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Nahuel Andrés

Directores de Tesis:
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Resumen

Si bien la dinámica macroscópica de los plasmas en el medio interplanetario se es-

tudia adecuadamente a través de una descripción magnetohidrodinámica (MHD),

a escalas más pequeñas comienzan a manifestarse efectos cinéticos que producen

consecuencias observables. La presente Tesis propone investigar y entender al-

gunos fenómenos f́ısicos que requieren apartarse de la descripción MHD tradi-

cional, tales como el efecto Hall y la inercia electrónica. En particular, se estu-

diará la generación y distribución de ondas de ultra-baja frecuencia asociadas a

las magnetosferas planetarias, la importancia de la inercia electrónica en procesos

de reconexión magnética no-colisional y el estudio del espectro de enerǵıa electro-

magnética en las pequeñas escalas en el viento solar. El estudio teórico-numérico

de estos fenómenos se complementará con el análisis de mediciones in-situ de

satélites orbitando alrededor de planetas con campo magnético intŕınseco, como la

Tierra o Saturno.

Palabras claves: magnetohidrodinámica, efectos cinéticos, turbu-

lencia, reconexión magnética, ondas de ultra-baja frequencia
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Plasma kinetic effects in the interplanetary medium

Abstract

The one-fluid magnetohydrodynamics (MHD) describes space plasma phenomena

at macroscopic temporal and spatial scales. However, this description is no ade-

quate when small-scale processes become significant. In this Thesis, we theoretically

describe small-scale plasma processes observed in different regions of the interplan-

etary medium. In particular, we focus our attention on the turbulent nature of the

solar wind, collisionless magnetic reconnection, and the generation and distribu-

tion of ultra-low frequency waves in planetary foreshocks. The theoretical and

numerical study will be complemented with the analysis of in-situ measurements

provided by Cassini and Cluster spacecrafts.

Keywords: magnetohydrodynamics, kinetic effects, turbulence, mag-

netic reconnection, ultra-low frequency waves
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comendaciones en cada etapa del Doctorado. Su experiencia y puntos de vista me

han permitido formarme y aprender mucho de él.

En cuarto lugar, al Grupo de Flujos Astrof́ısicos. La dinámica grupal y cada uno

de sus integrantes me han permitido aprender y formar una visión cŕıtica de lo
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Chapter 1

Introduction

The electron is a theory we use;

it is so useful in understanding the way

nature works that we can almost call it real.

Surely you’re joking, Mr. Feynman! Richard P. Feynman

1.1 Interplanetary medium

The interplanetary medium fills the space between planets, comets and other ob-

jects of the solar system. Far from being empty, this space is filled with plasma

from the solar corona, electromagnetic radiation, cosmic rays, dust particles and

magnetic fields. The term solar wind was coined by Eugene Parker [Parker, 1958]

to describe this supersonic (and supermagnetosonic) expansion of the solar corona

into the solar system. This expansion is a consequence of a pressure difference

between the solar corona and the interplanetary space that surrounds it. The

pressure difference drives the solar wind outward from the solar corona, despite of

the solar gravity influence [e.g. Kivelson and Russell, 1995].

1
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The dynamics of space plasmas such as the solar wind, can display huge differences

in their physical properties with respect to the plasmas present in the laboratory.

For instance, collisions between ions or electrons can be quite frequent in the

solar coronal plasma, but are extremely rare in the interplanetary medium at 1

astronomical unit (1 AU = 1.49 × 1011 m). Since some of these conditions can

be impossible to reproduce in terrestrial laboratories, the interplanetary medium

offers a unique opportunity to investigate a wide variety of plasma process. In

particular, at 1 AU the mean number density is 7 cm−3, the flow speed (nearly

radial) is 450 km/s, the mean temperature is 1.2× 105 K and the mean magnetic

field (absolute value) is about 10 nT [values extracted from Kivelson and Russell,

1995].

The solar wind is significantly modified by the activity of the Sun through changes

in the solar magnetic field, that end up contributing to the interplanetary mag-

netic field (IMF) and plasma overall dynamics. During its expansion, the solar

wind develops a strongly turbulent regime, which can be studied through in-situ

measurements [Matthaeus and Goldstein, 1982]. Turbulence appears as a very

complex state of motion, and strongly irregular in space and time. However, at

any given time, a turbulent flow shows the presence of organized structures of

different sizes and different lifetimes which interact among themselves as they are

convected by the flow. Thanks to the in-situ observations provided by different

spacecrafts, the solar wind flow offers the best opportunity to study directly the

non-linear dynamics in space plasmas [e.g. Bruno and Carbone, 2013].

The plasma of the solar wind is threaded with the interplanetary magnetic field

lines. When the solar wind encounters the Earth’s intrinsic magnetic field, under

some particular IMF conditions, the magnetic reconnection process can take place

[Dungey, 1961]. Magnetic reconnection involves a topology change of a set of field

lines, while converts magnetic free energy into heat and kinetic energy. Magnetic
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reconnection can occur in a variety of scenarios, from the evolution of solar flares,

coronal mass ejections to the formation of stars [Biskamp, 2000, Priest and Forbes,

2000].

When the supersonic and supermagnetosonic solar wind plasma encounters an

obstacle such as a planetary magnetosphere, a bow shock is formed. The bow

shock slows down the incoming solar wind plasma from supersonic to subsonic

velocity in order that information about the obstacle can propagate upstream

within the shocked region and let the plasma adjust and flow around it [Thomsen

et al., 1983]. Upstream from the shock, however, the solar wind is unaware that it is

approaching to an obstacle. The region upstream from the shock and magnetically

connected to it, is known as the foreshock. At the bow shock, a small fraction

of the solar wind particles are accelerated and propagate backstreaming into the

upstream foreshock region. These backstreaming particles can drive a number of

plasma instabilities, leading to the generation of ultra low-frequency (ULF) waves,

which are detected by spacecrafts [e.g. Tsurutani and Rodriguez, 1981].

These three outcomes from the solar wind dynamics, i.e. its turbulent regime, the

magnetic reconnection process and the generation and spatial distribution of ULF

waves, are the main subject of the present Thesis.

1.2 Space plasmas

Space plasmas are quasi-neutral gases composed mostly of protons and electrons

(i.e. a fully ionized hydrogen plasma) which are subjected to electric, magnetic

and probably other types of forces. At the same time, these free charges act as

sources for electric and magnetic forces. Due to the long-range nature of the elec-

tromagnetic forces, each charged particle in the plasma interacts simultaneously



Introduction 4

with a large number of other charged particles. This process results in a collective

behavior of the plasma.

There are at least three levels of description to model the dynamics of space

plasmas. The main difference between them are the physical variables used to

describe the state of the plasma. Which one is to be chosen depends on the kind

of phenomenon one is interested in. The three approaches are:

(1) The motion of individual charged particles and their interaction with electric

and magnetic field.

(2) The kinetic description of a collection of particles.

(3) The fluid description.

The most comprehensive way to specify the state of a plasma, is to give the

positions and velocities of all the particles and the value of the fields at each point in

space. For a system ofN particles, this particle description implies a phase space of

6N dimensions, which becomes prohibitively large as N is increased (for instance,

N ∼ 1015 for a cube of 1 km3 in the interplanetary medium!). One possible

way-out to this problem, is to use kinetic theory. In this statistical approach,

we define the velocity distribution function fs(x,v, t), for each species s, so that

d3xd3vfs(x,v, t) is the number of particles in the d3x around x, within velocities

d3v around v at time t. The distribution functions fs satisfy kinetic equations such

as the Vlasov equation (in the collisionless limit). These equations couple with

Maxwell’s equations because of the self-consistent electric and magnetic fields.

Even though it is possible to integrate this set of equations numerically, to be

able to cover a realistic range of values of (x,v, t) becomes computationally very

demanding. A comparatively simpler approach is to consider a fluid description

for the plasma based on the lower moments of fs (such as the particle density,
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the bulk velocity of the flow and its pressure). To consider the fact that the

charged particles interact with the electric and magnetic fields, causes the fluid

equations to couple with Maxwell’s equations. Within this framework, the simplest

approximation is the so-called one-fluid magnetohydrodynamics (MHD) model.

The one-fluid MHD description adequately describes phenomena at large temporal

and spatial scales (see Chapter 2). However, at spatial and/or temporal scales that

are becoming accessible to current spatial instruments, there are physical phenom-

ena that cannot be reproduced with the traditional one-fluid MHD description.

For instance, to adequately describe the solar wind energy spectrum derived from

recent observations [Sahraoui et al., 2009], or to study magnetic reconnection in

the collisionless limit, a theoretical framework extending beyond one-fluid MHD

is required. Throughout this Thesis we show how some kinetic effects can be

incorporated in a theoretical description of the interplanetary medium, using a

multi-fluid approach.

More specifically we focused on three main problems where kinetic effects play a

role, as sketched in Figure 1.1. The solar wind is characterized by a very large

Reynolds number, which is the ratio of the convective to the viscous term in

the equation of motion. This high Reynolds number explain to some extent it

turbulent nature. Therefore, we first focus our attention on the turbulent nature of

the solar wind. Turbulent features can be recognized in natural turbulent systems

like, for example, water flows on the ocean, the atmosphere of Jupiter or magnetic

field fluctuations in the solar wind. A common aspect of all these flows are their

extremely large Reynolds numbers. Our first task is to study (both theoretically

and numerically) the solar wind turbulence and the implications of kinetic effects

added through a full two-fluid MHD description. The results will be compared

with in-situ solar wind measurements.
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Solar wind

turbulence

ULF waves

Magnetic

reconnection

Figure 1.1: Three main problems where kinetic effects play a role: the solar
wind turbulence, the collisionless magnetic reconnection process and the gener-

ation of ULF waves.

The second task is to address collisionless magnetic reconnection, which is present

in various space physics environments such as planetary magnetospheres [e.g.

Dungey, 2000]. The idea that collisionless magnetic reconnection is present in

the Earth’s magnetosphere was first introduced by Dungey [1961]. In Dungey’s

model, magnetic reconnection occurs at the day-side magnetopause and also at the

magnetotail. Empirical evidence of magnetic reconnection in the magnetosphere

can be found elsewhere [e.g. Yamada, 2011]. The first theoretical model of mag-

netic reconnection was developed within the framework of resistive one-fluid MHD

[Sweet, 1958, Parker, 1957]. However, this resistive model leads to exceedingly low

reconnection rates [Petschek, 1964, Edwards et al., 1986, Bhattacharjee, 2004]. In

this Thesis we show that when electron-inertia effects become more important

than collisions, a fast reconnection regime (driven by electron inertia) becomes

possible. Moreover, we show that this collisionless magnetic reconnection can be

studied within the framework of a full two-fluid MHD description.

Our third task, is to investigate the generation and distribution of ULF waves



Introduction 7

in the foreshock of planetary magnetospheres. As mentioned, the ULF waves

observed in the foreshocks of magnetized planets, cannot be described within the

framework of one-fluid MHD. Even though the ULF waves can be regarded as nor-

mal modes of two-fluid MHD (the two fluids being the solar wind electrons and

protons), we show that three-fluid description is needed to produce the instability

(we model the backstreaming ion beam as the third fluid) from which they grow.

Furthermore, we also investigate the ULF wave activity and their spatial distribu-

tion in both the Earth’s and Saturn’s foreshocks using in-situ measurements from

Cluster and Cassini spacecraft missions, respectively.

In summary, the topics treated in this Thesis can be divided into three parts. In

the first one, we study the turbulent character of the solar wind. When the solar

wind magnetic field lines impact the relatively stationary dipole of the Earth, a

collisionless magnetic reconnection process might take place depending the orien-

tation of the IMF. This mechanism is the subject of the second part of the Thesis.

In the third and last part, we study the spatial location of ULF waves both in Sat-

urn’s and the Earth’s foreshocks, using in-situ data gathered by the Cassini and

Cluster missions, respectively. This part of our work is expected to shed light on

the acceleration mechanisms (present at planetary bow shocks) that generate the

backstreaming ions responsible for the wave instabilities. In the next 3 sections of

this Chapter we briefly introduce to each of these different plasma processes.

1.3 Solar wind turbulence

Nature routinely produces MHD turbulence. It can be found in several space

environments, like the solar corona, planetary atmospheres or the interplanetary

medium. As we discussed previously, the solar wind expands from the Sun and

pervades the regions between planets. An important feature to characterize a
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stationary and isotropic turbulent regime of a plasma is its energy power spectrum

Ek, which provides the energy per unit wavenumber. Just as for the paradigmatic

case of hydrodynamic turbulence, the nonlinear interactions in MHD turbulence

produce an energy flow in wavenumber space that is predominantly from large

scales to small-scales. As it is indicated schematically in Figure 1.2, the energy

spectrum can be divided into three ranges: (a) the large-scale in which the energy

is injected into the system (or energy containing) range, (b) an inertial range where

the nonlinear terms dominate over the dissipative terms and energy cascades from

large to small scales, and (c) the small-scale (or dissipative) range, where the

energy being cascaded from the larger scales is converted into heat. Since the

total energy (and other ideal invariants as well) is not directly modified by the

nonlinear interactions [e.g. Frisch, 1995], its spectrum gives important information

about the state and dynamics of the turbulent plasma.

If the plasma is described by the one-fluid MHD approximation, its inertial range

is characterized by an energy spectrum following a Ek ∼ k−5/3 power law, i.e.

the Kolmogorov spectrum for isotropic, stationary and incompressible turbulence.

This power-law dependence was predicted by Kolmogorov [1941] for hydrodynamic

turbulence using dimensional analysis. Using measurements of the solar wind at

1, 2.8 and 5 AU and assuming the Taylor hypothesis [Taylor, 1938], Matthaeus

and Goldstein [1982] obtained energy spectra consistent with the Kolmogorov

spectrum.

However, in-situ solar wind observations have shown that the k−5/3 inertial range

breaks down at some scale, presumably corresponding to the ion inertial length

[Leamon et al., 2000]. At wavenumbers larger than this break, the magnetic

spectra exhibit slightly steeper power laws [Goldstein et al., 1994, Ghosh et al.,

1996, Leamon et al., 1998]. assuming to be at scales smaller than the ion inertial

length, Biskamp et al. [1999] found that the energy spectrum follows a k−7/3 power



Introduction 9

Ek

k

Energy 

containing

range

Dissipative

range

Inertial 

range  

Ek ~ k -5/3

Figure 1.2: Schematic representation of the power cascade of hydrodynamic
turbulence.

law. This prediction was later confirmed by numerical simulations [Galtier, 2006,

Gómez et al., 2008]. The traditional explanation for this turbulence regime is that

it is associated with an energy cascade process involving dispersive waves, such as

ion-cyclotron and/or whistler modes [Ghosh et al., 1996].

Recently, Sahraoui et al. [2009] reported evidence of a new breakpoint (at even

smaller scales) in the magnetic energy spectrum from solar wind observations ob-

tained with the multi-spacecraft Cluster mission. These results confirm the break

at a wavenumber presumably consistent with the inverse ion inertial length [Lea-

mon et al., 2000, Smith et al., 2001], and find a second break at larger wavenum-

bers. In the solar wind plasma at 1 AU, the electron gyro-scale is very close to

the electron inertial length (∼ 12 km) and therefore it is not clear to which of

these scales it corresponds. The authors confirmed the Kolmogorov spectrum at

the largest scales, a second power law k−7/3 at intermediate scale and a steeper

power law k−4.1 at the smallest scales (beyond the second break).
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Figure 1.3: Basic picture of magnetic reconnection: plasma acceleration by a
local change of magnetic field lines topology.

These spectral breaks are probably caused by kinetic effects and cannot be de-

scribed by the one-fluid MHD description. One possible way to include some

kinetic effects within a fluidistic framework, is to adopt a multi-fluid approach to

acknowledge the presence of various particle species in a plasma. In particular,

we study the solar wind turbulence within the framework of a full two-fluid MHD

description, retaining the effects of the Hall current, electron pressure and electron

inertia. The main purpose of Chapter 3 is to explore the physics of a complete

two-fluid model and compare it with in-situ solar wind measurements.

1.4 Collisionless magnetic reconnection

Magnetic reconnection is a process which converts magnetic free energy into heat

and kinetic energy. Through this process, two magnetic field lines with opposite

orientations reconnect into two new magnetic field lines (see Figure 1.3). The

energy difference between these two magnetic configurations, is transferred to the

plasma particles. To understand the physics behind the magnetic reconnection

process, it is important first to understand the magnetic field topology.
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Let us suppose that we have a plasma-fluid element moving as sketched in Figure

1.4. To study the magnetic field topology, we analyze the magnetic flux changes.

This change, for any arbitrary closed loop moving with the fluid (see Figure 1.4)

can be written as

d

dt

∫

B · dS =

∫

∂B

∂t
· dS−

∮

(u×B) · dl, (1.1)

where we have separated the change due time variation of B (on the first term

right hand side) and the change due the motion of the loop (on the second term

right hand side). Using Faraday’s law and Stokes’s theorem, we can write this

equation as

d

dt

∫

B · dS = −c

∮

E · dl−
∮

(u×B) · dl. (1.2)

In the ideal one-fluid MHD limit, the electric field in a reference frame moving

with the fluid is identically zero, i.e.

E+
u

c
×B = 0. (1.3)

Therefore, in this case, the right hand of equation (1.2) is identically zero. As a

result, in the ideal MHD the magnetic flux trapped into any closed loop moving

with the fluid, is conserved. In other words, we say that the magnetic field is

frozen-in to the plasma. A consequence of the frozen-in condition is that two

magnetic field lines cannot pass through each other, and therefore no topological

change in the magnetic field lines can occur in ideal MHD.

The first model of magnetic reconnection was developed within the framework of

resistive one-fluid MHD, the so-called Sweet-Parker model [Sweet, 1958, Parker,

1957]. In the Sweet-Parker regime, the magnetic resistivity can in principle break
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dS

dl

Figure 1.4: Schematic plasma-fluid element (black) with magnetic field lines
(green) passing through it.

the frozen-in condition. In the resistive-MHD approximation

E+
u

c
×B =

η

c
∇×B (1.4)

where η is the magnetic resistivity. The right hand side of equation (1.4) does not

vanish (it becomes proportional to η), and therefore the magnetic flux enclosed by

loops moving with the fluid is in general not conserved. The frozen-in condition

is no longer valid, thus allowing magnetic reconnection to occur. In space plasma,

the resistivity is usually negligible. The right hand side of equation (1.4) can

then be dropped, except in regions with extremely large current densities (J =

(c/4π)∇×B). In Chapter 4, we show that the reconnection rate, which measures

the efficiency of the reconnection process scales as η1/2.

This result, derived by Parker in the late 1950s, seemed to be the answer to the

magnetic reconnection process. However, using typical values for the solar corona,

a solar flare would take tens of days to grow, rather than a few minutes as it is

observed [Yamada, 2011]. Moreover, and because η is very small, the η1/2 scaling

leads to exceedingly low reconnection rates for most space physics environments
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[Bhattacharjee, 2004, Øieroset et al., 2007, Fujisawa et al., 2007]. In the earlies

1960s, Petschek [1964] reported a possible solution to the slow reconnection rates,

giving rise to the concept of fast magnetic reconnection, i.e. reconnection rates that

are not proportional to a power of the resistivity. In contrast to the η1/2 scaling, the

Petschek solution shows a weak logarithmic dependence on magnetic resistivity.

However, numerical simulations showed that the typical Petschek configuration

cannot be attained in a model with a spatially uniform resistivity [e.g. Biskamp,

1986].

Kinetic plasma effects, such as the Hall effect and electron inertia, introduce new

spatial and temporal scales into the theoretical fluid description, represented by

new terms on the right hand side of equation (1.4). In Chapter 4, we study (both

theoretically and numerically) the collisionless magnetic reconnection process us-

ing a full two-fluid model for a completely ionized hydrogen plasma. In particular,

we run simulations with zero magnetic resistivity and check that we are not spu-

riously adding numerical resistivity. Therefore, we are certain that reconnection

in our simulations arises exclusively as a result of finite electron inertia, and not

because of the presence of physical or numerical resistivity.

