinding) and
a !in (d.dstBinding).Identifier and
g in a.(d.routing) }

Fig. 5.8: Predicate stating the reachability of an identifier in a domain.

assert BindingPreservesReachability {
all d,d’: Domain, newBinding: Identifier−>Identifier |

IdentifiersUnused[d,newBinding.Identifier] and
AddBinding[d,d’,newBinding]
implies (all i: Identifier, g: Agent |

ReachableInDomain[d,i,g]
implies ReachableInDomain[d’,i,g]) }

pred IdentifiersUnused [d: Domain2, new: Identifier ] {
no ( (d.routing).Agent & new ) and
no ( (d.dstBinding).Identifier & new ) and
no ( Identifier.(d.dstBinding) & new ) }

Fig. 5.9: A nontrivial assertion: BindingPreservesReachability.

bound identifiers are not used in d. This latter condition is formalized by
the predicate IdentifiersUnused.

A domain is called deterministic if each identifier is associated to at most
one agent. Assertion BindingPreservesDeterminism states that

whenever a new binding for an unused identifier is added to a
deterministic domain, it remains deterministic.

A domain is considered non-looping if the transitive closure of the bind-
ings for that domain has no cycles. Assertion BindingPreservesNonlooping then
states that

the addition of a new binding to a non-looping domain keeps this
condition as long as the transitive closure of the new binding does
not have cycles.

Another desirable property of a network is the capability to send a mes-
sage to the sender of a previously received message. This is called return-
ability. A domain in which it is possible to return the received messages is
called a returnable domain. In order to write conditions ensuring return-
ability of a domain, it is necessary to study how the source identifiers can be
modified by the handlers that forward the message, because the final source
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NoRec Iter UnSAT
Proofs’ length 969 597 573
Average # of formulas per sequent 5.89 6.01 6.20
Occurrences of formulas in proofs (no theories) 5706 3590 3215
Average # of formulas in sequents or theories 34.89 35.01 7.02
Occurrences of formulas in proofs (with theories) 33807 20903 4023
# SAT-solver calls N/A 770 69
# times UnSAT-core missed formulas N/A N/A 1
# times UnSAT-core avoided detour N/A N/A 2

Tab. 5.2: Measures of attributes for the employed techniques (N/A = not applicable).

identifier is used by the receiver as the destination of the return message.
An assertion StructureSufficientForReturnability is also modeled in [Zave (2006)].

Zave (2006) used the Alloy Analyzer to analyze the model and concluded
that the previously presented assertions hold for Alloy domains containing
at most 2 network domains and 4 elements in each set (such as identifiers,
agents, etc). Using Dynamite we proved that all these assertions hold inde-
pendently of the maximum amount of elements in each set.

5.2.2 Pruning of goals

In this section we present some experimental results we have obtained while
applying both pruning techniques explained in Sec. 4.2.43. We begin by
presenting some statistics about the model being verified. We have verified
the model in three different ways, namely: (1) without using any technique
for refining the sequents and theories. (noted as NoRec –for no recommen-
dation– in Table 5.2); (2) using the iterative algorithm in order to refine
sequents (noted as Iter –for iterative recommendation–); and (3) using the
UnSAT-core extraction technique (UnSAT). Notice that the way NoRec (1)
corresponds to verification using Dynamite 1.0.

In Table 5.2 we measure for each technique:

• Length of proofs (measured as the number or rule applications).

• Average number of formulas per sequent.

• Sum of occurrences of formulas in proof sequents.

• At each proof step the user, and some PVS commands, must con-
sider sentences from the current sequent as well as the sentences from
the underlying theory. We then measure the average number of such
formulas over the different proof steps.

3 These results were previously reported in [Moscato et al. (2010)].
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• Sum (over the proof steps) of occurrences of formulas in proof sequents
or from the underlying theories.

• Number of SAT-solver calls for the iterative and the UnSAT-core-based
techniques.

• Number of times the UnSAT-core obtained missed a formula necessary
for closing a proof branch.

• Number of times the UnSAT-core allowed us to remove formulas that
were used in the original proof because of an unnecessary detour.

In order to focus on the most relevant data we are ignoring proof steps
where we prove Type Check Constraints (TCCs), which in general can be
proved in a direct way. Also, we only applied the techniques (either the
iterative or the UnSAT-core-based) on 69 proof steps where it was considered
relevant to apply the rules. Systematic application of the iterative technique
(for instance each time a new proof goal was presented by PVS) would have
required in the order of 25000 calls to the SAT-solver. As a general heuristic,
we set the scope for all domains (in the calls to the Alloy Analyzer) to 3.

Notice that proofs carried out using any of the techniques for sequent
and/or theory refinement are about 40% shorter than the original proof.

In the original proof, as a means to cope with sequents’ complexity,
formulas that were presumed unnecessary were systematically hidden. While
the average number of formulas per sequent is smaller for the original proof,
having half the proof steps shows that the automated techniques are better
focused on the more complex parts of proofs. This is supported by the
analysis of the total number of formulas that occur in sequents. The UnSAT-
core-based technique uses 56% of the formulas used in the original proof,
while the iterative technique uses 63% of the formulas.

Since the underlying theory in the case-study has 29 formulas, the over-
head in applying the iterative technique to formulas in the theory was too
high. Therefore, the iterative technique was only applied to formulas occur-
ring in the sequents being verified along a proof (we believe this will be the
case most times). On the other hand, the UnSAT-core extraction receives
the current sequent plus the underlying theory, and automatically refines
also the theory. This explains the big difference between the average num-
ber of formulas involved in proofs (both in sequents and in the supporting
theory) using the iterative technique and the UnSAT-core-based technique.
Notice that this implies that in each proof step the user, and some PVS
commands, had to consider significantly fewer formulas in order to suggest
further proof steps.

Since proofs are shorter and each sequent contains possibly fewer for-
mulas, the total number of formulas occurring in proofs using UnSAT-cores
reduces from the original proofs in about 88% (recall that hiding was also
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used in the original proofs but not in an automated way, and that formulas
from the underlying theory were not hidden). For the iterative technique,
the number of formulas reduces in about 40%.

While using UnSAT-cores required only 69 calls to the SAT-solver, the
corresponding proof steps using the iterative algorithm required 770 calls to
the SAT-solver (without making calls for formulas occurring in the underly-
ing theory). Thus, the UnSAT-core-based technique requires under 10% of
the calls required by the iterative technique.

Often during the original proof necessary formulas were incorrectly hid-
den. We do not have precise records of the number of times this happened
because those erroneous proof steps (which at the time were not considered
important) were most times undone. We only kept track of 9 cases where
the reveal command was used in order to exhibit a previously hidden for-
mula, but these were just a few of the cases. It is worth comparing with the
single case where the UnSAT-core-based technique missed a formula. This
missed formula is recovered if instead of using a scope of 3 in calls to the
Alloy Analyzer, scope 5 is used.

