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Métricas de complejidad de grafos para clasificación

en múltiples dominios

El objetivo de esta tesis es investigar y ofrecer nuevas ideas para clasificar

redes complejas basadas en sus propiedades topológicas de gran escala.

Estamos interesados en estudiar las propiedades de redes de diferentes

dominios, y encontrar caracteŕısticas comunes que son compartidas por las

redes en cada una de ellas. Con las mismas pretendemos desarrollar algo-

ritmos y técnicas que aprovechen los elementos comunes, para automati-

zar la clasificación de redes en sus respectivos dominios. Esta información

también será de utilidad para determinar si una red artificial presenta las

caracteŕısticas esperadas para el dominio al que pretende pertenecer.

Revisamos un gran número de métricas de complejidad encontradas en

la literatura. De ellas, elegimos 13 que luego derivan en un total de 43

métricas. Creamos un conjunto de redes de distintas fuentes, con 240 re-

des distribuidas en 11 dominios. Aplicamos un análisis exhaustivo a las

medidas obtenidas para ellas, analizamos su correlación y distribución es-

tad́ıstica, e intentamos predecir las posibilidades de clasificación que tendŕıa

un algoritmo automático a la hora de discriminarlas correctamente en sus

respectivos dominios.

Intentamos determinar si las mediciones obtenidas pueden ser usadas

para discriminar los distintos dominios estudiados. Para ello, presentamos

3 tipos de algoritmos de clasificación de la literatura (K Nearest Neighbors,

Support Vector Machines y el sistema de Evolutionary Rule Learning Bio-

HEL[9]). Las mediciones son utilizadas como valores de entrada para la

tarea de clasificación de distinguir el dominio al que pertenece cada red.

Además, para entender el potencial que tienen para clasificar dominios

de redes, usamos el generador de grafos CiGRAM para crear un con-

junto de 160 redes artificiales distribuidas en 8 dominios a modo de ejem-

plo. Analizamos su distribución estad́ıstica y ejecutamos los experimentos

propuestos, donde algunos de los algoritmos logran una precisión de hasta

80%. Adicionalmente, observamos que es fácil interpretar los resultados que

ofrece el sistema BioHEL, ya que su salida está compuesta de reglas legibles

por una persona, que explican cómo clasificar redes en base a los valores de

las métricas calculadas.



Finalmente, aplicamos los experimentos propuestos usando las técnicas

de clasificación revisadas, con los valores de métricas calculados para las

redes reales elegidas. Observamos una clasificación de menor precisión

con respecto a lo obtenido para las redes artificiales, y continuamos con

escenarios experimentales adicionales para estudiar posibles mejoras, como

eliminación de outliers y particionamiento manual de los conjunto de entre-

namiento y prueba. Luego de ejecutarlos, a pesar de que en promedio los

resultados siguen siendo peores a los obtenidos para las redes artificiales,

un subconjunto de los experimentos presenta una precisión de 80% como

hab́ıamos obtenido anteriormente.

Nuestras conclusiones permiten confirmar que es posible clasificar redes

de distintos dominios considerando únicamente las mediciones obtenidas de

un conjunto espećıfico de métricas de complejidad, y también ofrecemos

posibles mejoras a ser aplicadas en investigaciones futuras.

Palabras clave: grafos, redes, complejidad, clasificación, métricas, au-

tomatización, algoritmos, múltiples dominios



Graph Complexity Measures for Multi-Domain

Network Classification

The objective of this thesis is to research and offer insights into the possi-

bilities of classifying complex networks based on their large scale topological

features.

We are interested in studying the properties of networks from differ-

ent domains, and find common characteristics that may be shared by the

networks in each of them. With them, we aim to develop algorithms and

techniques that take advantage of the shared features, to automate the clas-

sification of networks to their respective domains. This information would

also be useful in determining if an artificial network shares the expected

characteristics of its intended domain.

We research and review a large number of complexity measures from the

literature. From them, we choose 13 that are then derived to reach a total

of 43 measures. We created a network data set from different sources, with

240 networks distributed across 11 domains. Exhaustive analysis is applied

to the measurements obtained from them, to analyze their correlation and

statistical distribution, and attempt to predict the classification possibilities

an automated algorithm might have of correctly discriminating between the

domains.

We attempt to determine if the measures computed can be used as dis-

criminators between the domains under study. To that end, we present 3

different classification algorithms from the literature (K Nearest Neighbors,

Support Vector Machines and the Evolutionary Rule Learning system Bio-

HEL[9]). The measures obtained are used as the input for the classification

task of distinguishing the domain to which each network belongs.

Furthermore, to understand their potential ability to correctly classify

network domains, we use the CiGRAM graph generator to build a set

of 160 artificial networks distributed across 8 sample domains. We analyze

their statistical distribution, and run the experiments proposed, where some

of the algorithms presented achieve up to 80% accuracy. Moreover, we

observe the ease of interpretation in the results offered by the BioHEL

system, since its output is composed of human readable rules that explain

how to classify the networks based on their computed measures.



Finally, we apply the proposed experiments using the classification tech-

niques reviewed to the computed measures of the set of real networks cho-

sen. We observe a lower classification accuracy with regard to the values ob-

tained for the artificial networks, and continue with additional experimental

scenarios to study possible improvements, such as outlier elimination, and

manual partitioning of the training and testing sets. After running them,

we observe that despite the average results are still below those obtained

for artificial networks, a subset of the experiments present the previously

attained accuracy nearing 80%.

Our conclusions imply that it is possible to classify networks into differ-

ent domains just by considering the measurements obtained from a specific

set of complexity measures, and we also offer a number of possible improve-

ments in future related research.

Keywords: graphs, networks, complexity, classification, measures, au-

tomation, algorithms, multi-domain
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conté con la ayuda de muchas personas, a las que quiero agradecer.
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Chapter 1

Introduction

1.1 Motivation

The proposal discussed in the following pages is intended as a work in To-

ponomics, understood as the automated classification of complex networks

based on their large scale topological features. The main objective is thus

to study the properties of such networks, leading to a variety of characteri-

zations, which could enable the development of algorithms and techniques

that take advantage of the features that are shared by all sub-components

in each class, to produce an automated classification of a network within a

given network type.

