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T́ıtulo: Geometŕıa Riemanniana de grupos de operadores y espacios homogéneos

Resumen: El objetivo de esta tesis es el estudio de la geometŕıa de
diferentes grupos de operadores, los cuales son perturbaciones de la identi-
dad por un operador Hilbert-Schmidt. A través de este trabajo dotaremos
a los espacios tangentes con distintas métricas Riemanianas y estudiaremos
sus problemas métricos. La nueva métrica introducida aqúı es la métrica
polar que es definida usando la descomposición polar de los operadores in-
versibles. Compararemos esta métrica con las métricas clasicas invariantes
a izquierda de los grupos de Lie. Además nos centraremos en algunos es-
pacios homogéneos y analizaremos que métricas pueden ser definidas y que
propiedades tienen. 1 2

1MSC 2010: Primary 47D03; Secondary 58B20, 53C22.
2Palabras clave: Variedades Riemannianas, Grupos de Lie Banach, grupos autoadjun-

tos, espacios homogéneos, geodésicas, distancia geodésica, completitud.
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Title: Riemannian geometry of operator groups and Homogeneous spaces

Abstract: The aim of this thesis is the geometric study of different
groups of operators which are a perturbation of the identity by a Hilbert-
Schmidt operator. Throughout this work we will endow the tangent spaces
with different Riemannian metrics and we will study their metric problems.
The new metric introduced here is the polar metric, which is defined using
the classical polar decomposition of invertible operators. We will compare
this new metric with the classical left-invariant metric of Lie groups. More-
over we will focus in some homogeneous spaces given by the action of these
operator groups and we analyse which metrics can be defined and study their
properties. 3 4

3MSC 2010: Primary 47D03; Secondary 58B20, 53C22.
4Keywords: Riemannian-Hilbert manifolds, Banach-Lie general linear group, self-

adjoint group, homogeneous spaces, geodesics, geodesic distance, completeness.
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Queŕıa agradecer a Gabriel y a Esteban por haberme dado la oportunidad
para hacer el doctorado y por su ayuda incondicional en todos estos años.
También queŕıa agradecer a la Dra. Alejandra Maetripieri, al Dr. Carlos
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Introduction

Precedents

In classical finite dimensional Riemannian theory it is well known the fact
that given two points there is a minimal geodesic curve that joins them.
In this case the completeness of the geodesic curves is equivalent to the
completeness of the metric space with the geodesic distance; this is the Hopf-
Rinow theorem. In the infinite dimensional case this is no longer true. In
[23] and [2], McAlpin and Atkin showed in two examples how this theorem
can fail. One of the natural questions then regards the completeness of the
metric space induced by the geodesic distance.

In the 90’s, Corach, Porta and Recht started to study the geometry of
positive invertible elements (denoted by G) in C∗-algebras. There they en-
dowed the tangent bundle with a Finsler structure given by the norm of the
C∗-algebra; given a positive element a and X ∈ TaG the Finsler structure
is given by ‖X‖a = ‖a−1/2Xa−1/2‖. The tangent bundle carries a canonical
connection determined by the transport equation, with covariant derivative
defined byDXY = X(Y )−1/2(Xa−1Y +Y a−1X). Moreover they proved that
the geodesics given by this connection are short for the given endpoints. The
geometry of the positive invertible unitized Hilbert-Schmidt operators with
the above metric was studied in [18]; there the author obtained general geo-
metric results about: Riemannian conection, geodesics, sectional curvature,
convexity of geodesic distance and completeness. Another facts obtained
there are decomposition theorems and the structure of self-adjoint operators
groups.

Another work that it is relevant in this context has been developed in [3],
there the authors studied left invariant metrics induced by the p-norms of
the trace in the matrix algebra of the general lineal group. In particular the
Riemannian geodesics, corresponding to the case p = 2, are characterized as
the product of two one-parameter groups. It is also shown that geodesics are
one-parameter groups if and only if the initial velocity is a normal matrix.

The homogeneous spaces for a group of operators have become a cen-
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tral topic in the study of infinite dimensional geometry. One of the most
known examples of these homogeneous spaces is the Hilbert-Schmidt re-
stricted Grassmannian Grres(p) (also known in the literature as the Sato
Grassmannian). The connected component of an infinite projection p co-
incides with the unitary orbit {upu∗ : u ∈ U2(H)} where U2(H) denote the
Hilbert-Schmidt unitary group. The geometry of this orbit was studied in [4].
In that work the authors endowing each tangent space with the trace inner
product and show that the geodesics given by the Levi-Civita connection of
this metric have minimal length among all piecewise smooth curves in the
orbit joining the same endpoints. Moreover they proved the completeness of
the geodesic distance using the completeness of the Hilbert-Schmidt unitary
group.

Another important Grassmannian is the Lagrangian Grassmannian; in
finite dimension, it was introduced by V.I. Arnold in 1967 [1]. These no-
tions have been generalized to infinite dimensional Hilbert spaces (see [11])
and have found several applications to Algebraic Topology, Differential Ge-
ometry and Physics. In [3] E. Andruchow and G. Larotonda introduced
a linear connection in the Lagrangian Grassmannian and focused on the
geodesic structure of this manifold. There they proved that any two La-
grangian subspaces can be joined by a minimal geodesic. The case of the
Fredholm Lagrangian Grassmannian of an infinite dimensional symplectic
Hilbert space H, modelled on the space of compact operators, was studied
by J. C. C. Eidam and P. Piccione in [10]. The reader can see also the paper
by A. Abbondandolo and P. Majer for the general theory of infinite dimen-
sional Grassmannians, and the book by G. Segal and A. Pressley for further
references on the subject [26].

Main results

In this thesis we will introduce a new Riemannian metric into the group of
invertible Hilbert-Schmidt operators. It will be defined through the existence
of a unique polar decomposition in the invertible group of operators, this new
metric will be name the polar metric. The geodesic curves of this metric will
be computed and we will show that they are minimal between two given
points. Moreover we will study the completeness of the geodesic distance
and will compare this metric with the induced with the classical left-invariant
metric.

Another group that we will work with is the group of symplectic operators
which are a perturbation of the identity by a Hilbert-Schmidt operator. This
subgroup of the symplectic group was introduced in Pierre de la Harpe’s
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classical book of Banach-Lie groups [13]. This group has many applications
in quantum theory with infinitely many degrees of freedom, i.e. in canonical
quantum field theory, string theory, statistical quantum physics and solition
theory. We will endow the tangent spaces with different Riemannian metrics;
since the polar decomposition is stable into the group we can endow the
symplectic group with the polar metric and compare the length of curves
using the minimal curves of the unitary group and the positive invertible
operators. Moreover we will study the geometry of the symplectic group
with the left-invariant metric; its connection, geodesics and completeness.

In Chapter 3 we will study homogeneous spaces for the symplectic group,
more precisely we will focus in a restricted version of the Lagrangian Grass-
mannian which we named the Hilbert-Schmidt Lagrangian Grassmannian.
It is defined as the set of Lagrangian subspaces L such that there exists a
Hilbert-Schmidt symplectic operator g such that L = g(L0) for a fixed La-
grangian subspace L0. Here we will focus on the geometric study and we
will discuss which metric can be defined in each tangent space and which
geometric properties it verifies. In particular we will find the geodesic curves
of this structure and we will describe it in terms of exponentials of operators,
moreover we will study the completeness of the geodesic distance.

In Chapter 4 we will extend some results of the Hilbert-Schmidt sym-
plectic group into a more general class of Riemannian operator groups, the
self-adjoint operator groups. The most important statement here will be the
completeness of the geodesic distance with the left-invariant metric. More-
over we will study the completeness with the polar metric and will find the
geodesic curves.

In the next items we summarize the most important statement in this
thesis.

We denote by P the polar metric and by I the classical left-invariant met-
ric of Lie-groups and dP , dI denote the respective geodesic distances. The
invertible group Hilbert-Schmidt perturbations of the identity is denoted by
GL2(H) and the Hilbert-Schmidt symplectic group by Sp2(H), their Lie alge-
bras will be denoted by B2(H) and sp2(H) respectively. The cone of positive
invertible Hilbert-Schmidt operators is denoted by GL+

2 (H) and its Rieman-
nian metric is denoted by p. The Lagrangian Grassmannian is denoted by
Λ(H) and the Hilbert-Schmidt Lagrangian Grassmannian by OL0 . The quo-
tient norm of homogeneous spaces will be denoted by Q.

• Theorem 1: Let p, q ∈ GL2(H), suppose that up|p| and uq|q| are their
polar decompositions. If we choose z ∈ B2(H)ah such that uq = upe

z
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with ‖z‖ ≤ π; then the curve

αp,q(t) = upe
tz|p|1/2(|p|−1/2|q||p|−1/2)t|p|1/2 ⊂ GL2(H)

has minimal length among all curves joining p to q, measured with the

polar metric P given by P
(
(u, |g|), v

)
:=

(
I(u, x)2+p(|g|, y)2

)1/2
where

v = (x, y) ∈ TuU2(HJ)× T|g|GL+
2 (H).

• Theorem 2: The metric space (GL2(H), dP) is complete.

• Theorem 3: Sp2(H) is a totally geodesic submanifold of GL2(H) when
we consider the polar metric.

• Theorem 4: Sp2(H) is a totally geodesic submanifold of GL2(H) when
we consider the left invariant metric.

• Theorem 5: Let p, q ∈ Sp2(H), suppose that up|p| and uq|q| are their
polar decompositions, if we choose z ∈ sp2(H)ah such that uq = upe

z

with ‖z‖ ≤ π, then the curve

αp,q(t) = upe
tz|p|1/2(|p|−1/2|q||p|−1/2)t|p|1/2 ⊂ Sp2(H)

has minimal length among all curves joining p to q, measured with the
induced polar metric of GL2(H).

• Theorem 6: The metric spaces (Sp2(H), dP) and (Sp2(H), dI) are
complete.

• Theorem 7: Let ξ : [0, 1] → OL0 be a geodesic curve of the Rieman-
nian connection induced by the quotient metric Q with initial position
ξ(0) = L and initial velocity ξ̇(0) = w ∈ Tξ(0)OL0 = B2(L)h. Then

ξ(t) = et(v
∗−v)e−tv

∗

(L)

where v is a preimage of −w by the differential of the action of Sp2(H).

• Theorem 8: If (Ln) is a sequence in OL0 , L ∈ OL0 and dQ the geodesic
distance with the quotient metric then

1. The metric space (OL0 , dQ) is complete.

2. The distance dQ defines the given topology on OL0 . Equivalently,

Ln
OL0−→ L⇐⇒ Ln

dQ
−→ L.

• Theorem 9 If G is a self-adjoint Banach-Lie subgroup of GL2(H) then
it is totally geodesic with the polar and left invarient metrics.
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• Theorem 10: Let G be a closed subgroup of GLn(C) then the metric
space induced by the geodesic distance with the left invariant p-norms
are complete.

• Theorem 11: Let G be a closed, self-adjoint Banach-Lie subgroup of
GL2(H) then

1. (G, dP) is complete.

2. (G, dI) is complete.

The above results have been published in research articles [20],[21] and
submitted in [22], for which I am the sole author.
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Introducción

Antecedentes

En teoŕıa Riemanniana de dimensión finita se sabe que dados dos puntos ex-
iste una curva geodesica minimal que los une. En este caso la completitud de
las geodésicas es equivalente con la completitud del espacio métrico inducido
por la distancia geodésica; esto es el Teorema de Hopf-Rinow. En el caso de
dimensión infinita esto no es cierto. En [23] y [2], McAlpin y Atkin provaron
en dos ejemplos como este teorema puede fallar. Por esta razón es interesante
el estudio de los problemas métricos en cada caso. Una pregunta natural en
esta dirección es acerca de la completitud del espacio métrico inducido por
la distancia geodésica.

En los 90’s, Corach, Porta y Recht comenzaron con el estudio de la ge-
ometŕıa de operadores positivos inversibles in C∗-algebras. Ah́ı construyeron
una métrica de Finsler en el fibrado tangente usando la norma de la C∗-
algebra; dado un elemento positivo a y X ∈ TaG la estructura Finsler es
‖X‖a = ‖a−1/2Xa−1/2‖. El fibrado tangente lleva una conección canon-
ica determinada por la equación de transporte, la derivada covariante es
definida por DXY = X(Y )− 1/2(Xa−1Y + Y a−1X). Además provaron que
las geodésicas de esta connección son minimales entre dos puntos. La ge-
ometŕıa de los operadores positivos de Hilbert-Schmidt fué estudiada en [18]
donde el autor obtuvo aspectos geometricos sobre: conección Riemanniana,
geodésicas, curvatura seccional, convexidad de la distancia geodésica y com-
pletitud. Otros hechos abordados ah́ı fueron los teoremas de Descomposición
y los grupos de operadores autoadjuntos.

Otro trabajo que es relevante en este contexto ha sido desarrollado en [3],
ah́ı los autores estudiaron métricas invariantes a izquierda inducidas por las
normas p en el álgebra del grupo lineal. En particular han sido caracterizadas
las geodésicas correspondientes al caso p = 2 y se describieron como producto
de grupos a un parámetro. También se prueba que las geodésicas son grupos
a un parámetro si y solo si la velocidad inicial es una matriz normal.

Los espacios homogéneos para grupos de operadores han recibido una im-
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portancia central en el estudio de la geometŕıa de dimensión infinita. Uno
de los mas conocidos de estos espacios homogéneos es la Grasmanniana re-
stringida de Hilbert-Schmidt Gres(p) (también conocida como la Grasman-
niana de Sato). La componente conexa de un projector de rango infinito
coincide con la orbita unitaria {upu∗ : u ∈ U2(H)} donde U2(H) representa a
los operadores unitarios de Hilbert-Schmidt. La geometŕıa de esta orbita fué
estudiada en [4]. En este trabajo los autores dotaron a los espacios tangentes
con el producto interno dado por la traza y provaron que las geodésicas dadas
por la conección de Levi-Civita tienen longitud mı́nima entre todas las curvas
suaves que unen los mismos puntos finales. Además provaron la completitud
de la distancia geodésica usando la completitud del grupo de unitarios de
Hilbert-Schmidt.

Otra Grasmanniana de importancia es la Grasmanniana Lagrangiana;
en dimensión finita esta es introducida por V.I. Arnold en 1967 [1]. Estas
nociones se han generalizado a espacios de Hilbert en dimensiones infinitas
(véase [11]) y han encontrado varias aplicaciones a la topoloǵıa algebraica,
geometŕıa diferencial y F́ısica. En [3] E. Andruchow y G. Larotonda intro-
dujeron una conexión lineal en la Grasmanniana Lagrangiana y se centraron
en la estructura geodésica de esta conexión. Alĺı se demostró que dos sube-
spacios Lagrangianos se pueden unir por una geodésica mı́nima. El caso de
la Grasmanniana Lagrangiana de Fredholm de dimensión infinita en un es-
pacio de Hilbert simpléctico H, modelado en el espacio de los operadores
compactos, fue estudiado por J.C.C. Eidam y P. Piccione en [10]. El lector
puede ver también el art́ıculo de A. Abbondandolo y P. Majer para la teoŕıa
general de Grasmannianas en dimensión infinita, y el libro de G. Segal y A.
Pressley para más referencias sobre el tema [26].

Resultados principales

En esta tesis vamos a introducir una nueva métrica Riemanniana en el grupo
de operadores inversibles de Hilbert-Schmidt. Esta se define a través de la
existencia de la unicidad de la descomposición polar en el grupo de operadores
inversibles, esta nueva métrica será llamada, la métrica polar. Se calcularán
las curvas geodésicas de esta métrica y se mostrará que son mı́nimas entre dos
puntos dados. Además se estudiará la completitud de la distancia geodésica
y se comparará con la inducida por la métrica invariante a izquierda.

Otro grupo que trabajaremos es el grupo de operadores simplécticos que
son una perturbación de la identidad por un operador de Hilbert-Schmidt.
Este subgrupo del grupo simpléctico se introdujo en el clásico libro de Pierre
de la Harpe de grupos de Banach-Lie [13]. Este grupo tiene muchas aplica-



XV

ciones en la teoŕıa cuántica con infinitos de grados de libertad, es decir, en la
teoŕıa canónica cuántica de campos, la teorá de cuerdas, la f́ısica cuántica y la
teoŕıa estad́ıstica solition. En este trabajo vamos a dotar a los espacios tan-
gentes con diferentes métricas Riemannianas. Como la descomposición polar
es estable en el grupo podemos dotar al grupo simpléctico con la métrica
polar y comparar la longitud de las curvas utilizando las curvas mı́nimas del
grupo unitario y de los operadores invertibles positivos. Por otro lado va-
mos a estudiar la geometŕıa del grupo simpléctica con la métrica invariante
a izquierda; conexión, geodésicas y completitud.