Recalling that we have proved 5 Alloy assertions, the proofs of assertions
BindingPreservesDeterminism and BindingPreservesNonLooping required fewer for-
mulas during the proof based on UnSAT-cores. This shows that the original
proof used unnecessary formulas that were removed using rule dps-hide.

A more qualitative analysis of the techniques allows us to conclude that
refining sequents and theories using UnSAT-cores leads to a shift in the
way the user faces the proving process. Looking at the (usually few) re-
maining formulas after dps-hide is applied helped the user gain a better
understanding on the property to be proved.

This feature was one of the most useful in the verification of the model
developed by Zave (2006). The importance of this rule is that it provides a
guide in the construction of the proof by revealing those formulas that will
be needed to prove the property.

5.2.3 Automated Witness Generation

In this section we will present 4 examples on which we used Dynamite in
order to generate witness candidates automatically. We extended Dynamite
with a new command solve-inst that, given a sequent whose consequent is a
single existentially quantified formula, returns a witness candidate. Besides
bounding the total complexity of the generated candidates, it is also possible
to bound the number of times each Alloy operator is allowed to occur in
generated candidates. In all the experiments each Alloy operator (with the
exception of the sequential composition, that was not bounded) was allowed
to occur 0 or 1 times. We used a computer with the following configuration:
Intel(R) Core(TM) i5 quad core CPU running at 2.67GHz, 8GB of RAM.
The operating system was Debian GNU/Linux 6.0, running Kernel 2.6.32-
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5-amd64.

Example 1 When verifying assertion BindingPreservesDeterminism the
following assertion had to be proved:

assert prop1 {some ai: Identifier |
ai in i.ˆnewBinding && a in ai.ˆ(d.dstBinding)}

Dynamite retrieves as witness the term

( (i.ˆnewBinding) : >(∗(d.dstBinding) .a) ),

which indeed allowed us to complete the proof. It took Dynamite 172 sec-
onds to retrieve the witness.

Example 2 In (Jackson, 2012, Appendix A), an exercise involving proper-
ties of binary relations is proposed. As part of the Alloy model, the following
assertion is presented:

assert ReformulateNonEmptinessOK {
all r: univ−>univ | some r iff (some x, y: univ | x−>y in r) }

Let us consider the assertion obtained by:

• skolemizing the universal quantifier,

• substituting iff by implies, and

• making the antecedent of the implication (some r) a new hypothesis.

The resulting model then contains:

one sig D {r : univ −> univ}

fact {some D.r}

assert ReformulateNonEmptinessOK { some x, y: univ | x−>y in D.r }

Notice that there are two quantified variables. Therefore, we applied
Dynamite in order to provide first a witness for the outer quantification.
Dynamite returned term (D.(r.univ)) in 161 seconds. Once the witness
for the outer quantifier was found, we looked for a witness for the inner
quantifier. Since term (D.(r.univ)) denotes a set, Dynamite produces the
following assertion in order to look for the inner witness:

fact {x1 in (D.(r.univ))}

assert ReformulateNonEmptinessOK { some y: univ | x1−>y in D.r }

Dynamite returns term x1.(x1 <: D.r) as the inner witness in 79 seconds.
Using these witnesses the assertion is easily verified.
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Example 3 The following assertion was presented by Ramananandro (2008)
to be analyzed with the aid of the Alloy Analyzer, as part of an Alloy model
of the Mondex electronic purse:

assert Rbc init { all c : ConWorld | ConInitState [c] implies

some b : ConWorld | Rbc [b, c] && BetwInitState [b] }

check Rbc init for 10 but 2 ConState −− 10007s
check Rbc init for 10 but 10 ConState −− aborted by user after

−− 7h computation [minisat]

According to the original model, it took the Alloy Analyzer 2.8 hours
to analyze the assertion using 2 ConState, and the analysis was interrupted
after 7 hours for a scope of 10 ConState. We verified this assertion using
Dynamite in under 10 minutes. During the proof it was necessary to deter-
mine a witness for the existential quantifier in assertion Rbc init. It took
Dynamite 90 seconds to provide the correct witness. The complete proof of
the assertion may be seen in Appendix B.

Example 4 This example allows us to show a case in which Dynamite
provides a non-atomic coverage as witness candidate. We present the Alloy
model including assertion coverSample in Fig. 5.10. Running the witness
candidate generator on assertion coverSample returned the coverage {i,i2}.
Notice that term i +i2 is not a solution due to fact f2. Let us consider the
Alloy instance depicted in Fig. 5.11. Notice first that the instance is indeed
a model for the specification. Also, the instance shows that i2 alone cannot
be a witness candidate. If we permute i2 and i in Fig. 5.11, we see that i

cannot be a witness candidate. It took Dynamite 16 seconds to provide the
witness.

5.2.4 Using the Alloy Analyzer as a Proof Helper

Let us see the schematic representation of the proof tree for assertion from
Zave’s model BindingPreservesReachability (one of the properties we
proved), shown in Fig. 5.12. A dps-hyp command was applied in each grey
node. It is worth noting that those nodes are the main reason why a branch
splitting occurs in that example. This shows that a mistake in the introduc-
tion of a case can invalidate a major part of the proof.

A similar situation occurs when a lemma is introduced along a proof as
a means to modularize the proof effort. Proof rule dps-lemma calls the Alloy
Analyzer in order to analyze whether the introduced lemma is indeed valid.

The experience in using Dynamite on the case study presented here
showed us that this feature is a dramatic improvement with respect to the
standard case introduction. If a counterexample is found it is shown to
the user, so the hypothesis or lemma can be corrected using the information
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module fm06 extra2
open fm06 defs

sig Agent { }
abstract sig Identifier { }
sig Name, Address extends Identifier { }
sig AddressPair extends Identifier { addr: Address, name: Name }
sig Domain { endpoints: set Agent, space: set Address,

routing: space −> endpoints }
sig Path { source, dest: Address,

generator, absorber: Agent }
sig Domain2 extends Domain { dstBinding: Identifier −> Identifier }
{ all i: Identifier | i in dstBinding.Identifier =>

( (i in Address => i in space) && (i in AddressPair => i.addr in space)) }
sig Path2 extends Path { origDst: Identifier }

one sig a in Address {}
one sig d in Domain2 {}
sig NB in Identifier { newBinding: set Identifier }
one sig i in Identifier {}
one sig i2 in Identifier {}
one sig i3 in Identifier {}

fact

{ all disj p1, p2: AddressPair | p1.addr != p2.addr || p1.name != p2.name }
fact { some Agent }
fact { some Identifier }
fact { some Domain }
fact { some Path }

fact f1 { some i.ˆnewBinding }
fact f2 { #(i.ˆnewBinding +i2.ˆnewBinding) = 2 }
fact f3 { some i2.ˆnewBinding }
fact f4 { i.ˆnewBinding != i2.ˆnewBinding }

assert coverSample { some x: Identifier | one x.ˆnewBinding }
check coverSample for 6 but 2 Domain

Fig. 5.10: A sample model leading to a non-atomic coverage witness.

a

i
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Fig. 5.11: An Alloy instance for assertion coverSample.
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Fig. 5.12: Simplified proof tree for assertion BindingPreservesReachability.

revealed by the counterexample. Counterexamples also give the user a better
grasp on the model because they expose tricky corner cases.