Since we intend to develop a study that encompasses different kinds

of networks, the expected result is a system that could, in principle, be

applicable to various such networks, e.g.:

• Social Networks: suggesting grouping of users, finding equivalent com-

munities in different sites

• Financial Instrument Networks: finding similarities in groups of instru-

ments, studying equivalences between markets, detecting suspicious

trades

• Software Code Networks: optimization through module grouping, de-

tection of code generalization opportunities

• Ecology Networks: finding equivalent functions in different habitats,

detecting critical resources

1



2 CHAPTER 1. INTRODUCTION

• Biological Networks: detecting common properties in different cellular

components, tracing evolution, studying protein interaction

• Chemical Networks: detecting equivalent compounds, studying chem-

ical interaction

In order to achieve the mentioned objectives, a series of subjects need

to be previously studied. From the state of the art in areas such as graph

complexity measuring, artificial graph generation and learning classifier sys-

tems, a combination of connected ideas will help us propose new research

topics in toponomics.

The concept of graph classification studied is focused on determining the

original domain of study of different graphs in different domains, and must

be differentiated from other classification tasks, such as classification accord-

ing to graph type, as presented for example in http://www.graphclasses.

org/.

1.2 Objetive

Throughout this work, we study the similarities and differences in several

network domains, with the final objective of automating their classification.

To achieve this, we propose the use of graph complexity measures, as a

means of reducing a graph structure to a single number. It is our intention

to determine if, given enough complexity measures that present a low cor-

relation between them, a network can be translated to a set of values which

can then be used to determine the problem domain it belongs to.

We will present a comprehensive survey of complexity measures, from

different domains and sources, aimed at understanding their potential.

We also review and analyze a set of 11 network domains, with a to-

tal of 240 networks. They range from biological and chemical sources, to

papers studying mailing connections and social networks, including Twit-

ter interaction. The statistical distribution of selected complexity measures

is presented and used as an indicator of the feasibility of discriminating

between them.

To assist with our experiments and validate our strategies, we build a set

of 160 artificial networks belonging to 8 different classes, tailored to present

an equivalent scenario to our real world networks.

Classification algorithms are presented as a technique to explore our ob-

jectives, with the use of an experimental framework that ensures comparable

results. They include both basic schemes such as K Nearest Neighbors, as

http://www.graphclasses.org/
http://www.graphclasses.org/
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well as stochastic programs that employ machine intelligence to produce

human-understandable rules for classification.

After running different experimental proposals, the classification of ar-

tificial networks is found to be possible with a 80% accuracy. This value is

achieved as well for the real word domains, once specific steps are taken to

organize the distribution of training and testing samples in the classification

algorithms.

1.3 Overview

The rest of this document is structured as follows:

• Chapter 2 introduces the reader to several relevant concepts in graph

theory, and contains a survey of several complexity measures, some of

which are later employed in this work.

• Chapter 3 defines the classification problem that is our objective, as

well as a set of classification algorithms that will be employed in our

experiments.

• Chapter 4 lists the network domains reviewed, with a detail of the net-

works contained for each, and a sample visualization of representative

instances that allows a first glimpse at the differences and similarities

both inside the domains as well as between them. It also details the

selection of complexity measures that are applied in the rest of this

thesis, and presents their statistical distribution and correlation when

applied to the different domains under study.

• Chapter 5 presents a technique for building artificial networks with

known parameters, which are then employed in running the classifica-

tion algorithms. We include in this chapter an analysis of the statis-

tical distribution of the complexity measures when computed for the

artificial networks, followed by experiments that apply the algorithms

selected using an experiment building platform.

• Chapter 6 details a collection of experiments using the real world net-

works reviewed in Chapter 4. They are built with the same platform

and equivalent parameters than for the artificial network to ensure

comparable results. Different schemes are proposed to create training

and testing sets. The accuracy for the different algorithms is displayed

and analyzed.
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• Chapter 7 closes this work with a summary of the findings presented

in each chapter, and the conclusions that can be obtained from them

when compared against our objectives. This chapter also lists a num-

ber of interesting topics for future research.
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Caṕıtulo 1: Introducción

Motivación

Este trabajo se ubica dentro del área Toponomics, entendido como la

clasificación automática de redes complejas, basándose en sus caracterśticas

topológicas de gran escala. El objetivo principal es el estudio de estas

redes, y su caracterización para permitir luego el desarrollo de algoritmos

y técnicas que aprovechen estas caracterśticas compartidas en cada clase,

para producir clasificaciones automáticas de redes de acuerdo a su tipo.

Como nuestra intención es estudiar redes de diferentes tipos, el resultado

esperado es un sistema que podŕıa en principio, ser aplicado a distintas

redes, a saber:

• Redes sociales: sugiriendo grupos de usuarios, encontrando comu-

nidades equivalentes en distintos sitios

• Redes de instrumentos financieros: encontrando similitudes en grupos

de instrumentos, estudiando equivalencias entre mercados, detectando

operaciones sospechosas

• Redes de código fuente: optimización a través de agrupamiento de

módulos, detección de oportunidades para generalizar código

• Redes ecológicas: encontrar funciones equivalentes en distintos hábitats,

detección de recursos cŕıticos

• Redes biológicas: detección de propiedades comunes en diferentes com-

ponentes celulares, rastreos evolutivos, estudio de interacción de protéınas

• Redes qúımicas: detección de compuestos equivalentes, estudio de in-

teracción de qúımicos

Para lograr los objetivos mencionados, ciertos temas deben ser estu-

diados previamente. Desde el estado del arte en áreas como la medición

de complejidad en grafos, generación de grafos artificiales y sistemas de

aprendizaje automático, la combinacioón de distintas ideas nos permitirá

proponer nuevas ideas de investigación en Toponomics.
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Objetivo

A lo largo de este trabajo, estudiaremos las similitudes y diferencias

en distintos dominios de redes, con el objetivo de automatizar su clasifi-

cación. Para lograrlo, proponemos el uso de métricas de complejidad de

grafos (definidas en la sección 2.4), para lograr reducir la estructura de un

grafo a un único número que lo represente. Nuestra intención es determinar

la posibilidad de traducir una red a un conjunto de valores que permita

detectar el dominio al que pertenece.

Presentaremos un estudio exhaustivo de métricas de complejidad, de

diferentes dominios y fuentes, para intentar entender su potencial.

También analizaremos 240 redes, pertenecientes a 11 dominios distintos.

Las mismas abarcan desde redes biológicas y qúımicas, a investigaciones so-

bre la conexión entre personas a través del env́ıo de correos electrónicos, aśı

como redes sociales como Twitter. La distribución estad́ıstica de métricas

elegidas especialmente nos permitirá estudiar la factibilidad de clasificar las

redes en los distintos dominios a los que pertenecen.

Para ayudar a nuestros experimentos y validar nuestras estrategias,

construimos un conjunto de 160 redes artificiales que pertenecen a 8 do-

minios, armados especialmente para presentar un escenario equivalente al

de las redes reales.