En el Caṕıtulo 3 estudiaremos los espacios homogéneos para el grupo
simpléctico, más precisamente nos centraremos en una versión restringida
de la Grasmanniana Lagrangiana; la cual llamaremos, Grasmanniana La-
grangiana de Hilbert Schmidt. Esta se define como el conjunto de subespa-
cios Lagrangianos L tales que existe un operador g simpléctico de Hilbert-
Schmidt tal que L = g(L0) para L0 un subespacio Lagrangiano fijo. Aqúı nos
centraremos en el estudio geométrico y discutiremos que métricas se pueden
definir en cada espacio tangente y que propiedades geométricas se verifican.
En particular, encontraremos las curvas geodésicas de estas estructuras y las
describiremos en términos de exponenciales de operadores, por otra parte se
estudiará la completitud de la distancia geodésica.

En el Caṕıtulo 4 ampliaremos algunos resultados del grupo simpléctico de
Hilbert-Schmidt a una clase más general de grupos de operadores Rieman-
nianos, los grupos de operadores autoadjuntos. El hecho más importante
aqúı será la completitud de la distancia geodésica con la métrica invariante
a izquierda. Además se estudiará la completitud con la métrica polar y se
calcularán las curvas geodésicas.

En los próximos items resumimos los hechos más reelevantes en esta tesis.

Denotamos por P a la métrica polar y por I a la métrica invariante a
izquierda de grupos de Lie y por dP , dI las respectivas distancias geodésicas.
El grupo de operadores inversibles que son perturbaciones de la identidad por
un operador de Hilbert-Schmidt es notado por GL2(H) y el grupo simpléctico
de Hilbert-Schmidt Sp2(H) sus algebras de Lie son B2(H), sp2(H) respec-
tivamente. El cono de operadores positivos de Hilbert-Schmidt es notado
por GL+

2 (H) y su métrica Riemanniana es notada por p. La Grasmanniana
Lagrangiana es notada por Λ(H) y la Grasmanniana Lagrangiana de Hilbert-
Schmidt por OL0 . La métrica cociente de espacios homogéneos será notada
por Q.

• Teorema 1: Sean p, q ∈ GL2(H), supongamos que up|p| y uq|q| son sus
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descomposiciones polares. Si elegimos z ∈ B2(H)ah tal que uq = upe
z

con ‖z‖ ≤ π, luego la curva

αp,q(t) = upe
tz|p|1/2(|p|−1/2|q||p|−1/2)t|p|1/2 ⊂ GL2(H)

tiene longitud mı́nima entre todas las que unén p con q, medidas con

la métrica polar P dada por P
(
(u, |g|), v

)
:=

(
I(u, x)2 + p(|g|, y)2

)1/2

donde v = (x, y) ∈ TuU2(HJ)× T|g|GL+
2 (H).

• Teorema 2: El espacio métrico (GL2(H), dP) es completo.

• Teorema 3: Sp2(H) es una subvariedad total geodésica de GL2(H)
cuando consideramos la métrica polar.

• Teorema 4: Sp2(H) es una subvariedad total geodésica de GL2(H)
cuando consideramos la métrica invariante a izquierda.

• Teorema 5: Sean p, q ∈ Sp2(H), supongamos que up|p| y uq|q| son sus
descomposiciones polares, si elegimos z ∈ sp2(H)ah tal que uq = upe

z

con ‖z‖ ≤ π, luego la curva

αp,q(t) = upe
tz|p|1/2(|p|−1/2|q||p|−1/2)t|p|1/2 ⊂ Sp2(H)

tiene longitud mı́nima entre todas las que unén p con q, medidas con
la métrica polar inducida de GL2(H).

• Teorema 6: Los espacios métricos (Sp2(H), dP) y (Sp2(H), dI) son
completos.

• Teorema 7: Sea ξ : [0, 1] → OL0 una curva geodésica dada por la
conección inducida por la métrica cocienteQ con posición inicial ξ(0) =
L y velocidad inicial ξ̇(0) = w ∈ Tξ(0)OL0 = B2(L)h. Luego

ξ(t) = et(v
∗−v)e−tv

∗

(L)

donde v es una preimagen de −w v́ıa la diferencial de la acción.

• Teorema 8: Si (Ln) es una sucesión en OL0 , L ∈ OL0 y dQ denota la
distancia geodésica con la métrica cociente luego

1. El espacio métrico (OL0 , dQ) es completo.

2. La distancia dQ define la topoloǵıa en OL0 . Equivalentemente,

Ln
OL0−→ L⇐⇒ Ln

dQ
−→ L.
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• Teorema 9: Si G es un subgrupo de Lie autoadjunto de GL2(H) luego
es total geodésico con la métrica polar y con la métrica invariante a
izquierda.

• Teorema 10: Sea G un subgrupo cerrado de GLn(C) luego los es-
pacios métricos inducidos por la distancia geodésica con las métricas
invariantes a izquierda con las normas p son completos.

• Teorema 11: Sea G un subgrupo de Lie, cerrado y autoadjunto de
GL2(H) luego

1. (G, dP) es completo.

2. (G, dI) es completo.

Los resultados anteriores han sido publicados en [20],[21] y presentados
en [22], en donde soy el autor.
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Chapter 1

Preliminaries

En este caṕıtulo fijaremos la notación que utilizaremos y recordaremos al-
gunos hechos de operadores lineales, variedades, grupos de Lie y geometŕıa
Riemanniana.

In this chapter we will fix the notation that we will use throughout and
recall some facts of Linear Operator, Banach manifolds, Lie groups and Rie-
mannian geometry.

1.1 Linear Operators in Hilbert Spaces

We start this section giving some definitions and results about linear op-
erators between Hilbert spaces. The Hilbert spaces will be denoted by H.
In general we use complex a Hilbert space, but in some cases of operator
groups we will use a real Hilbert space. We denote the inner product by
〈, 〉 and the induced norm by ‖ξ‖ = 〈ξ, ξ〉1/2, ξ ∈ H. A linear map (oper-
ator) x : H → H is said to be bounded if there is a number K such that
‖xξ‖ ≤ K‖ξ‖, ∀ξ ∈ H. The infimum of all such K is called the uniform o
spectral norm of x, written ‖x‖. Boundedness of an operator is equivalent
to continuity. Let B(H) denote the algebra of bounded operators acting on
H. To every bounded operator x ∈ B(H) there is another x∗ ∈ B(H), called
the adjoint of x, which is defined by the formula

〈xξ, η〉 = 〈ξ, x∗η〉, ∀ξ, η ∈ H.

Then the uniform norm can be calculated by

‖x‖ = sup
‖ξ‖=1

‖xξ‖ = sup
‖ξ‖≤1,‖η‖≤1

|〈xξ, η〉| = ‖x∗‖ = ‖x∗x‖1/2.

1
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Definition 1.1.1. An operator x ∈ B(H) is called Hermitic if x = x∗.
Analogously it is called anti-Hermitic if x = −x∗

An operator x ∈ B(H) is called positive (x ≥ 0) if 〈xξ, ξ〉 ≥ 0 for all ξ ∈ H.
An operator u ∈ B(H) is called unitary if uu∗ = u∗u = 1. We denote by
U(H) the set of all unitary operators.

If A ⊂ B(H) is any subset of operators, we use the subscript h (resp. ah)
to denote the subset of Hermitian (resp. anti-Hermitian) elements of it, i.e.
Ah = {x ∈ A : x∗ = x} and Aah = {x ∈ A : x∗ = −x}.

We denote by GL(H) the general linear group of all invertible operators
on H and by GL(H)+ the subset of all positive invertible operators. Let
|x| = (x∗x)1/2 be the modulus of x. It is known that every invertible operator
g has an unique representation

g = u|g|,

where u ∈ U(H). Such decomposition is called a polar decomposition of g.
An operator x ∈ B(H) is said to be compact if x(BH) has compact closure
in H, where BH = {ξ ∈ H : |ξ| = 1} is the unit ball. The set of all compact
operators will be denoted by K(H). The spectrum of any operator x will be
denoted by σ(x). The compact operators have many properties that we will
use. We mention some of these:

1. A compact operator x is compact if and only if there exists a sequence
(xn) of finite range operators such that ‖x− xn‖ → 0.

2. x is compact if and only if x∗ is compact.

3. 0 ∈ σ(x), and σ(x) − {0} consists of eigenvalues of finite multiplicity
(i.e. the dimension of the λ-eigenspace ker(x−λ) has finite dimension.

4. σ(x)− {0} is either empty, finite or a sequence converging to 0.

5. If x is compact and normal with spectrum σ(x) = {0, λ1, λ2, ....., λn, .....}
then by the spectral Theorem

x =
∞∑

n=1

λnpn

where pn denotes the orthogonal projection to ker(x− λn).

Theorem 1.1.2. (Canonical form for compact operator) Let x ∈ K(H).
Then x has the norm convergent expansion,

x =
∞∑

n=1

sn(x)〈φn, ·〉ψn
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(where he sum may be finite or infinite), each sn(x) ≥ 0, decreasingly ordered
with sn(x) → 0 and φn, ψn are orthonormal sets (not necessarily complete).
Moreover, the sn(x) are uniquely determined. The sn := sn(x) are eigenval-
ues of |x| = (x∗x)1/2 counted with multiplicity and are called singular values
of x.

If x ∈ K(H) we denote by {sn(x)} the sequence of singular value of x
(decreasingly ordered). For 1 ≤ p ≤ ∞, let

‖x‖p :=

( ∞∑

n=1

sn(x)
p

)1/p

and
Bp(H) = {x ∈ B(H) : ‖x‖p <∞}

called the p-Schatten class of B(H).
If x is any operator then the sum Tr(x) :=

∑∞
n=1〈xξn, ξn〉 has the same

value (finite or infinite) for any orthonormal basis {ξn} of H. This number
is called the trace of x and it has the following properties:

• Tr(λx+ βy) = λTr(x) + βTr(y).

• Tr(uxu∗) = Tr(x) for all u ∈ U(H).

• If 0 ≤ x ≤ y, then Tr(x) ≤ Tr(y).

• Tr(xy) = Tr(yx).

Remark 1.1.3. x ∈ Bp(H) if and only if ‖x‖p = Tr(|x|p)1/p <∞.

Now, let us recall some properties of the classes Bp(H), for a proof see the
book [27] Chapter 3.

Theorem 1.1.4. Let 1 ≤ p <∞,

1. Bp(H) is a *-ideal of B(H).

2. ‖x‖p = ‖uxv‖p, for all x ∈ Bp(H) and u, v ∈ U(H). That is, the
unitary invariance property.

3. ‖x‖ ≤ ‖x‖p = ‖x∗‖p, for all x ∈ Bp(H).

4. ‖xyz‖ ≤ ‖x‖‖y‖p‖z‖, x, z ∈ B(H) and y ∈ Bp(H).

When p = 2, the elements of B2(H) are called Hilbert-Schmidt operators,
they form a Hilbert space with the 2-norm. The inner product is given by

〈x, y〉 = Tr(y∗x).
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1.2 Manifolds

In this Thesis we focus in smooth Riemannian manifolds modelled in spaces
of infinite dimension called Riemann Hilbert manifolds. We refer to Lang’s
book [17] for the basic differential geometry of this type of manifolds.

Definition 1.2.1. Let X be a set. An atlas of class Cr on X is a collection
of pairs (called charts) (Ui, φi) satisfying the following conditions:

1. Each Ui is a subset of X and the Ui cover X.

2. Each φi is a bijection of Ui onto an open subset φi(Ui) of some Banach
space Ei and for any i, j, φi(Ui ∩ Uj) is open in Ei.

3. The map

φjφi : φi(Ui ∩ Uj) → φj(Ui ∩ Uj)

is a Cr-isomorphism for each pair of indices i, j.

One can then show that there is a unique topology on X such that each
Ui is open and each φi is a homeomorphism. If the Banach spaces Ei are
Hilbert spaces, the above structure is called a Hilbert manifold on X. The
definition of smooth function is analogous to the finite dimensional case. If
we have a smooth function f : X → Y between manifolds we denote its
differential at a point x ∈ X by

dxf : TxX → Tf(x)Y

However, if I ⊂ R is an interval and a curve γ : I → X, its differential in
(t, 1) ∈ TtI = I × R will be denoted by γ̇(t), that is γ̇(t) = dtγ(1).

A smooth map f : X → Y is called a submersion at a point x ∈ X if it
satisfies:

• ker(dxf) is a complemented subspace of TxX, i. e. there exists a closed
subspace F such that TxX = ker(dxf)⊕F .

• The map dxf : TxX → Tf(x)Y is surjective.

We say that f is a submersion if it is a submersion at every point.

Proposition 1.2.2. Let f : X → Y a smooth map. Then f is a submersion
at x ∈ X if and only if f admits local sections, i.e, there exists a neighbour-
hood U of f(x) ∈ Y and a smooth map s : U → X such that f ◦ s = idU .
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Let X be a manifold and Y ⊆ X be a subset; we say that a chart
φ : U → φ(U) is a submanifold chart for Y if φ(U ∩ Y ) is equal to the
intersection of φ(U) with a closed vector subspace S. Then we say that:

φ|U∩Y : U ∩ Y → φ(U) ∩ S

is the chart in Y induced by φ. The subset Y is said to be an embedded
submanifold of X if for all x ∈ X there exists a submanifold chart for Y
whose domain contains x. The inclusion i : Y →֒ X will be an embedding of
Y in X, i.e., a differentiable immersion which is a homeomorphism onto its
image endowed with the relative topology.

1.2.1 Sprays and connections

A second-order vector field on a manifold X is a vector field F : TX → TTX
on TX satisfying dπ◦F = idTX , where π : TX → X is the natural projection
map. Let t ∈ R and let sTX : TX → TX, V 7→ tV denote the multiplication
by t in each tangent space. A second order vector field is called a spray if
F (tV ) = d(sTX)(tF (V ) for all t ∈ R and V = (x, v) ∈ TX. In a local chart
(U, φ), using the identification TU ∼= U ×E and TTU ∼= (U ×E)× (E×E),
a spray can be written as

F (x, v) = (x, v, v, f(x, v))

where f : U×E → E is a smooth map that verifies that f(x, ·) is a quadratic
map for each x ∈ U . Using the polarization formula we have the bilinear
form,

Γx(v, w) = 1/2 {Fx(v + w)− Fx(v)− Fx(w)} , for x ∈ U, v, w ∈ TxX (2.1)

asociated to the spray. We also have the covariant derivative of the spray

Dtη = η̇ − Γ(η, α̇) (2.2)

where α : (−ǫ, ǫ) → X is any smooth curve and η is a tangent field along α.
A smooth curve α : I → X, is called a geodesic of the spray F if it verifies
the equation

α̈ = F (α̈) (2.3)

Let D the set of vectors V ∈ TX such that the solution α of the above
equation is defined at least on the interval [0, 1]; we define the exponential
map by

Exp(V ) = αv(1)
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where V = (x, v) and αv is a solution of equation (2.3) with initial velocity v.
We denote by Expx,Dx the restriction of the map Exp to the tangent space
TxX. Thus,

Expx : Dx ⊂ TxX → X.

1.3 Banach-Lie groups

A Banach-Lie group G is a smooth Banach manifold which is also endowed
with a group structure such that the map G × G → G defined by (x, y) 7→
xy−1 is smooth. The tangent space TeG at the identity e ∈ G is its Banach-
Lie algebra and it is denoted by g. If we denote by Lg the differential map
of the left action of G on itself and by Rg the differential map of the right
action, then the tangent space at g ∈ G is

TgG = Lgg ∼= Rgg.

A 1-parameter subgroup of G is a group homomorphism γ : R → G. For
each v ∈ g there exists an unique 1-parameter subgroup such that γ̇v(0) = v.
This allows us to define the exponential map

expG : g → G, expG(v) = γv(1).

See the Chapter 2 Section 2 in the book [5] for further information about the
exponential map.

Definition 1.3.1. A subgroup H of a Banach-Lie group G is a Banach-Lie
subgroup if:

1. H is a Banach-Lie group and its topology coincides which inherits from
G.

2. The map i : H →֒ G is an immersion with closed range.

3. There exists a closed subspace F such that dei(h)⊕F = g.

Because of condition 2 we always identify h (the Banach-Lie algebra of H)
with Ran(dei), so that we think of h as a closed subalgebra of the Banach-Lie
algebra g. In this way dei is just the inclusion map h →֒ g.

The following statement supplies a very useful characterization of Banach-
Lie subgroups. It can be found in the Chapter 4, Proposition 4.4 in the book
[5].
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Theorem 1.3.2. Assume that G is a Banach-Lie group with the Lie algebra
g, H is a closed subgroup of G and denote

h = {x ∈ g : expG(tx) ∈ H, ∀t ∈ R}

Then h is a closed Lie subalgebra of g and there exist on H an uniquely
determined topology τ and a manifold structure making H into a Banach-
Lie group such that L(H) = h, the inclusion map H →֒ G is smooth and
dei : h →֒ g is an inclusion.

Corollary 1.3.3. In the setting of the above theorem, if we assume that there
exist an open neighborhood V of 0 ∈ g and an open neighborhood U of 1 ∈ G
such that expG induces a diffeomorphism of V onto U and expG(V ∩ h) =
U ∩H. Then the topology τ coincides with the topology inherited by H from
G.

Remark 1.3.4. If G is a finite dimensional Lie group and H is a closed
subgroup, then H is a Banach-Lie subgroup of G. See the book [5] Chapter
4, Remark 4.6 for the proof.

