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Reconocimiento de acciones en videos de profundidad

Resumen El problema de reconocer automáticamente una acción lleva-

da a cabo en un video está recibiendo mucha atención en la comunidad de

visión por computadora, con aplicaciones que van desde el reconocimiento

de personas hasta la interacción persona-computador. Podemos pensar al

cuerpo humano como un sistema de segmentos rı́gidos conectados por arti-

culaciones, y al movimiento del cuerpo como una transformación continua

de la configuración espacial de dichos segmentos. La llegada de cámaras

de profundidad de bajo costo hizo posible el desarrollo de un algoritmo de

seguimiento de personas preciso y eficiente, que obtiene la ubicación 3D de

varias articulaciones del esqueleto humano en tiempo real. Esta tesis presen-

ta contribuciones al modelado de la evolución temporal de los esqueletos.

El modelado de la evolución temporal de descriptores de esqueleto plan-

tea varios desafı́os. En primer lugar, la posición 3D estimada para las ar-

ticulaciones suele ser imprecisa. En segundo lugar, las acciones humanas

presentan gran variabilidad intra-clase. Esta variabilidad puede encontrarse

no sólo en la configuración de los esqueletos por separado (por ejemplo, la

misma acción da lugar a diferentes configuraciones para diestros y para zur-

dos) sino también en la dinámica de la acción: diferentes personas pueden

ejecutar una misma acción a distintas velocidades; las acciones que involu-

cran movimientos periódicos (como aplaudir) pueden presentar diferentes

cantidades de repeticiones de esos movimientos; dos videos de la misma

acción puede estar no-alineados temporalmente; etc. Por último, acciones

diferentes pueden involucrar configuraciones de esqueleto y movimientos

similares, dando lugar a un escenario de gran similaridad inter-clase. En

este trabajo exploramos dos enfoques para hacer frente a estas dificultades.

En el primer enfoque presentamos una extensión a Edit Distance on Real

sequence (EDR), una medida de similaridad entre series temporales robusta

y precisa. Proponemos dos mejoras clave a EDR: una función de costo suave

para el alineamiento de puntos y un algoritmo de alineamiento modifica-
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do basado en el concepto de Instancia-a-Clase (I2C, por el término en inglés:

Instance-to-Class) . La función de distancia resultante tiene en cuenta el or-

denamiento temporal de las secuencias comparadas, no requiere aprendi-

zaje de parámetros y es altamente tolerante al ruido y al desfasaje temporal.

Además, mejora los resultados de métodos no-paramétricos de clasificación

de secuencias, sobre todo en casos de alta variabilidad intra-clase y pocos

datos de entrenamiento.

En el segundo enfoque, reconocemos que la cantidad de esqueletos dis-

criminativos en una secuencia puede ser baja. Los esqueletos restantes pue-

den ser ruidosos, tener configuraciones comunes a varias acciones (por ejem-

plo, la configuración correspondiente a un esqueleto sentado e inmóvil) u

ocurrir en instantes de tiempo poco comunes para la acción del video. Por lo

tanto, el problema puede ser naturalmente encarado como uno de Aprendi-

zaje Multi Instancia (MIL por el término en inglés Multiple Instance Learning).

En MIL, las instancias de entrenamiento se organizan en conjuntos o bags.

Cada bag de entrenamiento tiene asignada una etiqueta que indica la clase

a la que pertenece. Un bag etiquetado con una determinada clase contiene

instancias que son caracterı́sticas de la clase, pero puede (y generalmente

ası́ ocurre) también contener instancias que no lo son. Siguiendo esta idea,

representamos los videos como bags de descriptores de esqueleto con mar-

cas de tiempo, y proponemos un framework basado en MIL para el reco-

nocimiento de acciones. Nuestro enfoque resulta muy tolerante al ruido, la

variabilidad intra-clase y la similaridad inter-clase. El framework propuesto

es simple y provee un mecanismo claro para regular la tolerancia al ruido, a

la poca alineación temporal y a la variación en las velocidades de ejecución.

Evaluamos los enfoques presentados en cuatro bases de datos públicas

capturadas con cámaras de profundidad. En todos los casos, se trata de

bases desafiantes. Los resultados muestran una comparación favorable de

nuestras propuestas respecto al estado del arte.

Palabras clave: Video de profundidad, Aprendizaje Multi Instancia, Citation-

kNN, Edit Distance on Real sequence, Instancia-a-Clase
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Action recognition in depth videos

Abstract The problem of automatically identifying an action performed

in a video is receiving a great deal of attention in the computer vision com-

munity, with applications ranging from people recognition to human com-

puter interaction. We can think the human body as an articulated system

of rigid segments connected by joints, and human motion as a continuous

transformation of the spatial arrangement of those segments. The arrival of

low-cost depth cameras has made possible the development of an accurate

and efficient human body tracking algorithm, that computes the 3D loca-

tion of several skeleton joints in real time. This thesis presents contributions

concerning the modeling of the skeletons temporal evolution.

Modeling the temporal evolution of skeleton descriptors is a challenging

task. First, the estimated location of the 3D joints are usually inaccurate.

Second, human actions have large intra-class variability. This variability

may be found not only in the spatial configuration of individual skeletons

(for example, the same action involves different configurations for right-

handed and left-handed people) but also on the action dynamics: different

people have different execution speeds; actions with periodic movements

(like clapping) may involve different numbers of repetitions; two videos of

the same action may be temporally misaligned; etc. Finally, different actions

may involve similar skeletal configurations, as well as similar movements,

effectively yielding large inter-class similarity. We explore two approaches

to the problem that aim at tackling this difficulties.

In the first approach, we present an extension to the Edit Distance on

Real sequence (EDR), a robust and accurate similarity measure between time

series. We introduce two key improvements to EDR: a weighted matching

scheme for the points in the series and a modified aligning algorithm based

on the concept of Instance-to-Class distance. The resulting distance function

takes into account temporal ordering, requires no learning of parameters

and is highly tolerant to noise and temporal misalignment. Furthermore,
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it improves the results of non-parametric sequence classification methods,

specially in cases of large intra-class variability and small training sets.

In the second approach, we explicitly acknowledge that the number of

discriminative skeletons in a sequence might be low. The rest of the skele-

tons might be noisy or too person-specific, have a configuration common to

several actions (for example, a sit still configuration), or occur at uncommon

frames. Thus, the problem can be naturally treated as a Multiple Instance

Learning (MIL) problem. In MIL, training instances are organized into bags.

A bag from a given class contains some instances that are characteristic of

that class, but might (and most probably will) contain instances that are not.

Following this idea, we represent videos as bags of time-stamped skeleton

descriptors, and we propose a new MIL framework for action recognition

from skeleton sequences. We found that our approach is highly tolerant to

noise, intra-class variability and inter-class similarity. The proposed frame-

work is simple and provides a clear way of regulating tolerance to noise,

temporal misalignment and variations in execution speed.

We evaluate the proposed approaches on four publicly available chal-

lenging datasets captured by depth cameras, and we show that they com-

pare favorably against other state-of-the-art methods.

Keywords: Depth video, Multiple Instance Learning, Citation-kNN, Edit

Distance on Real sequence, Instance-to-Class
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Chapter 1

Introduction

Action recognition is a growing topic in computer vision research. Gener-

ally speaking, it consists of identifying which of a predefined set of actions is

performed in a given video. The problem is usually approached using ma-

chine learning techniques, that tend to deal robustly with the complexities

found in real data.

Automatically identifying an action performed in a video can be a valu-

able tool in many applications. A common example is the analysis of surveil-

lance videos [Cha02]. Many security systems are based on the the data cap-

tured by several cameras. When the number of cameras is large, it can be

hard or even impossible for human controllers to manually detect important

events in the videos.

Closely related is the use of video understanding techniques for the pur-

pose of elderly and children care in indoor environments such as smart

homes and smart hospitals [SS15]. Monitoring and automatically recogniz-

ing daily activities can be of great help for assisting the residents, as well as

for describing their functional and health status. Yet another related appli-

cation is automatic video summarization, that provides short videos using

only the important scenes from the original video.

Another common example is content-based search in video databases

[HXL+11]. The ability to automatically obtain textual data describing a

video avoids the need for manual annotation, and can be crucial for the

development of more useful and informative datasets.
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Human-computer interaction is a further field that benefits from im-

provements in action recognition techniques. For example, such techniques

can be used to provide interfaces for people with motion impairments, eas-

ing their interaction with computers or other people [ZHJR11]. Another

common application is the development of video games that let the user

interact with the console/computer without the need for a game controller

[RKH11].

Behavior-based biometrics has also received much attention in the last

years. Unlike classical biometrics (such as fingerprints-based), they obtain

data for identification without interfering with the activity of the person.

A typical example is gait recognition [SPL+05]. A related use concerns the

automatic guidance of a patients movements in rehabilitation systems.

Therefore, new developments in action recognition methods, such as the

ones presented in this work, can be of great interest for a wide range of

applications.

1.1 Problem description

This thesis focus on the problem of action recognition from depth videos. In

this section, we give a general introduction to the problem and we clarify

several aspects about it. Specifically, we make explicit what we understand

by action recognition, and describe how the problem changes depending on

the type of video data employed. In doing so, we pay special attention to

depth data, as this is the one used in this work.

Given a list of possible actions and a video showing an actor performing

any one of them, the ultimate goal in the considered problem is to recog-

nize the action being performed. To clarify the meaning of the termn action,

the taxonomy defined in [MHK06] can be used. The work distinguishes

between action primitives (or movements), actions and activities. Action prim-

itives are atomic motions, and can be considered as the building blocks of

actions. Activities in turn are made up of several actions. As an example,

cooking can be thought of as an activity, involving several actions such as

chopping and stirring. Chopping can in turn be decomposed in several action

17
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primitives, such as taking a knife and cutting a vegetable. The actions con-

sidered in the thesis can be thought of as belonging to the action primitive

category. Note, however, that the granularity of the primitives may vary de-

pending on the application, and some of the actions considered in this work

can be very well seen as simple exemplars of the action category.

A large number of works have been proposed for action recognition from

RGB videos. This type of video data poses several challenges. On the one

hand, the appearance of an action can vary considerably in different videos.

This may be due to changes in lighting conditions, occlusions, viewpoint,

actor’s clothing, execution style, etc. Figures 1.1a and 1.1b show examples

of videos that have quite different appearance despite being instances of the

same action. The former corresponds to the action play game and the latter to

the action use vacuum cleaner. On the other hand, different actions can look

very similar to each other. This is illustrated in Figure 1.1c, that compares

frames from the actions drink and call cellphone. Another example of this

phenomena can be seen in Figure 1.1d, that shows frames from the actions

read and write.

The difficulties mentioned above have been partially mitigated with the

arrival of low cost depth sensors. Section 1.1.1 introduces some of the tech-

nologies used for depth sensing, and explain their advantages over tradi-

tional RGB videos. In particular, it highlights the possibility of inferring an

actor’s pose based on depth information, which is crucial for the methods

presented in the thesis.

1.1.1 Action recognition in depth videos

The advent of low cost depth sensors opened up new options to address

classical difficulties in action recognition. Typical depth sensors consist of

an infrared laser projector and an infrared camera. Combined, the camera

and the projector can be used to create a depth map, which encodes distance

information between the objects in the scene and the camera. Most of the

devices are also coupled with an RGB camera. Figure 1.2 shows three dif-

ferent RGB frames and their associated depth maps. Frames were extracted

18
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(a) (b)

(c) (d)

Figure 1.1: Four examples of the challenges involved in RGB-based action

recognition. Figures 1.1a and 1.1b show frames of videos that have quite

different appearance despite being instances of the same action. Figures 1.1c

and 1.1d show frames of videos that have similar appearance even though

they correspond to different actions. See text for details.

from a video corresponding to the cheer up action.

An example of this kind of technologies is the Microsoft Kinect. It calcu-

lates depth images at 320 × 240 or 640 × 480 resolution and at 30 frames

per second. See Figure 1.3a for a visual description of the device. An-

other widely used sensor is the Asus Xtion PRO LIVE, that offers either 60

320× 240 depth frames per second or 30 640× 480 depth frames per second.

The device is depicted in Figure 1.3b.

Many of the problems faced by RGB-based action recognitions methods

(a) (b)

Figure 1.2: RGB (1.2a) and depth (1.2b) sequences for an instance of the cheer

up action.

19
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IR projector

RGB camera
IR camera

(a)

IR projector

RGB camera

IR camera

(b)

Figure 1.3: Two widely used depth devices: Microsoft Kinect (1.3a) and

Asus Xtion PRO LIVE (1.3b).

are eased when working with depth videos. Such videos are less affected by

environmental conditions than conventional RGB data. More importantly,

they provide additional information that makes 3D reconstruction possible.

In particular, an accurate estimation of a person’s pose can be computed

from depth information, including the location of several skeleton joints at

each frame of a video. The temporal evolution of the human skeleton across

a video is a valuable tool for interpreting the action being performed. The

action recognition methods presented in this thesis are fully based on such

skeleton information. Therefore, in the following we describe how it can

be extracted from the raw depth data. Furthermore, we explain the specific

challenges involved in skeleton-based action recognition.

Skeleton-based action recognition

The current standard method for skeleton estimation from depth data is pre-

sented in the work of Shotton et al. [SSK+13]. The method labels each pixel

in a depth image as being either part of the human body, the background, or

unknown, and predicts the 3D position of several body joints (hand, wrist,

elbow, etc.). A description of the localized joints is shown in Fig. 1.4. Note

that a skeleton can be thought of as a tree. For example, the hip center can

be seen as the root with 3 subtrees, corresponding to the left leg, the right

leg and the upper body.

20
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Left shoulder

Left elbow

Left wrist

Left hand

Figure 1.4: Joints tracked by Kinect.

Most of the public datasets for action recognition from depth videos pro-

vide skeleton data. In the vast majority of the cases (including the datasets

used for the experiments in this thesis, described in Section 2.2), skeleton

information was obtained using the Microsoft Kinect tracking system built

on top of the work in [SSK+13].

While skeleton data provides useful information for action recognition,

it also poses new challenges. Moreover, it is far from eradicating many of

the inherent difficulties of the problem. Previous work in skeleton-based ac-

tion recognition has focused mainly in two issues. The first one is the design

of suitable spatio-temporal skeleton descriptors and proper distance func-

tions for comparing them. The second one is the modeling of their temporal

evolution. The rest of the thesis focuses mainly on this second task.

Modeling the temporal evolution of skeleton descriptors is challenging.

First, 3D joints estimated from the detph image are usually inaccurate, due

to the noise present in the depth image. Second, human actions present

large intra-class variability. This variability may be found not only in the

spatial configuration of individual skeletons (for example, the same action

21
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would involve different configurations for right and left handed people)

but also on the action dynamics: different people would probably have dif-

ferent execution speeds; the number of repetitions may change in actions

involving periodic movements (like waving); temporal misalignment may

exist between videos of the same action; etc. Finally, different actions may

involve similar skeletal configurations, as well as similar movements, effec-

tively yielding large inter-class similarity.

This work focuses on skeleton-based action recognition. Therefore, the

rest of the thesis considers an action execution as represented by a sequence

of skeletons, encoding the temporal evolution of the actor’s pose, and pro-

poses a new machine learning techniques that aim at overcoming the prob-

lems commented in the previous paragraph.

1.2 Contributions

In this thesis we present two novel methods for skeleton-based action recog-

nition. The goal of the presented methods is to predict the action label of a

query skeleton sequence, based on previously labeled training sequences.

The first method is strongly based in a new distance function between

time series. We call such distance Instance-to-Class Edit Distance on Real

sequence (I2CEDR). The proposed distance can be seen as belonging to a

group of techniques that measure the similarity between two sequences of

points by finding optimal alignments between the points, according to a

chosen cost function. The novel I2CEDR is obtained as the result of two key

changes to one of such techniques, known as Edit Distance on Real sequence

(EDR) [CÖO05]. First, a soft cost mechanism is introduced for aligning the

points. Second, the notion of Instance-to-Class (I2C) [BSI08] distance is in-

corporated into the function. The first change aims at making EDR a more

accurate measure, by allowing small differences between aligned points to

be taken into account. The second change aims at improving the results

of non-parametric [BSI08] sequence classification methods based on EDR,

specially in cases of large intra-class variability and small training sets. The

proposed measure takes into account temporal ordering and requires no

22



1.3 Publications 23

learning of parameters. An efficient dynamic programming algorithm is

presented for computing I2CEDR. Our method shows considerable robust-

ness to noise and temporal misalignment. Thorough experiments on four

popular datasets support the superiority of our approach over other meth-

ods using distance functions based on sequence alignment. Further, when

coupled with a robust skeleton descriptor, the performance of our approach

is comparable to the state-of-the-art.

The second method proposes a novel Multiple Instance Learning (MIL)

[FF10] approach to the problem. A new representation for skeleton se-

quences is described, that allows for effective sequence classification using

a classic and simple MIL technique [WZ00] known as Citation-kNN. This

technique adapts the k-Nearest Neighbors (kNN) approach to the multiple

instance setting. We introduce three changes to the standard Citation-kNN

formulation. First, we present a natural extension to multi-class classifica-

tion. Second, we adjust the neighbor voting mechanism by incorporating

distance-weighted votes. Third, we adapt it to work on videos represented

by multiple sequences, each corresponding to the temporal evolution of a

different body part. We experimentally validate the benefits of the proposed

representation for skeleton sequences and the improvements brought by the

modified Citation-kNN. Extensive tests show that the proposed method is

very tolerant to noise and temporal misalignment. Further, the role played

by the different parameters is exposed. Results show that the combination

of a reasonably robust skeleton descriptor with our approach for sequence

representation and classification leads to state-of-the-art results. Despite the

simplicity of the method, highly competitive results are achieved in four

popular datasets. We believe this supports the appropriateness of the MIL

approach to the problem, and opens the door to further research in that di-

rection.

1.3 Publications

The development of this thesis has lead to several works. Some of them

have already been published, while others are submitted or to be submitted.
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• Sebastián Ubalde and Marta Mejail,Skeleton-based Action Recognition

Using Instance-to-Class Edit Distance on Real sequence. IEEE Interna-
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1.4 Organization of the thesis

This thesis is organized as follows. We discuss previous works and describe

the datasets used in the experiments in Chapter 2. The first novel method

presented in the thesis is explained in Chapter 3. The second main contri-

bution is introduced in Chapter 4. Both chapters 3 and 4 include thorough

experiments for the proposed methods. Finally, Chapter 5 concludes and

comments on future work.
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Capı́tulo 1

Introducción

El reconocimiento de acciones es un tema de creciente interés en el campo

de la visión por computadora. En términos generales, consiste en identificar

cuál de un conjunto predefinido de acciones es ejecutada en un video dado.

El problema es generalmente encarado usando técnicas de aprendizaje au-

tomático (o machine learning), que tienden a lidiar de manera robusta con las

complejidades tı́picas de los datos de la realidad.

La identificación automática de la acción ejecutada en un video puede

ser una herramienta valiosa para muchas aplicaciones. Un ejemplo común

es el análisis de videos de vigilancia [Cha02]. Muchos sistemas de seguridad

se basan en los datos capturados por varias cámaras. Cuando el número de

cámaras es grande, puede ser difı́cil, o incluso imposible, detectar manual-

mente eventos importantes en los videos.

Una aplicación muy relacionada a la anterior es el uso de técnicas de

comprensión de videos para el cuidado de ancianos y niños en predios ce-

rrados como las casas y los hospitales inteligentes [SS15]. El monitoreo y el

reconocimiento automático de actividades diarias puede ser de gran ayuda

en la asistencia de los residentes, ası́ como en la obtención de informes acer-

ca de sus capacidades funcionales y su salud. Otra aplicación relacionada es

el resumen automático de videos, que intenta obtener videos cortos a partir

de las escenas importantes del video original.

Otro ejemplo común es la búsqueda basada en contenido en bases de

datos de videos [HXL+11]. La habilidad de obtener de manera automática
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descripciones textuales de un video dado evita la necesidad de realizar ano-

taciones manuales, y puede ser crucial para el desarrollo de bases de datos

más útiles e informativas.

La interacción humano-computadora es otro campo de aplicación que

se beneficia de las mejoras en las técnicas de reconocimiento de acciones.

Por ejemplo, dichas técnicas pueden ser usadas para proveer interfaces pa-

ra personas con movilidad reducida, facilitando su interacción con compu-

tadoras y con otras personas [ZHJR11]. Otro ejemplo es el desarrollo de vi-

deo juegos que permiten que el usuario interactúe con la consola/compu-

tadora sin la necesidad de usar un dispositivo fı́sico [RKH11].

La biometrı́a basada en comportamiento ha recibido también mucha aten-

ción en los últimos años. A diferencia de las herramientas biométricas clási-

cas (como las huellas digitales), las técnicas basadas en comportamiento ob-

tienen datos para identificación sin interferir con la actividad de la persona.

Un ejemplo tı́pico es la identificación a partir del modo de andar de las per-

sonas [SPL+05]. Un uso relacionado es el desarrollo de herramientas que

guı́en de manera automática a pacientes en rehabilitación por problemas

motrices.

En resumen, nuevos desarrollos en métodos de reconocimiento de accio-

nes, como los presentados en este trabajo, pueden ser de gran interés para

una amplia gama de aplicaciones.

1.1 Descripción del problema

Esta tesis se enfoca en el problema del reconocimiento de acciones en videos

de profundidad. En esta sección damos una introducción general al proble-

ma y clarificamos varios aspectos del mismo. Más especı́ficamente, hacemos

explı́cito qué entendemos por reconocimiento de acciones, y describimos cómo

el problema cambia dependiendo del tipo de datos de video considerado.

Prestamos especial atención a la descripción de los datos de profundidad,

que son los utilizados en este trabajo.

Dada una lista de posibles acciones y un video en el que se muestra a un

actor llevando a cabo una de ellas, el objetivo del problema considerado es
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reconocer la acción siendo ejecutada. Para aclarar el significado del término

acción, se puede utilizar la taxonomı́a definida en [MHK06]. Dicho traba-

jo distingue entre acciones primitivas (o movimientos), acciones y actividades.

Las acciones primitivas son movimientos atómicos, y pueden ser conside-

rados como las piezas básicas con las que se “construyen” las acciones. Las

actividades, por su parte, están constituidas por varias acciones. Por ejem-

plo, cocinar puede ser interpretada como una actividad que involucra varias

acciones como cortar y revolver. A su vez, cortar puede descomponerse in

varias acciones primitivas, como agarrar un cuchillo y cortar un vegetal. Las

acciones consideradas en la tesis pueden pensarse como pertenecientes a la

categorı́a de acción primitiva. No obstante, es importante tener en cuenta que

la granularidad de las acciones primitivas puede variar dependiendo de la

aplicación, y alguna de las acciones consideradas en este trabajo pueden ser

vistas como ejemplares sencillos de la categorı́a acción.

Un gran número de trabajos ha sido propuesto para reconocimiento de

acciones a partir de videos RGB. Este tipo de datos de video plantea varios

desafı́os. Por un lado, la apariencia de una acción puede variar considerable-

mente en diferentes videos. Esto puede deberse a cambios en la iluminación,

oclusiones, ubicación de la cámara, indumentaria, estilo de ejecución, etc.