Para explorar nuestros objetivos, presentaremos algoritmos de clasifi-

cación, y con la ayuda de un ambiente de experimentación podremos garan-

tizar resultados comparables.

Luego de ejecutar los diferentes experimentos, hemos determinado que

las redes artificiales pueden ser clasificadas con un 80% de precisión. El

mismo nivel de resultado es posible en las redes reales una vez que se toman

medidas especiales para organizar los conjuntos de entrenamiento y prueba

en los algoritmos de clasificación.



Chapter 2

Measuring Graph Complexity

2.1 Description

This chapter begins the analysis of the existing formulas and techniques

that might help in classifying graphs according to their respective domains

of origin.

We will first analyze the basic definitions that allow to understand graphs

and their properties. Then we will review a number of formulas that allow

the representation of the complex structure of a graph as a single number,

or collection of numbers (i.e. one per graph vertex, one per graph edge,

etc.).

The different formulas reviewed will provide a range of considerations

on what differentiates one graph from another, and will be required to

understand the classification techniques proposed in the following chapters.

2.2 What is a Graph?

A graph is basically defined as a set of elements (commonly referred to

as vertices or nodes), some of which are connected between them. These

connections are known as edges or links.

Graphs can be directed or undirected. In the former edges have a direc-

tion, i.e. there is an origin vertex and destination vertex, whereas in the

latter there is no such distinction.

Although this chapter attempts to provide all the necessary concepts in

graph theory required to understand the rest of this work, there are many

7



8 CHAPTER 2. MEASURING GRAPH COMPLEXITY

books on the subject that delve on theoretical aspects not reviewed here,

such as [91, 22].

The terms graph and network might be used interchangeably throughout

this work, although graph will be more commonly chosen in this chapter as a

general interconnection of elements. Following chapters, since they analyze

structures that have a concrete meaning for the graph components (airports

and flight routes, proteins and their interactions, people and friendships,

etc.), will instead tend to refer to them as networks.

Figure 2.1: Undirected Graph

Figure 2.2: Directed Graph

Another classification is that of weighted graphs vs. unweighted graphs.

The first being the case when each edge has a weight or “connectivity”,

while the second is restricted to representations where there either is a link

between two vertices, or there is not.

Definition 1. Graph: A graph G noted as G(V,E), describes a set of ver-

tices V = {v1, . . . , vn}, connected according to a set of edges E = {e1, . . . , em}

(where ei = (va, vb)), with va, vb ∈ V .

Definition 2. Neighbor: Any vertex vi connected to vertex vj by edge

(vi, vj) or (vj, vi) is said to be a neighbor of vj.
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Figure 2.3: Weighted Undirected Graph

Figure 2.4: Weighted Directed Graph

Definition 3. Weighted Graph: A graph G noted as GW (V,E), describes

a set of vertices V , connected according to a set of edges E, with W a

mapping of weight/connectivity for each edge such that W (ei) = wi.

Definition 4. Degree: For any given vertex v, the degree kv indicates the

number of edges incident to it. Directed graphs also require the distinction

between the in-degree kin
v and out-degree kout

v , to specify edges where v is the

destination or the origin vertex, respectively.

Definition 5. Path: A sequence of vertices v1, . . . , vn that can be “traveled”

by means of the edges in a graph, in order to reach from v1 to vn. Its length

is defined as the number of vertices in the path, minus one (|v1, . . . , vn|−1).

Definition 6. Connected Graph: A given graph G is said to be “con-

nected” when there is a path between any two pair of vertices. If at least

one vertex can not be reached from every other one, the graph is “discon-

nected”. Every maximal connected subgraph is referred to as a “connected

component”.
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Some formulas to be presented later require the graph to be connected,

while others include special considerations when it is disconnected. Through-

out this work the examples presented in figures 2.5 and 2.6 will be referenced

when explaining concepts that are suitable for small graphs.

Figure 2.5: Connected Graph Example

Figure 2.6: Disconnected Graph Example

A common, and useful, practice in graph theory is to represent the edges

by means of an adjacency matrix A of size |V | × |V |. Each element aij pro-

vides information on the connection between vertices vi and vj. Unweighed

graphs can only have values 0 and 1, weighed graphs take advantage of this

structure to represent the weights. For undirected graphs the adjacency

matrix is, of course, symmetric.

v1 v2 v3

v1 0 0 1
v2 0 0 1
v3 1 1 0

Table 2.1: Undirected Unweighed Graph Adjacency Matrix
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v1 v2 v3

v1 0 0 1
v2 0 0 0
v3 1 1 0

Table 2.2: Directed Unweighed Graph Adjacency Matrix

v1 v2 v3

v1 0 0 wI

v2 0 0 wII

v3 wI wII 0

Table 2.3: Undirected Weighed Graph Adjacency Matrix

v1 v2 v3

v1 0 0 wI

v2 0 0 0
v3 wIII wII 0

Table 2.4: Directed Weighed Graph Adjacency Matrix

2.3 Measures and Metrics

Throughout this work, two distinct type of mathematical functions will be

analyzed.

The first is the concept of measure. It implies assigning a numerical

value to an object under study, in our case vertices, edges, or graphs. This

can be as simple as is the case of counting the number of vertices in a

graph, and stating that the measure “number of vertices” is computed as

|V |. Some of them, as will be seen in the rest of this chapter, are inspired by

different concepts in algebra, probability, physics, and even biology. Others

are complex formulas obtained by combining simpler measures.

A different kind of function that will be of interest are metrics. In

order for a formula to qualify as such, it must be described as the result

of comparing two elements (again, this can mean edges, graphs, etc.) and

providing a representation of a distance between them. This implies that a

metric m : A× A→ R must present properties such as:

1. It must always be positive or zero (m(a, b) ≥ 0 ∀a, b ∈ A)

2. It must only be zero when the elements are equivalent (m(a, b) = 0⇔

a = b)

3. It must be a symmetric function of its arguments (m(a, b) = m(b, a))
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4. The distance between element a and c through b is always at least

as that between a and c directly. This is referred to as triangle

inequality (m(a, c) ≤ m(a, b) +m(b, c))

2.4 Complexity Measures

Graphs are present in almost every scientific discipline. Sometimes it is

plain to see, such as when a graph is used to represent an electric circuit,

or the train routes connecting different cities. In other cases, employing

graph theory is a decision made by researches to help understand a problem

through different angles, as is the case of protein interaction networks or

the interactions between a social group.

Several properties of graphs as a structure are of interest first and fore-

most to graph theory investigators, but specific characteristics are analyzed

on occasion by those in other fields, when they may provide insight into

their studies. This has led to a wide number of publications where graph

measures are presented, with authors ranging from mathematical to life

sciences and engineering backgrounds.

