
Di r ecci ó n:Di r ecci ó n:  Biblioteca Central Dr. Luis F. Leloir, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. 
Intendente Güiraldes 2160 - C1428EGA - Tel. (++54 +11) 4789-9293

Co nta cto :Co nta cto :  digital@bl.fcen.uba.ar

Tesis Doctoral

Acerca del rango y propiedadesAcerca del rango y propiedades
topológicas de algunos operadorestopológicas de algunos operadores

no linealesno lineales

Kuna, Mariel Paula

2016-03-14

Este documento forma parte de la colección de tesis doctorales y de maestría de la Biblioteca
Central Dr. Luis Federico Leloir, disponible en digital.bl.fcen.uba.ar. Su utilización debe ser
acompañada por la cita bibliográfica con reconocimiento de la fuente.

This document is part of the doctoral theses collection of the Central Library Dr. Luis Federico
Leloir, available in digital.bl.fcen.uba.ar. It should be used accompanied by the corresponding
citation acknowledging the source.

Cita tipo APA:

Kuna, Mariel Paula. (2016-03-14). Acerca del rango y propiedades topológicas de algunos
operadores no lineales. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos
Aires.

Cita tipo Chicago:

Kuna, Mariel Paula. "Acerca del rango y propiedades topológicas de algunos operadores no
lineales". Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. 2016-03-14.

http://digital.bl.fcen.uba.ar
http://digital.bl.fcen.uba.ar
mailto:digital@bl.fcen.uba.ar


UNIVERSIDAD DE BUENOS AIRES
Facultad de Ciencias Exactas y Naturales

Departamento de Matemática
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Acerca del rango y propiedades topológicas de algunos

operadores no lineales

Estudiamos el siguiente tipo de problemas de segundo orden:

u′′ = g(x, u) + p(x) x ∈ (a, b) ⊂ R,

donde g ∈ C([a, b]× R
N ,RN).

El objetivo principal de esta tesis es estudiar, bajo distintas condi-
ciones de contorno, qué funciones p ∈ L2((a, b),RN) garantizan la exis-
tencia de solución. Donde la definición de solución será dada en cada
caso.

En otras palabras, analizamos la imagen del operador semilineal S(u) =
u′′−g(x, u), considerado como un operador continuo deH ⊂ H2((a, b),RN)
a L2((a, b),RN), donde H es un subespacio cerrado que depende de las
condiciones de contorno.

En primer lugar, estudiamos problemas resonantes bajo condiciones
periódicas, que generalizan, por un lado, la ecuación del péndulo forzado
y, por otro, las condiciones de Landesman-Lazer. Consideramos el caso
variacional S(u) = u′′−∇G(u), para el cual logramos caracterizar Im(S)
y dar algunas de sus propiedades topológicas.

En segundo lugar, estudiamos problemas con condiciones de contorno
de radiación, es decir,

u′(0) = a0u(0), u′(1) = a1u(1),

con a0, a1 > 0. Encontramos una condición de Hartman generalizada
que garantiza existencia de solución. En particular, si g es superlineal,
probamos que el operador S es suryectivo. Para este caso, estudiamos
también condiciones necesarias y suficientes para la unicidad o multipli-
cidad de soluciones. Logramos obtener resultados más precisos para el
caso N = 1 empleando métodos topológicos y variacionales y Teorema
de la Función Impĺıcita.

Palabras clave: Problemas de contorno no lineales; Soluciones periódicas;
Métodos variacionales; Métodos topológicos; Ecuaciones eĺıpticas semili-
neales.

2010 MSC: 34B15, 34C25, 35A15, 35A16, 35J61.
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On the range and topological properties of some

nonlinear operators

We study the following type of second order problems:

u′′ = g(x, u) + p(x) x ∈ (a, b) ⊂ R,

where g ∈ C([a, b]× R
N ,RN).

The thesis is devoted to the following problem: which functions p ∈
L2((a, b),RN) guarantee the existence of solution under different bound-
ary conditions? Where, in each case, the definition of solution will be
given.

In other words, we try to characterize and prove different properties
of the range of the semilinear operator S(u) := u′′ − g(x, u), regarded as
a continuous function from H ⊂ H2((a, b),RN) to L2((a, b),RN), where
H is a closed subspace depending on the boundary conditions.

Firstly, we study resonant periodic problems that generalize, on the
one hand, the forced pendulum equation and, on the other hand, the
Landesman-Lazer conditions. For the variational case S(u) = u′′−∇G(u)
we give a characterization of the set Im(S) and prove some of its topo-
logical properties.

Secondly, we consider the so-called radiation boundary conditions,
namely

u′(0) = a0u(0), u′(1) = a1u(1),

with a0, a1 > 0. We obtain a generalized Hartman condition that ensures
the existence of solution. In particular, if g is a superlinear function, we
prove that S is onto. For this case, we study sufficient and necessary
conditions for uniqueness or multiplicity of solutions. More accurate
results are obtained for the scalar case N = 1, using variational and
topological methods and Implicit Function Theorem.

Keywords: Nonlinear boundary value problems; Periodic solutions; Varia-
tional methods; Topological and monotonicity methods; Semilinear ellip-
tic equations.
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Introducción

El Análisis No lineal es un área en la Matemática que tiene un gran
número de aplicaciones. En este trabajo se estudian sistemas no lineales
de ecuaciones diferenciales de segundo orden. En particular, problemas
de contorno de la forma:

Lu = Nu en (a, b) ⊂ R,

en donde L un operador diferencial lineal y N un operador no lineal.
Trabajamos con el operador de segundo orden L = u′′ y con no li-
nealidades de la forma Nu = g(x, u) + p(x). Dependiendo del contexto,
fueron estudiadas diferentes condiciones de borde. Consideramos p ∈ L2

y g ∈ C([a, b]× R
N ,RN).

El objetivo principal de este trabajo es, en primer lugar, generalizar
y extender resultados previos a un sistema de ecuaciones, descripto en el
Caṕıtulo 3. Primero trabajamos con un sistema diferencial no lineal de
segundo orden para el caso en el que g sea un gradiente y no dependa de
x:

u′′ +∇G(u) = p(x), x ∈ (0, T ),

con p ∈ L2((0, T ),RN), y condiciones de borde periódicas:

{
u(0) = u(T )
u′(0) = u′(T )

.

Observemos que esta ecuación es una generalización de la ecuación
del péndulo. Nuestro objetivo es estudiar la imagen del operador semi-
lineal S(u) = u′′ − ∇G(u), considerado como un operador continuo de
H2((0, T ),RN) a L2((0, T ),RN). Descomponemos el espacio L2 como la
suma directa de R

N y las funciones de promedio cero, es decir,

L2((0, T ),RN) = R
N ⊕ L̃2,

p = p + p̃,

1



2 INTRODUCCIÓN

donde L̃2 := {v ∈ L2((0, T ),RN) : v = 0}, p := 1
T

∫ T

0
p(t)dt y p̃ = p − p.

En este sentido, estudiamos el conjunto

I(p̃) := {p ∈ R
N : p+ p̃ ∈ Im(S)},

para p̃ ∈ L̃2 dada. Logramos probar varios resultados interesantes, como
por ejemplo: hallamos condiciones para que p ∈ I(p̃) y para que un
punto sea interior de I(p̃), además vimos que bajo ciertas hipótesis se
puede probar que I(p̃) = Im(∇G). Uno de los resultados más impor-
tantes que obtuvimos fue una generalización de un trabajo de Castro [20]
para la ecuación del péndulo; más precisamente, probamos que si ∇G es
periódica y consideramos I como una función de L̃2 al conjunto de sub-
conjuntos compactos de R

N (considerado con la topoloǵıa Hausdorff),
entonces es continua.

Estas ideas fueron plasmadas en [5] y serán discutidas en profundidad
en el Caṕıtulo 3.

Nuestro próximo paso es trabajar con el siguiente problema escalar:

u′′ = g(x, u) + p(x), x ∈ (0, 1),

donde g : [0, 1] × R → R es continua y superlineal y p ∈ L2((0, 1),R).
Por simplicidad, suponemos que g ∈ C1 respecto de u. Sin pérdida de
generalidad, podemos suponer que g(x, 0) = 0 para todo x ∈ [0, 1]. Bajo
condiciones de contorno de tipo radiación:

u′(0) = a0u(0), u′(1) = a1u(1),

con a0, a1 > 0.

Esta ecuación es una generalización de un modelo de Painlevé II de
electrodifusión de dos iones, donde g(x, u) = 1

2
u3+(a+ bx)u para a, b, p,

a0 y a1 unas constantes espećıficas del problema. En un trabajo reciente
[10] Amster, Kwong y Rogers probaron existencia y multiplicidad de
soluciones utilizando métodos variacionales y el problema fue modelado
numéricamente.

Logramos generalizar varios resultados de [10] en el Caṕıtulo 4. A
diferencia de ese caṕıtulo, en el Caṕıtulo 5, las herramientas princi-
pales que utilizamos para probar estos resultados fueron los métodos
topológicos, en particular, trabajamos con super y subsoluciones, Teo-
rema de la Función Impĺıcita y método de shooting. Estos resultados
forman parte de [7].

Se puede encontrar una explicación más profunda sobre estas condi-
ciones de borde en el Caṕıtulo 2

2



Introducción 3

Finalmente, en el Caṕıtulo 6, logramos generalizar los resultados an-
teriores en el contexto de un sistema de ecuaciones, es decir:

{
u′′ = g(x, u)
u′(0) = a0u(0), u

′(1) = a1u(1),

donde g : [0, 1]× R
N → R

N es una función continua y superlineal, i.e.,

lim
|u|→+∞

g(x, u).u

|u|2
= +∞,

uniformemente en x ∈ [0, 1], bajo las mismas condiciones de contorno.
Probamos existencia de solución a través de métodos variacionales,

similares a los utilizados en el trabajo [10] mencionado anteriormente.
Además, encontramos una condición generalizada de Hartman para pro-
bar existencia en un contexto no variacional.

Esta tesis está organizada de la siguiente manera:
En el próximo Caṕıtulo, se presenta la matemática necesaria para

entender por completo los resultados aqúı presentados. Está dividido en
una sección de preliminares anaĺıticos y otra de preliminares topológicos.
En la primera se enuncian resultados de inmersión de espacios de Sobolev
junto con algunos otros resultados relevantes del análisis funcional. En
la segunda, se repasan los teoremas de punto fijo, el método de super y
subsoluciones y el de shooting, entre otros resultados importantes.

El Caṕıtulo 2 es una breve historia de los dos principales problemas
tratados en este trabajo: el estudio del rango de un operador semili-
neal y los problemas con condiciones de radiación. Aqúı, las principales
referencias son explicadas con más detalle y se presentan las dificultades
principales de cada problema.

En el Caṕıtulo 3 damos resultados para el problema periódico. En
el Caṕıtulo 4, aplicamos métodos variacionales para extender algunos
resultados de [10], mientras que en el Caṕıtulo 5 aplicamos métodos
topológicos. El Caṕıtulo 6 contiene una generalización a sistemas de los
resultados obtenidos en el Caṕıtulo 4.

3
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Introduction

Nonlinear Analysis is an area of Mathematics that has a great number
of applications. In particular, our objects of study are Boundary Value
Problems (BVP) of the following type:

Lu = Nu,

where L is a Linear Differential Operator and N a nonlinear one. We
will work only with Second Order Operators and our results will be for
the case L = u′′, with nonlinearities of the form Nu = g(x, u) + p(x).
Different boundary conditions are studied depending on the context. We
will work with p ∈ L2((0, T ),RN) and g ∈ C([0, T ]× R

N ,RN).

The main goal of this work is, at first, to generalize and extend some
previous results, described in Chapter 3. We work with a second or-
der nonlinear ordinary differential system, where the nonlinearity g is a
gradient depending only on u:

u′′ +∇G(u) = p(x), x ∈ (0, T ),

with p ∈ L2((0, T ),RN) and Periodic Boundary Conditions:

{
u(0) = u(T )
u′(0) = u′(T )

.

We study the range of the semilinear operator S(u) = u′′ − ∇G(u),
regarded as a continuous function from H2((0, T ),RN) to L2((0, T ),RN).
We decompose L2((0, T ),RN) as the orthogonal sum of RN and the set
of zero-average functions, namely,

L2((0, T ),RN) = R
N ⊕ L̃2,

p = p + p̃,

with L̃2 := {v ∈ L2((0, T ),RN) : v = 0}, p := 1
T

∫ T

0
p(x)dx and p̃ = p−p.

In this sense, we study the set

I(p̃) := {p ∈ R
N : p+ p̃ ∈ Im(S)},

5



6 INTRODUCTION

for a given p̃ ∈ L̃2. We are able to obtain several results, such as: a basic
criterion which ensures that p ∈ R

N belongs to I(p̃) for some given p̃,
sufficient conditions for a point p0 ∈ I(p̃) to be interior and we prove that,
if G is strictly convex and satisfies some accurate growth assumptions,
then I(p̃) = Im(∇G) for all p̃ ∈ L̃2. One of the most important results
is an extension of a well known result by Castro [20] for the pendulum
equation; more precisely, we prove that if ∇G is periodic then I regarded
as a function from L̃2 to the set of compacts subsets of RN (equipped
with the Hausdorff metric) is continuous.

These results were proved in [5] and are thoroughly discussed in Chap-
ter 3.

Our next step is to work with the following scalar problem:

u′′ = g(x, u) + p(x), x ∈ (0, 1),

where g : [0, 1]× R → R is continuous and superlinear, i.e.,

lim
|u|→+∞

g(x, u)

u
= +∞,

uniformly in x ∈ [0, 1], g ∈ C1 with respect to u and p ∈ L2((0, 1),R).
Without loss of generality we can assume that g(x, 0) = 0 for all x ∈ [0, 1].
Under the following Radiation Boundary Conditions:

u′(0) = a0u(0), u′(1) = a1u(1), (1)

with a0, a1 > 0.
This is a generalization of a particular case of interest, where g(x, u) =

1
2
u3 + (a + bx)u for a, b, p, a0 and a1 some specific constants, it is a

Painlevé II model in two-ion electrodiffusion. In a recent work [10], Am-
ster, Kwong and Rogers applied variational methods in order to treat
this class of two-ion BVPs, and the problem was modeled numerically. It
is worth recording that the boundary conditions differ from the standard
Robin-type conditions in the crucial fact that both a0 and a1 are positive.

We were able to generalize several results of [10] in Chapter 4. Unlike
what was done in that chapter, in Chapter 5 our main tool to prove the
results were Topological Methods, in particular, we worked with upper
and lower solutions, Implicit Function Theorem and shooting method.
These results are part of a submitted article [7].

A further explanation about the radiation boundary conditions can
be found in Chapter 2.

Finally, in Chapter 6, we generalize the previous results in the context
of a system of equations, i.e.,

{
u′′ = g(x, u) + p(x)
u′(0) = a0u(0), u

′(1) = a1u(1),

6



Introduction 7

where g : [0, 1]×R
N → R

N is a continuous superlinear function, namely

lim
|u|→+∞

g(x, u).u

|u|2
= +∞,

uniformly in x ∈ [0, 1] and p ∈ L2. Under radiation boundary conditions,
as before.

We obtain an existence result via variational methods, similar to those
used in [10], mentioned above. Moreover, we find a generalized Hartman
condition to prove existence of solution in a nonvariational setting.

This thesis is organized as follows:
In the next Chapter, we give the mathematics needed to fully un-

derstand the results mentioned in this introduction. It is divided in
a topological section, in which fixed point theorems, upper and lower
solutions and shooting method, among other important results, are de-
scribed; and an analytical section, where Sobolev spaces are revised and
some functional analysis results are enumerated.

Chapter 2 is a brief history of the two main type of problems we
worked with: Range of semilinear operators and Radiation Boundary
Conditions. Here, the main references are described with more detail
and the difficulties of the problems are presented.

The Chapter 3 is devoted to the periodic problem and the study of
I(p̃) mentioned before. In Chapter 4 we extend some of the results in
[10] in a variational setting, while in Chapter 5 topological methods are
applied. Chapter 6 is devoted to generalize the existence results obtained
in Capter 4 to a system of equations.

7
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Chapter 1

Preliminaries

This section is meant to present the mathematical background needed
to appreciate and understand the concepts that will be used throughout
the work.

We divide the preliminaries in two parts: an analytical one with clas-
sical results in Sobolev spaces and some Nonlinear Functional Analysis,
and a topological one, where we give definitions and ideas from Topolog-
ical Methods.

1.1 Analytical Preliminaries

1.1.1 Poincaré Inequalities

We have the classical Sobolev inequalities that give an answer to the
embedding problems.

A particular case of this is the well-known Poincaré inequality:

Theorem 1.1.1 (Poincaré). Assume 1 ≤ p ≤ ∞, and u ∈ W 1,p
0 (a, b).

Then there exists a constant C = C(p) such that we have the estimate

‖u‖Lp(a,b) ≤ C‖u′‖Lp(a,b).

Recall that the Sobolev space W 1,p(a, b) is defined as

W 1,p(a, b) = {u ∈ Lp(Ω) : u, u′ ∈ Lp(a, b)} ,

and

W 1,p
0 (a, b) :=

{
u ∈ W 1,p(a, b) : ∃{um}∞m=1 ⊂ C∞

c (a, b), such that um → u in W 1,p(a, b)
}
.

Let us recall the definition of the average:

9



10 CHAPTER 1. PRELIMINARIES

Definition 1.1.2. We define the average of a function as:

u :=
1

b− a

∫ b

a

u(x)dx.

Note that if the function is periodic, i.e. u(x + T ) = u(x) for all x ∈ R,
then the average is also defined as before.

Remark 1.1.3. The average is the orthogonal projection to the Kernel of
the operator Lu = −u′′ in L2(0, T ) under Periodic Boundary Conditions.

Theorem 1.1.4. Let us recall the Wirtinger Inequality:

‖u− u‖Lp(a,b) ≤ C‖u′‖Lp(a,b).

For more on this, see Brézis [18].

1.1.2 Functional analysis results

In this section we enumerate a series of results that we use freely in the
rest of this work. We begin with the Mean-Value Theorem for Vector-
Valued integrals:

Theorem 1.1.5. If γ ∈ C([0, T ],Ω), with Ω ⊂ R
N , then

γ =
1

T

∫ T

0

γ(x)dx ∈ co(Ω),

where co(Ω) is the convex hull of Ω.

Definition 1.1.6. Given A ∈ R
N , we define the Convex Hull of A as

the smallest convex set that contains A. Formally, the convex hull may
be defined as the intersection of all convex sets containing A or as the
set of all convex combinations of points in A.

Here we also recall Fredholm’s Alternative Theorem.

Theorem 1.1.7. Let E be a Banach space and T : E → E a linear
compact operator. Then for any λ 6= 0, we have

1) The equation (T − λI)v = 0 has a nonzero solution.
or
2) The equation (T−λI)v = f has a unique solution v for any element

f .
In the second case, the solution v depends continuously on f .
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The Fredholm alternative can be restated as follows: any λ 6= 0
which is not an eigenvalue of a compact operator is in the resolvent, i.e.,
T − λI, has a continuous inverse. The basic special case is when E is
finite-dimensional, in which case any non degenerate matrix is invertible.

In particular, a variant of Theorem 1.1.7 is the following: if T − λI :
E → E is continuous, linear and injective, then it is an isomorphism.

Let us adapt the latter observation to Radiation Boundary Condi-
tions.

Theorem 1.1.8. Let

X =
{
u ∈ H2(0, 1)/u′(0) = a0u(0), u

′(1) = a1u(1)
}
,

for given a0, a1 > 0. Let f ∈ C([0, 1]) and assume that the linear operator
L : X → L2(0, 1) given by L(u) = u′′ − f(·)u is a monomorphism. Then
L is an isomorphism.