1.5 ULF waves foreshock boundary (UWFB)

A collisionless bow shock is the result of the interactions between the supersonic

(and supermagnetosonic) solar wind and planetary magnetospheres. The inflow of

matter into the bow shock is so fast that the time scales on which dissipation would

take place are too long to dissipate the excess of energy and lowering the inflow

velocity [Turner, 1986]. To help maintain a stationary shock transition, a small

amount of the incoming flow is reflected backstreaming in the upstream direction.

However, this particle reflection process is not a direct dissipation mechanism.
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Instead, it is an emergency act of the shock to reduce the inflow momentum and

energy [see Treumann, 2009].

The backstreaming particles are subjected to the solar wind’s E×B drift. The

E×B drift velocity (which is the constant motion of the guiding center of charges

immersed in uniform E and B fields) is the same for all backstreaming particles

(i.e. regardless of their mass and charge), and perpendicular to the IMF. As a

result, the guiding centers of all backstreaming particles move within the vsw-B

plane, gradually drifting away from the field line tangent to the bow shock toward

the inner part of the foreshock and being segregated according to their parallel

velocities. Figure 1.5 shows the schematic structure of a foreshock region, for a

particular IMF configuration. The tangent field line marks the points at which the

solar wind becomes magnetically connected to the bow shock. Behind this line,

protons (and electrons) through different acceleration mechanisms can escape from

the bow shock back to the upstream region (see Chapter 2). The electrons, because

of their much smaller inertia, are much less affected by the E×B drift and their

presence can be detected right next to the tangent field line [Fuselier et al., 1985,

Sigsbee et al., 2004a,b]. On the other hand, the backstreaming ions which are

ejected with velocity uFAB (FAB: field-aligned beam) are subjected to the drift

and therefore the upstream ion foreshock boundary is in general not aligned to

the IMF.

Since ULF waves are presumably generated by instabilities driven by backstream-

ing ions, the region of ULF wave activity is embedded in the ion foreshock. Be-

cause of the finite growth rate of these instabilities combined with convection, these

waves can reach significant amplitudes away from the source region. Therefore,

the onset of waves is spatially localized in an extended surface in the ion foreshock

known as the ULF wave foreshock boundary (UWFB). For a precise identification
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Figure 1.5: Schematic structure of a foreshock region for a particular IMF
configuration.

of the UWFB, the IMF is expected to perform a very slow and monotonic rotation

as the spacecraft crosses this boundary.

In Chapter 5 we study spatial distribution of ULF waves at the foreshocks of Saturn

and the Earth. As we describe in Chapter 2, these foreshock ULF waves can arise

in a three-fluid description. Then, using in-situ measurements from Cassini (at

Saturn) and Cluster (at the Earth), we investigate the relations between the ULF

wave foreshock boundary and the acceleration mechanisms for the backstreaming

ions responsible for the ULF waves generation.
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1.6 Resumen en castellano

En la sección 1.1, introducimos el concepto de viento solar. Éste es el escenario

para los fenomenos de plasma estudiados. En particular, presentamos los tres

principales procesos de pequeña-escala estudiados en la Tesis. Es decir,

• Turbulencia: las interacciones no-lineales, la cascada de enerǵıa, el espectro

de Kolmogorov, y el espectro de enerǵıa magnética en las pequeñas-escalas.

• Reconexión magnética no-colisional: el cambio de topoloǵıa de las ĺıneas de

campo magnético y el modelo de Sweet-Parker.

• Generación y distribución de ondas de ultra-baja frequencia (ULF): la pres-

encia de una onda de choque en planetas magnetizados, la morfoloǵıa del

foreshock, la existencia de ondas de ondas ULF, la frontera para las ondas

ULF y los modelos de aceleración en la onda de choque.

En la sección 1.2, introducimos la necesidad de una descripción de multi-fluidos

mas allá de la tradicional magnetohidrodinámica (MHD).

Finalmente, en las siguiente tres secciones 3-1.5, introducimos brevemente cada

uno de los problemas estudiados en la Tesis.
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Theoretical descriptions of space

plasmas

Give me another theory that would fit the facts.

’I could very easily give you half a dozen’ said Holmes.

’Here, for example, is a very possible and even probable one.’

The Adventure of the Norwood Builder. Sir Arthur Conan Doyle.

One-fluid MHD is an appropriate theoretical framework to describe the dynamics

of plasmas at their largest temporal and spatial scales. Examples of this are models

of magnetic dynamo, MHD turbulence or magnetic reconnection. However, as we

move progressively toward smaller scales, the one-fluid MHD description might

no longer be completely adequate. For instance, in a truly collisionless regime,

magnetic reconnection should be driven solely by electron inertia, which is absent

in the traditional one-fluid MHD. In order to capture these and other non ideal

effects, in this Chapter we consider a multi-species theoretical description for a

plasma. In particular, here we present a full two-fluid MHD model and a three-

fluid description for a plasma. In the first case, we calculate the normal modes

17
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of oscillation, while the three-fluid description is used to simulate a beam of ions

traveling along magnetic field lines and exciting low-frequency plasma waves. The

latter study aims at understanding the onset of ULF waves observed in planetary

foreshocks, which can not be achieved from the one- or even two-fluid descriptions.

Finally, we briefly study theoretical mechanisms of particle acceleration emission

at planetary bow shocks, where the ion beams presumably originate.

2.1 Multi-species description of plasmas

In this section, we consider a multi-species theoretical description of a plasma.

More specifically, we consider a fluid description for N species of particles. For

each particle species s (with s = 1, . . . , N), the continuity equation is

∂ns

∂t
+∇ · (nsus) = 0 (2.1)

where ns is the number density and us the velocity of the species s, respectively.

The equation of motion for each species s is

msns

[

∂us

∂t
+ (us ·∇)us

]

= qsns(E+
1

c
us ×B)−∇ps + µs∇2us +

∑

p

Rsp (2.2)

Here B and E are the magnetic and electric fields, qs is the particle electric charge,

c is the speed of light, ps is the isotropic-scalar pressure, µs is the viscosity and Rsp

(Rsp = −Rps) is the rate of momentum gained by the species s due to collisions

with the species p. This momentum exchange rate is assumed to be proportional

to the relative speed between species, i.e.

Rsp = −nsmsνsp(us − up) (2.3)
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where νsp is the collisional frequency of species s against species p.

Together with equations (2.1) and (2.2), we consider Maxwell’s equations, which

describe the generation of electric and magnetic fields as a result of the charges

and electric currents contained in the plasma. Maxwell’s equations in the non-

relativistic limit are

∇ · E = 4πρc (2.4)

∇ ·B = 0 (2.5)

∇× E = −1

c

∂B

∂t
(2.6)

∇×B =
4π

c
j (2.7)

where the electric current density is given by the contribution of all species

J =
c

4π
∇×B =

N
∑

s=1

qsnsus. (2.8)

and the charge density is

ρc =
N
∑

s=1

qsns (2.9)

Note that the displacement current in equation (2.7) has been neglected, which is

a good approximation for non-relativistic plasmas (i.e. u2 << c2).

In the ideal collisionless limit, i.e., the dissipation terms in equation (2.2) are

neglected and the equation of motion yield

msns
dus

dt
= qsns(E+

1

c
us ×B)−∇ps. (2.10)

where the total derivatives are

dus

dt
≡ ∂us

∂t
+ (us ·∇)us. (2.11)
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Assuming that each species is also incompressible (i.e. ns = const and ∇ ·us = 0)

and also that quasi-neutrality applies, i.e.

N
∑

s=1

qsns = 0, (2.12)

the plasma displays N + 1 ideal invariants. As we expected in the absence of

dissipation, one of them is the total energy E given by

E =

∫

d3r

( N
∑

s=1

msnsu
2
s

2
+

B2

8π

)

(2.13)

The other N invariants are the helicity for each species, Hs

Hs =

∫

d3r

(

A+
cms

qs
us

)

·
(

B+
cms

qs
ωs

)

(2.14)

where ωs = ∇ × us is the vorticity of the species s. Quasi-neutrality is an

excellent approximation for a non-relativistic plasma, basically guaranteed by the

very fast electrons due to their negligible inertia. On more theoretical grounds,

quasi-neutrality can be regarded as a consistency requirement, to accommodate

the Lorentz invariance of Maxwell’s equations with the Galilean invariance of the

equations of motion.

2.2 Electron inertia Hall-MHD

In this section, we derive the equations for a full two-fluid description of a plasma.

In particular, we show how this framework extends the traditional Hall-MHD

model including the electron inertia. The equations of motion for an incom-

pressible plasma made of ions and electrons with mass mi,e, charge ±e, density

ni = ne = n (quasi-neutrality), isotropic pressure pi,e and velocity ui,e respectively,
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can be written as

min
dui

dt
= en(E+

1

c
ui ×B)−∇pi + µi∇2ui +Rie (2.15)

men
due

dt
= −en(E+

1

c
ue ×B)−∇pe + µe∇2ue +Rei (2.16)

J =
c

4π
∇×B = en(ui − ue) (2.17)

where Rie (Rie = −Rei) is the rate of momentum gained by ions due to collisions

with electrons. As we discussed in the previous Section, this momentum exchange

rate is assumed to be proportional to the relative speed between species. More

specifically,

Rie = −nmiνie(ui − ue), (2.18)

where νie is the collisional frequency of an ion against electrons. In view of equation

(2.17), this momentum exchange rate (or friction force between species) becomes

proportional to the electric current density J.

The set of equations (2.15, 2.16 and 2.17) can be written in dimensionless form

in terms of a typical length scale L0, the constant particle density n, a value B0

for the magnetic field, a typical velocity vA = B0/(4πnM)1/2 (the Alfvén velocity)

where M ≡ mi +me, and the electric field in units of E0 = vAB0/c,

(1− µ)
dui

dt
=

1

λ
(E+ ui ×B)−∇pi + νi∇2ui +

r

λ
(2.19)

µ
due

dt
= −1

λ
(E+ ue ×B)−∇pe + νe∇2ue −

r

λ
(2.20)

J =
1

λ
(ui − ue) (2.21)

Here, we have introduced the dimensionless parameter µ ≡ me/M and λ ≡

c/ωpML0 (the Hall parameter), and ωpM = (4πe2n/M)1/2, which has the form
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of a plasma frequency for a particle of mass M . The dimensionless momentum ex-

change rate is r = −ηJ, and η = mic
2νie/(4πe

2nvAL0) is the (dimensionless) elec-

tric resistivity. The dimensionless ion and electron inertial lengths can be simply

defined in terms of their corresponding plasma frequencies ωpi,e = (4πe2n/mi,e)
1/2

as λi,e ≡ c/ωpi,eL0. Note that in the limit of electron inertia equal to zero (µ → 0),

we obtain ωpM = ωpi, and therefore the Hall parameter λ = λi = c/ωpiL0 reduces

to the ion inertial length. However, throughout this Chapter we retain the effect

of electron inertia by setting the parameter µ 6= 0. For a fully ionized hydrogen

plasma µ ≪ 1 and, as a result, λ 6= λi ≫ λe. Nonetheless, the current theo-

retical description may also be applied to an electron-positron plasma (for which

µ = 1/2), since it is actually valid for 0 ≤ µ < 1. The expressions for the di-

mensionless ion and electron inertial scales (λi,e) in terms of the two dimensionless

parameters µ and λ are simply λi = (1− µ)1/2λ and λe = µ1/2λ.

In order to obtain a hydrodynamic description of this full two-fluid plasma, we

replace the velocity field for each species (i.e. ui,e) in terms of two new vector

fields. Namely, the hydrodynamic velocity u given by

u = (1− µ)ui + µue (2.22)

and the electric current density J given by (2.21). From equations (2.21)-(2.22),

we can readily obtain the velocity of each species as

ui = u+ µλJ (2.23)

ue = u− (1− µ)λJ (2.24)
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The hydrodynamic equation of motion is the sum of the ion and electron equations

of motion (2.19) and (2.20),

du

dt
= J×

[

B− µ(1− µ)λ2∇2B
]

−∇p+ ν∇2u+ ν0∇2J (2.25)

where p ≡ pi + pe is the total pressure, ν = νi + νe and ν0 = λ(µνi − (1 − µ)νe).

Following the expressions obtained by Braginskii [1965] and assuming both species

share a common temperature, the ratio of viscosities is only a function of the mass

ratio, i.e.

νe
νi

= 0.54

√

µ

1− µ
(2.26)

which shows that viscosity is predominantly due to ions.

Note that most of the terms in equation (2.25) can easily be identified as a sum of

the corresponding terms in equations (2.19)-(2.20), but the convective derivatives

in these equations are nonlinear terms that have also been properly taken into

account, giving rise to a new nonlinear term (proportional to µ) in equation (2.25).

Note also that in the limit of negligible electron inertia, equation (2.25) reduces to

the equation of motion for ideal, one-fluid MHD. This is the case for the HMHD

description as well, which is a two-fluid theoretical description, but considering

massless electrons.

On the other hand, if we use E = −∂tA−∇φ and (ue ·∇)ue = ωe×ue+∇(u2
e/2)

(with ωe = ∇×ue being the electron vorticity) the equation of motion for electrons

(2.20) can be written as

∂

∂t
(A− µλue) = ue × (B− µλωe) +∇(λpe + µλ

u2
e

2
− φ)− λνe∇2ue − ηJ(2.27)
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Furthermore, we define

B′ ≡ B− µλωe = B− µ(1− µ)λ2∇2B− µλω, (2.28)

where ω = ∇×u is the hydrodynamic vorticity, and if we take the curl of equation

(2.27) it is possible to obtain a dynamical equation for the magnetic field, namely:

∂t B
′ = ∇× [u− (1− µ)λJ]×B′ + η∇2B− λνe∇2

ω − (1− µ)λ2νe∇4B.(2.29)

Equations (2.25) and (2.29) are the Electron Inertia Hall-MHD (EIHMHD) equa-

tions. It is interesting to note that the presence of the electron mass (and the

corresponding viscosity coefficient νe) introduces high-order spatial (short wave-

length) derivative terms that play the role of hyperviscosity. This certainly has

an impact at large wavenumbers, affecting the distribution of energy at the small

scales and the dissipative range of the energy power spectrum. The major source of

dissipation of magnetic field in a plasma where the electron mass is not neglected,

is the friction between the electrons themselves and not the loss of momentum of

the electrons by collision with ions (as in the MHD and HMHD cases). This can

be seen in the last term of equation (2.29), which together with the third term (on

the right hand side) came from the curl of the dissipative term in the fluid equation

of electrons, a term that cannot be neglected if we consider electron inertia (and

the resulting momentum and energy transport due to the electrons).

It is also possible to obtain an equation for the electric field E by making use

of equations (2.25), (2.28), (2.29) and the Maxwell–Faraday equation (2.6) (in

dimensionless form),

∇×E = −∂B

∂t
(2.30)

It is useful to consider this equation in Fourier space to obtain a closed expression
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for the electric field. First the partial time derivative of equation (2.28) in Fourier

space reads

∂B̂
′

∂t
= αk

∂B̂

∂t
− µλ

∂ω̂

∂t
(2.31)

where αk ≡ 1 + (1 − µ)µλ2k2 since ∇ → ik and the circumflex represents the

Fourier transform. By rearranging terms and using equation (2.30) in Fourier

space we get an equation for the electric field in Fourier space:

ik× Ê = α−1
k

(

∂B̂
′

∂t
+ µλ

∂ω̂

∂t

)

. (2.32)

Here, the two right-hand side terms are calculated from equations (2.25) and (2.29)

respectively as,

∂ω̂

∂t
= ik× ̂(J×B′) + iµλk× ̂(ui × ω)− k2(νû+ ν0Ĵ) (2.33)

∂B̂
′

∂t
= ik× ̂(ue ×B′)− k2(ηB̂− λνeω̂)− (1− µ)λ2νek

4B̂ (2.34)

The equation for the electric field is obtained applying (∇×)−1 to equation (2.32),

which gives rise to the gradient of an undetermined function g(r, t), which can be

associated with the electrostatic potential. This function g(r, t) can be obtained

from the Poisson equation that results from taking the divergence of the equation.

2.3 Normal modes

The linear theory of plasma fluctuations (i.e. waves or instabilities) in an homoge-

neous plasma under static equilibrium, leads among other results to the dispersion

relation ω(k) between the frequency ω and the wavenumber k of these fluctua-

tions. The linear EIHMHD equations are therefore subject to a Fourier analysis
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in space and time, which yield such a dispersion relation. In the present Thesis,

we treat it as an initial value problem, i.e the k components are given real values

and we solve for a complex ω = ωr + iγ, where the real part ωr is the proper

frequency and the imaginary part γ is the instability growth rate. If one obtains

a non-zero γ, then the waves may be exponentially damped (if γ < 0) or grow

(if γ > 0). In general, if we have a fluid with no external forces, the dispersion

relation typically yields non-growing nor damped roots (i.e. γ = 0) [Gary, 1993].

On the other hand, if there is some free energy source in the system (for instance,

a relative drift speed between species) it can be driven unstable and lead to an

instability (see next Section 2.4).

In the previous Section, we have derived the two-fluid equations for a plasma. In

particular, the dimensionless ideal EIHMHD equations are

n
du

dt
= −β

Γ
∇p+ J×

[

B− µ(1− µ)λ2∇2B
]

(2.35)

∂B′

∂t
= ∇× [u− (1− µ)λJ]×B′ (2.36)

∂n

∂t
= −∇ · (nu) (2.37)

p

nΓ
= const (2.38)

where equations (2.35) and (2.36) are the ideal Navier-Stokes and induction equa-

tions, respectively. Equation (2.37) is the continuity equation for a compressible

plasma and equation (2.38) is the polytropic equation of state where Γ is the poly-

tropic index (in the incompressible limit, equation (2.37) reduces to ∇ · u = 0

and equation (2.38) is no longer required). We can explore the time-dependent

fluctuations around a static equilibrium (i.e. u0 = 0) given by a homogeneous

magnetic field of intensity B0 = 1 in the ẑ direction, a number density n0 = 1 and

pressure p0 = 1. The set of equations (2.35)-(2.38) is non-linear, however as we

discussed above we can take into account small-amplitude perturbations and find a
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linear set of differential equations that describe the small-amplitude perturbation

dynamics.

Therefore, we perturb the static equilibrium (i.e. f0) introducing a small pertur-

bation (i.e. δf) of all relevant variables

u → δu (2.39)

B → B0 + δB (2.40)

p → p0 + δp (2.41)

n → n0 + δn. (2.42)

Then, we substitute these expressions into equations (2.35)-(2.38) and obtain,

∂δu

∂t
= −β

Γ
∇δp+ (∇× δB)× ẑ (2.43)

∂δB′

∂t
= ∇× (δu× ẑ)− (1− µ)λ∇×

[

(∇× δB)× ẑ
]

(2.44)

∂δn

∂t
= −∇ · (δu) (2.45)

δp = Γδn. (2.46)

This linear set of equations is homogeneous, and with constant coefficients. There-

fore the solutions are plane traveling waves,

δf = f1e
i(k·x−ωt) (2.47)

where f1 is a complex amplitude, k is the wave number vector and ω the tempo-

ral frequency. In this context, the partial derivative spatial and temporal linear
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operators simply correspond to

∇· → ik · (2.48)

∇× → ik× (2.49)

∂t → −iω (2.50)

which transforms the set of equations (2.43)-(2.46) into an eigenvalue-eigenvector

problem

−ωu1 = −βkn1 + (k×B1)× ẑ (2.51)

−ωB1 + ωc1k× (k×B1) + ωµλik× u1 =

k× (u1 × ẑ)− c2k×
[

(ik×B1)× ẑ
]

(2.52)

−ωn1 = −k · u1 (2.53)

where we have used p1 = Γn1. We also have introduced two constants c1 ≡

µ(1− µ)λ2 and c2 ≡ (1− µ)λ.