Las figuras 1.1a and 1.1b muestran ejemplos de videos que tienen aparien-

cia muy diferente pese a mostrar instancias de la misma acción. El primero

corresponde a la acción jugar videojuego y el segundo a la acción usar aspira-

dora. Por otro lado, acciones diferentes pueden verse muy similares entre sı́.

Esto se ilustra en la figura 1.1c, que compara frames de las acciones tomar y

llamar por teléfono. Otro ejemplo puede verse en la figura 1.1d, que muestra

frames para las acciones leer y escribir.

Las dificultades mencionadas más arriba han sido parcialmente mitiga-

das con la llegada de sensores de profundidad de bajo costo. La sección 1.1.1

comenta algunas de las tecnologı́as usadas para sensado de profundidad y

explica sus ventajas sobre los videos RGB tradicionales. En particular, resal-

ta la posibilidad de inferir la pose de un actor a partir de la información de

profundidad, lo cual es crucial para los métodos presentados en esta tesis.
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(a) (b)

(c) (d)

Figura 1.1: Cuatro ejemplos de los desafı́os involucrados en el reconocimien-

to de acciones basado en RGB. Las figuras 1.1a y 1.1b muestran frames de

videos que tienen apariencia considerablemente diferente a pesar de ser ins-

tancias de la misma acción. Las figuras 1.1c y 1.1d muestran frames de vi-

deos que tienen apariencia similar pese a que corresponden a acciones dife-

rentes. Ver el texto para más detalles.

1.1.1 Reconocimiento de acciones en videos de profundidad

El advenimiento de sensores de profundidad de bajo costo abrió nuevas

opciones para encarar algunas dificultades clásicas del problema de recono-

cimiento de acciones. Un sensor de profundidad tı́pico consiste en un pro-

yector de laser infrarrojo y una cámara infrarroja. Combinados, la cámara y

el proyector pueden usarse para crear un mapa de profundidad, que codifica

la información de distancia entre los objetos en la escena y la cámara. La

mayorı́a de los dispositivos están equipados también con una cámara RGB.

La figura 1.2 muestra tres frames RGB diferentes y sus mapas de profundi-

dad asociados. Los frames fueron extraı́dos de un video correspondiente a

la acción alentar.

Un ejemplo de este tipo de tecnologı́as es Microsoft Kinect. El disposi-

tivo calcula imágenes de profundidad con una resolución de 320 × 240 o

640× 480 a 30 frames por segundo. La figura 1.3a muestra una descripción

del mismo. Otro ejemplo es Asus Xtion PRO LIVE, que ofrece 60 frames de

320× 240 por segundo, o 30 frames de 640× 480 por segundo. El dispositivo
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(a) (b)

Figura 1.2: Secuencias de frames RGB (1.2a) y de profundidad (1.2b) para

una instancia de la acción cheer up.

Proyector IR

Cámara RGB
Cámara IR

(a)

Proyector IR

Cámara RGB

Cámara IR

(b)

Figura 1.3: Dos sensores de profundidad ampliamente utilizados: Microsoft

Kinect (1.3a) y Asus Xtion PRO LIVE (1.3b).

puede verse en la figura 1.3b.

Muchos de los problemas enfrentados por métodos de reconocimiento

de acciones en videos RGB son simplificados al trabajar con videos de pro-

fundidad. Dichos videos son menos afectados por las condiciones del en-

torno que los videos RGB convencionales. Más importante aún, proveen in-

formación adicional que hace posible realizar reconstrucciones 3D. En parti-

cular, es posible estimar con precisión la pose de una persona a partir de los

datos de profundidad, incluyendo la ubicación de varias articulaciones del

esqueleto humano en cada frame de un video. La evolución temporal del

esqueleto humano a lo largo de un video es una herramienta valiosa para

interpretar la acción ejecutada. Los métodos de reconocimiento de acciones

presentados en esta tesis están basados en su totalidad en dicha informa-

ción del esqueleto. Por lo tanto, a continuación describimos cómo puede ser
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Figura 1.4: Articulaciones localizadas por Kinect.

extraı́da a partir de los datos de profundidad en bruto. Además, explica-

mos los desafı́os especı́ficos involucrados en el reconocimiento de acciones

basado en esqueletos.

Reconocimiento de acciones basado en esqueletos

Actualmente, el método estándar para estimar esqueletos a partir de los da-

tos de profundidad es el presentado en el trabajo de Shotton et al. [SSK+13].

El método etiqueta cada pixel en la imagen de profundidad como corres-

pondiente al cuerpo humano, al fondo, o como indefinido. A partir de ese

etiquetado, predice la posición 3D de varias articulaciones del cuerpo hu-

mano (manos, muñecas, codos, etc.). Una descripción de las articulaciones

localizadas se muestra en la figura 1.4. Nótese que un esqueleto puede pen-

sarse como un árbol. Por ejemplo, el centro de la cadera puede ser visto

como la raı́z de un árbol con 3 subárboles, correspondientes a las piernas

izquierda y derecha, y a la parte superior del cuerpo.

La mayorı́a de las bases de datos públicas para reconocimiento de ac-

ciones en videos de profundidad proveen información de esqueleto. En la

gran mayorı́a de los casos (incluyendo las bases de datos usadas para los

experimentos de esta tesis, descriptos en la sección 2.2), la información de
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esqueleto se obtuvo usando el sistema de seguimiento de Microsoft Kinect,

desarrollado a partir del trabajo en [SSK+13]

Si bien la información de esqueleto es útil para el reconocimiento de ac-

ciones, también plantea nuevos desafı́os. Además, su uso no altera muchas

de las dificultades inherentes al problema. Los trabajos anteriores en recono-

cimiento de acciones basado en esqueletos se han enfocado principalmente

en dos aspectos. El primero el diseño de descriptores de esqueleto adecua-

dos, y de funciones para compararlos de manera efectiva. El segundo es el

modelado de la evolución temporal de dichos descriptores. El resto de la

tesis se enfoca principalmente en el segundo aspecto.

El modelado de la evolución temporal de descriptores de esqueleto es

una tarea desafiante. En primer lugar, las ubicaciones 3D de las articulacio-

nes estimadas a partir de imágenes de profundidad suelen ser imprecisas,

debido al ruido encontrado en la imagen de profundidad. En segundo lugar,

las acciones humanas presentan alta variabilidad intra-clase. Dicha variabi-

lidad puede encontrarse no sólo en la configuración espacial de cada es-

queleto (por ejemplo, la misma acción involucra diferentes configuraciones

dependiendo de la mano hábil de la persona), sino también en la dinámica

de la acción: diferentes personas probablemente tengan diferentes veloci-

dades de ejecución; el número de repeticiones puede cambiar en acciones

que involucran movimientos periódicos (como agitar los brazos); diferentes

videos de la misma acción pueden estar desfasados temporalmente; etc. Por

último, acciones diferentes pueden parecerse tanto en términos de confi-

guraciones de esqueleto como de movimientos, generando alta similaridad

inter-clase.

Este trabajo se enfoca en el reconocimiento de acciones basado en es-

queletos. Por lo tanto, el resto de la tesis considera que la ejecución de una

acción está representada por una secuencia de esqueletos, que codifica la

evolución temporal de la pose del actor. Con dicha representación en mente,

presenta nuevas técnicas de aprendizaje automático que apuntan a superar

los problemas comentados en el párrafo anterior.
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1.2 Contribuciones

En esta tesis presentamos dos métodos novedosos para el reconocimiento

de acciones basado en esqueletos. El objetivo de dichos métodos es prede-

cir la etiqueta de una secuencia de esqueletos dada, a partir de secuencias

de entrenamiento etiquetadas. La etiqueta, en nuestro caso, indica la acción

ejecutada en la secuencia.

El primer método esta fuertemente basado en una nueva función de dis-

tancia entre series temporales. Llamamos Instance-to-Class Edit Distance on

Real sequence (I2CEDR) a dicha función. La misma puede pensarse como

perteneciente a un grupo de técnicas que mide la similaridad entre dos se-

cuencias de puntos a través del cálculo de un alineamiento óptimo entre

los puntos, de acuerdo a una determinada función de costo. La novedo-

sa I2CEDR se obtiene como resultado de dos cambios clave a una de las

técnicas del mencionado grupo, conocida como Edit Distance on Real sequen-

ce (EDR) [CÖO05]. Por un lado, una función de costo suave es propuesta

para el alineamiento de puntos. Por otro, la noción de Instancia-a-Clase (I2C,

por el término en inglés Instance-to-Class) es incorporada al cálculo de la

distancia. El primer cambio apunta a hacer de EDR una medida más pre-

cisa, permitiendo que pequeñas diferencias entre los puntos alineados sean

tenidas en cuenta. El segundo busca mejorar los resultados de métodos de

clasificación de secuencias no-paramétricos [BSI08], sobre todo en casos de

alta variabilidad intra-clase y pocos datos de entrenamiento. La medida pro-

puesta tiene en cuenta el ordenamiento temporal entre los puntos alineados,

y no requiere aprender parámetros. Un algoritmo de programación dinámi-

ca eficiente es presentado para computar I2CEDR. Nuestro método muestra

una robustez considerable frente al ruido y al desfasaje temporal. Los deta-

llados experimentos en cuatro bases de datos frecuentemente utilizadas en

la literatura avalan la superioridad de nuestro enfoque frente a otros méto-

dos que utilizan funciones de distancia basadas en alineamiento de puntos.

Además, cuando se lo usa en conjunto con descriptor de esqueleto robusto,

el rendimiento de nuestro enfoque resulta comparable al estado del arte.

El segundo método propone un novedoso enfoque de Aprendizaje Mul-
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ti Instancia (MIL por el término en inglés Multiple Instance Learning) [FF10]

para el problema. Una nueva representación para secuencias de esquele-

to es presentada. La misma permite clasificar secuencias de manera efec-

tiva usando una técnica de MIL clásica y simple, conocida como Citation-

kNN [WZ00]. Dicha técnica adapta el enfoque de k vecinos más cercanos (kNN

por el término en inglés k-nearest-neighbors) al contexto de MIL. Proponemos

tres cambios a la formulación estándar de Citation-kNN. Primero, presen-

tamos una extensión natural a la clasificación multi-clase. Luego, ajustamos

el mecanismo de voto de los vecinos más cercanos incorporando pesos de

acuerdo a la distancia del vecino. Por último, adaptamos la técnica para

trabajar sobre múltiples secuencias obtenidas a partir de la secuencia origi-

nal a clasificar, lo cual permite emplear un enfoque multi-parte al trabajar

con secuencias de esqueletos. Validamos experimentalmente tanto los bene-

ficios de la representación presentada como las mejoras logradas mediante

los cambios a Citation-kNN. Los detallados experimentos muestran que el

método es muy tolerante al ruido y al desfasaje temporal. Además, permi-

ten analizar el rol jugado por cada parámetro del método. Los resultados

muestran que la combinación de un descriptor de esqueleto razonablemente

robusto con nuestro enfoque para representar y clasificar secuencias permi-

te obtener resultados comparables al estado del arte. A pesar de tratarse de

un método simple, se obtienen resultados altamente competitivos en cuatro

bases de datos frecuentemente utilizadas en la literatura. Creemos que esto

avala la pertinencia del enfoque basado en MIL para el problema, y abre la

puerta a nuevas investigaciones en esa dirección.

1.3 Publicaciones

El desarrollo de esta tesis ha dado lugar a varios trabajos. Algunos de ellos

ya han sido publicados, mientras que otros han sido enviados o lo serán en

un futuro cercano:

Revistas internacionales con arbitraje:

• Sebastián Ubalde, Norberto Goussies y Marta Mejail, Efficient Descrip-

tor Tree Growing For Fast Action Recognition. Pattern Recognition Let-
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ters, 0167-8655, 2013.

• Norberto A. Goussies, Sebastián Ubalde y Marta Mejail, Transfer Lear-

ning Decision Forests for Gesture Recognition. Journal of Machine Lear-

ning Research, 15:3667-3690, 2014.

Actas de conferencias de congresos internacionales con arbitraje:

• Sebastián Ubalde y Norberto A. Goussies, Fast Non-Parametric Action

Recognition. Proceedings of the 17th Iberoamerican Congress on Pat-

tern Recognition, CIARP 2012, Buenos Aires, Argentina, Septiembre

3-6, 2012. Proceedings. Lecture Notes in Computer Science 7441 Sprin-

ger 2012.

• Sebastián Ubalde, Zicheng Liu y Marta Mejail, Detecting Subtle Ob-

ject Interactions Using Kinect. Proceedings of the 19th Iberoamerican

Congress on Pattern Recognition, CIARP 2014, Puerto Vallarta, Mexi-

co, Noviembre 2-4. Lecture Notes in Computer Science 8827, 770-777,

Springer, 2014.

• Norberto Goussies, Sebastián Ubalde, Francisco Gómez Fernández y

Marta Mejail, Optical Character Recognition Using Transfer Learning Deci-

sion Forests. IEEE International Conference on Image Processing, ICIP

2014, 309-4313, IEEE, 2014.

Enviados:

• Sebastián Ubalde, Francisco Gómez Fernández y Marta Mejail,

Skeleton-based Action Recognition Using Citation-kNN on Bags of Time-

stamped Pose Descriptors. IEEE International Conference on Image Pro-

cessing, ICIP 2016.

A ser enviados próximamente:

• Sebastián Ubalde y Marta Mejail,Skeleton-based Action Recognition Using

Instance-to-Class Edit Distance on Real sequence. IEEE International Con-

ference on Pattern Recognition, ICPR 2016.
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1.4 Organización de la tesis

Esta tesis se organiza de la siguiente manera. En el capı́tulo 2 repasamos tra-

bajo previo y describimos las bases de datos utilizadas en los experimentos.

En el capı́tulo 3 explicamos el primer método presentado en la tesis. En el

capı́tulo 4 presentamos la segunda contribución principal del trabajo. Tanto

el capı́tulo 3 como el 4 incluyen experimentos detallados para los métodos

propuestos. Por último, en el capı́tulo 5 transmitimos nuestras conclusiones

y comentamos posibles opciones de trabajo futuro.
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Chapter 2

Prior works and datasets

This chapter discusses related works and presents the datasets used to test

our methods. Section 2.1 gives an overview of previous works on action

recognition related to the methods presented in the thesis. Section 2.2 de-

scribes four public datasets used in the exeriments of sections 3.3 and 4.3.

2.1 Related Work

In this section we review state-of-the-art approaches for action recognition

from depth videos. More precisely, the review covers skeleton-based meth-

ods, that predict the action performed in a video using only the sequence

of skeletons estimated from the depth maps (see Section 1.1.1). Many meth-

ods [OL13,wan12,LZL10,LS13,YZT12] in the literature work directly on the

raw depth map, without relying on skeleton information. Those methods

are not considered in the review. Moreover, note that several works present

hybrid solutions, that combine skeletal data with raw depth information.

When describing such works, we focus on the skeleton-based aspects of

their solutions. Finally, surveys on traditional action recognition from RGB

data can be found in [WRB11, Pop10, MHK06].

2.1.1 Skeleton-based action recognition review

Previous work in skeleton-based action recognition has focused mainly in

two issues. The first one is the design of suitable spatio-temporal skeleton
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descriptors and proper distance functions for comparing them. The sec-

ond one is the modeling of their temporal evolution. This section reviews

common approaches to the problem, paying special attention to their con-

tributions on both aspects.

The work in [YT12] presents a new skeleton descriptor that combines

information about the static posture, the local motion and the overall mo-

tion of the actor. Variants of this descriptor have been used in several works

since its introduction in [YT12]. To capture the static posture, the relative po-

sitions of the joints within the same skeleton are computed. To represent the

motion information, the relative positions are computed between the skele-

ton and its temporal predecessor. Similarly, overall motion is described by

calculating the relative positions between the skeleton and the first skele-

ton in the sequence. To deal with redundancy and noise, PCA is applied to

the original descriptor. Classification of new sequences is achieved using

the Naive-Bayes-Nearest-Neighbor (NBNN) method [BSI08], that avoids

descriptor quantization and offers good generalization capabilities by con-

sidering Video-to-Class distance instead of the classical Video-to-Video dis-

tance. Further, informative skeleton selection is performed using the raw

depth information.

Seidenari et al. [SVB+13] describe skeletons using four kinematic chains.

The torso joints are considered as composing a single rigid part. Such part

serves as the root of the four chains. The rest of the joints are organized

into first (those adjacent to the torso) and second degree (those connected

to the torso trough a first degree joint) joints. The first degree joints are

expressed in a coordinate system relative to the torso, while the second de-

gree joints are expressed in a coordinate system relative to its parent joint. In

both cases, Cartesian coordinates are used to avoid the gimbal lock problem.

Similar to [YT12], the NBNN method is used for classification. In this case,

however, an extra feature is added to the skeleton descriptors to account for

temporal information. Further, several NBNN classifiers are combined to

independently align different body parts.

Wang et al. [WLWY12a] use the (static) relative position of the joints pre-

sented in [YT12] as the skeleton descriptor, and present the Fourier Tempo-
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ral Pyramid (FTP) to capture the temporal structure of the action. To miti-

gate the effect of noisy data and temporal misalignment, FTPs compute the

evolution of the low-frequency Fourier coefficients along the video, using

a pyramid structure inspired by [LSP06]. Given a set of joints, the notion

of actionlet is defined as the concatenation of the FTP for each joint in the

set. A data mining method is proposed to select discriminative actionlets.

Further, a Multiple Kernel Learning (MKL) approach is used to combine the

discriminative power of the mined actionlets.

Gowayyed et al. [GTHES13] describe the trajectory of each joint using

Histograms of Oriented Displacements (HOD). Specifically, for each pair of

consecutive joint positions, the length and orientation angle of the associ-

ated displacement vector are calculated. The length of the vector is added

to the corresponding bin in an histogram of orientation angles. To capture

global temporal information, histograms are organized into a pyramid, sim-

ilar to the one considered in [WLWY12a]. The final descriptor is obtained

by concatenating the pyramids of each joint. The proposed representation

is speed invariant, and is fast to compute.

The work in [LN06] uses the 3D joint positions as skeleton descriptors,

and model temporal dynamics using Continuous Hidden Markov Models

(CHMM). They observe that low accuracy can be obtained when a single

descriptor (i.e. the coordinates of each of the joints) is used to represent a

skeleton. Therefore, they consider instead several lower-dimensional de-

scriptors, each corresponding to a single joint or a combination of related

joints. The motion model of each lower-dimensional descriptor is learned

with a separate CHMM. Each trained CHMM is considered a weak classi-

fier, that nevertheless has reasonably good performance and different dis-

criminative power for different actions. Because of that, the authors com-

bine them using AdaBoost [FS97] to obtain a stronger classifier.

Xia et al. [XCA12] introduce a new skeleton descriptor and use k-means

clustering to represent each skeleton by a posture visual word. The temporal

evolution of those words is modeled using Discrete Hidden Markov Models

(DHMM). Specifically, joint locations are casted into the bins of a spherical

histogram centered at the actor’s hip and aligned with the actor’s direction.
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To gain robustness against pose variability, each joint votes for several bins

(its actual bin and the surrounding 3D bins), and voting is done trough a

Gaussian weight function. Histograms are reprojected using linear discrim-

inant analysis (LDA) to select relevant bins, and k-means is used to cluster

the reprojected vectors into the posture words. As a result, each action se-

quence is encoded as a sequence of posture words, which is in turn fed into

the DHMM training algorithm.

Focusing on the recognition of domestic activities, the work in [SPSS11]

presents a carefully hand-crafted skeleton descriptor that includes the rel-

ative position of specific joints, such as the feet and hands with respect to

the torso, or the hands with respect to the head. Half-space quaternions

are used to achieve a compact representation of the joint’s orientation. Mo-

tion information of several selected joints is also incorporated into the de-

scriptor. The temporal evolution of the descriptors is modeled using a two-

layered Maximum Entropy Markov Model (MEMM), that considers activi-

ties as composed of a set of sub-activities. The top-layer represents activities,

and the bottom layer represent their associated sub-activities. The associa-

tion between activities and sub-activities is efficiently determined during

inference using a dynamic programming algorithm.

The work in [DWW15] uses the raw joint locations as descriptors, and

leaves the extraction of meaningful features to several Recurrent Neural

Networks (RNN) connected in a hierarchical fashion. Different to percep-

trons, RNNs are neural networks with cyclical connections between cells.

Such recurrent connections can be seen as leading to memorization of pre-

vious inputs. For time sequences, this allows for temporal context to be

taken into account. The commented work decomposes skeletons into five

parts (two arms, two legs and one trunk) and feed them into five Bidirec-

tional RNNs (BRNN). The outputs of the trunk network are concatenated

with the outputs of the other four networks, and the resulting vectors are

fed into four BRNNs that model the movements of neighboring body parts.

A similar scheme is used to obtain two further high level representations,

corresponding to the lower body, upper body and full body. The final out-

put is fed into a single-layer perceptron. To overcome the vanishing gra-
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dient problem [G+12], the highest level network (corresponding to the full

body) uses a Long Short-Term Memory (LSTM) architecture [HS97]. LSTM

networks consists of a set of recurrently connected memory blocks. Each

block contains one or more self-connected memory cells and three multi-

plicative gates: the input, output and forget gates. The multiplicative gates

allow LSTM memory cells to store and access information over long periods

of time.

Based on the observation that not all skeletons in a sequence are dis-

criminative about the performed action, the authors in [VZQ15] add a dif-

ferential gating scheme to the traditional LSTM network that quantifies the

change in information gain caused by successive skeletons. Such quantifi-

cation is measured by the so call Derivative of States (DoS). A large value of

DoS corresponds to skeletons with salient motion information and instruct

the gate units to allow more information to enter the memory cell. The cho-

sen skeleton descriptor combines joint locations, pairwise angles between

limbs, pairwise joint distances and joint velocities.

[ZCG13] uses the same skeleton descriptor as in [YT12], but considers a

Bag-of-Words (BoW) approach for temporal modeling. Similar to [XCA12],

training descriptors are quantized using k-means clustering, and the clus-

ter centers are used as posture visual words. For a given sequence, each

descriptor in the sequence is mapped to its nearest word, and a histogram

is built by counting the number of descriptors associated with each word.

Histograms are used to train a random forest, that is used for classification

of new instances.

Wang et al. [WWY13] divide joints into five groups using the same crite-

ria as in [DWW15]. Using the training data, a dictionary of posture words is

learned for each group by clustering the poses of its associated joints. Each

posture word represents a certain pose of the joints in the group. Data min-

ing techniques are applied to obtain distinctive sets of both co-occurring

spatial configurations of posture words (which are called spatial-part-sets)

and co-occurring sequences of posture words (called temporal-part-sets). A

BoW approach is then applied to condense the information in the part-sets.

Specifically, sequences are represented by histograms that count the pres-
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ence of distinctive part-sets, and SVM is used for classification.