One of the main objectives of this thesis is the study of the similarities

in graphs, specifically with the idea of finding key characteristics that may

allow a classification of the networks represented by field of study. Since

the techniques for analysis and processing of graphs are normally restricted

to a particular area of interest, it can be argued that a general approach to

graph theory will normally leave out some optimization that only applies to

a given domain, or risk behaving below the optimum performance[204, 203].

When two different graphs are evaluated using a particular measure, the

resulting values can be compared. In a way, the difference between the re-

sults of applying a measure to two graphs can be seen as a metric. This

metric would indicate how distant the given structures are, with respect to

the particular characteristics studied by the chosen measure. Following the

ideas in [55, 104, 52], we will be interested in interpreting the value of a

measure when applied to a graph as a description of its complexity (under-

stood in a broad sense rather than only in the “computational complexity”

sense), hence the term graph complexity measure.

Considering the aspects mentioned in the previous paragraphs, the rest

of this chapter is aimed at providing a summary of the most relevant ver-

tex and graph measures. For each of them, a summarized description is

provided. An idea of computation complexity and underlying structural in-

spiration is also presented, but only when mentioned in the original paper,
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as we will later choose those measures with the simplest and/or better doc-

umented ideas and combine them to obtain a more powerful classification

tool. For all the items, references are given where the interested reader can

obtain further information.

As regards the abbreviations and symbols used to refer to the measures,

some of them have been changed from those employed in the papers where

they appear. This was done in order to avoid confusion, since many were

repeated. Additional concepts required for the definition of particular mea-

sures are presented before each case.

First we begin by presenting some vertex measures. They will then be

required in the computation of the graph measures that follow.

2.4.1 Vertex Measures

• Degree Centrality (Vertex Degree)[125]: This measure is equal to the

degree of the vertex (kv). According to [125], it is often normalized

to help with comparisons, and for directed graphs the measure is split

into In-Degree Centrality and Out-Degree Centrality.

Definition 7. Shortest Path Length(SPL): The shortest/geodesic

path length (SPL) of vi to vj, noted d(vi, vj), is the size of the path

connecting vi to vj that has the fewer number of vertices.

Figure 2.7: Shortest Path Between v3 and v7 in an unweighted graph

• Average Vertex Shortest Path Length[85, 51]: This measure, refer-

enced by d̄v, implies obtaining the average of the shortest path length

for a given vertex v to all other vertices.

• Betweenness[85, 51, 125, 70, 25, 24]: Betweenness Bv represents the

percentage of shortest paths in the network in which v participates.

Bv =
∑

s,t∈V,s 6=t,s 6=v,t 6=v

σst(v)

σst

(2.1)
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Figure 2.8: Average Shortest Path Lengths

It must be noted that this formula will only consider one (possibly of

many) shortest paths in each case. Most implementations will settle

for the first shortest path found.

Figure 2.9: Betweenness

Definition 8. Maximum Flow / Capacity: In the specific domain

of flow networks, it is important to consider a certain flow (normally

expressed as a numeric value) that originates from a specially defined

“source” vertex, and moves through the different edges until it reaches a

specially defined “sink” vertex. In order to ensure that the flow travels

through a “valid” path, a specific restriction is added where each edge is

assigned a capacity. These networks require a flow where incoming

values to each node are equal to the outgoing values, and the flow

assigned to each edge is below its capacity.

• Vertex Flow Betweenness Centrality[125, 79]: This measure makes

use of the Ford-Fulkerson algorithm for maximum flow, considering

the flow that a vertex provides when participating in a path. This

requires defining a capacity for each edge in the network (which could

be defined as equal to the weights), thus allowing the computation

of flows as required by the algorithm. The term mjk represents the

maximum flow from vj to vk, whereas mjk(vi) is the maximum flow

between them that passes through vi. The proportion of network flow
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that depends on vi is:

C ′
F (vi) =

∑

j,k(j<k) mjk(vi)
∑

j,k(j<k) mjk

(2.2)

It must be noted that this formula assumes the graph is undirected.

• Closeness Centrality (Eccentricity, Status and Centroid Value)[138,

125, 70, 24]: These three measures are closely related, the first being

the most commonly used. It indicates the size of the biggest shortest

path in the network for a vertex v. Figure 2.10 shows this value for

the vertices in the example connected graph. The notation used is:

ǫ(v) = max
u∈V
{d(u, v)} (2.3)

Figure 2.10: Eccentricity

This measure is often used as part of larger, combined measures for

networks. This chapter includes a subsection (p. 28) with a selection

of such formulas.

• Euclidean Centrality[26]: In case of a network defined as occupying a

two dimensional space, with vertices given coordinates, it is possible to

analyze the distance of one vertex to another. The euclidean centrality

of a vertex v is the average distance from v to every other vertex in

the network.

Definition 9. Neighborhood: Γv is the set of all neighbors of vertex

v. E(Γv) are the edges between those neighbors. The value
(

kv
2

)

is the

total number of possible edges between them.

• Local/Vertex Clustering Coefficient[85, 70, 118]: Making use of the

previous definition, the clustering coefficient of vertex v, studies the

relation between the set of edges and the neighbors of the chosen

vertex. It is defined as:

γv =
|E(Γv)|
(

kv
2

) (2.4)
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Figure 2.11: Clustering Coefficient in the Connected Graph Example

• Local Cyclic Coefficient[107, 51, 1]: This measure attempts to analyze

the cycles related to a given vertex v. The value is defined as:

θv =
1

kv(kv − 1)

∑

j∈V

∑

k∈V

1

Svjk

avjavk (2.5)

where Sijk is the size of the smallest cycle including all three vertices,

with the minimum value being 3, and ∞ the maximum, when there

is no cycle between them. Since the formula implies considering three

different vertices, we will consider that every vertex h with kh < 2 has

θh = 0.

The computation requires a non-trivial task: knowing all the cycles

in the graph. In [102] a proposal for finding all elementary cycles

is presented. It requires time O((|V | + |E|) × (|ce| + 1)), where ce
represents the circuits. As a reference, this work mentions that for

a directed graph, |ce| can grow faster than 2|V |, implying the hard

complexity of the overall measure. Mateti and Deo summarize in [129]

different efforts in the enumeration of circuits, finally listing Johnson’s

backtracking algorithm[102] as the fastest. For this reason we will

consider this measure as “hard” to compute.

The cyclic coefficient is employed in biological [156, 191, 183, 171,

192] and chemical networks [14], as well as in at least one literature

network [39].

• Subgraph Centrality[51, 125, 73]: this value relates a vertex with the

number of subgraphs in which it participates in a particular way.