Definition 1.3.5. We say that a subspace m ⊂ g is a Lie triple system if
[[x, y] , z] ∈ m for any x, y, z ∈ m.

1.3.1 Homogeneous manifolds

Let G be a Banach-Lie group and X a smooth manifold. A smooth action
of G on X is a smooth map π : G × X → X, (g, x) 7→ g.x such that
(g1g2).x = g1.(g2.x) and e.x = x for all g1, g2 ∈ G and x ∈ X. Given an
action, the orbit of x ∈ X is the set Ox = {g.x : g ∈ G}. We denote by πx
the smooth map given by

πx : G→ X, πx(g) = g.x.

The subgroup given by Gx = {g ∈ G : g.x = x} is called the isotropy group
at x ∈ X. It is not difficult to see that there is a bijection between Ox and
G/Gx.

A smooth action is called transitive if for all x1, x2 ∈ X there exists g ∈ G
such that g.x1 = x2, i.e. Ox = X. Let π be a smooth transitive action, we
say that X is a homogeneous space if there exists x ∈ X such that πx is a
submersion at e ∈ G. It is not difficult to see that if πx is a submersion at
e ∈ G then it is a submersion for all g ∈ G. If the orbit is a homogeneous
space then, since Gx = π−1

x (x) and by the inverse function Theorem (see the
book [17] Chapter 1, Corollary 5.5), the isotropy group results in a Banach-
Lie subgroup of G with Banach-Lie algebra ker deπx. Moreover, we have a
diffeomorphism between G/Gx and Ox.
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1.4 Riemannian Geometry

A Riemannian metric (or Riemannian structure) on a smooth manifold X
is a correspondence which associates to each point x of X an inner product
(〈·, ·〉x) on the tangent space TxX, which varies smoothly. A manifold with
a Riemannian metric will be called a Riemannian manifold. In other words
a Riemannian structure is a smooth section h : X → Bil(TX) such that
h(x)(v, w) = 〈v, w〉x with image in positive definite forms. We denote by
b(x, v) = 〈v, v〉x the metric in each tangent space. The length of a smooth
curve α measured with the metric b will be denoted by

Lb(α) =

∫ 1

0

b(α(t), α̇(t))dt.

We define the geodesic distance between two points x, y ∈ X as the infimum
of the length of all piecewise smooth curves in X joining x to y,

db(x, y) = inf {Lb(α) : α ⊂ X,α(0) = x, α(1) = y} .

Thus, X is a metric space with respect to the distance db.
Let f : X → Y be an immersion, if Y has a Riemmanian structure, f

induces a Riemannian structure on X by defining 〈v, u〉x = 〈dxf(v), dxf(u)〉
for all v, u ∈ TxX. This metric is then called the metric induced by f , and
f is an isometric immersion.

We say that a Riemannian metric on a Lie group G is left invariant if
〈v, u〉y = 〈dyLx(v), dyLx(u)〉Lx(y) for all x, y ∈ G, v, u ∈ TyG. Analogously,
we can define a right invariant metric. We can always introduce a left invari-
ant Riemannian metric on a Lie group G taking any arbitrary inner product
〈·, ·〉e on its Lie algebra and define

〈v, u〉x = 〈dxLx−1(v), dxLx−1(u)〉e, ∀ u, v ∈ TxG x ∈ G. (4.4)

In an analogous manner we can build a right invariant metric using the right
multiplication.

If we have two Riemannian manifolds X and Y , then we can consider
the cartesian product X × Y with the manifold product structure. Let pr1 :
X×Y → X and pr2 : X×Y → Y be the projections. Then, we can introduce
a Riemannian metric on X × Y as follows:

〈v, u〉(x,y) = 〈dpr1 · v, dpr1 · u〉x + 〈dpr2 · v, dpr2 · u〉y, (4.5)

for all (x, y) ∈ X × Y v, u ∈ T(x,y)X × Y. Thus, we can give a Riemannian
structure on the product manifold X × Y .

The following two theorems characterize the second-order vector field on
a Riemannian manifold X. For more details see the book [17], Chapter 4.
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Theorem 1.4.1. Let X be a Riemannian manifold. There exists a unique
covariant derivative D such that for all vector fields η, β, µ, we have

Dη〈β, µ〉 = 〈Dηβ, µ〉+ 〈β,Dηµ〉. (4.6)

This covariant derivative is called The Levi-Civita derivative and the above
equation means the compatibility with the metric.

Theorem 1.4.2. Let X be a Riemannian manifold. There exists a unique
spray F on X satisfying the following two equivalent conditions:

1. In a chart,

〈Fx(v), h(x)z〉 = −〈dxh(v), z〉+ 1/2〈dxh(v), v〉

for all z, v ∈ TxX. This spray is called the metric spray.

2. The covariant derivative associated to the spray is the Levi-Civita deriva-
tive.

Proposition 1.4.3. Let X, Y be Riemannian manifolds. If we consider the
product Riemannian structure on X×Y (4.5) then the Levi-Civita connection
is given by (∇X ,∇Y ) where ∇X and ∇Y denote the Levi-Civita connection
of X and Y .

Proof. We will suppose that the tangent space at any (x, y) ∈ X × Y is
given by TxX × TyY . We want to prove that the covariant derivative is
given by (∇X

W1
V1,∇

Y
W2
V2) where V1,W1 and V2,W2 are fields on TX and TY

respectively. It is clearly symmetric and verifies all the formal identities of a
connection therefore the proof that it is the Levi-Civita connection relays on
the compatibility condition between the connection and the metric. Indeed,
let V (t) = (V1(t), V2(t)) and W (t) = (W1(t),W2(t)) fields along a curve
γ = (γ1, γ2) ⊂ X × Y then using the compatibility on each factor we have,

d

dt

(

〈(V1, V2), (W1,W2)〉(γ1,γ2)

)

=
d

dt

(

〈V1,W1〉γ1

)

+
d

dt

(

〈V2,W2〉γ2

)

〈DtV1,W1〉γ1 + 〈V1, DtW1〉γ2 + 〈DtV2,W2〉γ2 + 〈V2, DtW2〉γ2 =

= 〈(DtV1, DtV2), (W1,W2)〉(γ1,γ2) + 〈(V1, V2), (DtW1, DtW2)〉(γ1,γ2)

Let Bdb(x, r) be the open ball with respect to the geodesic distance cen-
tered in x of radio r.
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Theorem 1.4.4. Let x ∈ X, there exists c > 0 such that for all r < c the
map Expx gives a differential isomorphism

Expx : U ⊂ TxX → Bdb(x, r)

where U is an open neighbourhood of 0 ∈ TxX.

In a Riemannian manifold X we have another notion of completeness.
A Riemannian manifold is geodesically complete if the maximal interval of
definition of every geodesic in X is all of R. Let α : [0, 1] → X be a geodesic.
We say that α is a minimal geodesic if Lb(α) ≤ Lb(γ) for every path joining
α(0) and α(1).

Theorem 1.4.5. Let X be a Riemannian manifold, then:

1. Every geodesic is locally minimal.

2. If a smooth curve α verifies that Lb(α) ≤ Lb(γ) for every path joining
α(0) and α(1), then it is a geodesic.

Let us considerate the following conditions:

1. As a metric space under db, X is complete.

2. All geodesic in X are defined in R.

3. For every x ∈ X, the exponential Expx is defined on all of TxX.

Theorem 1.4.6. Each of the above conditions implies the next, i.e 1 ⇒ 2 ⇒
3.

In the finite dimensional case the above conditions are equivalent. That is
the Hopf-Rinow theorem. See the book [16], Chapter 1, Theorem 10.3.

Theorem 1.4.7. (Hopf-Rinow) Assume that X is connected, geodesically
complete and finite dimensional. Then any two point in X can be joined by
a minimal geodesic.

Definition 1.4.8. A submanifold Y ⊂ X is said to be totally geodesic if
any geodesic of the manifold Y (with respect to the metric induced on Y by
the metric of the ambient manifold X) is at the same time a geodesic of the
ambient manifold X.

Proposition 1.4.9. Let Y ⊂ X be a Riemannian submanifold of the Rie-
mannian manifold X and denote by ∇1, ∇2 the respective covariants deriva-
tive of them, then the following statements are equivalent:

1. Y is a totally geodesic submanifold of X.

2. (∇2)ξη ∈ TY for every vector fields ξ, η ∈ TY .

3. ∇1=∇2|TY .



Chapter 2

Riemannian metrics in

operator groups

En este Caṕıtulo estudiaremos posibles métricas Riemannianas en distintos
grupos de operadores, más precisamente estudiamos grupos de operadores
inversibles que son perturbaciones de la identidad por un operador de Hilbert-
Schmidt. Estos grupos de Banach fueron introducidos por Pierre de la Harpe
en su libro de Grupos de Lie-Banach [13]. Nos centraremos en el grupo
lineal y en el grupo simpléctico. En ambos casos estudiaremos estructuras
Riemannianas y sus propiedades geométricas.

In this chapter we will study possible Riemannian metrics in different
operator groups, more precisely we study groups of invertible linear operator
which are a perturbation of the identity by a Hilbert-Schmidt operator. These
Banach-Lie groups were introduced by Pierre de la Harpe in his book of
Banach-Lie groups [13]. We will focus in the general linear group and in the
symplectic group. In both cases we will study Riemannian structures and we
will study its geometric properties.

2.1 The Hilbert-Schmidt general linear group

The Hilbert-Schmidt general linear group is denoted by

GL2(H) = {g ∈ GL(H) : g − 1 ∈ B2(H)}.

This group has a differentiable structure when endowed with the metric ‖g1−
g2‖2 (note that g1 − g2 ∈ B2(H)); it is a Banach-Lie group with Banach-Lie

11



12 CHAPTER 2. RIEMANNIAN METRICS IN OPERATOR GROUPS

algebra B2(H). The exponential map is given by the classical exponential

exp(x) = ex =
∞∑

n=1

xn

n!
.

Using the left action of GL2(H) on itself, the tangent space at g ∈ GL2(H)
is

TgGL2(H) = g.B2(H).

The classical unitary subgroup is denoted by

U2(H) = {g ∈ U(H) : g − 1 ∈ B2(H)}.

It is not difficult to see, using Theorem 1.3.2, that U2(H) is a Banach-Lie
subgroup of GL2(H) with Banach-Lie algebra B2(H)ah. Given u ∈ U2(H) its
tangent space is TuU2(H) = uB2(H)ah.

We introduce the left invariant metric (4.4) for v ∈ TgGL2(H) by

I(g, v) = ‖g−1v‖2. (1.1)

This metric comes from the inner product

〈v, w〉g =
〈
g−1v, g−1w

〉
= Tr((gg∗)−1vw∗).

In the followings steps we recall the metric spray of GL2(H) with the left
invariant metric. For the metric expression g 7−→ Ig where Igv = (gg∗)−1v
we obtain the metric spray

Fg(v) = vg−1v + gv∗Igv − vv∗(g∗)−1.

Using the polarization formula (2.1) we obtain the bilinear form associated
to the spray, that is for g ∈ GL2(H) and v = gx, w = gy ∈ TgGL2(H),

2g−1Γg(gx, gy) = xy + yx+ x∗y + y∗x− xy∗ − yx∗.

The covariant derivative of the spray is Dtη = η̇−Γ(η, α̇) where α : (−ǫ, ǫ) →
GL2(H) is any smooth curve and η is a tangent field along α. Let g0 ∈
GL2(H) and v0 ∈ B2(H), then the unique geodesic of the Levi-Civita con-
nection induced by the trace inner-product metric, with initial position g0
and initial speed g0v0, is given by

α(t) = g0e
tv∗0et(v0−v

∗
0).

In this context, the Riemannian exponential map is given, for fixed g ∈
GL2(H), by the expression

Expg(v) = gev
∗

ev−v
∗

,
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and the exponential flow is certainly a smooth map from R × B2(H) to
GL2(H). For more details see [3].

The following proposition allows us an easier interpretation of the covari-
ant derivative in terms of the fields at the identity.

Proposition 2.1.1. If η is a field along a curve α we define β = α−1α̇
and µ = α−1η, the fields at the identity, then the covariant derivate can be
expressed by

α−1Dtη = µ̇+ 1/2{[β, µ] + [β, µ∗] + [µ, β∗]}.

Proof. From the covariant derivate formula, we have

α−1Dtη = α−1η̇ − α−1Γ(αµ, αβ).

If we write η = αµ and α̇ = αβ, using the product rule to differentiate η we
obtain

α−1η̇ = α−1α̇µ+ µ̇ = βµ+ µ̇.

Let GL+
2 (H) := GL(H)+ ∩ GL2(H) be the subset of positive invertible

operators. It is known that GL+
2 (H) is a submanifold of the open set ∆ =

{β+X ∈ C⊕B2(H) : β+X > 0}. For p ∈ GL+
2 (H), we identify the tangent

space TpGL+
2 (H) with B2(H)h and endow this manifold with a complete

Riemannian metric by means of the formula

p(p, x) = ‖p−1/2xp−1/2‖2 (1.2)

for p ∈ GL+
2 (H) and x ∈ TpGL+

2 (H). Using the compatibility condition
(4.6) between the connection and the metric it is not difficult to see that the
Levi-Civita connection is given by

∇ηµp = η(µ)p − 1/2(ηpp
−1µp + µpp

−1ηp) (1.3)

where η, µ are tangent fields and η(µ) denotes derivation of the vector field
µ in the direction of η.

Euler’s equation ∇γ̇ γ̇ = 0 for the covariant derivative introduced by the
Riemannian connection reads γ̈ = γ̇γ−1γ̇, and it is not hard to see that the
unique solution of this equation with γ(0) = p and γ(1) = q is given by the
smooth curve

γpq(t) = p1/2(p−1/2qp−1/2)tp1/2.

The exponential map of GL+
2 (H) is given by

Expp : TpGL+
2 (H) → GL+

2 (H), Expp(v) = p1/2 exp(p−1/2vp−1/2)p1/2.
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In [18] G. Larotonda obtained general geometric results about GL+
2 (H) with

the above metric: Riemannian conection, geodesic, sectional curvature, con-
vexity of geodesic distance and completeness.

Since the modulus operator of g ∈ GL2(H) can be written in terms of the
exponential operator, that is |g| = exp(1

2
ln(g∗g)), the polar decomposition

induces a diffeomorphism into the product manifold U2(H)×GL+
2 (H). This

fact was noted in Prop.14 (iv) on page 98 of the book [13]. We denote it by

GL2(H)
ϕ

−→ U2(H)×GL+
2 (H) (1.4)

g 7−→ (u, |g|).

If we put the left invariant metric on U2(H) (i.e. the metric I induced by
the ambient manifold GL2(H)) and the positive metric (1.2) on GL+

2 (H),
then we can endow the product manifold U2(H) × GL+

2 (H) with the usual
product metric (4.5). Thus, if v = (x, y) ∈ TuU2(H)×T|g|GL+

2 (H) we denote
the product metric by,

P
(
(u, |g|), v

)
:=

(

I(u, x)2 + p(|g|, y)2
)1/2

=

(

‖x‖22 + ‖|g|−1/2y|g|−1/2‖22

)1/2

. (1.5)

The map ϕ is in particular an immersion, from this we can define a new
Riemannian metric in the group in the following way: if v, w ∈ TgGL2(H)
we put

〈v, w〉g := 〈dϕg(v), dϕg(w)〉(u,|g|).

It is clear that ϕ is an isometric map with the above metric and if α is any
curve in the group GL2(H) we can measure its length as LP(ϕ ◦ α).

Proposition 2.1.2. The Levi-Civita connection of the polar metric is given
by

∇P
µ η(u,|g|) =

( 1

2
[η1, µ1] , η2(µ2)|g| −

1

2

[
η2|g||g|

−1µ2|g| + µ2|g||g|
−1η2|g|

] )

where η = (η1, η2) and µ = (µ1, µ2) are the fields in TuU2(H)× T|g|GL+
2 (H).

Proof. It is a direct consequence of Proposition 1.4.3 using the Levi-Civita
connection of the GL+

2 (H) and U2(H).

Theorem 2.1.3. Let g ∈ GL2(H) with polar decomposition u|g| and suppose
that u = ex with x ∈ B2(H)ah and ‖x‖ ≤ π, then the curve α(t) = etx|g|t ⊂
GL2(H) has minimal length among all curves joining 1 to g, if we endow
GL2(H) with the polar Riemannian metric (1.5).
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Proof. By the polar decomposition, ϕ ◦ α(t) = (etx, |g|t) and its length is

LP(ϕ ◦ α) =

∫ 1

0

P
(
(etx, |g|t), (xetx, ln |g||g|t)

)
dt =

(
‖x‖22 + ‖ ln |g|‖22

)1/2
.

Let β be another curve that joins the same endpoints and suppose that
β = β1β2 is its polar decomposition where β1 ⊂ U2(H) and β2 ⊂ GL+

2 (H),
then

LP(ϕ ◦ β) =

∫ 1

0

P
(
(β1, β2), (β̇1, β̇2)

)
dt =

∫ 1

0

(
I(β1, β̇1)

2 + p(β2, β̇2)
2
)1/2

dt.