Proof:
Let u0 u1 be solutions of

u′′(x)− f(x)u(x) = 0 x ∈ (0, 1), (1.1)

such that
{
u′0(0) = a0u0(0),
u′0(1) 6= a1u0(1)

and

{
u′1(0) 6= a0u1(0),
u′1(1) = a1u1(1).

Since L is a monomorphism, {u0, u1} is linearly independent.
Let ϕ ∈ L2(0, 1) and

u(x) =
1

W

(
u0(x)

∫ 1

x

u1(t)ϕ(t)dt+ u1(x)

∫ x

0

u0(t)ϕ(t)dt

)
,

where

W =

∣∣∣∣
u0 u′0
u1 u′1

∣∣∣∣ = u0u
′
1 − u1u

′
0.

Since u0 and u1 satisfy (1.1), it is easy to see that W is constant.

Claim: u ∈ X and u′′ − f(x)u = ϕ.

Indeed, u′ =
1

W

(
u′0

∫ 1

x

u1ϕdt+ u′1

∫ x

0

u0ϕdt

)
. So

u′(0) =
1

W
u′0(0)

∫ 1

0

u1ϕdt = a0
1

W
u0(0)

∫ 1

0

u1ϕdt = a0u(0).

In a similar way, we can prove u′(1) = a1u(1).
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On the other hand, since u0 and u1 satisfy (1.1), we have

u′′ =
1

W

(
u′′0

∫ 1

x

u1ϕdt− u′0u1ϕ+ u′′1

∫ x

0

u0ϕdt+ u′1u0ϕ

)

= f
1

W

(
u0

∫ 1

x

u1ϕdt+ u1

∫ x

0

u0ϕdt

)
+ ϕ

1

W
(u′1u0 − u′0u1)

= fu+ ϕ.

Due to the Open Mapping Theorem, the result follows. �

The following uniqueness result has been proven by Lazer in [33] using
a lemma on bilinear forms. Firstly, let us recall the definition:

Definition 1.1.9. A symmetric matrixM ∈ R
N×N is said to be positive

positive-semidefinite if xt ·M ·x ≥ 0 for every x ∈ R
N . We write M ≥ 0.

For M,N ∈ R
N×N we write M ≥ N if M −N ≥ 0.

Theorem 1.1.10. Let Q be a real N×N symmetric matrix valued func-
tion with elements defined, continuous and 2π-periodic on the real line.
Suppose there exist real constant symmetric A,B ∈ R

N×N such that

A ≤ Q(x) ≤ B, x ∈ [0, 2π], (1.2)

and such that if λ1 ≤ λ2 ≤ · · · ≤ λN and µ1 ≤ µ2 ≤ · · · ≤ µN denote
the eigenvalues of A and B respectively and there exist integers Nk ≥ 0,
k = 1, . . . , N , such that

N2
k < λk ≤ µk < (Nk + 1)2. (1.3)

Then, there exists no non-trivial 2π−periodic solution of the vector dif-
ferential equation

w′′ +Q(x)w = 0. (1.4)

One form of the Hahn–Banach theorem is known as the Geometric
Hahn-Banach Theorem.

Theorem 1.1.11. Let K be a convex set having a nonempty interior
in a real normed vector space X. Suppose V is a linear variety in X
containing no interior points of K. Then there is a closed hyperplane in
X containing V but containing no interior points of K; i.e., there is an
element x∗ ∈ X∗ and a constant c such that 〈v, x∗〉 = c for all v ∈ V and
〈k, x∗〉 < c for all k ∈ int(K).
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1.1.3 Implicit Function Theorem

In this section we state a very important result, the Implicit Function
Theorem. First we review the main facts of differentiation in Banach
spaces.

Let X and Y be Banach spaces, and U ⊂ X be an open subset of X.
A function f : U → Y is called Fréchet differentiable at x ∈ U if there
exists a bounded linear operator A : X → Y such that

lim
h→0

‖f(x+ h)− f(x)− Ah‖Y
‖h‖X

= 0.

The limit here is meant in the usual sense of a limit of a function defined
on a metric space, using X and Y as the two metric spaces, and the above
expression as the function of argument h in X. If there exists such an
operator A, it is unique, so we write Df(x) = A and call it the (Fréchet)
derivative of f at x. A function f that is Fréchet differentiable for any
point of U is said to be C1 if the function

Df : U → L(X, Y ); x 7→ Df(x)

is continuous, where we denote with L(X, Y ) the set of continuous linear
functions from X to Y .

Theorem 1.1.12. Let X, Y and Z be Banach spaces, and let U and V be
open subsets of X and Y respectively. Let F ∈ Cr(U × V, Z), r ≥ 1. Fix
(x0, y0) ∈ U × V and assume DxF (x0, y0) ∈ L(X,Z) is an isomorphism.
Then there exists an open neighbourhood U1×V1 ⊂ U×V of (x0, y0) such
that for each y ∈ V1 there exists an unique (ξ(y), y) ∈ U1 × V1 satisfying
F (ξ(y), y) = F (x0, y0) and ξ(y0) = x0. Furthermore, ξ ∈ Cr(V1, U1).

1.1.4 Resonant Problems

Here we give a short introduction to resonant problems. Let us consider
the general nonlinear problem:

Lu = Nu,

where L is a differential operator and N is a nonlinear operator. Boun-
dary conditions are also present, and they define the space where the
operator is defined. For example the scalar problem

u′′ = f(x, u, u′) x ∈ (0, T ),

with f ∈ C([0, T ]×R×R,R) a bounded function. If L is invertible in a
suitable space then the problem is called non-resonant. A simple exam-
ple of a non resonant problem is the previous equation under Dirichlet
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Boundary Conditions, u(0) = u(T ) = 0. In this case, Lu = u′′ and
ker(L) = 0. The problem reduces to a fixed point problem:

u = L−1Nu

and fixed point theory can be applied directly.
If, on the other hand, L is not invertible, then the problem is called

resonant. This is the case if in the previous example we consider Neu-
mann, or periodic conditions, where ker(L) is non trivial. If Lu = −u′′,
under periodic boundary conditions, the Kernel of L is the subspace of
constant functions. This is a case of resonance in the first eigenvalue (in
this case 0). This denomination comes from the following:

If we consider the eigenvalue problem

−u′′ = λu

with periodic conditions, then it is not hard to see that the eigenvalues
are:

λk =

(
2kπ

T

)2

, k = 0, 1, · · · .

The first eigenvalue is 0, and the associated eigenspace is the space
of constant functions. For more of this see Amster [3], Chapter 2.

The pioneer work on resonant problems in the direction of our studies
is from Landesman and Lazer [32]. They studied the following scalar
problem: Let Ω ⊂ R

N a bounded domain, we find a function u : Ω → R

such that {
Lu+ αu+ g(u) = h(x) in Ω

u = 0 ∂Ω,
(1.5)

where L =
∑n

i,j=1
∂
∂xi
aij
(

∂
∂xj

)
is a second order, self adjoint, uniformly

elliptic operator.
By a weak solution of (1.5) the authors mean an H1

0 (Ω) solution of

u = αTu+ T [g(u)− h], (1.6)

where T : L2(Ω) → L2(Ω) and Tf is the unique solution of the linear
problem: {

Lu = −f in Ω

u = 0 ∂Ω.
(1.7)

The following result was proven:
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Theorem 1.1.13. Let w ∈ H1
0 (Ω), a non trivial solution (w 6= 0) of

u = αTu, that is, a weak solution of

{
Lu+ αu = 0 in Ω

u = 0 ∂Ω
(1.8)

Assume that the space of solutions of u = αTu has dimension 1, i.e.
every solution is of the form cw; that the limits

lim
s→+∞

g(s) = g+, lim
s→−∞

g(s) = g−

exist and are finite and that

g− ≤ g(s) ≤ g+ ∀s. (1.9)

Define Ω+ = {x ∈ Ω : w(x) > 0}, Ω− = {x ∈ Ω : w(x) < 0}. The
inequalities

g−

∫

Ω+

|w|dx− g+

∫

Ω−

|w|dx ≤ 〈h, w〉 ≤ g+

∫

Ω+

|w|dx− g−

∫

Ω−

|w|dx,
(1.10)

are necessary and the strict inequalities are sufficient for the existence of
a weak solution of the boundary value problem (1.5).

Moreover, if (1.9) is replaced by the slightly stronger condition:

g− < g(s) < g+ ∀s, (1.11)

then the strict inequalities are both necessary and sufficient for the exis-
tence of at least one solution of the boundary value problem (1.5).

Thus, the following result, adapted from a theorem given by Nirenberg
in [41] for elliptic systems, may be regarded as a natural extension of the
Landesman-Lazer Theorem:

Theorem 1.1.14. Let g : RN → R
N continuous and bounded, assume

the radial limits gv := limr→+∞ g(rv) exist uniformly respect to v ∈ SN−1.
Then the problem

{
u′′ + g(u) = p(x)
u(0) = u(T ), u′(0) = u′(T ),

has at least one T -periodic solution if the following conditions hold:

1. gv 6= p, for any v ∈ SN−1.

2. degB(g − p,BR(0), 0) 6= 0 for R ≫ 0.
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Here, degB refers to the Brouwer degree, it will be introduced later
in this chapter, in Section 1.2.6.

In Chapters 4, 5 and 6 we work with radiation boundary conditions

u′(0) = a0u(0), u
′(1) = a1u(1), with a0, a1 > 0.

Let us see the condition on a0 and a1 for resonance at 0. Consider the
problem {

u′′ = 0
u′(0) = a0u(0), u

′(1) = a1u(1).
(1.12)

The solutions are: u(x) = mx+ b, with m, b ∈ R such that
{
m = a0b
m = a1(m+ b).

Hence, problem (1.12) has nontrivial solution if and only if

a0
1 + a0

6= a1. (1.13)

Many of the results shall assume a1 ≥ a0 which, in particular, is a
non-resonance condition.

The difference between our conditions and the standard Robin con-
ditions, namely

au(0)− bu′(0) = 0, au(1) + bu′(1) = 0,

where a and b are non-zero constants, may be briefly shown as follows.
From standard results (e.g. Leray-Schauder theorem, see Theorem 1.2.5
below), the existence of nontrivial solutions of

{
u′′ = λ(g(x, u) + p(x))
u′(0) = a0u(0), u

′(1) = a1u(1).
(1.14)

would be easily deduced if there exists a number M such that all the
solutions of (1.14) with λ ∈ [0, 1] satisfy ‖u‖∞ < M . When a1 < 0,
suppose for example that

u(x0) = max
x∈[0,1]

u(x) =M > 0.

If x0 ∈ (0, 1), then u′′(x0) = λ(g(x0,M) + p(x0)) > 0, a contradiction.
If x0 = 0, the we deduce that u′(0) > 0, a contradiction. If x0 = 1,
u′(1) = a1u(1) < 0, again, a contradiction.

However, when a1 > 0, even on the non-resonant case, there is no
contradiction for x0 = 1.
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1.1.5 Variational methods

In [39], Mawhin and Willem give the following introduction to variational
methods.

A real function ϕ of a real variable which is bounded below on the
real line needs to have an infimum. If we call minimizing sequence for ϕ
any sequence (ak)k such that

ϕ(ak) →k→∞ inf ϕ,

a necessary condition for a to be such that ϕ(a) = inf ϕ is that ϕ has a
minimizing sequence which converges to a. Without suitable assumptions
on ϕ this condition can not be sufficient.

Definition 1.1.15. Let X be a normed space. A minimizing sequence
for a function ϕ : X → (−∞,+∞] is a sequence (uk) such that

ϕ(uk) →k→∞ inf ϕ.

A function ϕ : X → (−∞,+∞] is lower semi-continuous, l.s.c, (resp.
weakly lower semi-continuous, w.l.s.c.) if

uk → u ⇒ lim inf ϕ(uk) ≥ ϕ(u)

(resp. uk ⇀ u ⇒ lim inf ϕ(uk) ≥ ϕ(u)).

Theorem 1.1.16. If ϕ is w.l.s.c. on a reflexive Banach space X and
has a bounded minimizing sequence, then ϕ has a minimum on X.

The existence of a bounded minimizing sequence will be in particular
ensured when ϕ is coercive, i.e., such that

ϕ(u) → +∞ if ‖u‖ → ∞.

Definition 1.1.17. A function ϕ : X → (−∞,+∞] is convex (resp.
strictly convex ) if

ϕ(sx+ (1− s)y) ≤ sϕ(x) + (1− s)ϕ(y) for all s ∈ (0, 1), x, y ∈ X.

(resp. ϕ(sx+(1−s)y) < sϕ(x)+(1−s)ϕ(y) for all s ∈ (0, 1), x, y ∈ X).

In view of Theorem 1.1.16, it is important to obtain sufficient condi-
tions for weak lower semi-continuity. We shall obtain such a condition
from the following result.

Theorem 1.1.18. If X is a normed space and ϕ : X → (−∞,+∞] is
l.s.c and convex, then ϕ is w.l.s.c.
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Remark 1.1.19. The latter result is useful to our purpose, since we
work with functionals of the form

J(u) =

∫ T

0

(
|u′(x)|2

2
+ F (x, u(x))

)
dx,

where te function F depends on the context. J is continuously differen-
tiable and w.l.s.c. onH1(0, T ) as the sum of a convex continuous function
and of a weakly continuous one.

In Chapter 4 we shall make use of a linking theorem by Rabinowitz.
Firstly, let us recall the following definitions.

Definition 1.1.20. Let X be a Banach space and J ∈ C1(X,R), then
it is said that

• (un) ⊂ X is a Palais-Smale sequence if there exists a constant c > 0
such that |J(un)| ≤ c for all n ∈ N and DJ(un) −→n→+∞ 0,

• J satisfies the Palais-Smale condition (PS) if any Palais-Smale se-
quence has a convergent subsequence in X.

Theorem 1.1.21 (Rabinowitz, [44]). Let X be a Banach space and J ∈
C1(X,R) satisfy (PS). Assume X = X1 ⊕X2, with dim(X1) <∞ and

max
u∈X1:‖u‖X=r

J(u) < inf
u∈X2

J(u) =: ρ (1.15)

for some r > 0. Then J has at least one critical point u1 ∈ X such that
J(u1) ≥ ρ.

1.1.6 Legendre and Fenchel transforms

In [39], Mawhin and Willem give the following ideas about the Legendre
and Fenchel transforms.

The Legendre transform F ∗ of a smooth function F ∈ C1(RN ,R) is
defined by the implicit formula

F ∗(v) = v · u− F (u),

v = ∇F (u) when ∇F (u) is invertible. It has the following property

N∑

i=1

DiF
∗(v)dvi = dF ∗(v) =

N∑

i=1

(vidui + uidvi −DiF (u)dui) =
N∑

i=1

uidvi,
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or,
u = ∇F ∗(v),

so that F ∗ is such that
(∇F )−1 = ∇F ∗.

Its geometrical meaning is the following: the tangent hyperplane to
the graph of F with normal [v,−1] is given by

{
[w, s] ∈ R

N+1 : s = w · v − F ∗(v)
}
.

Thus, the graph of F can be described in a dual way, either as a set of
points or as an envelope of tangent hyperplanes.

The Fenchel trasform extends the Legendre transform to not neces-
sarily smooth convex functions by using affine minorants instead of tan-
gent hyperplanes. To motivate the analytical definition of the Fenchel
transform of F we can notice that, when F is convex, the function
F̃v : u 7→ v · u − F (u) is concave and the definition of the Legendre
transform just expresses that u is a critical point of F̃v, and hence, the
global maximum of F̃v is achieved at u. Consequently,

F ∗(v) = sup
w∈RN

{w · v − F (w)}

and the right-hand side member of this equality, which is defined as an
element of (−∞,+∞], without the smoothness and invertibility condi-
tions required by the Legendre transform is, by definition, the Fenchel
transform of the convex l.s.c. function F . The reciprocity property be-
tween ∇F and ∇F ∗, which loses its meaning for a non-smooth convex F
or a non-smoth F ∗, can be recovered in terms of the subdifferential of a
convex function G, i.e., a subset of RN associated to G at u and which
reduces to {∇G} when G is differentiable at u.

1.2 Topological Preliminaries

1.2.1 Fixed Point Theorems

In this section, we give a brief enumeration of the most important fixed
point theorems, which are the cornerstones of the Topological Methods
for solving nonlinear problems.

The classical proof of existence and uniqueness of solution for an
ordinary differential equation with initial conditions relies in the Picard
method of successive approximation, in his PhD thesis (1917) Banach
proved that Picard method was in fact a particular case of a much more
general result. First we recall the following definition.
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Definition 1.2.1. LetX, Y be two metric spaces, we say that T : X → Y
is a contraction if there exists α < 1 such that:

∀ x, y ∈ X, dY (Tx, Ty) ≤ αdX(x, y).

We state here the famous Banach Fixed Point Theorem:

Theorem 1.2.2 (Banach). Let X be a complete metric space and let
T : X → X a contraction. Then, T has a unique fixed point x̂. Moreover,
x̂ can be calculated in an iterative way from the sequence xn+1 = T (xn),
starting from any x0 ∈ X.

Another important Fixed Point Theorem is due to Brouwer:

Theorem 1.2.3 (Brouwer). Let B = B1(0) ⊂ R
N and f ∈ C(B,B).

Then there exists x ∈ B such that f(x) = x.

Although Theorem 1.2.3 is valid for any set homeomorphic to the unit
ball B ⊂ R

N , Kakutani (1943) showed that it is not true for infinite di-
mensional spaces. Some additional hypothesis is needed for the operator
T .

J. Schauder, around 1930, proved another Fixed Point Theorem, this
time for infinite dimensional spaces:

Theorem 1.2.4 (Schauder). Let (E, ‖·‖) be a normed space and let C be
a closed convex and bounded subset of E. If T : C → C is a continuous
function such that T (C) is relatively compact (T (C) is compact), then T
has at least a fixed point.

The last fixed point theorem in this enumeration is an extension of
the previous one, and has important applications in nonlinear problems.
It was stated and proved by Leray and Schauder in 1934. We give here
a particular case, due to Schauder:

Theorem 1.2.5 (Leray-Schauder). Let T be a continuous and compact
mapping of a Banach space X into itself, such that the set

{x ∈ X : x = λTx for some 0 ≤ λ ≤ 1}

is bounded. Then T has at least a fixed point in X.

1.2.2 Hausdorff metric

In Chapter 3 we we shall need, among other things, to measure the dis-
tance between compact subsets of RN . Therefore, we introduce the Haus-
dorff metric, which is defined on the space of nonempty closed bounded
subsets of a metric space.
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Let (X, d) be a metric space. Let H be the collection of all nonempty
closed, bounded subsets of X. If A, B ∈ H define the Hausdorff distance
between A and B by

dH(A,B) = max

{
sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)

}
.

This definition of the Hausdorff metric, while sometimes useful for
symbolic manipulation, has a reformulation which is more visually ap-
pealing. Given A ⊂ H, let the ε-expansion of A be the union of all ε-open
balls around points in A. We denote it by Aε; that is,

Aε =
⋃

x∈A
B(x, ε).

Then dH(A,B) is defined as the smallest ε that allows the expansion of
A to cover B and vice versa:

dH(A,B) = inf{ε > 0/B ⊂ Aε and A ⊂ Bε}.
Proposition 1.2.6. The above two definitions of the Hausdorff metric
are equivalent.

Proposition 1.2.7. The function d is a metric on H.