Smaller subgraphs have a higher impact on the computation. The

formula for vertex i is

SCi =

Eg
∑

j=1

vj(i)
2eλj (2.6)
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Where Eg refers to the number of eigenvalues, λj is the jth eigenvalue

and vj(i) is th ith element for the normalized eigenvector.

• Concentric/Hierarchical Measurements[51, 177]: This group of con-

cepts and related measures are based on a number of common con-

cepts presented in [177]. Before detailing the formulas, we will need to

define some ideas. The notions are presented here in the same order

as in the original sources. Although currently presented as concentric

measurements, it must be noted that the first works where these values

are introduced use the term hierarchical instead of concentric.

Definition 10. Concentric/Hierarchical level: For any given

vertex v, the first concentric/hierarchical level is defined as the set

of immediate neighbors of v, the second concentric level as the imme-

diate neighbors of all nodes in the first concentric level (but without

including again those in the first level), the third considers neighbors

of the second level (that where not previously considered), an so on.

Definition 11. Concentric Ring: For any given vertex v and a

level d, the concentric ring of radius d centered at v Rd(v), is the

set of the nodes in the concentric level d of v. In other words, the

concentric ring d of v is defined by nodes at distance exactly d from v.

– Concentric number of nodes: The size of a ring Rd(v) is known

as the concentric number of nodes and is expressed as nd(v).

– Concentric number of edges: The count of edges connecting ver-

tices inside ring Rd(v) is known as the concentric number of edges

and is expressed as ed(v).

– Concentric node degree: The measure known as concentric node

degree at level d of v, expressed as kd(v) is computed by counting

the edges from nodes in the ring Rd(v) to those in Rd+1(v). In

[51, 177] extensions to this measure to consider weighed edges are

included.

– Concentric clustering coefficient: A notion relating the actual

number of edges in a ring against that of the total possible num-

ber of them. The formula for the concentric clustering coefficient

ccd(v) is:

ccd(v) = 2
ed(v)

nd(v)(nd(v)− 1)
(2.7)
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– Convergence ratio: this value indicates the relation between the

number of edges from one ring to the next with respect to the

nodes within the next ring only.

Cd(v) =
kd(v)

nd+1(v)
(2.8)

– Intra-ring node degree: the intra-ring node degree provides an

average for the degree of nodes in a ring, restricted to the edges

in the ring only.

Ad(v) =
2ed(v)

nd(v)
(2.9)

– Inter-ring node degree: a measure that compares the number of

edges that go out to the next level (d+1), against the number of

nodes in the current ring (d).

Ed(v) =
kd(v)

nd(v)
(2.10)

– Concentric common degree: an average degree restricted to edges

that participate in a given ring.

Hd(v) =
kd−1(v) + kd(v) + 2ed(v)

nd(v)
(2.11)

– r-s clustering coefficient: a variant clustering coefficient formula

considering two specific rings r and s, not necessarily consecutive.

ccr−s(v) = 2
er−s(v)

nr−s(v)(nr−s(v)− 1)
(2.12)

Where nr−s(v) indicates number of vertices in consecutive rings

from Rr(v) to Rs(v) and er−s(v) is the number of edges among

the nodes inside the rings considered.

A summary of these and other related ideas can be found at the au-

thor’s website, at

http://cyvision.ifsc.usp.br/Cyvision/?page=CONCENTRIC.

As regards computational complexity, a non-optimized implementa-

tion would requireO(|E|d) to build the concentric ring Rd(v), although

linear implementations are possible. Then, depending on the measure

to use, an additional factor of |E| or |V | might be required. For ex-

ample, obtaining n2 and e2 implies O(|E|2) and O(|E|3) respectively,
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which means that cc2(v) can be computed in O(|E|3), or less if spe-

cific structures are employed. In [67] it is reported that cc2 gives an

experimental time of |V |2.

Some areas where these ideas have shown interesting results are neuronal[49,

148], collaboration[53] and image[36] networks.

2.4.2 Graph Measures

Vertex/Edge Based

The following properties make use only of the graph components, without

need for additional formulas.

• Cardinality of the Vertex Set[32]: One of the simplest conceivable

measures, it implies computing the value:

N = |V | (2.13)

Although it depends on the specific implementation of the network

structure, most often it can be computed in constant time O(1).

• Cardinality of the Edge Set[32]: Another simple formula, given by:

M = |E| (2.14)

• Edge Density[70]: A formula that relates how tightly connected a

graph is, it can be obtained by:

β(G) =
M
(

N
2

) (2.15)

Degree Based

These are measures that rely heavily on the concept of degree of the vertices

as part of their computation.

• Average Node Degree[85, 70]: All vertices are considered, their degrees

recorded, and averaged. This means that

〈k〉 =
1

N

∑

ij

aij (2.16)

Time complexity for the required algorithm in most common net-

work representations is O(|V |.|E|), although linear implementations

are possible.



20 CHAPTER 2. MEASURING GRAPH COMPLEXITY

• Maximum Degree[51]: The value kmax is computed as

kmax = max
i
{ki} (2.17)

• Variance of the Degree[70]: A measure highly related to the average

degree, it is computed by means of the standard variance formula,

applied to a graph G:

σ2
k(G) =

1

N − 1

∑

v∈V

(kv − 〈k〉)
2 (2.18)

• Degree Distribution[125]: Given a degree k, this measure indicates the

percentage of vertices which have degree k. It is expressed as:

P (k) =
|Vk|

N
(2.19)

with Vk the vertices with degree k.

• Average Degree of the Nearest Neighbors of Vertices with a given

Degree[51]: Given a degree k, this measure can be expressed mathe-

matically as:

knn(k) =
∑

k′

k′P (k′|k) (2.20)

The previous formula requires the definition of conditional degree

probability, which in this situation means the percentage of vertices

with degree k, which have a neighbor with degree k′. In [51], this

sub-formula is presented as:

P (k′|k) =
〈k〉P (k, k′)

kP (k)
(2.21)

which in turns requires mentioning that P (k, k′) is the probability of

an edge connecting a vertex with degree k to another with degree k′.

• Degree Heterogeneity[119]: A measure of the spread between the more

connected and the less connected vertices in the network.

HG =

∑

i

∑

j |ki − kj|P (ki)P (kj)

〈k〉
(2.22)

• Degree Correlation[51]: This is a value mentioned in several papers.

Authors mention in [51] that this measure is not always easy to repro-

duce in artificial networks, when trying to reproduce the characteris-

tics of a studied real networks. For that reason, it is important to take
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this into consideration when building random models. The complete

formula is based on the Pearson correlation coefficient.