Without loss of generality, we assume that the wave number vector has the form,

k = k sin θx̂+ k cos θẑ (2.54)

where |k| = k and θ is the angle between the wavenumber vector and the equi-

librium magnetic field. Then, let us write equations (2.51)-(2.53) in a convenient

coordinate system, in which the first component is parallel to k̂ (‖̂ = k̂), the sec-

ond one is in the direction ŷ× k̂ (⊥̂ = ŷ× k̂), and the third component is ŷ. From

Figure 2.1 is easy to see that the transformation between the Cartesian and the

new basis is






⊥̂

‖̂






=







cos θ − sin θ

sin θ cos θ






·







x̂

ẑ






(2.55)
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Figure 2.1: Definition of mean-field coordinate system (⊥̂, ‖̂, ŷ).

Using ∇ ·B = 0 and relations (2.55) we obtain the magnetic and velocity field in

the new basis as

B1 = b⊥ cos θx̂+ byŷ+ b⊥ sin θẑ (2.56)

u1 = (u⊥ cos θ + u‖ sin θ)x̂+ uyŷ + (−u⊥ sin θ + u‖ cos θ)ẑ (2.57)
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Figure 2.2: Linear propagation modes in EIHMHD model for a realistic mass
ratio µ = 1/1837, λ = 0.01 and θ = 0. ωce,i are the electron and ion cyclotron

frequency, respectively.

where we have defined b⊥ = Bx/ cos θ. Therefore, in the new coordinate system

the components of equations (2.51)-(2.53) are

































ω
k

−1 0 0 0 0

−β ω
k

0 0 0 sin θ

0 0 ω
k

cos θ 0 0

0 0 cos θ ω
k
(1 + c1k

2) −iµλk ω
k

−ic2k cos θ

0 0 0 0 ω
k

cos θ

0 sin θ iµλk ω
k

ic2k cos θ cos θ ω
k
(1 + c1k

2)

































·

































n1

u‖

uy

by

u⊥

b⊥

































= 0 (2.58)

Since we are interested in non-trivial solutions of an homogeneous set of equations,

then the determinant of the coefficient matrix on the left hand of equation (2.58)

needs to be zero. Therefore, setting the determinant equal to zero leads to the
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following dispersion relation

(

ω

k

)6

(1 + c1k
2)2 −

(

ω

k

)4{

β(1 + c1k
2)2 + 2 cos θ2

[

1 +
(1− µ)2 + µ2

2
λ2k2

]

+ sin θ2(1 + c1k
2)

}

+

(

ω

k

)2{

cos θ2 + 2β cos θ2
[

1 +
(1− µ)2 + µ2

2
λ2k2

]}

−β cos θ4 = 0 (2.59)

which has 3 different modes with 2 different polarizations for each of them.

Figure 2.2 shows the dispersion relation for the 3 waves mode in EIHMHD, for

a realistic mass ratio of me/mi = 1/1836 (i.e. µ = 1/1837), parallel propagation

(i.e. θ = 0) and λ = 0.01. The solid line corresponds to the Alfvén mode. As

in HMHD [Gómez et al., 2008], the bottom branch (dotted line) represents the

ion-cyclotron wave mode, which converges to the proton cyclotron frequency (i.e

ωcp = eB0/mpc). The top branch (dashed line) corresponds to the whistler branch

and, in contrast to HMHD, it reaches a maximum given by the electron cyclotron

frequency (i.e. ωce = eB0/mec). Finally, for an arbitrary angle θ, we calculated the

phase velocity corresponding to each normal mode. Figure 2.3 is a polar diagram,

showing the phase velocity for each mode as a function of θ in the B0-k plane.

In other words, the distance from the origin to the each curve indicates the phase

velocity of each mode propagating in that particular direction.

2.4 Beam-driven instabilities

As we have seen, the perturbations of a two-fluid plasma perturbed from a homo-

geneous state and static equilibrium, does not drive wave instabilities. The reason

is that there is no free-energy in the equilibrium state to fuel the instability. An

example of a free energy source could be an electric current through a relative drift

between species.
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Figure 2.3: Polar diagram of velocity for the ion-cyclotron (dotted line), in-
termediate (solid line) and whistler branch (dashed line). In this case, we use

µ = 1/1837 and λ k = 0.1.

In this Section, we will consider the three-fluid description, in which a cold tenuous

beam of protons (denoted by subscript b) interacts with a much dense background

made of protons (subscript p) and massless electrons (subscript e). As we discuss

below, this interaction will lead to plasma instabilities.

Let us consider a background plasma made of protons (with mass mp = m and

charge qp = e) and massless electrons (me = 0 and qe = −e) and a cold beam of

protons (with mass mb = m and charge qb = e). Following the previous Section,

in this case we will linearize a homogeneous equilibrium with a light beam of

protons moving at a homogeneous speed with respect to the background to find

the dispersion relationship ω(k). The system has the kinetic energy of the beam

which is in principle available to drive the instabilities. The beam speed in general

will depend on time, since it corresponds to the motion of charged particles in a

homogeneous magnetic field.
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We will seek for time-dependent perturbations around an equilibrium with a con-

stant magnetic field of intensity B0 in the ẑ direction, and a number density of

electrons ne0 = n0. The quasi-neutrality of the plasma requires

n0b = χn0 (2.60)

n0p = (1− χ)n0 (2.61)

where χ << 1 is the beam intensity.

Since the background electrons are assumed massless, the equation of motion in

equilibrium is E0 + (ue0 ×B0) = 0. If we describe the problem from the electron

reference frame is ue0 = 0 and therefore E0 = 0. Assuming a time-dependent

equilibrium velocity u0 for the beam and using the Ampere equation (2.8) we

obtain

u0b = u0(t) (2.62)

u0p = − χ

1− χ
u0(t) (2.63)

for the protons and the beam, respectively. Note that, as seen from the electron

reference frame, also the background protons are moving, although at a small

speed since χ << 1.

Let us consider the equation of motion (2.2) for the beam in equilibrium,

∂u0(t)

∂t
=

eB0

mc
u0(t)× ẑ. (2.64)

The equation can be easily integrated as

u0b(t) = u
‖
0ẑ+ u+eiΩcit + u−e−iΩcit (2.65)
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where we have introduced the ion cyclotron frequency Ωci = eB0/mc, u± ≡

u⊥
0 /2(x̂ ± iŷ)e±iφ0

, φ0 is the phase, and u
‖
0 and u⊥

0 are the beam velocities along

and perpendicular to the magnetic field direction, respectively. The constants,

u
‖
0, u⊥

0 φ0 are determined by the initial conditions of the problem.

To calculate the dispersion relation ω(k), we proceed as in Section 2.3. We perturb

the static equilibrium introducing a small perturbation. Since the equilibrium

velocities depend explicitly on time, in this case, departures from the equilibrium

are expanded Fourier as

δns, δu
‖
s → ekzeiµt (2.66)

δu⊥
s , δE, δB → ekzeiωt (2.67)

where we are assuming parallel propagation (i.e. k ‖ B0), and in general µ 6= ω.

We should note that δE and δB are perpendicular to ẑ since ∇ · E = ∇ ·B = 0.

From the continuity and motion equations (2.1)-(2.2) for the electrons and the

beam we obtain the follow relations

µ± = ω ± Ωci (2.68)

which relate the frequencies in the parallel and perpendicular directions with the

ion cyclotron frequency. On the other hand, from the continuity and motion

equations (2.1)-(2.2) for the protons and Maxwell’s equations (2.4)-(2.7) we obtain

the following dispersion relation

c2k2

ω
+ χ

ω2
pi

ω

(ω + ku
‖
0)

(

ω + ku
‖
0 ± Ωci

) + (1− χ)
ω2
p

ω

(ω − χ
1−χ

ku
‖
0)

(

ω − χ
1−χ

ku
‖
0 ± Ωci

) +

(1 + σσ′)

2
χ
ω2
pi

ω

k2u⊥2
0

2

[

1

(ω + ku
‖
0 ± Ωci)2

+

χ
1−χ

(ω − χ
1−χ

ku
‖
0 ± Ωci)2

]

= σ′
ω2
pi

Ωci

(2.69)
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where σ, σ′ ≡ ±1 take into account the possible polarization of the waves with

respect to the mean magnetic field direction and ωpi is the ion plasma frequency.

Equation (2.69) can be written in dimensionless form in terms of a typical length

scale L0 = c/ωpi, a typical time scale T0 = 1/Ωci, and the corresponding parallel

and perpendicular velocities m‖,⊥ = ωpiu
‖,⊥
0 /Ωcic = u

‖,⊥
0 /vA, where vA is the

Alfvén velocity. Therefore, the dimensionless dispersion relation in the above

units becomes

k2

ω
+

χ

ω

(ω + km‖)
(

ω + km‖ + σ′
) +

(1− χ)

ω

(ω − χ
1−χ

km‖)
(

ω − χ
1−χ

km‖ + σ′
) +

(1 + σσ′)

2

χ

ω

k2m2
⊥

2

[

1

(ω + km‖ + σ)2
+

χ
1−χ

(ω − χ
1−χ

km‖ + σ)2

]

= σ′ (2.70)

Figure 2.4 (upper panel) shows the dispersion relation ωr(k) (in the electron ref-

erence frame) for χ = 0 and m‖,⊥ = 0. As we expect from the HMHD description,

we identify the four branches corresponding to the whistler (W±) and the ion-

cyclotron (I±) modes. In particular, the + and − signs stand for the forward and

backward propagation with respect to the magnetic field direction, respectively.

In addition, two other solutions emerge, corresponding to the resonant (Res.)

branches of the beam. Lower panel of Figure 2.4 shows the instability growth rate

γ. Since χ = 0, the beam instability is zero for all wavenumbers k. To understand

the impact of considering a third species in the description, from equation (2.70)

we will take two limiting cases: the field-aligned beam case (m‖ 6= 0 and m⊥ = 0)

and the gyrating beam (m⊥ 6= 0 and m‖ = 0).
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Figure 2.4: Upper panel shows the dispersion relation (in the electron frame)
for the 6 solutions when χ = 0, m‖ = 0 and σ = ±1. Four branches correspond
to the whistler (W±) and the ion-cyclotron (I±) modes. The + and − signs
stand for the forward and backward propagation to the magnetic field direction.
The two linear solutions correspond to the resonant (Res.) branches of the
beam. Lower panel shows the instability growth rate γ. Since χ = 0, the beam

instability is zero for all the wavenumbers.

2.4.1 Field-aligned beam limit

For the field-aligned beam limit, where m‖ 6= 0 andm⊥ = 0, the dispersion relation

yields

k2

ω
+

χ

ω

(ω + km‖)
(

ω + km‖ + σ′
) +

(1− χ)

ω

(ω − χ
1−χ

km‖)
(

ω − χ
1−χ

km‖ + σ′
) = σ′, (2.71)

a polynomial of order 3 for the frequency ω with real coefficients. Therefore,

there are two types of possible solutions: either the three frequencies are real (and

therefore no instabilities), or one frequency is real and the other two are complex



Chapter 2. Theoretical description 37

Figure 2.5: The dispersion relation (in the electron frame) for the field-aligned
beam limit when χ = 5 × 10−3, m‖ = 6 and σ = ±1. Lower panel shows the

instability growth rate γ.

conjugate. In the latter, the complex solution with positive imaginary part corre-

sponds to a growing instability, while the other complex solution corresponds to a

damping solution.

Figure 2.5 (upper panel) shows the dispersion relation ωr(k) (in the electron frame)

for a beam speed of six times the Alfvén velocity, i.e. m‖ = 6, and a typical density

at the Earth’s foreshock [Narita et al., 2003]: χ = 5×10−3. For those wave numbers

where the linear resonant branch overlaps any of the other branches, we obtain a

non-zero instability. In particular, in Figure 2.5 the backward whistler branch is

the one being excited.

It is important to note that our calculation have been made in the electron frame,

i.e. the solar wind frame. However, the observations made by Cluster (or any
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Figure 2.6: Colormap of the instabilities for the field-aligned beam limit.
Contour levels correspond to different frequencies in the spacecraft frame.

other space mission) are in the spacecraft frame. Then, if we compared our the-

oretical predictions with the in-situ observations, we have to taking into account

the transformation between reference frames. Therefore, we use the Doppler shift

relation [Jackson, 1999]

ωsw = ωsc − k · usw, (2.72)

where ωsw, ωsc, and usw are the frequency in the plasma frame and in the spacecraft

frame, and the solar wind flow velocity, respectively. This transformation can lead

to a reversal in a wave’s polarization in the new frame if ωsc < 0.

We now fix the beam density (χ = 5 × 10−3) and vary the m‖ value to study in

the k-m‖ parameter space the region where we expect to observe waves. Figure

2.6 shows a color map of the beam instabilities for different values of k and m‖.

Superimposed, contour levels of several frequencies are shown. Note that these
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frequencies have been Doppler shift corrected using the equation (2.72). Then, if

Cluster detects ULF waves with frequencies of the order of 0.2 rad/s (correspond-

ing to ∼ 30 second period in the spacecraft frame) at long wavenumbers (i.e.,

k << 1), we would expect the beam velocities between ∼ 7 and ∼ 10 times the

Alfvén velocity. In fact, this is the order of magnitude for the beam velocity at

the Earth’s bow shock [Narita et al., 2003]. We also note that an increment in the

beam density χ yields an increment of the region of the beam instability in Figure

2.6.

2.4.2 Gyrating beam limit

The gyrating beam limit correspond to a proton beam with pure cyclotron motion,

i.e. m⊥ 6= 0 and m‖ = 0. In this case, we assume that the relevant branches

correspond to σ = ±1 and σ′ = σ. We can actually do this simply because the

case σ′ = −σ cancels the term with m⊥. Therefore, in this limit equation (2.70)

yields

k2

ω
+

1

(ω + σ)
+

χ

1− χ

m2
⊥

2

k2

ω(ω + σ)2
= σ. (2.73)

Once again, equation (2.73) is a polynomial of order 3 for the frequency ω with

real coefficients. However, in this limit, the polynomial only depends on the ratio

M ≡ χm2
⊥/2(1 − χ). Figure 2.7 shows the dispersion relation for M = 2. As

we discussed in the previous Section, for those wave numbers where the linear

resonant branch overlaps any of the other branches, an unstable branch can arise.

In particular, in Figure 2.7 the forward and backward ion cyclotron branches are

being excited.
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Figure 2.7: The dispersion relation (in the electron frame) for the pure cy-
clotron motion when M ≡ χm2

⊥/2(1−χ) = 2. Lower panel shows the instability
growth rate γ.

For a fixed beam density (χ = 5×10−3), we study the region in the k-M parameter

space in which we expect to observe waves. Figure 2.8 shows a color map of

the instabilities for different k and M values. As in Figure 2.6, we superimposed

contour levels of different frequencies in the spacecraft frame. These contour levels

of frequencies have been corrected by the Doppler shift using the equation (2.72).

In contrast with the field-aligned beam, the gyrating beam predicts waves with

slightly higher frequencies (∼ 1 rad/s) than those observed in the upstream solar

wind at 1 AU (∼ 0.1-0.5 rad/s), and perpendicular beam velocity which are not

compatible with the results report in the literature (∼ 350 km/s in the electron

reference frame, which implies M ∼ 0.03) [Narita et al., 2003].

In conclusion, in our foreshock scenario, a fraction of the upstream proton popula-

tion is reflected at the shock (for a discussion of different acceleration mechanisms
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Figure 2.8: Colormap of the instabilities for the ring limit. Contour levels
correspond to different frequencies in the spacecraft reference frame.

at the shock, see the next Section), generating ULF foreshock waves by means of

this beam-driven instabilities. Under parallel propagation of the beam and ad-

equate solar wind conditions, we expect waves to be generated upstream from,

for instance, the Earth’s bow shock [e.g. Eastwood et al., 2003]. Finally, in a

three-fluid description, we show that it is possible to obtain actual physical wave

instabilities, which are not present in the one- and two-fluid description. However,

a detailed comparison of these theoretical predictions with in-situ measurements

is beyond the scope of the present Thesis.
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2.5 Acceleration mechanisms at the shock

In the present section, we study the possible ion acceleration mechanisms present

at planetary bow shocks. In particular, we are going to focus on three different par-

ticle emission mechanisms discussed in the literature, the so-called magnetosheath

particle leakage, the adiabatic reflection and the specular reflection model. These

acceleration models bear a direct relation with the bow shock geometry [e.g. Thom-

sen et al., 1983], i.e. the angles θV n and θBn between the incoming solar wind

velocity and the magnetic field, respectively.

For the present calculation, the most convenient frame of reference is the so-called

de Hoffman-Teller (HT) frame [de Hoffman and Teller, 1950] (see Figure 2.9). If

we consider an upstream bulk solar wind velocity ui from the bow shock, a mean

upstream magnetic field B and a shock normal n̂, the transformation velocity from

the spacecraft (s/c) frame to the HT frame is

vHT =
n̂× (ui ×B)

B · n̂ (2.74)

Since the shock is at rest in the HT frame, the induced electric field is equal to

zero. Thus, in this particular frame the total energy of the particles is conserve

(even when we include an electric potential ∆φ across the shock surface). Finally,

since in the HT frame the upstream velocity is parallel to the magnetic field, the

3D problem is reduced to a 2D problem in the B-n̂ plane [Schwartz et al., 1983].

For the classification of emission mechanisms, we consider an upstream particle

which leaves the shock with a velocity u′
0 in the HT frame. This velocity can be

decomposed into a guiding center motion along B, u‖ = u′
0 · b̂ (where b̂ ≡ B/B is

the magnetic field direction), and a gyromotion about B, vg = |u′
0−u′

‖b̂| [Schwartz
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Figure 2.9: The de Hoffman-Teller frame.

et al., 1983]. Finally, the particle velocity in the s/c frame is

us/c = u′
0 + vHT (2.75)

where vHT was define in equation (2.74). Therefore, according to different hypoth-

esis about the origin of these backstreaming particles, we are going to calculate

the respectively exit velocity from the shock in the HT frame, i.e. u′
0. Finally, we

can transform the different exit velocities to the s/c or the plasma reference frame

and compare them with the measurements. As we discuss above, the main shock

acceleration mechanisms to consider are the magnetosheath particle leakage, the

adiabatic reflection and the specular reflection.

2.5.1 Magnetosheath particle leakage

Edmiston et al. [1982] studied the presence of upstream distributions which have

leaked from the magnetosheath conserving their magnetic moment. In order to

escape to the upstream region, these magnetosheath particles must at least reach
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the speed of the bow shock, which can be regarded as a threshold. Then, the

predicted normalized velocity in the HT frame is

u′
‖ = ui cos(θV n) (2.76)

where |ui| = ui is the incident solar wind velocity. This velocity transforms to the

plasma reference frame as

(

u‖

ui

)

m.l.

=
cos(θV n)

cos(θBn)
. (2.77)

In particular, this process may explain the observation of low energy ion beams

[Edmiston et al., 1982, Tanaka et al., 1983, Thomsen et al., 1983].

2.5.2 Adiabatic reflection

In the adiabatic reflection model, a portion of the incoming solar ions produces

an ion beam aligned with the IMF with generally high energies [Sonnerup, 1969,

Thomsen et al., 1983]. The reflected ions acquire a speed in the HT frame

u′
‖ = ui

cos(θV n)

cos(θBn)
(2.78)

which transforms to the plasma reference frame as

(

u‖

ui

)

a.r.

= 2
cos(θV n)

cos(θBn)
(2.79)

where, again, is u‖ is normalized to ui.
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2.5.3 Specular reflection

Specular reflection of a portion of the solar wind ions gives birth to an acceleration

mechanism in the upstream region only when θBn < 45◦ [Schwartz et al., 1983].