Using the Minkowski inequality (see inequality 201 of [12]) we have,

∫ 1

0

(
I(β1, β̇1)

2 + p(β2, β̇2)
2
)1/2

dt ≥

({∫ 1

0

I(β1, β̇1)

}2

+

{∫ 1

0

p(β2, β̇2)

}2)1/2

=

(

LI(β1)
2 + Lp(β2)

2

)1/2

. (1.6)

It is known that the geodesic curve etx has minimal length among all smooth
curves in U2(H) joining the same endpoints (see [4]); using this fact and
since the curve |g|t has minimal length with the positive metric p (see [18])
we have,

LI(β1) ≥ LI(e
tx) = ‖x‖2 and Lp(β2) ≥ Lp(e

t ln(|g|)) = ‖ ln |g|‖2

then it is clear that LP(ϕ ◦ β) ≥ LP(ϕ ◦ α).

Remark 2.1.4. Let p, q ∈ GL2(H), suppose that up|p| and uq|q| are their
polar decompositions. From the surjectivity of the exponential map we can
choose z ∈ B2(H)ah such that uq = upe

z with ‖z‖ ≤ π. Then the curve

αp,q(t) = upe
tz|p|1/2(|p|−1/2|q||p|−1/2)t|p|1/2 ⊂ GL2(H)

has minimal length among all curves joining p to q.

The above fact shows that the curve αp,q is a geodesic of the Levi-Civita
connection of the polar metric. Its length is

(

‖z‖22 + ‖ ln |p|−1/2|q||p|−1/2‖
2

2

)1/2

.

From this, the geodesic distance is

dP(p, q) =
(
dI(up, uq)

2 + dp(|p|, |q|)
2
)1/2

.
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Proposition 2.1.5. The metric space (GL2(H), dP) is complete.

Proof. Let (xn) ⊂ GL2(H) be a Cauchy sequence with dP , if xn = uxn |xn| is
its polar decomposition, we have that

dI(uxn , uxm) ≤ dP(xn, xm) =
(
dI(uxn , uxm)

2 + dp(|xn|, |xm|)
2
)1/2

then the unitary part is a Cauchy sequence in (U2(H), dI) and by [4] it
is dI convergent to an element u ∈ U2(H). Analogously the positive part
is a Cauchy sequence in (GL+

2 (H), dp) then it is convergent to an element
g ∈ GL+

2 (H) (see [18]). If we put x := ug ∈ GL2(H) then,

dP(xn, x) =
(
dI(uxn , u)

2 + dp(|xn|, g)
2
)1/2

→ 0.

In the next proposition we will compare the geodesic distance measured
with the polar metric versus the left invariant metric.

Proposition 2.1.6. Given p, q ∈ GL2(H), if we denote v := |p|−1/2|q||p|−1/2

we can estimate the geodesic distance dI by the geodesic distance dP as,

dI(p, q) ≤ c(p, q)dP(p, q)

where
c(p, q)2 = 2max

{
e4‖ ln(v)‖

(
‖p‖‖p−1‖

)2
, ‖p‖‖p−1‖

}
.

Proof. If we differentiate αp,q we have,

α̇p,q = upze
tz|p|1/2et ln(v)|p|1/2 + upe

tz|p|1/2 ln(v)et ln(v)|p|1/2

and the inverse of the curve αp,q is

α−1
p,q = |p|−1/2e−t ln(v)|p|−1/2e−tzu−1

p .

After some simplifications we can write

α−1
p,qα̇p,q = |p|−1/2e−t ln(v)|p|−1/2z|p|1/2et ln(v)|p|1/2 + |p|−1/2 ln(v)|p|1/2.

Let x := |p|1/2et ln(v)|p|1/2, taking the norm and using the parallelogram rule
we have,

‖α−1
p,qα̇p,q‖

2
2 = ‖x−1zx+ |p|−1/2 ln(v)|p|1/2‖22

≤ 2
(
‖x−1zx‖22 + ‖|p|−1/2 ln(v)|p|1/2‖22

)

≤ 2
(
‖x−1‖2 ‖x‖2 ‖z‖22 + ‖|p|−1/2‖2 ‖ ln(v)‖22 ‖|p|1/2‖2

)
. (1.7)
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We can estimate ‖x‖2 and ‖x−1‖2 by

‖x‖2 ≤ ‖|p|1/2‖4 e2‖ ln(v)‖ = ‖p‖2e2‖ ln(v)‖

and
‖x−1‖2 ≤ ‖|p|−1/2‖4 e2‖ ln(v)‖ = ‖p−1‖2e2‖ ln(v)‖.

If we define

c(p, q)2 = 2max
{
e4‖ ln(v)‖

(
‖p‖‖p−1‖

)2
, ‖p‖‖p−1‖

}
.

from (1.7) and taking square roots we have,

‖α−1
p,qα̇p,q‖2 ≤ c(p, q)

(
‖z‖22 + ‖ ln(v)‖22

)1/2
= c(p, q)dP(p, q),

then
dI(p, q) ≤ LI(αp,q) ≤ c(p, q)dP(p, q).

2.2 The symplectic group

In this section we will consider H as a real Hilbert space. We fix a complex
structure; that is a linear isometry J ∈ B(H) such that,

J2 = −1 and J∗ = −J.

The symplectic form w is given by w(ξ, η) = 〈Jξ, η〉. We denote by Sp(H)
the subgroup of invertible operators which preserve the symplectic form, that
is g ∈ Sp(H) if w(gξ, gη) = w(ξ, η) for all ξ, η ∈ H. Algebraically we can
describe this subgroup as,

Sp(H) = {g ∈ GL(H) : g∗Jg = J} .

Denote by HJ the Hilbert space H with the action of the complex field C

given by J , that is; if λ = λ1 + iλ2 ∈ C and ξ ∈ H we can define the action
as λξ := λ1ξ + λ2Jξ and the complex inner product as < ξ, η >C=< ξ, η >
−iw(ξ, η).

Denote by B(HJ) the space of bounded complex linear operators in HJ .
A straightforward computation shows that B(HJ) consists of the elements of
B(H) which commute with J .

One of the most important properties of this operator group is the sta-
bility of the adjoint operation.
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Proposition 2.2.1. If g ∈ Sp(H) then g∗ ∈ Sp(H).

Proof. The proof is a short computation using the definition, indeed if g ∈
Sp(H) then g∗J = Jg−1 and times by gJ we obtain gJg∗J = −1 then
gJg∗ = J .

Proposition 2.2.2. The symplectic group is a closed subgroup of GL(H).

Proof. Let (gn) ⊂ Sp(H) be a convergent sequence gn → g, it is clear that
g verifies the relation g∗Jg = J , so the only fact to prove is that g is an
invertible operator. Since g∗n ∈ Sp(H) then we have gnJg

∗
n = J , thus this

relation is transferred through the limit to g. We can now define the inverse
of g as g−1 := −Jg∗J , it verifies:

g−1g = −Jg∗Jg = 1 and gg−1 = g(−Jg∗J) = 1.

Let us denote sp(H) = {x ∈ B(H) : xJ = −Jx∗}, it is clear that sp(H)
is a closed subalgebra of B(H). If we compute the exponential on sp(H), its
image belongs in Sp(H). Indeed, if x verifies xJ = −Jx∗ then exJ = Je−x

∗
=

J(ex
∗
)−1 and thus exJex

∗
= J . Therefore, we have

exp : sp(H) → Sp(H)

and if we derive the equality etv
∗
Jetv = J, (t ∈ R) we get vJ = −Jv∗. So,

sp(H) =
{
x ∈ B(H) : etv ∈ Sp(H) ∀t ∈ R

}
.

Therefore by Theorem 1.3.2 the symplectic group is a Banach-Lie group with
Banach-Lie algebra sp(H).

Theorem 2.2.3. Sp(H) is a Banach-Lie subgroup of GL(H).

Proof. We will give a constructive proof. An alternative proof can be ob-
tained using the fact that Sp(H) is an algebraic subgroup of GL(H) (see the
book [5] Chapter 4 Theorem 4.13 or the paper [14] Proposition 2). We start
proving that the topology τ (given by the Banach-Lie structure) coincides
with the topology inherited from GL(H). It is a straightforward computa-
tion using the logarithmic series, indeed if g ∈ Sp(H) meets ‖g − 1‖ < r
(r < 1) the exponential is a diffeomorphism and then its inverse is given by

the logarithmic series x = log(g) =
∑∞

n=1(−1)n (1−g)n

n
∈ B(H), then since

‖g − 1‖ = ‖(g − 1)J‖ = ‖J
(
(g∗)−1 − 1

)
‖ = ‖(g∗)−1 − 1‖ we have

xJ =
∞∑

n=1

(−1)n
(1− g)n

n
J = J

∞∑

n=1

(−1)n
(
1− (g∗)−1

)n

n

= J log
(
(g∗)−1

)
= −Jx∗.
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Therefore, if we take the neighborhood V := {g ∈ GL(H) : ‖g − 1‖ < 1} of
the identity and if U := log(V ), by the above computation it is clear that
exp(U ∩ sp(H)) = Sp(H) ∩ V and then by Collorary 1.3.3 the topology τ
coincides with the topology inherited from GL(H). Now we have to prove
that the Banach-Lie algebra sp(H) is complemented into B(H). To this end
we consider the linear map

Π : B(H) → B(H), Π(x) = 1/2(x+ Jx∗J)

A simple computation shows that it is an idempotent map, and moreover
its range is sp(H). Indeed, if x ∈ sp(H) then Π(x) = 1/2(x + Jx∗J) =
1/2(x− J2x) = x and on the other hand,

Π(x)J = 1/2(xJ − Jx∗) = 1/2J(−JxJ − x∗) = −JΠ(x)∗.

Therefore, B(H) = sp(H)⊕ kerΠ.

Note that the Banach-Lie algebra sp(H) is closed under adjoints. There-
fore we have a Cartan decomposition

sp(H) = sp(H)h ⊕ sp(H)ah. (2.8)

Let

U(HJ) = {g ∈ U(H) : gJ = Jg} and Sp+(H) = {g ∈ Sp(H) : g > 0}

be the intersection of Sp(H) with the set of unitary operators and with
the positive definite operator respectively. Since the exponential map exp :
B(HJ)ah → U(HJ) is surjective (see [4]), it is clear that exp(sp(H)ah) =
U(HJ).

Proposition 2.2.4. U(HJ) is a Banach-Lie subgroup of Sp(H).

Proof. Let U be a neighboord of 0 in sp(H) such that the exponential map
is a diffeomorphism, we can assume that U = {x ∈ sp(H) : ‖x‖ < r} for a
suitable r > 0. It is clear that we always have

exp(sp(H)ah ∩ U) ⊆ U(HJ) ∩ exp(U).

Conversely, suppose that g ∈ U(HJ) ∩ exp(U) then g = ey for some y ∈ U ;
hence 1 = gg∗ = eyey

∗
and then ey = e−y

∗
. Since −y∗ also belongs in U and

the exponential is one to one, we have that y = −y∗ and thus y ∈ sp(H)ah.
Then we have exp(sp(H)ah∩U) = U(HJ)∩ exp(U) and by equation (2.8) we
conclude the statement.
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Now, we want to show that if g ∈ Sp(H) then both factors in the polar
decomposition are in Sp(H).

Proposition 2.2.5. The exponential map exp : sp(H)h → Sp+(H) is a
diffeomorphism.

Proof. Since clearly exp(sp(H)h) ⊂ Sp+(H), then it suffices to show that the
map exp : sp(H)h → Sp+(H) is onto. Given g ∈ Sp+(H) there exists an
unique symmetric endomorphism with g = ex, then g−1 = e−x = JexJ−1 =
∑∞

n=0
JxnJ−1

n!
=

∑∞
n=0

(JxJ−1)n

n!
= e−JxJ , therefore xJ = −Jx and x ∈ sp(H)h.

Corollary 2.2.6. If u|g| is the polar decomposition of an element g ∈ Sp(H)
then its unitary part u and its positive part |g| belong to Sp(H) and therefore
the map

Sp(H) → U(HJ)× Sp+(H)

g 7→ (u, |g|)

is a diffeomorphism.

Proof. Since gg∗ ∈ Sp+(H) then there exist x ∈ sp(H)h such that ex = gg∗

and then it is clear that |g| = (gg∗)1/2 = ex/2 ∈ Sp+(H).

2.2.1 The Hilbert-Schmidt symplectic group

Now, we consider the Hilbert-Schmidt symplectic group given by

Sp2(H) = {g ∈ Sp(H) : g − 1 ∈ B2(H)} .

Given g1, g2 ∈ Sp2(H), it is obvious that g1 − g2 belongs in B2(H); hence we
can endow the Hilbert-Schmidt symplectic group with the metric ‖g1− g2‖2.

Proposition 2.2.7. Sp2(H) is a closed subgroup of GL2(H) or equivalently
the metric space (Sp2(H), ‖.‖2) is complete.

Proof. Let (xn) ⊂ Sp2(H) be a Cauchy sequence, then xn − 1 is a Cauchy
sequence in B2(H). From this, we can take x ∈ B2(H) such that xn −→ 1 +
x := x0 in ‖.‖2. It is clear that x0 verifies the algebraic relation x

∗
0Jx0 = J ; to

complete the proof we will see that x0 is invertible. Indeed, from x∗n ∈ Sp2(H)
we have xnJx

∗
n = J , then this relation is transferred through the limit to x0.

We can now define the inverse of x0 as x−1
0 := −Jx∗0J , it verifies:

x−1
0 x0 = −Jx∗0Jx0 = 1 and x0x

−1
0 = x0(−Jx

∗
0J) = 1.
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Now we will show that Sp2(H) is a Banach-Lie group. Let us denote

sp2(H) = {x ∈ B2(H) : xJ = −Jx∗} .

It is clear that sp2(H) is a Banach-Lie subalgebra of B2(H) and since exp :
B2(H) → 1 + B2(H) it is clear that

sp2(H) =
{
x ∈ B2(H) : etv ∈ Sp2(H) ∀t ∈ R

}
.

Theorem 2.2.8. Sp2(H) is a Banach-Lie subgroup of GL2(H).

Proof. The proof is similar to Theorem 2.2.3. Since the exponential is a local
diffeomorphism between

U = {x = log(g) : ‖g − 1‖2 < 1}
exp
−→ V = {g ∈ 1 + B2(H) : ‖g − 1‖2 < 1}

then exp(U ∩ sp2(H)) = Sp2(H) ∩ V . Moreover kerΠ|B2(H) ⊕ sp2(H) =
B2(H).

Since the Banach-Lie algebra sp2(H) is closed under adjoints, here we
have a Cartan decomposition as in the case of the full symplectic group,

sp2(H) = sp2(H)h ⊕ sp2(H)ah. (2.9)

As before we denote by

U2(HJ) = {g ∈ U2(H) : gJ = Jg} and Sp+
2 (H) = {g ∈ Sp2(H) : g > 0}

its unitary part and positive part respectively.

Proposition 2.2.9. The exponential map exp : sp2(H)h → Sp+
2 (H) is a

diffeomorphism.

Proof. We know that exp : sp(H)h → Sp+(H) is onto, so if we have any
point g ∈ Sp+

2 (H) there exist a unique x ∈ sp(H)h such that g = ex, we
have to prove that x belongs to B2(H). Indeed, since g ∈ Sp+

2 (H) it has
a spectral decomposition g = P0 +

∑

k≥1(1 + αk)Pk, where αk are the non
zero eigenvalues of g − 1 ∈ B2(H)h. Since g = ex then αk = etk − 1 where

tk ∈ σ(x) ⊂ R. Since the quotient tk
2

(etk−1)2
→ 1 then the sequence (tk) is

square summable. Let y =
∑∞

k=1 tkPk thus y ∈ B2(H)h and ey = g = ex,
therefore by the injectivity of the exponential on the symmetric operators we
have x = y ∈ sp2(H)h.

Since the exponential map exp : B2(HJ)ah → U2(HJ) is surjective (see
[4]), it is clear that exp(sp2(H)ah) = U2(HJ).
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Proposition 2.2.10. The unitary subgroup U2(HJ) is a Lie-subgroup of
Sp2(H).

Proof. Let U be a neighboord of 0 in sp2(H) such that the exponential map
is a diffeomorphism, we can assume that U = {x ∈ sp2(H) : ‖x‖2 < r} for a
suitable r > 0. It is clear that we always have

exp(sp2(H)ah ∩ U) ⊆ U2(HJ) ∩ exp(U).

Conversely, suppose that g ∈ U2(HJ) ∩ exp(U) then g = ey for some y ∈ U ;
hence 1 = gg∗ = eyey

∗
and then ey = e−y

∗
. Since −y∗ also belongs in U and

the exponential is one to one, we have that y = −y∗ and thus y ∈ sp2(H)ah.
Then we have exp(sp2(H)ah ∩ U) = U2(HJ) ∩ exp(U) and this implies that
U2(HJ) is a Lie-subgroup of Sp2(H).

2.3 Riemannian metrics in Sp2(H)

Since Sp2(H) is a Banach-Lie subgroup of GL2(H) we can endow it with the
left-invariant metric of the ambient manifold GL2(H). So, if g ∈ Sp2(H) and
v ∈ (TSp2(H))g = g.sp2(H) the left-invariant metric is

I(g, v) := ‖g−1v‖2.