1.2.3 Upper and lower solutions for radiation bounda-

ry conditions

In this section we extend the well known method of upper and lower
solutions to radiation boundary conditions. Let us consider the problem

{
u′′(x) = g(x, u) + p(x),
u′(0) = a0u(0), u′(1) = a1u(1),

(1.16)

where g ∈ C([0, 1]× R), p ∈ L2(0, 1) and a0, a1 > 0.
Let us adapt the definition of upper and lower solutions to our pur-

pose:

A function α ∈ H2([0, 1]) is a lower solution of (1.16) if it satisfies
{
α′′ ≥ g(x, α) + p a. e. x ∈ (0, 1)
α′(0) ≥ a0α(0), α′(1) ≤ a1α(1).

In the same way, a function β ∈ H2([0, 1]) is an upper solution of (1.16)
if it satisfies {

β′′ ≤ g(x, β) + p a. e. x ∈ (0, 1)
β′(0) ≤ a0β(0), β′(1) ≥ a1β(1).

Now we can prove the following original result. It is an adaptation of
a classical theorem to radiation boundary conditions.
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Theorem 1.2.8. Assume there exist lower and upper solutions of (1.16)
α and β, such that α ≤ β on [0, 1]. Let

C =
{
u ∈ H2([0, 1])/α ≤ u ≤ β, on [0, 1]

}
.

Then, problem (1.16) has at least one classical solution in C.
Proof:
Let us consider the following modified problem for λ, µ > 0





u′′ − λu = g(x, P (x, u))− λP (x, u) + p(x)
u′(0)− µu(0) = (a0 − µ)P (0, u(0)),
u′(1) + µu(1) = (a1 + µ)P (1, u(1)),

(1.17)

where P is the truncation function defined by

P (x, u) =





α(x) if α(x) > u
u if α(x) ≤ u ≤ β(x)
β(x) if β(x) < u.

Firstly, let us prove that problem (1.17) has at least one solution.
Note that now we have classical Robin boundary conditions, and it is
well-known that the following problem for µ > 0





u′′ − λu = ϕ(x)
u′(0)− µu(0) = C0

u′(1) + µu(1) = C1

has a unique solution u ∈ H2(0, 1) for each ϕ ∈ L2, C0 and C1 ∈ R;
moreover, the operator L2(0, 1) × R

2 → H2 given by (ϕ,C0, C1) 7→ u is
continuous. Hence, the fixed point operator associated to equation (1.17)
is compact.

Note that, since P is a bounded function, the right-hand side of (1.17)
is bounded, so, by Schauder’s Fixed Point Theorem (see [3] or Theorem
1.2.4 in this chapter) we deduce the existence of at least one solution u
satisfying the Robin boundary conditions.

Now, let us prove that the solution u of (1.17) is also a solution of
(1.16). Note that it is enough to prove that α(x) ≤ u(x) ≤ β(x) for all
x ∈ [0, 1]. Suppose by contradiction that there exists x ∈ [0, 1] such that
u(x) > β(x). Let x0 ∈ [0, 1] be such that

max
x∈[0,1]

(u− β) = u(x0)− β(x0) > 0.

Then P (x0, u(x0)) = β(x0). If x0 ∈ (0, 1), then there exists δ > 0
such that u > β in (x0, x0 + δ). By definition of upper solution, if
x ∈ (x0, x0 + δ) then we have

u′′(x)− λu(x) = g(x, β(x)) + A(x)− λβ(x) ≥ β′′(x)− λβ(x).
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Since (u− β)′(x0) = 0, integrating the previous inequality we get

(u− β)′(x) ≥ λ

∫ x

x0

(u− β)(t)dt > 0,

for x ∈ (x0, x0 + δ). It is a contradiction since x0 is a maximum.
If x0 = 0, then P (0, u(0)) = β(0). Since 0 is a maximum, (u−β)′(0) ≤

0. Then, due to the boundary condition satisfied by u and β in 0, we
have

0 ≤ β′(0)− u′(0) = β′(0)− a0β(0) + µβ(0)− µu(0) =

= β′(0)− a0β(0) + µ(β(0)− u(0)) < β′(0)− a0β(0) ≤ 0,

a contradiction.
Similarly, if x0 = 1, then we find a contradiction using the boundary

condition satisfied by u and β in 1.
This proves that u(x) ≤ β(x) for all x ∈ [0, 1]. In a similar way, it is

easy to see that α(x) ≤ u(x). �

1.2.4 Shooting method

In this section, we shall describe a tool for the study of boundary value
problems, usually known as the shooting method. In very general terms,
the method can be summarized in two steps:

1. Solve an initial value problem with a free parameter λ.

2. Find an appropriate value of λ such that the obtained solution
satisfies the desired boundary condition.

The task looks really simple, but it requires some qualitative analysis
on the behavior of the solutions of the initial value problem, according
to the variations in the parameter λ.

As an example, let us consider the following second-order equation
with homogeneous Dirichlet conditions

{
u′′(x) = f(x, u(x))
u(0) = u(1) = 0.

Let us suppose f : [0, 1] × R → R is continuous and locally Lipschitz
with respect to u, which guarantees that for any λ ∈ R the initial value
problem {

u′′(x) = f(x, u(x))
u(0) = 0, u′(0) = λ

(1.18)
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has a unique solution uλ, defined in a maximal nontrivial interval Iλ =
[0,M), with M = M(λ) ∈ (0,+∞]. In general, we cannot know if
M(λ) > 1, although on the set {λ : M(λ) > 1}, the function λ 7→ uλ(1)
is continuous. This is due to the continuous dependence with respect to
the initial values.

It is clear that we are looking for a value λ such that uλ(1) is well
defined and uλ(1) = 0. In other words, we are looking for a zero of the
function T defined by

T (λ) := uλ(1).

Due to the continuity mentioned before, it is enough to find an interval
Λ = [λ∗, λ

∗] such that T (λ) is well defined for all λ ∈ Λ and, moreover,
T (λ∗) ≤ 0 ≤ T (λ∗) or vice versa.

For instance, if f is bounded, the solutions of (1.18) are defined in
[0, 1]. Moreover, direct integration of the equation yields

u′λ(x) = λ+

∫ x

0

f(s, uλ(s))ds.

This says that, if λ ≥ ‖f‖∞, then

u′λ(x) ≥ λ− x‖f‖∞ ≥ 0

for x ≤ 1. Thus uλ is nondecreasing, and hence T (λ) > 0. In a similar
way, if λ < −‖f‖∞, then T (λ) < 0. Which allows to deduce that T (λ) =
0 for some λ ∈ [−‖f‖∞, ‖f‖∞].

For more sophisticated examples, see e.g. [3], Chapter 1.

1.2.5 Hartman condition

In 1960, Hartman [29] showed that the second order system in R
N for a

vector function u : [0, 1] → R
N

{
u′′ = f(x, u, u′),
u(0) = u0, u(1) = u1,

with f : [0, 1] × R
N × R

N → R
N continuous, has at least one solution

when f satisfies a Nagumo-like condition and

f(x, v, w) · v + |w|2 > 0 for all (x, v, w) ∈ [0, 1]× R
N × R

N , (1.19)

with |v| = R, v · w = 0, for some R ≥ |u0| , |u1|.
In our case, since g does not depend on u′, condition (1.19) reads

g(x, u).u > 0, for |u| = R.
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It is easy to see, for the case g = g(x, u), that the result can be
extended for any convex, bounded, open subset of RN , replacing u by an
outer-pointing normal unit vector.

In this work, we extend Hartman condition in a different direction,
which allows the convex set (in our case, a ball) to depend on the value
of x.

1.2.6 The Topological Degree

Roughly speaking, the topological degree is an algebraic count of the
zeros of a continuous function f : U → E where U is an open and
bounded subset of a Banach space E, and f does not vanish on ∂U . Let
E = R

N . A function f ∈ C1 has 0 as a regular value, if the differential
Df(x) : RN → R

N is surjective for every x ∈ f−1(0). We define Brouwer
degree of f as

degB(f, U, 0) :=
∑

x∈f−1(0)∩U
sgn(Jf (x)),

where Jf denotes the Jacobian of f , namely Jf (x) = detDf(x). This
definition can be extended in an appropriate way for f ∈ C with f 6= 0
on ∂U .

Further generalization for infinite dimensional spaces is given by the
Leray–Schauder degree, which is defined for Fredholm operators f : U →
E of the type f = I − K with K compact. In particular, when the
range of K is contained in a finite dimensional subspace V ⊂ E, the
Leray–Schauder degree is defined by

degLS(f, U, 0) := degB(f |V , U ∩ V, 0).

More remarkable properties of the degree can be found for example in
[36], however, in Chapter 6, we will only mention two of them:

1. If degLS(f, U, 0) 6= 0, then f vanishes in U .

2. Homotopy invariance: if F : U × [0, 1] → E is continuous such that
I − F (·, λ) is compact for all λ and F (u, λ) 6= 0 for u ∈ ∂U and
λ ∈ [0, 1], then degLS(F (·, λ), U, 0) does not depend on λ.

For a proof of the results stated in this section, refer to the books of
Amster [3] or Teschl [46], where they give a more detailed analysis of this
subject. The first appearance of this notion was in 1911 in a work from
Brouwer [19].
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Resumen del Caṕıtulo 1

En este caṕıtulo se presentan algunos resultados necesarios para compren-
der la tesis. La mayoŕıa de los resultados son conocidos. Está dividido
en dos secciones, una de preliminares anaĺıticos y otra de preliminares
topológicos.

En la Subsección 1.1.1 enunciamos las desigualdades de Poincaré y
de Wirtinger, además, difinimos el promedio de una función.

La Subsección 1.1.2 está dedicada a recordar algunos resultados cono-
cidos del Análisis Funcional. Entre ellos se encuentran: el teorema del
valor medio, la Alternativa de Fredholm, un resultado de unicidad de
Lazer para matrices periódicas y la versión geométrica del teorema de
Hahn-Banach. Además, probamos que el operador lineal continuo e in-
yectivo L : X → L2(0, 1) dado por L(u) = u′′ − f(·)u, donde

X =
{
u ∈ H2(0, 1)/u′(0) = a0u(0), u

′(1) = a1u(1)
}
,

es un isomorfismo.
En la Subsección 1.1.3, revisamos el concepto de diferenciación en

espacios de Banach y enunciamos el Teorema de la Función Impĺıcita en
ese contexto.

La Subsección 1.1.4 contiene una introducción a los problemas reso-
nantes. Se introducen las conocidas condiciones de Landesman-Lazer y
una generalización de Nirenberg. Además, encontramos la condición de
resonancia para el operador L(u) = u′′ bajo condiciones de contorno de
radiación.

La Subsección 1.1.5 está dedicada a los métodos variacionales. Con-
tiene definiciones y teoremas clásicos, entre los que se encuentra un teo-
rema linking de Rabinowitz.

En la Subsección 1.1.6 describimos, de manera informal, las transfor-
madas de Fenchel y de Legendre.

En la Subsección 1.2.1, enunciamos los teoremas de punto fijo de
Banach, Brouwer, Schauder y Leray-Schauder.

En la Subsección 1.2.2 introducimos dos definiciones equivalentes de la
distancia de Hausdorff entre subconjuntos no vaćıos, cerrados y acotados
de un espacio métrico.

En la Subsección 1.2.3 probamos un resultado de existencia de solución
para un problema de segundo orden con condiciones de contorno de ra-
diación utilizando el método de super y subsoluciones.

En la Subsección 1.2.4 presentamos una breve descripción del método
de shooting y un ejemplo.

La Subsección 1.2.5 contiene una descripción de la condición de Hart-
man estricta.
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Finalmente, en la Subsección 1.2.6 presentamos una breve descripción
y algunas propiedades del grado topológico de Brouwer y de Leray-
Schauder.
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Chapter 2

A brief survey of the

problems

2.1 On the range of semilinear operators

In Chapter 3 we shall consider the following problem. For a vector func-
tion u : R → R

N we consider the system

u′′(x) +∇G(u(x)) = p(x)

u(x) = u(x+ T ),

where G : RN → R is a C1 function. We are interested in finding all
possible T -periodic forcing terms p(x) for which there is at least one
solution. In other words, we shall examine the range of the semilinear
operator S : H2

per → L2([0, T ],RN) given by Su = u′′ +∇G(u), where

H2
per = {u ∈ H2([0, T ],RN); u(0)− u(T ) = u′(0)− u′(T ) = 0}.

Writing p(x) = p+p̃(x), where p := 1
T

∫ T

0
p(x) dx, we shall present several

results concerning the topological structure of the set

I(p̃) = {p ∈ R
N ; p+ p̃ ∈ Im(S)}.

2.1.1 Bounded ∇G
Let G ∈ C1(RN ,R). A well known result establishes that if ∇G is
bounded, then the Dirichlet problem

u′′ +∇G(u) = p(x) (2.1)

u(0) = u(T ) = 0 (2.2)

29
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has at least one solution for any p ∈ L2([0, T ],RN); that is to say, the
operator S : H2 ∩H1

0 ([0, T ],R
N) → L2([0, T ],RN) given by

S(u) := u′′ +∇G(u),
is surjective. The boundedness condition ensures that the nonlinearity
does not interact with the spectrum of L, hence the associated linear op-
erator Lu := −u′′ is invertible; thus, a simple proof follows as a straight-
forward application of Schauder’s fixed point theorem.

The situation is different at resonance, as mentioned in Section 1.1.4
in the previous chapter, when the associated linear operator is non-
invertible. In particular, if we consider the periodic problem for (2.1),
then integrating we have

1

T

∫ T

0

∇G(u(t)) dt = p.

Thus, the geometric version of the Hahn-Banach Theorem (Theorem
1.1.11 in the previous chapter), implies that a necessary condition for
the existence of solutions is that p ∈ co(Im(∇G)), where ‘co’ stands for
the convex hull. In particular, if we decompose L2([0, T ],RN) as the

orthogonal sum of RN and the set L̃2 of zero-average functions; i.e.,

L2((0, T ),RN) = R
N ⊕ L̃2,

p = p + p̃,

with
L̃2 := {v ∈ L2([0, T ],RN); v = 0},

then the range of S, now defined onH2
per, is contained in co(Im(∇G))⊕L̃2.

Thus, it is useful to study, for a given p̃ ∈ L̃2, the set

I(p̃) := {p ∈ R
N : p+ p̃ ∈ Im(S)} ⊂ co(Im(∇G)).

When ∇G is bounded it can be proven, generalizing the arguments given
in [28] for a scalar equation, that I(p̃) is non-empty and connected; if
∇G is also periodic, then I(p̃) is compact (see e.g. [30]). For example, a
quite precise description of this set can be given when the radial limits

lim
s→+∞

∇G(sv) := Γ(v)

exist uniformly for v ∈ SN−1, the unit sphere of RN . In this case, a
well-known result by Nirenberg [41] (see Theorem 1.1.14 in the previous
chapter) implies that all the interior points of the field Γ : SN−1 → R

N

(i. e. those points p such that the winding number of Γ with respect to p
is nonzero) is contained in I(p̃). If also co(Im(∇G)) ⊂ Int(Γ), then the
condition Index(Γ, p) 6= 0 is both necessary and sufficient, indeed:

Im(S) = Int(Γ)⊕ L̃2.
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2.2 Radiation boundary conditions

The following equation

u′′(x) = Ku(x)3 + L(x)u(x) + A, (2.3)

where K and A are some given positive constants and L(x) := a20 +
(a21 − a20)x, of Painlevé II type was derived independently by Grafov and
Chernenko [27] and Bass [15] in the context of two-ion electrodiffusion.
Two-point Dirichlet and periodic boundary value problems (BVPs) for
this Painlevé II equation and a non-integrable generalization were suc-
cessively investigated in [11] and [12]. A Neumann BVP for a Painlevé II
equation depending on the Dirichlet boundary values of the solution was
recently studied in [8] and [9] by a two-dimensional shooting method.

In [17] novel flux quantization aspects associated with the iterative
action of the Bäcklund transformations were investigated. Exact analytic
expressions were obtained for the electric field and ionic concentrations
in well-stirred reservoirs exterior to the junction boundaries. Radiation
boundary conditions, namely

u′(0) = a0u(0), u′(1) = a1u(1), (2.4)

applied to two-point BVPs for the Painlevé II equation were derived in
this connection. Unlike the standard Robin condition, the coefficients
a0 and a1 in the radiation boundary condition (2.4) are assumed to be
positive.

In a recent work, [10], the following results were proven via variational
methods.

Theorem 2.2.1. Problem (2.3)-(2.4) has exactly one negative solution.
Moreover, there are at most two positive solutions, and the set of all
solutions is bounded in the C2-norm.

Theorem 2.2.2. 1. If a1 ≥ a0, then (2.3)-(2.4) has a unique solu-
tion.

2. If a1 < a0, then there exist positive constants A∗ < A∗ such that
the following hold.

(a) If A < A∗, then (2.3)-(2.4) admits at least three classical so-
lutions.

(b) If A > A∗, then (2.3)-(2.4) has a unique solution.

Since a0 and a1 are positive, the associated functional J is coercive
over a subspace H ⊂ H1(0, 1) of codimension 1 and −J is coercive over a
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linear complement of H. This geometry explains the nature of the results
in [10], where it was proven that the functional is in fact coercive over
the whole space and, in consequence, it achieves a minimum. The global
minimum corresponds to the negative solution mentioned in Theorem
2.2.1. The multiplicity part (Theorem 2.2.2, case 2a) was proven using a
linking theorem by Rabinowitz (see Theorem 1.1.21).

In [10], some examples were presented using the shooting method;
here, we shall demonstrate that this tool can be useful for getting theo-
retical results.
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Resumen del Caṕıtulo 2

Este caṕıtulo contiene una breve historia de los dos principales problemas
tratados en la tesis: el estudio del rango de un operador semilineal y
los problemas con condiciones de contorno de radiación y un término
superlineal. Las principales referencias son explicadas con más detalle y
se presentan las dificultades principales de cada problema.

En la Sección 2.1 se plantea el problema, estudiar el rango del ope-
rador semilineal S : H2

per → L2([0, T ],RN) dado por Su = u′′ +∇G(u),
donde

H2
per = {u ∈ H2([0, T ],RN); u(0)− u(T ) = u′(0)− u′(T ) = 0}.

En la Subsección 2.1.1 presentamos antecedentes del problema para ∇G
acotada.

La Sección 2.2 está dedicada a describir brevemente el origen de las
condiciones de contorno de radiación y los antecedentes de un modelo de
Painlevé II de electrodifusión de dos iones.
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Chapter 3

Range of semilinear operators

for systems at resonance

3.1 Introduction

In this chapter we study the following problem: for a vector function
u : R → R

N we consider the system
{
u′′ +∇G(u) = p(x), x ∈ (0, T )

u(0) = u(T ), u′(0) = u′(T ),
(3.1)

where G : RN → R is a C1 function.
We study the range of the semilinear operator

S : H2
per → L2([0, T ],RN),

given by Su = u′′ +∇G(u), where

H2
per = {u ∈ H2([0, T ],RN); u(0)− u(T ) = u′(0)− u′(T ) = 0}.

Writing p(x) = p + p̃(x), where p := 1
T

∫ T

0
p(x) dx, we present several

results concerning the topological structure of the set

I(p̃) = {p ∈ R
N ; p+ p̃ ∈ Im(S)}.

This chapter is organized as follows. In the next section, we prove
a basic criterion which ensures that p ∈ R

N belongs to I(p̃) for some
given p̃. In Section 3.3, we give sufficient conditions for a point p0 ∈ I(p̃)
to be interior. In Section 3.4, we extend a well known result by Castro
[20] for the pendulum equation; more precisely, we prove that if ∇G is
periodic, namely for every j = 1, . . . , N there exists Tj > 0 such that

∇G(u + Tjej) = ∇G(u), then I regarded as a function from L̃2 to the

35
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set of compacts subsets of RN (equipped with the Hausdorff metric) is
continuous. Finally, in Section 3.5, we prove that if G is strictly convex
and satisfies some accurate growth assumptions, then I(p̃) = Im(∇G)
for all p̃.