CORR =

1
M

∑

j>i kikjaij −
(

1
M

∑

j>i
1
2
(ki + kj)aij

)2

1
M

∑

j>i
1
2
(k2

i + k2
j )aij −

(

1
M

∑

j>i
1
2
(ki + kj)aij

)2 (2.23)

• Mean of Absolute Distances[70]: Another measure that applies a prob-

ability function to a graph:

τk(G) =
1

N

∑

v∈V

|kv − 〈k〉 | (2.24)

• Zagreb Group Indices[70]: These are two related measures, the first

defined for vertices, the second for edges.

Z1(G) =
∑

v∈V

kv (2.25)

and

Z2(G) =
∑

(vi,vj)∈E

kvikvj (2.26)

• Randic Connectivity Index[70]: This simple formula is described by:

R(G) =
∑

(vi,vj)∈E

(

kvikvj
)− 1

2 (2.27)

• Rich-Club Coefficient[213, 51, 42, 134, 131]:

The computation of the Rich-Club Coefficient is dependent upon

the following definition, first presented in [213]:

Definition 12. Rich Club: Given a degree k, the rich-club for k is

the set of vertices with a strictly higher value,

R(k) = {v ∈ V |kv > k} (2.28)

To obtain the coefficient, the following formula is used

φ(k) =
1

|R(k)|(|R(k)| − 1)

∑

i,j∈R(k)

aij (2.29)

This formula implies, once the value k is selected, to iterate over all

vertices v ∈ V in order to obtain those in the “club” and then per-

forming a double sum to consider all connections. The total time is

then O(|V |) +O(|V |2) = O(|V |2).
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An interesting study that can be attempted using this measure is the

analysis of the distribution of different values for the coefficient as k

increases. Also, in [134] a technique for generating random networks

with a given Rich-Club Coefficient is presented, which allows for the

creation of models and their later testing.

Being of “easy” calculation, the Rich-Club Coefficient is employed

in works related to internet [213, 212, 210, 206], biological [42, 208, 33,

123], literary [86], financial [18, 74], social [42, 206] and technological

[42, 207] networks.

Shortest-Path Based

In order to obtain the value for any of the formulas in this section, some or

all of the shortest paths in the graph need to be previously computed.

• Average Shortest Path Length[85, 51]: This measure (represented sim-

ply as d) implies first obtaining an average of the shortest path length

d̄v for each vertex to all other vertices, and then computing the average

of this result for all vertices in the graph. Time complexity is O(|V |3).

In Figure 2.12 an example is shown for two networks with a similar

number of vertices but different average shortest path length, from

those reviewed in the following chapters. They have been colored to

show a darker shade and bigger size for vertices with higher degree.

• Average Geodesic Distance[51, 70]: An alternative computation to the

Average Shortest Path Length, the formula proposed in this case is:

ℓ =
1

N(N − 1)

∑

vi,vj∈V,vi 6=vj

d(vi, vj) (2.30)

• Wiener Index[70]: A Classical measure emerging from the chemical

sciences, it is defined by the formula:

W (G) =
1

2

∑

vi∈V

∑

vj∈V

d(vi, vj) (2.31)

This measure is one of many formulas known as topological indexes [194].

• Global Efficiency[51]: A measure proposed as a means to avoid the

complications that arise when the Average Geodesic Distance (p. 22)

is computed for disconnected graphs. Although this concept is con-

sidered for the Average Connected Distance (p. 30) as well, it still
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(a) A network with low Average Shortest
Path Length, presented in Section 4.2.11

(b) A network with high Average Shortest
Path Length, presented in Section 4.2.1

Figure 2.12: Comparison of networks with different values of Average Shortest
Path Length. Built using Force Atlas 2 algorithm [100] with Gephi [15]. Nodes
represent network vertices, those with higher degree are larger and present a
darker shade. Zoom is the closest possible without leaving any node outside.
Edges not shown for visualizations where they would block the node distribution.

could lead to oversimplifications when the disconnections are simply

ignored. The formula for the Global Efficiency attempts to consider

all connections, by means of the following equation:

F (G) =
1

N(N − 1)

∑

vi,vj∈V,vi 6=vj

1

d(vi, vj)
(2.32)

In order to obtain a comparable measure, the harmonic mean of the

geodesic distances is used:

EG(G) =
1

F (G)
(2.33)

The computation of this measure implies time complexity O(|V |2) due

to its iteration over all vertex distances.

This formula is referenced in networks of various types, such as brain

[158, 2, 155, 88], social [120] and climate [35] networks.

• Vulnerability[51]: The vulnerability for vertex v, noted as Uv indicates

how the loss of said element lowers the global efficiency previously

explained. If vertex v is removed, we refer to the new Global Efficiency
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of the network G without it and its associated edges as Fv. Then,

Uv =
F − Fv

F
(2.34)

The vulnerability of G is finally expressed as

U = max
v∈V
{Uv} (2.35)

A simple implementation of the formula, although “easy” to develop,

has a time complexity of O(|V |3). This could then be improved by

storing partial information while iterating the distances for the global

efficiency, and consider them at the same time for the adjusted values

used in the computation of the vulnerability measure.

The literature currently referencing this measure comprises mainly

urban [48, 170], language [7], and traffic [198] networks.

• Complexity Index B[70]: An analysis of the relation between a vertex

degree and the distance of its shortest paths. Considering

µ(vi) =
∑

vj∈V

d(vi, vj) (2.36)

the index is

CIB(G) =
∑

vi∈V

kvi
µ(vi)

(2.37)

• Combinatorial Complexity[70]: A measure that combines many of the

basic calculations presented here, it sums up the complexity of a graph

by analyzing its edges, vertices, and shortest paths. The formula for

its computation is:

CC(G) =
( |V | × |E|

|V |+ |E|

)

∑

i<j

σi,j (2.38)

where σi,j represents the number of shortest paths between vi and vj.

• Characteristic Path Length[118]: Abbreviated as CPL, it is mentioned

in [118] as “one of the most important statistics used to measure the

shortest distance between each vertex in a graph”. First, a set is built

containing the Average Vertex Shortest Path Length (p. 13) d̄v for all

vertices d̄v1 , . . . , d̄vn . CPL is the median of such a set.
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Betweenness Based

Some measures, requiring the computation of the betweenness value previ-

ously presented, are mentioned next.

• Average Node Betweenness/Betweenness Centrality[85, 51, 125, 70,

24]: The value B(G) equals the average of Bv (p. 13) over all vertices

in G.

In Figure 2.13 an example is shown for two networks from those re-

viewed in the following chapters, with almost the same number of

vertices and edges. One of them shows a low value for Betweenness

Centrality, while the other presents a high value. The color shade and

size of the vertices has been adjusted to present darker and bigger dots

as the value increases (relative to each network).