Similar to [DWW15], the raw joint locations are used in [RDE11] as de-

scriptors. The authors observe that not all joints have the same importance

when trying to decide if a skeleton sequence corresponds to a particular ac-

tion. For example, lower body joints should have little or non influence in

deciding if the actor is clapping hands or not. Based on such observation,

their approach associates a weight to each joint depending on its discrimi-

native power. For a given joint, measures representing its intra/inter action

variability are learned from the training data. The former is obtained by av-

eraging the DTW distance between all possible pairs of sequences labeled

with the same action. The latter is computed by averaging the DTW dis-

tance between all the remaining pairs. In both cases, only the descriptor

coordinates associated with the considered joint are used. The (normalized)

difference between the inter-action variability and the intra-action variabil-

ity determines the final weight of the joint. Specifically, larger differences

correspond to larger weights. New sequences are classified by comparing

them to each training sequence using DTW distance. The learned weights

are plugged into the distance function used to compare points in DTW (see

Section 3.2.1).

Relational binary features are proposed in [MR06] as skeleton descrip-

tors, in an attempt to discard uninformative details while retaining impor-

tant pose characteristics. Such features describe geometric relations between

joints using boolean values. For example, one feature might describe the left

hand position as being above (value zero) or below (value one) the head.

Temporal evolution is modeled using the concept of motion templates (MTs).

An MT is learned for each action using a procedure that aligns all the se-

quences for that action using DTW. For a given action, its associated MT

aims at capturing the essence of the action, by identifying periods in time

where certain binary features consistently assume the same value in all the

sequences of that action. Classification of a new sequence is achieved by

computing the DTW distance between the sequence an each training MT.

A special function is proposed to measure the distance between points in

DTW (see Section 3.2.1), that accounts only for the pose features associated
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with consistent periods in the MT, and discards the rest.

A novel skeleton descriptor is described in [VAC14]. Given two body

limbs, the translation and rotation matrices required to take one limb to

the position and orientation of the other is used to represent their relative

3D geometry. Such matrices are members of the special Euclidean group

SE(3) [MLSS94], which is a Lie group. Therefore, by considering every

pair of limbs, skeletons are described by points in the Lie group SE(3) ×

. . .× SE(3), where × indicates the direct product between Lie groups. As

such Lie group is a curved manifold, points are further map to its lie alge-

bra se(3)× . . .× se(3), to ease temporal modeling and classification. Skele-

ton sequences are thus represented as curves in the mentioned Lie algebra.

Moreover, a nominal curve is computed for each action, and all the training

curves are warped to their corresponding nominal curve using DTW. Fi-

nally, the FTP representation of [WLWY12a] is used to describe sequences,

and classification is performed using SVM.

The work in [OBT13] represents skeletons by the relative azimuth and

elevation angles of each joint with respect with its parent. Considering such

representation, each joint can be associated with two temporal series, de-

scribing the evolution of the two angles along the action sequence. Tempo-

ral modeling is achieved by computing the distance between every possible

pair of series. Therefore, if m is the number of angles in the skeleton repre-

sentation (and thus the number of series), the action sequence is represented

by a vector of
m(m−1)

2 elements. The authors found that simple distance

functions between series (e.g. the Euclidean distance) lead to better results

for this representation than more complex functions such as DTW. A linear

SVM is used for classification.

2.2 Datasets

This section describes the four datasets used in our experiments: MSRDaily-

Activity3D, MSRAction3D, UTKinect and Florence3D. In every case, videos

show a single actor performing an action. Each video is labeled according

to the performed action. Skeleton data is provided for all the videos.
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For each dataset, we present a general overview, we show example frames

and we describe the training/testing setting followed in the experiments.

Specifically, we detail which videos are considered as training data and

which videos are used for testing. Moreover, we make explicit how the per-

formance measure (namely, the average class accuracy) reported in sections

3.3 and 4.3 is computed. Further, we indicate which part of the data was

used for parameter optimization via leave-one-actor-out cross-validation

(i.e all sequences belonging to the same person are associated with the same

fold).

2.2.1 MSRDailyActivity3D dataset

The MSRDailyActivity3D dataset [WLWY12a] consists of several action se-

quences captured with a Kinect device. It was designed with daily activities

in mind. As such, actions take place in a living room containing a sofa, and

the actor interacts with typical objects found in domestic spaces. There are

16 actions: drink, eat, read book, call cellphone, write on a paper, use laptop, use

vacuum cleaner, cheer up, stay still, toss paper, play game, lay down on sofa, walk,

play guitar, stand up and sit down. Ten different subjects are recorded. If pos-

sible, each subject performs an action twice: one standing next to the sofa

and the other sitting on the sofa. Overall, there are 16× 2× 10 = 320 action

sequences. Figure 2.1 shows some example RGB frames.

This dataset is very challenging. First, the presence of the sofa makes

skeleton tracking difficult. As a consequence, joint positions are quite noisy

and inaccurate. Second, many actions involve similar sets of subtle body

movements, such as read book or write on a paper, that are hard to differentiate

from one another based solely on skeleton information. Finally, the wide

diversity of actors, positions and performing styles leads to large intra-class

variability.

The typical experimental setting on this dataset uses the videos corre-

sponding to half of the subjects as training data, and the videos correspond-

ing to the remaining subjects as testing data. In the experiments described

in sections 3.3 and 4.3, average class accuracy is computed following such
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Figure 2.1: Example RGB frames of the MSRDailyActivity3D dataset.

typical setting. For parameter selection, we optimize the average class ac-

curacy via leave-one-actor-out cross-validation on the training data.

2.2.2 MSRAction3D dataset

The action sequences in the MSRAction3D dataset [LZL10] were captured

with a depth sensor similar to the Kinect device. The actions were chosen

in the context of hands-free game console interaction. Therefore, they cover

the various movements of arms, legs, torso and their combinations. There

are 20 actions: high arm wave, horizontal arm wave, hammer, hand catch, forward

punch, high throw, draw x, draw tick, draw circle, hand clap, two hand wave,

side-boxing, bend, forward kick, side kick, jogging, tennis swing, tennis serve, golf

swing, pickup & throw. Each action was performed by 10 subjects for 2 or 3

times. Overall, the dataset includes 577 action sequences. Figure 2.2 shows

example depth frames.

This is undoubtedly the most popular dataset in the literature. Despite a

somewhat low intra-class variability (subjects are facing the camera during
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Figure 2.2: Example depth frames of the MSRAction3D dataset.

the performance and use their right arm or leg whenever the action involves

a single arm or leg), it is also considerably challenging. Specifically, many

of the actions are highly similar to each other, leading to a large inter-class

similarity.

The typical experimental setting presented in [LZL10] divides the dataset

into three subsets AS1, AS2 and AS3, each having 8 actions. Subsets AS1

and AS2 are intended to group actions with similar movement, while subset

AS3 is intended to group complex actions together. For each subset, such

typical setting follows a cross-subject scheme (presented in [LZL10]), that

uses half of the subjects for training and the remaining half for testing. In

the experiments described in sections 3.3 and 4.3, average class accuracy is

computed by averaging the results for AS1, AS2 and AS3. For parameter

selection, we optimize the average class accuracy via leave-one-actor-out

cross-validation on the training subjects, using a single set of 20 actions.

2.2.3 UTKinect dataset

The UTKinect dataset [XCA12] was collected using a Kinect device, with

focus on indoor activities. It includes 10 actions: walk, sit down, stand up, pick

up, carry, throw, push, pull, wave and clap hands. Each action is performed
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Figure 2.3: Example frames of the UTKinect dataset.

twice by 10 actors, for a total of 10× 2× 19 = 200 videos. Figure 2.3 shows

some example frames.

The dataset is challenging for several reasons. First, sequences where

captured from different views. Second, sequences corresponding to the

same action can be very different from each other. For example, some actors

pick up objects with one hand while others do it with both hands. Third,

the duration of the action sequences can vary considerably, ranging from 5

to 120 frames. Finally, body parts might be out of the scene or occluded by

objects, hurting the performance of the skeleton tracker.

In our experiments, we used the cross-subject setting from [ZCG13], that

uses half of the subjects for training and the remaining subjects for testing.

Average class accuracy reported in sections 3.3 and 4.3 for our methods is

computed following such setting. For parameter selection, we optimize the

average class accuracy via leave-one-actor-out cross-validation on the train-

ing data.
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Figure 2.4: Example frames of the Florence3D dataset.

2.2.4 Florence3D dataset

This dataset was captured using a Kinect device for the work in [SVB+13].

It contains 9 actions: wave, drink from a bottle, answer phone, clap, tight lace,

sit down, stand up, read watch and bow. Each action was performed by 10

subjects for 2 or 3 times. Overall, there are 215 action sequences. Figure 2.4

shows example frames.

This dataset has considerable intra-class variability. For example, some

subjects perform a given action using their left hand, while some other use

their right hand. Furthermore, several actions involve the same set of move-

ments, like drink from a bottle and answer phone.

As with the UTKinect dataset, we used the cross-subject setting from

[ZCG13] to obtain the average class accuracy reported in sections 3.3 and

4.3, and optimize the average class accuracy via leave-one-actor-out cross-

validation on the training data for parameter selection.
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2.3 Resumen

En este capı́tulo se hace un repaso de los principales trabajos relacionados

existentes en la literatura para el problema encarado en la tesis, y se descri-

ben las cuatro bases de datos utilizadas en los experimentos de las secciones

3.3 y 4.3.

La revisión del estado del arte (sección 2.1) se concentra en aquellos

métodos de reconocimiento de acciones en videos de profundidad basados

en secuencias de esqueletos. Muchos trabajos utilizan directamente la infor-

mación de profundidad, descartando la información correspondiente al es-

queleto. Dichos trabajos no son considerados en la revisión, ya que su enfo-

que se encuentra demasiado alejado del considerado en la tesis. Asimismo,

para las técnicas hı́bridas que consideran tanto la información de esquele-

to como la información de profundidad, la revisión sólo tiene en cuenta los

aspectos de las mismas relacionados al esqueleto.

Por cada trabajo comentado, se describen principalmente dos aspectos

del mismo. El primero involucra el descriptor de esqueleto considerado y/o

la medida de similaridad utilizada para comparar descriptores. El segundo

es el enfoque elegido para modelar la evolución temporal de los descripto-

res.

La sección 2.2 describe las bases de datos utilizadas en los experimen-

tos de la tesis. Se trata de cuatro bases datos que incluyen información de

esqueleto, en su mayor parte obtenida usando el algoritmo de seguimiento

incluido con Microsoft Kinect, basado en el trabajo de [SSK+13]. Por cada

base, se describen las acciones consideradas, se muestran imágenes de ejem-

plo y se comentan las caracterı́sticas principales de sus videos, enfocándose

en aquellas más desafiantes. Además, se explica qué parte de los videos es

usada para entrenamiento, y qué parte para testing. Asimismo, se detalla

cómo se calculan las medidas de performance reportadas en las secciones

de resultados.
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Chapter 3

Action recognition using

Instance-to-Class Edit Distance on

Real sequence

This chapter describes one of the two novel methods for action recognition

presented in the thesis. At its core lies a new technique for comparing se-

quences, obtained as the result of two modifications to a popular distance

function between sequences. Section 3.1 motivates our method by focusing

on specific aspects of the previous works. Section 3.2 presents the men-

tioned technique and the proposed approach for action recognition. Finally,

Section 3.3 experimentally evaluates our method and compares it with the

state-of-the-art.

3.1 Introduction

Modeling the temporal evolution of skeleton descriptors is a challenging

task. The reasons, discussed in detail in Section 1.1.1, are mainly related

to the noisy skeletons, and the inherently large intra-class variability/inter-

class similarity. A detailed description of common approaches to the prob-

lem of skeleton-based action recognition can be found in Section 2.1.1. We

now present a general review of such approaches, focusing specially in the

temporal evolution model proposed by each particular method.
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Several works use generative models such as Hidden Markov Models

(HMM) [LN06,XCA12,SPSS11]. These methods suffer with limited amount

of training data, as their training algorithms are prone to overfitting. More-

over, many works are based on Motion Capture (MoCap) data [BW95]. Skele-

tons computed from depth maps sequences are generally more noisy than

those obtained through MoCap systems. When the difference between the

actions is small, determining the number of states (as required in HMM) is

usually difficult, which undermines the performance of these models.

Recurrent Neural Networks have also been employed, with relative suc-

cess [VZQ15, DWW15]. These are very flexible classifiers for time series,

that can model contextual time information. However, they tend to overfit

when the amount of available training data is limited, as is usually the case

in action recognition problems. Further, the amount of context information

that can be used in practice tends to be very limited, as the signal of a given

input decays too fast as to influence the network at distant time steps, an ef-

fect commonly known as the vanishing gradient problem. Early stopping, in-

put noise and weight noise are among the most popular techniques to deal

with the overfiting problem, while long short-term memory LSTM proved

effective against the gradient problem [G+12]. While promising results are

reported for these methods on certain datasets (see for example Table 4.2),

careful tuning is required to successfully take advantage of the above com-

mented techniques.

Other approaches [WLWY12a,GTHES13,VAC14] build a high level pyra-

midal description of the temporal sequence based on the skeletons features.

Wang et al. [WLWY12a] present the Fourier Temporal Pyramid (FTP). To

mitigate the effect of noisy data and temporal misalignment, they compute

the evolution of the low-frequency Fourier coefficients along the video, us-

ing a pyramid structure. In [GTHES13], the trajectory of each joint is de-

scribed using Histograms of Oriented Displacements (HOD), and a pyra-

mid structure similar to the one used in [WLWY12a] to account for temporal

information. [VAC14] also considers the same pyramid representation, but

sequences belonging to the same action are warped to a nominal curve for

that action using Dynamic Time Warping before computing the pyramid.
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The main problem with these approaches is that the temporal structure of

the sequence is only roughly captured by the pyramid representation.

Similarly, some works follow a Bag-of-Words approach [ZCG13,WWY13].

Employing a clustering technique, base descriptors are quantized into words,

yielding a codebook. Videos are then represented as histograms of quan-

tized descriptors. The main problem with these sort of approaches is that

discriminative information is considerably reduced in descriptor quantiza-

tion [BSI08]. Moreover, global time information is discarded as only the

presence of words is taken into account, but not their temporal positions.

The works in [YT12, SVB+13] avoid descriptor quantization by using the

Naive-Bayes-Nearest-Neighbor (NBNN) [BSI08] method for classification.

However, temporal information is only roughly encoded in the descriptors.

This fact, coupled with the independence assumption underlying NBNN

(namely, that descriptors are i.i.d. given the action class), can lead to inac-

curate temporal representations. In addition, when considerably different

densities in descriptor space exist among the actions, classification might be

biased towards certain classes.

More related to our approach is the usage of Dynamic Temporal Warping

(DTW) [RDE11,MR06,VAC14,VSRCC09,GD+95,SMA11]. DTW is probably

the most popular technique among a group of related similarity measures

that allow non-linear alignments between time series. It is undoubtedly

the most used within the group for the problem of action recognition from

skeletal data. Other similarity measures in the group include the Frechet

distance [EM94], the Edit Distance with Real Penalty [CN04], the Longest

Common Subsequence [VKG02] and the Edit Distance on Real Sequence

[CÖO05].

These similarity measures present certain features that make them at-

tractive for the problem of action recognition from skeletal sequences. On

the one hand, they have the ability to deal with non-linear variations in

the time dimension (different speeds, temporal misalignment, etc.). On

the other, they specifically take into account the temporal order of the data

when aligning series. That is, if position i in series X is aligned to position

j in sequence Y, then positions larger than i in X can only be aligned to
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positions larger than j in Y.

However, the performance of classification methods based on these mea-

sures heavily depends on the approach used to compare the points in the

series. Even with a considerably robust approach, results can suffer in cases

of very noisy data (such as skeletons computed from depth images).

In this chapter, we present a distance function that aims at mitigating

these problems. Our proposal extends the Edit Distance on Real sequence

(EDR) [CÖO05], a robust and accurate similarity measure between time se-

ries. We introduce two key improvements to EDR: a weighted matching

scheme for the points in the series and a modified aligning algorithm based

on the concept of Instance-to-Class [BSI08] distance. The resulting distance

function takes into account temporal ordering, requires no learning of pa-

rameters and is highly tolerant to noise and temporal misalignment.

We describe a method for action recognition on skeleton sequences based

on the presented distance function, and perform extensive experiments on

four datasets, comparing our approach with other methods. The presented

method proves superior to other approaches based on distance functions

between time series. Further, results show that, when coupled with a robust

skeleton descriptor, its performance is comparable to the state of the art.

3.2 Recognizing actions using Instance-to-Class

Edit Distance on Real sequence

This section presents a new method for skeleton-based action recognition.

Its core component is a new approach to the temporal modeling of skeletal

sequences, based on a novel technique for comparing time series.

Section 3.2.1 formalizes the notion of time series and reviews classical

techniques for comparing them, focusing on those computing distance func-

tions defined over the raw series representation. The main problems of such

techniques in dealing with realistic data are highlighted. Section 3.2.2 intro-

duces a new similarity measure as an extension to a particular technique.

Finally, Section 3.2.3 describes the complete action classification method, in-
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cluding the role played in it by the proposed measure.

3.2.1 Comparing time series

A time series is a sequence of d dimensional points A = (a1, a2, . . . , aN),

ai ∈ R
d ∀ 1 ≤ i ≤ N, usually produced by an underlying movement

during which values are sampled at uniformly spaced time instants. Note

that some works use the term trajectory for this kind of sequence. In the

following, we use the terms series, time series and sequence interchangeably.

In addition, we shall talk of similarity measure, while most of the time we

are actually measuring dissimilarity. Further, we usually employ the term

distance or distance function when referring to similarity measures (note that

by distance we do not necessarily mean a distance metric).

Many techniques have been used for comparing time series, with con-

tributions coming from a variety of domains. All of them focus either on a

specific format for representing the series, or on a particular distance func-

tion for measuring the similarity between different series.

Among the ones focusing on series representation, Piecewise Linear Ap-

proximation (PLA) is a popular choice [Pav73,SZ96] for noise filtering. This

technique approximates the original series using a sequence of linear func-

tions. Transformation to the frequency domain is another common proce-

dure [HKT99, PM02, WLWY12a]. Typical transformations are the Discrete

Fourier Transform (DFT) and the Discrete Wavelet Transform (DWT). Rep-

resenting the original series by its DFT or DWT coefficients is an effective

way of dealing with temporal misalignment. Further, discarding coeffi-

cients corresponding to high frequency components can lead to significant

noise robustness. Feature-based representations have also been employed

several times [MWLF05,WWY13]. Local segments are quantized into words,

and the series is represented by histograms (or pyramids) of word occur-

rences. Also frequent is the use of model-based techniques [XY04], that al-

low for prior knowledge about the process generating the series to be taken

advantage of. Once a model for such process is trained, similarity is based

on the likelihood that a series was generated by that model. Hidden Markov
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Model is a classical example.

More related to our approach are techniques based on distance functions

defined over raw series representations. The most basic options align the

ith point on one time series with the ith point on the other, and sum the

distance between each of the aligned points. These sort of measures are very

sensitive to distortions in the time dimension and will typically produce

poor similarity scores for many real world problems.

Non-linear (elastic) alignment methods have been proposed to overcome

this weakness of basic distance functions. These techniques allow similar

points to match even if they are out of phase in the time axis. Several dis-

tance measures using this kind of elastic matching can be found in the liter-

ature. In the following we describe three relevant examples. We pay special

attention to one of them, called Edit Distance on Real sequence, as our pro-

posed method (Section 3.2.2) builds upon this particular technique

Elastic matching over raw series representations

The first two examples of elastic distances described in this section are Frechet

and Dynamic Time Warping. Both can be explained using a structure called

warping path. Therefore, we introduce such structure before explaining the

distances.

Let A = (a1, a2, . . . aN) and B = (b1, b2, . . . , bM) be times series, with

ai, bj ∈ R
d ∀ 1 ≤ i ≤ N and 1 ≤ j ≤ M. An (N, M)-warping path

(or simply a warping path when N and M are clear) is a sequence p =

(p1, . . . , pL), with pt = (it, jt) ∈ [1, N]× [1, M] for 1 ≤ t ≤ L, satisfying the

following conditions:

(i) Boundary condition: p1 = (1, 1) and pL = (N, M).

(ii) Monotonicity condition: i1 ≤ i2 ≤ . . . ≤ nL and j1 ≤ j2 ≤ . . . ≤ jL.

(iii) Continuity condition: it − it−1 ≤ 1, jt − jt−1 ≤ 1 and ‖pt − pt−1‖ 6= 0

∀ 1 < t ≤ L

A warping path p = (p1, . . . , pL) defines an alignment between series A

and B where the element aitof A is paired with the element bjt of B. Condi-
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a1 a2 a3 a4 a5 a6

b1 b2 b3 b4 b5

Figure 3.1: A schematic example of a warping path.

tion (i) enforces that the first (last) elements of A and B are aligned to each

other. I.e., no portions of the sequences are left out of the alignment. Con-

dition (ii) states that, whenever position i in A is matched to position j in B,

positions larger or equal than i in A can only be matched to positions larger

or equal than j in B. Finally, condition (iii) requires that no element in A or

B is omitted and there are no replications in the alignment. Figure 3.1 shows

an example warping path.

Both Frechet distance and DTW optimize, over all possible warping paths,

some measure that depends on the cost of aligning points ait and bjt . The

main difference between them lies in the optimized measure. We next present

the Frechet distance and describe its chosen measure. In doing so, we point

out potential problems of such measure. Then we introduce DTW and ex-

plain why it uses a more robust measure than Frechet.

Given sequences A = (a1, a2, . . . , aN) and B = (b1, b2, . . . , bM), the Frechet

distance between them Fre(A, B) can be defined recursively as:

Fre(A, B) =


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(3.1)

where Rest(S) denotes the subsequence of S obtained by removing its first

point and cost(a, b) = d(a, b), with d(·) a given Lp distance.

The measure optimized by Frechet over all possible warping paths is
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the maximum cost. Given a warping path p = (p1, . . . , pL) between A =

(a1, a2, . . . , aN) and B = (b1, b2, . . . , bM), with pt = (it, jt) ∈ [1, N]× [1, M],

the maximum cost mcp(A, B) is defined as:

mcp(A, B) = max
t=1,...,L

cost(ait , bjt) (3.2)

where cost(·) is defined as in Equation 3.1.

The Frechet distance between A and B is therefore the maximum cost of

a warping path p∗ for which the maximum cost is minimum:

Fre(A, B) = mcp∗(A, B) (3.3)

Frechet distance is defined in terms of the maximum cost of a warping

path. This dependence on a maximum measure undermines it robustness

for many real world scenarios. The computed distance can be severely dis-

torted by noise and outliers. Sum or average-based measures, on the other

hand, help to smooth out computations, and are typically more tolerant to

the presence of these artifacts. Dynamic Time Warping is an example of

such measures.

Given sequences A = (a1, a2, . . . , aN) and B = (b1, b2, . . . , bM), the DTW

distance between them DTW(A, B) can be defined recursively as:

DTW(A, B) =
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(3.4)

where again Rest(S) denotes the subsequence of S obtained by removing its

first point and cost(a, b) = d(a, b), with d(·) a given Lp distance.