6. DISCUSSION, LIMITATIONS & CONCLUSIONS

The analysis of abstractions is a central issue of the software development.
Many formal methods had been developed over the years, aimed to attack
the problem from different flanks, and using diverse techniques.

Lightweight methods provides the user with automatic techniques to
analyze abstractions. Nevertheless, these analysis are usually partial. On
the other corner, heavyweight methods provide full analysis but at cost of
the need of user-guidance.

In this thesis we tried to bridge the gap between both approaches by pre-
senting a theorem prover for Alloy that complements the analysis provided
by the Alloy Analyzer and, at same time, takes advantage of it to make the
tool less heavyweight.

A Theorem Prover For Alloy Users. Lightweight analysis methods, such as
Alloy, are suitable for a large variety of developments, but critical software
needs the highest possible level of confidence. In this thesis we presented
a complete calculus that allows one to prove that Alloy assertions follows
from a given model. We also embedded this calculus in PVS, achieving an
interactive theorem prover for Alloy (Dynamite) in which all the interactions
are performed using Alloy syntax. Although it could seem just a aesthetic
feature at first glance, it in fact facilitates the usage of the tool by Alloy
users.

There are two approaches previous to ours in respect to theorem proving
of Alloy assertions. One is the theorem prover Prioni, by Arkoudas et al.
(2004). Prioni translates Alloy specifications to first-order formulas char-
acterizing their first-order semantics, and then Athena [Arkoudas (2001)],
an interactive theorem prover for first-order logic, is proposed to be used in
order to prove the resulting theorem. While the procedure is sound, it is
not completely amenable to Alloy users. Switching from a relational to a
non-relational language poses an overhead on the user that we are trying to
reduce as much as possible.

The other theorem prover is the one presented by Frias et al. (2004). This
theorem prover translates Alloy specifications to a close relational language
based on binary relations (the calculus for omega closure fork algebras [Frias
(2002)]). Since the resulting framework is an equational calculus, quantifiers
are removed from Alloy formulas in the translation process. This leads to
complicated equations, unnatural for standard Alloy users.

More recent papers [El Ghazi et al. (2011); Ulbrich et al. (2012)] also
address the problem of verifying Alloy assertions. El Ghazi et al. (2011) pro-
pose the translation of an Alloy model to an SMT-problem, which is solved

90
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using the SMT-solver Z3 [de Moura et al. (2008)]. This is a very interesting
approach that has some limitations. Complex declarative assertions (as the
ones we deal with in this thesis) are unlikely to be solved automatically.
Also, the experimental results show that spurious counterexamples can be
produced.

An approach close to ours is followed by Ulbrich et al. (2012). They
present the Kelloy prover, which is built on top of the KeY first-order the-
orem prover, by Beckert et al. (2007). Kelloy’s embedding into KeY seems
to provide greater automation, but no integration with the Alloy Analyzer.
In particular, a limitation mentioned in that paper is the need for quantifier
instantiation. For some of the examples used in [Ulbrich et al. (2012)], the
witness generation technique we introduce here was able to produce correct
instantiations, automatically. Another difference arises in the way integers
are modeled. While [El Ghazi et al. (2011); Ulbrich et al. (2012)] depart from
the Alloy semantics by considering the standard mathematical model of the
integers, we stick to the Alloy model where a 2’s-complement representation
of integers is considered (c.f. Section 3.2.2).

A Lighter Interactive Theorem Prover. We studied a general sequent calcu-
lus as an example of a heavyweight analysis procedure and, in Section 2.2.3,
outlined some of the points of a proof where insight and creativity are spe-
cially required. With these points in mind, we developed novel techniques
in which the Alloy Analyzer may be used to help the user develop proofs.

Using SAT-solving in the context of first-order theorem proving is not
new. The closest works to Dynamite 1.0 are the thesis by Weber (2008) and
the article of Dunets et al. (2010). They follow the idea of our 2007 article
[Frias et al. (2007)] of using a model generator to look for counterexamples
of formulas being proved by a theorem prover. Previous articles, such as
[Weber (2006)], only focus on using the SAT-solver to prove propositional
tautologies and use the resolution proofs provided by the SAT-solver to guide
the theorem prover proofs. This is more restrictive than Dynamite 1.0 in
that Dynamite is not limited to propositional formulas.

Meanwhile, Nitpick [Blanchette et al. (2010)] is used as a counterexam-
ple generator for the higher-order logic supported by the Isabelle theorem
prover. Nitpick, like Dynamite, is aimed at detecting non-theorems when a
proof is initiated. Unlike Dynamite, Nitpick’s application seems to be re-
stricted to this case. Similarly, rather than focusing on providing theorem-
proving capabilities to a lightweight formal method, Kong et al. (2005) use
model checking in order to look for counterexamples before (and during) the
theorem proving process. Alternative and more ambitious ways of combin-
ing model checking and theorem proving are presented by Shankar (2000).
Model checkers and theorem provers interact using the latter for local deduc-
tions and propagation of known properties, while the former are employed



6. Discussion, Limitations & Conclusions 92

in order to calculate new properties from reachability predicates or their
approximations. Since Alloy models are static, it is not clear how to employ
these techniques

Reducing the number of sentences in sequents has been acknowledged
as an important problem by the Automated Theorem Proving community.
The tool MaLARea [Urban (2007)] reduces sets of hypotheses using machine
learning techniques. Sledgehammer [Blanchette et al. (2010)], uses auto-
mated theorem provers to select axioms during interactive theorem proving.
The iterative technique presented in Section 4.2.4 shows resemblance with
[Pudlák (2007)], but [Pudlák (2007)] uses the Darwin model finder tool
to convert first-order sentences into function-free clause sets. No notion
of UnSAT-cores is provided or used. The SRASS system [Sutcliffe et al.
(2007)] uses the ideas presented in [Pudlák (2007)] and complements them
with a notion of syntactic relevance, but does not make use of UnSAT-
cores. Even members of other communities have faced so similar problems
that their solutions can be adapted to our particular interest of trying to
find the relevant formulas of a sequent using a model builder. For example,
Junker (2004) presents algorithmic procedures to get the most significative
constraints from over-constrained problems, in the context of Constraint
Programming. These algorithms are general enough to allow one to adapt
them in order to find a solution of our hypothesis-selection problem.

The overall experience of proving theorems using Dynamite was very
positive. It is remarkable that, although the crucial parts of the proofs are
still relying on the user, using the Alloy Analyzer during the proving process
proved to be useful in many ways:

• Early detection of errors during key-steps of proofs helped us save
time.

• The counterexamples retrieved by the Alloy Analyzer helped us im-
proving our understanding of the problem domain.

• Having leaner sequents helped us focusing on the right proof strategies.