The results from this chapter were published in [5].

3.2 A basic criterion for general G

Proposition 3.2.1. Given p̃ ∈ L̃2. Let p ∈ R
N and define ψp : R

N → R

by ψp(u) := p · u−G(u). Assume that:

1. ψp is bounded from below,

2. lim inf |u|→+∞ ψp(u) > infu∈RN ψp(u) +
T
8π2‖p̃‖2L2(0,T ).

Then p ∈ I(p̃).

Proof:
Consider the functional

J : H1
per := {u ∈ H1([0, T ],RN) : u(0) = u(T )} → R

given by

J(u) :=

∫ T

0

|u′(x)|2
2

+ ψp(u(x)) + p̃(x) · u(x) dx.

It is readily seen that J is continuously Fréchet differentiable, and

DJ(u)(v) =

∫ T

0

u′(x) · v′(x)−∇G(u(x)) · v(x) + p(x) · v(x) dx, (3.2)

where p(x) = p + p̃(x). Thus, if u is a minimum of J , u is a weak
solution of (3.1), and by standard arguments we deduce that it is a strong
solution. Also, it is known, from Remark 1.1.19, that J is weakly lower
semi-continuous; thus, due to Theorem 1.1.16 of Chapter 1, it suffices
to prove that J has a bounded minimizing sequence. Without loss of
generality, we may suppose that G(0) = 0.

Claim 1: −∞ < inf J ≤ T inf ψp ≤ 0.

Indeed, let us recall from Chapter 1, 1.1.4, the well known Wirtinger
inequality:

‖u− u‖2L2 ≤
(
T

2π

)2

‖u′‖2L2 . (3.3)



3.2. A basic criterion for general G 37

From Cauchy-Schwarz inequality we deduce:

J(u) ≥ 1

2
‖u′‖2L2 − ‖p̃‖L2‖u− u‖L2 +

∫ T

0

ψp(u(x)) dx.

Thus, from (3.3),

J(u) ≥ 1

2

(
‖u′‖L2 − T

2π
‖p̃‖L2

)2

− T 2

8π2
‖p̃‖2L2 + T inf

u∈RN
ψp (3.4)

and the first inequality is proven. For the second inequality, it is sufficient
to observe that

inf
u∈H1

per

J(u) ≤ inf
u∈RN

J(u) = T inf
u∈RN

ψp(u).

The third inequality is obvious since ψp(0) = 0.
Next, consider a sequence (un)n∈N such that limn→∞ J(un) = inf J .

Claim 2: The sequence (un)n∈N is bounded in H1
per.

From the previous claim, for any given ε > 0 there exists n0 ∈ N such
that

J(un) < T inf ψp + ε, for all n ≥ n0. (3.5)

Then (3.4) yields

(
‖u′n‖L2 − T

2π
‖p̃‖L2

)2

<
T 2

4π2
‖p̃‖2L2 + 2ε

so

‖u′n‖2L2 <
T

π
‖p̃‖L2‖u′n‖L2 + 2ε.

Hence, there exists τ > 0, independent of n, such that ‖u′n‖L2 ≤ T
π
‖p̃‖L2+

τ .
As before,

J(un) ≥
1

2

(
‖u′n‖L2 − T

2π
‖p̃‖L2

)2

− T 2

8π2
‖p̃‖2L2 +

∫ T

0

ψp(un(x)) dx,

and from (3.5) we deduce that

∫ T

0

ψp(un(x)) dx ≤ T 2

8π2
‖p̃‖2L2 + T inf ψp + ε. (3.6)

Suppose that ‖un‖H1 → ∞, then from the bound for ‖u′n‖L2 and the
standard inequality

‖un − un‖∞ ≤
√
T

2
‖u′n‖L2
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we deduce that |un| → ∞ and |un(x)| → ∞ uniformly in x. Thus, for a
given δ > 0 there exists n1 ≥ n0 such that ψp(un(x)) ≥ lim inf |u|→∞ ψp(u)−
δ
T
for all n ≥ n1. Hence

∫ T

0

ψp(un(x)) dx ≥ T lim inf
|u|→∞

ψp(u)− δ for all n ≥ n1.

Then, by (3.6)

T lim inf
|u|→∞

ψp(u) ≤ T inf ψp +
T 2

8π2
‖p̃‖2L2 + ε+ δ, (3.7)

which contradicts hypothesis 2 when ε + δ is small enough. So (un)n∈N
is bounded in H1

per. �

Remark 3.2.2. In particular, if

lim inf
|u|→+∞

ψp(u)− inf ψp ≥ r > 0,

then p ⊕ B̃r(0) ⊂ Im(S), where B̃r(0) ⊂ L̃2 denotes the open ball of
radius r centered at 0.

Example 3.2.3. Suppose that

lim sup
|u|→∞

G(u)

|u| ≤ −R < 0.

Then BR(0) ⊆ I(p̃) for any p̃.
Indeed, if |p| < R let ε = R−|p|

2
and fix r0 such that G(u)

|u| < −R + ε

for |u| ≥ r0. Hence

ψp(u) = |u|
(
u

|u| · p−
G(u)

|u|

)
> |u|(R− ε− |p|) = ε|u| → +∞

as |u| → ∞ and the result follows. Proposition 3.2.1 is still applicable
for example if

lim sup
|u|→∞

G(u)

|u| ≤ 0 and lim sup
|u|→∞,u∈C

G(u)

|u| = −R < 0

with
C := {u ∈ R

N : u · w > −c|u|}
for some w ∈ SN−1 and c ∈ (0, 1). In this case, I(p̃) contains all the
vectors p ∈ BR(0) such that the angle between p and −w is smaller than
π
2
− arccos(c).
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3.3 Interior points

In this section we give sufficient conditions for a point p0 ∈ I(p̃) to be
interior. Roughly speaking, we shall prove that if the Hessian matrix of
G does not interact with the spectrum of the operator Lu := −u′′, then
I(p̃) is a neighborhood of p0. More precisely:

Theorem 3.3.1. Let us assume that G ∈ C2(RN ,R) and let p0 ∈ I(p̃)
for some p̃ ∈ L̃2. Further, let u0 be a solution of (3.1) for p = p0 and
assume there exist symmetric matrices A, B ∈ R

N×N such that

A ≤ d2G(u0(x)) ≤ B x ∈ [0, T ]

and (
2πNk

T

)2

< λk ≤ µk <

(
2π(Nk + 1)

T

)2

for some integers Nk ≥ 0, k = 1, . . . , N , where λ1 ≤ λ2 ≤ · · · ≤ λN and
µ1 ≤ µ2 ≤ · · · ≤ µN are the respective eigenvalues of A and B. Then
there exists an open set U ⊂ R

N such that p0 ∈ U ⊆ I(p̃).

Proof:
Let us consider the operator

F : H2
per × R

N → L2,

(u, p) 7→ u′′ +∇G(u)− p̃− p,

then clearly F (u0, p0) = 0.
On the other hand, F is Fréchet differentiable, and its differential

with respect to u at (u0, p0) is computed by

DuF (u0, p0)(ϕ) = lim
t→0

F (u0 + tϕ, p0)− F (u0, p0)

t

= lim
t→0

tϕ′′ +∇G(u0 + tϕ)−∇G(u0)
t

= ϕ′′ + lim
t→0

∇G(u0 + tϕ)−∇G(u0)
t

= ϕ′′ + d2G(u0)ϕ

TakingQ(x) = d2G(u0(x)) in Theorem 1.1.10, we deduce thatDuF (u0, p0) :
H2

per → L2 is a monomorphism; furthermore, it is easy to see that it is
a Frendholm’s operator of index 0, thus from the Fredholm’s Alterna-
tive (see e. g. [22] or Theorem 1.1.7 on Chapter 1) we conclude that
DuF (u0, p0) is an isomorphism.



40
CHAPTER 3. RANGE OF SEMILINEAR OPERATORS FOR

SYSTEMS AT RESONANCE

By the Implicit Function Theorem (see Theorem 1.1.12), there exists
an open neighborhood U of p0 and a unique function u : U → H2

per such
that

F (u(p), p) = 0, for all p ∈ U and u(p0) = u0.

Thus U ⊂ I(p̃) and the proof is complete. �

A simple computation shows that a similar result is obtained when
d2G(u0(x)) lies at the left of the first eigenvalue.

Theorem 3.3.2. Let us assume that G ∈ C2(RN ,R) and let p0 ∈ I(p̃)
for some p̃ ∈ L̃2. Further, let u0 be a solution of (3.1) for p = p0 and
assume

1. d2G(u0(x)) ≤ 0 for all x.

2. There exists A ⊂ [0, T ] with meas(A) > 0 such that d2G(u0(x)) < 0
for x ∈ A.

Then there exists an open set U ⊂ R
N such that p0 ∈ U ⊆ I(p̃).

Proof:
As in the proof of the previous theorem, it suffices to prove that Lϕ :=
ϕ′′ + d2G(u0)ϕ is a monomorphism.

Suppose that Lϕ = 0, then

0 = −
∫ T

0

Lϕ(x)·ϕ(x) dx =

∫ T

0

|ϕ′(x)|2 dx−
∫ T

0

d2G(u0(x))ϕ(x)·ϕ(x) dx,

Then
∫ T

0

|ϕ′(x)|2 dx =

∫ T

0

d2G(u0(x))ϕ(x) · ϕ(x) dx

≤
∫

A

d2G(u0(x))ϕ(x) · ϕ(x) dx,

and we conclude that ϕ ≡ 0. �

The following corollary is immediate.

Corollary 3.3.3. Let p̃ ∈ L̃2 and assume that

d2G(u) < 0 for all u ∈ R
N

or that
A ≤ d2G(u) ≤ B for all u ∈ R

N

with A and B as in Theorem 3.3.1. Then I(p̃) is open.
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3.4 Continuity of the function I
In this section we assume that ∇G is periodic, as in Chapter 2, and
give a characterization of the set I(p̃) which, in particular, will allow us

to prove the continuity of the function I : L̃ → K(RN), where K(RN)
denotes the set of compact subsets of RN equipped with the Hausdorff
metric. In fact, we prove a little more.

Theorem 3.4.1. Assume that G ∈ C2(RN ,R) satisfies:

1. ∇G is periodic, that is: for every j = 1, . . . , N there exists Tj > 0
such that ∇G(u+ Tjej) = ∇G(u).

2. There exists a discrete set S ⊂ R
N such that

(∇G(u)−∇G(v)) · (u− v) <

(
2π

T

)2

‖u− v‖2L2 for u, v ∈ R
N\S.
(3.8)

Then for every p̃ ∈ L̃2 there exists a periodic function Fp̃ ∈ C(RN ,RN)

such that I(p̃) = Im(Fp̃). Furthermore, if p̃n → p̃ weakly in L̃2, then
I(p̃n) → I(p̃) for the Hausdorff metric.

Remark 3.4.2. In particular, since it is the range of a continuous peri-
odic function, it follows that I(p̃) is compact and arcwise connected. As
mentioned in Chapter 2, integrating (3.1) we have

1

T

∫ T

0

∇G(u(x)) dx = p.

Thus, the geometric version of the Hahn-Banach Theorem (Theorem
1.1.11 in Chapter 1), implies that a necessary condition for the existence
of solutions is that p ∈ co(Im(∇G)). Hence I(p̃) ⊂ co(Im(∇G)).

For convenience, let us consider the decomposition H1
per = R

N ⊕H̃1
per,

where H̃1
per = H1

per ∩ L̃2, and denote the functional defined in Section 3.2
by Jp : H

1
per → R,

Jp(u) =

∫ T

0

|u′(x)|2
2

−G(u(x)) + p(x) · u(x)dx.

The proof of Theorem 3.4.1 shall be based on a series of lemmas. From
now on, we shall assume that G ∈ C2(RN ,R) satisfies hypotheses 1. and
2..
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Lemma 3.4.3. For each z ∈ R
N and p ∈ L2([0, T ],RN), there exists a

unique φ(z, p) ∈ H̃1
per such that

DJp(z + φ(z, p))(v) = 0 for all v ∈ H̃1
per. (3.9)

Moreover, if zn → z in R
N , then φ(zn, p) → φ(z, p) and if p̃n → p̃ weakly

in L̃2, then φ(z, p̃n) → φ(z, p̃).

Proof:

Let us first prove the uniqueness of φ(z, p). Suppose u1, u2 ∈ H̃1
per are

such that

DJp(z + u1)(v) = 0 = DJp(z + u2)(v) for all v ∈ H̃1
per.

Taking v = u1 − u2, using (3.2) it follows that

∫ T

0

|(u1−u2)′|2 dx =

∫ T

0

(∇G(z+u1)−∇G(z+u2))·(u1−u2) dx. (3.10)

This fact, (3.3) and (3.8) imply that u1 = u2.

Next we prove the existence of φ(z, p). Let Iz : H̃1
per → R be the

functional defined by Iz(v) = Jp(z+ v), then Iz is weakly lower semicon-
tinuous and

Iz(v) =
1

2
‖v′‖2L2 +

∫ T

0

p(x) · (z + v(x))−G(z + v(x)) dx

≥ 1

2
‖v′‖2L2 − ‖p̃‖L2‖v‖L2 + T (p · z − ‖G‖∞).

(3.11)

It follows that Iz is coercive , hence, by Theorem 1.1.16, it achieves an
absolute minimum, which satisfies (3.9).

Finally, let zn → z and suppose that φ(zn, p) 6→ φ(z, p). From (3.11),
the sequence (φ(zn, p))n is bounded in H̃1

per. Taking a subsequence, if
necessary, we may assume that it converges weakly to some w ∈ H1

per,
uniformly and ‖φ(zn, p) − φ(z, p)‖H1 ≥ ε > 0 for all n. Passing to the
limit in the equalities

DJp(zn + φ(zn, p))(v) = 0 for all v ∈ H̃1
per

we deduce that DJp(z+w)(v) = 0 for all v ∈ H̃1
per and hence w = φ(z, p).

Moreover, as

Jp(zn+φ(zn, p)) ≤ Jp(zn+φ(z, p)) and Jp(z+φ(z, p)) ≤ Jp(z+φ(zn, p))
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for all n, we deduce that

lim sup
n→∞

∫ T

0

|φ(zn, p)′|2 dx ≤
∫ T

0

|φ(z, p)′|2 dx ≤ lim inf
n→∞

∫ T

0

|φ(zn, p)′|2 dx

and hence ‖φ(zn, p)′‖L2 → ‖φ(z, p)′‖L2 . Thus,

‖φ(zn, p)′ − φ(z, p)′‖2L2 =

= ‖φ(zn, p)′‖2L2 + ‖φ(z, p)′‖2L2 − 2

∫ T

0

φ(zn, p)
′ · φ(z, p)′ dx→ 0

as n→ ∞, which contradicts the fact that φ(zn, p) 6→ φ(z, p).

In a similar way, we can see that, if p̃n → p̃ weakly in L̃2, then
φ(z, p̃n) → φ(z, p̃) when n→ ∞. �

Lemma 3.4.4. The function φ(·, p) depends only on p̃.

Proof:

Let c ∈ R
N , then

DJp+c(z + φ(z, p))(v) =

=

∫ T

0

φ(z, p)′ · v′ −∇G(z + φ(z, p)) · v + (p+ c) · v dx

=

∫ T

0

φ(z, p)′ · v′ −∇G(z + φ(z, p)) · v + p · v dx = 0

for all v ∈ H̃1
per. From uniqueness, we deduce that φ(·, p) = φ(·, p+ c). �

The following lemma will allow us to reduce the problem of finding a
critical point in H1

per to a finite-dimensional problem.

Lemma 3.4.5. The element z + v ∈ R
N ⊕ H̃1

per is a critical point of Jp
if and only if v = φ(z, p) and DJp(z+φ(z, p))(y+ v) = 0 for all y ∈ R

N .

Proof:
By Lemma 3.4.3, if z + v is a critical point of Jp, then v = φ(z, p).
DJp(z + φ(z, p))(y + v) = 0 for every y ∈ R

N and hence z is a critical
point of Jp(·+ φ(·, p)).

Conversely, suppose v = φ(z, p) and DJp(z + φ(z, p))(y + v) = 0 for
all y ∈ R

N . For u ∈ H1
per, let us write u = u + ũ with u ∈ R

N and

ũ ∈ H̃1
per. Then

DJp(z + v)(u) = DJp(z + φ(z, p))(u+ ũ) = 0,

so z + v is a critical point of Jp. �
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Lemma 3.4.6. The function φ(·, p) is periodic.

Proof:

Let z ∈ R
N . From the periodicity of ∇G we deduce that

DJp(z + Tjej + φ(z, p))(v) = DJp(z + φ(z, p))(v) = 0

for all v ∈ H̃1
per. By Lemma 3.4.3, φ(z + Tjej, p) = φ(z, p). �

The following proposition will provide a proof of Theorem 3.4.1.

Proposition 3.4.7. Let p̃ ∈ L̃2 and define the function Fp̃ : RN → R
N

by

Fp̃(z) =

∫ T

0

∇G(z + φ(z, p̃)(x)) dx.

Then Fp̃ is continuous and I(p̃) = Im(Fp̃). Moreover, if p̃n ∈ L̃2 con-

verges weakly to some p̃ ∈ L̃2, then I(p̃n) converges to I(p̃) for the Haus-
dorff topology.

Proof:
The continuity of Fp̃ is clear from the continuity of φ(·, p̃) and the embed-
ding H̃1

per →֒ C([0, T ],RN). Let us prove that I(p̃) = Im(Fp̃). According
to Lemma 3.4.4, problem (3.1) has a weak solution if and only if there
exists z ∈ R

N such that DJp(z+ φ(z, p̃))(y) = 0 for every y ∈ R
N . From

the definition of Jp, this is equivalent to

0 =

∫ T

0

−∇G(z + φ(z, p̃)) · y+ p · y dx = y ·
∫ T

0

−∇G(z + φ(z, p̃)) + p dx

for all y ∈ R
N . Thus, the problem has a solution if and only if

p =
1

T

∫ T

0

∇G(z + φ(z, p̃)) dx,

for some z ∈ R
N ; that is, p ∈ Im(Fp̃).

Finally, suppose that p̃n → p̃ weakly in L̃2 and denote Jn := Jp̃n ,
J := Jp̃, φn(·) := φ(·, p̃n), φ(·) := φ(·, p̃), Fn := Fp̃n and F := Fp̃.

We claim that Fn → F pointwise. Indeed, for fixed x ∈ R
N , from

Lemma 3.4.3 we know that, if n → ∞, then φn(z) → φ(z). As ∇G
is continuous, we deduce from the Lebesgue’s dominated convergence
theorem that Fn(z) → F (z).

To prove that I(p̃n) → I(p̃) as n→ ∞ for the Hausdorff topology,
we need to see that:

(i) supqn∈I(p̃n) dist(q
n, I(p̃)) → 0,
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(ii) supq∈I(p̃) dist(q, I(p̃n)) → 0.