Proposition 2.3.1. Sp2(H) is a totally geodesic submanifold of GL2(H).
Equivalently, if α ⊂ Sp2(H) is a curve and η a field along α then

Dtη ∈ (TSp2(H))α = α.sp2(H).

Proof. Let β = α−1α̇ and µ = α−1η be the fields moved to sp2(H), we will
show that α−1Dtη ⊂ sp2(H). Indeed µ verifies µJ = −Jµ∗, if we derive, we
obtain µ̇J = −Jµ̇∗ and µ̇ is a Hilbert-Schmidt operator that lies in sp2(H).
The brackets [β, µ], [β, µ∗], [µ, β∗] are all in sp2(H) since it is a Banach-Lie
algebra, then using the above proposition

α−1Dtη = µ̇+ 1/2{[β, µ] + [β, µ∗] + [µ, β∗]} ⊂ sp2(H).

In particular the geodesics of Sp2(H) are the same than those of GL2(H);
if g0 ∈ Sp2(H) and g0v0 ∈ g0.sp2(H) are the initial position and the initial
velocity then

α(t) = g0e
tv∗0et(v0−v

∗
0) ⊂ Sp2(H)

satisfies Dtα̇ = 0. In this context the Riemannian exponential for g ∈ Sp2(H)
is

Expg(v) = gev
∗

ev−v
∗

with v ∈ sp2(H).
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2.3.1 Riemannian metrics in Sp+2 (H)

From the stability of the adjoint operation in Sp2(H) we can restrict the nat-
ural action of the invertible group to the set of positive invertible operators.

Lemma 2.3.2. The natural action l : Sp2(H) × Sp+
2 (H) −→ Sp+

2 (H) given
by

(g, a) 7−→ gag∗

is well defined and transitive.

Proof. Since the group is closed under the adjoint, the map (g, a) 7−→ gag∗

is well defined and it is clear that gag∗ ∈ Sp2(H) and it is positive. If
X, Y ∈ Sp+

2 (H), we can assume that X = ex, Y = ey where x, y ∈ sp2(H)h;
then if we consider the operator g = ex/2e−y/2 ∈ Sp2(H) it verifies that
X = gY g∗.

Now we endow the closed submanifold Sp+
2 (H) with the induced metric

(1.2) of GL+
2 (H); if a ∈ Sp+

2 (H) and

x ∈ TaSp
+
2 (H) =

{
a1/2 ln(a−1/2qa−1/2)a1/2 : q ∈ Sp+

2 (H)
}

we put the metric of positive operators given by

p(a, x) := ‖a−1/2xa−1/2‖2.

Remark 2.3.3. The above metric is invariant for the action of the group
Sp2(H), that is: if x ∈ TaSp

+
2 (H) then

p(gag∗, gxg∗) = p(a, x).

Since sp2(H)h is a Lie triple system and exp(sp2(H)h) = Sp+
2 (H) ⊂

GL+
2 (H) then it is a geodesically convex submanifold and therefore totally

geodesic, see for instance Corollary 3.13 and Proposition 3.6 in [19].

Corollary 2.3.4. The covariant derivative in Sp+
2 (H) with the induced pos-

itive metric is given by

∇ηµp = η(µ)p −
1

2
(ηpp

−1µp + µpp
−1ηp) (3.10)

where η, µ are tangent fields on TSp+
2 (H) and η(µ) denotes derivation of the

vector field µ in the direction of η.

Proof. Since Sp+
2 (H) is totally geodesic by Theorem 1.4.9 we have that the

covariant derivative coincides with the covariant derivative of the ambient
submanifold GL+

2 (H).
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Euler’s equation ∇γ̇ γ̇ = 0 for the covariant derivative introduced by the
Riemannian connection reads γ̈ = γ̇γ−1γ̇, the unique solution of this equation
with γ(0) = p and γ(1) = q is given by the smooth curve

γpq(t) = p1/2(p−1/2qp−1/2)tp1/2.

The curve γpq(t) = p1/2(p−1/2qp−1/2)tp1/2 = p1/2et(ln(p
−1/2qp−1/2))p1/2 ⊂

Sp+
2 (H) joins p to q and its length is

Lp(γpq) = ‖ ln(p−1/2qp−1/2)‖2.

This curve is minimal among all curves in Sp+
2 (H) that join p to q. We will

give a short proof of this fact, the key is the following inequality.

Remark 2.3.5. (See [15]) If d expx denotes the differential of exponential at
x of the usual exponential map, then

p(ex, d expx(y)) = ‖e−x/2d expx(y)e
−x/2‖2 ≥ ‖y‖2. (3.11)

for any x, y ∈ B2(H)h.

Theorem 2.3.6. Let p, q ∈ Sp+
2 (H) then γpq ⊂ Sp+

2 (H) has minimal length
among all curves that joins p to q.

Proof. We can suppose that p = 1, then γ1q(t) = etx where x = ln(q) and its
length is ‖x‖2 = ‖ ln(q)‖2. If α is another curve that joins the same points,
then it can be written as α(t) = eβ(t) where β(t) = ln(α(t)) ⊂ sp2(H)h. Using
the above remark we have

Lp(γ1q) = ‖x− 0‖2 = ‖

∫ 1

0

β̇(t)dt‖2 ≤

∫ 1

0

‖β̇(t)‖2dt

and also
p(α, α̇) = p

(
eβ(t), d expβ(t)(β̇(t))

)

= ‖e−β(t)/2d expβ(t)(β̇(t))e
−β(t)/2‖2 ≥ ‖β̇(t)‖2.

It can be shown that the metric space (Sp+
2 (H), dp) is complete. This

fact was proved in [8] or [18] in another context; in this context we also can
derive from (3.11) the known inequality

dp(p, q) ≥ ‖ log p− log q‖2

for p, q ∈ Sp+
2 (H); the proof of completeness can be adapted easily, therefore

we omit it.
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2.3.2 Sp+2 (H) as submanifold of the ambient space

Here we will think Sp+
2 (H) as a submanifold of the real Hilbert space HR :=

R⊕ B2(H)h with the natural inner product

〈λ+ a, µ+ b〉 = λµ+ Tr(b∗a).

From the action given by Lemma 2.3.2 we can define for each a ∈ Sp+
2 (H)

the map
πa : Sp2(H) → Sp+

2 (H), πa(g) = gag∗.

Observe that, since the action is transitive this map is onto and as in the
case of the full space of positive invertible operators B(H)+(see [9]), we have
that σa(b) = b1/2a−1/2 defines a global smooth section of πa. Note that this
map is well defined and its image belongs clearly to Sp2(H).

If g is any element in Sp+
2 (H), we can consider the real linear map

Πg : HR −→ HR, x 7−→
1

2

(
x+ gJxJg

)
.

This map is well defined and a short computation shows that the range
belongs to B2(H)h.

Lemma 2.3.7. The map Πg is idempotent and its range is g1/2sp2(H)hg
1/2.

Moreover, its adjoint map for the trace inner product is Πg−1. If g = 1 this
map is the orthogonal projection onto sp2(H)h.

Proof. First we prove that Πg is an idempotent map. Indeed, using the fact
that gJg = J ,

Π2
g(x) = Πg(

1

2

(
x+ gJxJg

)
) =

1

4

(
x+ gJxJg + gJ(x+ gJxJg)Jg

)
=

=
1

4

(
x+ 2gJxJg + (gJg)JxJ(gJg)

)
= Πg(x).

Now we will prove that Ran(Πg) = g1/2sp2(H)hg
1/2. Indeed, let g1/2xg1/2

with x ∈ sp2(H)h, then using that g1/2Jg1/2 = J (that is g1/2 ∈ Sp+
2 (H)) and

the relation of x with J we have

Πg(g
1/2xg1/2) =

1

2

(
g1/2xg1/2 + g1/2g1/2Jg1/2xg1/2Jg

)
= g1/2xg1/2.

Finally, note that the range is contained in g1/2sp2(H)hg
1/2;

1

2
(x+ gJxJg) = g1/2

1

2

(

g−1/2xg−1/2 + g1/2JxJg1/2
)

g1/2.
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To conclude we must show that the expression in the bracket anti-commutes
with J , here we will use that J2 = −1 and the relation g1/2J = Jg−1/2 :

(
g−1/2xg−1/2 + g1/2JxJg1/2

)
J = −g−1/2JJxJg1/2 − Jg−1/2xg−1/2 =

= −J
(
g1/2JxJg1/2 + g−1/2xg−1/2

)
.

Now we will show that Π∗
g = Πg−1 ; first note that if x, y ∈ HR by the

invariant and cyclic properties of the trace we have

Tr(ygJxJg) = Tr(−JygJxJgJ) = Tr(JygJxg−1) = Tr(g−1JygJx)

= Tr(g−1JyJg−1x).

Then the inner product is

〈Πg(x), y〉 = Tr

(

y
(1

2
(x+ gJxJg)

)
)

=
1

2
Tr

(
yx+ ygJxJg

)
=

=
1

2

(
Tr(yx) + Tr(g−1JyJg−1x)

)
.

On the other hand, we have

〈x,Πg−1(y)〉 = Tr

(
1

2

(
y + g−1JyJg−1

)
x

)

=
1

2

(
Tr(yx) + Tr(g−1JyJg−1x)

)
.

It is natural to consider a Hilbert-Riemann metric in Sp+
2 (H), which con-

sists of endowing each tangent space with the trace inner product. Therefore
the Levi-Civita connection of this metric is given by differentiating in the
ambient space HR and projecting onto TSp+

2 (H). For this, we define the
positive ambient metric as;

pamb(g, x) := ‖x‖2

where x ∈ TgSp
+
2 (H). Using the formula of the projector over its range and

Lemma 2.3.7, we can calculate the orthogonal projection onto TgSp
+
2 (H);

that is

ETgSp+2 (H) = Πg(Πg+Π∗
g−1)−1 = (Πg+Π∗

g−1)−1Π∗
g = (Πg+Πg−1−1)−1Πg−1 .

Then, if γ is a smooth curve in Sp+
2 (H) and X (t) is a smooth tangent field

along γ the covariant derivative is

D

dt
X (t) = Eγ(t)(Ẋ (t)).
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Proposition 2.3.8. A curve α is a geodesic of the Levi-Civita connection if
and only if it satisfies the differential equation

αα̈α + Jα̈J = 0.

Proof. Using the last expression of the orthogonal projection E, we have

D

dt
α̇(t) = 0 ⇔ Πα−1(t)(α̈(t)) = 0 ⇔ α̈ + α−1Jα̈Jα−1 = 0.

2.4 Polar Riemannian structure in Sp2(H)

Since the polar decomposition is stable in the group we can restrict the map
(1.4) on Sp2(H). So, we endow the product manifold U2(HJ)×Sp+

2 (H) with
the usual product metric, that is: if v = (x, y) ∈ TuU2(HJ)× T|g|Sp

+
2 (H) we

put

P
(
(u, |g|), v

)
:=

(

I(u, x)2 + p(|g|, y)2
)1/2

=

(

‖x‖22 + ‖|g|−1/2y|g|−1/2‖22

)1/2

,

then we can define the polar Riemannian metric in the Hilbert-Schmidt
symplectic group: if v, w ∈ (TSp2(H))g we put

〈v, w〉g := 〈dϕg(v), dϕg(w)〉(u,|g|).

In other words this polar metric is simply the induced polar metric (1.5)
of the ambient manifold GL2(H).

Proposition 2.4.1. Sp2(H) is a totally geodesic submanifold of GL2(H)
when we consider the polar metric.

Proof. Since the manifolds Sp+
2 (H) and U2(HJ) are totally geodesic (Corol-

lary 2.3.4) we have that the Levi-Civita derivative on the ambient manifold
U2(H)×GL+

2 (H) restricts to U2(HJ)× Sp+
2 (H).

Theorem 2.4.2. Let g ∈ Sp2(H) with polar decomposition u|g| and suppose
that u = ex with x ∈ sp2(H)ah and ‖x‖ ≤ π, then the curve α(t) = etx|g|t ⊂
Sp2(H) has minimal length among all curves joining 1 to g.
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Proof. The proof is an analogous computation as that of Theorem 2.4.2. In-
deed, the polar length of α is (‖x‖22 + ‖ ln |g|‖22)

1/2, let β be another curve
that joins the same endpoints and let β1, β2 be its polar decomposition. By
the stability of polar decomposition we have β1 ⊂ U2(HJ) and β2 ⊂ Sp+

2 (H)
therefore using Theorem 2.3.6 and the minimality of exponential in the uni-
tary group we have,

LI(β1) ≥ LI(e
tx) = ‖x‖2 and Lp(β2) ≥ Lp(e

t ln(|g|)) = ‖ ln |g|‖2

then it is clear that LP(ϕ ◦ β) ≥ LP(ϕ ◦ α).

Remark 2.4.3. Let p, q ∈ Sp2(H), suppose that up|p| and uq|q| are their
polar decompositions, from the surjectivity of the exponential map we can
choose z ∈ sp2(H)ah such that uq = upe

z with ‖z‖ ≤ π, then the curve

αp,q(t) = upe
tz|p|1/2(|p|−1/2|q||p|−1/2)t|p|1/2 ⊂ Sp2(H) (4.12)

has minimal length among all curves joining p to q.

Therefore, its length is

(

‖z‖22 + ‖ ln |p|−1/2|q||p|−1/2‖
2

2

)1/2

,

and the geodesic distance is

dP(p, q) =
(
dI(up, uq)

2 + dp(|p|, |q|)
2
)1/2

.

Special case: normal speed. If the initial condition v ∈ sp2(H) is
normal, then the geodesics starting at the identity map coincide with the
geodesics from the polar metric. Indeed, if v = x + y is the decomposition
in sp2(H)h⊕ sp2(H)ah and v is normal a straightforward computation shows
that x commutes with y, thus we have

etv
∗

et(v−v
∗) = etv = etxety.

This equation shows that the geodesics are one-parameter groups when the
initial speed is normal.

Proposition 2.4.4. The metric space (Sp2(H), dP) is complete.
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Proof. Let (xn) ⊂ Sp2(H) be a Cauchy sequence with dP , if xn = uxn |xn| is
its polar decomposition, we have that

dI(uxn , uxm) ≤ dP(xn, xm) =
(
dI(uxn , uxm)

2 + dp(|xn|, |xm|)
2
)1/2

then the unitary part is a Cauchy sequence in (U2(HJ), dI) and by [4] it
is dI convergent to an element u ∈ U2(HJ). Analogously the positive part
is a Cauchy sequence in (Sp+

2 (H), dp) then it is convergent to an element
g ∈ Sp+

2 (H). If we put x := ug ∈ Sp2(H) then,

dP(xn, x) =
(
dI(uxn , u)

2 + dp(|xn|, g)
2
)1/2

→ 0.

In the next steps we will compare the geodesic distance measured with the
polar metric versus the left invariant metric. It is a computation analogous
to that in Proposition 2.1.6.

Proposition 2.4.5. Given p, q ∈ Sp2(H), if we denote v := |p|−1/2|q||p|−1/2

we can estimate the geodesic distance dI by the geodesic distance dP as,

dI(p, q) ≤ c(p, q)dP(p, q)

where

c(p, q)2 = 2max
{
e4‖ ln(v)‖

(
‖p‖‖p−1‖

)2
, ‖p‖‖p−1‖

}
.

Proof. Given two points p, q we can build the smooth curve αp,q ⊂ Sp2(H)
(4.12) that joins p to q; therefore if we repeat the argument that we gave in
Proposition 2.1.6 we get the same inequality.

2.5 The metric space (Sp2(H), dI)

In this section we will prove the main result of this chapter, that is the
completeness of (Sp2(H), dI), it will be deduced from the completeness of
(U2(HJ), dI) and from Proposition 2.4.5. The next lemma is essential for the
proof.

Lemma 2.5.1. If (xn) ⊂ Sp2(H) is a Cauchy sequence in (Sp2(H), dI) then
it is a Cauchy sequence in (Sp2(H), ‖.‖2).
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Proof. First we take W,U geodesic neighboords of 0 and 1 respectively such
that

Exp1 : W −→ U := Exp1(W ) ⊂ Sp2(H)

is a diffeomorphism. If (xn) is dI-Cauchy, given small ε there exist n(ε)
such that dI(x

−1
n xn+p, 1) = dI(xn+p, xn) < ε ∀p. Then we can suppose that

x−1
n xn+p ∈ U for all p. Let αp(t) = etv

∗
pet(vp−v

∗
p) = Exp1(tvp) with vp ∈ W be

the minimal curve that joins 1 to x−1
n xn+p, then

dI(x
−1
n xn+p, 1) = LI(αp) = ‖vp‖2 < ε.

We have

‖x−1
n xn+p − 1‖2 ≤

∫ 1

0

‖α̇p(t)‖2dt ≤

∫ 1

0

‖αp(t)‖‖α
−1
p α̇p(t)‖2dt,

‖αp(t)‖ = ‖etv
∗
pet(vp−v

∗
p)‖ ≤ e3‖vp‖2 ≤ e3ε.

From this,
‖x−1

n xn+p − 1‖2 ≤ e3εε, for all p.