• Using the Alloy language during proofs contributed to smoothing the
learning curve.

• Automatically finding witnesses for existentially quantified assertions
allowed us to shift the focus to higher-level proof strategies.

Limitations and Threats to Validity. The work reported in this thesis re-
vealed also some limitations of Dynamite in its present state. In the first
place, the automation in the proving process is scarce. Only few proof steps
are automatically solved (for instance, those referring to typing of relations
or to witness candidate generation).
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Another limitation this work revealed was the need for an easily portable
knowledge base that, as a library of predefined lemmas, allows the use of
known general properties in the user-specific proofs. Also, it would be very
useful to have a mechanism that proposes which of those lemmas are the
most likely to be useful at the current point of the proof. These are areas
in which we are currently working.

Despite the case study we worked on, which spotlights were remarked in
Chapter 4, it would be necessary to test the usability of Dynamite with a
intensive experiment in the field. We believe, as stated in various passages
of this thesis, that the characteristic features of Dynamite simplify the proof
developing process, but we only tested this assertion with ourselves as the
subjects. As with every technique and tool which requires user guidance,
this usability experiment is not an easy task. The test must be carefully
planed and carried out, in order to get unbiased results.

Concluding remarks. In this thesis we pursue two complementary but dis-
tinguishable objectives. In first place, to complement the lightweight ap-
proach of the Alloy Analyzer to the problem of analysis of abstractions. We
managed to build an interactive theorem prover designed to Alloy users, not
only aimed at proving Alloy assertions.

Besides that, we tried to enrich and facilitate the proof process making
use of a lightweight approach. We attacked several error prone points of
sequent calculus proofs, providing automatic help to the user.

We tested the viability and usefulness of the prover and the helping
techniques on recognized case studies. The result of these tests were very
promising. The helpful features of Dynamite save uncountable amounts
of time, by the early detection of errors and the proposal of existential
witnesses.

We believe this thesis serves as a demonstration that by combining dif-
ferent types of techniques, new tools may be developed. Such tools are more
accurate, useful and that brings the power of more conclusive analysis to a
broader audience.
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Computer Science, vol. 3051. Springer-Verlag, Malente, Germany, 204–
213.

Beckert, B., Hahnle, R., and Schmitt, P.H. (eds.). Verification of
Object-Oriented Software: The KeY Approach. Springer-Verlag (2007).
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LIST OF SYMBOLS AND CONVENTIONS

Conventions. Unless explicitly stated, the following conventions are used in the
whole document: greek lowercase letters (α,β, γ, etc.) are used to represent logic
formulas, greek capital letters (Γ,∆, etc.) to represent sets of logic formulas, latin
italic lowercase e (e, e1, e2, etc.): expressions, latin italic capital r s and t (R,S,T ):
relations, latin italic capital a b and c (A,B,C): sets, latin italic capital l (L): lan-
guages, gothic capital letters (A,B, etc.): PDOCFA structures, latin italic lowercase
v (v, v1, v2, etc.): variables, latin italic lowercase c (c, c1, c2, etc.): constants, latin
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APPENDIX



A. COMPLETE PROOFS OF LEMMAS FROM
CHAPTER 3

In this appendix we present the proofs of theorems and lemmas used as the basis
of the completeness theorem from chapter 3.

From the previous definitions, the following lemma can be proved by induc-
tion on the structure of Alloy terms. The lemma, besides being necessary for the
proof of interpretability, shows also in what sense the previous constructions can
be considered “canonical”. Notice that both Alloy and relational instances can be
homomorphically extended to functions assigning appropriate values to complex
terms built from the constants of each language. Those functions were called E
(Def. 3.1.5) and X (Def. 3.2.3) in chapter 3. For the sake of simplifying the notation
we will use in this appendix the same notation for instances and their homomorphic
extensions.

Lemma A.0.1: Let a be an Alloy instance. Let p be a PDOCFA instance defined
from a according to Def. 3.2.5. Then, for every Alloy term t such that a(t) ⊆
a(sigi1)× · · · × a(sigik), we have:

pF(T(t)) =

{

{ 〈a, a〉 : a ∈ a(t) } , if k = 1

{ 〈a1, a2 ⋆ · · · ⋆ ak〉 : 〈a1, a2, . . . , ak〉 ∈ a(t) } . if k > 1

Proof. The proof follows by induction on the structure of the Alloy term t. The
proof is trivial for the constants iden, univ and none. We present detailed proofs
for the cases in which t is an individual variable or t = t1.t2. The other cases are
easier.

• if t is an individual variable v:

– if v ranges over atoms:

p(T(t)) = p(T(v)) (by Def. t)

= p(v) (by Def. T)

= { 〈a(v), a(v)〉 } (by Def. 3.2.5)

= { 〈a, a〉 : a ∈ a(t) } . (by set theory and Def. t)

– if v ranges over higher order relations:

p(T(t)) = p(T(v)) (by Def. t)

= p(v) (by Def. T)

= { 〈a1, a2 ⋆ · · · ⋆ ak〉 : 〈a1, a2, . . . , ak〉 ∈ a(v) }
(by Def. 3.2.5)

= { 〈a1, a2 ⋆ · · · ⋆ ak〉 : 〈a1, a2, . . . , ak〉 ∈ a(t) } .
(by set theory and Def. t)

• if t = t1.t2: Since both the result of the lemma and the definition of • are
given by cases, we will consider 6 different cases depending on k1 (the rank
of t1) and k2 (the rank of t2). Following the typing constraints of Alloy,
navigation is not defined when k1 = k2 = 1.
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– k1 = 1 and k2 = 2 (then, k = 1):

p(T(t)) = p(T(t1.t2)) (by Def. t)

= p(T(t1) •T(t2)) (by Def. T)

= p(ran(T(t1).T(t2))) (by Def. •)

= ran(p(T(t1)).p(T(t2))) (by p homomorphism)

= ran({ 〈a, a〉 : a ∈ a(t1) } . { 〈a, b〉 : 〈a, b〉 ∈ aS(t2) })
(by Ind. Hyp.)

= ran({ 〈a, b〉 : a ∈ a(t1) ∧ 〈a, b〉 ∈ a(t2) }) (by Def.“.”)

= { 〈b, b〉 : ∃a (a ∈ a(t1) ∧ 〈a, b〉 ∈ a(t2)) } (by Def. ran)

= { 〈b, b〉 : b ∈ a(t1).a(t2) } (by Def. “.”)

= { 〈b, b〉 : b ∈ a(t1. t2) } (by a homomorphism)

= { 〈b, b〉 : b ∈ a(t) } . (by Def. t)

– k1 = 1 and k2 > 2:

Notice that

p(T(t1)).p(T(t2))

= { 〈a, a〉 : a ∈ a(t1) }

. { 〈b1, b2 ⋆ · · · ⋆ bk2
〉 : 〈b1, b2, . . . , bk2

〉 ∈ a(t2) } (by Ind. Hyp.)