The measure optimized by DTW over all possible warping paths is the

total cost. Given a warping path p = (p1, . . . , pL) between A = (a1, a2, . . . , aN)
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and B = (b1, b2, . . . , bM), with pt = (it, jt) ∈ [1, N] × [1, M], the total cost

tcp(A, B) is defined as:

tcp(A, B) =
L

∑
t=1

cost(ait , bjt) (3.5)

where cost(·) is defined as in Equation 3.1.

The DTW distance between A and B is therefore the total cost of a warp-

ing path p∗ for which the total cost is minimum:

DTW(A, B) = tcp∗(A, B) (3.6)

DTW performance deteriorates with noisy data as, when matching all

the points (recall condition (iii) in the definition of warping path), it also

matches the outliers, distorting the true distance between sequences. The

distortion can be severe because Lp norms are used to compute the distance

between the aligned points. Edit Distance on Real sequence (EDR), pre-

sented next, overcomes these problems.

EDR is based on the Edit Distance (ED) [WF74], also refered to as Leven-

shtein distance. Given a source sequence A and a target sequence B, the ED

between them is the number of insert, delete or replace operations needed

to convert A into B. Determining the operations that need to be applied

requires the ability to compare the individual elements in the sequences.

ED measures the similarity between sequences of discrete symbols. As a

consequence, elements are compared for equality. EDR, however, works on

sequences of points in R
d. As such, it compares elements based on proxim-

ity. Specifically, a threshold ǫ ∈ R is used for point matching. Two points ai

and bj from sequences A and B respectively are said to match if d(ai, bj) < ǫ,

where d(.) is a given distance function.

The EDR between two sequences A and B is the number of insert, delete

and replace operations needed to transform A into a sequence E that matches

B. Two sequences A and B are said to match if they have the same length

and each element in A matches the correspondent element in B. In other

words:
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match(A, B) ≡ |A| = |B| ∧ (d(ai, bi) < ǫ ∀1 ≤ i ≤ |A|) (3.7)

where ǫ is the threshold used for element matching, d(·) is a distance func-

tion between points and | · | denotes length.

Formally, given sequences A = (a1, a2, . . . , aN) and B = (b1, b2, . . . , bM),

and a real number ǫ, EDR is defined as:

EDRǫ(A, B) =
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(3.8)

where Rest(S) again denotes the subsequence of S obtained by removing its

first point and costedr(·) is defined for a given distance function d(·) between

points as follows:

costedr(ǫ, a, b) =











0 if d(a, b) < ǫ

1 Otherwise
(3.9)

The criteria used for setting the value of ǫ strongly depends on the con-

sidered distance function between points d(·). A common choice is for d(·)

to be the Euclidean distance and for ǫ to be set to min(Ψ(A), Ψ(B)) where

Ψ(A) and Ψ(B) are the sum of the coordinate-wise standard deviations of A

and B respectively. The two last terms in the minimization in Equation 3.8

correspond to delete and insert operations respectively, while the first term

corresponds either to a match or to a replacement.

Just as DTW optimizes a measure over all possible warping paths, EDR

does it over all possible instances of a structure called trace. Intuitively,

given sequences A and B and a threshold value ǫ, a trace describes how

a series of edit operations transforms A into a sequence E that matches a

sequence B, but ignoring the order in which changes happen and any re-

dundancy in the series of operations.
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b1 b2 b3 b4 b5

Figure 3.2: A schematic example of a trace.

Let A = (a1, a2, . . . aN) and B = (b1, b2, . . . , bM) be times series, with

ai, bj ∈ R
d ∀ 1 ≤ i ≤ N and 1 ≤ j ≤ M. An (N, M)-trace t (or simply

a trace when N and M are clear) is a set of ordered pairs (i, j) of integers

satisfying:

(i) 1 ≤ i ≤ N, 1 ≤ j ≤ M

(ii) for any two distinct tuples (i1, j1) and (i2, j2) in t:

(a) i1 6= i2 and j1 6= j2;

(b) i1 < i2 ⇐⇒ j1 < j2.

A tuple (i, j) can be seen as a line joining point i of sequence A with point

j of sequence B. We say that the line (i, j) touches positions i and j, and that

points ai and bj are connected. Condition (i) states that i and j are actually

withing the limits of the sequences. Condition (iia) ensures each position

(either in A or in B) is touched by at most one line. Condition (iib) states

that lines cannot cross. A line (i, j) indicates either a match or a replacement

operation. If d(ai, bj) < ǫ, ai matches bj and ai is left unchanged. Otherwise,

ai is replaced by bj. Positions of A not touched by any line represent points

of A deleted by the series of operations. Similarly, untouched positions of B

represent points inserted in A. An example trace is shown in figure 3.2.

Traces are very similar to warping paths. However, they differ from

them in two ways. First, in a warping path a point from one of the se-

quences may be connected to several points from the other sequence, while

in a trace each point is connected to at most one other point. Second, in a

warping path every point is connected to at least one other point, while in a

trace points may not be part of any connection.

The measure optimized by EDR over all possible traces is the edit cost.
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Given a trace t between A = (a1, a2, . . . , aN) and B = (b1, b2, . . . , bM), and a

threshold value ǫ, the edit cost ect(ǫ, A, B) is defined as:

ect(ǫ, A, B) = I + D + ∑
(i,j)∈t

costedr(ǫ, ai, bj) (3.10)

where I and D are the number of positions in A and B respectively left

untouched by lines in the trace, and costedr(·) is definied as in Equation 3.9.

For a given ǫ, EDRǫ(A, B) is therefore the edit cost of a trace t∗ for which

the edit cost is minimum:

EDRǫ(A, B) = ect∗(ǫ, A, B) (3.11)

Like warping paths, traces define alignments between sequences. There-

fore, both DTW and EDR optimize a cost over all possible alignments. This

optimization process gives them the ability to deal with temporal misalign-

ment. However, they crucially differ in the considered alignments and the

criteria used to assign costs to each alignment. On the one hand, EDR al-

lows unmatched points (corresponding to positions not touched by any line

in Figure 3.2). This is different from DTW, that requires all points to be

matched (as illustrated in the example of Figure 3.1 by the absence of un-

connected points). On the other hand, EDR quantizes distances between

points to 0 or 1 when computing the cost of a given alignment, whereas

DTW uses the raw distance between points. The combination of this two

elements (i.e. allowing unmatched points and quantizing distances), makes

EDR more robust than DTW to noise and outliers.

The EDR definition in Equation 3.8 suggests that an algorithm for com-

puting the distance can be obtained using a dynamic programming ap-

proach. The algorithm stores the cumulative distance in a matrix D ∈

R
(N+1)×(M+1) indexed from zero (N and M are the number of elements in

the sequences). The cost of the optimal trace between the first i elements of

A and the first j elements of B is stored at Di,j. An initialization step sets

D0,j = j and Di,0 = i ∀ 0 ≤ i ≤ n and 0 ≤ j ≤ m. As the value in Di,j can be

computed from the values of Di−1,j, Di,j−1 and Di−1,j−1, carrying out com-

putations in a specific order allows the algorithm to reuse previous results.
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When the algorithm finishes, the EDR distance between A and B is stored

at Dn,m. The pseudo-code of the dynamic programming algorithm is shown

in Algorithm 1. It is not difficult to see that the temporal complexity of the

algorithm is in O(NM).

Algorithm 1 Compute EDR distance between 2 time series

Require: Time series A = (a1, a2, . . . aN) and B = (b1, b2, . . . , bM), matching

threshold ǫ ∈ R

1: function EDR(ǫ, A, B)

2: D ← new matrix ∈ R
(N+1)×(M+1)

3: Di,0 ← i ∀ 0 ≤ i ≤ N

4: D0,j ← j ∀ 0 ≤ j ≤ M

5: for i← 1, N do

6: for j← 1, M do

7: ins← Di,j−1 + 1

8: del ← Di−1,j + 1

9: mr ← Di−1,j−1 + costedr(ǫ, ai, bj)

10: Di,j ← min(ins, del, mr)

11: end for

12: end for

13: return DN,M

14: end function

3.2.2 A new time series similarity measure

In this section we present new similarity measure between time series, based

on EDR. This novel distance function is the result of two improvements to

the original EDR, which we introduce in an incremental fashion.

The first improvement introduces a soft cost for comparing points. We

call Edit Distance on Real sequence with Soft matching (EDRS) the distance

function obtained by adding the soft cost mechanism to EDR. The second

improvement incorporates the notion of Instance-to-Class (I2C) distance to

EDRS. The resulting technique is called Instance-to-Class Edit Distance on Real
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sequence (I2CEDR). For each new distance presented in this section, we dis-

cuss its benefits and illustrate them with examples. Finally, we describe a

dynamic programming algorithm for computing I2CEDR.

Edit Distance on Real sequence with Soft matching

In EDR, matched points add zero to the final distance computation, because

no cost is assigned to aligned points lying within ǫ from each other. On the

other hand, points separated by a distance slightly larger than the match-

ing threshold can only by aligned at a cost of 1 (via a replacement). This

hard criteria for assigning penalties undermines the accuracy of the method.

With this problem in mind, we introduce a soft matching approach, that as-

signs a lower penalty to closer points and a larger one to distant points. The

penalty increases gradually up to the matching threshold. As in EDR, the

cost of aligning points that lie at distances larger than ǫ is 1. The result-

ing distance function can help to reveal and capture very small differences

between sequences while retaining noise robustness.

Several functions can be chosen for assigning penalties. We use a linear

function, that multiples the distance between the points by 1
ǫ . The choice is

lead by the simplicity of the function and the good experimental results.

Equation 3.12 formally defines the Edit Distance on Real sequence with

Soft matching (EDRS) between two sequences A = (a1, a2, . . . , aN) and B =

(b1, b2, . . . , bM), for a given matching threshold ǫ. The definition of EDRS

is the same as EDR (Equation 3.8), except for the cost assigned to aligned

points, which appears in bold:
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



















N if M = 0

M if N = 0

min































EDRSǫ(Rest(A), Rest(B))

+ costedrs(ǫ,a1, b1),

EDRSǫ(Rest(A), B) + 1,

EDRSǫ(A, Rest(B) + 1)































Otherwise

(3.12)
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where Rest(S) again denotes the subsequence of S obtained by removing its

first point, and costedrs(·) is defined as:

costedrs(ǫ, a, b) =











d(a,b)
ǫ if d(a, b) < ǫ

1 Otherwise
(3.13)

In all our experiments, we chose d(·) to be the Euclidean distance and

set the value of ǫ to min(Ψ(A), Ψ(B)) where Ψ(A) and Ψ(B) are the sum of

the coordinate-wise standard deviations of A and B respectively.

In EDRS, insertions, deletions and replacement operations have a cost of

of 1, just as in EDR. However, different to EDR, matchings might also add up

to the final cost of a given trace. In other words, EDRS optimizes a different

measure than EDR over all possible traces. We call such measure the soft edit

cost. Given a trace t between A = (a1, a2, . . . , aN) and B = (b1, b2, . . . , bM),

and a threshold value ǫ, the soft edit cost sect(ǫ, A, B) is defined as:

sect(ǫ, A, B) = I + D + ∑
(i,j)∈t

costedrs(ǫ, ai, bj) (3.14)

where I and D are, as in Equation 3.10, the number of positions in A and B

respectively left untouched by lines in the trace, and costedrs(·) is definied

as in Equation 3.13.

For a given ǫ, EDRSǫ(A, B) is therefore the soft edit cost of a trace t∗ for

which the soft edit cost is minimum:

EDRSǫ(A, B) = sect∗(ǫ, A, B) (3.15)

An example of the effects of the new soft cost can be seen in the fol-

lowing example of three one-dimensional sequences: A = (1, 2, 3, 4, 8), B =

(8, 4, 3, 2, 1) and C = (10, 1, 2, 3, 4). The matching threshold for the following

computations is ǫ = min(Ψ(A), Ψ(B)) = min(Ψ(A), Ψ(C)) = 2.7, where

Ψ(A), Ψ(B) and Ψ(C) are the standard deviations of A, B and C respec-

tively. Clearly, C is more simmilar to A than B: A and C are essentially

the same (except for noise), while B is structurally different to A (in fact, it

is its exact reversal). The EDR distance between A and B, however, is the

same as the EDR distance between A and C. Specifically, EDRǫ(A, B) = 2,
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resulting from the replacements 1− 8, 8− 1 (both at cost 1) and the match-

ings 2 − 4, 3 − 3 and 4 − 2 (all of them at cost 0), and EDRǫ(A, C) = 2,

resulting from the insertion of 10 and the deletion of 8 (both at cost 1) and

the matchings 1− 1, 2− 2, 3− 3 and 4− 4 (all of them at cost 0). On the

other hand, the EDRS distance is smaller for C, as desired. More precisely,

EDRSǫ(A, C) = 2 < EDRSǫ(A, B) = 3.5. The replacements and match-

ings yielding the value of EDRSǫ(A, B) are the same as those considered for

EDRǫ(A, B), but in the soft case the penalties assigned to two of the match-

ings are different from zero (matchings 2− 4 and 4− 2 are both penalized

with 0.75). The matching cost assigned by EDR is too coarse, and can not

distinguish subtle differences in the matched elements.

Instance-to-Class Edit Distance on Real sequence

This section presents a further extension to the distance presented in the

previous section, that aims at improving the results of certain sequence clas-

sification methods based on EDR in cases of large intra-class variability and

small training sets.

Classification methods can be roughly divided into: (a) Learning-based

classifiers, that require an intensive parameter learning phase, and (b) Non-

parametric classifiers, for which learning is based mostly in memorization

of the training data. The latter have several attractive features. Remark-

ably, no calibration phase is required, which avoids large retraining periods

in presence of new data and potential overfitting of parameters. Among

the variants in the non-parametric group, the most common methods are

those based in the Nearest-Neighbor (NN) principle [DHS01], which assigns

a query instance the class of its nearest neighbor in the training dataset.

As pointed out by [BSI08], the use of Instance-to-Instance (I2I) distance

can lead to poor results for NN-based methods in certain situations. Intra-

class variability increases the distance between instances of the same class,

potentially hurting performance. When the number of available training

instances is low, the recognition rate can be severely degraded.

Inspired by [BSI08], we incorporate the idea of computing Instance-to-

Class (I2C) distances (as opposed to I2I) to EDRS. The resulting sequence
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classification method calculates the distance between a query sequence and

those of a given class by matching points from the query with points of

any of the sequences of that class. As a result, the generalization capabil-

ities of NN methods using EDR-based distances are improved. The pre-

sented method exploits the information from different training sequences,

reducing the effect of intra-class variations. Furthermore, as the I2C concept

is adapted to EDR, the temporal order of the aligned points is specifically

taken into account.

Given a sequence A = (a1, a2, . . . aN) and a set of K sequences C =

{C1, C2, . . . , CK} all of them with the same lengths M, and having Ck =

(c1k, c2k, . . . , cMk) for 1 ≤ k ≤ K, and a vector ǫ of K matching thresholds, we

define the Instance to Class Edit Distance on Real sequence (I2CEDR) between

A and C as:

I2CEDRǫ(A, C) =



























































|A| if M = 0

|C1| if N = 0

min































I2CEDRǫ(Rest(A), Rests(C))

+ costI2C(ǫ, a1, (c11, . . . , c1k))),

I2CEDRǫ(Rest(A), C) + 1,

I2CEDRǫ(A, Rests(C) + 1)































Otherwise

(3.16)

where Rest(S) again denotes the subsequence of S obtained by removing

its first point, Rests(W) denotes the set obtained by applying Rest to each

sequence in W (i.e. Rests(W) = {Rest(Wk)|1 ≤ k ≤ |W|}) and costI2C is

defined as:

costI2C(ǫ, a, b) = min
1≤k≤|b|

costedrs(ǫk, a, bk) (3.17)

Given a point a, a sequence of points b and a vector ǫ of |b| matching

thresholds, costI2C(ǫ, a, b) returns the minimum matching cost between a

and every possible point in b. For a given 1 ≤ k ≤ |b|, the cost of matching

a with bk is computed using costedrs as defined in 3.13, using the threshold

ǫk. Thus, for a given position, the point of A at that position is compared for
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matching against every point in a specific position in a sequence of C. In all

our experiments, we set the value of ǫk to min(Ψ(A), Ψ(Ck)) where Ψ(A)

and Ψ(Ck) are the sum of the coordinate-wise standard deviations of A and

Ck respectively.

Note that I2CEDRǫ(A, C) effectively considers the alignment of A with

different sequences obtained by combining points from the sequences in

C. More specifically, it tries every sequence in comb(C), where comb(C) =

{B|( ∀ 1 ≤ i ≤ |B|) ((∃k)( 1 ≤ k ≤ |C|)∧ (cik = bi))}. By considering every

possible sequence in comb(C), it is possible to obtain a low value for the

distance between A and C, even if distances between A and the individual

sequences in C are large. A point ai in A can be matched to points of |C|

different sequences. If A belongs to the same class as the sequences in C,

the chances of finding a point similar to ai at the same position in any of the

|C| sequences is large.

To further clarify the notion of I2CEDR distance, we extend the notion

of trace to describe the alignment of between a sequence and a set of se-

quences. Formally, given a sequence A = (a1, a2, . . . aN) and a set of se-

quences C = {C1, C2, . . . , CK} all of them with the same length M, where

Ck = (c1k, c2k, . . . , cMk) for 1 ≤ k ≤ K, an (N, M, K)-extended trace (or sim-

ply an extended trace when N, M and K are clear) from A to C is a set t of

ordered triples (i, j, k) of integers satisfying:

(1) 1 ≤ i ≤ N, 1 ≤ j ≤ M and 1 ≤ k ≤ K;

(2) for any two distinct triples (i1, j1, k1) and (i2, j2, k2) in t:

(a) i1 6= i2 and j1 6= j2;

(b) i1 < i2 ⇐⇒ j1 < j2.

A triple (i, j, k) can be seen as a line joining point i of sequence A with

point j of sequence Ck. We say that the line (i, j, k) touches positions i and j,

and that points ai and cjk are connected. Condition (1) states that i and j are

actually withing the limits of the sequences, and that k refers to a sequence

in C. Condition (2a) ensures each position (either in A or in C) is touched

by at most one line. Note this implies that, for a given position, at most one
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a1 a2 a3 a4 a5

c11 c21 c31 c41

c12 c22 c32 c42

Figure 3.3: A schematic example of an extended trace.

sequence in C is touched by a line at that position. Condition (2b) states that

lines cannot cross.

A line (i, j, k) indicates either a match or a replacement operation. If

d(ai, cjk) < ǫk, ai matches cjk and ai is left unchanged. Otherwise, ai is re-

placed by cjk. Positions of A not touched by any line represent points of

A deleted by the series of operations. Similarly, untouched positions of C

represent points inserted in A.

Figure 3.3 shows a schematic example of an extended trace. Replace-

ments are shown in dotted red lines, while matchings are shown in green.

In the example, the first and the third points in A are matched with the first

point in C1 and the fourth point in C2 respectively, the second point in A is

replaced by the second point in C2, the fourth and fifth elements in A are

deleted, and either c31 or c32 is inserted into A.

We call Instance-to-Class soft edit cost the measure optimized by I2CEDR

over all possible extended traces. Let t be an extended trace between se-

quence A = (a1, a2, . . . aN) and a set of sequences C = {C1, C2, . . . , CK} all of

them with the same length M, where Ck = (c1k, c2k, . . . , cMk) for 1 ≤ k ≤ K,

and a vector ǫ of K matching thresholds. If I and D are the number of posi-

tions in A and C respectively left untouched by lines in the extended trace,

the Instance-to-Class soft edit cost i2csect(ǫ, A, C) is defined as:

i2csect(ǫ, A, C) = I + D + ∑
(i,j,k)∈t

costedrs(ǫk, ai, cjk) (3.18)

wher costedrs(·) is definied as in Equation 3.13.

For a given ǫ ∈ R
K, I2CEDRǫ(A, B) is therefore the Instance-to-Class

soft edit cost of an extended trace t∗ for which the Instance-to-Class soft

edit cost is minimum:
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I2CEDRǫ(A, B) = i2csect∗(ǫ, A, B) (3.19)

Note that several extended traces may have the same associated Instance-

to-Class soft edit cost. For example, let t be an extended trace including the

tuple (i, j, k) and ǫ the used vector of thresholds. If costedrs(ǫk, ai, cjk) >= 1

(that is, the line corresponds to a replacement operation), (i, j, k) can be re-

placed by any other tuple (i, j, k′) for wich costedrs(ǫk, ai, cjk′) >= 1, with no

change in the Instance-to-Class soft edit cost of the extended trace.

To illustrate the benefits of the I2C approach, consider now the following

toy example of a nearest-neighbor based sequence classification problem.

Sequence A = (1, 1, 1, 5, 5, 5) has to be classified into one of two classes.

Training data includes two sets of sequences C1 and C2. The first set has the

training data for class 1, namely sequences C1
1 = (1.3, 1, 0.9, 2.8, 3.1, 3) and

C1
2 = (3, 3.1, 2.9, 5, 4.9, 5). The second set has the training data for class 2,

namely sequences C2
1 = (1, 1, 1, 1, 1.1, 1.2) and C2

2 = (1, 1, 1, 1.1, 1.2, 1). Note

that class 1 corresponds roughly to sequences consisting of three low num-

bers (with an approximate value of 2), followed by three larger numbers

(with an approximate value of 4). Class 2, on the other hand, is better de-

scribed by a constant sequence with a value of 1 at each position. It is clear

that A should be closer to class 1 than to class 2. However, due to intra-class

variations, A is neither really similar (in terms of EDRS distance) to C1
1 nor

to C1
2 . The problem is that the first three numbers of A are noticeably lower

that 2, while its last three numbers are noticeably larger than 4. The training

sequences in class 1 contain examples where either one or the other of these

two things happen, but no both. Just like A, C1
1 has its first tree values lower

than 2 but, unlike A, its last three values are lower than 4. The inverse hap-

pens with C1
2 . Its last three values are larger than 4 but its first three values

are larger than 2.

As a result, neither C1
1 nor C1

2 yield a low EDRS value when compared to

A. For example, when using a matching threshold ǫ = min(SA, SC1
1
) = 1.05

(SA and SC1
1

are the sum of the coordinate-wise standard deviations of A

and C1
1 respectively), three operations of cost 1 are required to transform A

into C1
1 . Figure 3.4 illustrates this situation.
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A 1 1 1 5 5 5

C1
1 1.3 1 0.9 2.8 3.1 3

EDRS(A, C1
1) = 3.38

0.28 0 0.09

(a)

A 1 1 1 5 5 5

C1
2 3 3.1 2.9 5 4.9 5

EDRS(A, C1
2) = 3.05

0 0.05 0

(b)

Figure 3.4: Traces and EDRS distances between a query sequence A and

two training sequences C1
1 (3.4a) and C1

2 (3.4b). The computed distances are

larger than expected. See text for description.

Unfortunately, even though the last three points of A are not matched

with any point in C2
1 , the first three points of the sequences match exactly,

yielding a distance of EDRS distance of 3, which is lower than the values

obtained for C1
1 and C1

2 . The same thing happens with C2
2 . This is illustrated

in Figure 3.5. As a consequence, A is classified as part of class 2.