For (i), denote Sn = supqn∈I(p̃n) dist(q
n, I(p̃)) and let pn ∈ I(p̃n) be

chosen in such a way that dist(pn, I(p̃)) ≥ Sn − 1
n
. We shall prove that

dist(pn, I(p̃)) → 0. By contradiction, suppose there exists a subsequence,
still denoted {pn}, such that

dist(pn, I(p̃)) ≥ ε > 0. (3.12)

Moreover, we know that I(p̃) ⊂ co(Im(∇G)); in particular, taking a
convergent subsequence if necessary we may suppose that pn → p for
some p ∈ R

N . For each n, let un ∈ H1
per be a solution of the problem for

pn. From the periodicity of ∇G, we may assume that the sequence {un}
is bounded in R

N . Thus, {un} is bounded in H1
per and

∫ T

0

u′n · v′ −∇G(un) · v + (p̃n + pn) · v dx = 0 (3.13)

for all v ∈ H1
per. Taking again a subsequence, we may assume that

un → u0 weakly in H1
per and hence

∫ T

0

u′0 · v′ −∇G(u0) · v + (p̃+ p) · v dx = 0

for all v ∈ H1
per. Then u0 is a weak solution of (3.1) with p = p̃ + p

and p ∈ I(p̃), which contradicts (3.12). Thus dist(pn, I(p̃)) → 0 and
consequently Sn → 0.

Next we prove (ii). Denote now Sn = supq∈I(p̃) dist(q, I(p̃n)) and take

qn ∈ I(p̃) such that dist(qn, I(p̃n)) ≥ Sn − 1
n
. As before, suppose there

exists a subsequence, still denoted {qn}, such that

dist(qn, I(p̃n)) ≥ ε > 0. (3.14)

Passing to a subsequence if necessary, there exist q ∈ I(p̃) = Im(F ) and
n1 ∈ N such that dist(qn, q) < ε

2
for all n ≥ n1. Fix z0 ∈ R

N such that
F (z0) = q and let pn = Fn(z0) ∈ I(p̃n). As Fn(z0) → F (z0), there exists
n2 ∈ N such that dist(pn, q) < ε

2
for all n ≥ n2. Take n0 = max{n1, n2}

and hence

dist(qn, I(p̃n)) ≤ dist(qn, pn) ≤ dist(qn, q) + dist(q, pn) < ε

for n ≥ n0. This contradicts (3.14), so we conclude that Sn → 0. �
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3.5 Characterization of I for convex G

The main result of this section reads as follows.

Theorem 3.5.1. Assume that G is strictly convex (recall Definition
1.1.17) and that

1. There exist α <
(
2π
T

)2
and β ∈ R such that

G(u) ≤ α

2
|u|2 + β for all u ∈ R

N . (3.15)

2. For every a ∈ R
N there exists r0 > 0 such that

∂G

∂w
(rw + x) ≥ ∂G

∂w
(a) (3.16)

for all r ≥ r0, w ∈ SN−1 and |x| ≤ C, where C = C(a, p̃) is the
constant defined below in (3.22).

Then I(p̃) = Im(∇G).

Remark 3.5.2. Consider the following example: T = 1, G = 2π2|u|2
and p̃ = sin(2πx)(1, ..., 1), it is readily seen that I(p̃) = ∅. In view of the
example, we can conclude that the hypothesis on α in condition (3.15) is
sharp.

Remark 3.5.3. Let us give an intuitive idea of hypothesis 2.. The
condition (3.16) is “almost” a consequence of the convexity hypothesis
in the following sense: if we assume G ∈ C2 and write wr = w + x−a

r
,

then
∂G

∂w
(rw + x)− ∂G

∂w
(a) = rwt

rd
2G(ξr)w,

for some ξr between a and rw + x. Since x moves within a compact set,
wr tends to w when r → +∞, then it is reasonable to assume that the
value of the difference is positive for large r.

For example, if we write

wt
rd

2G(ξr)w = (wr − w)td2G(ξr)w + wtd2G(ξr)w,

then it is easy to see that (3.16) holds if d2G is bounded and its smallest
eigenvalue is always greater than a positive constant.

Proof of Theorem 3.5.1: Firstly, we shall prove the inclusion Im(∇G) ⊆
I(p̃). For simplicity, from the rescaling v(x) = u( T

2π
x) we may assume
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that T = 2π. Let K : L̃2 → H2 ∩ L̃2 be the inverse of the operator
Lu := u′′, namely Kh = u, where u is the unique solution of the problem





u′′ = h
u(0) = u(2π), u′(0) = u′(2π)
u = 0.

Claim 1:
∫ 2π

0
Kh(x) · h(x) dx+

∫ 2π

0
|h(x)|2 dx ≥ 0.

Indeed, from (3.3) it is seen that

∫ 2π

0

|(Kh)′(x)|2 dx = −
∫ 2π

0

Kh(x) · h(x) dx ≤ ‖(Kh)′‖L2‖h‖L2 ,

which implies that ‖(Kh)′‖L2 ≤ ‖h‖L2 , and hence

−
∫ 2π

0

Kh(x) · h(x) dx =

∫ 2π

0

|(Kh)′(x)|2 dx ≤ ‖h‖2L2 .

For p ∈ Im(∇G), fix a ∈ R
N such that ∇G(a) = p, and define the

functions
F (x, u) := G(u)− p(x) · u;

and, for given ε > 0,

Fε(x, u) := G(u)− p(x) · u+ ε

2
|u|2

where p(x) = p̃(x) + p. Next, consider the Fenchel transform F ∗
ε of the

function Fε defined as

F ∗
ε (x, v) = max

w∈RN
(v · w − Fε(x, w)) . (3.17)

Observe that F ∗
ε is well defined, since Fε is convex; hence a unique

global maximum w is achieved and satisfies the following properties:

1. v = ∇Fε(x, w),

2. w = ∇F ∗
ε (x, v),

3. v · w − Fε(x, w) = F ∗
ε (x, v).

Properties 1 and 2 are known as Fenchel duality (see Section 1.1.6 in
Chapter 1 or [39]).

Define the functional Iε : L̃
2 → R given by

Iε(v) =

∫ 2π

0

1

2
Kv(x) · v(x) + F ∗

ε (x, v(x)) dx.



48
CHAPTER 3. RANGE OF SEMILINEAR OPERATORS FOR

SYSTEMS AT RESONANCE

From (3.17) and (3.15),

F ∗
ε (x, v) ≥ |v|2 − Fε(x, v) = |v|2 + p · v − ε

2
|v|2 −G(v)

≥ |v|2 + p · v − ε+ α

2
|v|2 − β

and using Claim 1, Cauchy-Schwarz Inequality and the fact that v ∈ L̃2

we deduce:

Iε(v) ≥ −1

2

∫ 2π

0

|v(x)|2 dx+
∫ 2π

0

|v(x)|2+p̃(x)·v(x)− ε+ α

2
|v(x)|2−β dx;

that is,

Iε(v) ≥
1− α− ε

2
‖v‖2L2 − ‖p̃‖L2‖v‖L2 − 2πβ. (3.18)

Thus Iε is coercive for ε < 1 − α and hence it achieves a minimum uε.
As K is self-adjoint, it is easy to verify that

∫ 2π

0

[Kuε(x) +∇F ∗
ε (x, uε(x))] · ϕ(x) dx = 0, for all ϕ ∈ L̃2.

Then K(uε) +∇F ∗
ε (s, uε) = A ∈ R

N . Let vε = ∇F ∗
ε (s, uε) = A−K(uε),

then by the Fenchel duality uε = ∇Fε(s, vε). In other words, uε =
∇G(vε)− p(x) + εvε.

On the other hand, v′′ε = (−K(uε))
′′ = −uε; hence, vε satisfies

{
v′′ε +∇G(vε) + εvε = p(x)
vε(0) = vε(2π), v′ε(0) = v′ε(2π).

(3.19)

Moreover, recall the Legendre transform of F (Section 1.1.6 in Chapter
1), defined by

F ∗(x, v) = sup
w∈RN

(v · w − F (x, w))

then it is obvious that F ∗
ε ≤ F ∗. As uε is the minimum, it follows that

Iε(uε) ≤ Iε(−p̃) =
∫ 2π

0

1

2
Kp̃(x) · p̃(x) + F ∗(x,−p̃(x)) dx. (3.20)

For fixed x, let Ψ(y) := −p̃ · y − F (x, y) = p · y −G(y), then

∇Ψ(y) = −p̃−∇F (x, y) = p−∇G(y).

Thus, a is a critical point of Ψ and, as Ψ is strictly concave, we conclude
that a is the absolute maximum. Then

−p̃ · a− F (x, a) = max
w∈RN

(−p̃(x) · w − F (x, w)) = F ∗(x,−p̃(x)).
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Hence, from (3.20) and the fact that p̃ ∈ L̃2 we obtain:

Iε(uε) ≤
∫ 2π

0

1

2
Kp̃(x) · p̃(x)− F (x, a) dx

= 2π (a · ∇G(a)−G(a))− 1

2
‖(Kp̃)′‖2L2 . (3.21)

Fixing c < (1 − α)/2, we conclude from (3.18) that if ε is small enough
then

c‖uε‖2L2 − ‖p̃‖L2‖uε‖L2 ≤ 2π (a · ∇G(a)−G(a) + β)− 1

2
‖(Kp̃)′‖2L2 .

As v′′ε = −uε, it follows that ṽε is bounded for the H2 norm; in particular,

‖ṽε‖∞ ≤ C (3.22)

for some constant C, depending only on p̃ and a.
Let us prove now that vε is bounded. By direct integration of (3.19)

we obtain:
1

2π

∫ 2π

0

∇G(vε(x))dx+ εvε = p. (3.23)

Writing vε = rw, where r = |vε| and |w| = 1, and multiplying (3.23) by
w, we obtain

εr +
1

2π

∫ 2π

0

∂G

∂w
(rw + ṽε(x)) dx = p · w = ∇G(a) · w =

∂G

∂w
(a).

As |ṽε(x)| ≤ C, for r ≥ r0 inequality (3.16) yields:

0 = εr +
1

2

∫ 2π

0

(
∂G

∂w
(rw + ṽε(x))−

∂G

∂w
(a)

)
dx ≥ εr,

a contradiction. So, |vε| ≤ r0 and vε is bounded for the H2 norm.
From the compact embeddingH2([0, 2π],RN) →֒ C1([0, 2π],RN), the-

re exists a sequence {vεn}n∈N that converges in C1([0, 2π],RN) to some
function v. From (3.19),

∫ 2π

0

(
v′′εn(x) +∇G(vεn(x)) + εnvεn(x)

)
· ϕ(x) dx =

∫ 2π

0

p(x) · ϕ(x) dx

for all ϕ ∈ L̃2. Integrating by parts and passing to the limit, we obtain:

−
∫ 2π

0

v′(x) · ϕ′(x) dx+

∫ 2π

0

∇G(v(x)) · ϕ(x) dx =

∫ 2π

0

p(x) · ϕ(x) dx.
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Then v is a solution of (3.1).
Finally, let us prove that I(p̃) ⊆ Im(∇G). As previously mentioned,

we know that I(p̃) ⊆ co(Im(∇G)), so it remains to see that Im(∇G) is
convex.

Claim 2: If F ∈ C1(RN ,R) is strictly convex, then

0 ∈ Im(∇F ) ⇐⇒ lim
|x|→+∞

F (x) = +∞.

The sufficiency is obvious. In order to prove the necessity, assume
that ∇F (x0) = 0 for some x0 ∈ R

N and for each w ∈ SN−1 define
Φw(t) := ∂F

∂w
(x0 + tw). From the convexity of F we deduce that Φw is

strictly increasing. Furthermore, the function Φ : SN−1 × [0,+∞) → R

given by Φ(w, t) := Φw(t) is continuous and Φ(w, 1) > 0 for all w ∈ SN−1.
Hence, there exists a constant c > 0, such that Φw(1) ≥ c > 0 for all
w ∈ SN−1. As Φw is strictly increasing, we conclude that Φw(t) > c for
all t > 1. Thus,

F (x0 +Rw)− F (x0 + w) = R∇F (x0 + ξw) · w = R
∂F

∂w
(x0 + ξw) ≥ cR.

We conclude that F (x0+Rw) ≥ F (x0+w)+ cR and the claim is proved.
Next, let us consider y1, y2 ∈ Im(∇G) and y = a1y1 + a2y2, with

a1 + a2 = 1 and a1, a2 ≥ 0. Define

F (x) = G(x)− y · x = a1 (G(x)− y1 · x) + a2(G(x)− y2 · x).

As G(x) − y1 · x and G(x) − y2 · x are strictly convex, it follows from
Claim 2 that both functions tend to +∞ as |x| → ∞, and hence

lim
|x|→+∞

F (x) = +∞. (3.24)

Using Claim 2 again, (3.24) implies that 0 ∈ Im(∇F ) = Im(∇G − y),
then y ∈ Im(∇G) and so completes the proof. �
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Resumen del Caṕıtulo 3

En este caṕıtulo estudiamos el siguiente problema: para una función
vectorial u : R → R

N consideramos el sistema
{
u′′ +∇G(u) = p(x), x ∈ (0, T )

u(0) = u(T ), u′(0) = u′(T ),

donde G : RN → R es una función de clase C1.
Estudiamos la imagen del operador semilineal

S : H2
per → L2([0, T ],RN),

dado por Su = u′′ +∇G(u), donde

H2
per = {u ∈ H2([0, T ],RN); u(0)− u(T ) = u′(0)− u′(T ) = 0}.

Escribimos p(x) = p+ p̃(x), donde p := 1
T

∫ T

0
p(x) dx, presentamos varios

resultados respecto a la estructura topológica del conjunto

I(p̃) = {p ∈ R
N ; p+ p̃ ∈ Im(S)}.

Este caṕıtulo está organizado de la siguiente manera. En la Sección
3.2 probamos un criterio básico que asegura que, bajo ciertas hipótesis,
p ∈ R

N pertenece al conjunto I(p̃) para una p̃ dada.
En la Sección 3.3 damos condiciones suficientes para que un punto

p0 ∈ I(p̃) sea interior. A grandes rasgos, probamos que si el Hessiano de
G no interactúa con el espectro del operador L(u) = −u′′, entonces I(p̃)
es un entorno de p0.

En la Sección 3.4, extendemos un resultado conocido de Castro [20]
para la ecuación del péndulo; más precisamente, probamos que si ∇G es
periódica, entonces I, considerado como una función del espacio L̃2 al
conjunto de subconjuntos compactos de R

N (equipado con la distancia
de Hausdorff) es continuo.

Finalmente, en la Sección 3.5, probamos que si G es estrictamente
convexa y satisface ciertas condiciones, entonces podemos caracterizar el
conjunto I(p̃). Más precisamente I(p̃) = Im(∇G) para toda p̃.
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Chapter 4

Radiation boundary

conditions, a variational

approach

4.1 Introduction

In this chapter we want to find appropriate extensions to the general
case of the results obtained in [10]. Namely, we consider the following
equation for a function u : [0, 1] → R

u′′(x) = g(x, u) + p(x), (4.1)

where p ∈ L2(0, 1) and g : [0, 1]× R → R is continuous and superlinear,
that is:

lim
|u|→+∞

g(x, u)

u
= +∞ (4.2)

uniformly in x ∈ [0, 1], without loss of generality we can assume that
g(x, 0) = 0 for all x ∈ [0, 1]; under the following radiation boundary
conditions

u′(0) = a0u(0), u′(1) = a1u(1), (4.3)

with a0, a1 > 0.
By ‘solution’ we mean a function u ∈ H2(0, 1) satisfying (4.1)-(4.3).

It is clear that if p ∈ C([0, 1]) then u is a classical C2 solution.
As in [10], we shall study existence, uniqueness and multiplicity of

solutions using variational methods and a linking theorem.

This chapter is organized as follows. In the following section we intro-
duce a variational formulation for problem (4.1)-(4.3) and we establish
an existence result. In Section 4.3 we prove that under certain hypoth-
esis, a global minimum of the associated functional J corresponds to a

53
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negative solution of the problem; moreover, we study the behavior of the
solutions when p(x) ≥ p0 ≫ 0 a.e. x ∈ [0, 1], we conclude that problem
(4.1)-(4.3) has a unique solution. Section 4.4 is devoted to prove unique-
ness and multiplicity results. For the multiplicity results, we prove that
the functional satisfies the hypotheses of a linking-type theorem, which
allows us to prove the existence of at least one extra local minimum and
a saddle-type critical point.

Some of the results from this chapter were published in [6].

4.2 Variational Setting

Let us define the functional J : H1(0, 1) → R by

J(u) =

∫ 1

0

(
1

2
(u′)2 +G(x, u) + p(x)u

)
dx+

a0
2
u(0)2 − a1

2
u(1)2,

where G(x, u) =
∫ u

0
g(x, s)ds. It is readily seen that J ∈ C1(H1(0, 1),R),

with

DJ(u)(v) =

∫ 1

0

(u′v′ + g(x, u)v + pv) dx+ a0u(0)v(0)− a1u(1)v(1).

Remark 4.2.1. u ∈ H1(0, 1) is a critical point of J if and only if u is a
solution of (4.1)-(4.3).

Indeed, let u be a critical point of J . By considering the equality
DJ(u)(v) = 0 for all v ∈ H1

0 (0, 1) it is deduced that u ∈ H2(0, 1) and
satisfies (4.1).

Let us see that u satisfies (4.3). Given an arbitrary v ∈ H1(0, 1),
integrating by parts equation DJ(u)(v) = 0, we get:

u′(1)v(1)− u′(0)v(0) = a1u(1)v(1)− a0u(0)v(0).

Take v ∈ H1(0, 1) such that 0 = v(0) 6= v(1), we conclude that u′(1) =
a1u(1); similarly, if 0 = v(1) 6= v(0), u′(0) = a0u(0).

Conversely, assume u ∈ H2 is a solution of (4.1)-(4.3). Let v ∈
H1(0, 1) arbitrary, multiply (4.1) by v, integration by parts yieldsDJ(u)(v) =
0. Hence, u is a critical point of J .

Remark 4.2.2. It is clear that if p ∈ C([0, 1]) then u is a classical C2

solution.
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4.2.1 Existence result

Theorem 4.2.3. Assume (4.2) holds, then problem (4.1)-(4.3) has at
least one solution.

Proof:
We claim that J achieves a global minimum inH1(0, 1), which is a critical
point of J and, hence, a solution of our problem (4.1)-(4.3). By Theorem
1.1.18 in Chapter 1, J is weakly lower semi-continuous. Therefore, to
prove our claim it is enough to see that J is coercive.

Since g is superlinear, given M > 0, there exists K ∈ R such that

G(x, u) > Mu2 +K, (4.4)

for all u ∈ R.

On the other hand, since 2ab ≤ a2 + b2 for all a, b ∈ R, given R > 0
we have

2uu′ = 2(
√
Ru)

(
1√
R
u′
)

≤ Ru2 +
1

R
u′2.

So, let us set ϕ(x) = x, by the previous inequality

u(1)2 = ϕu2
∣∣∣
1

0
=

∫ 1

0

(ϕu2)′dx =

∫ 1

0

u2dx+ 2

∫ 1

0

xuu′dx ≤

≤ (1 +R)‖u‖2L2 +
1

R
‖u′‖2L2 . (4.5)

Thus, by (4.5) and (4.4),

J(un) =
1

2
‖u′‖2 +

∫ 1

0

(G(x, u) + p(x)u) dx+
a0
2
u(0)2 − a1

2
u(1)2

≥ 1

2
‖u′‖2 +

(
M − 1

2

)
‖u‖2L2 +K − 1

2
‖p‖2L2 − a1(1 +R)

2
‖u‖2L2 − a1

2R
‖u′‖2L2

≥
(
1

2
− a1

2R

)
‖u′‖2L2 +

(
M − 1 + a1(1 +R)

2

)
‖u‖2L2 +K − 1

2
‖p‖2L2 .