Incident solar wind ions simply reverse their component of velocity parallel to

the shock normal [Thomsen et al., 1983]. In this case the post-encounter parallel

velocity in the plasma reference frame (normalized to ui) is given by

(

u‖

ui

)

s.r.

= 2 cos(θV n) cos(θBn) (2.80)

In the present Thesis, we compare these normalized velocities with the foreshock

boundary properties derived from the analysis of in-situ measurements (see Chap-

ter 5).
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2.6 Resumen en castellano

En este Caṕıtulo presentamos las principales herramientas teóricas utilizadas a lo

largo de la Tesis.

En la sección 2.1, presentamos las ecuaciones del modelo de multi-fluidos para

plasmas y los invariantes ideales de este sistema de ecuaciones.

En la sección 2.2, presentamos una descripción detallada de la derivación de las

ecuaciones del modelo de dos fluidos MHD. Considerando un plama formado por

protones y electrones (con masa), este modelo contiene tanto el efecto Hall como

la inercia electrónica.

En la sección 2.3, presentamos el cálculo detallado para hallar modelos normales

de oscilación. En particular, calculamos los modos normales para el modelo de

dos fluidos MHD, graficamos la relación de dispersión y el diagrama polar de

velocidades.

En la sección 2.4, consideramos un plasma formado por tres especies: un fondo

de protones, un fondo de electrones (sin masa) y una tercera especie formada por

un haz (beam) de protones mucho menos denso. Calculamos los modos normales

de oscilación de este sistema de tres fluidos y mostramos la posibilidad de tener

inestabilidades de plasma. En particular, estudiamos dos liḿites para la velocidad

del haz: el field-aligned beam (haz alineado al campo magnético) y gyrating beam

(haz con componente de velocidad perpendicular al campo magético).

Finalmente, en la sección 2.5, presentamos tres modelos de aceleración presentes en

choques planetarios. Estos tres modelos son los más referidos en la literatura y se

presume que son los responsables de generar los haces de protones que se reflejan

en los choques planetarios. En particular, presentamos el goteo de part́ıculas
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en la magnetofunda (magnetosheath particle leakage), la reflexión adiabatica y la

reflexioón especular.





Chapter 3

Solar wind turbulence

A Plinio (historia natural, libro octavo) no le basta observar que los dragones

atacan en verano a los elefantes: aventura la hipótesis de que lo hacen para

beberles toda la sangre que, como nadie ignora, es muy fŕıa.

Las alarmas del doctor Américo Castro. Jorge Luis Borges

According to the EIHMHD description, each plasma species introduces new spatial

scales: the ion inertial length λi and the electron inertial length λe, which are not

present in the traditional MHD description. In this Chapter, we seek for possible

changes in the energy power spectrum for fully developed turbulent regimes. We

are able to reproduce different scaling laws in different spectral ranges, as it has

been observed in the solar wind for the magnetic and electric energy spectra. For

small wavenumbers, where one-fluid MHD is asymptotically valid, we obtain an

inertial range following a Kolmogorov k−5/3 law. For intermediate wavenumbers

such that λ−1
i << k << λ−1

e , the spectrum is modified to a k−7/3 power-law,

as observed also in HMHD approaches neglecting electron inertia terms. When

electron inertia is retained, a new spectral region given by k > λ−1
e arises. The

48
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power spectrum for magnetic energy in this region is given by a k−11/3 power law.

Finally, in this approaches, we study the self-consistent electric field.

3.1 Energy cascade

As it was discussed, an important feature to characterize a stationary and isotropic

turbulent regime of an incompressible plasma is its energy spectrum E(k), which

provides the energy per unit wavenumber. At MHD scales, the energy spectrum

follows a k−5/3 scaling, i.e. a Kolmogorov spectrum, just as for neutral fluids.

This power law was predicted by Kolmogorov [1941] for hydrodynamic turbulence

(assuming isotropy and using dimensional analysis). However, one fundamental

difference between hydrodynamic and plasma turbulence is the presence of differ-

ent wavenumber regimes with their corresponding power law dependencies. In the

present Chapter, we study changes in the energy power spectrum in fully devel-

oped turbulent regimes, taking into account the presence of the Hall current and

electron inertia. We also compared our numerical results with solar wind in-situ

measurements.

In Section 2.3, we calculated the ideal invariants, i.e. the total energy and the

electron and proton helicities. In particular, for an EIHMHD description, the

dimensionless version of the total energy is

E =

∫

d3r
(u

2

2

+
B

2

2

+ (1− µ)µλ2 j

2

2
)

. (3.1)

This quantity is a quadratic and global ideal invariant. For instance, the energy

density

E(r, t) =
u

2

2

+
B

2

2

+ (1− µ)µλ2 j

2

2

, (3.2)
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satisfies the following evolution equation in the absence of dissipation

∂

∂t
E(r, t) = −∇ · F , (3.3)

where F is the energy flux. Since the energy density (3.2) is quadratic, an equation

equivalent to (3.3) also holds in Fourier space as a result of Parseval’s theorem. In a

stationary and isotropic turbulent regime, the so-called energy cascade corresponds

to a constant energy flux in Fourier space (i.e., Fk independent of k = |k|).

In the paradigmatic case of incompressible hydrodynamic turbulence, a stationary

and isotropy turbulent regime can arise as the result of an isotropic driving force

injecting energy at large scales (energy-contain region), the cascade of energy

throughout a whole range of intermediate scales (energy inertia region) and the

viscous dissipation at sufficiently small spatial scales (dissipative region). The

modulus of the energy flux in Fourier space given by

Fk ≃ ku3
k = ǫ (3.4)

which leads to the well known Kolmogorov’s energy power spectrum

Ek ≃ ǫ2/3k−5/3 (3.5)

for isotropic, stationary and incompressible turbulence. This is obtained using

that Ek ≃ u2
k/τk and τk ≃ (kuk)

−1. The Kolmogorov spectrum is valid throughout

the energy inertia region, with ǫ being the energy fluxrate. In stationary regime,

ǫ is also the energy dissipation rate and the injection rate.

In the more complex case of EIHMHD turbulence, there are many terms con-

tributing to the energy flux in both physical and Fourier spaces. These various

contributions are sketched in the following expression for the energy flux in Fourier
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space,

Fk ≃ k(u3
k + ukBkB

′
k + (1− µ)λJkBkB

′
k + (1− µ)µλ2∂tJkBk) (3.6)

The presence in EIHMHD of the physical lengthscales associated with each species

(i.e. ki,e = λ−1
i,e ) causes the appearance of three different regions in wavenumber

space.

I ) The MHD region (k . ki): In this region we assume λ ≈ µ ≈ 0 and also

uk ≃ Bk ≃ B′
k. Therefore Fk ≃ kB3

k = ǫ and Ek ≃ B2
k/k ≃ ǫ2/3k−5/3.

II ) The HMHD region (ki . k . ke): In this region we maintain µ ≈ 0 but

λ 6= 0, and uk . Bk ≃ B′
k. As a result, we now have Fk ≃ λk2B3

k = ǫ and

therefore Ek ≃ B2
k/k ≃ (ǫ/λ)2/3k−7/3.

III ) The EIHMHD region (ke . k): This large-k region is dominated by the last

two terms in equation (3.6), which reduces to Fk ≃ kµλ2∂tJkBk = ǫ since

B′
k ∼ µλ2k2Bk >> Bk. Since kλ & 1/

√
µ >> 1 we assume the ions to remain

static because of their much larger mass and the dynamics to be dominated

by the electrons, i.e., ∂t ≃ kuek ≃ λk2Bk. Therefore Fk ≃ µλ3k4B3
k = ǫ. Note

that the energy power spectrum in this region is now predominantly electron

kinetic energy, and therefore Ek ≃ µλ2J2
k/k ≃ (ǫ2µ)1/3k−5/3. The power

spectrum of magnetic energy, however, is equal to B2
k/k ≃ (ǫ/(µλ3))2/3k−11/3.

Therefore, the power spectrum of magnetic energy, i.e. SB(k), has different slopes

according to these different spatial regions. In summary, SB(k) ∼ k−5/3 in the

MHD region, SB(k) ∼ k−7/3 in the HMHD region and, finally, SB(k) ∼ k−11/3 in

the EIHMHD region.
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3.2 2.5D Setup and initial conditions

To study the properties of a fully developed turbulent state in EIHMHD, we

consider a 2.5D setup. In this particular setup, the vector fields have all three

components, but only depend on two (for instance, the x and y Cartesian coordi-

nates). As we are considering the incompressible case (∇ · u = 0) we can write

the magnetic and velocity fields as

B = ∇× [ẑa(x, y, t)] + ẑb(x, y, t) (3.7)

u = ∇× [ẑϕ(x, y, t)] + ẑu(x, y, t) (3.8)

where a(x, y, t) and ϕ(x, y, t) are respectively the vector potential and stream

function and b(x, y, t) and u(x, y, t) are the ẑ-component of the magnetic and

velocity field. In terms of these functions, the equations (2.25) and (2.29) become:

∂t ω = [ϕ, ω]− [a, j]− (1− µ)µλ2[b,∇2b] +

+ ν∇2ω − ν0λ∇4b (3.9)

∂t u = [ϕ, u]− [a, b]− (1− µ)µλ2[j, b] + ν∇2u+

+ ν0λ∇2j (3.10)

∂t a
′ = [ϕe, a

′] + η∇2a− (1− µ)νeλ
2∇4a−

− νeλ∇2u (3.11)

∂t b
′ = [ϕe, b

′] + [ue, a
′] + η∇2b− (1− µ)νeλ

2∇4b−

− νeλ∇2ω (3.12)
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where

ω = −∇2ϕ (3.13)

j = −∇2a (3.14)

a′ = a+ µ(1− µ)λ2j − µλu (3.15)

b′ = b− µ(1− µ)λ2∇2b− µλω (3.16)

and the nonlinear terms are all given by the standard Poisson brackets, i.e.

[p, q] ≡ ∂xp∂yq − ∂yp∂xq. (3.17)

We have also defined the stream function and the velocity component along ẑ for

electrons, respectively as

ϕe = ϕ− (1− µ)λb (3.18)

ue = u− (1− µ)λj. (3.19)

This set of equations describes the dynamical evolution of the magnetic and ve-

locity fields. When µ = 0 (i.e. me = 0) it reduces to the incompressible 2.5D

HMHD equations. Finally, since in the 2.5D setup ∂z ≡ 0 we can ignore the g(r, t)

indetermination in equation (2.32) for the computation of Ez.

We use a parallel pseudospectral code to numerically integrate equations (3.9)-

(3.12). A second-order Runge-Kutta time-integration scheme is adopted. Periodic

boundary conditions are assumed for the x̂ and ŷ directions of a square box of

linear side 2πL0 (where L0 is the length unit). The simulations performed through-

out the present Chapter are run-down, i.e., they do not contain any magnetic or

velocity stirring forces. As initial conditions, we excite Fourier modes (for both

magnetic and velocity field fluctuations) in a shell in k-space with wavenumbers
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Figure 3.1: The images (in redscale) show the spatial distribution of current
density j(x, y) at t = 0, for the integration box (2π×2π). Contours of a(x, y) are
superimposed (solid and dashed black lines for a > 0 and a < 0, respectively).

3 ≤ k ≤ 4, with the same amplitude and random phases for all modes. Figure

3.1 shows the spatial distribution of current density j(x, y) at t = 0 in a red-scale

for the integration box. In addition, contours of a(x, y) are superimposed in white

lines. For all the simulations of this chapter we used a spatial resolution of 30722

grid points with ν = 3 × 10−5 and η = 1.5 × 10−4. To suppress aliasing effects,

our spectral code uses a maximum wavenumber kmax = N/3 = 1024. The ratio

between the ion and electron inertial lengths is equal to the square root of the mass

ratio. For instance, for the realistic value me/mp = 1/1836, which corresponds to

ke ∼ 43ki, the dissipation range corresponds to wavenumbers much larger than

both characteristic scales. For all simulations, the dissipation wavenumber kd,

computed as kd =< j2 + ω2 >1/4 /
√
ν, remains in the range of ke < kd < kmax.
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Figure 3.2: The parallel (black) and perpendicular (red) magnetic spectra
of Cluster data. The noise level measured in the laboratory and in-flight are
plotted as dashed and dotted lines, respectively. The straight black lines are
power law fits to the spectra. The arrows indicate characteristic frequencies

defined in the text [Extracted from Sahraoui et al., 2009].

3.3 Interplanetary magnetic field spectrum

Figure 3.2 shows the parallel (black-green lines) and perpendicular (red-blue lines)

magnetic field spectra from in-situ solar wind Cluster measurements [Sahraoui

et al., 2009]. The noise level measured in the laboratory and in flight are plotted

as dashed and dotted lines, respectively. The solid black lines are power law fits to

the spectra. The arrows indicate the characteristic scales of the plasma, namely,

the proton and electron gyro-scales (ρp,e ≡ vthp,e
/ωcp,e, where vth and ωcp,e are the

thermal velocity and the proton and electron gyro-frequency).

We ran simulations at high spatial resolution to study the freely evolving turbu-

lence at different scales. In particular, we performed two EIHMHD simulations
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Figure 3.3: Magnetic energy spectra for EIHMHD cases with λi = 1/10,
me/mp = 1/1836 (black) and me/mp = 0.015 (gray).

with the same ion inertial length (λi = 0.1) and different electron to proton mass

ratios (me/mp). On one hand, we used a fictitious mass ratio, me/mp = 0.015

(electrons 27 times heavier), which corresponds to ki ∼ 10 and ke ∼ 82 to study

the development of scales between the electron and the ion inertial lengths. On

the other hand, we used the real mass ratio me/mp = 1/1836 corresponding to

ki ∼ 10 and ke ∼ 428.

Figure 3.3 shows the magnetic energy spectrum for both runs. The black and gray

lines correspond to the real and fictitious electron-to-proton-mass ratio, respec-

tively. As shown by the spectra, the magnetic power spectra explicitly depends

on the value of the electron mass, even though asymptotically goes to the HMHD

spectrum as k << ke.

The upper panel in Figure 3.4 shows the magnetic energy spectra for the case of

fictitious electron to proton mass ratio (gray line). In addition, the dashed black

lines show the theoretical power-law scalings (see section 3.1) for the different

spectral ranges. The ion, electron and dissipation wavenumbers are indicated as
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Figure 3.4: Magnetic energy spectra for me/mp = 0.015. Vertical dashed gray
lines correspond to ki ∼ 10, ke ∼ 82 and kν ∼ 550. The compensated spectrum
for the HMHD (solid line) and EIHMHD (dashed line) regions are shown in the

lower panel.

vertical dashed gray lines. The lower panels show the compensated spectrum for

the HMHD (solid line) and EIHMHD (dashed line) region. The separation points

occur near the kinetic scales ki and ke, a feature consistent with solar wind obser-

vations [Sahraoui et al., 2009, Alexandrova et al., 2009]. It is also remarkable the

very good agreement between he theoretical and numerical slopes for each region.

In Figure 3.4, the scale separation between the HMHD and the EIHMHD regions

is clearly noticeable. The Hall range shows a scaling of ∼ k−7/3, in agreement

with observations, several theoretical predictions [Galtier, 2006, Biskamp et al.,

1999] and previous numerical results [Krishan and Mahajan, 2004, Gómez et al.,

2008]. A new range of scaling ∼ k−11/3 emerges for wavenumbers k ∼ ke, i.e. the

EIHMHD region, which is also consistent with our prediction described in section
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Figure 3.5: Magnetic energy spectra for me/mp = 1/1836. Vertical dashed
gray lines correspond to ki ∼ 10, ke ∼ 430 and kν ∼ 650. The compensated
spectrum for the HMHD (gray line) and EIHMHD (green line) regions in the

same format as Figure 3.4.

3.1, solar wind observations [Sahraoui et al., 2009, Alexandrova et al., 2009] and

previous simulations [Sahraoui et al., 2009, Wan et al., 2012]. There is also an

indication of an exponential decay for the largest wavenumbers in our simulations,

as was suggested by observations [Alexandrova et al., 2009].

Figure 3.5 shows the power spectra for the magnetic energy for me/mp = 1/1836

(black line), with the same format as Figure 3.4. In this case, the inverse of the

electron inertial length and the dissipation wavenumber are very close to each

other. Therefore, there is no clear-cut distinction between the k−11/3 power-law

and the exponentially decaying dissipative region.
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Figure 3.6: Power spectrum of electrostatic field for EIHMHD with me/mp =
1/1836 and me/mp = 0.015 (upper panel). Vertical lines correspond to ki ∼ 10,
ke (∼ 82 and ∼ 428 for the fictitious and real mass ratio respectively) and
kν ∼ 650. The lower panel, corresponds to the ratio between the electric and

magnetic spectra, i.e. SE/SB.

3.4 Interplanetary electric field spectrum

As we show in Chapter 2, making use of the Maxwell-Faraday equation in Fourier

space we can obtain an expression for the electric field E, see (2.32). Figure 3.6

(upper panel) shows the power spectrum of the z component of the electric field for

the two EIHMHD cases, me/mp = 1836 (black) and me/mp = 0.015 (gray). The

ion wavenumber (ki ∼ 10), the fictitious and real electron wavenumbers (ke ∼ 82

and ke ∼ 482, respectively) and the dissipation scale (kd ∼ 650) wavenumber are

indicated as vertical dashed gray lines. The two spectra are clearly different when

we consider electrons with different masses. As we expect, the electric field is
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much smaller than the magnetic field for all scales(∼10−8 in the large scales and

∼10−2 in the small scales).

The lower panel shows the ratio between the electric field (z component) and the

magnetic field spectra. We find that the electric field becomes gradually more

important as k increases. This is consistent with observations in the solar wind

[Sahraoui et al., 2009].

3.5 Discussion

Within the context of a full two-fluid model in a turbulent regime we numerically

obtain the magnetic energy spectrum, which present striking similarity consistent

with the one observed in the solar wind. The energy inertia region of the spectrum

is split into three subregions as a result of the presence of the new spatial scales

λi and λe. This is explicitly shown in equations (3.9)-(3.12) where it can be seen

that the presence of the scales λi and λe introduces new non-linear terms which

are absent in a one-fluid MHD description. It is worth mentioning that these new

regions originated by the appearance of two physically meaningful spatial scales

(i.e., λi,e) are not present in the one-fluid MHD description.

We also present numerical results for the electric field. It is worth mentioning

that the interplanetary electric field consists of four different contributions. An

inductive part related to the u × B term, a Hall contribution related to λij × B

term, the dissipative component and a new contribution associated with the non-

zero electron mass, which is proportional to µ. As a consequence, these nonlinear

contributions affect the energy distribution among scales. If the energy distribu-

tion is affected by introducing these two effects (Hall and non-zero electron mass),

we can expect also different flow structures and general dynamics on small-scales

where the one-fluid MHD description is no longer adequate.
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3.6 Resumen en castellano

En este Caṕıtulo presentamos los resultados y discusiones referidos al carácter

turbulento del viento solar.

En la sección 3.1, presentamos las predicciones teóricas para el espectro de enerǵıa

magn ética para cada región en el espacio de número de onda. En particular, hal-

lamos el espectro para grandes escalas temporales y espaciales (MHD), las escalas

intermedias (HMHD) y las escalas pequeñas (EIHMHD). Además, presentamos

los pricipales resultados de mediciones in-situ del viento solar a una unidad as-

tronómica.

En la sección 3.2, presentamos las condiciones iniciales para estudiar numerica-

mente la turbulencia en el viento solar. Además, introducimos las ecuaciones en

2.5 D, las cuales serán utilizadas también en el Caṕıtulo 4.

En las secciones 3.3 y 3.4 presentamos los resultados numéricos principales y los

comparamos con las predicciones teóricas y las mediciones in-situ en el viento

solar.

Finalmente, en la sección 3.5, presentamos las discusiones y conclusiones del

Caṕıtulo.
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Collisionless Magnetic

Reconnection

Los niños deb́ıan de recordar por el resto de su vida la augusta solemnidad con

que su padre se sentó a la cabecera de la mesa templado de fiebre, devastado por

la prolongada vigilia y por el encono de su imaginación, y les revelo su

descubrimiento: — La tierra es redonda como una naranja.