On the other hand, the desired result is obtained if I2CEDR is used in-

stead of EDRS. When computing the I2CEDR distance between A and C1,

the first three elements of A are matched with the first three elements of C1
1 ,

and the last three elements of A are matched with the last three elements

of C1
2 . Even though the number of matches obtained when comparing A

with C1
1 or C1

2 alone is small, the I2C approach manages to reveal the high

similarity between A and C1. The key is its ability to match points of the

query sequence with points from different training sequences. The I2CEDR

distance between A and C2 is the same as the EDRS distance between A

and C2
1 or C2

2 , because none of the sequences in C2 has large values in the

last three positions. Therefore, A is classified as part of class 1. Figure 3.6a
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A 1 1 1 5 5 5

C2
1 1 1 1 1 1.1 1.2

EDRS(A, C2
1) = 3

0 0 0

(a)

A 1 1 1 5 5 5

C2
2 1 1 1 1.1 1.2 1

EDRS(A, C2
2) = 3

0 0 0

(b)

Figure 3.5: Traces and EDRS distances between a query sequence A and two

training sequences C2
1 (3.5a) and C2

2 (3.5b). See text for description.

illustrates the situation.

Similar to EDR, the I2CEDR definition in Equation 3.16 suggests a dy-

namic programming approach to compute the distance. Given a sequence

A = (a1, a2, . . . , aN) of length N, and a set of sequences C = {C1, C2, . . . , CK},

all of them with the same length M, and a vector ǫ of K matching thresh-

olds, we now describe an algorithm implementing such an approach to

compute I2CEDRǫ(A, C). Through the description, we use First(A, m) to

denote the subsequence obtained by taking the first m elements of A, i.e.,

given 0 ≤ m ≤ N, we define First(A, m) = (a1, a2, . . . , am). Moreover, we

overload First and use it to denote the the set of sequences resulting from

taking the first m elements of each sequence in the set C. That is, given

a set of sequences C of the same length M, and 0 ≤ m ≤ M we define

First(C, m) = {First(Ci, m)|1 ≤ i ≤ K}.

As with EDR, the algorithm uses a matrix D ∈ R
(N+1)×(M+1)×K indexed

from zero to store the cumulative distance. The distance between First(A, i)

and First(C, j) is stored at arg min
1≤k≤K

Di,j,k. Like EDR, the value in Di,j,k can

be computed from the values of a set of predecessors. Namely, the follow-
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A 1 1 1 5 5 5

C1
1 1.3 1 0.9 2.8 3.1 3

C1
2 3 3.1 2.9 5 4.9 5

I2CEDR(A, C1) = 0.43

0.28 0 0.09

0 0.05 0

(a)

A 1 1 1 5 5 5

C2
1 1 1 1 1 1.2 1

C2
2 1 1 1 1.1 1.2 1

I2CEDR(A, C2) = 3

0 0 0

(b)

Figure 3.6: Extended traces and I2CEDR distances between a query se-

quence A and two sets of training sequences C1 and C2. See text for de-

scription.
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ing 3K values need to be taken into account D{(i−1,j−1),(i−1,j),(i,j−1)}×{1,...,K}.

As with EDR, reusing previous results can be achieved by computing the

values of D in a particular order. The value of I2CEDRǫ(A, C) is stored at

arg min
1≤k≤K

Di,j,k. An initialization step sets D0,j,k = j ∀ 0 ≤ j ≤ M, 1 ≤ k ≤ K

and Di,0,k = i ∀ 1 ≤ i ≤ N, 1 ≤ k ≤ K. Pseudo-code of the described

approach is shown in Algorithm 2.

Algorithm 2 Compute I2CEDR distance

Require: Time series A = (a1, a2, . . . aN), set C = {C1, C2, . . . , CK} of time

series such that Ci = (c1i, c2i, . . . , cMi), vector ǫ ∈ R
K of matching thresh-

olds.

1: function I2CEDR(A, C, ǫ)

2: D ← new matrix ∈ R
(N+1)×(M+1)×K

3: D0,j,k = j ∀ 0 ≤ j ≤ M, 1 ≤ k ≤ K

4: Di,0,k = i ∀ 0 ≤ i ≤ N, 1 ≤ k ≤ K

5: for i← 1, N do

6: for j← 1, M do

7: ins← min D{(i,j−1)}×{1,...,K}

8: del ← min D{(i−1,j)}×{1,...,K}

9: mr ← min D{(i−1,j−1)}×{1,...,K}

10: for k← 1, K do

11: mr ← mr + costedrs(ǫk, ai, cjk)

12: Di,j,k ← min(ins, del, mr)

13: end for

14: end for

15: end for

16: return min D{(N,M)}×{1,...,K}

17: end function

The algorithm has three nested loops. The two outer loops traverse the

N positions of A and the M positions of the sequences in C. The inner

loop traverse the K sequences in C. Besides the inner loop, three minimum

searches among K elements are performed for each position (i, j). All of the

remaining steps have a temporal complexity of O(1). The time complexity
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of the algorithm is thus O(MN(4K)) = O(MNK), which can be reduced to

O(MN) when K ≪ min(M, N), as often happens in many real world action

recognition tasks.

3.2.3 Action recognition with I2CEDR

In this section we describe our proposed action recognition method based

on I2CEDR. The method classifies a query video based on its similarity with

several sets of labeled videos (the training data).

As explained in Section 1.1.1, the posture of the actor at a specific instant

is given by a skeleton, consisting of the 3D coordinates of a set of body joints.

If we let J be the number of joints, then a skeleton contains the location

information of each joint j, i.e. lj = (xj, yj, zj) where 1 ≤ j ≤ J. A sequence

of skeletons serves in turn as the raw representation of an action execution,

encoding the temporal evolution of the actor’s pose.

Several transformations are applied to this basic raw representation to

make it more suitable for action classification. This section makes explicit

those transformations and details the classification procedure for a new

skeleton sequence.

Skeleton normalization

In order to achieve scale, translation and orientation invariance, three nor-

malizations proposed in [VAC14] are applied to the raw skeleton data.

Translation invariance is achieved by subtracting from each joint loca-

tion the location of the hip center. This effectively express the posture in-

formation in hip-centered coordinate system, abstracting from the relative

locations of the actor and the camera.

The second normalization concerns body sizes. The lengths of the seg-

ments connecting adjacent joints (limbs) in a skeleton depends on the con-

sidered subject. This fact increases intra-class variability, making action

recognition more difficult. As this information is not relevant for deter-

mining the performed action, we impose the same limbs lengths for all the

skeletons. To this end, we take one skeleton from the training data as ref-
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erence, and modify the joint locations in the rest of the skeletons in such a

way that their limbs have the same lengths as the reference skeleton, but

without changing the angles between the limbs. Recall from Section 1.1.1

that a skeleton can be seen as a tree. Starting from a root joint in the tree,

the employed procedure moves down the branches modifying each joint lo-

cation, such that the length of the affected limb becomes the same as in the

reference skeleton, while preserving its direction.

To further gain orientation invariance, we rotate the skeletons such that

the x-component of the vector joining the left hip with the right hip has the

same direction as the x-axis.

Skeleton descriptor

Skeleton data can be used directly for classification. However, using a skele-

ton descriptor instead tends to improve the performance. An action execu-

tion is therefore better represented by a sequence of skeleton descriptors.

As commented in Section 2.1.1, many interesting skeleton descriptors

have been proposed in the past. In this work, we compute the pairwise rel-

ative position of the joints (RJP), a popular option that has been used many

times before [VAC14,YT12,WLWY12a,CZN+11]. The following paragraphs

explain the descriptor.

Recall that given a joint 1 ≤ j ≤ J, its (normalized) 3D location is lj =

(xj, yj, zj). The descriptor dj for joint j is computed by taking the difference

between lj and li, for any 1 ≤ i ≤ J ∧ i 6= j:

dj = (dj1, dj2, . . . , dj(j−1), dj(j+1), . . . , djJ) (3.20)

where dji = lj − li.

Note that dj is a 3(J − 1) length vector. The RJP descriptor is a 3(J − 1)J

length vector, obtained by concatenating the descriptors of the J joints:

d = (d1, d2, . . . , dJ) (3.21)

Relative positions describe human posture more naturally than raw joint

locations. For example, the statement “hand next to the head” is an intuitive
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way of describing the action talking on the phone. In practice, this descriptor

has stand out as a discriminative feature, and offered satisfactory perfor-

mance in many previous works.

Sequence length standardization

Recall from Equation 3.16 that I2CEDR distance is defined for a sequence

A and a set of sequences C, all of the same length. Thus, the length of the

skeleton descriptor sequences need to be standardized in the training data

to allow for the use of I2CEDR. Specifically, for every action in the consid-

ered dataset, sequences labeled with that action have to be brought to the

same number of skeleton descriptors. We now describe how this is done in

this work.

Let Ci = {Ci
1, Ci

2, . . . , Ci
Ki} be the set of skeleton descriptor sequences

labeled with action i. The standarized length Mi for class i is chosen to be the

average length of all the sequences in Ci:

Mi =

Ki

∑
k=1

|Ci
k|

Ki
(3.22)

where | · | denotes length.

For a given i and k, with 1 ≤ k ≤ Ki sequence Ci
k = (Ci

1k, Ci
2k, . . . , Ci

|Ci
k|k
),

consisting of |Ci
k| descriptors is transformed into a new sequence Ci

k

′
=

(Ci
1k

′
, Ci

2k

′
, . . . , Ci

Mik

′
) of length Mi. This is achieved by applying a simple

coordinate-wise cubic spline interpolation [DB78], which is explained next.

As described in Equation 3.21, each skeleton descriptor is a 3(J − 1)J

length vector, where J is the number of joints. For any given 1 ≤ c ≤

3(J − 1)J, consider the real sequence Ci
k(c) = (Ci

1k(c), Ci
2k(c), . . . , Ci

|Ci
k|k
(c))

obtained by retaining only coordinate c from each skeleton descriptor in Ci
k.

A cubic spline S is fit to the values in Ci
k(c). The cubic spline S is a peace-

wise function:
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S[x] =



































S1[x] f or 1 ≤ x ≤ 2

S2[x] f or 2 ≤ x ≤ 3

. . .

S|Ci
k|−1[x] f or |Ci

k| − 1 ≤ x ≤ |Ci
k|

(3.23)

where each St, for 1 ≤ t ≤ |Ci
k| − 1, is a cubic polynomial.

Fitting the spline means finding the coefficients of St for 1 ≤ t ≤ |Ci
k| − 1

that let S fulfill certain conditions. The first set of conditions requires that S

equals Ci
k(j) at 1 ≤ t ≤ |Ci

k|:

St[t] = Ci
k(j)[t] ∧ St[t + 1] = Ci

k(j)[t + 1] ∀ 1 ≤ t ≤ |Ci
k| − 1 (3.24)

The second set of conditions intends to make S smooth, by equating the

first and second derivatives of adjacent polynomials at the internal points:

S′t[t + 1] = S′t+1[t + 1] ∧ S′′t [t + 1] = S′′t+1[t + 1] ∀ 1 ≤ t ≤ |Ci
k| − 2

(3.25)

Finally, the second derivatives are required to equal zero at the end-

points. These conditions lead to a linear system that can be easily solved

to find the polynomials coefficients.

The resulting spline is used to find the values in Ci
k(c)

′
, the transformed

1-dimensional sequence of standardized length Mi. For example, the f th

value in Ci
k(c)

′
, with 1 ≤ f ≤ Mi is found by evaluating S at f

|Ci
k|

Mi .

Choice of the matching threshold

Recall from Equation 3.16 that the I2CEDR distance between a sequence A

and set of sequences C = {C1, C2, . . . , CK} depends on a vector ǫ ∈ R
K of

matching thresholds. The values in ǫ play a crucial role in determining the

cost of the considered edit operations, as seen in equations 3.13 and 3.17.

In all our experiments we use the following formula to obtain the value

of ǫk for a given 1 ≤ k ≤ K:
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ǫk = min(Ψ(A), Ψ(Ck)) (3.26)

where given a sequence A of d dimensional points, Ψ(A) is the sum of the

coordinate-wise standard deviations of A:

Ψ(A) =
d

∑
c=1

σA(c) (3.27)

In Equation 3.27 σA(c) denotes the standard deviation of the sequence

obtained by retaining only coordinate c from the points in A. For clarity, in

the following we omit the ǫ when mentioning EDR, EDRS and I2CEDR.

Video classification procedure

The ultimate goal of the presented method is to predict the action label of a

query video, based on the available training data. Training data consists in

turn of several videos, each of them with an assigned action label.

As refreshed at the beginning of Section 3.2.3, actions are represented as

sequences of skeletons. Thus, our method attempts to classify a query skele-

ton sequence based on several training skeleton sequences. Raw training

data is preprocessed using the techniques explained before in this section:

normalization, descriptor computation and length standardization. When

labeling a query skeleton sequence A, the first two techniques are also ap-

plied to A before classification. Therefore, action prediction for a query se-

quence A consists of three steps:

1. Obtain a sequence of normalized skeletons by normalizing each skele-

ton in A,

2. Obtain a sequence of skeleton descriptors by computing a descriptor

for each skeleton normalized in the previous step,

3. Classify the sequence of skeleton descriptors obtained in the previous

step.

Training sequences are organized in sets, according to their label. If L is

the number of possible action labels, the training data consists of L sets Ci
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for 1 ≤ i ≤ L. Step 3 above classifies a sequence A of skeleton descriptors

by comparing it with each of the L sets. The comparison between A and a

given set Ci is done by computing the I2CEDR distance between them. A

possible classification approach is therefore obtained by choosing the pre-

dicted action label l∗ as:

l∗ = arg min
1≤i≤L

I2CEDR(A, Ci). (3.28)

Multi-part approach

Following a trend used in several works [WLWY12a,SVB+13,WWY13], this

basic classification approach is improved by grouping skeleton joints into

body parts, and solving the problem stated in Equation 3.28 for each part.

Specifically, joints are grouped into five body parts. As an example,

part 4 consists of the joints 13 (right hip), 14 (right knee), 15(right ankle)

and 16 (right hip), thus corresponding to the right leg. Recall from equa-

tions 3.20 and 3.21 that a skeleton descriptor is a 3(J − 1)J length vector

d = (d1, d2, . . . , dJ), where J is the number of joints in the skeleton and di

is the 3(J − 1) length vector corresponding to joint i. For a given set p,

we define a function fp that, given a skeleton descriptor, it preserves the

coordinates associated with joints in p, and discards the rest. Formally, if

p = {p1, p2, . . . , pz} is a set of z integers such that 1 ≤ pi ≤ J ∀ 1 ≤ i ≤ z,

fp is a function fp : R
3(J−1)J → R

3(J−1)z such that:

fp((d1, d2, . . . , dJ)) = (dp1
, dp2 , . . . , dpz) (3.29)

We overload fp to describe a function that takes a sequence of skeleton

descriptors A = (a1, a2, . . . , aN) and applies fp to each of them:

fp(A) = ( fp(a1), fp(a2), . . . , fp(aN)) (3.30)

Further, given a set of skeleton descriptors sequences C = {C1, C2, . . . , CK},

we overload fp as:

fp(C) = { fp(C1), fp(C2), . . . , fp(CK)} (3.31)
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The multi-part approach determines the predicted action label l∗ as:

l∗ = arg min
1≤i≤L

∑
p∈P

I2CEDR( fp(A), fp(Ci))

Gp(A)
(3.32)

where Gp(A) is a normalization factor, defined as:

Gp(A) =
L

∑
i=1

I2CEDR( fp(A), fp(C
i)) (3.33)

3.3 Results

In this section we detail and discuss experimental results for the proposed

action recognition method. In our evaluation, we use 4 different datasets:

MSRDailyActivity3D, MSRAction3D, UTKinect and Florence3D. See sec-

tion 2.2 for a thorough description of the datasets.

3.3.1 Evaluation of the proposed EDR extensions

In Section 3.2.2, we present two extensions to original ERD distance. The

first one introduces a soft matching mechanism between points. Allegedly,

this results in a more accurate distance measure (EDRS), since it can now

capture smaller differences between sequences. The second one incorpo-

rates the idea of computing I2C distances to EDRS. We argue that the re-

sulting distance measure (I2CEDR) brings improved performance to nearest

neighbor sequence classification in cases of large intra-class variability and

small training sets.

In order to support these claims, we experimentally compare the three

distance measures (EDR, EDRS and I2CEDR) for the problem of action clas-

sification. Both EDR and EDRS are tested on a classical nearest neighbor

classification scheme: query videos are assigned the action label of the clos-

est (according to EDR or EDRS) video. On the other hand, I2CEDR is tested

using the instance-to-class scheme explained in Section 3.2.3. We further in-

clude a fourth variant in the comparison, corresponding to the multi-part

method described in Section 3.2.3, to evaluate the benefits of using I2CEDR

for that approach.
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Figure 3.7: Evaluation of the proposed EDR extensions. The original EDR

distance is referred to as Hard, while Soft and I2C denote EDRS and I2CEDR

respectively. The term I2C-P denotes the use of I2CEDR combined with the

multi-part approach. See text for details.

Figure 3.7 shows the average class accuracy of the compared variants,

for the four considered datasets. The original EDR distance is referred to as

Hard, reflecting the fact that a hard mechanism is used for point matching.

The soft matching extension EDRS is noted by Soft. I2C indicates in turn the

instance-to-class extension I2CEDR. Lastly, I2C-P denotes the use of I2CEDR

combined with the multi-part approach.

The figure show that EDRS consistently outperforms EDR on every con-

sidered dataset, in some cases by a remarkable amount. Likewise, I2CEDR

outperforms EDRS in every case. The multi-part approach gives some im-

provement in every database, except in UTKinect. Results support our be-
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lief that the extensions introduced in Section 3.2.2 enhance the original EDR

distance. Moreover, they suggest that performance can be further benefited

by using them in conjunction with the multi-part approach of Section 3.2.3.

3.3.2 Comparison of the proposed EDR extensions with other

elastic matching similarity measures

In order to compare EDRS and I2CEDR with other elastic similarity mea-

sures between sequences, we implemented four other distance functions,

and use them for action classification. Among the considered functions,

two of them (the classical Frechet and DTW) are more related to EDRS

than to I2CEDR, in the sense that they compute distances between two se-

quences. As such, they are used in a classic Instance-to-Instance nearest

neighbor classification scheme. The other two are Instance-to-Class versions

of the formers, and thus more related to I2CEDR. They are Instance-to-Class

Frechet (I2CFrechet) and Instance-to-Class Dynamic Time Warping (I2CDTW).

I2CDTW was originally proposed in [WLL+14] for the problem of face recog-

nition.

Figure 3.8 shows the average class accuracy obtained with each distance

function for the four considered datasets.

Frechet obtains the worst performance on every dataset. This is expected

(see Section 3.2.1) since its dependence on a maximum measure makes it

very sensitive to noise and outliers, which tend to be frequent in sequences

of skeleton descriptors. The I2C extension of Frechet shows better results,

although the improvement over the I2I version varies depending on the

dataset. Moreover, it is consistently outperformed by the classical I2I DTW,

suggesting that the replacement of the maximum measure by a sum mea-

sure is more beneficial for performance than the switch from an I2I to an I2C

approach. Regarding our proposed distance functions, the I2CEDR based

method consistently yields the best performance. Further, EDRS is only sur-

passed by I2CEDR (on every dataset) and I2CDTW (on two of the datasets).

EDRS outperforms DTW on every dataset, supporting the effectiveness of

distance quantization combined with soft thresholding.
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Figure 3.8: Comparison of I2CEDR with other elastic matching similar-

ity measures. The presented functions EDRS (referred as EDR Soft) and

I2CEDR (referred as I2C-EDR) are compared with four other measures:

Frechet, Dynamic Time Warping (DTW), Instance-to-Class Frechet (I2C-

Frechet) and Instance-to-Class Dynamic Time Warping (I2C-DTW). See text

for details.

83



3.3 Results 84

It is worth noting that all the results correspond to the basic single-part

classification approach. For simplicity, the multi-part approach described in

Section 3.2.3 was no used for these experiments.

The results support the claim about the superiority of our method for ac-

tion classification with respect to methods using on other sequence distance

functions.

3.3.3 Robustness analysis

In this section we detail a number of experiments aimed at testing the ro-

bustness of the proposed action recognition method. First, we analyze the

effect of adding independent identically distributed white noise to the skele-

tons. Then, we study the impact of local temporal shifts in the sequences.

Our approach is compared with several other methods, based on dif-

ferent modelings of the temporal information. Besides the methods based

on distance functions over raw sequence representations considered in Sec-

tion 3.3.2 (Frechet, DTW, I2CFrechet and I2CDTW), two other approaches

are included in the comparison: Fourier Temporal Pyramids (FTP) from

[WLWY12b], and Hidden Markov Model (HMM) from [LN06]. See Section

2.1.1 for a description of the methods. In every case, the optimal parameters

for FTP and HMM were found by leave-one-actor-out cross-validation (see

Section 2.2 for a description of the technique) on the training actors.

Experiments were carried out for two datasets: MSRDailyActivity3D

and UTKinect. In both cases, we show the relative accuracy obtained by

each of the tested methods, which is defined as the ratio between the aver-

age class accuracy under the perturbed scenario and the average class accu-

racy under the non-perturbed scenario.

Robustness to noise

We evaluated the robustness of the proposed approach to noise, along with

that of several other methods. For this purpose, we corrupted the skeletons

by adding noise from a Gaussian distribution with mean zero and variance

one. We compute the relative accuracy of each method for different amounts
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(a) (b)

Figure 3.9: Relationship between the relative accuracy and the noise stan-

dard variation for several methods on two datasets: MSRDailyActivity3D

(3.9a) and UTKinect (3.9b).

of noise, and studied the resulting behaviors.

Figure 3.9 shows the results for the two considered datasets. While, as

expected, relative accuracy decays with noise in every case, the degree in

which this happens varies depending on the method. Moreover, results on

MSRDailyActivity3D are generally worse than results on UTKinect, which

is reasonable considering that the former is a more challenging dataset.

Frechet exhibits the worst behavior in terms of robustness. The negative

effects of the maximum measure employed by this distance are evidenced

once again. Its I2C version (I2CFrechet) achieves some improvement on the

MSRDailyActivity3D dataset, although it shows less robustness than most

of the other methods. Hidden Markov Model results almost as sensitive

to noise as Frechet, presumably because of the instability of the procedure

used by HMM to compute the hidden states. DTW and EDR (indicated as

EDR Hard in the figure) offer similar robustness, suggesting that the quan-

tization of point distances is not, by itself, enough to make of EDR a more

robust measure than DTW. On the other hand, the incorporation of the soft

matching mechanism seems to give EDR the edge over DTW in terms of ro-

bustness, as EDRS shows larger relative accuracy than DTW for most of the

scenarios. Fourier Temporal Pyramid, I2CDTW and I2CEDR stand out as
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(a) (b)

Figure 3.10: Relationship between the relative accuracy and the temporal

misalignment for several methods on two datasets: MSRDailyActivity3D

(3.10a) and UTKinect (3.10b).

the most robust methods according to the tests. Dropping the Fourier coef-

ficients associated to high frequency components makes Fourier Temporal

Pyramid highly resilient to noise. The increased robustness of I2CDTW and

I2CEDR with respect to its I2I versions comes presumably from their ability

to match points from different sequences within a sequence set, thus miti-

gating the effects of noisy points.