Let K̃ = K − 1
2
‖p‖2L2 . Choose R > a1 and then M >

1 + a1(1 +R)

2
,

thus, there exists C > 0 such that J(u) ≥ C‖u‖2H1(0,1) + K̃. �

4.3 Behavior of the solutions

Our aim in this section is to prove some results regarding the behavior of
the solutions of problem (4.1)-(4.3), such as the sign, to know how many
negative solutions there are and how do they behave when p is large.
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Proposition 4.3.1. Assume

h1)
1
2u

∫ u

−u
g(x, s)ds+ p(x) ≥ 0 for all x ∈ [0, 1] and u ∈ R>0.

There exists u0 such that J(u0) = infu∈H1 J(u) and u0 ≤ 0. Moreover, if
there exists C > 0 such that p ≥ C > 0 a.e. in a neighborhood of some
x0, then u(x0) < 0.

Proof:
It suffices to observe, for all u, that by h1),

J(u)− J(− |u|) =

=

∫

{x∈[0,1]/u(x)>0}
(G(x, u(x))−G(x,−u(x)) + 2p(x)u(x))dx =

=

∫

{x∈[0,1]/u(x)>0}
2u(x)

(
1

2u(x)

∫ u(x)

−u(x)

g(x, s)ds+ p(x)

)
dx ≥ 0.

Moreover, let u0 ≤ 0 be a solution and suppose that there exists
x0 ∈ [0, 1] such that p(x) ≥ C > 0 a.e. x in a neighborhood of x0
and that u0(x0) = 0. If x0 ∈ [0, 1), u0(x0) = 0 and u′0(x0) = 0. Since
g(x, 0) = 0 and p ≥ C > 0 near x0, take x > x0 small enough such that∫ x

x0

u′′0(s)ds > 0. We have,

u′0(x)− u′0(x0) =

∫ x

x0

u′′0(s)ds > 0,

hence u′0(x) > 0 for x > x0, a contradiction.

If x0 = 1, similarly, we can take x large enough such that
∫ 1

x
u′′0(s)ds >

0. Hence u′0(x) < 0 for x near 1. This says that u0 decreases in a
neighborhood of 1, a contradiction with u0(1) = 0. �

Proposition 4.3.2. There exists p0 > 0 such that (4.1)-(4.3) has no
positive nor sign-changing solutions if p(x) ≥ p0 for a.e. x ∈ [0, 1].

Proof:
Due to the superlinearity of g, for eachM ≥ 0 we may define the quantity

NM := inf
x∈[0,1],u≥0

{g(x, u)−Mu} > −∞.

Then

g(x, u) ≥Mu+NM , (4.6)
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for u ≥ 0. For M > 0 to be determined, fix p0 > −NM and let u be a
solution of (4.1)-(4.3) for p ≥ p0 such that u(x) ≥ 0 for some x ∈ [0, 1].
In view of (4.6), the inequality u′′(x) ≥ g(x, u(x)) + p0 implies that

u′′(x) > Mu(x) (4.7)

when u(x) ≥ 0. We deduce that, if x0 ∈ [0, 1] is such that u(x0) and u
′(x0)

are nonnegative, then u(x) and u′(x) are strictly positive for x > x0.
Multiply (4.7) by u′ and integrate to obtain, for x > x0:

u′(x)2 > u′(x0)
2 +M(u(x)2 − u(x0)

2). (4.8)

If u(0) > 0, then u′(0) > 0 and

u(1)2 − u(0)2 =

∫ 1

0

2u(x)u′(x)dx > 2a0u(0)
2.

Thus,

u(1)2 − u(0)2 >
2a0

1 + 2a0
u(1)2 (4.9)

and fixing M = a21
1+2a0
2a0

we obtain, from (4.8) and (4.9):

a21u(1)
2 > M

2a0
1 + 2a0

u(1)2 = a21u(1)
2.

This contradiction proves that there are no positive solutions when p0 >
−NM .

On the other hand, if u(0) ≤ 0 then u vanishes at a (unique) x0 > 0,
with u′(x0) ≥ 0. Fix M = a21, then (4.8) yields

a21u(1)
2 = u′(1)2 > u′(x0)

2 + a21u(1)
2 ≥ a21u(1)

2,

a contradiction. �

As we shall see, all possible solutions tend uniformly to −∞ as p
tends uniformly to +∞. In order to emphasize the dependence on p, for
fixed p, any solution shall be denoted up, despite the fact that it might
not be unique.

Proposition 4.3.3. up → −∞ uniformly when p→ +∞ uniformly.

Proof:
From the previous proposition, we know that there exists p0 > 0 such
that if p(x) ≥ p0 for a.e. x ∈ [0, 1], there are no positive nor sign-
changing solutions of problem (4.1)-(4.3). Hence, if p is large enough, we
can assume that up is strictly negative.
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Let xp ∈ [0, 1] be the point where the absolute maximum of up is
achieved. Since u′p(1) = a1up(1) < 0, up decreases in a neighborhood of
1. Hence up cannot have a maximum at 1, thus xp < 1.

Suppose there exists M > 0 such that for all p0 there exists p such
that p(x) ≥ p0 for a.e. x and up(xp) > −M . Take p0 large enough, such
that,

g(x, u) + p0 > Ma0, for all u ≥ −(1 + a0)M. (4.10)

Since u′′p(xp) > 0, if xp ∈ (0, 1) it would be a minimum, a contradiction,
hence xp = 0.

Let us define the maximum δ ≤ 1 such that u′′p(x) ≥ 0 for all x ∈ [0, δ].
Thus

u′p(x)− u′p(0) =

∫ x

0

u′′p(s)ds ≥ 0 for x ≤ δ,

then u′p(x) ≥ u′p(0) = a0up(0) > −Ma0, for x ≤ δ. Hence, since δ ≤ 1,

up(δ)− up(0) =

∫ δ

0

u′p(s)ds > −δMa0 ≥ −Ma0.

Then up(δ) > −M(1 + a0) and by (4.10), u′′p(δ) > 0. Hence δ = 1 and,
in particular, up(x) > −M(1 + a0) and from (4.10) u′′p(x) > Ma0 holds
for all x. Then

u′p(1)− u′p(0) =

∫ 1

0

u′′p(s)ds > Ma0,

hence u′p(1) > 0, a contradiction. �

Proposition 4.3.4. Assume

h2)
g(x, u) + p(x)

u
is strictly non increasing in u < 0 and a.e. x ∈ [0, 1].

Then, there exists at most one negative solution of (4.1)-(4.3).

When g(x, ·) ∈ C1(R), hypothesis h2) reads

∂g

∂u
(x, u) >

g(x, u) + p(x)

u
, for u < 0 and a.e. x ∈ [0, 1].

This condition is well known in the literature (see e.g. [21]). When
assumed for all u ∈ R, it implies that if u0 6= 0 is a critical point of the
associated functional J , then u0 is transversal to the Nehari manifold
(introduced after the pioneering work [40]), namely

N := {u ∈ H1(0, 1) \ {0} : DJ(u) · u = 0}.
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Indeed, setting I(u) := DJ(u)·u it is readily seen that Tu0N = ker(DI(u0))
and DI(u0) · u0 > 0.

For the particular case, studied in [10], of problem

u′′(x) = Ku(x)3 + L(x)u(x) + A,

where K and A are given constants and L(x) := a20+(a21−a20)x, condition
h2) simply reads A

u3 < 2K and is trivially satisfied when u < 0.

Proof:
Let u1 and u2 be negative solutions and suppose for example that u1(0) <
u2(0). Note that, by hypothesis h2), if u1 < u2 over [0, x0), then

u′′1(x) =
g(x, u1(x)) + p(x)

u1(x)
u1(x) <

g(x, u2(x)) + p(x)

u2(x)
u1(x)

and hence
u′′1(x)u2(x) > u1(x)u

′′
2(x) x < x0.

We conclude that

u′1(x0)u2(x0) > u1(x0)u
′
2(x0), (4.11)

and a contradiction yields if x0 = 1. Otherwise, we may suppose that
u1(x0) = u2(x0) and u

′
1(x0) ≥ u′2(x0) which, again, contradicts (4.11). �

If we put together Propositions 4.3.2, 4.3.3 and 4.3.4, then we get the
following uniqueness result.

Corollary 4.3.5. Assume h2) holds. There exists p0 such that, if p(x) ≥
p0 for all x, then problem (4.1)-(4.3) has a unique solution.

Sharper bounds for p can be obtained when some specific conditions
are assumed on a0 and a1.

Remark 4.3.6. If a1 ≤ a0
a0+1

then there are no positive solutions if p ≥ p0.
Indeed, if u is a positive solution and z := ln u, then

z′′(x) + z′(x)2 =
(
g(x, ez(x)) + p(x)

)
e−z(x) > 0

z′(0) = a0, z′(1) = a1.

Observe that if z′(x0) = 0 then z′′(x0) > 0; thus, z′ cannot vanish and

1 ≤ 1

a1
− 1

a0
=

1

z′(1)
− 1

z′(0)
= − z′′(ξ)

z′(ξ)2
< 1.

Remember, from Chapter 1, (1.13) is a non resonance condition.
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For the particular case of problem

u′′(x) = Ku(x)3 + L(x)u(x) + A,

where K,A and L are given as before, a1 ≤ a0 yields uniqueness, thus,
it suffices to consider the case a1 > a0, for which it is directly seen

that there are no positive solutions if A ≥ a1

√
8
K
, and no sign changing

solutions if A ≥ 2(a21−a20)
3/2

3
√
3K

. Also, it is deduced that if u is a positive

solution, then u(0) < u(1) <
4a21
AK

and if u is a sign changing solution then

u(1) < a1

√
2
K
. Since there is a unique negative solution (see Theorem

4.3.4) and the graphs of different solutions do not cross each other (see
Lemma 5.4.6 below), the latter bounds for u(1) provide an alternative
proof of the fact, established in [10], that the the set of solutions is
bounded.

4.4 Uniqueness and multiplicity results

For the following results, suppose that g(x, ·) ∈ C1(R). Let us define Φ
as the unique solution of the linear problem

{
−Φ′′ + ∂g

∂u
(x, 0)Φ = 0

a0Φ(0) = Φ′(0) = a0.
(4.12)

Lemma 4.4.1. Assume

h3)
∂g
∂u
(x, 0) ≥ 0 for all x ∈ [0, 1].

The following conditions are equivalent.

1. Φ′(1) < a1Φ(1).

2. M(u) < a1
2
u(1)2 − a0

2
u(0)2, for some u ∈ H1(0, 1),

where M(u) :=
∫ 1

0

(
1
2
(u′)2 + 1

2
∂g
∂u
(x, 0)u2

)
dx.

Proof:
If Φ′(1) < a1Φ(1) is true, then, it is enough to take u = Φ. Since Φ
satisfies (4.12), integration by parts yields

2M(Φ) =

∫ 1

0

(Φ′2 + Φ′′Φ)dx = Φ′Φ
∣∣∣
1

0
−
∫ 1

0

Φ′′Φdx+

∫ 1

0

Φ′′Φdx =

= Φ′(1)Φ(1)− Φ′(0)Φ(0) < a1Φ(1)
2 − a0Φ(0)

2.
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Conversely, define J̃(u) =M(u)+ a0
2
u(0)2. It is clear, from h3), that J̃

is coercive and that J̃(u) > 0 if u 6= 0, take the minimum of J̃ restricted
to the set {u ∈ H1(0, 1) : u(1) = 1}, let us call u1 to that minimum. Then

DJ̃(u1)(v) =

∫ 1

0

(
u′1v

′ +
∂g

∂u
(x, 0)u1v

)
dx+ a0u1(0)v(0) = µv(1),

for all v ∈ H1(0, 1), where µ is a Lagrange multiplier. Take v ∈ C∞
0 ([0, 1]),

we deduce that u1 ∈ H2(0, 1) and u′′1 =
∂g
∂u
(x, 0)u1. Integrating by parts,

the previous equation reads

v(0)(a0u1(0)−u′1(0))+v(1)(u′(1)−µ)+
∫ 1

0

(
−u′′1 +

∂g

∂u
g(x, 0)u1

)
vdx = 0,

for all v ∈ H1(0, 1). Take v ∈ H1(0, 1) such that 0 = v(0) 6= v(1), we
conclude that u′1(1) = µ. Take 0 = v(1) 6= v(0), then u′1(0) = a0u1(0).

Finally, we conclude that u1 satisfies

{
−u′′1 + ∂g

∂u
(x, 0)u1 = 0

u′1(0) = a0u1(0), u′1(1) = µ.
(4.13)

Since u1(1) = 1 and satisfies (4.13), integrating by parts yields

2J̃(u1) =

∫ 1

0

(
u′21 +

∂g

∂u
(x, 0)u21

)
dx+ a0u1(0)

2 =

= u′1u1

∣∣∣
1

0
+

∫ 1

0

(
−u′′1 +

∂g

∂u
(x, 0)u1

)
u1dx+ a0u1(0)

2 = µ.

Note that, without loss of generality, we may assume that u(1) = 1
in 2., then µ = 2J̃(u1) < a1. Finally, Φ′(1) < a1Φ(1) follows from the

fact that Φ(x) = u1(x)
u1(0)

. �

Theorem 4.4.2 (Uniqueness). Assume h3) holds and

h4) Φ′(1) ≥ a1Φ(1),

h5)
∂g
∂u
(x, u) ≥ ∂g

∂u
(x, 0) for all u 6= 0, x ∈ [0, 1] and the inequality is

strict for x ∈ I, with I ⊂ [0, 1] of positive measure.

Then problem (4.1)-(4.3) has a unique solution.

Proof:
Suppose we have two solutions, u and ũ, for problem (4.1)-(4.3). Consider
ϕ = u− ũ, then ϕ satisfies

ϕ′′(x) = g(x, u)− g(x, ũ).
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Since g is C1, due to the Mean Value Theorem, we have

ϕ′′(x) =
∂g

∂u
(x, ξ)ϕ, (4.14)

for some ξ between u and ũ. Moreover, we can choose ξ to be measurable.
Multiplying (4.14) by ϕ, the hypothesis h5) and integrating by parts,
yields

∫ 1

0

∂g

∂u
(x, 0)ϕ2dx <

∫ 1

0

∂g

∂u
(x, ξ)ϕ2dx

=

∫ 1

0

ϕ′′ϕdx = ϕ′ϕ
∣∣∣
1

0
−
∫ 1

0

(ϕ′)2dx

= a1ϕ(1)
2 − a0ϕ(0)

2 −
∫ 1

0

(ϕ′)2dx.

Hence, we have

2M(ϕ) < a1ϕ(1)
2 − a0ϕ(0)

2,

a contradiction with Lemma 4.4.1, which concludes the proof. �

On the contrary, when h4) does not hold, Lemma 4.4.1 combined with
a linking theorem gives us the following multiplicity result.

Theorem 4.4.3 (Multiplicity, two different solutions). Assume h3) holds
and

h6) Φ′(1) < a1Φ(1),

h7) G(x, u) ≥ 0 for all u ∈ R and a.e. x ∈ [0, 1].

Then, there exists a constant p1 > 0 such that, if ‖p‖L2 < p1, problem
(4.1)-(4.3) has at least two classical solutions.

Proof:
For the main part of the proof we shall make use of a linking theorem
by Rabinowitz (see [44] or Theorem 1.1.21). Let X = H1(0, 1), X1 =
span{Φ}, where Φ is the solution of (4.12), and

X2 =
{
u ∈ H1(0, 1) : u(1) = 0

}
.

First, let us prove that X = X1 ⊕X2. Due to h3), Φ is strictly non
decreasing, then Φ(1) > 0 and, thus, X1 ∩ X2 = {0}. Moreover, all

u ∈ H1(0, 1) can be written u = aΦ + u− aΦ, with a = u(1)
Φ(1)

.
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Let us see that (1.15) holds. First, let us recall that the statement
Φ′(1) < a1Φ(1) is equivalent to the condition

2M(u) < a1u(1)
2 − a0u(0)

2, for some u ∈ H1(0, 1),

where M(u) =
∫ 1

0

(
1
2
(u′)2 + 1

2
∂g
∂u
(x, 0)u2

)
dx.

On the one hand, due to Poincaré Inequality, h7) and rearranging
terms, we obtain

inf
u∈X2

J(u) = inf
u∈X2

(∫ 1

0

(
1

2
(u′)2 +G(x, u) + pu

)
dx+

a0
2
u(0)2

)

≥ inf
u∈X2

∫ 1

0

(
1

2
(u′)2 + p(u− u(0)) +

a0
2
u(0)2 + pu(0)

)
dx

≥ inf
u∈X2

{
1

2
‖u′‖2L2 − 1

π
‖p‖L2‖u′‖L2 +

a0
2
u(0)2 − ‖p‖L2u(0)

}

= inf
u∈X2

{
1

2
(‖u′‖L2 − ‖p‖L2)

2 − ‖p‖2L2

2
√
π

+
1

2

(√
a0u(0)−

‖p‖L2√
a0

)2

− ‖p‖2L2

2a0

}

≥ −‖p‖2L2

(
1

2
√
π
+

1

2a0

)
.

On the other hand, for u = λΦ we obtain

J(λΦ) =

∫ 1

0

(
λ2

2
(Φ′)2 +G(x, λΦ) + λpΦ

)
dx+

a0
2
λ2Φ(0)2 − a1

2
λ2Φ(1)2 =

= λ2
(
M(Φ) +

a0
2
Φ(0)2 − a1

2
Φ(1)2

)
+

∫ 1

0

(R(x, λΦ) + λpΦ)dx.

where R is the remainder in the second order Taylor expansion of G(x, ·).
Fix δ > 0 such that

M(Φ) +
a0
2
Φ(0)2 − a1

2
Φ(1)2 + δ‖Φ‖2L2 < 0,

and (using e.g. dominated convergence) choose λ > 0 small enough such

that
∫ 1

0
R(x, λΦ) dx ≤ δλ2‖Φ‖2L2 .

Then

J(λΦ) < λ2
(
M(Φ) +

a0
2
Φ(0)2 − a1

2
Φ(1)2 + δ‖Φ‖2L2

)
+ λ‖p‖L2‖Φ‖L2 .

Thus, if ‖p‖L2 is small enough, then (1.15) holds.

To conclude the proof, let us verify that J satisfies the (PS) condition.
Let (un)n∈N ⊂ H1(0, 1) such that |J(un)| ≤ c and DJ(un) → 0, we want
to see that it has a convergent subsequence.



64
CHAPTER 4. RADIATION BOUNDARY CONDITIONS, A

VARIATIONAL APPROACH

Since J is coercive, as proven in Theorem 4.2.3, |J(un)| ≤ c implies
that there exists K > 0 such that ‖un‖H1(0,1) ≤ K for all n ∈ N, then,
taking a subsequence if needed, we may assume that there exists u ∈
H1(0, 1) such that un → u weakly in H1(0, 1) and uniformly. Since DJ
is w.l.s.c. and DJ(un)(u) → 0, then

0 ≥ DJ(u)(u) =

∫ 1

0

(
(u′)2 + g(x, u)u+ pu

)
dx+ a0u(0)

2 − a1u(1)
2.

Due to DJ(un)(un) → 0, it is seen that ‖u′n‖2L2 → ‖u′‖2L2 . Since

‖u′n − u′‖2L2 = ‖u′n‖2L2 + ‖u′‖2L2 − 2

∫ 1

0

u′nu
′dx→ 0,

we conclude that un → u for the H1 norm.

We know from Theorem 4.2.3 that J achieves a global minimum at
some u0 ∈ H1(0, 1) and, hence, the linking theorem used above provides
a second solution u1 such that J(u1) ≥ ρ > J(u0), which implies that
u0 6= u1. �

Combining Theorem 4.4.3 and Proposition 4.3.1 we are able to obtain
a third different solution.

Theorem 4.4.4 (Multiplicity, three different solutions). Assume that
h1), h3) to h7) hold and that there exists C > 0 such that p(x) ≥ C
for a.e. x in a neighborhood of 1. Then there exists p1 > 0 such that, if
‖p‖L2 < p1, then problem (4.1)-(4.3) has at least three classical solutions.