(a) A network with low Betweenness Cen-
trality, presented in Section 4.2.2

(b) A network with high Betweenness Cen-
trality, presented in Section 4.2.7

Figure 2.13: Comparison of networks with different values of Betweenness Cen-
trality. Node size and darker shade increases according to the observed value for
the measure.

• Central Point Dominance[51]: A measure based on that of betweenness

centrality (p. 25), it is expressed as

CPD =
1

N − 1

∑

v

(Bmax − Bv) (2.39)

Bmax refers to maxv∈V {Bv}.

• Flow Betweenness Centrality[125, 79]: In [79], it is stated that “there

is no reason to believe that people restrict their communication to
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the shortest paths in their networks”. This leads the mentioned work

to look for an alternative to betweenness as a measure of centrality,

trying to improve on formulas such as Central Point Dominance(p.

25) (referred to in [79] as CB). As a result, the formula proposed

implies: (1) computing the centrality C ′
F for all vertices, considering

the flow that each provides when participating in a path. (2) With

C ′
F (v∗) defined as the maximum proportion among all possible values

in the graph, obtain the centrality measure with:

CF =

∑

vi∈V
[C ′

F (v∗)− C ′
F (vi)]

N − 1
(2.40)

• Attentive Betweenness Centrality[3]: This measure attempts to con-

sider the benefits and downfalls of average betweenness centrality(p.

25), flow betweenness centrality(p. 25) and Random Walk Central-

ity. Already flow betweenness centrality improves upon the average

betweenness by considering every edge whether it is included in a

shortest path or not, but the maximum flow is always supposed to

be available. The implication of this is that a direct path and one

with many ramifications along the way will have the same chance of

being considered if their flow capacity is the same, while a Random

Walk Centrality would give a higher value to former. However, in [3]

it is mentioned that Random Walk lacks a desirable quality: forward

propagation; that is, the measure allows for a path that goes back and

forth, since nothing prevents the randomness from choosing an edge

already considered. With all the previous ideas in mind, and also at-

tempting to obtain a computation that is optimal in time and allows

working with very large graphs, the Attentive Betweenness Centrality

was developed. The algorithm implies a sweep of the graph starting

from each node (the forward step), and then a reverse analysis to col-

lect all the information (backward step). An interesting consequence

is that the measure is then not only fast to compute, but easy to

multi-thread.

The forward step is an algorithm that performs a BFS starting from

each vertex. At time t, the node v being processed requires the knowl-

edge of whether each neighbor has sent v its “information”, has not

sent the information yet, or has no information at all to send. The

first group is referred to as Spar (the parents), the second is Ssib (the

siblings) and the last one is Schild (the children). With xt being the

total information received from the parents, v will forward a fraction
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of it (αxt/|Ssib|+ |Schild|) to its siblings first (and at the same time re-

ceive information from them, referred to as xt+1) and then in a second

step forward a fraction of the total the information to each children

(α(xt+xt+1)/|Ssib|+ |Schild|). The parameter α is used to measure the

relevance of path length (with α = 0 only shortest paths are consid-

ered).

The backward step is again computed for each node. The BFS tree

implied by the forward step is traversed through in reverse. Each node

in the bottom layer is given a credit c of 0. Then, for each previous

layer each vertex v is considered:

cv =
∑

u∈U

(1 + cu)
xvu

xu

(2.41)

where U is the set of all vertices that interacted with v, xu is the total

flow received by u and xvu is the amount of flow that v provided to

u. For each layer all vertices are processed simultaneously. After all

nodes have their BFS tree considered, the total score for each node is

averaged.

As can be seen from the explanation provided, the time required is

O(|E|) for each node, for a total running time of O(|V |.|E|).

Despite its interesting qualities and low complexity, this measure still

has, to the writing of this work, not been used in any application

outside the original papers. This is not doubt owing to its recent

apparition.

• Joint Betweenness Centrality[70, 68]: Given that betweenness central-

ity (p. 13) considers the shortest paths involving a single node, a

possible generalization of this concept was presented in [68]. The new

formula expands the single vertex to a set, resulting in:

Cjb(R) =
∑

vi,vj∈V R

σvi,vj(R)

σvi,vj

(2.42)

As previously mentioned, σvi,vj stands for the number of shortest paths

between vi and vj, while σvi,vj(R) indicates that the paths are re-

stricted to those including all of the elements in R. In the most com-

mon case, |R| = 2, where the computation is presented as:

Cjb(vm, vn) =
∑

vi,vj∈V,vi 6=vj

σvi,vj(vm, vn)

σvi,vj

(2.43)
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An analysis of the complexity for the case where |R| = 2 implies con-

sidering the time to compute all shortest paths, and then for each pair

of nodes, finding the shortest paths that include them. Considering the

scenario where a Floyd-Warshall algorithm is used, finding all shortest

paths requires O(|V |3). Although more optimal configurations could

be devised, the basic complexity of the following step implies a four

level deep iteration (vm, vn, vi, vj) and so requires time O(|V |4). With

this approach, the final complexity would then be O(|V |4).

This specific measure has not been used up to now in areas other than

those related to biology networks, where it was first defined.

Eccentricity Based

The next two calculations are based on the concept of eccentricity (p.15)

defined for vertices.

• Diameter(Maximum Distance between 2 Nodes)[201, 125, 70, 94]: Us-

ing the eccentricity vertex measure (p. 15), it is possible to obtain this

graph complexity measure, with the formula:

ρ(G) = max
v∈V
{ǫ(v)} (2.44)

Figure 2.14 allows a visualization of two networks with similar number

of vertices and edges. Despite their similar size, one presents a diame-

ter that is more than four times larger than the other. The eccentricity

of each vertex determines its size and darker shade in the figure.

• Radius[70, 94]: In contrast with the computation of the Diameter, the

Radius is the minimum eccentricity in the graph:

r(G) = min
v∈V
{ǫ(v)} (2.45)

Other Averaging Measures

Apart from those already presented, some formulas are obtained through

the average for all vertices of a given local measure.

• Average Euclidean Centrality[26]: After computing the euclidean cen-

trality (p. 15), the average for all nodes can provide a global measure

that is useful in comparing networks where the coordinates distribu-

tion plays an important part. Iterating over all vertices to compare

with ever other one implies a time complexity on the order of O(N2).
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(a) A network with low Diameter, pre-
sented in Section 4.2.4

(b) A network with high Diameter, pre-
sented in Section 4.2.7

Figure 2.14: Comparison of networks with different values of Diameter

• (Graph) Clustering Coefficient[118]: This measure has a strong re-

semblance to the CPL. Its original definition states it as “the extent

to which vertices adjacent to any vertex are adjacent to each other”.