Robustness to temporal misalignment

To test the robustness of our method to temporal misalignment, we circu-

larly shifted every skeleton descriptor sequence in the training data. The

(uncorrupted) testing data was classified by a given method several times,

each corresponding to a different number of shifted frames. Again, we com-

pare the relative accuracy of our approach with that of the other methods.

Figure 3.10 shows the results for the two datasets. Accuracy deterio-

rates for most of the methods as the number of shifted frames increases.

The exception is HMM, which achieves almost the same accuracy for every

scenario. This was expected as it is well known that HMM performance

does not depend on the sequences being aligned. A variety of behaviors is

observed for the rest of the methods.
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Frechet once again gives the worst results on both datasets. This can also

be attributed to the instability caused by the maximum computation. DTW,

EDR, and EDRS show roughly the same robustness. This makes sense, as

the main difference between the three methods does not lie in the ability to

deal with time shifting. A similar reasoning can be used to explain the be-

havior of I2CEDR and I2CDTW. While achieving slightly better results than

their I2I versions for 15 and 20 shifted frames, they show nearly the same

robustness than those methods in most of the scenarios. FTP shows consid-

erable robustness in every case, thanks to its usage of the frequency domain.

Overall, we see that the proposed I2CEDR shows considerable tolerance to

temporal misalignment and stands out as one of the more robust methods

among the compared approaches.

3.3.4 Comparison with the state-of-the-art

In this section, we compare the results obtained by our proposed action

recognition approach with those of several state-of-the-art methods. In or-

der to make a fair comparison, we only consider those works focusing on

skeleton-based action classification. That is, we do not include results cor-

responding to methods employing depth or RGB information.

Table 3.1 shows the average class accuracy of each method for the four

considered datasets. In comparison to the state-of-the-art our method is able

to be on par with previously reported results, achieving competitive perfor-

mance on the four datasets. On the Florence3D dataset, it even outperforms

the best accuracy known to us (85.20%) by 4.30%. On the rest of the datasets,

it is among the top performing approaches.

It is worth mentioning that many of the methods referenced in Table 3.1

( [CPLFR13, YT12, XCA12, ATSS15, SVB+13]) use skeleton descriptors dif-

ferent to the RJP (described in Section 3.2.3) employed in our approach, as

well as different preprocessing techniques. For example, [CPLFR13] consid-

ers a descriptor that extends RJP with joint offset and velocity information,

[YT12] further improves that descriptor by applying Principal Component

Analysis (PCA), [XCA12] uses histograms of joints positions, and [SVB+13]
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MSRDailyActivity3D dataset

Fourier Temporal Pyramid [WLWY12b] 68.00

Weakly-aligned Bag of Poses [SVB+13] 70.00

Proposed method 68.00

MSRAction3D dataset

Hidden Markov Model [XCA12] 78.97

Naive-Bayes-Nearest-Neighbor [YT12] 82.30

Joint Angle Similarities [OBT13] 83.53

Elastic Functional Coding [ATSS15] 85.16

Fourier Temporal Pyramid [WLWY12b] 88.20

DTW Nominal Curve + FTP [VAC14] 88.23

Bag of Temporal and Spatial Part-Sets [WWY13] 90.22

Random Forest [ZCG13] 90.90

Recurrent Neural Networks [DWW15] 94.49

Proposed method 88.42

UTKinect dataset

Random Forest [ZCG13] 87.90

Hidden Markov Model [XCA12] 90.92

Elastic Functional Coding [ATSS15] 94.87

DTW Nominal Curve + FTP [VAC14] 95.58

Proposed method 95.28

Florence3D dataset

Weakly-aligned Bag of Poses [SVB+13] 82.00

DTW Nominal Curve + FTP [VAC14] 85.20

Proposed method 89.50

Table 3.1: Comparison of the proposed approach with the state-of-the-art.
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models the human torso as a rigid part, expressing the position of the joints

in a coordinate system derived from the torso orientation. Therefore, Ta-

ble 3.1 should be approached with caution in terms of temporal modeling

comparison, as the differences in accuracies may be caused by several other

factors. Nevertheless, the table shows that the proposed method can yield

very satisfactory results, and encourages the use of the I2CEDR distance for

action recognition based on skeleton sequences.

3.4 Resumen

En este capı́tulo se presenta el primero de los dos métodos propuestos en la

tesis para el reconocimiento de acciones en videos de profundidad. El mis-

mo está basado en una nueva técnica para comparar secuencias, obtenida

como resultado de dos modificaciones a una conocida medida de similari-

dad entre secuencias.

La sección 3.1 presenta un repaso general a los enfoques elegidos por

trabajos anteriores para modelar la evolución temporal de secuencias de es-

queletos. Dicho repaso analiza los principales defectos de los métodos des-

criptos y sirve como motivación para presentar el enfoque propuesto en la

tesis.

La sección 3.2 presenta la nueva técnica para comparar secuencias y

el método de reconocimiento de acciones basado en ella. Primero (sección

3.2.1), se repasan varias técnicas clásicas para comparación de secuencias,

poniendo especial énfasis en un grupo de técnicas que calcula la distancia

entre secuencias buscando el mejor (de acuerdo a una determinada función

de costo) alineamiento posible entre los puntos de las secuencias compara-

das. Entre ellas se encuentra la medida conocida como Edit Distance on Real

sequence (EDR), que tiende a ser más precisa y más robusta al ruido que otras

técnicas del grupo. La sección 3.2.2 introduce la técnica propuesta en la te-

sis, obtenida mediante dos modificaciones clave a EDR. La primera consiste

en la introducción de una función de costo suave para el alineamiento de

puntos, que apunta a hacer de EDR una medida más precisa, permitiendo

caracterizar diferencias más sutiles entre los puntos alineados. La segunda
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modificación incorpora la noción de distancia Instancia-a-Clase (I2C, por el

término en inglés Instance-to-Class) a EDR, y permite alinear puntos de la

secuencia a clasificar con puntos pertenecientes a distintas secuencias, me-

jorando la capacidad de generalización de clasificadores no-paramétricos

en casos de alta variabilidad intra-clase y pocos datos de entrenamiento.

Al ser derivada a partir de EDR, la técnica propuesta tiene especialmente

el ordenamiento temporal a la hora de alinear puntos. Como un beneficio

adicional, no requiere aprendizaje de parámetros. La sección 3.2.3 describe

el método propuesto para reconocimiento de acciones basado en secuencias

de esqueleto. El método clasifica una secuencia dada basándose en la simi-

laridad de la misma con varios conjuntos de secuencias de entrenamiento.

Dicha similaridad es medida utilizando la técnica propuesta en la sección

3.2.2. La sección detalla el modo exacto en que la técnica es usada, ası́ como

varios preprocesamientos aplicados a las secuencias originales de esquele-

tos antes de la clasificación.

La sección 3.3 presenta los resultados de los experimentos realizados con

el método propuesto en cuatro bases de datos. En particular, se evalúan las

mejoras obtenidas respecto de métodos basados en EDR y en otras medidas

de alineamiento de secuencias. Además, se evalúa la robustez del método

respecto al ruido y al desfasaje temporal. Por último, se compara el rendi-

miento del mismo con el estado del arte.
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Chapter 4

Action recognition using

Citation-kNN on bags of

time-stamped poses

This chapter describes the second novel method for action recognition pre-

sented in the thesis. Its main feature is a new Multiple Instance Learning

(MIL) approach to the problem. Section 4.1 explains the reasoning behind

the MIL approach. Section 4.2 reviews MIL concepts needed to understand

our proposal and presents the action recognition method. Finally, Section

4.3 experimentally evaluates our method and compares it with the state-of-

the-art.

4.1 Introduction

As discussed in Section 1.1.1, modeling the temporal evolution of skele-

ton descriptors is a challenging task, due mainly to the noisy joints, and

the inherently large intra-class variability/inter-class similarity (in skeleton

spatial configurations as well as in execution speed and temporal misalign-

ment). This challenges have been addressed in a variety of ways in previous

works. Sections 1.1.1 and 3.1 detail many of the existent approaches to the

problem.

Most of those approaches attempt to capture the main features of the
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temporal evolution in a single representation, either by training a model or

classifier specifically suited for time series, by using distance functions ap-

propriate for temporal patterns, or by computing a high level description of

the temporal sequence based on the individual skeletons. In doing so, they

face the challenges commented above. The proposed representation has to

be general enough as to abstract away the inherent intra-class variability

and the noisy skeletons, and, at the same time, it has to be able to discrimi-

nate between very similar sequences corresponding to different actions. The

proposed solutions are typically sophisticated, highly hand-crafted and re-

quire a lot of tuning.

In contrast, we explicitly acknowledge that the number of discrimina-

tive skeletons in a sequence might be low. The rest of the skeletons might

be noisy, correspond to subject-specific poses, occur at uncommon frames,

or have a configuration common to several actions (for example, a sit still

configuration). In other words, we know that certain actor poses, when oc-

curring at specific times, provide discriminative information about the per-

formed action. But we do not know exactly which poses (in terms of con-

figuration and time location) those are. At the same time, many other poses

may provide no information, or may even be misleading or ambiguous.

Thus, the problem can be naturally treated as a Multiple Instance Learn-

ing (MIL) problem. In MIL, training instances are organized into bags. A

bag from a given class contains some instances that are characteristic of that

class, but might (and most probably will) contain instances that are not. Fol-

lowing this idea, we represent videos as bags of time-stamped skeleton de-

scriptors, and we propose a new framework based on Citation-kNN [WZ00]

for action recognition.

Approaching the task using a MIL framework allows our method to con-

dense all the descriptors in a loose representation to decide the sequence

class. As long as a few representative descriptors occur at the right time, the

query video has a good chance of being correctly classified. We found that

our approach is effective in dealing with the large intra-class variability/inter-

class similarity nature of the problem. The proposed framework is simple

and provides a clear way or regulating tolerance to noise and temporal mis-
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alignment.

To the best of our knowledge we are the first to use Citation-kNN for

this problem. MIL has been considered before [YHC+12] for skeleton-based

action recognition. However, their main reason for using a MIL approach

is the presence of irrelevant actions in the videos as a consequence of inac-

curate manual segmentation. Furthermore, their goal is the classification of

actions involving two people. On the other hand, we aim at exploring the

MIL ability to deal with the large intra-class variability/inter-class similar-

ity of the single-person action recognition problem.

Experimental results support the validity of the proposed approach. Ex-

tensive tests on four datasets verify the robustness of our method and show

that it compares favorably to other state-of-the-art action recognition meth-

ods.

4.2 Recognizing actions with Citation-kNN on bags

of time-stamped poses

This section describes the Multiple Instance Learning (MIL) approach pro-

posed for skeleton-based action recognition. Sections 4.2.1 and 4.2.2 review

MIL and Citation-kNN, the specific MIL method used by our approach. Sec-

tion 4.2.3 presents a modified version of Citation-kNN. Finally, Section 4.2.4

presents our method for action recognition based on Citation-kNN.

4.2.1 Multiple Instance Learning

Multiple Instance Learning (MIL) is a variant of supervised machine learn-

ing in which the training examples come in the form of bags. A bag is a set

of feature vectors, called instances. Each training bag has, as in traditional

supervised learning, an assigned class label. The goal is to learn a model

capable of predicting class labels for unseen query bags. Note how this

setting considerably differs from classical single instance supervised learn-

ing, in which training data is organized as individual feature vectors, and

a class label is available for each vector. Following the usual procedure in
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the literature, we present MIL as a binary classification task. Multiple-class

classification can be obtained following typical one-vs-one or one-vs-rest

strategies [Bis06], although other approaches are possible (see for example

our proposed method in Section 4.2.4).

More formally, a bag is defined as a set of instances X = {x1, . . . , xM}

where each of the instances xi is a vector in a d-dimensional space, i.e. xi ∈

R
d ∀ 1 ≤ i ≤ M. The goal in MIL is to learn a classification function

C(X) ∈ [0, 1] that predicts 1 if and only if X is estimated to be positive. The

training set T = {(X1, y1), . . . , (XN, yN)} consists of N bags and its labels.

For each bag Xi, its label yi ∈ {0, 1} indicates whether Xi is positive (yi = 1)

or negative (yi = 0).

A variety of approaches to the MIL task have been proposed over the

years [DLLP97, MLP98, WFP03, ZG01, ATH02, ZX07, CBW06, Don06]. Every

method relies on a specific assumption about the relationship between a

bag label and the instances within that bag. Early works [DLLP97, MLP98]

assume that every instance has an assigned hidden label, and that every

bag with a positive label contains at least one positive instance. Further,

negative bags do not contain any positive instances. This assumption is

known as the standard MI assumption. A considerable part of the most recent

works [WFP03, SZB05, CBW06, Don06], however, relaxes this assumption.

In particular, the approach used in this work (see Section 4.2.2) is based on

the very loose assumption that bags that are similar according to a given

distance measure are likely to have the same class label. The key aspect of

the approach is, of course, the distance measure considered for comparing

bags.

4.2.2 Citation-kNN

Citation-kNN is presented in [WZ00] as a way of adapting the k-Nearest

Neighbors (kNN) approach to the multiple instance task. In the single in-

stance variant of kNN, traditional distance functions such as Lp norms can

be used to compare examples. In MIL though, proper distance functions be-

tween bags have to be used instead. Moreover, the usual kNN method for
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selecting the label of a query example based on the majority class of the clos-

est neighbors may not lead to good classification results. Therefore, other

ways of combining the labels of the nearest bags have to be considered.

The chosen distance function in Citation-kNN is a modified version of

the Hausdorff distance. Given two set of points A = {a1, . . . , aM} and B =

{b1, . . . , bN}, the Hausdorff distance is defined as:

H(A, B) = max(h(A, B), h(B, A)) (4.1)

where

h(A, B) = max
a∈A

min
b∈B
‖a− b‖ (4.2)

and ‖ · ‖ is a norm on the points of A and B.

The function h(A, B) is known as the directed Hausdorff distance from A

to B. If we denote by a the point in A that is farthest from any point in B,

then h(A, B) is the distance from a to its nearest neighbor in B. Note that if

h(A, B) = d, then each point of A is within distance d of at least one point

in B and, further, there is some point in A that is exactly at distance d from

its nearest neighbor in B. For future reference, we call A the source set and B

the target set.

The Hausdorff distance measures the degree in which the compared sets

A and B differ from one another. It does it by measuring the distance of the

point in A that is farthest from any point in B and vice versa. A Hausdorff

distance of d indicates that every point in A is within distance d from some

point in B, and that every point in B is within distance d from some point

in A. Therefore, two sets are similar if each point in one set is close to some

point in the other set, and vice versa.

A small Hausdorff distance is obtained if and only if every point of one

set is near some point of the other set. Thus, a single outlier can severely

distort the distance. In order to increase its robustness with respect to out-

liers, a modified version of the distance is used in [WZ00]. The modified

measure considers a different function for the directed Hausdorff distance

from A to B, h(A, B). Specifically, each point in A is ranked by the distance to

its nearest point in B, and the R-th ranked such point determines the modi-
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fied distance. Formally, if M is the number of points in A and 1 ≤ S ≤ M,

hS(A, B) is defined as:

hS(A, B) = Sth

a∈A
min
b∈B
‖a− b‖, (4.3)

where Sth

a∈A
is the S-th ranked distance in the set of distances (one for each

element in A).

The value of S is usually defined indirectly by specifying a fraction 0 ≤

K ≤ 1 of the points in A. Therefore, after ranking each of the M points in

A by the distance to its nearest point in B, the value corresponding to po-

sition S = max(⌊KM⌋ , 1) of the ranking is the modified directed distance.

Note that when K = 1, the largest distance in the ranking is used, and thus

hS(A, B) is the same as h(A, B). On the other hand, when K ≤ 1
M , the mini-

mal of the M point distances decides the modified directed distance.

The modified Hausdorff distance is given by:

HSL(A, B) = max(hS(A, B), hL(B, A)) (4.4)

where S and L indicate the considered number of points from A and B re-

spectively.

Again, S and L are usually determined using a single K value. Specif-

ically, if M is the number of points in A and N is the number of points in

B, then S = max(⌊KM⌋ , 1) and L = max(⌊KN⌋ , 1). Setting K = 1 results

in S = M and L = N (i.e. the standard Citation-kNN), while setting K to a

value such that K ≤ 1
M and K ≤ 1

N results in S = L = 1. This last variant is

typically called minimal Hausdorff distance.

In [WZ00], the conventional kNN procedure for selecting the label of a

query example was found not to be optimal for the MIL scenario. In their

experiments with binary classification, the authors observed that negative

examples might frequently contain more positive bags than negative bags

among their nearest neighbors. Thus, predicting an example label based on

the majority class of the closest neighbors will generally yield low accuracy.

This phenomena might be due to the presence of false positive instances in

the positive bags, that may attract negative bags. This situation is explained
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P1

P2

N1 N2

false positive

instances

Feature 2

Feature 1

Figure 4.1: The traditional kNN method for combining neighbors labels to

obtain the label of a query is not directly applicable to the MIL setting. The

figure illustrates how false positive instances contained in positive bags at-

tract negative bags. For example, given {P1, P2, N1} as training bags, N2 will

be classified as positive when the minimal Hausdorff distance is used.

in Figure 4.1.

If bags P1, P2 and N1 are used for training, then the query bag N2 will

be classified as positive (for simplicity, we assume the minimal Hausdorff

distance is used, although the problem can persist for different values of S

and L in 4.4). The false positive instances in P1 and P2 are close to instances

in N2, and thus N2 is closer (in terms of minimal Hausdorff distance) to the

positive bags than it is to N1.

To overcome this problem, [WZ00] incorporates the notion of citation into

the voting mechanism used to decide the label of a query bag. Instead of

only taking into account the neighbors of the query bag (called references),

the proposed mechanism considers also the bags that count the query as a

neighbor (called citers). According to the authors, this is inspired by a well-

known method from the field of library and information science [GM79]

used to find related papers.

The proposed approach defines the R-nearest references of an example A

as the R nearest neighbors of A. Moreover, it defines the C-nearest citers of
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A to be the set that includes any given bag X if and only if A is one of the C

nearest neighbors of X. Note that, in general, the number of C-nearest citers

is not C.

The class of a query bag is derived by combining the votes of its R-

nearest references with those of its C-nearest citers. For binary classifica-

tion, the number of positive votes p is determined by summing the number

of positive references Rp and positive citers Cp, i.e. p = Rp + Cp. Likewise,

if the number of positive and negative references are Rn and Cn respectively,

the number of negative votes is n = Rn + Cn. The query is predicted posi-

tive if p > n, and negative otherwise.

4.2.3 Modified Citation-kNN

This section presents a modified version of Citation-kNN, which introduces

two changes to the original method. First, it extends it to allow for multiple-

class classification. Second, it adjusts the voting mechanism by incorporat-

ing weighted votes. Both changes are a natural application of ideas com-

monly used in the kNN method.

The voting procedure described in Section 4.2.2 was thought for binary

classification. Like other binary methods, this procedure can be combined

with (for example) a one-vs-one or one-vs-rest strategy to allow for multiple-

class classification. However, a more natural extension to the multiple class

scenario can be devised for Citation-kNN. We now present such extension.

Let L be the set of possible labels. For a given query bag X, assume

{r1, . . . , rnr} and {c1, . . . , cnc} are the class labels of its nr nearest references

and its nc nearest citers respectively. In our extension, the predicted label l∗

for X is obtained by summing the votes of citers and references as:

l∗ = arg max
l∈L

(
nc

∑
i=1

δ(l, ci) +
nr

∑
j=1

δ(l, rj)) (4.5)

where δ(a, b) = 1 if a = b and δ(a, b) = 0 otherwise.

The criteria presented in Equation 4.5 assigns the same importance to the

vote of any citer or reference. However, it seems reasonable to pay more at-

tention to those neighbors that are closer to the query bag. In other words,
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examples that are closer to the query should count for more. This can be

achieved by using weighted voting. Formally, let X be the query example,

L be the set of possible labels, and assume {R1, . . . , Rnr} and {C1, . . . , Cnc}

are the sets of nearest references and citers of X respectively. Further, let

{r1, . . . , rnr} and {c1, . . . , cnc} be the class labels of its nearest references and

its nearest citers respectively. Then, the weighted voting approach for pre-

dicting label l∗ for X is:

l∗ = arg max
l∈L

(
nc

∑
i=1

αiδ(l, ci) +
nr

∑
i=1

βiδ(l, ri)) (4.6)

where αi is the weight for citer Ci and βi is the weight for reference Ri.

Clearly, the weight for a particular example should be a decreasing func-

tion of its distance to X. In this work we use the following popular choice

for kNN:

αi =
1

H(X, Ci)
βi =

1

H(X, Ri)
(4.7)

where H(·) is the modified Hausdorff distance described in Equation 4.4

(we omit the S and L subscripts here for clarity).

Note that the weight functions in Equation 4.7 are not defined when the

distance between the compared examples is zero. Therefore, when a neigh-

bour matches the query exactly, we directly assign l∗ to be the label of such

neighbour.

4.2.4 Citation-kNN on bags of time-stamped poses

This section describes the proposed method for action recognition based

on Citation-kNN. As explained in Chapter 1.2, the raw representation of

an action execution is given by a sequence of skeletons, that encodes the

temporal evolution of the actor’s pose (see Section 3.2.3 for details).

In this method, skeletons are normalized using the same procedure as in

Section 3.2.3. Furthermore, the relative position of the joints (RJP), detailed

in Section 3.2.3 is used as skeleton descriptor.
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In the following, we introduce the specific representation for descriptor

sequences used by the presented method, and we study the application of

Hausdorff distance on such representation. Then, we describe the classifi-

cation procedure for new skeleton sequences.

Representing skeleton descriptor sequences as bags of time-stamped skele-

ton descriptors

Any given skeleton descriptor sequence contains descriptors that are repre-

sentative of the action being performed. However, at the same time, many

other descriptors in the sequence provide no information (or worse, they

are misleading) about the action label. As explained in sections 1.1.1 and

4.1, this is due not only to the nature of action sequences (which have large

inherent inter-class similarity and intra-class variability), but also to the

high degree of noise and outliers present in sequences captured with typical

depth devices.

Formally, given a sequence X = (x1, x2, . . . , xN) with N skeleton descrip-

tors, its time-stamped bag representation is the set BX = {b1, b2, . . . , bN},

where bi = (xi, α i
N ) is the ordered pair obtained by appending a single

value to descriptor xi. The appended value α i
N adds temporal information

to the original descriptor. It is computed by multiplying the relative tempo-

ral position of the descriptor (i.e. the video frame at which the descriptors

is located divided by the total number of frames in the video) by a constant

α, that regulates the weight of the temporal information. We refer to α as

the frame weight and to bi as a time-stamped descriptor. Bags of time-stamped

descriptors are compared using the modified Hausdorff distance given in

Equation 4.4. We now present a series of examples that aim at gaining fur-

ther insight into the proposed bag representation and the chosen distance

function.