Proof:
From the properties of the functional, we deduce that the infimum

min
{u∈H1(0,1):u(1)≥0}

J(u)

is achieved at some u2.

Let u0 ≤ 0 be a global minimizer of J . Since p(x) ≥ C for a.e. x
in a neighborhood of 1, we know from Proposition 4.3.1 that u0(1) < 0,
hence u2 6= u0.

Since λΦ(1) > 0, where λ is chosen in the proof of Theorem 4.4.3, it
follows that J(u2) < ρ. Since J(u1) ≥ ρ, u2 6= u1.

Due to (1.15), u2 /∈ X2, and hence u2(1) > 0. This means that
u2 /∈ ∂{u ∈ H1(0, 1) : u(1) ≥ 0}. We conclude that u2 is a critical point
of J , hence a solution of (4.1)-(4.3), and u2 6= u0, u1. �
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Resumen del Caṕıtulo 4

En este caṕıtulo buscamos extensiones al caso general de los resultados
obtenidos en [10]. Es decir, consideramos la siguiente ecuación para una
función u : [0, 1] → R

u′′(x) = g(x, u) + p(x),

donde p ∈ L2(0, 1) y g : [0, 1]×R → R es continua y superlineal, es decir:

lim
|u|→+∞

g(x, u)

u
= +∞

uniformemente para x ∈ [0, 1], sin pérdida de generalidad, podemos
asumir que g(x, 0) = 0 para toda x ∈ [0, 1]; bajo las siguiente condi-
ciones de contorno de tipo radiación

u′(0) = a0u(0), u′(1) = a1u(1),

con a0, a1 > 0.
Como en [10], estudiamos existencia, unicidad y multiplicidad de

solución utilizando métodos variacionales y un teorema linking.

Este caṕıtulo está organizado de la siguiente manera. En la Sección
4.2 introducimos la formulación variacional del problema, definimos el
funcional J : H1(0, 1) → R dado por

J(u) =

∫ 1

0

(
1

2
(u′)2 +G(x, u) + p(x)u

)
dx+

a0
2
u(0)2 − a1

2
u(1)2,

donde G(x, u) =
∫ u

0
g(x, s)ds. Además, probamos que el problema tiene

solución, ya que J es coerciva.
En la Sección 4.3 probamos que bajo ciertas hipótesis, que un mı́nimo

global de la funcional J corresponde a una solución negativa del pro-
blema; más aún, estudiamos el comportamiento de las soluciones cuando
p es grande, concluimos que el problema tiene una única solución.

La Sección 4.4 está dedicada a probar resultados de multiplicidad y
unicidad. Para la multiplicidad, probamos que la funcional J satisface
las hipótesis de un teorema de tipo linking de Rabinowitz, lo que permite
probar la existencia de al menos otro mı́nimo local y un punto cŕıtico de
tipo silla.
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Chapter 5

Radiation boundary

conditions revisited, a

topological approach

5.1 Introduction

In the previous chapter, we studied problem (4.1)-(4.3) via variational
methods. The goal of the present chapter is two-fold. On the one hand,
we are interested in studying the problem with a different approach,
namely, topological methods. On the other hand, we intend to get a
better understanding of the results in [10]; in particular, we shall provide
alternative proofs of some facts for

{
u′′(x) = Ku(x)3 + L(x)u(x) + A
u′(0) = a0u(0), u

′(1) = a1u(1),
(5.1)

where K and A are some given positive constants and L(x) := a20+(a21−
a20)x, which shows a deep connection between the variational structure of
the problem and the topological methods here employed. For simplicity,
we shall assume that g is of class C1 with respect to u.

We consider the following equation for a function u : [0, 1] → R

u′′(x) = g(x, u) + p(x), (5.2)

where p ∈ L2(0, 1) and g : [0, 1]× R → R is continuous and superlinear,
namely:

lim
|u|→+∞

g(x, u)

u
= +∞

uniformly for x ∈ [0, 1]; under radiation boundary conditions:

u′(0) = a0u(0), u′(1) = a1u(1), (5.3)

67
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where a0, a1 > 0.

By ‘solution’ we mean a function u ∈ H2(0, 1) satisfying (5.2)-(5.3).
It is clear that if p ∈ C([0, 1]) then u is a classical C2 solution.

This chapter is organized as follows. In the following section, we
shall establish a general existence result using the well known method
of upper and lower solutions. In Section 5.3, we prove an uniqueness
result and introduce a remark regarding Corollary 4.3.5. Section 5.4 is
devoted to prove several uniqueness and multiplicity results by combining
different techniques such as comparison, the Implicit Function Theorem
and the shooting method. Finally, in Section 5.5, we end the chapter with
some comments and open questions about the behavior of the shooting
operator.

5.2 Upper and lower solutions, existence

result

Recall from Section 1.2.3 in Chapter 1, that α, β ∈ H2(0, 1) are respec-
tively a lower and an upper solution of (4.1) if

α′′(x) ≥ g(x, α(x)) + p(x), β′′(x) ≤ g(x, β(x)) + p(x)

for a.e. x ∈ [0, 1]. If, moreover, α ≤ β and

α′(0)−a0α(0) ≥ 0 ≥ β′(0)−a0β(0), α′(1)−a1α(1) ≤ 0 ≤ β′(1)−a1β(1),

then we shall say that (α, β) is an ordered pair of a lower and an upper
solution of (5.2)-(5.3).

Theorem 5.2.1 (Existence). Problem (5.2)-(5.3) has at least one solu-
tion.

Proof:
Let Φ be a second primitive of p and set

α(x) := −eax2+bx+c + Φ(x), β(x) := emx2+c + Φ(x),

with 2a + b > a1, b < a0, m > a1
2

and c ≫ 0. It is readily verified
that (α, β) is an ordered pair of a lower and an upper solution of (5.2)-
(5.3). Hence by Theorem 1.2.8, there exists u ∈ H2([0, 1]) such that
α(x) ≤ u(x) ≤ β(x) for x ∈ [0, 1], and so completes the proof. �
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5.3 Uniqueness

By using a comparison argument we shall prove, under appropriate as-
sumptions, that the solution is unique.

Theorem 5.3.1 (Uniqueness). Assume that

H1) a1 < a0,

H2)
∂g
∂u
(x, u) ≥ a21 for all x ∈ [0, 1] and u ∈ R.

Then problem (5.2)-(5.3) has a unique solution. Moreover, the result still
holds if a1 = a0 and H2) is strict for all u ∈ R and x ∈ I, where I ⊂ [0, 1]
has positive measure.

It is worth noticing that H2) may be replaced by the condition (still
valid for non-differentiable g) that the function ξx(u) := g(x, u)− a21u is
nondecreasing for all x. If, furthermore, ξx is strictly increasing for all
x belonging to a positive measure set, then uniqueness also holds when
a0 = a1. This is clearly satisfied when g(x, u) = Ku3 + L(x)u with L
as before; hence, the referred uniqueness result obtained in [10] for (5.1)
(see Chapter 2), can be regarded as a consequence of Theorem 5.3.1.

Proof:
Let u1 and u2 be solutions of (5.2)-(5.3) and define w := u1 − u2. Then
w is a solution of the following linear problem

{
z′′(x) = ∂g

∂u
(x, ξ(x))z(x)

z′(0) = a0z(0), z′(1) = a1z(1),
(5.4)

for some measurable ξ(x) between u1(x) and u2(x).
If w(0) = 0, then w′(0) = 0 and consequently w ≡ 0. Otherwise, we

may assume that w(0) > 0 and hence w > 0 in [0, 1]. Let v(x) = ea1x,
then

v′′(x)w(x) = a21v(x)w(x) ≤
∂g

∂u
(x, ξ(x))w(x)v(x) = w′′(x)v(x).

Integrating by parts, we deduce that

(a0 − a1)w(0) ≤ 0,

which contradicts H1). If, instead, we assume that a0 = a1 and H2)
is strict over some I ⊂ [0, 1] of positive measure, then the inequality
v′′w ≤ vw′′ is strict over I and hence

v′(1)w(1)− v′(0)w(0) < v(1)w′(1)− v(0)w′(0),

a contradiction. �
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5.4 Multiplicity

As a complement of the previous result, multiplicity of solutions can be
proven when a1 ≥ a0 and p satisfies some smallness condition. The latter
condition may be dropped if a1 ≫ 0.

Theorem 5.4.1 (Positive and negative solutions for ‖p‖∞ small). As-
sume

H3) a1 ≥ a0,

H4)
∂g
∂u
(x, 0) < a21 for all x ∈ [0, 1].

Then there exists a continuous function q : [0, 1] → (0,+∞) such that
(5.2)-(5.3) has at least one positive solution uP , provided that p(x) ≤
q(x) for a.e. x ∈ [0, 1], and one negative solution uN , provided that
p(x) ≥ −q(x) for a.e. x ∈ [0, 1].

It is worthy to notice that, for problem (5.1), condition H4) does not
hold when x = 1.

Proof:

From H4) we can fix ε > 0 such that ∂g
∂u
(x, u) < a21 for 0 < u < ε. Next,

fix c > a1 − ln ε and define

α(x) := ea1x−c.

From the Mean Value Theorem,

g(x, α(x)) =
∂g

∂u
(x, ξ(x))α(x)

where 0 < ξ(x) < α(x) < ε, then

α′′(x) = a21α(x) > g(x, α(x)).

Let q : [0, 1] → R be given by q(x) := a21α(x)− g(x, α(x)), then from H4)
we deduce that α is a lower solution if p(x) ≤ q(x). Once p is fixed, it
suffices to consider an upper solution β ≫ 0 as in the proof of Theorem
5.2.1. By Theorem 1.2.8, there exists a positive solution uP for problem
(5.2)-(5.3) with α ≤ uP ≤ β.

Next, define the change of variables v(x) := −u(x) so the problem
becomes {

v′′(x) = −g(x,−v(x))− p(x)
v′(0) = a0v(0), v′(1) = a1v(1).

(5.5)
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The function f(x, v) := −g(x,−v) is superlinear, with f(x, 0) = 0 and
∂f
∂v
(x, 0) = ∂g

∂u
(x, 0) for all x ∈ [0, 1]. Hence, if p(x) ≥ −q(x) then problem

(5.5) has a positive solution vP , and uN = −vP is a negative solution of
(5.2)-(5.3).

�

Remark 5.4.2. As mentioned before, condition H4) is not satisfied in
the case of equation (5.1). However, the existence of uP is directly verified

taking the lower solution α(x) = e
2L(x)3/2

3(a21−a20)
−b

for A small and b≫ 0.

Remark 5.4.3. Note that hypotheses H3) and H4) can be compared
with h6) of Theorem 4.4.3 in Chapter 4 in the following sense.

Remember that Φ is the solution of the linear problem

{
−Φ′′ + ∂g

∂u
(x, 0)Φ = 0

a0Φ(0) = Φ′(0) = a0,

hence, due to H4), direct comparison with v(x) = ea1x yields

Φ′′v < v′′Φ.

Integrating by parts and due to H3) we get

(Φ′(1)− a1Φ(1))v(1) < a0 − a1 ≤ 0,

thus Φ′(1) < a1Φ(1), which is hypothesis h6)!

5.4.1 Implicit Function Theorem, multiplicity for

‖p‖L2 small

The next result proves that the smallness condition on p can be improved
by the use of Implicit Function Theorem.

Theorem 5.4.4 (Multiplicity of solutions for ‖p‖L2 small). Assume that
H3) and H4) hold and let uP , uN be the solutions of (5.2)-(5.3) given by
Theorem 5.4.1 for p = 0. Further, assume:

H5)
∂g
∂u
(x, u) ≥ 0

for all the pairs (x, u) with x ∈ [0, 1] and u = uP (x) or u = uN(x).

H6) Condition ∂g
∂u

> g(x,u)
u

holds for all the pairs (x, u) with x ∈ [0, 1]
and u = uP (x) or u = uN(x).

H8)
∂g
∂u
(x, 0) ≥ 0 for all x ∈ [0, 1].
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Then there exists p1 > 0 such that problem (5.2)-(5.3) has at least
three solutions, provided that ‖p‖L2 ≤ p1.

Proof:
Consider the space

X = {u ∈ H2(0, 1) : u′(0) = a0u(0), u
′(1) = a1u(1)}

equipped with the standard H2-norm, and F : X × L2(0, 1) → L2(0, 1)
given by

F (u, p) = u′′ − g(·, u)− p.

In this setting, solving problem (5.2)-(5.3) is equivalent to find solutions
to the equation F (u, p) = 0. It is readily verified that F is of class C1,
with

DuF (u, 0)(ϕ) = ϕ′′ − ∂g

∂u
(·, u)ϕ.

In order to prove that DuF (uP , 0) is a monomorphism, suppose that
ϕ ∈ X \ {0} satisfies ϕ′′ = ∂g

∂u
(·, uP )ϕ. Since ∂g

∂u
(·, uP ) ≥ 0, we may

assume that ϕ(x) > 0 for all x and, from H6), we obtain:

u′′P (x)ϕ(x) = g(x, uP (x))ϕ(x) <
∂g

∂u
(x, uP (x))ϕ(x)uP (x) = ϕ′′(x)uP (x).

Integration by parts yields

u′Pϕ
∣∣∣
1

0
< uPϕ

′
∣∣∣
1

0
,

a contradiction since uP , ϕ ∈ X. Thus, DuF (uP , 0) is a monomorphism
and, by Theorem 1.1.8, we conclude that it is an isomorphism. In a
similar way, we deduce that DuF (uN , 0) is also an isomorphism.

Finally, let us prove that DuF (0, 0) is a monomorphism and con-
sequently and isomorphism. Suppose that ϕ ∈ X \ {0} is such that
DuF (0, 0)(ϕ) = 0. We may assume, without loss of generality, that
ϕ(0) > 0 and hence, by H8), ϕ > 0. Let v(x) = ea1x, then from H4) we
deduce:

v′′(x)ϕ(x) = a21v(x)ϕ(x) >
∂g

∂u
(x, 0)ϕ(x)v(x) = ϕ′′(x)v(x).

Upon integration, we obtain:

a1v(1)ϕ(1)− a1v(0)ϕ(0) > a1ϕ(1)v(1)− a0ϕ(0)v(0).

This, in turn, implies (a0 − a1)ϕ(0)v(0) > 0, which contradicts H3).
Since F (0, 0) = F (uP , 0) = F (uN , 0) = 0, the Implicit Function The-

orem guarantees that, taking smaller neighborhoods of 0, uP and uN if
needed, equation F (u, p) = 0 has at least three different solutions when
‖p‖L2 is small. �
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Remark 5.4.5. In the previous proof, it is observed that assumptions
H5) andH6) might be replaced by any other guaranteeing thatDuF (uP , 0)
and DuF (uN , 0) are isomorphisms. For example, we may have assumed
that H2) holds (strictly if a0 = a1) for all the pairs (x, uP (x)) and
(x, uN(x)). However, in view of H4) this would be an artificial condi-
tion since it could not be assumed for all (x, u).

5.4.2 Shooting method, multiplicity of solutions for

a1 large

In this section, we shall define a shooting operator that will allow us
to obtain different conclusions concerning existence and uniqueness or
multiplicity of the solutions of (5.2)-(5.3). With this aim, let us firstly
state the following lemma, which ensures that, under a monotonicity
assumption, the graphs of two different solutions of equation (4.1), with
initial condition u′(0) = a0u(0), do not intersect. More precisely,

Lemma 5.4.6. Let u1 and u2 be solutions of (4.1) satisfying the first
boundary condition of (4.3), defined over an interval [0, b] such that
u1(0) > u2(0) and u′1(0) > u′2(0) and assume that H5) holds for all
x ∈ [0, b] and all u between u1(x) and u2(x). Then u1 > u2 on [0, b].

Proof:
Set u(x) = u1(x)− u2(x), then u

′′(x) = θ(x)u(x) on [0, b), where θ(x) :=
∂g
∂u
(x, ξ(x)) ≥ 0. Thus, the result follows since u(0), u′(0) > 0. �

Next, we define a shooting operator as follows. For each fixed λ ∈ R,
let uλ be the unique solution of problem

{
u′′(x) = g(x, u(x)) + p(x)
u(0) = λ, u′(0) = a0λ

(5.6)

and define the function T : D → R, by

T (λ) =
u′λ(1)

uλ(1)
,

where D ⊂ R is the set of values of λ such that the corresponding uλ
solution of (5.6) is defined on [0, 1] and uλ(1) 6= 0. Thus, solutions of
(5.2)-(5.3) that do not vanish on x = 1 can be characterized as the
functions uλ, where λ ∈ D is such that T (λ) = a1.

Let us fix a constant R ≫ 0. By comparision arguments, we can prove
that if λ is large enough, the solution uλ is positive and non decreasing
and it reaches the value R at some x0 < 1. Similarly, for λ ≪ 0, the
solution uλ reaches the value −R.
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Therefore, the function

φR(λ) =





−R if there exists x0 < 1/uλ(x0) ≤ −R
uλ(1) if −R < uλ < R in [0, 1)
R if there existsx0 < 1/uλ(x0) ≥ R

is well defined and continuous. Then, for each r ∈ (−R,R), there exists
λ such that uλ(1) = r. By Lemma 5.4.6, this value of λ is unique when
H5) is assumed for all u ∈ R. In particular, there exists a unique λ0 such
that uλ0 = 0. Thus, we conclude that

D = (λ∗, λ0) ∪ (λ0, λ
∗)

for some λ∗ ≥ −∞ and λ∗ ≤ +∞.
Throughout the rest of the section we shall also assume a condition

that guarantees that λ0 < 0, namely:

H7) g(x, u) + p(x) ≥ C > 0 for a.e. x ∈ [0, 1] and u ≥ 0.

Furthermore, H7) implies that if λ > 0 then uλ is positive and if
λ0 ≤ λ ≤ 0 then uλ vanishes exactly once in [0, 1]. In particular, uλ0 < 0
on [0, 1) and, since u′′λ0

(x) > 0 when x is close to 1, we conclude that
u′λ0

(1) > 0. In consequence:

lim
λ→λ−

0

T (λ) = −∞, lim
λ→λ+

0

T (λ) = +∞.

We claim that also

lim
λ→(λ∗)−

T (λ) = +∞, lim
λ→(λ∗)+

T (λ) = +∞.

Indeed, observe firstly that, because solutions of (5.6) do not cross each
other, limλ→(λ∗)− uλ(1) = +∞. On the other hand, multiplying (4.1) by
u′ it is easy to see, given M > 0 that

|u′λ(1)| ≥
√
MO(|uλ(1)|)

for |λ| sufficiently large. This implies that

|T (λ)| =
∣∣∣∣
u′λ(1)

uλ(1)

∣∣∣∣ >
√
M

and the claim follows.

The previous considerations show the existence of λmin ∈ (λ0, λ
∗)

such that T (λmin) ≤ T (λ) for all λ ∈ (λ0, λ
∗). The value amin := T (λmin)

depends on p. If p ≥ p0 and amin ≤ a1, then we would have a positive
solution, which contradicts Theorem 4.3.2, then amin > a1.

In this setting, we can easily prove the following result.
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Theorem 5.4.7 (Multiplicity of solutions for a1 large). Assume that
H5) is satisfied for all u ∈ R, H7) holds and that p ∈ L∞(0, 1). Then
(5.2)-(5.3) has at least three different solutions, provided that a1 is large
enough. Moreover, at least one of the solutions is negative.