= { 〈b1, b2 ⋆ · · · ⋆ bk2
〉 : b1 ∈ a(t1) ∧ 〈b1, b2, . . . , bk2

〉 ∈ a(t2) } .
(by Def.“.”)

Then,

ran(p(T(t1)).p(T(t2)))

= { 〈b2 ⋆ · · · ⋆ bk2 , b2 ⋆ · · · ⋆ bk2〉 : ∃b1 (b1 ∈ a(t1) ∧ 〈b1, b2, . . . , bk2〉 ∈ a(t2)) }
(by Def. ran)

= { 〈b2 ⋆ · · · ⋆ bk2
, b2 ⋆ · · · ⋆ bk2

〉 : 〈b2, . . . , bk2
〉 ∈ a(t1).a(t2) }

(by Def. “.”)

= { 〈b2 ⋆ · · · ⋆ bk2
, b2 ⋆ · · · ⋆ bk2

〉 : 〈b2, . . . , bk2
〉 ∈ a(t1.t2) }

(by a homo.)

= { 〈b2 ⋆ · · · ⋆ bk2 , b2 ⋆ · · · ⋆ bk2〉 : 〈b2, . . . , bk2〉 ∈ a(t) } . (by Def. t)

From the definitions of π and ρ, we can reason

∼ π .ran(p(T(t1)).p(T(t2))).ρ

= { 〈b2, b3 ⋆ · · · ⋆ bk2〉 : 〈b2, b3, . . . , bk2〉 ∈ a(t) } . (A.1)

Joining the previous proofs we obtain:

p(T(t)) = p(T(t1.t2)) (by Def. T)

= p(T(t1) •T(t2)) (by Def. T)

= p(∼ π .ran(T(t1).T(t2)).ρ) (by Def. •)

=∼ π .ran(p(T(t1)).p(T(t2))).ρ (by p homomorphism)

= { 〈b2, b3 ⋆ · · · ⋆ bk2〉 : 〈b2, b3, . . . , bk2〉 ∈ a(t) } . (by (A.1))
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– k1 = 2 and k2 = 1 (then, k = 1):

p(T(t)) = p(T(t1.t2)) (by Def. t)

= p(T(t1) •T(t2)) (by Def. T)

= p(dom(T(t1).T(t2))) (by Def. •)

= dom(p(T(t1)).p(T(t2))) (by p homomorphism)

= dom({ 〈a, b〉 : 〈a, b〉 ∈ a(t1) } . { 〈b, b〉 : b ∈ a(t2) })
(by Ind. Hyp.)

= dom({ 〈a, b〉 : 〈a, b〉 ∈ a(t1) ∧ b ∈ a(t2) }) (by Def.“.”)

= { 〈a, a〉 : ∃b (〈a, b〉 ∈ a(t1) ∧ b ∈ a(t2)) } (by Def. Dom)

= { 〈a, a〉 : a ∈ a(t1).a(t2) } (by Def. “.”)

= { 〈a, a〉 : a ∈ a(t1.t2) } (by e homomorphism)

= { 〈a, a〉 : a ∈ a(t) } . (by Def. t)

– k1 = 2 and k2 > 1:

p(T(t)) = p(T(t1.t2)) (by Def. t)

= p(T(t1) •T(t2)) (by Def. T)

= p(T(t1).T(t2)) (by Def. •)

= p(T(t1)).p(T(t2)) (by p homomorphism)

= { 〈a, a1〉 : 〈a, a1〉 ∈ a(t1) }

. { 〈a1, a2 ⋆ · · · ⋆ ak2〉 : 〈a1, a2, . . . , ak2〉 ∈ a(t2) }
(by Ind. Hyp.)

= {〈a, a2 ⋆ · · · ⋆ ak2
〉 : ∃a1 (〈a, a1〉 ∈ a(t1)

∧ 〈a1, a2, . . . , ak2
〉 ∈ a(t2))} (by Def. “.”)

= { 〈a, a2 ⋆ · · · ⋆ ak2
〉 : 〈a, a2, . . . , ak2

〉 ∈ a(t1).a(t2) }
(by Def. “.”)

= { 〈a, a2 ⋆ · · · ⋆ ak2
〉 : 〈a, a2, . . . , ak2

〉 ∈ e(t1.t2) }
(by a homo.)

= { 〈a, a2 ⋆ · · · ⋆ ak2〉 : 〈a, a2, . . . , ak2〉 ∈ a(t) } . (by Def. t)

– k1 > 2 and k2 = 1:

p(T(t)) = p(T(t1.t2)) (by Def. t)

= p(T(t1) •T(t2)) (by Def. T)

= p(T(t1). (iden⊗ (· · · ⊗ ((iden⊗T(t2)) .π)))) (by Def. •)

= p(T(t1)). (iden⊗ (· · · ⊗ ((iden⊗p(T(t2))) .π))) .
(by p homo.)

Notice that

iden⊗p(T(t2)) = { 〈a ⋆ b, a ⋆ b〉 : 〈b, b〉 ∈ p(T(t2)) } (by Def. ⊗)

= { 〈a ⋆ b, a ⋆ b〉 : b ∈ a(t2) } . (by Ind. Hyp.)

Then,
(iden⊗p(T(t2))) .π = { 〈a ⋆ b, a〉 : b ∈ a(t2) } .
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Therefore,

iden⊗ (· · · ⊗ (iden⊗p(T(t2))) .π) =

{ 〈a1 ⋆ · · · ⋆ ak1−3 ⋆ a ⋆ b, a1 ⋆ · · · ⋆ ak1−2 ⋆ a〉 : b ∈ a(t2) } . (A.2)

By inductive hypothesis,

p(T(t1)) = { 〈b1, b2 ⋆ · · · ⋆ bk1
〉 : 〈b1, b2, . . . , bk1

〉 ∈ a(t1) } . (A.3)

From (A.2) and (A.3), 〈c1, c2 ⋆ · · · ⋆ ck1−1〉 ∈ p(T(t)) iff there exists
(due to the definition of composition of binary relations) an object
d1 ⋆ · · · ⋆ dk1−1 such that:

∗ 〈c1, d1 ⋆ · · · ⋆ dk1−1〉 ∈ p(T(t1)), (or, equivalently, because of the
relationship between p and a: 〈c1, d1, . . . , dk1−1〉 ∈ a(t1)),

∗ dk1−1 ∈ a(t2), and

∗ di = ci+1 for 1 ≤ i ≤ k1 − 2.

From the previous conditions,

〈c1, c2 ⋆ · · · ⋆ ck1−1〉 ∈ p(T(t))

iff ∃dk1−1 (〈c1, c2, . . . , ck1−1, dk1−1〉 ∈ a(t1) and dk1−1 ∈ a(t2))

iff 〈c1, c2, . . . , ck1−1〉 ∈ a(t1).a(t2)

iff 〈c1, c2, . . . , ck1−1〉 ∈ e(t1 .t2)

iff 〈c1, c2, . . . , ck1−1〉 ∈ a(t) .