Comparing bags of skeletons descriptors using the Hausdorff distance

Figure 4.2 illustrates how the Hausdorff distance between two bags of de-

scriptors is obtained. The compared bags correspond to the actions cheer
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up and drink. For clarity purposes, the original sequences (belonging to

the dataset MSRDailyActivity3D described in Section 2.2) were brought to

a length of only 6 frames.

Figure 4.2a shows the distance between each descriptor in the cheer up

bag and its nearest neighbor in the drink bag. I.e., it shows the values in-

volved in the computation of the directed Hausdorff distance (Equation 4.2)

from the cheer up bag to the drink bag. Figure 4.2b illustrates in turn the di-

rected Hausdorff distance from the drink bag to the cheer up bag. In both

figures, descriptors are linked to their nearest neighbor by an arrow. Note

how multiple descriptors from one set can be map to the same descriptor

in the other set. Arrows are colored according to the color scale shown on

the right. Arrow color serves as an additional indication of the distance be-

tween the linked descriptors. Observe that each descriptor is represented by

its corresponding skeleton (that is, the skeleton from which it was obtained).

Moreover, skeletons are shown in the order they appear in the original se-

quence. In this example, frame information was not considered. That is, a

frame weight α = 0 was used.

For both figures 4.2a and 4.2b, it can be seen that descriptors correspond-

ing to neutral poses (located roughly at the beginning and at the end of the

sequences) are relatively close to their nearest neighbors. This is expected

behavior, since the neutral pose is common to both actions. On the other

hand, the more representative poses of each action (both hands above the

head in the case of cheer up and one hand next to the head in the case of

dink) lead to larger distances. The largest distances are produced by the most

characteristic poses of the cheer up sequence. In particular, one of those dis-

tances (91.13) determines the final Hausdorff distance when K = 1 is used.

This example illustrates an important assumption of our approach: Even

though two differently labeled action sequences may (and most probably

will) contain many similar poses, at least one of the sequences will contain

poses that differentiate it from the other sequence. Therefore, when com-

paring the bag representations of those sequences, descriptors originated in

such differentiating poses will be at large distance from their nearest neigh-

bors in the other bag. As a consequence, the Hausdorff distance will be
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large. On the contrary, two sequences with the same label will share most

of their poses, causing the Hausdorff distance between their corresponding

bags to be small.

Taking temporal information into account

In the example of Figure 4.2 time was not taken into account. While this

may not be a problem for some actions, ignoring temporal information can

severely hurt classification performance in other cases. This is illustrated in

figures 4.3a and 4.3b. The figures show the comparison of a query sit down

bag with two other bags: another sit down bag and stand up bag. A frame

weight α = 0 was used. For future reference, we call the bags Q, A and

B respectively. Specifically, Figure 4.3a illustrates the directed Hausdorff

distance from the A to Q, h(A, Q), while Figure 4.3a illustrates the directed

Hausdorff distance from the B to Q, h(B, Q). For clarity, only one direction

of the Hausdorff distance is shown for each comparison. Take into account,

however, that considering both directions is important for achieving good

results.

Clearly, it is desirable that h(B, Q) < h(A, Q), because Q and B are la-

beled with the same action, and Q and A are not. However, as both ac-

tions sit down and stand up involve similar poses, h(A, Q) is smaller than

desired. In general, sit down bags contain skeleton descriptors that are simi-

lar to the ones found in stand up bags, namely those corresponding to siting

and standing poses. As a consequence, every descriptor in one bag has a

close nearest neighbor in the other bag, yielding a small distance between

bags. In this example, even though the distances involved in the compu-

tation of h(B, Q) are also small, a few of them are slightly larger than the

ones involved in the computation of h(A, Q), causing h(B, Q) > h(A, Q).

The unexpected behavior came from discarding temporal information. The

compared actions can be easily confused if the temporal order is not taken

into account.

The effect of choosing an adequate value for the frame weight is illus-

trated in Figure 4.4. The figure shows the same comparisons described in

Figure 4.3. In this case, however, time information is taken into account.
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(a)

(b)

Figure 4.2: Illustration of the Hausdorff distance between two bags of skele-

ton descriptors, corresponding to the actions cheer up and drink. Figure 4.2a

describes the directed Hausdorff distance from the cheer up bag to the drink

bag. Figure 4.2b describes the distances for the directed Hausdorff distance

from the drink bag to the cheer up bag. Each descriptor in the source bag is

linked by an arrow to its nearest neighbor in the target bag. The distance

to such nearest neighbor is indicated both by the color of the arrow (follow-

ing the color scale shown on the right side) and by the number next to the

arrow. See text for details.
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(a)

(b)

Figure 4.3: Illustration of the Hausdorff distance between a query bag and

two training bags of skeleton descriptors. The query bag corresponds to

the action sit down. Training bags are labeled with the actions sit down and

stand up. Figure 4.3a describes the directed Hausdorff distance from the

stand up bag to the query bag. Figure 4.3b describes the directed Hausdorff

distance from the sit down training bag to the query bag. Temporal order is

not considered. Descriptors in the source bag are linked by an arrow to their

nearest neighbors in the target bag. The distance to such nearest neighbor

is indicated both by the color of the arrow (following the color scale shown

on the right side) and by the number next to the arrow. See text for details.
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Note how the temporal information forces each descriptor to be linked to a

descriptor located at a similar temporal position. This has particularly ben-

eficial effects on the comparison between the sit down and the stand up bags,

shown in Figure 4.4a. For example, the rightmost descriptor in the bottom

row (corresponding to the standing pose) cannot longer be (costless) linked

to a descriptor located in left-half of the top row (as it happens in Figure

4.3a). In other words, it is forced to find its nearest neighbor among de-

scriptors with which is not similar in terms of pose. Compared to example

in Figure 4.3a, the computation of the Hausdorff distance between sit down

bag and the stand up bag involves larger values, causing bags to be further

apart. On the other hand, the Hausdorff distance between the two sit down

bags does not change significantly, because similar poses are located at sim-

ilar temporal locations in the original sequences. The ultimate consequence

is that the query bag is closer to the sit down bag than the stand up bag, as

desired.

The effect of the K parameter

Recall from Section 4.2.2 that the modified Hausdorff distance can be tuned

by specifying the parameter 0 ≤ K ≤ 1. This parameter indicates the frac-

tion of the points that are to be considered to compute the similarity be-

tween the two bags. In other words, 1− K% of the points is ignored when

computing the modified Hausdorff distance.

To illustrate the effect of the K parameter, Figure 4.5 compares a query

cheer up bag with two other bags. Specifically, Figure 4.5a compares the

query with another cheer up bag, and Figure 4.5b compares it with a drink

bag. As in the example of the previous section, we use the names Q, A and

B for the considered bags, where Q is the query, A is the other cheer up bag

and B is the drink bag. In each figure, the values involved in the compu-

tation of the modified Hausdorff distance (Equation 4.4) are shown. Note

that, for clarity purposes, only one direction of the modified Hausdorff dis-

tanceis shown for each comparison. More precisely, Figure 4.5a illustrates

hS(A, Q), while Figure 4.5b illustrates hS(Q, A). We intentionally choose the

directions that produce the larger final distance in each case. Recall from
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(a)

(b)

Figure 4.4: Illustration of the Hausdorff distance between a query bag and

two training bags of skeleton descriptors. The compared bags are the same

as in Figure 4.3. Different from the scenario illustrated in that Figure, the

example shown here takes into account temporal information. See text for

details.
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Section 4.2.2 that the value of S is determined by K as S = max(⌊K6⌋ , 1).

It is desired that hL(A, Q) < hL(Q, B), since Q and A have the same la-

bel, while Q and B do not. However, a different result is obtained using

K = 1 (and thus L = 6). This is due to a very noisy skeleton in A. Specifi-

cally, the fourth skeleton from the right is severely perturbed by noise. As a

consequence, its associated descriptor lies far away from every descriptor in

Q, causing h6(A, Q) to be large. On the other hand, while h6(Q, B) involves

some large distances (as expected, because Q and B have different labels),

none of them is as large as the one associated with the noisy skeleton in A.

In the end, h6(A, Q) = 121.59 > h6(Q, B) = 55.67, which differs from the

expected result.

The desired behavior can be obtained, however, by letting K = 5
6 (and

thus L = 5). After ranking each of the 6 points in A by the distance to its

nearest point in Q, the value corresponding to position 5 of the ranking is

the modified directed distance from A to Q, h5(A, Q) = 33.91. Similarly, the

modified directed distance from Q to B is h5(Q, B) = 40.89. Note that, as

desired, h5(A, Q) < h5(Q, B).

It might seem that reducing K is always beneficial. However, note that

setting K = 3
6 (and thus L = 3) again gives the undesired result h3(A, Q) =

18.78 > h3(Q, B) = 13.68. The problem comes from the fact the three more

discriminative poses in Q (namely, those in which both hands are above the

head) are ignored in the computation of h3(Q, B).

The following important conclusion can be drawn about the role of the

K parameter based on the previous example. It is possible to make the dis-

tance robust against noisy and outlying descriptors by adjusting the value

of K. More precisely, if n% of the descriptors in a bag are known to be noise

or outliers, then using a value of K such that K < 1− n, leaves those de-

scriptors out of the computations, avoiding their undesired effects on the

final distance. However, if the value of K is too low, then the descriptors

that differentiate one bag from the other might also be ignored. Specifically,

if the fraction of noisy and discriminative descriptors are known to be of n%

and d% respectively (assume, for simplicity, that the fractions are the same

for both bags), then setting K to a value less than 1− n− d discards not only
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(a)

(b)

Figure 4.5: Illustration of the Hausdorff distance between a query bag and

two training bags of skeleton descriptors. The query bag corresponds to the

action cheer up. Training bags are labeled with the actions cheer up and drink.

Figure 4.5a describes the directed Hausdorff distance from the cheer up bag

to the query bag. Figure 4.5b describes the directed Hausdorff distance from

the query bag to the cheer up training bag. One of the descriptors in the cheer

up training bag is very noisy. Descriptors in the source bag are linked by

an arrow to their nearest neighbors in the target bag. The distance to such

nearest neighbor is indicated both by the color of the arrow (following the

color scale shown on the right side) and by the number next to the arrow.

See text for details. 108
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the noisy descriptors but also the informative ones. Thus, the optimal K

must lie at some point between 1− n and 1− n− d. Of course, n and d vary

depending on the bags, and are generally not known in advance. Therefore,

the value of K has to be decided empirically.

Video classification procedure

This section presents an overview of the main steps involved in the clas-

sification of a query video. Recall from the beginning of this section and

from Chapter 1 that the raw representation of action sequence is given by

a sequence of skeletons. Therefore, our presented method attempts to pre-

dict the action label of a query skeleton sequence, based on labeled training

sequences.

After skeleton normalization and descriptor computation (see the begin-

ning of Section 4.2.4), the original sequences in the training data are trans-

formed into bags of time-stamped descriptors, as explained in Section4.2.4.

The same procedure is applied for a query sequence before classification.

Therefore, action prediction for a query sequence A consists of three steps:

1. Obtain a sequence of normalized skeletons by normalizing each skele-

ton in A,

2. Obtain a sequence of skeleton descriptors by computing a descriptor

for each skeleton normalized in the previous step,

3. Obtain a bag of time-stamped skeleton descriptors by appending tem-

poral information to each descriptor computed in the previous step,

4. Classify the bag of the time-stamped skeleton descriptors obtained in

the previous step.

Step 4 above predicts the label of the sequence A using the multi-class

distance-weighted classification approach presented in Section 4.2.3.

Multi-part approach

Similar to the method described in Section 3.2.3, we improve the basic clas-

sification step using a multi-part approach. Recall from equations 3.20 and
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3.21 that a skeleton descriptor is a 3(J− 1)J length vector d = (d1, d2, . . . , dJ),

where J is the number of joints in the skeleton and di is the 3(J − 1) length

vector corresponding to joint i. In addition, recall that when considering

time-stamped descriptors the value corresponding to the temporal informa-

tion is appended to the original descriptor. That is, if d is the ith descriptor

in a sequence with N elements, its associated time-stamped descriptor b is

a 3(J − 1)J + 1 length descriptor such that b = (d1, d2, . . . , dJ , α i
N ).

For a given set p, we define a function fp that, given a skeleton descrip-

tor, it preserves the coordinates associated with joints in p and the tempo-

ral information, and discards the rest. Formally, if p = {p1, p2, . . . , pz} is

a set of z integers such that 1 ≤ pi ≤ J ∀ 1 ≤ i ≤ z, fp is a function

fp : R
3(J−1)J+1 → R

3(J−1)z+1 such that:

fp((d1, d2, . . . , dJ , α
i

N
)) = (dp1

, dp2 , . . . , dpz , α
i

N
) (4.8)

We overload fp to describe a function that takes a bag of time-stamped

descriptors A = {a1, a2, . . . , aN} and applies fp to each of them:

fp(A) = { fp(a1), fp(a2), . . . , fp(aN)} (4.9)

Further, for a given set of time-stamped skeleton descriptors bags C =

{C1, C2, . . . , CK}, we overload fp as:

fp(C) = { fp(C1), fp(C2), . . . , fp(CK)} (4.10)

As in Section 3.2.3, we group joints into five body parts. For each part,

the problem stated in Equation 4.6 is solved. Formally, let A be the query

bag, L be the set of possible labels and T the set of all training bags. Assume

{R
p
1 , . . . , R

p

n
p
r
} and {C

p
1 , . . . , C

p

n
p
c
} are the sets of nearest references and citers

of fp(A) in fp(T), respectively. Further, let {r
p
1 , . . . , r

p

n
p
r
} and {c

p
1 , . . . , cn

p
c
}

be the class labels of those references and citers respectively. We define

sim
p
l (A), the similarity measure between fp(A) and class l, as:

sim
p
l (A) =

n
p
c

∑
i=1

α
p
i δ(l, c

p
i ) +

n
p
r

∑
i=1

β
p
i δ(l, r

p
i ) (4.11)
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where δ(a, b) = 1 if a = b and δ(a, b) = 0 otherwise, and α
p
i and β

p
i are

the weights for citer C
p
i and reference R

p
i respectively, determined using the

Hausdorff distance H(·) as:

α
p
i =

1

H( fp(A), C
p
i )

β
p
i =

1

H( fp(A), R
p
i )

(4.12)

Then, the multi-part approach for predicting label l∗ for A is:

l∗ = arg max
l∈L

∑
p∈P

sim
p
l (A)

Gp(A)
(4.13)

where Gp(A) is a normalization factor, defined as:

Gp(A) = ∑
l∈L

sim
p
l (A) (4.14)

4.3 Results

This section presents and discuss experimental results for our proposed ac-

tion recognition method. As in Section 3.3, we use 4 different datasets: MSR-

DailyActivity3D, MSRAction3D, UTKinect and Florence3D. See section 2.2

for a thorough description of the datasets.

4.3.1 Parameter selection

Along Section 4.2, we describe several parameters that control the behavior

of the presented method. In order to select appropriate values for those pa-

rameters, we optimize the performance of our approach by cross-validation

on the training data. As the optimal parameters vary depending on the

dataset, we carry out such optimization procedure for each dataset.

The considered parameters are the frame weight α (see Section 4.2.4), the

K parameter for the modified Hausdorff distance (see Section 4.2.4), and the

values R and C that determine the number of references and citers of the

Citation-kNN method respectively.

A gradient ascent procedure is employed to obtain find optimal values for

the parameters. Specifically, such values are searched among the points of
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a grid that (roughly) divides the parameter space. Starting from a reason-

able point, the current point is updated at each iteration of the grid search.

More precisely, for each immediate neighbor of the current point, the av-

erage class accuracy for that point is computed using the leave-one-actor-

out cross-validation (LOAOCV) technique (see Section 2.2) on the training

data. After considering all the neighbors, the algorithm moves to the point

that produced the largest average class accuracy. Note that, as we have

four parameters to optimize, the grid is four-dimensional and the number

of neighbors for a grid point can be as large as 81. However, caching results

of previous points helps in reducing computation times. The grid search

finishes when no improvement is observed in the optimized measure. The

main reason for using this approach for parameter selection is its convenient

time complexity. In general, performing the gradient ascent is much faster

than evaluating every point in the grid. The price paid for the low temporal

complexity is that potentially optimal grid points might be not taken into

account.

4.3.2 Parameter influence

To evaluate the influence of the different parameters, we study the change

in performance obtained when varying one of them while leaving the rest

fixed. Specifically, the average class accuracy is computed using LOAOCV

on the training data for several values of the studied parameter. Such values

belong to a short range centered at the optimal value found by the grid

search described in Section 4.3.1. The remaining parameters are fixed at

their optimal values (also found by the grid search).

Figures 4.6a, 4.6b, 4.7a and 4.7b show the results for the MSRDailyActiv-

ity3D dataset, the MSRAction3D dataset, the UTKinect dataset and the Flo-

rence3D dataset respectively. In addition to the average class accuracy com-

puted by LOAOCV on the training data, the figures show the average class

accuracy computed on the test data (using the standard train-test regime for

each dataset, as described in Section 2.2). The former is denoted as train in

the figures, while the latter is denoted as test.
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(a) Parameter influence for the MSRDailyActivity3D dataset.

(b) Parameter influence for the MSRAction3D dataset.

Figure 4.6: Parameter influence for two of the four considered datasets.

Note that the influence of the parameters varies depending on the dataset.
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(a) Parameter influence for the UTKinect dataset.

(b) Parameter influence for the Florence3D dataset.

Figure 4.7: Parameter influence for two of the four considered datasets.

For example, the optimal K is around 0.55 for MSRDailyActivity3D, while
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it is around 0.88 for MSRAction3D. However, many behaviors common to

all datasets exist, as we discuss next.

In every considered dataset, performance drops somewhat drastically

when the frame weight is set below a specific threshold. Presumably, such

threshold corresponds to the point below which crucial temporal informa-

tion is discarded. Values above that threshold also lead to worse perfor-

mance. However, decrement is slower in this case, which suggests that giv-

ing excessive (but reasonable) importance to temporal order is less harmful

than ignoring it. It is worth commenting that, even if not shown in the plots,

an extremely large frame weight indeed shatters performance, as it allows

no temporal flexibility at all.

Figures also show a common pattern regarding the K parameter. Specif-

ically, high performance is achieved within a certain range, while low per-

formance is obtained outside the range. This is consistent with the obser-

vations in Section 4.2.4. Namely, that the optimal K must be low enough

as to leave noisy and outlying descriptors out of the computations, but

not as low as to ignore informative descriptors. Despite this common pat-

tern, note how the range varies for the different datasets. For example, it

is (roughly) [0.2, 0.76] for the UTKinect dataset and [0.66, 0.88] for the Flo-

rence3D dataset, which can be interpreted as the latter containing videos

with a smaller percentage of informative descriptors (indicated by the fact

that 0.88− 0.66 < 0, 76− 0.2) and a smaller percentage of noisy descriptors

(because 0.88 > 0.76).

In general, performance is not very sensitive to the number of refer-

ences and citers. While large deviations from the optimal values do cause a

change in accuracy, results show that such change tends to be smooth. This

is presumably due to the weighted voting mechanism explained in Section

4.2.3, that reduces the influence in the voting of those references and citers

located far away from the query bag.
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4.3.3 Evaluation of the main components of the action recog-

nition procedure

In this section, we experimentally study on two datasets (MSRDailyActiv-

ity3D and UTKinect) the impact on performance caused by the main com-

ponents of our method for action recognition. Specifically, we evaluate the

benefits of time-stamped descriptors (Section 4.2.4), weighted-voting (Sec-

tion 4.2.3) and the multi-part approach (Section 4.2.4).

We report results considering each component separately, but also for all

possible combinations of two and three components. Moreover, we include

results for basic variant of our method that does not use any of the compo-

nents. The basic version is indicated by Citation-kNN. Variants considering

only time-stamped descriptors, weighted voting or the multi-part approach

are indicated as Citation-kNN + time, Citation-kNN + weighted or Citation-kNN

+ parts respectively. Names for the solutions accounting for more than one

component together are indicated by combining the names of the single-

component variants. For example, Citation-kNN + time + weighted indicates

the combined use of time-stamped descriptors and weighted voting.

For each variant, the involved parameters were optimized using the gra-

dient ascent technique described in Section 4.3.1, and refined using the pro-

cedure explained in Section 4.3.2. Note that, depending on the variant,

different parameters need to be considered. For example, in the case of

Citation-kNN + parts + weighted, the frame weight parameter does not ex-

ist, because temporal information is not taken into account. The reported

measure is the average class accuracy computed on the test data (using the

standard train-test regime for each dataset, as described in Section 2.2).

Table 4.1 shows the results. In both datasets, performance of the ba-

sic Citation-kNN is considerably improved by the proposed method (i.e.

the variant than combines the three evaluated components). The table also

shows that every single-component variant yields better results than the ba-

sic approach. Further, it shows that the performance of any given variant

can be improved by extending it with any of its missing components.

Even though the exact relative benefit brought by each variant to the ba-
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sic approach depends on the dataset, improvements are consistent across

datasets for most of the variants. For example, the variant Citation-kNN +

parts + time yields an average class accuracy about 15% larger than the basic

approach on both datasets. However, two variants show particularly dif-

ferent behaviors in both datasets, in terms of the improvements to the basic

variant. The first one is Citation-kNN + weighted, that allows for an improve-

ment of 8% for the MSRDailyActivity3D dataset, but of only 1.7% for the

UTKinect. A possible explanation for this result could lie in the higher noise

levels of the MSRDailyActivity3D dataset (see Section 2.2). In that scenario,

it seems reasonable to find a relatively large number of misleading (i.e. la-

beled with a different action) neighbors among the citers and references of

the query bag. On the contrary, it is expect for such number to be low in a

less noisy scenario. Therefore, the benefit of weighting neighbors votes by

distance can be more noticeable in the noisy dataset.

The second variant that shows an interesting behavior is Citation-kNN +

time. For the UTKinect dataset, it allows for an improvement of aorund 12%

compared to the basic variant. However, such an improvement is of only 5%

for the MSRDailyActivity3D dataset. This suggests that using time-stamped

descriptors is more beneficial for the former dataset than it is for the latter.

Presumably, this is due to the fact that the relative number of actions for

which temporal order is decisive is lager in the UTKinect dataset. This ex-

planation is consistent with the frame weight plots in Figures 4.6a and 4.7a.

Those figures show that a quite large frame weight does not deteriorate per-

formance on the UTKinect dataset significantly, while small increments in

such weight cause a large decrease in performance on the MSRDailyActiv-

ity3D.