Cien años de soledad. Gabriel Garcia Marquez.

In this Chapter, we briefly review the earlier results about magnetic reconnection

within the framework of one-fluid resistive MHD. Then, we present a study of colli-

sionless magnetic reconnection within the framework of EIHMHD for a completely

ionized hydrogen plasma, retaining the effects of the Hall current, electron pressure

and electron inertia. We performed 2.5D simulations using a pseudo-spectral code

with no dissipative effects. Our numerical results confirm that the change in the

topology of the magnetic field lines is exclusively due to the presence of electron

inertia. The computed reconnection rates remain a fair fraction of the Alfvén ve-

locity, which therefore qualifies as fast reconnection. The dimensionless EIHMHD

62
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equations, present two relevant dimensionless constants: the Hall parameter and

the mass ratio. We conduct two series of simulations varying each one of these

parameters. We find that while the reconnection rate remains independent of the

mass ratio, it increases linearly with the Hall parameter.

4.1 Resistive magnetic reconnection: the Sweet-

Parker model

Magnetic reconnection is a physical process that converts magnetic free energy into

heat and kinetic energy. This important mechanism of energy conversion is present

in several space environments, such as solar flares and planetary magnetospheres

[Priest and Forbes, 2000]. The first model of magnetic reconnection was developed

within the framework of one-fluid resistive MHD, the so-called Sweet-Parker (SP)

model [Sweet, 1958, Parker, 1957]. A key ingredient of the SP regime is magnetic

resistivity, which breaks the frozen-in condition (see equation 1.2) in the dissipation

region thus allowing for magnetic reconnection to occur. For the development of

the SP model, we consider a rectangular magnetic reconnection region of width 2δ

and length 2∆ as is shown in Figure 4.1.

The upstream plasma carrying frozen-in magnetic field lines of intensity Bin with

a inflow velocity uin, reconnect at the neutral point O (center of the gray area in

Figure 4.1), and then the plasma is ejected downstream from O with an outflow

speed uout dragging the reconnected field lines of intensity Bout along with it. In

Figure 4.1, the green arrow heads correspond to the out-of-plane current. From

the incompressible assumption of the plasma (i.e. ∇ · u = 0) we obtain

uin∆ = uoutδ (4.1)
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which is a direct consequence of the mass conservation. In this 2D setup, the self-

consistent electric field points out of the plane (i.e. ẑ), and in stationary regime

it will satisfy Ez ∼ const since

∇× E = −∂B

∂t
= 0 → Ez = const. (4.2)

Therefore, we can evaluate the electric field (2.32) in three particular points,

Ez(0, δ) = −uinBin (4.3)

Ez(0, 0) = ηjz(0, 0) ∼ −η
Bin

δ
(4.4)

Ez(∆, 0) = −uoutBout (4.5)

where we have used the fact that Bout << Bin and δ < ∆ in equation (4.4). Using

equation (4.1), matching equations (4.3) with (4.4) and (4.3) with (4.5), we obtain

uin =
η

δ
(4.6)

Binδ = Bout∆ (4.7)

respectively. The equation (4.7) is also consistent with ∇ ·B = 0.

Next, we consider the inviscid and stationary equation of motion (2.22) for this

one-fluid plasma

(u ·∇)u = −∇

(

p+
B2

2

)

+ (B ·∇)B (4.8)

along the x and y directions. In the equation of motion along the y (inflow)

direction the inertial term (uin << Bin) and the magnetic tension (large curvature

radius of incoming field lines) can be neglected, and this equation reduces to the

total pressure balance across the reconnection layer,

∂

∂x

(

p+
B2

2

)

= 0 → p(0, 0) = p(0, δ) +
B2

in

2
(4.9)
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Figure 4.1: Schematic 2D Sweet-Parker magnetic reconnection region.

Along the x (outflow) direction, we find that the outgoing jet is powered by a

combination of pressure gradient and magnetic tension. As a result

u2
out

2
∼ − (p(∆, 0)− p(0, 0)) +B2

in. (4.10)

Combining equations (4.9) and (4.10) we obtain

u2
out = B2

in − 2 (p(∆, 0)− p(0, 0)) (4.11)

where Bin is the Alfvén velocity in dimensionless form. In a simple terms, the

pressure and magnetic tension forces accelerate the plasma along the reconnection

layer up to velocities of the order of vA. It is straightforward to show that the

inflow reconnection velocity scales as

uin = Bin
δ

∆
=

√

Binη

∆
(4.12)

where we have used equation (4.6) and the fact that the δ does not depend on

∆. Defining the dimensionless reconnection rate as r ≡ |Ez(0, 0)| = uin/Bin we
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obtain

r =

√

η

Bin∆
= S−1/2 (4.13)

where we have defined the Lundquist number as S ≡ Bin∆/η. In summary, the

reconnection rate (4.13) scales as the square root of the magnetic resistivity, which

leads to exceedingly low reconnection rates with respect to observations for most

space physics environments [Edwards et al., 1986, Bhattacharjee, 2004, Øieroset

et al., 2007, Yamada, 2011].

To check the scaling (4.13), we have performed 2D resistive MHD simulations

using a pseudo-spectral code. Our initial condition for the simulation of a thin

current sheet is given by (assuming periodic boundary conditions in a 2π × 2π

box)

B(x, y, t = 0) = B0

[

tanh

(

y − 3π
2

2πl

)

− tanh

(

y − π
2

2πl

)

+ 1

]

x̂ (4.14)

where, in normalized units, we have B0 = 1 and l = 0.02. Figure 4.2 shows the

Bx as a function of the y coordinate for the entire integration box. To drive the

reconnection process, a spatial monochromatic perturbation δB = ∇× [ẑ δa(x, y)]

with δa(x, y) = a0 cos(kxx), kx = 1 and an amplitude of a0 = 0.02B0 is added to the

initial condition (4.14). In Figure 4.3 we show the onset of magnetic reconnection.

Contour levels of magnetic flux a(x, y) are in white lines, superimposed to the

electric current density component along the z direction, j(x, y), at time t = 0.0

(in grayscale). The brightest regions correspond to the current sheets. We only

show half a box of integration for each case, of size 2π × π.

Using the initial conditions described above we have performed numerical simu-

lations with high spatial resolution of 20482 grid points, for the two particular

magnetic resistivities, η1 = 0.015 and η2 = 0.03 (noted that η2 = 2η1). To quanti-

tatively measure the efficiency of the magnetic reconnection process, we study the
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Figure 4.2: Initial profile for Bx(x = 0, y) as a function of y.

dimensionless magnetic reconnection rate r(t), which is the rate at which mag-

netic flux flows into the central neutral point (the X-point). Near the neutral

point, magnetic flux enters at a relatively slow plasma inflow velocity uin and is

expelled at speeds of the order of the Alfvén velocity. Figure 4.8 shows the ver-

tical surface used to integrate the magnetic flux Φ(t) =
∫

dS · B, that extends

from the O-point of one of the current sheets (shown in black, corresponding to

negative values of j(x, y)), to the X-point of the other (shown in white). Both the

O-point and the X-point are stagnation points of the flow. Using equation (2.30)

it is straightforward to show that

φ(t) =

∫

dS ·B = amax − amin (4.15)

The reconnection rate r(t) is the variation of this magnetic flux per unit time, i.e.

r(t) = dφ(t)/dt.
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Figure 4.3: The images (in grayscale) show the spatial distribution of current
density j(x, y) at t = 0.0, for the integration box (see Figure 4.8). Contour
levels of a(x, y) are superimposed (solid and dashed black lines for a > 0 and

a < 0, respectively).

X-point

O-point

Figure 4.4: Schematic configuration for the calculation of the reconnection
rate. The horizontal plane shows the distribution of j(x, y) for the full box,

contour levels of a(x, y) are superimposed.
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Figure 4.5: Reconnected flux and reconnection rate as a function of time for
η1 = 0.015 (dashed line) and η2 = 0.03 (solid line). The two runs correspond to

MHD simulations.

Figure 4.5 shows the reconnected flux and reconnection rate as a function of time.

The reconnection rate r(t) is calculated using second order finite central differences

from the time series of the flux φ(t). The two curves correspond to MHD runs

using η1 (dashed line) and η2 (solid line). In the case of η1 = 0.015, we obtain

a maximum reconnection rate of 0.0136 at t ∼ 5.4, while for η2 = 2η1, we get a

maximum reconnection rate of 0.0157 at t ∼ 5.4. As expected, when we duplicate

the magnetic resistivity, the maximum reconnection rate increases by a factor

∼ 2−1/2.
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4.2 Collisionless magnetic reconnection: the ef-

fect of electron inertia

Kinetic plasma effects such as Hall and electron inertia, introduce new spatial and

temporal scales into the theoretical one-fluid description. In a two-fluid description

of a plasma with isotropic pressure tensors, only two kinetic effects are able to

break magnetic field lines and give rise to reconnection: magnetic resistivity and

electron inertia. For instance, if the resistive scale is larger than the ion inertial

length, the resistive MHD model is a valid description for a collisional plasma.

Most if not all of the fluid descriptions listed in the literature include electric

resistivity. In fact, at least a small amount of numerical resistivity is originated

in the computational scheme used to calculate the spatial derivatives. However,

in a truly collisionless regime magnetic reconnection should be driven solely by

electron inertia.

Our goal is to study magnetic reconnection exclusively due to electron inertia,

by completely suppressing the action of magnetic resistivity. We use a pseudo-

spectral scheme to compute the spatial derivatives, which converges exponentially

fast as the number of grid points is increased. As a result, we can run simulations

with zero resistivity and/or viscosity, and check that we are not spuriously adding

numerical resistivity simply by monitoring the energy conservation for each run.

As energy is conserved with a precision consistent with round-off errors, we are

certain that reconnection in our simulations arises exclusively as a result of finite

electron inertia, and not because of the presence of physical or numerical resistiv-

ity. For spatial scales below of the electron skin-depth the terms of electron inertia

are dominant, and the electrons can no longer be frozen-in to the magnetic field

lines [Vasyliunas, 1975]. As it was discussed in the Introduction, the electron in-

ertia (with isotropic pressures) is the only mechanism responsible for the observed
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changes in the magnetic field topology.

Next, we performed various sets of numerical simulations with spatial resolutions

of 5122, 10242, 15362 and 20482 grid points. The initial condition are the same

used in the previous section. For all these cases we use a Hall parameter λH = 0.1

and a value of mass ratio me/mp = 0.015. In addition, we made 3 runs with

high spatial resolution (10242, 15362 and 20482 grid points) and a realistic ratio

of electron to proton mass, i.e. me/mp = 1/1836.

To test the accuracy of our results, we focused our attention on the spatial res-

olution of our simulations. For this purpose, we made different runs for several

spatial resolutions, starting from the same initial condition. More specifically, we

performed 2.5D runs with the following numbers of grid points: 5122, 10242, 15362

and 20482. For each spatial resolution, we calculated the reconnected flux and we

plotted it as a function of time (see Figure 4.6). As expected, for the ideal MHD

and HMHD cases, the curve for the reconnected flux converges to zero as the spa-

tial resolution is increased (line color scale is progressively darker). Therefore, as

the number of grid points increases, the reconnection rate approaches zero, both in

the ideal one-fluid MHD and HMHD cases. In the case of EIHMHD, since we ex-

pect the electrons to break the frozen-in condition, the reconnected flux converges

to a value different from zero, as the number of grid points increases.

4.3 Reconnected flux and reconnection rate

Within the framework of EIHMHD, we have study the collisionless magnetic re-

connection problem considering λ = 0.1 and a realistic value of the electron mass

(me/mp = 1/1836). Using the same initial conditions described in Section 4.1, we

performed simulations with progressively higher spatial resolution (10242, 15362

and 20482). Figure 4.7 shows the reconnected flux and reconnection rate, for each
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Figure 4.6: Reconnected flux versus time. Each panel corresponds to a dif-
ferent case, as labelled. Different spatial resolutions: 5122, 10242, 15362, and

20482 correspond to progressively darker traces.
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Figure 4.7: Reconnected flux and reconnection rate as a function of time for
10242 (light gray line), 15362 (dark gray line) and 20482 (black line) grid points.
The three runs correspond to λ = 0.1 and a realistic mass ratio (me/mp =

1/1836).

spatial resolution, as a function of time. As expected, we obtain essentially the

same curve for the three spatial resolutions in agreement with the results shown

in Figure 4.6. In particular, we get a maximum reconnection rate reaching values

close to 0.1, which corresponds to inflow velocities approaching a fraction of the

Alfvén speed. This result is consistent with those reported in the literature, in

particular with PIC simulation results [Zenitani et al., 2011, Fujimoto, 2011] and

the GEM Challenge [Birn et al., 2001]. In particular, using a partially implicit

PIC code, Zenitani et al. [2011] found a reconnection rate approaching 0.1vA. It

is worth mentioning that we obtained a reconnection rate comparable to the one

reported by Birn et al. [2001], because we used a similar set of initial conditions

and parameter values. Nevertheless, the reconnection rate is expected to depend

on the Hall parameter [Smith et al., 2004, Morales et al., 2005, 2006]. In the
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next section, we study how the reconnection rate changes as the Hall parameter

is increased. Other authors considered cases were the reconnection event takes

place in presence of a background turbulence. In those cases, they found that the

reconnection rate also depends on the amplitude of fluctuations δB [Smith et al.,

2004].

Finally, we compared the reconnected flux and reconnection rate for the same

initial conditions and different electron to proton mass ratios. In particular, we

compared the results for me/mp = 0.015 and me/mp = 1/1836. We obtain the

same trend for both the reconnected flux and the reconnection rate. In agreement

with PIC simulations [Zenitani et al., 2011] and resistive HMHD simulations [Birn

et al., 2001], we find that the reconnection rate is insensitive to the electron to

proton mass ratio.

4.4 Magnetic reconnection rate scaling

4.4.1 Theoretical scaling of magnetic reconnection rate

In the context of collisionless magnetic reconnection, the reconnection region de-

velops a multi-scale structure in which the ion and electron inertial lengths λi,e

play a role [Biskamp et al., 1997]. As we discussed in the Introduction, ions can

be considered approximately static and electrons are the ones to carry most of

the electric current. Also, at these scales the terms of electron inertia become

dominant, and the electrons can no longer be frozen-in to the magnetic field lines

[Vasyliunas, 1975]. Therefore, at this level of description, a change in the topology

of the magnetic field lines which is exclusively due to electron inertia, becomes

possible.
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Figure 4.8: Schematic 2.5D reconnection region.

Within scales near the X-point, where |ui| << |J/en|, we obtain a scaling for

the reconnection rate as a function of λ and µ which are the main parameters

of the problem. We consider a rectangular reconnection region with a width 2δ

and a length 2∆ (see Figure 4.8). By definition, the reconnection rate in a 2D

configuration is the out-of-plane component of the electric field (i.e., Ez) at the

X-point. The electric field can be obtained from the ideal equation of motion for

the electrons (2.16) as

E = −me

e

[

∂ue

∂t
+ ue × (ωe +

e

mec
B) +∇

(

u2
e

2
+

pe
men

)]

. (4.16)

Under the assumption of quasi-stationarity (i.e., ∂t ∼ 0) for a 2.5D setup (i.e.,

∂z ∼ 0), the out-of-plane component of the electric field (the ẑ direction) reduces

to

Ez = −me

e
ẑ · ue × ωe =

me

e3n2
ẑ · J× (∇× J) (4.17)

where we have assumed ue ∼ −J/en.
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In view of the sketch shown in Figure 4.8, close to the X-point is ∂x ∼ ∆−1,

∂y ∼ δ−1 and Jz = cBin/4πδ, where Bin is the magnetic field at the edge of the

reconnection region in the inflow direction. Therefore,

Ez =
me

e

( c

4πne

)2 BzBin

∆δ2
. (4.18)

To estimate the out-of-plane component of the magnetic field (Bz), we consider

the ẑ component of the curl of equation (4.16) (under quasi-stationary conditions),

i.e.

ẑ ·∇×
[

J×
(

e

cme
B− 1

en
∇× J

)]

= 0 (4.19)

which, in 2.5D setup leads to

B⊥ ·∇⊥Jz =

(

c

ωpe

)2

J⊥ ·∇⊥(∇2Bz) (4.20)

and therefore

Bz =
ωpeδ

c
Bin. (4.21)

The ẑ-component of the electric field at the X-point is then

Ez =
c

4πen

B2
in

∆δωpe

. (4.22)

The dimensionless reconnection rate, i.e. r ≡ cEz/B0vA, becomes

r =
c

ωpM∆

c

ωpeδ

(

Bin

B0

)2

(4.23)

As it was discussed in the Introduction, we expect Bin and ∆ not to depend on λ

[Simakov and Chacón, 2008]. Their particular values are only determined by the

boundary and initial conditions. Nevertheless, in the next section we evaluate the

potential dependence of Bin, δ and ∆ with the Hall parameter in our numerical
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results.

Assuming that the thickness of the current sheet is essentially the electron inertial

length, i.e. δ ∼ c/ωpe and also that the typical magnetic field intensity is B0 = Bin

and the typical length scale is L0 = ∆ we obtain

r = λ (4.24)

Note that if δ ∼ c/ωpe, according to (4.21) we also obtain that (in the regime of

quasi-stationary reconnection) Bz ∼ Bin. Note also that the reconnection rate is

independent of the mass ratio µ, as shown in Andrés et al. [2014a].

4.4.2 Quasi-stationary magnetic reconnection

Within the framework of EIHMHD, we study the collisionless magnetic recon-

nection problem varying the dimensionless Hall parameter λ. Using the initial

conditions described in subsection 4.1, we performed ten ideal runs with a spatial

resolution of 20482 grid points for different values of the Hall parameter. Our runs

span the range λ = 0.07 to λ = 0.16, with a step of 0.01. The values of λ are

sufficiently small, to minimize the potential influence of boundary conditions. In

all these runs the electron to ion mass ratio corresponds to me/mi = 0.015.

To measure the efficiency of the magnetic reconnection process, the dimensionless

reconnection rate r(t) is defined, which is the rate at which magnetic flux flows

into the X-point. Using equation (3.7) it is straightforward to show that the total

reconnected flux Φ(t) is Φ(t) = amax − amin [Smith et al., 2004, Andrés et al.,

2014a]. Therefore, the reconnection rate r(t) is the variation of the magnetic

flux per unit time, i.e. r(t) = dΦ(t)/dt. Figure 4.9 shows the reconnected flux

(upper panel) and reconnection rate (lower panel) as a function of time, for the
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Figure 4.9: Reconnected flux Φ (upper panel) and reconnection rate r (lower
panel) as a function of time for λ = 0.07, · · · , 0.16 (from bottom to top). For

all runs the electron to ion mass ratio is me/mi = 0.015.

ten values of the Hall parameter. In contrast to previous claims [Shay et al., 1991,

Birn et al., 2001], Figure 4.9 shows that the reconnection rate strongly depends

on λ and is not a universal constant. As it can be seen, the reconnected flux

monotonically increases with λ, which ultimately leads to an increment of the

maximum magnitude of reconnection rate. We also note that as we increase λ,

the maximum reconnection rate occurs at earlier times. Similar behavior has been

reported in the literature when the Hall effect is included in Ohm’s law [Smith

et al., 2004, Morales et al., 2005, 2006].