This fact shows that the sequence is bounded in the uniform norm; indeed
if we take ε0 such that the sequence belongs in the geodesic neighboord U ,
then there exists n0 (fixed) such that ‖x−1

n0
xn0+p − 1‖2 ≤ e3ε0ε0, for all p.

Then if m = n0 + p > n0, we have

|‖xn0‖ − ‖xm‖| ≤ ‖xn0 − xm‖2 ≤ ‖xn0‖‖x
−1
n0
xn0+p − 1‖2 ≤ ‖xn0‖e

3ε0ε0;

then

‖xm=n0+p‖ ≤ |‖xm‖ − ‖xn0‖|+ ‖xn0‖ ≤ ‖xn0‖(1 + e3ε0ε0) ∀p.

To complete the proof, if n is large, we have

‖xn+p − xn‖2 = ‖xn(x
−1
n xn+p − 1)‖2 ≤ ‖xn‖e

3εε ≤ Ke3εε ∀p.

Now we are in a position to obtain our main result in this chapter.

Theorem 2.5.2. The metric space (Sp2(H), dI) is complete.

Proof. Let (xn) ⊂ Sp2(H) be a dI-Cauchy sequence, by the above lemma it is
‖.‖2-Cauchy; then from Proposition 2.2.7 there exists x ∈ Sp2(H) such that

xn
‖.‖2
−→ x. Now we will show that xn

dP−→ x; indeed from the continuity of the
module we have that |xn| converges to |x| in ‖.‖2 and its unitary part uxn =
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xn|xn|
−1 converges to ux = x|x|−1. The sequence |x|−1/2|xn||x|

−1/2 converges
to 1 and then the geodesic distance dp(|xn|, |x|) = ‖ ln(|x|−1/2|xn||x|

−1/2)‖2 →
0. By the equivalence of metrics in U2(HJ) (see [4] for a proof) we have

√

1−
π2

12
dI(uxn , ux) ≤ ‖uxn − ux‖2 ≤ dI(uxn , ux)

and then

dP(xn, x) =
(
dI(uxn , ux)

2 + dp(|xn|, |x|)
2
)1/2

−→ 0.

From Proposition 2.4.5 we have dI(x, xn) ≤ c(x, xn)dP(x, xn); now we will
see that c(x, xn) is uniformly bounded. Indeed, for n large we can assume
that ‖ ln(vn)‖ ≤ 1 where vn = |x|−1/2|xn||x|

−1/2 as we denoted in Proposition
2.4.5, then we have

c(x, xn)
2 = 2max{ e4‖ ln(vn)‖

(
‖x‖‖x−1‖

)2
, ‖x‖‖x−1‖}

≤ 2max{ e4
(
‖x‖‖x−1‖

)2
, ‖x‖‖x−1‖}

and it is clearly uniformly bounded thus it is clear that dI(x, xn) → 0.
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Chapter 3

An homogeneous space of

Sp2(H)

A lo largo de este caṕıtulo presentaremos un espacio homogéneo del grupo
simpléctico; La Grasmanniana Lagrangiana de Hilbert Schmidt. Estudiare-
mos su estructura diferencial y sus posibles métricas.

Throughout this chapter we introduce an homogeneous space of the sym-
plectic group; the Hilbert-Schmidt Lagrangian Grassmannian. We will study
its smooth structure and its possible metrics.

The Lagrangian Grassmannian Λ(H) is the set of closed linear subspaces
L ⊂ H such that J(L) = L⊥. Clearly Sp(H) acts on Λ(H) by means of
g.L = g(L). Indeed, it is sufficient prove that J(g(L)) ⊂ g(L)⊥. If η, ξ ∈ L
then

〈J(g(η)), g(ξ)〉 = 〈g∗Jg(η), ξ〉 = 〈J(η), ξ〉 = 0.

Since the action of the unitary group U(HJ) is transitive on Λ(H) (see [28]
Theorem 3.5), it is clear that the action of Sp(H) is also transitive on Λ(H),
so we can think of Λ(H) as an orbit for a fixed L0 ∈ Λ(H), i.e

Λ(H) = {g(L0) : g ∈ Sp(H)}.

We denote by PL ∈ B(H) the orthogonal projection onto L. It is customary
to parametrize closed subspaces via orthogonal projections, L↔ PL, in order
to carry on geometric or analytic computations. We shall also consider here
an alternative description of the Lagrangian subspaces using projections and
symmetries. That is, L is a Lagrangian subspace if and only if PLJ+JPL = J ,
see [11] for a proof. Another description of this equation using symmetries is
ǫLJ = −JǫL, where ǫL = 2PL−1 is the symmetric orthogonal transformation
which acts as the identity in L and minus the identity in L⊥.

33
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The isotropy subgroup at L is

Sp(H)L = {g ∈ Sp(H) : g(L) = L}.

It is obvious that this subgroup is a closed subgroup of Sp(H). In the infinite
dimensional setting we know that this does not guarantee a nice submanifold
structure; in Proposition 3.1.8 we will prove that Sp(H)L is a Banach-Lie
subgroup of Sp(H).

We can restrict the natural action of the symplectic group in Λ(H) to the
Hilbert-Schmidt symplectic group and it will also be smooth. As before, we
can consider the isotropy group at L

Sp2(H)L = {g ∈ Sp2(H) : g(L) = L}.

We will also prove in Proposition 3.1.8 that this is a Banach-Lie subgroup of
Sp2(H), with the topology induced by the metric ‖g1 − g2‖2 .

If T is any operator we denote by GrT its graph, i.e. the subset GrT =
{v + Tv : v ∈ Dom(T )} ⊂ H ⊕ H. Fix a Lagrangian subspace L0 ⊂ H, we
consider the subset of Λ(H)

OL0 = {g(L0) : g ∈ Sp2(H)} ⊆ Λ(H).

We will see that this set is strictly contained in Λ(H) and thus the action of
Sp2(H) on the Lagrangian Grassmannian is not transitive. Perhaps a more
natural approach would be to consider the set of pairs (L1, L2) of Lagrangians
such that L2 = g(L1) for some g ∈ Sp2(H). However the orbit approach
makes the presentation of the metrics simple. The purpose of this chapter is
the geometric study of this orbit; its manifold structure and relevant metrics.

3.1 Manifold structure of OL0

We start by proving that the subset OL0 is strictly contained in Λ(H), to do
it we need the following lemma.

Lemma 3.1.1. Let g ∈ Sp2(H) then Pg(L0) − PL0 ∈ B2(H).

Proof. To prove it, we use the formula of the orthogonal projector over the
range of an operator Q given by

PR(Q) = QQ∗(1− (Q−Q∗)2)
1/2
. (1.1)

This formula can be obtained using a block matrix representation. If we
denote by Q the idempotent associated with g(L0), i.e. Q := gPL0g

−1 and if
we suppose that g = 1 + k and g−1 = 1 + k′ where k, k′ ∈ B2(H) we have

QQ∗ = (1 + k)PL0(1 + k′)(1 + k′∗)PL0(1 + k∗)
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= (PL0 + PL0k
′ + kPL0 + kPL0k

′)
︸ ︷︷ ︸

Q

(PL0 + PL0k
∗ + k′∗PL0 + k′∗PL0k

∗)
︸ ︷︷ ︸

Q∗

= PL0 + PL0k
∗ + PL0k

′∗PL0 + .....
︸ ︷︷ ︸

∈ B2(H)

= PL0 + T ∈ PL0 + B2(H).

It is clear that Q−Q∗ ∈ B2(H), then (Q−Q∗)2 ∈ B1(H). From the spectral
theorem we have,

1− (Q−Q∗)2 = 1 +
∑

i

λiPi = P0 +
∑

i

(λi + 1)Pi

where (λi) ∈ ℓ1 and P0 is the projection to the kernel. Taking square roots,
we have

(1− (Q−Q∗)2)
1/2

= P0 +
∑

i

(λi + 1)1/2Pi

= P0 +
∑

i

[(λi + 1)1/2 − 1]Pi +
∑

i

1Pi

= 1 +
∑

i

[(λi + 1)1/2 − 1]Pi = 1 + T ′ ∈ 1 + B2(H)

where ((λi+1)1/2−1) ∈ ℓ2, because (λi) ∈ ℓ1 and limx→0
((x+ 1)1/2 − 1)2

x
=

0. Then by the formula (1.1) we have

Pg(L0) = (PL0 + T )(1 + T ′) ∈ PL0 + B2(H).

Corollary 3.1.2. The inclusion OL0 ⊂ Λ(H) is strict.

Proof. Suppose that Λ(H) = OL0 , since L
⊥
0 is Lagrangian, there exists g ∈

Sp2(H) such that L⊥
0 = g(L0), then using its orthogonal projector and the

above lemma we have,

1− PL0 = PL⊥
0
= Pg(L0) = PL0 + T

for some T ∈ B2(H). Therefore, 2PL0 − 1 = −T ∈ B2(H) and this is a
contradiction because 2PL0 − 1 is a unitary operator.
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To build a manifold structure on OL0 , we will consider the charts of Λ(H)
given by the parametrization of Lagrangian subspaces as graphs of functions
and we will adapt this charts to our set. This charts were used in [6] to
describe the manifold structure of Λ(H); in the followings steps we recall
this charts and we fix the notation.
Given L ∈ Λ(H), we have the Lagrangian decomposition H = L ⊕ L⊥ and
we denote by

Ω(L⊥) = {W ∈ Λ(H) : H = W ⊕ L⊥}.

In [11] it was proved that these sets are open in Λ(H). We consider the map
φL : Ω(L⊥) → B(L)s given by

W = GrT 7−→ J |L⊥T

where T : L→ L⊥ is the linear operator whose graph is W , more precisely

T = π1|W ◦ (π0|W )−1

where π0, π1 are the orthogonal projections to L and L⊥.

Remark 3.1.3. The map φL is onto: Let ψ ∈ B(L)s, we consider the opera-
tor T := −J |Lψ (T maps L into L⊥) and W := GrT . Since ψ is a symmetric
operator, W is a Lagrangian subspace and H = GrT ⊕L

⊥. Then W ∈ Ω(L⊥)
and it is a preimage of ψ.

The maps {φL}L∈Λ(H) constitute a smooth atlas for Λ(H), so that Λ(H)
becomes a smooth Banach manifold (see [25]). For every W ∈ Λ(H) we
can identify the tangent space TWΛ(H) with the Banach space B(W )s, this
identification was used in [6] and [25]. For W ∈ Ω(L⊥), the differential dφL
of the chart at W is given by

dWφL(H) = η∗Hη (1.2)

for all H ∈ B(W )h, where η : L → W is the isomorphism given by the
restriction to L of the projection W ⊕ L⊥ → W . It is easy to see that the
inverse dψφ

−1
L of this map at a point ψ = φL(W ) is given by

B(L)h
dψφ

−1
L−→ B(W )h

H 7−→ (η−1)
∗
Hη−1.

Since the symplectic group acts smoothly we can consider for fixed L ∈
Λ(H) the smooth map πL : Sp(H) → Λ(H) given by g 7→ g(L). Its differential
map at a point g ∈ Sp(H) is given by

TgSp(H) = sp(H)g ∋ Xg 7→ Pg(L)JX|g(L) ∈ B(g(L))h,



3.1. MANIFOLD STRUCTURE OF OL0 37

see [6] and [25] for a proof. Throughout, we will denote by d1πL the differen-
tial at the identity. If L ∈ OL0 we can restrict the map πL to the subgroup
Sp2(H) obtaining a surjective map onto OL0 ,

πL|Sp2(H) : Sp2(H) → OL0 .

Theorem 3.1.4. The set OL0 is a submanifold of Λ(H) and the natural map
i : OL0 →֒ Λ(H) is an embedding.

Proof. We will adapt the above local chart φL to our set. Let L = g(L0) ∈
OL0 , first we see that φL(Ω(L

⊥) ∩ OL0) ⊂ B2(L)h. Indeed, if W belongs to
Ω(L⊥) ∩ OL0 then we can write W = GrT = h(L0) for some h ∈ Sp2(H)
and since L0 = g−1(L) we have that W = hg−1(L) and it is obvious that
we can write now W = g̃(L) with g̃ ∈ Sp2(H). If we write g̃ = 1 + k where
k ∈ B2(H) then the orthogonal projection π1 restricted to W can be written
as

π1|W (w) = π1(g̃l) = π1(l + kl) = π1(k(l)) = π1(k(g̃
−1w))

where W ∋ w = g̃(l) and l ∈ L. Thus we have

π1|W = π1 ◦ k ◦ g̃
−1|W ∈ B2(W,L

⊥).

Then it is clear that φL(W ) = J |L⊥T ∈ B2(L)h. Now we have the restricted
chart

φL|Ω(L⊥)∩OL0
: Ω(L⊥) ∩ OL0 −→ B2(L)h.

To conclude we will see that this restricted map is also onto. Let ψ ∈ B2(L)h
and as we did in Remark 3.1.3 we consider the operator T := −J |Lψ, then
the only fact to prove is that

GrT = {v + (−J |Lψ)v : v ∈ L} ∈ OL0 .

To prove it we define f := 1 − J |LψPL ∈ 1 + B2(H); it is invertible with
inverse given by 1 + J |LψPL and it is clear that GrT = f(L). Now we have
to show that f is symplectic. Indeed, let ξ, η ∈ H then

w((1− J |LψPL)ξ, (1− J |LψPL)η) =

w(ξ, η) + w(ξ,−J |LψPLη) + w(−J |LψPLξ, η) + w(J |LψPLξ, J |LψPLη)
︸ ︷︷ ︸

=0

and since J is an isometry we have

w(ξ,−J |LψPLη) + w(−J |LψPLξ, η) = 〈Jξ,−J |LψPLη〉+ 〈J(−J |LψPL)ξ, η〉

= −〈ξ, ψPLη〉+ 〈ψPLξ, η〉.
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If ξ = ξ0 + ξ⊥0 and η = η0 + η⊥0 are the respective decompositions in
L⊕ L⊥, then by the symmetry of ψ the above equality results in

−〈ξ, ψPLη〉+ 〈ψPLξ, η〉 = 〈ξ0 + ξ⊥0 , ψη0〉+ 〈ψξ0, η0 + η⊥0 〉

= −〈ξ0, ψη0〉+ 〈ψξ0, η0〉 = 0.

Then
w((1− J |LψPL)ξ, (1− J |LψPL)η) = w(ξ, η)

and f ∈ Sp2(H). Since L = g(L0) we have

GrT = f(L) = fg(L0) ∈ OL0 .

As in the case of the full Lagrangian Grassmannian, for every L ∈ OL0

we can identify the tangent space TLOL0 with the Hilbert space B2(L)h.
Since the differential of the inclusion map is an inclusion map, it is clear

that the differential of the adapted charts is the restriction of the differential
of full charts given by equation (1.2). So, if W ∈ Ω(L⊥) ∩ OL0 then the
differential of the adapted chart is given by dWφL|Ω(L⊥)∩OL0

(H) = η∗Hη
where H ∈ B2(W )h and its inverse is

B2(L)h
dψφ

−1
L |

Ω(L⊥)∩OL0−→ B2(W )h = TWOL0

H 7−→ (η−1)
∗
Hη−1. (1.3)

Remark 3.1.5. The differential of the map πL|Sp2(H) at a point g ∈ Sp2(H)
is the restriction of the differential map dgπL at TgSp2(H) i.e.

dgπL|Sp2(H) : TgSp2(H) = sp2(H)g ∋ Xg 7→ Pg(L)JX|g(L) ∈ B2(g(L))h.

Indeed, we have the following commutative diagram

Sp(H)
πL

// Λ(H)

Sp2(H)
� ?

i2

OO

πL|Sp2(H)

// OL0

� ?

i1

OO

If we differentiate at a point g ∈ Sp2(H) the equation πL ◦ i2 = i1 ◦
πL|Sp2(H), and use that the differential of the inclusion maps i1 and i2 at h(L0)
and at h respectively are inclusions, we have dgπL|Sp2(H)(Xg) = dgπL(Xg) for
every X ∈ sp2(H).
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In the followings steps we will obtain the main result of this section, the
Lie subgroup structure of the isotropy group. To do it we will use the above
submanifold structure constructed on OL0 . If M and N are smooth Banach
manifolds a smooth map f : M → N is a submersion if the tangent map
dxf is onto and its kernel is a complemented subspace of TxM for all x ∈M .
This fact is equivalent to the existence of smooth local sections (see [17]).
The next proposition is essential for the proof.

Proposition 3.1.6. The map πL0 : Sp(H) → Λ(H) and its restriction
πL0 |Sp2(H) : Sp2(H) → OL0 are smooth submersions when we consider in
Λ(H) (resp. in OL0) the above manifold structure.