Proof:
By continuity, there exists λ < λ0 such that T (λ) = a1; the corresponding
uλ is a negative solution of (5.2)-(5.3). Moreover, if a1 is large enough,
then amin < a1 and the equation T (λ) = a1 has at least two solutions in
(λ0, λ

∗).
�

Remark 5.4.8. For the particular case of problem (5.1), the computa-
tions mentioned in Remark 4.3.6 provide a lower bound for amin. Also,
it is readily seen that amin > min{a0, a1}. This provides an alternative
proof of the fact that the problem has no positive nor sign-changing so-
lutions when a1 ≤ a0. Indeed, fix λ ∈ (λ0, λ

∗) and let v(x) := erx, where
r := min{a0, a1}. Setting x0 := inf{x ∈ [0, 1] : uλ(y) > 0 in [x, 1]} we
deduce, for x ∈ (x0, 1), that

v(x)u′′λ(x) > v(x)L(x)uλ(x) > v(x)r2uλ(x) = v′′(x)uλ(x).

Thus,
v(1)[u′λ(1)− ruλ(1)] > v(x0)[u

′
λ(x0)− ruλ(x0)] ≥ 0

and we conclude that T (λ) =
u′

λ(1)

uλ(1)
> r.

A similar result holds for the general case, namely: if there exists
r ≤ a0 such that g(x, u) + p(x) > r2u for all u > 0 and all x, then
amin > r.

Remark 5.4.9. Theorem 5.4.4 is sharp, in the following sense. Assume

that p = 0 and
∂g

∂u
(x, u) >

g(x, u)

u
holds for u 6= 0, then the problem has

at most one negative solution and at most one positive solution. This
follows from the fact that T is stricty decreasing in (λ∗, 0) and strictly
increasing in (0, λ∗). Indeed, assume for example that 0 < λ1 < λ2 < λ∗

and let 0 < uλ1 < uλ2 be the corresponding solutions of problem (5.6).

Because p = 0, condition
∂g

∂u
(x, u) >

g(x, u)

u
implies that

g(x, u)

u
is

strictly nondecreasing for u > 0, so

uλ2(x)u
′′
λ1
(x) = g(x, uλ1(x))uλ2(x) < g(x, uλ2(x))uλ1(x) = u′′λ2

(x)uλ1(x).

Thus,
uλ2(1)u

′
λ1
(1) < u′λ2

(1)uλ1(1),
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and we conclude that T (λ1) < T (λ2). In a similar way, we deduce that
T is strictly decreasing in (λ∗, 0).

For the particular case of equation (5.1), when A = 0 it is clear that
T is an even function and can be extended continuously to λ = 0. As
in Remark 5.4.8, it is seen that if λ > 0 then T (λ) > min{a0, a1}. This
implies that T (0) ≥ min{a0, a1}; thus the problem for A = 0 has only
the trivial solution if a0 ≥ a1.

On the other hand, if s > max{a0, a1} and 0 < λ≪ 1, then u′′λ < s2uλ
and hence T (λ) < s. Hence, T (0) ≤ max{a0, a1}. In particular, when
a0 < a1 it is directly seen that T (0) < a1 and the problem has exactly 3
solutions.

5.5 Comments and open questions

We shall end this chapter with some comments and open questions about
the behavior of T . With this aim, let us compute

T ′(λ) =
∂

∂λ

(
u′λ(1)

uλ(1)

)
=
uλ(1)

∂u′

λ

∂λ
(1)− u′λ(1)

∂uλ

∂λ
(1)

uλ(1)2

and set w :=
∂uλ
∂λ

, then

T ′(λ) =
uλ(1)w

′(1)− u′λ(1)w(1)

uλ(1)2
.

Moreover, observe that w solves the linear problem
{
w′′(x) = ∂g

∂u
(x, uλ(x))w(x)

w(0) = 1, w′(0) = a0,
(5.7)

and hence

uλ(1)w
′(1)− u′λ(1)w(1) =

∫ 1

0

(uλ(x)w
′′(x)− u′′λ(x)w(x)) dx =

=

∫ 1

0

(
uλ(x)

∂g

∂u
(x, uλ(x))− g(x, uλ(x))− p(x)

)
w(x)dx. (5.8)

In particular, if h2) of Chapter 4 holds, namely ∂g
∂u
(x, u) > g(x,u)+p(x)

u

for a.e. x ∈ [0, 1] and u ∈ R<0, then T is strictly decreasing for λ < λ0.
Indeed, from H5) and (5.7), we deduce that w(x) > 0 for all x ∈ [0, 1].

Moreover, uλ(x) < 0 for all x ∈ [0, 1]; hence, from ∂g
∂u
(x, u) > g(x,u)+p(x)

u

and (5.8) we conclude that T ′(λ) < 0. This proves, again, that the
problem has exactly one negative solution.
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Remark 5.5.1. More precise conclusions can be obtained for the par-
ticular case of equation (5.1), in which the function T depends on the
value a1. Indeed, setting w as before, we deduce:

uλ(1)w
′(1)− u′λ(1)w(1) =

∫ 1

0

[2Kuλ(x)
3 − A]w(x) dx.

The proof that T is decreasing for λ < λ0 is now straightforward. Fur-
thermore, observe that if 2Kλ3 ≥ A, then 2Kuλ(x)

3 > A for all x > 0;

thus, if 3

√
A
2K

< λ∗ then T increases strictly in
(

3

√
A
2K
, λ∗
)
.

Also, observe that if a1 > a0 and p is sufficiently small, then the solu-
tion u0 of (5.6) for λ = 0 satisfies u0(x) < 1 for all x ≤ 1 which, in turn,
implies that u′′0(x) < (K + a21)u0(x) +A. Take v(x) := A

c2
(cosh(cx)− 1),

where c :=
√
K + a21, then u0(1) < v(1) = kA, where k := cosh(cx)−1

c2
.

Hence, if p is small and 0 ≤ λ≪ 1, then 2Kuλ(x)
3 < 2K(kA)3 < A and

we conclude that T ′(λ) < 0. Furthermore, for λ0 < λ < 0 it is seen that
uλ(x) < 0 up to some x0 and 0 < uλ(x) < u0(x) for x > x0. We deduce,
when A is small, that 2Ku3λ < A and hence T ′ < 0 also on (λ0, 0), and
the problem has at most one sign-changing solution.

Next, consider the function

α(x) = e
2L(x)3/2

3(a21−a20)
−b
.

Making A smaller if necessary, a simple computation shows that α is a
lower solution of (5.1) for b≫ 0, as seen in Remark 5.4.2. Take λ = α(0),
then it is verified that α > uλ > 0 and consequently α′′uλ > αu′′λ. It is
deduced that α′(1)uλ(1) > α(1)u′λ(1), that is: T (λ) < a1.

Thus, when a1 > a0 and A is small, there are two possible situations:

1. T (0) ≥ a1 and the problem has at least two nonnegative solutions
(and no sign-changing solutions).

2. T (0) < a1 and the problem has at least one positive solution and a
(unique) sign-changing solution.

As mentioned, if A = 0 and a1 > a0 then T (0) < a1; thus, the second
situation holds for A > 0 sufficiently small.

Similar considerations show that T is increasing for λ ≥ 0 when A
is sufficiently large. In this case, λmin ∈ (λ0, 0) and amin > a1, which
implies that the problem has a unique (negative) solution. It is readily
seen, however, that if A ≫ 0 then λ∗ < 0, so the statement that T
increases for λ > 0 becomes empty.
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5.5.1 Open questions

1. Numerical experiments for the particular case (5.1) suggest that
T ′′ > 0 for λ > λ0. If this is true, then an exact multiplicity result
yields, depending on whether amin is smaller, equal or larger than
a1. It would be interesting if this fact could be verified for the
general case, under appropriate conditions, using the differential
equation for z := ∂w

∂λ
= ∂2uλ

∂λ2 , namely

z′′(x) =
∂g

∂u
(x, uλ(x))z(x) +

∂2g

∂u2
(x, uλ(x))w(x)

2, z(0) = z′(0) = 0.

2. How does the graph of T vary with respect to p? Suppose for
simplicity that p is a constant and let y := ∂uλ

∂p
. Then

y′′ =
∂g

∂u
(x, uλ(x))y + 1 y(0) = y′(0) = 0

and the sign of ∂T
∂p

coincides with the sign of the integral

∫ 1

0

(
uλ(x)

∂g

∂u
(x, uλ(x))− g(x, uλ(x))− p

)
y(x) + uλ(x) dx.

If ∂g
∂u
(x, u) > g(x,u)+p(x)

u
holds for u < 0, then ∂T

∂p
< 0 for λ < λ0.

This is consistent with the fact, proven in [10] and easily extended
to the general case, that the (unique) negative solution tends uni-
formly to −∞ as p→ +∞.

For problem (5.1), ∂g
∂u
(x, u) > g(x,u)+p(x)

u
is not satisfied for all u > 0,

although it holds when 2Ku3 > A. In consequence, ∂T
∂A

> 0 for

λ ≥ 3

√
A
2K

.
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Resumen del Caṕıtulo 5

En el caṕıtulo anterior, estudiamos el siguiente problema

{
u′′(x) = Ku(x)3 + L(x)u(x) + A
u′(0) = a0u(0), u

′(1) = a1u(1),

con métodos variacionales. El objetivo para este caṕıtulo consta de dos
partes. Por un lado, estamos interesados en estudiar el problema desde
otro enfoque, utilizando métodos topológicos. Por el otro lado, buscamos
entender mejor los resultados de [10]; en particular, damos pruebas al-
ternativas para p constante y g(x, u) = Ku(x)3 + L(x)u(x), donde K es
una constante dada y L(x) := a20 + (a21 − a20)x. Lo que muestra una pro-
funda conexión entre la estructura variacional del problema y los métodos
topológicos empleados.

Este caṕıtulo está organizado de la siguiente manera. En la Sección
5.2 establecemos un resultado general de existencia utilizando el método
de super y subsoluciones.

En la Sección 5.3, probamos un resultado de unicidad e introducimos
una observación respecto al Corolario 4.3.5.

La Sección 5.4 está dedicada a probar varios resultados de unicidad
y multiplicidad de solución combinando distintas técnicas, tales como
comparación, el Teorema de la Función Impĺıcita y el método de shooting.

Finalmente, en la Sección 5.5, terminamos el caṕıtulo con algunos
comentarios y preguntas abiertas sobre el comportamiento del operador
de shooting.
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Chapter 6

Second order system with

radiation boundary conditions

6.1 Introduction

Our aim in this chapter is to generalize some of the results of chapters 4
and 5 to a system of equations. Namely, we study the following system
for a vector function u : [0, 1] ⊂ R → R

N satisfying
{
u′′ = g(x, u) + p(x)
u′(0) = a0u(0), u

′(1) = a1u(1),
(6.1)

where g : [0, 1]×R
N → R

N is a continuous superlinear function, namely

lim
|u|→+∞

g(x, u) · u
|u|2

= +∞,

uniformly in x ∈ [0, 1] and p ∈ L2.
As we will give a general existence result, there is no need to separate

p ∈ L2. Hence, we do not assume g(x, 0) = 0 for all x ∈ [0, 1]. For
simplicity, we assume g ∈ C([0, 1] × R

N), although the result holds for
the general case.

Notice that Theorem 4.2.3 can be easily generalized in this context.

Theorem 6.1.1. Problem (6.1), where g = ∇G, where G : [0, 1]×R
N →

R is a superlinear C1 function with respect to u, has at least one solution.

The proof of this result is a direct adaptation of the one of Theorem
(4.2.3).

This chapter is organized as follows. In Section 6.2 we introduce a
generalized Hartman condition to prove and existence result in a nonva-
riational setting. We conclude in Section 6.3 with some open questions
and future line of investigation.

81
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6.2 Generalized Hartman condition

In this section, we prove an existence result of (6.1) in a general nonva-
riational setting.

Let us note that, due to the superlinearity of g, the classical strict
Hartman condition (see Section 1.2.5 in Chapter 1) is satisfied, i.e., there
exists a constant R > 0 such that

g(x, u).u > 0

for all x ∈ [0, 1] and |u| = R. However, this fact is not enough to prove
existence of solution.

Let R : [0, 1] → R, given by R(x) = eax
2+bx+c, where a, b and c ∈ R

are constants. If b < a0 and 2a+ b > a1, then

R′(0) < a0R(0) and R′(1) > a1R(1). (6.2)

Moreover, by the superlinearity of g, we can choose c≫ 0 such that

g(x, v).v > R′′(x)R(x) +R′(x)2, if |v| = R(x), (6.3)

for all x ∈ (0, 1).

Observe that (6.3) is a generalized Hartman condition, since it de-
pends on the value of x.

Theorem 6.2.1. Problem (6.1) admits at least one classical solution u
such that |u(x)| < R(x), for all x ∈ [0, 1].

Proof:
For each x ∈ [0, 1], let us consider the following truncation function
Px : Rn → R

n, given by

Px(u) =

{
u if |u| < R(x)
R(x) u

|u| if |u| ≥ R(x).

Let us consider the following modified problem for λ, µ > 0





u′′(x)− λu(x) = g(x, Px(u(x)))− λPx(u(x))
u′(0)− µu(0) = (a0 − µ)P0(u(0)),
u′(1) + µu(1) = (a1 + µ)P1(u(1)).

(6.4)

Let us note that the boundary conditions in (6.4) are the classical Robin
conditions, as in the proof of Theorem 1.2.8, and since the right hand
side of the equation is bounded, so by Schauder’s Fixed Point Theorem
(see Theorem 1.2.4), problem (6.4) has at least one solution u.
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Finally, let us prove that u is a solution of the original problem (6.1).
We want to see that |u(x)| < R(x) for all x ∈ [0, 1].

Let φ : [0, 1] → R,

φ(x) = |u(x)| −R(x).

Suppose φ reaches its absolute maximum at x0 such that φ(x0) ≥ 0. We
have tree cases:

x0 = 0: in this case, |u(0)| ≥ R(0), then P0(u(0)) = R(0) u(0)
|u(0)| . φ has a

maximum at 0 and then decreases, so φ′(0) ≤ 0. Then

0 ≥ φ′(0) =
u(0).u′(0)

|u(0)| −R′(0) =

=
u(0)

|u(0)| .
(
(a0 − µ)R(0)u(0) + µu(0) |u(0)|

|u(0)|

)
−R′(0) ≥

≥ u(0)

|u(0)|2
.((a0 − µ)R(0)u(0) + µR(0)u(0))−R′(0) =

=
u(0)

|u(0)|2
.a0R(0)u(0)−R′(0) = a0R(0)−R′(0),

thus R′(0) ≥ a0R(0), a contradiction with (6.2).

x0 = 1: it is analogous to the previous case.

x0 ∈ (0, 1): in this case, Px0(u(x0)) = R(x0)
u(x0)
|u(x0)| , φ

′(x0) = 0 and φ′′(x0) ≤
0. Then

0 ≥ φ′′(x0) =
|u′(x0)|2 + u(x0).u

′′(x0)

|u(x0)|
− (u(x0).u

′(x0))
2

|u(x0)|3
−R′′(x0). (6.5)

On the one hand, using (6.4) and the inequality |u(x0)| ≥ R(x0) we
have

|u′(x0)|2 + u(x0).u
′′(x0)

|u(x0)|
≥

≥
u(x0).

(
g
(
x0, R(x0)

u(x0)
|u(x0)|

)
− λR(x0)

u(x0)
|u(x0)| + λu(x0)

)

|u(x0)|
=

=
u(x0)

|u(x0)|
.g

(
x0, R(x0)

u(x0)

|u(x0)|

)
− λR(x0) + λ |u(x0)| ≥

≥ 1

R(x0)
R(x0)

u(x0)

|u(x0)|
g

(
x0, R(x0)

u(x0)

|u(x0)|

)
. (6.6)
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On the other hand, since φ′(x0) = 0, we have that
(u(x0).u

′(x0))
2

|u(x0)|2
=

R′(x0)
2. Hence

− (u(x0).u
′(x0))

2

|u(x0)|3
= −R

′(x0)
2

|u(x0)|
≥ −R

′(x0)
2

R(x0)
. (6.7)

Replacing (6.6) and (6.7) in (6.5) we get

0 ≥ 1

R(x0)
R(x0)

u(x0)

|u(x0)|
g

(
x0, R(x0)

u(x0)

|u(x0)|

)
− R′(x0)

2

R(x0)
−R′′(x0).

Then

R(x0)
u(x0)

|u(x0)|
g

(
x0, R(x0)

u(x0)

|u(x0)|

)
≤ R′(x0)

2 +R′′(x0)R(x0),

a contradiction with (6.3).
We have proved that |u(x)| < R(x) for all x ∈ [0, 1], hence we can

conclude that u is a classical solution of (6.1).
�

6.3 Future line of investigation, open ques-

tions

To conclude, this section presents some guidelines for future research
related to this chapter.

Besides existence, it would be interesting to study whether or not the
uniqueness/multiplicity results of the preceding chapters can be extended
to a system of equations. In this direction, the following remark should
be of help.

Remark 6.3.1. Let K be an appropriate fixed point operator for prob-
lem (6.1), then it is not difficult to prove that degLS(I − K,Ω, 0) = 1
for certain “large” open bounded subset Ω ⊂ C([0, 1]) containing 0.
Thus, the condition for multiplicity given in Theorem 5.4.4, namely
∂g
∂u
(x, 0) < a21 for all x ∈ [0, 1] may be understood in this context by

noticing that it yields, when p = 0, that degLS(I −K,Br(0), 0) = −1 for
r > 0 small enough. By continuity, this latter degree is still equal to −1
for p near the origin; hence, the excision property of the degree yields the
existence of more solutions in Ω \Br(0): of at least one, and generically
two. This situation may be interpreted in the shooting setting by looking
at the right branch of the graph of T : the “typical” multiplicity situation
occurs when a1 > amin and the only case in which there is only one extra
solution (apart from the negative one) corresponds to a1 = amin.
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The previous consideration might give the key for an extension to a
system, for which the methods in the preceding chapters seem difficult
to generalize. For a future work, it seems possible to prove that if the
degree of certain mapping Dg(x, 0) is different from 1 then the problem
has more than one solution when p is close to 0. It is interesting to ask
the following question: for the case N > 1, is it possible to prove, under
appropriate assumptions, the existence of more than three solutions?
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Resumen del Caṕıtulo 6

Nuestro objetivo para este caṕıtulo es generalizar los resultados de exis-
tencia obtenidos en los caṕıtulos 4 y 5 a un sistema de ecuaciones.
Es decir, estudiamos el siguiente sistema para una función vectorial
u : [0, 1] ⊂ R → R

N ,

{
u′′ = g(x, u) + p(x)
u′(0) = a0u(0), u

′(1) = a1u(1),

donde a0, a1 > 0, g : [0, 1]×R
N → R

N es continua y superlineal, es decir:

lim
|u|→+∞

g(x, u) · u
|u|2

= +∞,

uniformemente en x ∈ [0, 1] y p ∈ L2.
Como damos un resultado general de existencia, no es necesario se-

parar el término p, por lo tanto, no podemos asumir que g(x, 0) = 0
para toda x ∈ [0, 1]. Por simplicidad, suponemos que g ∈ C([0, 1]×R

N),
aunque el resultado es verdadero en el contexto más general.

Notemos que podemos generalizar el teorema de existencia para el
caso variacional fácilmente.

Theorem 6.3.2. El problema, para g = ∇G, donde G : [0, 1]×R
N → R

es una función C1 con respecto a u y superlineal, tiene al menos una
solución.

Este caṕıtulo está organizado de la siguiente manera. En la Sección
6.2 introducimos una condición de Hartman generalizada para pobar exis-
tencia de solución en un contexto no variacional.

Conclúımos con la Sección 6.3, donde presentamos preguntas abiertas
y futuras ĺıneas de investigación.
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