From equation (4.23) we see the importance of studying whether the thickness and

width of the reconnection region (δ and ∆, respectively) and the magnetic field at

the edge of this region (Bin) change as a function of the Hall parameter. Since our

scaling was performed assuming quasi-stationary conditions, we have to take this
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Figure 4.10: Quasi-stationary values of δ (gray circles) as a function of λe.
We plot the electron inertial length λe in gray-dashed line for reference.

constraint into account. The width of the reconnection region δ is defined in terms

of the current density profile j(y) across the layer [Malyshkin, 2010]. The value

of δ is obtained from a best fit of the numerical profile to a sech2(y/δ) function,

which is consistent with the initial profile give by equation (4.14). To determine

Bin we simply adopt Bin = Bx(x = π/2, y = π/4 − δ), since our neutral point

is located at x = π/2, y = π/4. We assume that the system evolves in a quasi-

stationary fashion during a time interval such that δ and Bin show approximately

no temporal variations. The length of the reconnection region ∆ was obtained from

the outflow velocity profile ux(x, y = π/4) applying the incompressible condition

for the plasma, i.e.

u(out)
x (x =

π

2
+ ∆, y =

π

4
) =

∆

δ
u(in)
y (x =

π

2
, y =

π

4
− δ). (4.25)



Chapter 4. Magnetic Reconnection 80

Figure 4.11: Quasi-stationary values of Bin (upper panel) and ∆ (lower panel)
as a function of λ. The gray-dashed line indicates the mean values of Bin and

∆.

Figure 4.10 shows the quasi-stationary values of δ (gray circles) as a function of

λe. In addition, we plot λe in gray-dashed line. As expected, the width of the

reconnection region is of the order of the electron inertial length. In particular,

from a best linear-fit for log δ−log λe we obtain δ = (1.3±0.3) λ1.06±0.07
e . Therefore,

we conclude that δ ∼ λe.

Figure 4.11 shows Bin (upper panel) and ∆ (lower panel) as a function of λ (gray

squares) for the ten values of the Hall parameter. Figure 4.11 indicates that Bin

and ∆ show approximately no dependence with the Hall parameter. This result is

compatible with previous results reported in the literature [Simakov and Chacón,

2008, Wang et al., 2001].

The results displayed in Figure 4.10 (δ ∼ λe) and Figure 4.11 (Bin ∼ const and
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Figure 4.12: Quasi-stationary reconnection rate r (gray circles) as a function
of the Hall parameter λ. The best linear-fit for log λ − log r is shown in gray-
dashed line. Inset: Ratio between quasi-stationary reconnection rates and the

Hall parameter (gray squares) as a function of the Hall parameter.

∆ ∼ const) lend support to the assumptions made in equation (4.23) to obtain

equation (4.24), i.e. that the reconnection rate is simply proportional to the

Hall parameter. Figure 4.12 shows the quasi-stationary reconnection rates (gray

circles), i.e. the mean reconnection rate for the time interval determined in Section

4.4.2, as a function of the Hall parameter λ. In addition, we plot the curves

corresponding to the best linear-fit for log λ − log r (dashed line). The inset in

Figure 4.12 shows r/λ (gray squares) as a function of λ. From the best linear-fit

for log λ − log r we obtain r = (0.11 ± 0.07) λ0.98±0.03. Therefore, we conclude

that the reconnection rate r is compatible with a linear relation with the Hall

parameter λ, as it was predicted by our analytical relation (4.24).

Finally, we also compare the quasi-stationary reconnection rate for a fixed value

of the Hall parameter (λ = 0.1), and two different electron to proton mass ratios.
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In particular, we compared the results for me/mi = 0.015 and me/mi = 0.15. In

the quasi-stationary regime, we find approximately the same reconnection rate.

This result is compatible with our theoretical result, which predicts that fast re-

connection rate is insensitive to the electron to proton mass ratio even though it

needs to be nonzero for reconnection to take place (Birn et al., 2001; Zenitani et

al., 2011; see also Andrés et al., 2014a).

4.5 Discussion

Our results show that we are able to obtain magnetic reconnection, only when the

effects of electron inertia are retained, since our scheme is free from physical or

numerical resistivity. As expected, for the ideal one-fluid MHD and HMHD cases,

the reconnected flux converges to zero as the spatial resolution is increased, while

in the case of EIHMHD the reconnected flux converges to a value different from

zero, as the number of grid points increases. Therefore, we claim that considering

electron inertia in a full two-fluid MHD description is a necessary physical ingre-

dient to start the reconnection process. Note that in our pseudo-spectral scheme,

numerical dissipation is essentially zero (within round-off errors). In particular,

the simulations reported here correspond to zero viscosity and resistivity, and the

total energy is conserved by the numerical scheme with an error ∆E/E < 10−8.

The ion and electron helicities were initially zero, and throughout their evolution

differ from zero in less than 10−15. It is clear that numerical dissipation remains

close to the round-off errors.

For high spatial resolution simulations we find a reconnection rate that is quantita-

tively compatible with the one found by Birn et al. [2001], when we use parameter

values and initial conditions similar to theirs. We note however, that the recon-

nection rate might still depend on the value of the Hall parameter λ or on the level
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of fluctuations δB. In particular, within the framework of two-fluid MHD and as-

suming stationary conditions, we obtain a theoretical scaling for the reconnection

rate. Our numerical results confirm our assumptions that the thickness of the

current sheet is essentially the electron inertial length, i.e. δ ∼ λe, and that Bin

and ∆ do not depend on the Hall parameter [Simakov and Chacón, 2008]. More

importantly, our numerical results also confirm the predicted linear dependence of

the reconnection rate r with the Hall parameter λ (i.e. r ∝ λ).

Within the context of incompressible HMHD, Simakov and Chacón [2008] pre-

sented a quantitative analysis of reconnection valid for the resistive, HMHD and

EMHD regimes. Their study concentrated on the reconnection region, without

considering any particular external driving force. In the resistive MHD limit,

the authors recover the standard resistive result [Parker, 1957]. In the limit of

EMHD, the authors find that the reconnection rate does not explicitly depend on

the dissipation coefficients and features a strong dependence on the Hall parame-

ter. In particular, they confirm an earlier result and find that r =
√
2λ/∆ [Chacón

et al., 2007], which is consistent with our scaling. Malyshkin [2008] also calculated

the rate of quasi-stationary, 2.5D magnetic reconnection within the framework

of incompressible HMHD. The author find that the dimensionless reconnection

rate is independent of the electrical resistivity and equal to λ/L, where L is the

scale length of the external magnetic field in the upstream region outside the elec-

tron layer. This result is also compatible with our theoretical results [see also

Malyshkin, 2009]. In a different direction, Wang et al. [2000] reported a similar

linear dependence with λ and noted that Bin is determined by the functional form

of the boundary conditions, while ∆ depends on a external time-dependent driving

force. For a particular model of external driving, Wang et al. [2001] calculated

the scaling of the reconnection rate within the framework of resistive HMHD. The

authors found a λ1/2 dependence for the reconnection rate. This particular scaling



Chapter 4. Magnetic Reconnection 84

is not comparable with our results, since in our simulations we do not consider

any external driving force.
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4.6 Resumen en castellano

En este Caṕıtulo presentamos los resultados y discusiones referidos al proceso de

reconexión magnética.

En la sección 4.1, presentamos el cálculo detallado del modelo resistivo de Sweet-

Parker para estudiar reconexión magnética. Presentamos condiciones iniciales para

estudiar numéricamente el problema de reconexión magnética. Además, presen-

tamos resultados numéricos confirmando las predicciones del modelo de Sweet-

Parker.

En la sección 4.2, estudiamos la reconexión magnética no-colisional (es decir,

cuando las resistividad es cero). Presentamos los resultados numéricos que in-

dican que la reconexión magnética en el modelo de dos fluidos MHD es debida a

la inercia electrónica.

En la sección 4.3, estudiamos la tasa de reconexión y el flujo magnético reconec-

tado. Nuestros resultados indican que, aunque la inercia electrónica es un condi-

mento necesario para que el proceso de reconexión no-colisional tenga lugar, la

eficiencia con la cual las ĺıneas de campo magnético son reconectadas no depende

de la masa del electron.

En la sección 4.4, dentro del contexto de dos fluidos MHD, bajo condiciones esta-

cionarias, calculamos teoricamente la tasa de reconexión. Además, confirmamos

numéricamente nuestra predicción teórica.

Finalmente, en la sección 4.5, presentamos las discusiones y conclusiones del

Caṕıtulo.



Chapter 5

ULF wave foreshock boundary

... but some day the piecing together of dissociated knowledge

will open up such terrifying vistas of reality, and of our frightful

position therein, that we shall either go mad from the revelation or flee

from the deadly light into the peace and safety of a new dark age.

The Call of Cthulhu. H. P. Lovecraft.

The interaction between ions backstreaming ions from the bow shock and the in-

coming solar wind gives rise to plasma instabilities from which ULF waves can

grow. This region upstream from the shock populated with ULF waves is limited

by the ULF wave foreshock boundary (UWFB). In the present Chapter, we present

several ULF wave examples in Saturn’s foreshock. Using Cluster and Cassini data,

we study the statistical properties of Saturn’s and the Earth’s UWFB. We also

examine the possible connexion between the observed foreshock boundary prop-

erties, the theoretical model for the UWFB and the ion acceleration mechanisms

discussed in Section 2.5.
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5.1 Overview of observations

As we discussed in the Introduction, the solar wind offers a unique opportunity to

study collisionless plasma processes directly, which can not be achieved at Earth’s

laboratories. In this section, we briefly review the observations from Cluster and

Cassini used to study both UWFB. In addition, we present a few particular ex-

amples of ULF wave activity in Saturn’s foreshock.

The Cluster mission consists of four spacecrafts and it was designed to determined

the three-dimensional and time-dependent characteristics of small-scale processes

in the near Earth space plasma [Balogh et al., 1997]. The Cluster observations

used in the present thesis consist of magnetic field and solar wind velocity vectors

as well as plasma densities obtained upstream from the Earth’s bow shock. These

data were gathered during the first three years of Cluster’s orbital data, i.e. from

February 2001 through December 2003. We have used a cadence of 5 s−1 of

magnetic field data from the flux gate magnetometer (FGM) on-board Cluster to

investigate the presence of ULF waves upstream from the Earth’s bow shock. The

particle data used are from the Cluster Ion Spectrometer (CIS) experiment. For a

more extensive description of FGM and CIS Cluster experiments see Balogh et al.

[1997] and Rème et al. [2001], respectively. Finally, we extracted these observations

from the Cluster Active Archive 1 and the CLWeb data base2.

The main objectives of the Cassini-Huygens mission is an understanding of Saturn

system. The observations used for the present study consist of the three compo-

nents of magnetic field, measured by the Cassini dual magnetometer, obtained

upstream from the Kronian bow shock during the first fifteen months of Cassini’s

orbital data, i.e. from June 2004 through August 2005. The Cassini dual mag-

netometer investigation consists of a vector helium magnetometer (VHM) and a

1http : //caa.estec.esa.int
2http : //clweb.cesr.fr/
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Figure 5.1: Left: Cluster is entering into the ULF wave region on 23 April,
2001. Right: a ULF wave region crossing (ending) made by Cluster on 16

March, 2002.

FGM which provide redundant, fast vector measurements of the ambient magnetic

field over a wide range. The VHM provides accurate vector measurements with a

resolution of 2 s−1 over a range of ±256 nT, whereas FGM samples the magnetic

field over a larger range (±65655 nT) and at higher frequency (32 s−1). This dual

technique is extensively described in Dougherty et al. [2004]. For the purpose of

our study, we only consider the data provided by the VHM. Unfortunately, Cassini

plasma spectrometer (CAPS) could not be used in this study due to the absence of

periods with adequate pointing to the incoming solar wind flow. Therefore, for the

case of Saturn we only have magnetic field measurements. These measurements

can be obtained from the Cassini web page3.

During Cluster and Cassini excursions into the solar wind, we looked for intervals

displaying patterns of ULF waves in the magnetic field components. For the

3http : //saturn.jpl.nasa.gov/
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Figure 5.2: Examples of two crossing of the UWFB as detected by the VHM
magnetometer on board Cassini between 03:00:00 UT and 08:00:00 UT on 26
July (day 207) 2005 (upper panel) and 09:30:00 UT and 15:30:00 UT on 10 July
(day 192) 2004 (lower panel). Average values in the wave zone and in the zone
without waves are in dashed-gray line. The solid-gray lines correspond to the

average values plus/minus one standard deviation.
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determination of these crossings, we made no distinction regarding the type of

magnetic field fluctuations, requiring only that the transition from (or to) the wave

region would be clearly apparent. Figures 5.1 and 5.2 show two ULF wave region

crossing at Earth and Saturn, respectively. On one hand, Cassini’s measurements

are in Kronian Solar Orbital (KSO) coordinates, which are centered on Saturn

and where the x̂kso axis points to the Sun, the ŷkso axis is anti-parallel to Saturn’s

orbital velocity and the ẑkso axis points towards the north pole of the Ecliptic. On

the other hand, the Cluster data is in Geocentric Solar Ecliptic (GSE) system,

which has the same definitions than the KSO system but is centered in the Earth.

A complete characterization of ULF waves on Earth (or Saturn) foreshock is be-

yond the scope of the present thesis. However, we present a brief characterization

of the Kronian waves studied. In the case of the Earth, a complete classifica-

tion and characterization of different ULF waves in the foreshock can be found in

Eastwood et al. [2005] and references therein. Figure 5.3 and figure 5.4 show two

examples of the types of wave events found on Saturn’s ULF wave foreshock. For

all the wave events, we made a characterization (polarization and frequency) in

the spacecraft frame. As a result of this study, we find two distinct types of oscil-

lations with different properties, depending on whether their frequencies are below

or above the local proton cyclotron frequency (Ωci = eB0/mic). We also studied

their polarization and propagation with respect to the ambient magnetic field us-

ing the Minimum Variance Analysis (MVA) [Sonnerup and Scheible, 1998]. The

MVA consists in building the variance matrix in terms of the measured magnetic

field components for a given time interval and finding the three eigenvalues and

corresponding eigenvectors. The eigenvector corresponding to the smallest eigen-

value λ3 (the maximum and intermediate eigenvalues are respectively λ1 and λ2)

is used as an estimate of the direction of propagation of a plane wave. Note that

the eigenvector set of the variance matrix provides a convenient natural coordinate
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Figure 5.3: Left: Example of a wave train detected by the VHM on board
Cassini on 17 March (day 076) 2005 between 08:35:00 UT and 10:35:00 UT.
Right: (a) Magnetic field components along the maximum (solid line), inter-
mediate (dashed line) and minimum variance direction (dot-dashed line). (b)
Hodogram showing the magnetic field in the intermediate-minimum variance
plane and (c) in the maximum-intermediate variance plane. The circle and the

asterisk indicate the beginning and the end of the hodogram, respectively.

system in which to display and analyse the data.

Figure 5.3 (left panel) shows an example of waves detected by Cassini between

08:31:08 UT and 10:35:00 UT on 17 March (day 076) 2005. We obtained that

these waves are approximately quasi-monochromatic and steepened with frequen-

cies above Ωci. In the spacecraft frame, these waves have periods of the order of

60 s. According to the ambient magnetic field magnitude (∼0.3 nT), the period is

significantly lower than the local proton cyclotron period Tci ∼ 300 s. On the right

panel, Figure 5.3 shows the MVA results for a quasi-monochromatic wave packet

shown in interval 08:31:12-08:34:04 UT. Panel (a) shows the components of the

magnetic field along the maximum, intermediate and minimum variance direction.

Panels (b) and (c) show the projection of the wave magnetic field (hodograms)

on the maximum-intermediate and the minimum-intermediate variance planes, re-

spectively. The circle and the asterisk indicate the beginning and the end of the

hodogram, respectively. A large ratio between the intermediate and minimum

eigenvalues of the variance matrix (λ2/λ3 ≈ 10) shows a clear minimum variance
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Figure 5.4: Left: Example of a wave train detected by the VHM on board
Cassini on 27 December (day 362) 2004 between 01:00:00 UT and 03:00:00 UT.
This wave event corresponds to a non linear packet. Right: MVA results in the

same format as Figure 5.3

direction. The hodogram in panel (c) shows that the polarization on the mini-

mum variance plane is circular right-handed with respect to the mean magnetic

field (B3 > 0). The angle between the mean magnetic field and the minimum

variance eigenvector is θkB = 20◦ ± 1◦, revealing that these waves propagate in a

slightly oblique direction with respect to the ambient magnetic field.

Figure 5.4 (left panel) shows another example of a wave train seen by Cassini

VHM between 01:00:00 UT and 03:00:00 UT on 27 December (day 362) 2004. We

obtained that this kind of waves are phase steepened with frequencies smaller than

Ωci. These waves have periods of the order of 5 to 10 min in the spacecraft frame,

and they were the most frequently observed. According to the ambient magnetic

field, 2 to 3 times the local proton cyclotron period for an IMF magnitude between

0.35 nT and 0.5 nT. In several cases, we observed a steepening front located at

the right of waves with a higher frequency wave packet attached to it. We note

a decrease in amplitude and in the period of these oscillations with increasing

distance from the steepening front. The right panel from Figure 5.4 shows the

results of the MVA applied on one period of these waves between 01:30:36 UT and

01:33:00 UT. From left to right, it can be seen how an early linear polarization
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is followed by a circular polarization toward the end of the interval. The angle

between the minimum variance vector and the mean magnetic field suggests that

the propagation of these waves is quasi-parallel (θkB = 4◦ ± 1◦) to the ambient

magnetic field. The hodogram in Figure 5.4 shows that the magnetic field rotation

around the minimum variance direction is left-handed with respect to the ambient

magnetic field (B3 <0). It is worth noticing that we identified the same two cat-

egories previously identified by Bertucci et al. [2007], from a much bigger Cassini

MAG’s data set.

5.2 Solar Foreshock Coordinates

To identify the UWFB independently from the changes in the IMF or the location

of the bow shock, we employed the so-called solar foreshock coordinates (SFC)

introduced by Greenstadt and Baum [1986]. First, we construct the foreshock ge-

ometry based on the bow shock shape. This bow shock shape is axially symmetric

about the planet-Sun direction, and has the following functional form,

r =
L

1 + ecosθ
(5.1)

where r is the distance from the planet to a point on the shock surface, θ is the

corresponding polar coordinate angle with respect to the symmetry axis, L is the

semilatus rectum (size parameter) and e is the eccentricity.

As it was discussed in the Introduction, in the case of the Earth we have a physical

model based on the solar wind ram pressure [Farris et al., 1991]. According to this

model, the size parameter varies as the inverse one-sixth power of the dynamic
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pressure [Binsack and Vasyliunas, 1968],

L =

(

p

p0

)− 1

6

L0 (5.2)

where p is the ram pressure and p0 is a reference ram pressure. The Farris model

uses a fixed eccentricity e = 0.81± 0.02 (ellipsoidal model), a nominal parameter

size L0 = (24.8±0.2) RE with a reference ram pressure p0 = 1.8 nPa and a nominal

zero focus position. For the Earth case, there are numerous bow shock models

available in the literature and their reliability is parameter-dependent [Merka et al.,

2005]. Our choice [Farris et al., 1991] is dictated by its simplicity since it only

depends on the solar wind ram-pressure. It is clear from equation (5.2) that in-

situ solar wind density and velocity measurements are necessary to accurately

determine the location and shape of the bow shock.

On the other hand, in the case of Saturn we do not have any reliable bow shock

model. However, Masters et al. [2008] presented an empirical fit (not a model!)

using measurements from Cassini spacecraft. In particular, they found an ec-

centricity of e = 1.05 ± 0.09 (hyperboloid model) and a nominal parameter size

L0 = (51±2) RS. Therefore, for each crossing (in or out of the Saturn’s ULF wave

region) we used the eccentricity e = 1.05 ± 0.09 and kept it constant throughout

our study. However, we estimate the value of L using equation (5.1) and the loca-

tion of the nearest bow shock crossing. For this purpose, we used the list of times

and locations of Cassini’s bow shock crossings between 27 June (day 027) 2004

and 12 August (day 224) 2005 published by Masters et al. [2008].