Proof. First we will prove that the map πL0 |Sp2(H) : Sp2(H) → OL0 has local
cross sections on a neighborhood of L0, the proof is adapted from [3]. Using
the symmetry over R(Q) we have

ǫR(Q) = 2PR(Q) − 1 ∈ ǫL0 + B2(H). (1.4)

For L ∈ OL0 close to L0, we consider the element gL = 1/2(1 + ǫLǫL0); it is
invertible (in fact, it can be shown that it is invertible if ‖ǫL− ǫL0‖ < 2) and
it commutes with J , so it belongs to GL(HJ). From equation (1.4) we have

ǫLǫL0 ∈ (ǫL0 + B2(H))ǫL0 ∈ 1 + B2(H)

and then it is clear that gL ∈ 1 +B2(HJ). Thus gL is complex and invertible
in a neighbourhood of ǫL0 . Note that

gLǫL0 = 1/2(ǫL0 + ǫL) = ǫLgL

and also that g∗g commutes with ǫL0 . If |x| = (x∗x)1/2 denotes the modulus
and gL = uL |gL| is the polar decomposition, then uL = gL(gL

∗gL)
−1/2 ∈

U(HJ) ⊂ Sp(H). We define the local cross section for L close to L0 as

σ(L) = uL.

Now we have to prove that πL0 |Sp2(H)(σ(L)) = L. If we identify the subspace
with the symmetry this is equivalent to prove that ǫπL0

|Sp2(H)(σ(L)) = ǫL. In-
deed,

ǫπL0
(uL) = uLǫL0u

∗
L = gL(g

∗
LgL)

−1/2ǫL0(g
∗
LgL)

−1/2g∗L = gLǫL0g
−1
L = ǫL.

Let us prove that it takes values in Sp2(H). Since C1+B2(HJ) is a *-Banach
algebra and gL ∈ GL2(HJ) by the Riesz functional calculus we have that
uL = gL |gL|

−1 ∈ C1 + B2(HJ). Thus uL = β1 + b with b ∈ B2(HJ). On
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the other hand, note that gL
∗gL is a positive operator which lies in the C*-

algebra C1 + K(HJ). Therefore its square root is of the form r1 + k with
r ≥ 0 and k compact. Then

gL
∗gL = (r1 + k)2 = r2.1 + k′

and since gL
∗gL ∈ GL2(HJ) we have

r21 + k′ = 1 + b′

with b′ ∈ B2(HJ). Since C1 and K(HJ) are linearly independent, it follows
that r = 1. Then it is clear that uL ∈ U2(HJ) ⊂ Sp2(H) and σ is well defined.
To conclude the proof we now show that the local section σ is smooth. If L
lies in a small neighborhood of L0 we have

L = φ−1
L0
(ψ) = Gr−J |Lψ = (1− J |L0ψPL0)(L0) = g(L0) ∈ Ω(L0

⊥) ∩ OL0 .

The idempotent of range L is

Q := gPL0g
−1 = (1− J |L0ψPL0)PL0(1 + J |L0ψPL0) = PL0 − J |L0ψPL0

and it is smooth as a function of ψ. Since the formula of the orthogonal
projector (1.1) is smooth, the local expression of σ will also be smooth.
Indeed, the symmetry in the chart will be

ǫL = 2PR(gPL0
g−1) − 1 = 2QQ∗(1− (Q−Q∗)2)

1/2
− 1

and it is clearly smooth as a function of ψ, because Q and the operations
involved (product, involution, square root) are smooth. Then it is clear that
the invertible element gL and its unitary part uL are smooth too. Finally
the local expression σ ◦ φ−1

L0
is smooth as a function of ψ. Since the full

Lagrangian Grassmannian can be expressed as an orbit for a fixed L0, the
proof of smoothness of the local section of πL0 is analogous to that of the
restricted map πL0 |Sp2(H).

Corollary 3.1.7. If L is any subspace in the full Lagrangian Grassmannian
or in OL0 then the map πL : Sp(H) → Λ(H) and its restriction πL|Sp2(H) :
Sp2(H) → OL0 have local cross sections on a neighborhood of L.

Proof. The above map σ can be translated using the action to any L = g(L0).
That is,

σL(h(L0)) = gσ(g−1h(L0))g
−1

where h(L0) lies on a neighborhood of L.
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Theorem 3.1.8. The isotropy groups Sp(H)L and Sp2(H)L of the symplectic
group and of the restricted symplectic group are Lie subgroups of them with
their respective topology. Their Lie algebras are

sp(H)L = {x ∈ sp(H) : x(L) ⊆ L}

sp2(H)L = {x ∈ sp2(H) : x(L) ⊆ L}.

Proof. Since the maps d1πL and d1πL|Sp2(H) are submersions then by the
inverse function theorem, we have that the isotropy groups are Lie sub-
groups and their Lie algebras are ker d1πL and ker d1πL|Sp2(H) respectively. A
short computation shows us that ker d1πL = {x ∈ sp(H) : x(L) ⊆ L} and
ker d1πL|Sp2(H) = {x ∈ sp2(H) : x(L) ⊆ L}. Indeed, if PLJX|L = 0 then
JX|L ∈ L⊥ and thus −X|L ∈ J(L⊥) = L.

Remark 3.1.9. The Lie algebra sp2(H)L consists of all operators x ∈ sp2(H)
that are L invariant, so we can give another characterization of this algebra
using the orthogonal projection PL. That is,

sp2(H)L = {x ∈ sp2(H) : xPL = PLxPL}. (1.5)

In block matrix form, this operators correspond to the upper triangular ele-
ments of sp2(H).

3.2 Metric structure in OL0

In this section we will introduce a Riemannian structure in OL0 using the
Hilbert-Schmidt inner product. We will prove that this Riemannian structure
coincides with the Riemannian structure given by the quotient norm. We also
study the completeness of the geodesic distance and moreover we will find
the corresponding geodesic curves.

3.2.1 The ambient metric

Given v, w ∈ TWOL0 = B2(W )h, we define the inner product

〈v, w〉W := trW (w∗v) =
∞∑

i=1

〈w∗vei, ei〉

where {ei} is an orthonormal basis of the subspace W . The ambient metric
for v ∈ TWOL0 = B2(W )h is

A(W, v) := trW (v∗v)1/2. (2.6)
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Using the orthogonal projection over W , it can be expressed by ‖vPW‖22.
Indeed, if {ei} is an orthonormal basis for H then

‖vPW‖22 =
∑

i

〈vPW ei, vPW ei〉 =
∑

i

〈v∗vPW ei, PW ei〉

=
∑

i

〈v∗vPW ei, ei〉 = tr(v∗vPW ) = trW (v∗v). (2.7)

To each pointW ∈ OL0 , we associate the inner product 〈·, ·〉W on the tangent
space TWOL0 . This correspondence allows us to introduce a Riemannian
structure on the manifold OL0 . The fact to prove here is that the metric
varies differentiably.

Proposition 3.2.1. The Riemannian structure is well defined.

Proof. Let L ∈ OL0 and consider a neighborhood U := Ω(L⊥)∩OL0 of it. For
any W ∈ U , we can write it in the local chart W = φ−1

L ψ = Gr(−J |Lψ). Let

ηW : L → W be the restriction of the orthogonal projection W ⊕ L⊥ π
→ W ,

then its local expression is

ηW (v) = π(v) = π((v − J |Lψ(v)) + J |Lψ(v))

= (1− J |Lψ)(v) for all v ∈ L,

and then it can be expressed by compression of the operator 1−J |LψPL into
the subspace L i.e. ηW = (1 − J |LψPL)|L. If we write the local expression
of the metric using the classical differential structure of the tangent bundle
with the differential of the chart φ−1

L given in the formula (1.3), for every
v ∈ TU we have

A(W, v) = ‖dψφ
−1
L (H)PW‖2 = ‖(η−1

W )∗Hη−1
W PW‖2, (2.8)

where ψ ∈ φL(U) and H ∈ B2(L)h is the preimage of v. Since the projector
PW = PGr(−J|Lψ)

is smooth and the local expression of ηW is also smooth as

a function of ψ and by the smoothness of the operations involved (inverse,
involution, product, trace) the formula (2.8) is smooth.

3.2.2 The geodesic distance

The length of a smooth curve measured with the ambient metric will be
denoted by

LA(γ) =

∫ 1

0

A(γ(t), γ̇(t))dt.
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Given two Lagrangian subspaces S and T in OL0 , we denote by dA the
geodesic distance using the ambient metric,

dA(S, T ) = inf{LA(γ) : γ joins S and T in OL0}.

If (Ln) ⊂ OL0 is any sequence we will denote by Ln
OL0→ L the convergence

to some subspace L ∈ OL0 in the topology given by the smooth structure of
OL0 (Theorem 3.1.4).

There is a naturally defined Hilbert space inner product on the tangent
space at 1 of the group Sp2(H), which is identified with the space of Hilbert-
Schmidt operators on H, and this inner product is employed to define a
left-invariant and a right-invariant Riemannian structure on the group.

Given a smooth curve α in Sp2(H) we can measure its length with the
left or right invariant metric, depending on which identification of tangent
spaces we use in the group. In chapter 2 we used the left invariant metric.
The length of a curve using this metric is LL(α) =

∫ 1

0
‖α−1α̇‖2. Here, we will

use the right identification of the tangent spaces, so we have to introduce the
right invariant metric. Although formally equivalent this choice will make
some computations easier. Then the length of α is LR(α) =

∫ 1

0
‖α̇α−1‖2.

Remark 3.2.2. Let G be a Banach-Lie group, if dL and dR denote the
geodesic distance with the left and right invariant metrics respectively then,

dL(x
−1, y−1) = dR(x, y) ∀ x, y ∈ G.

Indeed, since the geodesic distances are left and right invariant respectively,
the only fact left to prove is the equality dL(x

−1, 1) = dR(x, 1) for all x ∈ G.
Then, if α is any curve that joins 1 to x−1, the curve β(t) = α(t)−1 joins 1
to x; if we differentiate we have β̇(t)β(t)−1 = −α(t)−1α̇(t) and then the right
length of β coincides with the left length of α.

If ξ : [0, 1] → OL0 is a curve with ξ(0) = L then a lifting of ξ is a map
φ : [0, 1] → Sp2(H) with φ(0) = 1 and φ(t)(L) = ξ(t), for all t ∈ [0, 1]. The
next lemma is an adaptation of Lemma 25 in [6].

Lemma 3.2.3. Every smooth curve ξ : [0, 1] → OL0 with ξ(0) = L admits
an isometric lifting, if we consider the right invariant metric in Sp2(H).

Proof. For each t ∈ [0, 1], set X(t) = −Jξ̇(t)Pξ(t) ∈ sp2(H) and consider the
solution of the ODE 





φ̇(t) = X(t)φ(t)

φ(0) = 1
(2.9)
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A simple computation using Remark 3.1.5 shows that both t 7→ φ(t)(L) and
ξ(t) are integral curves of the vector field ν(t)(L) = PLJX(t)|L ∈ TLOL0 =
B2(L)h both starting at L, therefore the two curves coincide. Now, it is easy
to see that the solution of the differential equation (2.9) is an isometric lifting
of ξ. Indeed, if we take norms in the equation we have,

‖φ̇(t)φ−1(t)‖2 = ‖ − Jξ̇(t)Pξ(t)‖2 = ‖ξ̇(t)Pξ(t)‖2 = A(ξ(t), ξ̇(t)).

The geodesic curves given by the left invariant metric in the group Sp2(H)
were calculated in Chapter 2 Proposition 2.3.1. This fact can be used to find
the geodesics of the Levi-Civita connection induced by the ambient metric
A.

Theorem 3.2.4. Let ξ : [0, 1] → OL0 be a geodesic curve of the Riemannian
connection induced by the ambient metric A with initial position ξ(0) = L
and initial velocity ξ̇(0) = w ∈ Tξ(0)OL0 = B2(L)h. Then

ξ(t) = et(v
∗−v)e−tv

∗

(L)

where v ∈ sp2(H) is a preimage of −w by d1πL.

Proof. Since ξ is a geodesic curve, it is locally minimizing. Using Lemma
3.2.3 there exists an isometric lifting φ ⊂ Sp2(H) with initial condition
φ(0) = 1. By the isometric property φ results locally minimizing with the
right invariant metric and then φ−1 results locally minimizing with the left in-
variant metric. Hence the curve φ−1 ⊂ Sp2(H) is a geodesic and it is φ−1(t) =
etv

∗
et(v−v

∗) for some v ∈ sp2(H). Then it is clear that φ(t) = et(v
∗−v)e−tv

∗
and

ξ(t) = et(v
∗−v)e−tv

∗
(L). The only fact left to prove is that v is a lift of −w.

Indeed, since ξ̇(t) = det(v∗−v)e−tv∗πL
(
(v∗ − v)et(v

∗−v)e−tv
∗
− et(v

∗−v)e−tv
∗
v∗
)
,

then w = ξ̇(0) = d1πL(−v) = −d1πL(v).

3.2.3 The quotient metric

Since the action of the Hilbert-Lie group Sp2(H) on the Grassmannian OL0

is smooth and transitive, we identify OL0 ≃ Sp2(H)/Sp2(H)L0
as manifolds.

Then it is only natural to consider on our Grassmannian the quotient Rie-
mannian metric. If W ∈ OL0 and v ∈ TWOL0 , we put

Q(W, v) = inf{‖z‖2 : z ∈ sp2(H), d1πW (z) = v}.
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This metric will be called the quotient metric of OL0 , because it is the quo-
tient metric in the Banach space

TWOL0 ≃ sp2(H)/sp2(H)W .

Indeed, since sp2(H)W = ker d1πW , if z ∈ sp2(H) with d1πW (z) = v then

Q(W, v) = inf{‖z − y‖2 : y ∈ sp2(H)W}.

If QL denotes the orthogonal projection onto sp2(H)W then each z ∈ sp2(H)
can be uniquely decomposed as

z = z −QL(z) +QL(z) = z0 +QL(z)

hence

‖z − y‖22 = ‖z0 +QL(z)− y‖22 = ‖z0‖
2
2 + ‖QL(z)− y‖22 ≥ ‖z0‖

2
2

for any y ∈ sp2(H)W which shows that

Q(W, v) = ‖z0‖2 (2.10)

where z0 is the unique vector in sp2(H)⊥W such that d1πW (z0) = v.
We denote the length for a piecewise smooth curve in OL0 , measured with

the quotient norm introduced above as LQ(γ).

Theorem 3.2.5. The quotient metric and the ambient metric are equal.

Proof. The proof is a straightforward computation using the definition of
the metrics; indeed let W ∈ OL0 and v ∈ TWOL0 , by formula (2.10) we
have Q(W, v) = ‖z0‖2 where z0 is the unique vector in sp2(H)⊥W such that

d1πW (z0) = v. Since z0 belongs to sp2(H)⊥W , using the decomposition W ⊕
W⊥, we can write

z0 = z0PW − PW z0PW = (1− PW )z0PW

and then since PW is a Lagrangian projector we have Jz0 = (J−JPW )z0PW =
PWJz0PW . Therefore using the definition of the ambient metric (2.6) we
have,

A(W, v) = ‖vPW‖2 = ‖d1πW (z0)PW‖2 = ‖PWJz0|WPW‖2

= ‖Jz0‖2 = ‖z0‖2 = Q(W, v).
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Now, it is obvious that the geometry of these Riemannian metrics is the
same, in particular the geodesics and the geodesic distance.

To prove the main theorem in this chapter we will use some facts that
we obtained in Chapter 2. The key is to use the completeness of the metric
space (Sp2(H), ‖.‖2) and the lifting property given in Lemma 3.2.3.

Theorem 3.2.6. If (Ln) is a sequence in OL0 and L ∈ OL0 then

1. Ln
OL0−→ L =⇒ Ln

dQ
−→ L.

2. The metric space (OL0 , dQ) is complete.

3. The distance dQ defines the given topology on OL0. Equivalently, Ln
OL0−→

L⇐⇒ Ln
dQ
−→ L.

Proof. Since dA(S, T ) = dQ(S, T ) for all S, T ∈ OL0 , we can prove the three
items with dA to simplify the computations.

1. The map πL has local continuous sections, let n0 be such that Ln ∈ U ⊂
OL0 ∀n ≥ n0 (U a neighbourhood of L) and such that σL : U → Sp2(H)

is a section for πL. By continuity we have σL(Ln)
‖.‖2
−→ σL(L) = 1 if

n ≥ n0. Since σL(Ln) is close to 1, there is zn ∈ sp2(H) such that
σL(Ln) = ezn and since ‖ezn − 1‖2 = ‖σL(Ln) − 1‖2 → 0 we also have
‖zn‖2 → 0. Let γn(t) = etzn(L) ⊂ OL0 be a curve that joins L and Ln;

using the equality (2.7) its length is LA(γn) =
∫ 1

0
A(γn(t), γ̇n(t))dt =

∫ 1

0
‖γ̇n(t)Pγn(t)‖2. Since γn(t) = πL ◦ etzn using the chain rule and

Proposition 3.1.5 we have

γ̇n(t) = detznπL(zne
tzn) = Petzn (L)Jzn|etzn (L),

then taking norms and using the symmetric property of the 2-norm
(‖xyz‖2 ≤ ‖x‖‖y‖2‖z‖) we have

‖γ̇n(t)Pγn(t)‖2 = ‖Petzn (L)JznPetzn (L)‖2 ≤ ‖zn‖2.

Then it is clear that dA(Ln, L) ≤ LA(γn) → 0.