Thus, p(T(t)) = { 〈c1, c2 ⋆ · · · ⋆ ck1−1〉 : 〈c1, c2, . . . , ck1−1〉 ∈ a(t) }.

– k1 > 2 and k2 > 1:

p(T(t)) = p(T (t1 .t2)) (by Def. t)

= p(T(t1) •T(t2)) (by Def. T)

= p(T(t1)) • p(T(t2)) . (by p homo.)

= p(T(t1). (iden⊗ (· · · ⊗ (iden⊗T(t2))))) (by Def. •)

= p(T(t1)). (iden⊗ (· · · ⊗ (iden⊗p(T(t2))))) (by p homo.)

By inductive hypothesis,

p(T(t1)) = { 〈a1, a2 ⋆ · · · ⋆ ak1〉 : 〈a1, a2, . . . , ak1〉 ∈ a(t1) } (A.4)

and

p(T(t2)) = { 〈b1, b2 ⋆ · · · ⋆ bk2
〉 : 〈b1, b2, . . . , bk2

〉 ∈ a(t2) } . (A.5)

From (A.5) and Def. ⊗ ,

iden⊗ (· · · ⊗ (iden⊗p(T(t2))))

= {〈a1 ⋆ · · · ⋆ ak1−2 ⋆ b1, a1 ⋆ · · · ⋆ ak1−2 ⋆ b2 ⋆ · · · ⋆ bk2〉 :

〈b1, b2, . . . , bk2〉 ∈ a(t2)} . (A.6)

From (A.4) and (A.6), 〈c1, c2 ⋆ · · · ⋆ ck1+k2−2〉 ∈ p(T(t)) iff there exists
(due to the definition of composition of binary relations) d1, . . . , dk1−1

such that:
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∗ 〈c1, d1 ⋆ · · · ⋆ dk1−1〉 ∈ p(T(t1)) (or, equivalently as aforementioned,
〈c1, d1, . . . , dk1−1〉 ∈ a(t1)),

∗ 〈dk1−1, ck1
, . . . , ck1+k2−2〉 ∈ a(t2), and

∗ di = ci+1 for 1 ≤ i ≤ k1 − 2.

From the previous conditions,

〈c1, c2 ⋆ · · · ⋆ ck1+k2−2〉 ∈ e′(T(t))

iff ∃dk1−1 (〈c1, c2, . . . , ck1−1, dk1−1〉 ∈ a(t1)

and 〈dk1−1, ck1
, . . . , ck1+k2−2〉 ∈ a(t2))

iff 〈c1, c2, . . . , ck1+k2−2〉 ∈ a(t1).a(t2)

iff 〈c1, c2, . . . , ck1+k2−2〉 ∈ e(t1 .t2)

iff 〈c1, c2, . . . , ck1+k2−2〉 ∈ a(t) .

Thus,

p(T(t)) = { 〈c1, c2 ⋆ · · · ⋆ ck1+k2−2〉 : 〈c1, c2, . . . , ck1+k2−2〉 ∈ a(t) }

Lemma A.0.2: Let L be a PDOCFA language, F a proper PDOCFA and pLF a rela-
tional instance assigning values from F to the constant and variable symbols of L.
The Alloy instance a, built according to Def. 3.2.6, satisfies for every Alloy term t
with a(t) ⊆ a(sigi1)× · · · × a(sigik):

• if k = 1, a(t) = { a : 〈a, a〉 ∈ p(T(t)) },

• if k > 1, a(t) = { 〈a1, a2, . . . , ak〉 : 〈a1, a2 ⋆ · · · ⋆ ak〉 ∈ p(T(t)) }.

Proof. By Def. 3.2.6, a satisfies:

• for every partial identity symbol idens ∈ L,

a(s) = { a : 〈a, a〉 ∈ p(idens) } ,

• for each constant symbol c, nor representing a comprehension expression nor
being general constants (such as: univ, iden, none, idenU, idenZ),

a(c) = { 〈a1, . . . , ak〉 : 〈a1, a2 ⋆ · · · ⋆ ak〉 ∈ p(c) }

where k = rank(X (c)p),

• for every variable symbol v, if v is representing an Alloy variable ranging over
atoms,

a(vi) = a such that p(vi) = { 〈a, a〉 }

else, calling k the rank codified in v,

a(v) = { 〈a1, . . . , ak〉 : 〈a1, a2 ⋆ · · · ⋆ ak〉 ∈ p(v) } .

From the definition of a, p satisfies:

• p(idens) = { 〈a, a〉 : a ∈ a(s) },
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• p(c) = { 〈a1, a2 ⋆ · · · ⋆ an〉 : 〈a1, . . . , an〉 ∈ a(c) },

• p(v) =







{ 〈a, a〉 } s.t. a(v) = a if v is representing an Alloy vari-
able ranging over atoms

{ 〈a1, a2 ⋆ · · · ⋆ ak〉 : 〈a1, a2, . . . , ak〉 ∈ a(v) } otherwise.

We now have an Alloy instance a and a relational instance p that satisfy the con-
ditions in Def. 3.2.5. Notice then that F is compatible with the Alloy instance a.
From Lemma A.0.1, for every Alloy term t with a(t) ⊆ a(sigi1)× · · · × a(sigik):

• if k = 1, p(T(t)) = { 〈a, a〉 : a ∈ a(t) },

• if k > 1, p(T(t)) = { 〈a1, a2 ⋆ · · · ⋆ ak〉 : 〈a1, a2, . . . , ak〉 ∈ a(t) }.

It then follows that, for every such term:

• if k = 1, a(t) = { a : 〈a, a〉 ∈ p(T(t)) },

• if k > 1, a(t) = { 〈a1, a2, . . . , ak〉 : 〈a1, a2 ⋆ · · · ⋆ ak〉 ∈ p(T(t)) }.

The following lemma will be used in the proof of Lemma A.0.4.

Lemma A.0.3: Let a be an Alloy instance. Let p be a relational instance defined
from a, according to Def. 3.2.5. Let Fa be a PDOCFA compatible with instance a

(c.f. Def. 3.2.7).
Let a be an atom from a signature s, a′ = (a ⊕ [x 7→ a]) an Alloy instance that

can only differ from a in the value of the variable x, p′ a relational instance defined
from a’, and Fa′ a PDOCFA compatible with a′.

Finally, let r = { 〈a, a〉 } ⊆ idens be a point. Then,

Fa , p ⊕ {x 7→ r} |=
PDOCFA

β iff Fa′ , p′ |=
PDOCFA

β

Proof. In order to prove the lemma it suffices to show that Fa = Fa′ and p ⊕{x 7→
r} = p′. According to Defs. 3.2.5 and 3.2.7, the construction of algebra Fa does
not depend on the value a assigns to variables. Therefore, it is immediate that
Fa = Fa′ .

On the other hand, for all signatures, fields and variables distinct of x, it is
clear that p ⊕ {x 7→ r} and p′ agree. For variable x we have:

(p ⊕ {x 7→ r})(x) = r = { 〈a, a〉 } .