To further study the effects of time-stamped descriptors on performance,

we analyze the misclassified actions on both datasets when time informa-

tion is not taken into account. Figures 4.8a and 4.8b show confusion ma-

trices for the UTKinect dataset. The former corresponds to the the vari-

ant Citation-kNN + parts + weighted, that uses the multi-part approach and

weighted voting, but ignores temporal order. The latter corresponds to the

full method Citation-kNN + parts + weighted + time, that also take time into
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UTKinect MSRDaily

Citation-kNN 80.90 % 61.88 %

Citation-kNN + weighted 82.31 % 66.87 %

Citation-kNN + time 91.26 % 65.00 %

Citation-kNN + parts 85.02 % 66.87 %

Citation-kNN + weighted + time 92.36 % 69.37 %

Citation-kNN + parts + time 93.77 % 70.63 %

Citation-kNN + parts + weighted 86.94 % 68.13 %

Citation-kNN + parts + weighted + time 95.38 % 72.50 %

Table 4.1: Average class accuracy on datasets MSRDailyActivity3D and

UTKinect for different variants of the proposed method.

acount. Note how a considerable amount of error in Figure 4.8a comes from

confusing action sit down with action stand up, and action push with action

pull. The confused actions involve similar poses, meaning that any pose in

one of the actions can be found in the other action, and vice versa. The dif-

ferentiating aspect between those actions lies in the temporal location of the

poses. This is supported by Figure 4.8b, that shows a drastic reduction in

the confusion between them when using time-stamped descriptors.

Figures 4.9a and 4.9b show the confusion matrices corresponding to the

same variants for the MSRDailyActivity3D dataset. Note how the variant

that ignores temporal information confuses actions sit down and stand up.

Specifically, 60% of the videos labeled with one of the two actions is erro-

neously classified as corresponding to the other. When time is considered,

the confusion between them drops to 0%.

4.3.4 Robustness analysis

This section analyzes the tolerance of the proposed method to noise and

temporal misalignment. Similarly to Section 3.3.3, we study both the per-

formance in presence of independent identically distributed white noise in

the skeletons, and the impact of local temporal shifts on the descriptor se-

quences.
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(a) (b)

Figure 4.8: Confusion matrices for the UTKinect dataset. Figure 4.8a shows

the results obtained when time information is ignored. Figure 4.8b shows

the results obtained when taking temporal information into account.

Our approach is compared with two popular methods: Fourier Tempo-

ral Pyramids (FTP) from [WLWY12b], and Hidden Markov Model (HMM)

from [LN06]. See section 2.1.1 for a description of the methods. In every

case, the optimal parameters for FTP and HMM were found by leave-one-

actor-out cross-validation (see 2.2 for a description of the technique) on the

training actors. On the other, parameters for our method were optimized

using the gradient ascent technique described in Section 4.3.1, and refined

using the procedure explained in Section 4.3.2.

Experiments were carried out for two datasets: MSRDailyActivity3D

and UTKinect. In both cases, we show the relative accuracy obtained by

each of the tested methods, which is defined as the ratio between the aver-

age class accuracy under the perturbed scenario and the average class accu-

racy under the non-perturbed scenario.

Robustness to noise

We evaluated the noise robustness of the proposed approach, along with

that of several other methods. For this purpose, we corrupted the skeletons

by adding noise from a Gaussian distribution with mean zero and variance
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(a)

(b)

Figure 4.9: Confusion matrices for the MSRDailyActivity3D dataset. In Fig-

ure 4.9a time information is ignored, while in Figure 4.9b it is not.
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one. We compute the relative accuracy of each method for different amounts

of noise, and studied the resulting behaviors.

Figure 4.10 shows the results for the two considered datasets. While, as

expected, relative accuracy decays with noise in every case, the degree in

which this happens varies depending on the method. Moreover, results on

MSRDailyActivity3D are generally worse than results on UTKinect, which

is reasonable considering that the former is a more challenging dataset.

HMM shows the least robustness on both datasets. This is somewhat

expected, since it is well known that the procedure used by this method to

compute the hidden states is quite sensitive to noise. Our method and FTP

show a similar behavior. While the proposed approach seems to slightly

outperform FTP in terms of robustness on the MSRDailyActivity3D, both

methods obtain almost the same relative accuracy for most of the scenar-

ios on the UTKinect. As commented in 2.1.1, dropping the Fourier coeffi-

cients associated to high frequency components makes FTP highly resilient

to noise. Encouragingly, our method achieves similar robustness. We ar-

gue that a possible explanation lies mainly in two aspects of the proposed

multiple instance learning approach. First, the skeletons more affected by

noise can be ignored by the modified Hausdorff distance, as described in

Section 4.2.4. Second, the citation approach (improved by the weighted vot-

ing mechanism presented in Section 4.2.3) mitigates the effect of misleading

neighbors (potentially increased by noise).

Robustness to temporal misalignment

We compared the tolerance to temporal misalignment of the same methods

considered in Section 4.3.4. To that aim, we circularly shifted every skeleton

sequence in the training data, and kept the testing data uncorrupted. The

relative accuracy of our approach and that of FTP and HMM was computed

for several scenarios, each corresponding to a different number of shifted

frames.

Results for the two considered datasets are shown in Figure 4.11. It

is well known that the performance of HMM is not affected by sequence

alignment. This is reflected in its relative accuracy, that remains close to
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(a) (b)

Figure 4.10: Relationship between the relative accuracy and the noise stan-

dard variation for several methods on two datasets: MSRDailyActivity3D

(4.10a) and UTKinect (4.10b).

100% for every scenario on both datasets. Our method shows a robustness

comparable to that of FTP. Indeed, despite a somewhat erratic behavior, it

clearly outperforms such method on the MSRDailyActivity3D dataset. On

the other hand, both methods show very similar performance on UTKinect

dataset.

This test suggests that our method is more sensitive to temporal shifts

than HMM. Nevertheless, it shows competitive robustness, retaining a large

percentage of the average class accuracy obtained in the non-perturbed sce-

nario. This is presumably due to the same aspects commented in Section

4.3.4 for the noise experiments. Namely, the benefits brought by both the

Hausdorff distance and the citation approach with weighted voting. The

former reduces the effect of those skeletons shifted to unusual temporal po-

sitions. Such skeletons lead to misleading time-stamped descriptors, than

can be seen as noisy instances in the bag representation. The latter offers re-

silience against a potentially larger number of misleading neighbors, caused

by the larger presence of misleading time-stamped descriptors in the bags.
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(a) (b)

Figure 4.11: Relationship between the relative accuracy and the temporal

misalignment for several methods on two datasets: MSRDailyActivity3D

(4.11a) and UTKinect (4.11b).

4.3.5 Comparation with the state-of-the-art

In this section, we compare the results obtained by our proposed action

recognition approach with those of several state-of-the-art methods. In or-

der to make a fair comparison, we only consider those works focusing on

skeleton-based action classification. That is, we do not include results cor-

responding to methods employing depth or RGB information.

Table 4.2 shows the average class accuracy of each method for the four

considered datasets. Results of our method are competitive on the four

datasets. On two of them, it outperforms the rest of the methods. Specif-

ically, it surpass the best result among the considered methods by 2.5% on

the MSRDailyActivity3D dataset and by 5.83% on the Florence3D dataset.

On the UTKinect dataset, performance is slightly worse than that of [VAC14].

On the MSRAction3D dataset, it is the second best method.

It is worth mentioning that many of the methods referenced in Table 3.1

( [CPLFR13, YT12, XCA12, ATSS15, SVB+13]) use skeleton descriptors dif-

ferent to the RJP (described in Section 3.2.3) employed in our approach, as

well as different preprocessing techniques. For example, [CPLFR13] consid-

ers a descriptor that extends RJP with joint offset and velocity information,

[YT12] further improves that descriptor by applying Principal Component
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MSRDailyActivity3D dataset

Fourier Temporal Pyramid [WLWY12b] 68.00

Weakly-aligned Bag of Poses [SVB+13] 70.00

Proposed method 72.50

MSRAction3D dataset

Hidden Markov Model [XCA12] 78.97

Naive-Bayes-Nearest-Neighbor [YT12] 82.30

Joint Angle Similarities [OBT13] 83.53

Elastic Functional Coding [ATSS15] 85.16

Fourier Temporal Pyramid [WLWY12b] 88.20

DTW Nominal Curve + FTP [VAC14] 88.23

Bag of Temporal and Spatial Part-Sets [WWY13] 90.22

Random Forest [ZCG13] 90.90

Recurrent Neural Networks [DWW15] 94.49

Proposed method 92.22

UTKinect dataset

Random Forest [ZCG13] 87.90

Hidden Markov Model [XCA12] 90.92

Elastic Functional Coding [ATSS15] 94.87

DTW Nominal Curve + FTP [VAC14] 95.58

Proposed method 95.38

Florence3D dataset

Weakly-aligned Bag of Poses [SVB+13] 82.00

DTW Nominal Curve + FTP [VAC14] 85.20

Proposed method 91.03

Table 4.2: Comparison of the proposed approach with the state-of-the-art.
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Analysis (PCA), [XCA12] uses histograms of joints positions, and [SVB+13]

models the human torso as a rigid part, expressing the position of the joints

in a coordinate system derived from the torso orientation. Therefore, Ta-

ble 4.2 should be approached with caution in terms of temporal modeling

comparison, as the differences in accuracies may be caused by several other

factors. Nevertheless, the table shows that our method can yield very sat-

isfactory results, and encourages the use of the proposed MIL approach for

action recognition based on skeleton sequences.

4.4 Resumen

En este capı́tulo se presenta el segundo método de reconocimiento de accio-

nes en videos de profundidad propuesto en la tesis. Su rasgo distintivo es el

enfoque de Aprendizaje Multi Instancia (MIL por el término en inglés Multiple

Instance Learning) que utiliza. En MIL, las instancias de entrenamiento vie-

nen organizadas en conjuntos, generalmente denominados bags. Cada bag

de entrenamiento tiene asignada una etiqueta que indica la clase a la que

pertenece. Un bag etiquetado con una determinada clase contiene instancias

que son caracterı́sticas de la clase, pero puede (y generalmente ası́ ocurre)

también contener instancias que no lo son. Notar que, a diferencia de lo que

ocurre en el aprendizaje supervisado tradicional, las etiquetas de los datos

de entrenamiento están disponibles a nivel de bag, y no de instancia.

La sección 4.1 justifica la pertinencia del enfoque MIL para el problema

de reconocimiento de acciones a partir de secuencias de esqueleto. La obser-

vación clave es que, en una secuencia dada, ciertas poses del actor pueden

proveer información caracterı́stica de la acción ejecutada cuando ocurren en

determinados instantes, pero dichas poses “conviven” con otras que pue-

den ser no informativas y hasta causantes de ambigüedad (debido a ruido,

a desfasaje temporal, a la existencia de poses comunes a varias acciones,

etc.).

La sección 4.2 detalla el método propuesto. Primero se repasan algunos

conceptos de MIL, poniendo especial énfasis en la técnica de MIL consi-

derada en la tesis, conocida como Citation-kNN. Dicha técnica adapta el
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clásico esquema de k vecinos más cercanos (kNN por el término en inglés

k-nearest-neighbors). Luego, se proponen tres modificaciones al planteo ori-

ginal de Citation-kNN. La primera modificación es un extensión natural de

la técnica al problema de clasificación multi-clase. La segunda incorpora

pesos ajustados por distancia en la votación de los vecinos más cercanos.

La tercera adapta el método para trabajar sobre múltiples secuencias obte-

nidas a partir de la secuencia original a clasificar, lo cual permite emplear

un enfoque multi-parte al trabajar con secuencias de esqueletos. La sección

4.2.4 introduce una nueva representación para las secuencias de esquele-

tos, que permite su clasificación mediante Citation-kNN. Especı́ficamente,

se representa una secuencia dada como un bag de descriptores de esqueleto

con marcas de tiempo. La sección analiza también varios aspectos de la re-

presentación propuesta. Además, dicha sección detalla el método completo

para clasificar nuevas secuencias a partir de los datos de entrenamiento.

La sección 4.3 evalúa experimentalmente el método propuesto y lo com-

para con el estado del arte. En particular, el rol jugado por cada uno de

los parámetros es analizado, y la robustez del método frente al ruido y al

desfasaje temporal es evaluada, con muy buenos resultados. Además, los

beneficios proporcionados por las modificaciones a Citation-kNN son veri-

ficados. A pesar de la simplicidad del enfoque propuesto, los experimentos

muestran que, cuando se lo utiliza en conjunto con un descriptor de esque-

leto robusto, es posible obtener resultados altamente competitivos. Creemos

que esto es un indicio de que utilizar un enfoque MIL para el problema es

apropiado, y prepara el terreno para posteriores investigaciones en esta di-

rección.
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Chapter 5

Conclusions and perspective

In this thesis we have presented and evaluated two novel methods for the

problem of skeleton-based action recognition. Both methods make use of

machine learning techniques to predict the action encoded in a sequence of

skeletons based on a set of labeled training sequences.

Section 3.2 described the first method. At its core lies a new technique

for comparing sequences, that computes the distance between a query se-

quence and a given class by searching for the best possible alignment be-

tween the query and the training sequences in the class, according to a spe-

cific criteria. Such technique, called Instance-to-Class Edit Distance on Real

sequence (I2CEDR) is the result of two modifications to a popular distance

function known as Edit Distance on Real sequence (EDR): (1) A soft matching

cost is used to align sequence points, allowing small differences between

aligned points to be taken into account. (2) An Instance-to-Class approach

is incorporated into the sequence comparison, that matches points from the

query with points from any sequence within a set of sequences, improving

generalization capabilities of non-parametric classification methods in cases

of large intra-class variability and small training sets. Being derived from

EDR, the proposed technique specifically takes into account temporal order-

ing when comparing sequences. As a further benefit, it requires no learning

of parameters. An efficient dynamic programming algorithm is presented

for computing I2CEDR.

Our proposed approach obtained highly competitive results (Section 3.3)
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on four popular datasets. Moreover, it stood out as a very robust method,

both in terms of noise and temporal misalignment. We believe this shows

that alignment-based distances can be successfully used to compare skele-

ton sequences and that, when coupled with a robust skeleton descriptor,

they can lead to state-of-the art methods. We see the encouraging results

as an invitation to explore further variations of alignment-based distances

that might be beneficial for the action recognition problem. A concrete topic

for future work would be to train a cost function which assigns different

penalties to edit operations depending on the involved skeleton. Consider

for example the computation of I2CEDR between a query sequence and a

set associated with action label l. Insertions of skeletons corresponding to

poses frequently found in videos of action l should receive a large penalty,

because the absence of such skeletons indicates the action in the query is

probably not l. An analogous reasoning can be done for deletions. Another

interesting concrete topic would be to devise a new criteria for choosing the

threshold ǫ (See section 3.2.2), maybe by learning appropriate values from

training data.

Section 4 presented a novel Multiple Instance Learning (MIL) approach

to the problem of skeleton-based action recognition. The method involves

a new way of handling skeleton sequences, that represents them as bags of

time-stamped skeleton descriptors. Bags are classified using an modified

version of Citation-kNN, a classical and simple MIL method. Both the ben-

efits of the MIL approach to the problem, and the improvements brought by

the proposed modifications to Citation-kNN are supported by the extensive

experiments described in Section 4.3. Such experiments also showed that

the proposed method is very tolerant to noise and temporal misalignment,

and exposed the role played by the different parameters.

Regarding future work, it would be interesting to devise an efficient and

effective method to learn different values for the K parameter (see Section

4.2.4) depending on the considered action. Likewise, using different val-

ues for the frame weight α might improve performance, as the importance

of temporal information could vary depending on the action. Another at-

tractive topic is the incorporation of data mining techniques to select useful
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training skeletons before applyin Citation-kNN. By filtering out uninforma-

tive skeletons, typical MIL problems such as the one described in Figure 4.1

can be mitigated. More generally, we think the work in this thesis opens

the door to the application of new MIL methods to the action recognition

problem. The MIL literature is vast, and many other of its methods can be

found to be useful apart from the one explored in this work.

A number of research directions apply to both methods presented in

this thesis. One such direction involves the development of new skeleton

descriptors and distance functions to compare them. As commented in Sec-

tion 2.1.1, many previous works have done contributions regarding these

aspects. We believe, however, there is still room for improvement. As a con-

crete example, it would be interesting to plug our proposed methods into a

framework that learns weights for each joint depending on its discrimina-

tive power, similar to the one presented in [DWW15]. Another direction is

the incorporation of raw depth information into our methods, a common

trend in the literature that we intentionally avoid to focus on skeletal data.

Taking raw depth information into account can be crucial for distinguishing

actions involving nearly identical movements but different objects, such as

having a cup of coffee and having a glass of water. The exact way in which this

information can be incorporated into the presented methods is not trivial,

but previous works suggest this might be a promising research avenue.
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Capı́tulo 5

Conclusiones y perspectiva

En esta tesis hemos presentado y evaluado dos métodos novedosos para

el reconocimiento de acciones basado en esqueletos. Ambos métodos usan

técnicas de aprendizaje automático para predecir la acción codificada en una

secuencia de esqueletos a partir de un conjunto se secuencias de entrena-

miento etiquetadas.

La sección 3.2 describió el primer método. Una parte fundamental del

mismo es una nueva técnica para comparar secuencias, que computa la dis-

tancia entre una secuencia dada y una determinada clase buscando el mejor

alineamiento posible entre dicha secuencia y las secuencias de entrenamien-

to de esa clase, de acuerdo a un criterio especı́fico. Esta técnica, llamada

Instance-to-Class Edit Distance on Real sequence (I2CEDR) es el resultado de

dos modificaciones a una conocida función de distancia entre secuencias

conocida como Edit Distance on Real sequence (EDR): (1) Una función de cos-

to suave es usada para el alineamiento de puntos. (2) Un enfoque Instancia-

a-Clase (I2C, por el término en inglés Instance-to-Class) es incorporado a la

comparación de secuencias, permitiendo el alineamiento de puntos de una

secuencia dada con puntos de varias secuencias incluidas en un conjunto,

mejorando la capacidad de generalización de métodos de clasificación no-

paramétricos en casos de alta variabilidad intra-clase y pocos datos de entre-

namiento. Al ser derivada a partir de EDR, la nueva técnica tiene especı́fi-

camente en cuenta el ordenamiento temporal al comparar las secuencias.

Como beneficio adicional, no requiere aprender parámetros. Un algoritmo
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eficiente de programación dinámica es presentado para computar I2CEDR.

El método propuesto para reconocimiento de acciones obtuvo resultados

altamente competitivos (Sección 3.3) en cuatro bases de datos utilizadas con

frecuencia en la literatura. Asimismo, resultó muy robusto , tanto en térmi-

nos de ruido como de desfasaje temporal. Creemos que esto muestra que

las distancias basadas en alineamiento de puntos pueden ser usadas con

éxito para comparar secuencias de esqueletos y que, combinadas con un

descriptor de esqueleto robusto, permiten la obtención de métodos al nivel

del estado del arte. Vemos estos resultados alentadores como una invitación

a continuar explorando variantes de distancias basadas en alineamiento de

puntos que puedan resultar benéficas para el problema de reconocimien-

to de acciones. Un posible tema concreto para trabajos futuros consiste en

entrenar una función de costo que asigne diferentes penalidades a las ope-

raciones de edición de acuerdo al esqueleto involucrado. Consideremos por

ejemplo el cálculo de I2CEDR entre una secuencia dada s y un conjunto

de secuencias asociado a la acción l. La inserción de esqueletos correspon-

dientes a poses frecuentemente encontradas en videos de la acción l deberı́a

recibir una penalidad alta, ya que la ausencia de dichos esqueletos indica

que la acción en la secuencia s sea probablemente distinta a l. Un razona-

miento análogo puede hacerse con el la operación de borrado. Otro tema

concreto que podrı́a resultar interesante es el diseño de nuevos criterios pa-

ra determinar el umbral ǫ (Ver sección 3.2.2), quizás mediante el aprendizaje

de valores apropiados a partir de los datos de entrenamiento.

La sección 4 presentó un novedoso enfoque de Aprendizaje Multi Instan-

cia (MIL por el término en inglés Multiple Instance Learning) para el problema

de reconocimiento de acciones basado en esqueletos. El método involucra

una nueva manera de manejar secuencias de esqueletos, que las representa

como conjuntos (o bags) de descriptores de esqueleto con marcas de tiempo.

Los bags son clasificados usando una versión modificada de Citation-kNN,

un método de MIL clásico y simple. Tanto los beneficios del enfoque basado

en MIL como las mejoras logradas a través de las modificaciones propues-

tas para Citation-kNN son avaladas por detallados experimentos descriptos

en la sección 4.3. Dichos experimentos mostraron también que el método
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propuesto es muy tolerante al ruido y al desfasaje temporal, y pusieron de

manifiesto el rol jugado por los diferentes parámetros.

Con respecto al trabajo futuro, serı́a interesante diseñar un método efi-

ciente y efectivo para aprender diferentes valores para el parámetro K (ver

sección 4.2.4) dependiendo de la acción considerada. De la misma manera,

utilizar distintos valores para el peso α asignado a la información temporal

de los descriptores podrı́a mejorar la performance del método, dado que la

importancia de dicha información puede variar de acuerdo a la acción. Otro

tema atractivo es la utilización de técnicas de minerı́a de datos para seleccio-

nar esqueletos útilos para el entrenamiento antes de aplicar Citation-kNN.

Mediante la eliminación de esqueletos no informativos es posible mitigar

problemas tı́picos de los métodos basados en MIL, como el descripto en

la figura 4.1. En lı́neas más generales, creemos que el trabajo en esta tesis

abre la puerta para la aplicación de nuevo métodos basados en MIL para

el problema de reconocimiento de acciones. La literatura de MIL es vasta,

y muchos otros métodos propuestos en ella podrı́an resultar útiles además

del explorado en este trabajo.

Ciertas direcciones de investigación aplican a ambos métodos presenta-

dos en esta tesis. Una de ellas involucra el desarrollo de nuevos descripto-

res de esqueleto y nuevas funciones de distancia para compararlos. Como

se comenta en la sección 2.1.1, muchos trabajos anteriores han hecho con-

tribuciones en este aspecto. Creemos, sin embargo, que todavı́a queda mu-

cho por mejorar. A manera de ejemplo, serı́a interesante integrar nuestros

métodos en un framework que aprenda pesos por cada articulación del es-

queleto en base a su poder discriminativo, de manera similar a la propuesta

de [DWW15]. Otra dirección posible es el desarrollo de métodos que incor-

poren la información de profundidad en bruto a las técnicas presentadas

en la tesis, una tendencia común en la literatura que evitamos intencional-

mente en este trabajo para concentrarnos en los datos de esqueleto. Tener

en cuenta la información de profundidad en bruto puede ser crucial pa-

ra distinguir acciones que involucren movimientos casi idénticos y objetos

diferentes, como tomar una taza de café y tomar un vaso de agua. Si bien la in-

corporación de este tipo de datos a los métodos presentados no es trivial,
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varios trabajos previos sugieren que la misma puede constituir una direc-

ción de trabajo prometedora.
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multiple-instance learning, Advances in neural information pro-

cessing systems (1998), 570–576.

[MLSS94] Richard M Murray, Zexiang Li, S Shankar Sastry, and

S Shankara Sastry, A mathematical introduction to robotic manip-

ulation, CRC press, 1994.

[MR06] Meinard Müller and Tido Röder, Motion templates for auto-
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