2. Let (Ln) be a dA-Cauchy sequence in OL0 and fix ε > 0. Then there ex-
ists n0 such that dA(Ln, Lm) ≤ ε if n,m ≥ n0. For the fixed Lagrangian
Ln0 , we have the map

π = πLn0 : Sp2(H) → OL0 , π(g) = g(Ln0).
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If n,m ≥ n0 we can take a curve γn,m ⊂ OL0 that joins Ln to Lm (for
t = 0 and t = 1 respectively) such that

LA(γn,m) ≤ dA(Ln, Lm) + ε.

Then by Lemma 3.2.3, the curves γn0,m are lifted, via π, to curves
φm of Sp2(H) with φm(0) = 1 and LR(φm) = LA(γn0,m). Denote by
gm = φm(1) ⊂ Sp2(H) the end point. Then

ε+ dA(Ln0 , Lm) ≥ LA(γn0,m) = LR(φm) ≥ dR(1, gm).

For each n,m ≥ n0 we have,

dR(gn, gm) ≤ dR(1, gm) + dR(1, gn)

≤ 2ε+ dA(Ln0 , Lm) + dA(Ln0 , Ln) ≤ 4ε.

Thus the sequence (gm) ⊂ Sp2(H) is dR-Cauchy and then by Remark
3.2.2 we have that (g−1

m ) is dL-Cauchy. Using Lemma 2.5.1 of Chapter 2
we have that the sequence (g−1

m ) is a Cauchy sequence in (Sp2(H), ‖.‖2)
and then since this metric space is closed, there exists x ∈ Sp2(H) such

that g−1
m

‖.‖2
−→ x. By continuity we have π(gm)

OL0−→ π(x−1) and since
φm is a lift of γn0,m we also have π(gm) = gm(Ln0) = φm(1)(Ln0) =

γn0,m(1) = Lm, so Lm
OL0−→ π(x−1). Thus using the first item of this

theorem we have dA(Lm, π(x
−1)) → 0.

3. Suppose that Ln
dA−→ L, then it is a dA-Cauchy sequence. If we repeat

the argument that we used above, there exists x ∈ Sp2(H) such that

Ln
OL0−→ π(x−1). By the first point it is dA convergent and therefore

Ln
OL0−→ L.



48 CHAPTER 3. AN HOMOGENEOUS SPACE OF SP2(H)



Chapter 4

Riemannian metrics in

self-adjoint groups

En este caṕıtulo extenderemos algunos resultados de la geometŕıa del grupo
simpléctico de Hilbert-Schmidt que obtuvimos en el caṕıtulo 2 a una clase
mucho más amplia de grupos de operadores Riemannianos, los grupos de
operadores autoadjuntos.

In this chapter we will extend some results of the geometry of the Hilbert-
Schmidt symplectic group that we obtained in Chapter 2 to a more general
class of Riemannian operator groups, the self-adjoint operator groups.

4.1 Riemannian geometry of a self-adjoint sub-

group

The following definition is related to those of Sections 3 and 7 of Chapter IV
in [16].

Definition 4.1.1. Let G be a connected abstract subgroup of GL2(H). We
say that G is a self-adjoint subgroup if g∗ ∈ G whenever g ∈ G (for short,
we write G∗ = G). Note that a connected Banach-Lie group G is self-adjoint
if and only if g∗ = g, where g denotes the Banach-Lie algebra of G.

4.1.1 Riemannian geometry with the left invariant met-

ric

Throughout this chapterG will denote a closed, connected self-adjoint Banach-
Lie subgroup of GL2(H), moreover we will denote by g ⊂ B2(H) its closed

49
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Banach-Lie algebra. Using the left action on itself, the tangent space at
g ∈ G is

TgG = g.g.

We endow G with the induced left invariant metric of GL2(H), so for v ∈ TgG
we have

I(g, v) = ‖g−1v‖2. (1.1)

Proposition 4.1.2. Let G ⊂ GL2(H) with the left invariant metric (1.1),
then G is totally geodesic submanifold. In other words the Levi-Civita co-
variant derivative is given by

α−1Dtη = µ̇+ 1/2{[β, µ] + [β, µ∗] + [µ, β∗]} (1.2)

where α : (−ǫ, ǫ) → G is any smooth curve, η is a tangent field along α and
β = α−1α̇, µ = α−1η ⊂ g are the fields at the identity.

Proof. The proof is similar to the proof of Proposition 2.3.1. Let β = α−1α̇
and µ = α−1η be the fields at g, we will show that α−1Dtη ⊂ g. Indeed, since
µ ⊂ g then it is clear that µ̇ belongs to g, because it is a limit of operators
that belong to the closed algebra g. Since G is self-adjoint, we have g∗ = g,
then µ∗ and β∗ belong to g and the brackets [β, µ], [β, µ∗], [µ, β∗] are all in g

because it is a closed Banach-Lie algebra. Thus we have α−1Dtη ⊂ g.

This shows that the Riemannian connection given by the left invari-
ant metric in the group G matches the one of GL2(H). In particular, the
geodesics of G are the same than those of GL2(H); if g0 ∈ G and g0v0 ∈ g0.g
are the initial position and the initial velocity then

α(t) = g0e
tv∗0et(v0−v

∗
0) ⊂ G

satisfies Dtα̇ = 0. Therefore, the Riemannian exponential for g ∈ G is

Expg(v) = gev
∗

ev−v
∗

with v ∈ g.

4.1.2 Riemannian geometry with the polar metric

The next theorem summarizes the most important properties of self-adjoint
Banach-Lie groups. It was proved by G. Larotonda in [18].
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Theorem 4.1.3. Let G = 〈exp(g)〉 be a connected, self-adjoint Banach-
Lie group with Banach-Lie algebra g ⊂ B2(H). Let P be the analytic map
g 7→ g∗g, P : G → G. Let k = ker(d1P ), m = Ran(d1P ). Let MG = exp(m)
and K = G ∩ U2(H) = P−1(1). Then

1. The set m is a closed Lie triple system. We have [m,m] ⊂ k, [k,m] ⊂
m, [k, k] ⊂ k and g = k⊕m. In particular k is a Banach-Lie subalgebra of g.

2. P (G) =MG and MG is a geodesically convex submanifold of GL+
2 (H).

3. For any g = ug|g| (polar decomposition), we have |g| ∈ MG and
ug ∈ K.

4. Let g ∈ G, p ∈ MG, Ig(p) = gpg∗. Then Ig ∈ I(MG) (the group of

isometries of MG). If g = p
1
2 (p−

1
2 qp−

1
2 )

1
2p

1
2 , then Ig(p) = q, namely G acts

isometrically and transitively on MG.

5. Let u ∈ K and x ∈ m (resp. m⊥). Then Iu(x) = uxu∗ ∈ m (resp. m⊥).
If p, q ∈ MG then Ip maps TqMG (resp. TqM

⊥
G ) isometrically onto TIp(q)MG

(resp. TIp(q)M
⊥
G ).

6. The group K is a Banach-Lie subgroup of G with Lie algebra k.

7. G ≃ K ×MG as Hilbert manifolds. In particular K is connected and
G/K ≃MG.

Since MG = exp(m) is closed and a geodesically convex submanifold of
GL+

2 (H), then for any p = ex ∈MG,

TpMG = Exp−1
p (MG) = {p1/2 ln(p−1/2qp−1/2)p1/2 : q ∈MG}.

For this reason it is clear, as in the case of the full space GL+
2 (H), that given

any p, q ∈MG the curve

γpq(t) = p1/2(p−1/2qp−1/2)tp1/2 ⊂MG

has minimal length among all curves in MG that join p to q. Its length is
measured with the metric (1.2) and it is ‖ ln(p−1/2qp−1/2)‖2. Moreover the
metric space (MG, dp) is complete.

The diffeomorphism given in point seven of Theorem 4.1.3 is the restric-
tion of the map (1.4) on G. So, we can endow G with the polar Riemannian
metric (1.5) using the product manifold K ×MG.
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If we consider a curve α ⊂ K and η is a tangent field along α then the
covariant derivative (1.2) given by the left invariant metric is reduced to

α−1Dtη = µ̇+ 1/2[β, µ] ∈ k.

Therefore K is a totally geodesic manifold of the unitary group U2(H) and
we have the following proposition that extends Proposition 2.4.1 to the self-
adjoint groups.

Proposition 4.1.4. G is a totally geodesic submanifold of GL2(H) when we
consider the induced polar metric.

Proof. Since the manifoldsMG and K are totally geodesic then we have that
the Levi-Civita derivative on the ambient manifold U2(H)×GL+

2 (H) restricts
onto K ×MG.

Since the Levi-Civita derivative is given by the product, it is not difficult
to see that given any initial velocity v ∈ g, if v = x+ y is the decomposition
into k⊕m, then the geodesics of the polar metric starting at the identity are

α(t) = etxety.

Proposition 4.1.5. The geodesics of the left invariant metric coincide with
the geodesics of the polar metric if the initial velocity v ∈ g is normal.

Proof. Let v = x + y ∈ k ⊕ m be the decomposition into its hermitian and
anti-hermitian part, since v is normal a straightforward computation shows
that x commutes with y, thus we have

etv
∗

et(v−v
∗) = etv = etxety.

This equation shows that the geodesics are one-parameter groups.

4.2 Completeness of the geodesic distance

4.2.1 Completeness in finite dimension with p-norms

Let GLn(C) be the general linear group in finite dimension. Let Mn(C) be
the space of n × n complex matrices. Since GLn(C) is open in the space
Mn(C), we can identify the tangent space of GLn(C) at any point with
Mn(C). In this algebra we consider the classical p-norms, if x ∈ Mn(C) and
τ denote the real part of the trace we put,

‖x‖pp = τ
(
(x∗x)p/2

)
for any p ≥ 1.
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Since the dimension of GLn(C) is finite, it is known that any closed sub-
group G has a structure of Banach-Lie subgroup of GLn(C). In this context
we denote the left invariant metric for any self-adjoint closed subgroup as
Ip(g, v) = ‖g−1v‖p for g ∈ G and v ∈ TgG.

Theorem 4.2.1. The metric space (G, dIp) is complete.

Proof. If p = 2, by Hopf-Rinow’s theorem, the space (G, dI2) is complete
since the manifold G is geodesically complete with the 2-norm (Proposition
4.1.2). Now, we claim that dIp is equivalent to dI2 for any p ≥ 2. Indeed,
at each tangent space of G, the p-norm is equivalent with the 2-norm with
constants which depend only on the dimension of Mn(C). Examining the
length functionals, it follows that the metrics are equivalent, with the same
constants.

4.2.2 Completeness in the infinite dimensional case

Since the map g 7→ g|g|−1 = ug is continuous, it is clear that if p, q ∈ G are
close to each other its unitary parts (up, uq) are close too. So, if g ∈ G is
close to the identity 1, then its unitary part ug is close to 1 too and since
the polar decomposition is in the group (Theorem 4.1.3) we can assume that
ug lies in K ∩ U where U is a neighbourhood of the identity in G. Since K
is a Banach-Lie subgroup of G, if we reduce the neighbourhood U , we can
assume that ug = exp(z) where z belongs to a neighbourhood of 0 in the Lie
algebra k ⊂ g. Now, if p, q ∈ G are close to each other and up|p|, uq|q| are
their polar decompositions, then the unitary element u−1

p uq ∈ K is close to
1 and we can choose an element z ∈ k ⊂ g such that u−1

p uq = ez. So, we can
build the following smooth curve in G;

αp,q(t) = upe
tz|p|1/2(|p|−1/2|q||p|−1/2)t|p|1/2 ⊂ G (2.3)

that joins p to q. This curve will be used to obtain the completeness with
both metrics.

Theorem 4.2.2. Let G be a closed, connected self-adjoint Banach-Lie sub-
group of GL2(H), then the metric space (G, dP) is complete.

Proof. Let (xn) be a dP-Cauchy sequence, let xn = uxn |xn| be its polar
decomposition. First we will prove that uxn ⊂ K and |xn| ⊂MG are dI and
dp-Cauchy sequences respectively. Indeed, given ε = 1/n there exist curves
βn ⊂ G such that βn(0) = xn, βn(1) = xm and dP(xn, xm) + 1/n > LP(βn).
If β1n ⊂ K and β2n ⊂ MG denote the unitary and positive part of βn, then
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since xn = βn(0) = β1n(0)β2n(0) = uxn |xn|, it is clear that β1n joins uxn to
uxm and β2n joins |xn| to |xm|. Using the inequality (1.6) we have,

dP(xn, xm) + 1/n > LP(βn) ≥ LI(β1n) ≥ dI(uxn , uxm)

for all n,m, then it is clear that dI(uxn , uxm) → 0 when n,m → ∞. An
analogous computation using β2n shows that dp(|xn|, |xm|) → 0 when n,m→
∞. Since (uxn) is a unitary sequence it is known that ‖uxn − uxm‖2 ≤
dI(uxn , uxm) and therefore (uxn) ⊂ K is a 2-norm Cauchy sequence. Since

K is closed we can take u ∈ K such that uxn
‖.‖2
−→ u. Then if n is large,

we can suppose that u−1uxn is close to 1, therefore there exists a sequence

(zn) ⊆ k such that u−1uxn = ezn and zn
‖.‖2
−→ 0. On the other hand, there

exists g ∈ MG such that dp(|xn|, g) = ‖ ln(g−1/2|xn|g
−1/2)‖2 → 0. It is

clear that ug ∈ G, then if n is large we can consider the curve αug,xn(t) =
uetzng1/2(g−1/2|xn|g

−1/2)tg1/2 (2.3) that joins xn and ug, therefore we have

dP(xn, ug) ≤ LP(αug,xn) =
(
‖zn‖

2
2 + ‖ ln(g−1/2|xn|g

−1/2)‖22
)1/2

→ 0.

The following proposition is a generalization of Proposition 2.1.6 to G.

Proposition 4.2.3. Suppose p, q ∈ G are close to each other and let v :=
|p|−1/2|q||p|−1/2 then we can estimate the geodesic distance dI by

dI(p, q) ≤ c(p, q)
(
‖z‖22 + ‖ ln(v)‖22

)1/2

where
c(p, q)2 = 2max

{
e4‖ ln(v)‖

(
‖p‖‖p−1‖

)2
, ‖p‖‖p−1‖

}
.

Proof. The proof is similar to Proposition 2.1.6. Since p, q ∈ G are close,
then we can build the smooth curve αp,q ⊂ G (2.3) that joins p to q; so we
can repeat the argument that we gave in Proposition 2.1.6. Then in this case
we have,

‖α−1
p,qα̇p,q‖2 ≤ c(p, q)

(
‖z‖22 + ‖ ln(v)‖22

)1/2
.

and then dI(p, q) ≤ LI(αp,q) ≤ c(p, q)
(
‖z‖22 + ‖ ln(v)‖22

)1/2
.

Lemma 4.2.4. If (xn) ⊂ G is a Cauchy sequence in (G, dI) then it is a
Cauchy sequence in (G, ‖.‖2).

Proof. Since the geodesics of the Riemannian connection are of the form
α(t) = Expg(tv) = getv

∗
et(v−v

∗), the proof of this lemma can be adapted
easily from Lemma 2.5.1 in Chapter 2.
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Now we are in position to obtain our final result of the thesis.

Theorem 4.2.5. Let G be a closed, connected self-adjoint Banach-Lie sub-
group of GL2(H), then the metric space (G, dI) is complete.

Proof. Let (xn) ⊂ G be a dI-Cauchy sequence, by the above lemma it is

‖.‖2-Cauchy; then since G is closed there exists x ∈ G such that xn
‖.‖2
−→ x.

Now we will show that xn
dI−→ x; indeed from the continuity of the module

we have that |xn| converges to |x| in ‖.‖2 and its unitary part uxn = xn|xn|
−1

converges to ux = x|x|−1. The sequence |x|−1/2|xn||x|
−1/2 converges to 1 and

then ‖ ln(|x|−1/2|xn||x|
−1/2)‖2 → 0. Since xn converges to x, we can assume

that xn is close to x if n ≥ n0, therefore we can use Proposition 4.2.3 to
estimate the geodesic distance. Then we have

dI(x, xn) ≤ c(x, xn)
(
‖zn‖

2
2 + ‖ ln(|x|−1/2|xn||x|

−1/2)‖22
)1/2

where zn ∈ k ⊂ g is such that u−1
x uxn = ezn (since u−1

x uxn is close to 1 and K
is a Banach-Lie subgroup of G). We also have ‖zn‖2 → 0. Now we will see
that c(x, xn) is uniformly bounded. Indeed, since ‖ ln(|x|−1/2|xn||x|

−1/2)‖ ≤
‖ ln(|x|−1/2|xn||x|

−1/2)‖2 → 0, then for n large we can assume that ‖ ln(vn)‖ ≤
1 where vn = |x|−1/2|xn||x|

−1/2 as we denoted in Proposition 4.2.3. Finally
we have

c(x, xn)
2 = 2max{ e4‖ ln(vn)‖

(
‖x‖‖x−1‖

)2
, ‖x‖‖x−1‖}

≤ 2max{ e4
(
‖x‖‖x−1‖

)2
, ‖x‖‖x−1‖}

is clearly uniformly bounded and then it is clear that dI(x, xn) → 0.
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IMPA. Rio de Janeiro, Instituto Nacional de Matemática Pura e Apli-
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