Similarly, by Def. 3.2.5,

p′(x) = { 〈a′(x), a′(x)〉 }

= { 〈(a ⊕ [x 7→ a]) (x), (a ⊕ [x 7→ a]) (x)〉 }

= { 〈a, a〉 } .

Then, p ⊕ {x 7→ r} and p′ also agree for x and hence p ⊕ {x 7→ r} = p′.

Lemma A.0.4: Let a be an Alloy instance. Let p be defined from a according to
Def. 3.2.5. Let F be a PDOCFA compatible with instance a (c.f. Def. 3.2.7). Then,
being ϕ an Alloy formula interpretable in a,

a |= ϕ iff F, p |=
PDOCFA

F(ϕ)
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Proof. The proof proceeds by induction on the structure of the Alloy formula ϕ. We
will concentrate on formulas built from atomic formulas (inclusions) and existential
quantification. The other cases are easier.

• ϕ = t1 in t2:

For ϕ to be well-formed, t1 and t2 must stand for relations of the same arity.

F, p |=
PDOCFA

F(t1 in t2)

iff F, p |=
PDOCFA

T(t1) in T(t2) (by Def. 3.2.12)

iff F, p |=
PDOCFA

T(t2) = T(t1) + T(t2) (by Notation remark 5)

iff p(T(t2)) = p(T(t1)) + p(T(t2)) (by Def. of |=
PDOCFA

and p homo.)

iff p(T(t1)) ⊆ p(T(t2)) . (by set-theory)

There are now two possibilities, namely, either both t1, t2 have arity 1, or
they both have arity k > 2. Let us continue the proof for the unary case,
being the remaining case similar. We then have

p(T(t1)) ⊆ p(T(t2))

iff { 〈a, a〉 : a ∈ a(t1) } ⊆ { 〈a, a〉 : a ∈ a(t2) } (by Lemma A.0.1)

iff a(t1) ⊆ a(t2) (by set-theory)

iff a |= t1 in t2 . (by Def. of |=)

• Lets face now the case in which ϕ is an existential quantification. In particular
we will show the case of a quantification ranging over atoms. The higher order
cases are very similar to this one. Let suppose that

ϕ = some x : one s | α

Then,

F, p |=
PDOCFA

F(some x : one s | α)

iff F, p |=
PDOCFA

some x | F(x ins && R(x, one s) && α) (by Def. of |=
PDOCFA

)

iff F, p |=
PDOCFA

some x | F(x ins && one x && α) (by R, from Def. 3.1.6)

iff F, p |=
PDOCFA

some x | x in idens && one(x) && F(α)

(by T and F, from Def. 3.2.11 and 3.2.12)

iff there exists R ∈ RF such that:

F, p ⊕ {x 7→ R} |=
PDOCFA

x in idens and

F, p ⊕ {x 7→ R} |=
PDOCFA

one(x) and

F, p ⊕ {x 7→ R} |=
PDOCFA

F(α) . (by Def. of |=
PDOCFA

)

It is easy to prove that such R is, in fact, a point included in idens. Let
us assume R = { 〈a, a〉 } (for some a ∈ a(s)). Notice that algebra F does
not depend on the value a assigns to variables. Thus, F is also compatible



A. Complete Proofs of Lemmas from Chapter 3 108

with instance a ⊕ {x 7→ a}. Moreover, from the proof of Lemma A.0.3, if
we call p′ an instance defined from a ⊕ {x 7→ a} (according to Def. 3.2.5),
p′ = p ⊕ {x 7→ R}.

Thus,

there exists R ∈ RF such that:

F, p ⊕ {x 7→ R} |=
PDOCFA

x in idens and

F, p ⊕ {x 7→ R} |=
PDOCFA

one(x) and

F, p ⊕ {x 7→ R} |=
PDOCFA

F(α) . (by Def. of |=
PDOCFA

)

iff there exists a ∈ a(s) such that

F, p′ |=
PDOCFA

F(x ins && one x && α)

(with p′ as in the previous comment)

iff there exists a ∈ a(s) such that

a ⊕ {x 7→ a} |= x ins && one x && α (by inductive hypothesis)

iff a |= some x: one s | α (by Def. of |=)

The rest of the cases to be proven can be solved following similar strategies.

Lemma A.0.5: Let F be a proper PDOCFA. Let p be a relational instance. Then,
there exists an Alloy instance a built according to Def. 3.2.6 such that for every
Alloy formula ϕ,

F, p |=
PDOCFA

ϕ iff a |= ϕ .

Proof. The proof proceeds by induction on the structure of formula ϕ.

• ϕ = t1 in t2:

F, p |=
PDOCFA

t1 in t2 iff F, p |=
PDOCFA

T(t1) in T(t2) (by Def. 3.2.12)

⇐⇒ p(T(t1)) ⊆ p(T(t2)) (as in previous proof)

⇐⇒ a(t1) ⊆ a(t2) (by Lemma A.0.2)

⇐⇒ a |= t1 in t2 . (by Def. of |=)

The remaining parts of the proof follow a structure similar to that of the proof
of Lemma A.0.4.

Lemma A.0.6: Given an Alloy instance a, there exists a proper PDOCFA F com-
patible with a.

Proof. Assume the Alloy model declares signatures Sig1, . . . ,SigI . Let A =
⋃

1≤j≤I e(Sigj). Let Tree(A) be the smallest set satisfying the following conditions:

• A ⊆ Tree(A), and

• Tree(A)× Tree(A) ⊆ Tree(A).

Tree(A) describes finite binary trees with data from A in the leaves. For in-
stance, element 〈a0, 〈a1, 〈〈a2, a3〉 , 〈a4, a5〉〉〉〉 ∈ Tree(A) describes the tree
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•
�

a0
❅
•

�
a1

❅
•

�
•

� ❅
a2 a3

❅
•

� ❅
a4 a5

Let us consider the PDOCFA F with universe1 Pw(Tree(A)×Tree(A)). All the
operators but fork have their standard set-theoretical meaning. For fork we define

R∇S = { 〈a, 〈b, c〉〉 : 〈a, b〉 ∈ R && 〈a, c〉 ∈ S } .

In order to prove compatibility we must show that signatures and fields de-
fined in the Alloy model are given appropriate values according to instance p, the
relational instance defined from a. For signature Sigj (1 ≤ j ≤ I), p(idenSigj

) =
idenSigj

, which clearly belongs to Pw(Tree(A) × Tree(A)). For a field F declared
as

sig S { F : S1->...->Sk }

the relation p(F ) defined as

{〈s0, s1 ⋆ · · · ⋆ sk〉 :

s0 ∈ S && s1 ∈ S1 && · · ·&& sk ∈ Sk && 〈s0, s1, . . . , sk〉 ∈ a(F )}

belongs to Pw(Tree(A)× Tree(A)) provided a ⋆ b is defined as 〈a, b〉.