Once we have the determine the shape of the bow shock (i.e., L and e), we can

define the SFC coordinate system. In this particular coordinate system, the x̂ axis

points toward the Sun (it is parallel to x̂gse), and the x̂-ŷ plane is the vsw-B plane

which contains the location of the spacecraft at a given crossing of the UWFB.
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v  -B plane

Figure 5.5: Schematic representation of the Solar Foreshock Coordinates
(SFC).

The position of each boundary crossing is fixed by calculating the SFC coordinates

µ and ν (see Figure 5.5).

µ =
(yo − yt)

sin θBx

(5.3)

ν =
(yo − yt)

tan θBx
+ xt − xo (5.4)

where θBx is the IMF cone angle, (xt, yt) is the contact point between the IMF

tangent line and the bow shock, while (xo, yo) is the observation point. The coor-

dinate µ is the distance along the tangent magnetic field line between the tangent

point and the observation point. The coordinate ν is the distance along the x̂gse

direction between the tangent magnetic field line and the observation point. In

this sense, the coordinate ν indicates how far downstream from the IMF tangent

line is the UWFB.
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5.3 Criteria for UWFB crossings

The ULF wave foreshock boundary (UWFB) is a surface embedded in the fore-

shock region. The UWFB can be observed only under quasi-stationary IMF condi-

tions. Therefore, we have to consider only those crossings in which the spacecraft

was entering or leaving the wave region under steady IMF conditions. For this

purpose, we defined two identification criteria: one based on the level of the wave

amplitude and another based on the level of rotation of the IMF direction.

Our criterion relies on the amplitude of the waves observed. By definition, the

region downstream from the UWFB is the one that displays ULF wave activity,

while the region upstream does not. For each component of the magnetic field (j =

x, y, z), if the difference between the average values in downstream region (Bdw,j)

and in the zone with no waves (Bup,j) is smaller than the standard deviation in

the wave zone (σdw,j), we consider that the spacecraft crossed a stationary UWFB.

Figure 5.2 (upper panel) shows an example in which the criterion is fulfilled. If

any of the three components did not satisfy this condition, the event was discarded

from our analysis, as illustrated by the example in the lower panels of Figure 5.2.

Our second criterion relies on the level of rotation of the IMF direction. We

decided to test this criterion, which was discussed by Meziane et al. [2004a], to

compare its predictions with ours. Therefore, if we define the angle α as,

cosα ≡ Bup ·Bdw

BupBdw

(5.5)

it is possible to quantitatively analyze the degree of IMF rotation as the spacecraft

passes from the upstream to the downstream region. In equation (5.5), Bup (Bdw)

is the mean magnetic field in the upstream (downstream) region, meanwhile Bup

(Bdw) corresponds to its absolute value. Then, as long as α remains small we are

able to investigate the quasi-stationary scenario and consequently the UWFB. In
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Figure 5.1, the left panel shows an example of Cluster entering to the wave region

with α = 2◦±1◦. In contrast, the right panel shows an example of Cluster leaving

the wave region on 2002 March 16 at 1248:17 UT with α = 24◦ ± 1◦.

5.4 Statistical results

5.4.1 Saturn’s UWFB

Using the first fifteen months of Cassini’s VHM data, we identified a total of

59 beginnings or endings of intervals in which the magnetometer detected ULF

waves. Following the selective criterion based on the wave amplitude, we reduced

the original data set of 59 crossings to only 21 quasi-stationary crossings of the

wave region. The average values for each component of the magnetic field in the

wave zone and in the zone with no waves were the mean values of the observations

over two hours before (and after) each apparent crossing. We found that this

particular time interval is sufficiently long to obtain values representative of the

mean magnetic field, because the longest wave periods found are 10 minutes long.

In this sense, we are taking into account approximate ten long wave periods.

For these 21 stationary crossings considered in Section 5.3, we have calculated

their locations in terms of the coordinate set (µ, ν) described in Section 5.2. At

the Earth, the location of the UWFB was found to strongly depend on the IMF

cone angle [Greenstadt and Baum, 1986, Andrés et al., 2015a]. For this reason,

we analyzed two separate sets of data, one with θBx < 45o and the other with

θBx > 45o, i.e. for small and large cone angles. We performed a scatter plot of

the 21 UWFB crossings considered. Figure 5.6 shows the cases with θBx > 45o in

black circles and those with θBx < 45o in gray circles, and the straight line is our

best linear fit (black line) for all our crossings. The small cone angle cases (gray
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Saturn's ULF foreshock boundary (for all θBx cases)
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Figure 5.6: UWFB for θBx > 45o (dark circles) and θBx < 45o (gray squares).
If we only consider the θBx > 45o cases, our best fit yields ν(µ) = a.µ + b
(a = 0.47± 0.04; b = −5.65± 1.36), which is indistinguishable from the best fit

displayed in this Figure.

circles) correspond to tangent lines close to the asymptote of the hyperbola (θ∞ =

cos−1(1/e) ≈ 18o), and therefore have relatively large error bars. However, our

best fit considering only the θBx > 45o cases, yields ν(µ) = a.µ+b (a = 0.47±0.04;

b = −5.39 ± 1.10), which is indistinguishable from the result displayed in Figure

5.6.

For each crossing studied, we extend the straight magnetic field line and check

for connection to the bow shock fit. If we find that Cassini is connected to the

shock by straight magnetic field lines, we identify the intersection point on the

bow shock fit and calculate the angle shock angle, θBn. As we expect, in all the

wave events that we identified we find that the magnetic field line intersects the

bow shock fit, i.e. Cassini was in the region magnetically connected to the bow

shock. In particular, we find that the increment in wave activity is associated to

foreshock regions for which θBn < 45◦. In fact, 12 out of the 21 crossings have
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Figure 5.7: Left: The curves of θBn = 45◦ (dot-dashed line) and θBn = 90◦

(dashed line). In the vsw-B plane z = 0, the average bow shock fit (in units of
L), the tangent field line for θBx = 85◦ (point line), and the magnetic field line
corresponding to θBn = 45◦ (solid line). Right: The (µ,ν) pair for the location
of points satisfying θBn = 45◦ at different (parallel) vsw-B planes for θBx = 85◦

and parameter size L = 51 RS. The distance of each plane to the planet is
labeled in units of L.

θBn = 45◦±5◦, while the remaining 9 crossings have θBn within the range between

35◦ and 55◦. If we consider the 21 crossings, the average value is θBn = 42◦ and

the standard deviation is σθBn
= 9◦.

It is important to emphasize that θBn = 45◦ constitutes a natural and conven-

tional separation between quasi-parallel and quasi perpendicular shocks. For a

given magnetic field orientation and parameter size, there are two lines on the hy-

perboloidal shock surface, for which θBn = 45◦. In Figure 5.7 (left panel) we show

a schematic view of the bow shock (in units of L) and the lines corresponding to

θBn = 45◦ (dot-dashed lines) and θBn = 90◦ (dashed lines), where the field lines

are tangent to the hyperboloidal shock. The x-y plane in Figure 5.7 is parallel

to the magnetic field lines and contains the planet in (x, y) = (0, 0). Within this
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context, we claim that the set of magnetic field lines that cross the shock on the

θBn = 45◦ curves will determine the UWFB. On other hand, an identification of

the UWFB is given by the best fit of crossings on the µ-ν plane [Greenstadt and

Baum, 1986].

Therefore, we decided to study the consistency of our linear best fit in the µ-ν

plane and the curve corresponding to θBn = 45◦. Assuming a constant θBx (the

magnetic field lines lay in the x-y plane) and parameter size L = 51 RS, we

computed the (µ,ν) pair for the location of the point that satisfies θBn = 45◦ at

different (parallel) vsw-B planes (see Figure 5.7, right panel). The corresponding

distance of each plane (in units of L) to the planet is labeled. We can clearly

see in Figure 5.7 (right panel) an approximate proportionality between the µ-ν

coordinates at any given plane. This implies that if Cassini crossed right at the

intersection between the bow shock and the θBn = 45◦ field line, we should expect

a straight line passing through the origin in the µ-ν plane (see Figure 5.6). The

fact that Cassini crosses that very field line necessarily at a distance from that

intersection toward the upstream direction, causes a systematic increase in the

value of µ, leaving ν essentially unchanged. The distance from the bow shock

measured along field lines range between 0.1 RS and 17 RS for the 21 crossings

considered. On the one hand, this effect will reduce the quality of the linear fit,

and on the other hand it will shift the line on the µ-ν plane to the right (negative

intercept), exactly as observed in Figure 5.6. Therefore, we concluded that the

appearance of waves tend to occur at θBn values of ∼ 45◦. This constant θBn loci

map on the µ-ν plane as points lying along a straight line. As a result, we find

that there is an equivalence between the UWFB determined by θBn ∼ 45o and

the best fit in the µ-ν plane [Greenstadt and Baum, 1986]. They are in fact two

alternative ways to determine the same spatial region within the foreshock.

According to the specular reflection mechanism described in Section 2.5, the ions
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bounce off the shock potential reversing their velocity component along the shock

normal n̂, while maintaining their component of velocity parallel to the shock’s

surface. In particular, Schwartz et al. [1983] found that after interacting with the

shock, the reflected ions can travel upstream without further interactions with

the shock for θBn < 39.9◦. In the range 39.9◦ < θBn < 45◦ they found that

particles have a positive upstream guiding center motion. However, their gyration

motion brings them back to the shock and further interactions occur. For θBn >

45◦, specularly reflected ions always re-encounter the bow shock with sufficient

energy to penetrate into the downstream region. In the absence of Cassini plasma

observations (that could confirm the presence of backstreaming ions giving rise

to an ion foreshock region), we cannot observationally associate the presence of

waves with specific ion distributions. However, if the mechanism of generation of

these waves is local, i.e. the wave growth rate γ is sufficiently large, we could think

that specular reflection could be a plausible origin for the ions responsible for the

waves, since this model discriminates the dynamic properties of particles based on

θBn. In this case, for quasi-parallel geometries, the reflected ions can go upstream

from the bow shock and be detected with ULF wave activity.

5.4.2 The Earth’s UWFB

From February 2001 through December 2003, we have identified 192 ULF wave/no-

wave transitions. For the purpose of the present study, we find that the optimal

time interval to compute mean values of the B, vsw and nsw lies between three

and six wave periods at each side of the boundary, which is sufficiently long to

be representative of the mean magnetic field in that region. Figure 5.8 shows a

distribution of these transitions with respect to the α angle. As it can be seen,

the histogram displays a strong peak at small values of α, in particular for the

most frequently value at 5◦. The histogram corresponds to a non-symmetric and
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Figure 5.8: Histogram of α for the 192 identified crossings. The arrow is
located at α = 12.5◦, which is the upper limit adopted for the stationary UWFB.

positively skewed distribution. Fifty percent of the crossings occur for α < 12◦ (i.e.

12◦ corresponds to the median value of the distribution) and 78% of the events

occur for angles less than the mean value of 16◦. For a better determination of

the boundary location, only wave crossings with α < 12.5◦ (black arrow in Figure

5.8) were considered, which includes 102 events. The UWFB is defined for a given

IMF orientation. Following the wave amplitude criterion, we found that 127 of the

192 crossings correspond to quasi-stationary crossings. In this sense, we conclude

that the criterion based on the IMF rotation (see Section 5.3) is more restrictive

than the criterion based on the wave amplitude.

Figure 5.9 shows the cone angle (θBx) distribution corresponding to the 102 quasi-

stationary events. There is no indication that boundary crossings occur for a

particular IMF direction other than the Parker’s prediction, since the distribution

is consistent with the IMF spiral orientation at 1 AU.

Results of our statistical survey is performed using 10◦ bins for the θBx. The,

Figure 5.10 shows a scatter plot of the UWFB crossings in SFC for two particular
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Figure 5.9: Histogram of the cone angle θBx for the 102 identified crossings
with α < 12.5◦ correspond to the upstream region.

cases: 20◦ < θBx < 30◦ (in the left panel) and 40◦ < θBx < 50◦ (in the right

panel). In these Figures, the best linear fit corresponds to the blue solid line. The

uncertainties in the determination of the three magnetic field components, the

three solar wind velocity components and the solar wind density are dominated

by the statistical error given by the corresponding standard deviation from the

mean values. For the determination of the error bars in Figure 6, we propagated

these statistical errors. For reference, we included Meziane and D’Uston [1998]

(dashed red line) and Greenstadt and Baum [1986] (dot-dashed line) results. It is

worth mentioning the very good agreement between our results and those reported

in previous works.

Table 5.1 (upper block) shows the parameters of the µ-ν regression line (ν = aµ+b)

of the UWFB for different θBx ranges, using the Farris et al. [1991] bow shock

model. For comparison, the results reported by Meziane and D’Uston [1998] and

Greenstadt and Baum [1986] also indicated in the lower box. Except for the

range 30◦ < θBx < 40◦, our determination of the slope of the UWFB line is in
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Figure 5.10: Best linear fit (solid line) of UWFB crossings in SFC, for cone
angles 40◦ < θBx < 50◦ and 20◦ < θBx < 30◦. For reference, we included
Meziane and D’Uston [1998] (dashed line) and Greenstadt and Baum [1986]

(dot-dashed line) results.

Table 5.1: Parameters of the µ-ν regression line of the UWFB for different
θBx ranges, using Farris et al. [1991] bow shock model. The coefficients reported
by Meziane and D’Uston [1998] and Greenstadt and Baum [1986] are included

for comparison.

θBx (◦) a b r
20-30 0.56 ± 0.08 -6.97 ± 5.21 0.8937
30-40 0.55 ± 0.08 -6.43 ± 3.66 0.8510
40-50 0.67 ± 0.09 -8.69 ± 3.48 0.8192
50-60 0.77 ± 0.10 -10.40 ± 3.14 0.8737
60-70 0.65 ± 0.24 -5.54 ± 6.05 0.6278

θBx (◦) aMD bMD aGB bGB

20-30 0.56 ± 0.02 -20.60 ± 2.45 0.44 ± 0.03 -6.97 ± 3.88
30-40 0.71 ± 0.03 -20.22 ± 1.48 - -
40-50 0.64 ± 0.02 -10.38 ± 0.68 0.65 ± 0.04 -12.43 ± 1.56
50-60 0.66 ± 0.02 -9.23 ± 0.61 - -
60-70 0.67 ± 0.03 -8.48 ± 0.64 - -

good agreement with those obtained by Meziane and D’Uston [1998] (when the

errors are taken into account). On the other hand, our results for the range

20◦ < θBx < 30◦ differ significantly from those reported by Greenstadt and Baum

[1986]. Also, based on numerical values listed in Table 5.1, an increase of the

UWFB line slope with θBx in the SFC plane cannot be ruled out. However, the

values of a reported in Meziane and D’Uston [1998] are in general larger than

those obtained in the present study. We suspect that the difference is due to the
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Table 5.2: The η angle between the UWFB and the x̂gse, the P value, the
angles θBn and θV n and the shock normalized velocity in the plasma reference

frame Ps. For the calculation of these expressions see Appendix A.

θBx (◦) η (◦) P θBn (◦) θV n (◦) Ps

20-30 50.66 ± 0.29 1.78 ± 0.49 53 ± 5 28 ± 6 1.46 ± 0.18
30-40 64.86 ± 0.64 1.81 ± 0.41 52 ± 3 18 ± 3 1.54 ± 0.10
40-50 86.99 ± 6.00 1.49 ± 0.21 47 ± 4 4 ± 3 1.46 ± 0.10
50-60 103.50 ± 2.13 1.29 ± 0.88 42 ± 3 14 ± 3 1.30 ± 0.06
60-70 104.10 ± 4.20 1.53 ± 3.50 38 ± 7 27 ± 6 1.13 ± 0.12

Table 5.3: Predicted velocities (normalized to the incident solar wind) for the
main shock emission mechanisms, i.e. magnetosheath particle leakage, adiabatic

reflection and specular reflection.

θBx (◦) (u‖/ui)m.l. (u‖/ui)a.r. (u‖/ui)s.r.
20-30 1.46 ± 0.18 2.92 ± 0.36 1.06 ± 0.13
30-40 1.54 ± 0.10 3.08 ± 0.20 1.17 ± 0.08
40-50 1.46 ± 0.10 2.92 ± 0.20 1.36 ± 0.10
50-60 1.30 ± 0.06 2.60 ± 0.12 1.44 ± 0.07
60-70 1.13 ± 0.12 2.26 ± 0.24 1.40 ± 0.15

different bow shock models used in these studies. Meziane and D’Uston [1998]

used a hyperboloid shape with constant parameters, while in the present work the

parameters of the elliptical bow shock are adjusted according to plasma data for

each boundary crossing.

We examine the possible connexion between the UWFB properties and the ion

emission mechanisms at the shock discussed in section 2.5. In Appendix A we

show that the normalized velocity P (in the plasma frame) of an ion propagating

along the UWFB is directly related to the slope of the boundary. The third column

in Table 5.2 lists the numerical values of the normalized velocity P . This last value

is compared to the normalized shock speed Ps ≡ cos(θV n)/ cos(θBn) given in the

last column of Table 5.2. The first column in Table 5.2 shows the η angle between

the UWFB and the xgse.

On the other hand, Table 5.3 summarizes the numerical values for each emission

mechanism for each interval in θBx. Table 5.3 clearly indicates that the ions
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propagating along the boundary are fast enough to escape upstream (P ≥ Ps

for all θBx values). The numerical values of P and Ps also indicate that the

observations are in very good agreement with the magnetosheath leakage model

only for θBx = 45◦ and θBx = 55◦ cases. On the other hand, the specular reflection

model seems to be inadequate model. This strongly suggests that backstreaming

gyrating ion distributions resulting from specular reflection are not likely a source

for wave excitation, a result which is consistent with previous studies [Mazelle

et al., 2003]. Finally, the boundary velocity P is underestimated compared to the

one obtained from the hypothesis of adiabatic reflection.

5.5 Discussion

Using a well defined, accurate and robust criterion we present a new determination

of the boundary for ULF waves in the Earth’s and Saturn’s foreshocks. All the

wave events reported in the present Chapter show evidence of magnetic connec-

tivity to the corresponding bow shock, respectively. This is a clear indication that

these waves are associated with the foreshock.

Using Cassini’s data from June 2004 through August 2005, we conducted a detailed

survey and analysis of ULF waves upstream from Saturn’s bow shock. According

to their frequencies, we observe two different types of oscillations. Waves with

frequencies below Ωci are the most frequently observed, they are phase steepened

with periods of the order of 5 to 10 minutes in the spacecraft frame. The angle be-

tween the minimum variance vector and the mean magnetic field suggests that the

propagation of these waves is quasi-parallel. The magnetic field rotation around

the minimum variance direction is left-handed with respect to the IMF direction.

As it is discussed in Bertucci et al. [2007], these signatures suggest that these

waves are ion/ion resonant right-hand (fast magnetosonic) mode waves. This is
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also compatible with the destabilization of our whistler branch, according to our

three-fluid description (see Section 2.4). We also observe waves with frequencies

above Ωci, which are either quasi-monochromatic or steepened, with periods of the

order of 60 s (significantly lower than the local proton cyclotron period Tci ∼ 300

s). At the Earth’s foreshock, there is a particular type of ULF waves, the so-called

30 s (period) waves which are quasi-monochromatic [e.g. Le and Russell, 1992].

This kind of waves are found always near to the ULF wave foreshock boundary.

In our study we did not find quasi-monochromatic waves next to the Saturnian

ULF wave foreshock boundary. A more detailed statistical study might shed some

light about the nature of this second group of waves and whether they are the

Saturnian equivalent of the 30 s modes found at the Earth’s foreshock.

One one hand, we identified 21 stationary crossings inbound (and outbound) from

the Saturn’s ULF wave foreshock region. We calculated their solar foreshock

coordinates in the vsw-B plane and for the first time we have identified Saturn’s

ULF wave foreshock boundary. In the µ-ν plane we do not find a clear dependence

between the foreshock boundary and the IMF cone angle. We also found that the

presence of waves is associated with the change in θBn to quasi-parallel geometries.