1 We denote by Pw(X) the power set of set X.



B. CASE STUDY: PROOF OF MONDEX PROPERTY

In this section we provide the complete proof of a property from the Alloy model
for Mondex electronic purse by Ramananandro (2008), as an example of use of
Dynamite. The property is stated as an Alloy assertion called Rbc_init.

Rbc_init :

|-------

{1} (some b : ConWorld| ((Rbc[b, c]) && (BetwInitState[b])))

Rule? (rewrite-msg-off)

Turning off rewriting commentary,

No change on: (rewrite-msg-off)

Rbc_init :

|-------

{1} (some b : ConWorld| ((Rbc[b, c]) && (BetwInitState[b])))

Rule? (use "Rbc_pre1")

Using lemma Rbc_pre1,

this simplifies to:

Rbc_init :

{-1} ((((((Concrete[c]) && (BetwInitState[cb]))

&& ((c . conAuthPurse) = (cb . conAuthPurse)))

&& (XiConPurse[c, cb, (c . conAuthPurse)]))

&& ((c . archive) = (cb . archive)))

&& ((c . ether) in (cb . ether)))

|-------

[1] (some b : ConWorld| ((Rbc[b, c]) && (BetwInitState[b])))

Rule? (prop)

Applying propositional simplification,

this simplifies to:

Rbc_init :

{-1} (Concrete[c])

{-2} (BetwInitState[cb])

{-3} ((c . conAuthPurse) = (cb . conAuthPurse))

{-4} (XiConPurse[c, cb, (c . conAuthPurse)])

{-5} ((c . archive) = (cb . archive))

{-6} ((c . ether) in (cb . ether))

|-------

[1] (some b : ConWorld| ((Rbc[b, c]) && (BetwInitState[b])))

110
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-- AT THIS POINT WE USE THE WITNESS CANDIDATE POSTULATION ROUTINE

-- WHICH SUGGESTS cb AS THE WITNESS.

Rule? (inst 1 "cb")

Instantiating the top quantifier in 1 with the terms: cb,

this yields 2 subgoals:

Rbc_init.1 :

[-1] (Concrete[c])

[-2] (BetwInitState[cb])

[-3] ((c . conAuthPurse) = (cb . conAuthPurse))

[-4] (XiConPurse[c, cb, (c . conAuthPurse)])

[-5] ((c . archive) = (cb . archive))

[-6] ((c . ether) in (cb . ether))

|-------

{1} ((Rbc[cb, c]) && (BetwInitState[cb]))

Rule? (prop)

Applying propositional simplification,

this simplifies to:

Rbc_init.1 :

[-1] (Concrete[c])

[-2] (BetwInitState[cb])

[-3] ((c . conAuthPurse) = (cb . conAuthPurse))

[-4] (XiConPurse[c, cb, (c . conAuthPurse)])

[-5] ((c . archive) = (cb . archive))

[-6] ((c . ether) in (cb . ether))

|-------

{1} (Rbc[cb, c])

Rule? (expand "Rbc")

Expanding the definition of Rbc,

this simplifies to:

Rbc_init.1 :

[-1] (Concrete[c])

[-2] (BetwInitState[cb])

[-3] ((c . conAuthPurse) = (cb . conAuthPurse))

[-4] (XiConPurse[c, cb, (c . conAuthPurse)])

[-5] ((c . archive) = (cb . archive))

[-6] ((c . ether) in (cb . ether))

|-------

{1} (((((cb . conAuthPurse) = (c . conAuthPurse))

&& (XiConPurse[cb, c, (cb . conAuthPurse)]))

&& ((c . ether) in (cb . ether)))

&& ((cb . archive) = (c . archive)))

Rule? (prop)

Applying propositional simplification,
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this yields 3 subgoals:

Rbc_init.1.1 :

[-1] (Concrete[c])

[-2] (BetwInitState[cb])

[-3] ((c . conAuthPurse) = (cb . conAuthPurse))

[-4] (XiConPurse[c, cb, (c . conAuthPurse)])

[-5] ((c . archive) = (cb . archive))

[-6] ((c . ether) in (cb . ether))

|-------

{1} ((cb . conAuthPurse) = (c . conAuthPurse))

Rule? (assert)

Simplifying, rewriting, and recording with decision procedures,

This completes the proof of Rbc_init.1.1.

Rbc_init.1.2 :

[-1] (Concrete[c])

[-2] (BetwInitState[cb])

[-3] ((c . conAuthPurse) = (cb . conAuthPurse))

[-4] (XiConPurse[c, cb, (c . conAuthPurse)])

[-5] ((c . archive) = (cb . archive))

[-6] ((c . ether) in (cb . ether))

|-------

{1} (XiConPurse[cb, c, (cb . conAuthPurse)])

Rule? (hide-all-but (1 -4 -3))

Keeping (1 -4 -3) and hiding *,

this simplifies to:

Rbc_init.1.2 :

[-1] ((c . conAuthPurse) = (cb . conAuthPurse))

[-2] (XiConPurse[c, cb, (c . conAuthPurse)])

|-------

[1] (XiConPurse[cb, c, (cb . conAuthPurse)])

Rule? (replace -1 :hide? t)

Replacing using formula -1,

this simplifies to:

Rbc_init.1.2 :

{-1} (XiConPurse[c, cb, (cb . conAuthPurse)])

|-------

[1] (XiConPurse[cb, c, (cb . conAuthPurse)])

Rule? (grind)

Trying repeated skolemization, instantiation, and if-lifting,

This completes the proof of Rbc_init.1.2.

Rbc_init.1.3 :
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[-1] (Concrete[c])

[-2] (BetwInitState[cb])

[-3] ((c . conAuthPurse) = (cb . conAuthPurse))

[-4] (XiConPurse[c, cb, (c . conAuthPurse)])

[-5] ((c . archive) = (cb . archive))

[-6] ((c . ether) in (cb . ether))

|-------

{1} ((cb . archive) = (c . archive))

Rule? (assert)

Simplifying, rewriting, and recording with decision procedures,

This completes the proof of Rbc_init.1.3.

This completes the proof of Rbc_init.1.

Rbc_init.2 (TCC):

[-1] (Concrete[c])

[-2] (BetwInitState[cb])

[-3] ((c . conAuthPurse) = (cb . conAuthPurse))

[-4] (XiConPurse[c, cb, (c . conAuthPurse)])

[-5] ((c . archive) = (cb . archive))

[-6] ((c . ether) in (cb . ether))

|-------

{1} (cb in ConWorld)

Rule? (hide-all-but 1)

Keeping 1 and hiding *,

this simplifies to:

Rbc_init.2 :

|-------

[1] (cb in ConWorld)

Rule? (use "this?cbSubsetSig")

Using lemma this?cbSubsetSig,

this simplifies to:

Rbc_init.2 (TCC):

|-------

{1} (cb in cb)

[2] (cb in ConWorld)

Rule? (grind)

Trying repeated skolemization, instantiation, and if-lifting,

This completes the proof of Rbc_init.2.

Q.E.D.

Run time = 2.04 secs.

Real time = 41.89 secs.
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