Moreover, we find that our determination of the ULF wave foreshock boundary as

the surface given by θBn = 45◦, is indeed consistent with the linear fit in the µ-ν

plane, first proposed by Greenstadt and Baum [1986] for the Earth’s ULF wave

foreshock.

On the other hand, we have identified 192 ULF wave/no-wave transitions at the

Earth’s foreshock. For a correct determination of the UWFB, only wave crossings

with α < 12.5◦ were considered, which includes 102 events. We do not find any

indication that boundary crossings occur for a particular IMF direction other than

the Parker’s prediction. Table 5.1 shows the parameters of the µ-ν regression line of

the Earth’s UWFB for different θBx ranges. Except for the range 30◦ < θBx < 40◦,
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our determination of the slope of the UWFB line is in good agreement with those

obtained by Meziane and D’Uston [1998] (within the error bars of both studies).

Also, based on numerical values listed in Table 5.1, an increase of the UWFB line

slope with θBx in the SFC plane cannot be ruled out. However, the values of

a (slope in the best linear fit) reported in MD98 are in general larger than those

obtained in the present study. We suspect that the difference is due to the different

bow shock models used in these studies. MD98 used a hyperboloidal shape with

constant parameters, while in the present work the parameters of the elliptical

bow shock are adjusted according to plasma data for each boundary crossing.

Theoretical investigations on the ULF foreshock boundary are noticeably few. To

the best of our knowledge, Skadron et al. [1988] reports the only self-consistent

spatio-temporal study involving the interaction between energetic protons back-

streaming pre-existing and hydromagnetic waves in the Earth’s ion foreshock. Us-

ing a parabolic fit to the bow shock, they found the boundary for the region of

compressional waves (corresponding to different IMF orientations) using a crite-

rion based on the compressional component of the magnetic fluctuations. In this

regard, for θBx = 45◦ the Earth’s UWFB forms an angle of 87◦±6◦ with respect to

the x̂GSE. The observed UWFB is located downstream to the predicted theoreti-

cal boundary (78◦), in agreement with the theoretical prediction [Skadron et al.,

1988]. We speculate that this difference might be due to the fact that Skadron’s

criterion is based on the compressive component of the fluctuations, where the

amplitude of the waves may be smaller than the ones that we observe.

We examined the speed of ions propagating along the different UWFB and com-

pared the obtained results with the known particle acceleration mechanisms (see

Section 2.5). We find that the specularly reflected ions fail to provide the nec-

essary energy for the wave excitation. Moreover, the hypothesis of adiabatic re-

flection predicts ion speeds that are larger than those associated with the UWFB.
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One possible explanation for this behavior is suggested: that the difference may

be due to momentum exchange between the incident solar wind population and

the backstreaming particles through the wave-particle interaction resulting from

a beam-plasma instability [Andrés et al., 2015a]. On the other hand, on Saturn’s

foreshock we suggest that the specularly reflected ions could be associated with

the ULF waves, since their occurrences are also limited to θBn . 40◦ [Andrés

et al., 2013]. The predominance of different acceleration mechanisms in the dif-

ferent planets is a possibility worth considering. Of course, different acceleration

mechanisms will have observable consequences on the physical characteristic of the

ULF waves being detected.



Chapter 5. ULF wave foreshock boundary 110

5.6 Resumen en castellano

En este Caṕıtulo presentamos los resultados y discusiones referidos a la generación

y distribución de ondas ULF en el foreshock (pre-choque) de Saturno y la Tierra.

En la sección 5.1, presentamos las observaciones utilizadas en el análisis de datos.

Además, presentamos y caracterizamos (en frecuencia y polarización) algunos

ejemplos de ondas ULF detectadas por Cassini en la región anterior al choque

de Saturno.

En la sección 5.2, presentamos las denominadas coordenadas del foreshock (solar

foreshock coordinates, SFC). Éstas coordendas son las adecuadas para estudiar la

distribución de ondas ULF en foreshocks planetarios, como es el caso de Saturno

o la Tierra.

En la sección 5.3, presentamos los dos criterios de selección de cruces de la frontera

de ondas ULF (ULF waves foreshock boundary, UWFB) utilizados. En particular,

el primer criterio está basado en la amplitud del campo magnético al atravesar la

frontera, y el segundo está basado en el grado de rotación del campo magnético al

atravesar la frontera.

En la sección 5.4, presentamos los principales resultados obtenidos a traves del

análisis estad́ıstico realizado en Saturno y la Tierra. Además, estudiamos la

relación existente entre los distintos mecánismos de aceleración en el choque y

las propiedades de cada UWFB.

Finalmente, en la sección 5.5, presentamos las discusiones y conclusiones del

Caṕıtulo.





Chapter 6

Conclusions

Es curioso, pero vivir consiste en construir futuros recuerdos...

El Túnel. Ernesto Sabato.

As discussed in the Introduction, one way to describe the state of space plasmas

is the particle description, according to which we give the positions and veloc-

ities of all the particles, plus the electric and magnetic fields at each point in

space. Nevertheless, the use of this description becomes prohibitive as the num-

ber of particles is increased. An alternative description is kinetic theory, which

is a statistical approach to describe space plasmas, that takes advantage of the

undistinguishability of the plasma particles. In particular, the solutions from the

kinetic equations (for instance, the Vlasov equation) provide a full description of

the phase-space distribution function at all times. However, it is still computation-

ally very demanding to solve these kinetic equations. On the other hand, the much

simpler one-fluid MHD approximation adequately describes phenomena at suffi-

ciently larger temporal and spatial scales. More specifically, one-fluid MHD has

been a remarkably successful model to describe interplanetary plasmas, as shown

for instance by Parker’s model of the solar wind [Parker, 1963], the large-scale

111
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orientation of the IMF [Parker, 1958], or the turbulent nature of the small-scale

structure of the solar wind [Belcher and Davis, 1971].

However, over the last decades, the sustained increase in the spatial and temporal

resolution of space missions has shown a number of small-scale phenomena that

cannot be described within the framework of the one-fluid MHD. In this context,

we have investigated three important processes taking place in the interplanetary

medium, which require an extension of standard one-fluid approximation. For

this task, we adopted a multi-fluid approach, which is somewhat more that one-

fluid MHD, but considerably simpler than kinetic theory. One of the drawbacks,

however, is that certain kinetic effects, such as Landau damping, are not described

within this theoretical framework.

Therefore, using a multi-fluid description, we theoretically described small-scale

plasma processes observed in different regions of the interplanetary medium. More

specifically, we extended the traditional one-fluid MHD framework and incorpo-

rated kinetic effects using a two-fluid or even a three-fluid description. In partic-

ular, we studied three important processes where kinetic effects may play a role.

More specifically, we focused our attention on the turbulent nature of the solar

wind, collisionless magnetic reconnection, and the generation and distribution of

ULF waves in planetary foreshocks.

In Chapter 2, we described the theoretical framework to be applied throughout

the subsequent Chapters, and summarized some of its properties. In Chapter

3 we numerically described the externally driven turbulent regime of full two-

fluid plasmas, and obtained power laws for the magnetic energy spectrum. We

also showed that the slopes corresponding to the different spectral regions in the

spectrum, are consistent with those observed in the solar wind [Andrés et al.,

2014b, Sahraoui et al., 2009]. This full two-fluid MHD model incorporates the

Hall effect and electron inertia, thus allowing electrons to acquire a finite kinetic
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energy and introducing a new range in the energy spectrum. The breaking points

in the spectra occur at new physical scales, namely, the ion inertial length and then

the electron inertial length. The new nonlinear terms present in our equations (see

equations 3.9 - 3.12), redistribute the energy differently among scales. As a result,

we can expect also differences in other aspects of the turbulent flow (intermittency,

its overall dynamics or its dissipation) on scales where we can not treat the plasma

as a single fluid. In summary, we have taken a first step toward understanding

turbulence in a full two-fluid model and leave the path open for further studies on

this system.

The numerical results presented in Chapter 4 confirm that we are able to obtain

fast magnetic reconnection when the effects of electron inertia are retained. At

spatial scales of the order of the length of electron inertia, electrons can no longer

be frozen-in to the magnetic field lines [Vasyliunas, 1975]. Therefore, only at this

level of description, a change in the topology of the magnetic field lines exclusively

due to electron inertia (i.e. including the mass of the electron explicitly) becomes

possible. Since our scheme is free from physical or numerical resistivity, for the

cases of ideal one-fluid MHD and Hall-MHD, we showed that it is not possible to

have magnetic reconnection. In summary, we found that within the framework of a

full two-fluid MHD model, finite electron inertia is a necessary physical ingredient

to drive a fast reconnection process, even though the reconnection rate is largely

insensitive to the numerical value of the mass ratio me/mp [Andrés et al., 2014a].

Even though the fact that electron inertia enables magnetic reconnection is well

known, to the extent of our knowledge this is the first time that this feature is

confirmed with results from a non-dissipative fluid simulation. Furthermore, we

derived a theoretical scaling for the reconnection rate as a function of the Hall

parameter, which is confirmed by our numerical results and is also compatible

with previous results in the literature [Andrés et al., 2015b, Simakov and Chacón,
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2008, Malyshkin, 2010].

As mentioned in Chapter 5, the precise location of planetary UWFB can only

be determined under quasi-stationary IMF conditions. The foreshock geometry

critically depends on the IMF direction. One possible picture to explain the origin

of the foreshock ULF waves assumes a stationary IMF and ion beams generated

at the bow shock (by different theoretical particle acceleration mechanisms) and

backstreaming along magnetic field lines. It is worth mentioning that it is not

possible to theoretically explain this picture from a one-fluid MHD description.

Further still, plasma instabilities can only be achieved from a three-fluid MHD

description, in which a cold tenuous beam of protons interacts with a much denser

background made of protons and massless electrons. Our results are consistent

with a scenario in which these backstreaming beam traveling along stationary

field lines are the ultimate cause of ULF waves. Once generated, these ULF waves

propagate downstream. Within this general framework, we observationally stud-

ied the spatial distribution of UWFB under conditions that can be regarded as

stationary and related to the theoretical emission mechanisms at the bow shock.

On Saturn’s foreshock we suggest that the specularly reflected ions could be asso-

ciated with the ULF waves, since their occurrences are also limited to θBn . 40◦

[Andrés et al., 2013]. However, on the Earth’s foreshock we found that the spec-

ularly reflected ions fail to provide the necessary energy for the wave excitation.

This strongly suggests that backstreaming ion distributions resulting from specu-

lar reflection are not a likely source for wave excitation, a result which is consistent

with previous studies [Mazelle et al., 2003]. Finally, our analysis indicated that the

observations are in very good agreement with the magnetosheath leakage model

only for θBx = 45◦ and θBx = 55◦ cases [Andrés et al., 2015a].
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6.1 Resumen en castellano

Usando una descripción de multi-fluidos, describimos teoricamente procesos de

pequeña-escala en distintaas regiones del medio interplanetario. En particular,

estudiamos tres importantes procesos en los cuales efectos cinéticos podŕıan ju-

gar cierto rol. Nos concentramos en la naturaleza turbulenta del viento solar,

la reconexión magnética no-colisional y la generación y distribución de ondas de

ultra-baja frequencia en foreshock planetarios.

En el Caṕıtulo 2, describimos el modelo teórico que aplicamos durante los sigu-

ientes Caṕıtulos, y resumimos sus propiedades.

En el Caṕıtulo 3, describimos numericamente el regimen de turbulencia externa-

mente impulsado en un plasma de dos-fluidos, y obtuvimos teoricamente leyes de

escala para el espectro de enerǵıa magnética. También, mostramos que las pen-

dientes halladas corresponden con distintas regiones en el espectro, las cuales son

consistentes con las observadas en el viento solar [Andrés et al., 2014b, Sahraoui

et al., 2009]. Este modelo de dos-fluidos MHD incorpora el efecto Hall y la inercia

de electrones, permitiendo que los electrones adquieran enerǵıa cinética y puedan

introducir nuevos rangos en el espectro de enrǵıa. Los puntos de quiebre ocurren

a nuevas escalas caracteristicas del modelo llamadas, ion inertial length y electron

inertial length. Los nuevos térmimos no-lineales en las ecuaciones (ver ecuaciones

3.9 - 3.12), redistribuyen la enerǵıa entre las distintas escalas. Como resultado,

podemos esperar diferencias en el flujo turbulento, intermitencia y la dinámica

general del flujo, en regiones donde al plasma no lo podemos considerar como un

fluido. En resumen, hemos dado el primer paso hacia el entendimiento de la tur-

bulencia en el modelo de dos-fluidos y hemos dejado abierto el camino para más

estudios sobre este sistema.
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Los resultados numéricos presentados en el Caṕıtulo 4 muestran que es posible

obtener reconexión magnética rápida cuando los efectos de inercia electrónica son

tenidos en cuenta. A escalas espaciales del orden del electon inertial length, los

electrones no viajan más congelados a la ĺıneas de campo magnético. Entonces,

solo a este nivel de descripción, un cambio en la topoloǵıa de las ĺıneas de campo

magnético debido a la inercia de los electrones es posible. Ya que nuestro esquema

está libre de resistividad numérica espuria, mostramos que en los casos de un fluido

ideal MHD y Hall-MHD, la reconexión no es posible. En resumen, encontramos

que en el modelo de dos-fluidos MHD, la inercia electrónica es un condimento nece-

sario para impulsar la reconexión magnética rápida, aunque la tasa de reconexión

no dependa explicitamente del valor de me/mi [Andrés et al., 2014a]. Pese al

hecho de que la inercia electrónica permite la reconexión magnética, hasta donde

sabemos esta es la primera vez que se confirma con simulaciones libres de disi-

pación numérica. Más aún, hemos derivado teoricamente un escaleo para la tasa

de reconexión, la cual fue confirmada por nuestros resultados numéricos [Andrés

et al., 2015b, Simakov and Chacón, 2008, Malyshkin, 2010].

Como mencionamos en el Caṕıtulo 5, la posición de la frontera de ondas puede ser

determinada sólo bajo campos magnéticos estacionarios. La geometŕıa del fore-

shock depende criticamente de la dirección del campo magnético interplanetario

(IMF). La imagen clásica del origen de las ondas ULF en el foreshock asume un

IMF estacionario y un haz de iones generado en el choque (por distintos mecánismo

de aceleración) que viaja en dirección contraria al viento solar incidente a lo largo

de las ĺıneas de el IMF. Es importante remarcar que no es posible obtener esta

esquema a través de una descripción de un-fluido MHD. Más aún, inestabilidades

de plasma sólo pueden emerger en una descripción de tres-fluidos, en la cual un

haz fŕıo de protones viaja en un medios mucho más denso de protones y electrones

(sin masa). Nuestros resultados son consistentes con este escenario. Dentro de este
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marco, estudiamos observacionalmente la distribución espacial de la frontera de

ondas bajo condiciones estacionarias. Además, estudiamos la relación entre esta

frontera y los distintos mecánismos de aceleración en el choque. En el foreshock

de Saturno, encontramos que la reflexión especular de iones podŕıa estar asociada

con la frontera de las ondas, ya que este proceso esta limitado a choques paralelos

θBn . 40◦ [Andrés et al., 2013]. En el caso de la Tierra, nuestros resultados mues-

tran que el proceso favorecido es el magnetosheath leakage model para ángulos

θBx = 45◦ y θBx = 55◦ [Andrés et al., 2015a].





Appendix A

Particle parallel velocity P

The guiding center velocity ugc in the spacecraft frame is the sum of its velocity

parallel to the magnetic field u‖ and the convection (or drift) velocity uD, where,

uD = ui sin θBx and u‖ = PiBui (PiB is a multiplicative factor and θBx is the cone

angle, see Figure A.1). We can also express the guiding center velocity modulus

as ugc = Pgcui. Since,

|ugc| = |u‖ + uD| (A.1)

we deduce that

P 2
gc = P 2

iB + sin2 θBx (A.2)

From Figure A.1, the guiding center velocity ugc of a backstreaming particle in

the upstream region of the foreshock in the spacecraft frame is

ugc = Puib+ ui (A.3)

where Pui is the particle parallel velocity in the solar wind frame, b = B/B and

ui is the incident solar wind velocity. Multiplying (A.3) by b, it is straightforward

to show

P = PiB + cos θBx (A.4)
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Figure A.1: Schematic decomposition of the guiding center velocity ugc of a
backstreaming particle in the foreshock.

Combining equations (A.2) and (A.5) we obtain

P 2
gc = 1 + P − 2P cos θBx (A.5)

On the other hand, from Figure A.1 we see that

tan(η − θBx) = |uD|/|u‖| = sin θBx/PiB. (A.6)

Using trigonometric identities we obtain

tan η =
P sin θBx

P cos θBx − 1
(A.7)

where η is the slope of the UWFB in the usw-B plane. Using the SFC (5.3) we

can show that

tan η =
sin θBx

cos θBx − p
(A.8)



where p is the slope of the UWFB in the µ-ν plane. Finally, from combining

equations (A.7) and A.9 we can obtain the normalized velocity for an hypothetic

ion which travel along the UWFB

P =
tan η

tan η cos θBx − sin θBx
. (A.9)

Note that tan η can be obtained from the observations.





Appendix B

Publications related with this

Thesis

The main results of this Thesis is a paper published in or submitted to a peer-

review journal.

• Chapter 3

(a) Energy power spectra in two-fluid turbulence including electron inertia.

Andrés, N., Gonzalez, C., Martin, L. N., Dmitruk, P. and Gómez, D. O.,

Physics of Plasmas, 21, 122305 (2014).

• Chapter 4

(b) The influence of the Hall effect and electron inertia in collisionless mag-

netic reconnection.

Andrés, N., Dmitruk P. and Gómez, D. O., Physics of Plasmas (submitted).

(c) Effects of electron inertia in collisionless magnetic reconnection.

Andrés, N., Martin, L. N., Dmitruk, P. and Gómez, D. O., Physics of Plas-

mas, 21, 072904 (2014).

• Chapter 5

(d) The ULF wave foreshock boundary: Cluster observations.

Andrés, N., Meziane, K., Mazelle, C. X., Bertucci, C. and Gómez, D. O.,

Journal of Geophysical Research, Vol. 120, 4181-4193 (2014).

(e) Saturn’s ULF wave foreshock boundary: Cassini observations.

Andrés, N., Gómez, D. O., Bertucci, C., Mazelle C. X. and Dougherty, M.

K., Planetary and Space Science, Vol. 79-80, 64-75 (2013).
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Morales, L. F., Dasso, S., Gómez, D. O., and Mininni, P. D. Advances in Space

Research, 37:1287–1291, 2006.

Narita, Y., Glassmeier, K. H., Schaffer, S., Motschmann, U., Sauer, K., Dan-

douras, I., Formacon, K. H., Georgescu, E., and H., R. 30:1710, 2003.

Øieroset, M., Phan, T. D., Fujimoto, M., Lin, R. P., and Lepping, R. P. Nature,

412:414–417, 2007.



Parker, E. Phys. Fluids, 1:171–189, 1958.

Parker, E. N. J. Geophys. Res., 62:509–520, December 1957.

Parker, E. N. Astrophys. J., 128:664, 1958.

Parker, E. N. Interplanetary Dynamical Processes. New York: Wiley-Inter-science,

1963.

Petschek, H. E. NASA Special Publication, 50:425, 1964.

Priest, E. and Forbes, T. Magnetic Reconnection, MHD Theory and Applications.

Cambridge Univ. Press, 2000.

Rème, H., Aoustin, C., Bosqued, J. M., Dandouras, I., Lavraud, B., Sauvaud, J. A.,

Barthe, A., Bouyssou, J., Camus, T., Coeur-Joly, O., Cros, A., Cuvilo, J.,

Ducay, F., Garbarowitz, Y., Medale, J. L., Penou, E., Perrier, H., Rome-

fort, D., Rouzaud, J., Vallat, C., Alcaydé, D., Jacquey, C., Mazelle, C.,
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