The clustering coefficient γ of a graph G is the average of the vertex

measure γv previously presented (p. 15), for all vertices v ∈ V .

As an example of the effect of this measure on the structure of a

network, we present in Figure 2.15 the visualization for two networks

reviewed in the following chapters. While they share the same number

of vertices, one of them has a larger Average Clustering Coefficient.

The vertex clustering coefficient is used in the visualization to deter-

mine the relative size and darker shade of each vertex.

• Edge Clustering Coefficient[51, 177]: Similar to betweenness centrality,

this measure is computed for each edge (i, j) in the graph. Interpreting

Zij as the number of “triangles” present in the graph which include

(i, j), the idea is to obtain the value Cec by averaging, over all vertices

v ∈ V :

Cec,ij =
Zij + 1

min(ki − 1, kj − 1)
(2.46)

In [51], time complexity is mentioned as O( |E|4

|V |2
).

• Cyclic Coefficient[107, 51]: This measure attempts to analyze the cy-

cles related to a given vertex v, in order to understand “how cyclic”
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(a) A network with low Average Clustering
Coefficient, presented in Section 4.2.11

(b) A network with high Average Clustering
Coefficient, presented in Section 4.2.9

Figure 2.15: Comparison of networks with different values of Average Clustering
Coefficient

the network is. The averaged value for the graph is derived from the

computation of the Local Cyclic Coefficient θv (p. 16) for all vertices:

Θ =
1

|V |

∑

v∈V

θv (2.47)

• Concentric Measurements[51, 177]: by considering the different val-

ues proposed in the vertex section regarding concentric concepts (p.

17), a number of averaging measures could be obtained, representing

the structure of a graph as regards its concentric configuration. Some

examples that can be mentioned are level with maximum average con-

centric node degree, average convergence ratio considering all vertices

and all levels.

• Average Connected Distance[28]: Because the existence of discon-

nected graphs implies the previous Diameter measure (p. 28) results in

an infinite value, in [28] a different proposal is presented. With P de-

fined as the set of pairs (u, v) such that there is a path between them,

the Average Connected Distance ACD is computed as the expected

length of the shortest path considering all pairs in P .

Additional Measures

Although an understanding of graph complexity can be attempted by means

of simple calculations, the results are not always varied enough to allow for
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a differentiation between two otherwise equivalent networks. Some works

have appeared that require more complex formulas than those reviewed so

far.

• Offdiagonal Complexity (OdC)[104, 40]: In [104], this measure is de-

scribed as: “The diversity of the node-node link correlation matrix”.

It implies the computation of a structure that, basically, counts the

number of vertices with degree m that have neighbors with degree

n. The size of the matrix is defined by the maximum degree in the

network (kmax). Each element cmn is defined as:

cmn =
∑

i∈V

∑

j∈V

aijδm,kiδn,kjH(ki − kj) (2.48)

H(x) = 1 when x ≤ 0, 0 otherwise. δ refers to the Kronecker symbol

(i.e. δa,b = 1 if a=b, else δa,b = 0). As previously mentioned, each

value cmn represents the number of vertices with degree m directly

connected to a vertex of degree n.

This structure can then be employed to compute a normalized measure

by following these steps:

1. ãk =
∑kmax−k

i=0 ci,k+i (summation over offdiagonals)

2. A =
∑kmax

i=0 ãk (total summation)

3. ak =
ãk
A

(normalization)

4.

OdC = −

(

kmax
∑

n=0

ak log ak

)

(2.49)

This measure has been used (and recommended as giving excellent

results) in papers and books that range from communication [174,

139], social [71] and language [38, 46] to biology [99, 136, 137], physics

[72, 168] and chemistry [56, 200]. A disadvantage of this measure (as

mentioned in [38]) is that the formula does not consider information

regarding the strength of the connections (edge weight), limiting the

use of the algorithm. Additionally, the procedure as presented in the

original paper does not consider directed edges.

As regards its complexity, it is mentioned in [104] that the compu-

tation of this measure is mostly determined by the construction of



32 CHAPTER 2. MEASURING GRAPH COMPLEXITY

the correlation matrix, a step that can be completed in O(|E|), by

iterating each edge only once.

In Figure 2.16 we have selected two networks from those researched

for the experiments presented in the following chapters. Both share

a similar number of vertices and edges, but differ greatly in the final

value obtained when computing their Offdiagonal Complexity.

(a) A network with low Offdiagonal Com-
plexity, presented in Section 4.2.4

(b) A network with high Offdiagonal Com-
plexity, presented in Section 4.2.7

Figure 2.16: Comparison of networks with different values of Offdiagonal Com-
plexity

• Eigenvector Centrality[85, 125]: This measure requires analyzing the

eigenvectors of the adjacency matrix A. The centrality of each ver-

tex is dependent on that of its neighbors, the computation of a nor-

malized eigenvector provides the centrality of each vertex. Since the

information to consider requires iterating over all vertices and consid-

ering information for all edges, the implementation can be reduced to

O(|V |+ |E|).

We show in Figure 2.17 two networks side by side, from those reviewed

in the following chapters. Both share a similar number of vertices and

edges, but differ greatly in the average Eigenvector Centrality. The

centrality computed for each vertex is used to determine its size and

give it a darker shade.

• PageRank[27, 154]: The page rank algorithm implies an iterative pro-

cessing of the edges in a network to find the probability that a random
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(a) A network with low Eigenvector Cen-
trality, presented in Section 4.2.11

(b) A network with high Eigenvector Cen-
trality, presented in Section 4.2.4

Figure 2.17: Comparison of networks with different values of Eigenvector Cen-
trality

walk through the graph reaches a given vertex. This means that a

value PR(v) is given to each vertex in the network.

To compute it, a time step is initialized at t = 0, and PR(v, 0) = 1
|V |

.

Then, each step implies an update:

PR(v, t+ 1) =
1− df

|V |
+ df

∑

w∈Γv

PR(w, t)

kout
w

(2.50)

Where df is a damping factor that represents the loss of interest by

the random walker in continuing the process. It is typically configured

at 0.85.

The iteration proceeds until the global improvement of the values is

below a given threshold.

Despite depending on the specifics of each implementation, the algo-

rithm must account in the worst case for each vertex and edge during

each iteration, which implies a complexity of O(|E|+ |V |). This holds

as long as the number of iterations is bounded.

Figure 2.18 displays two networks, used in the experiments run in the

next chapters, which share a similar number of vertices, but where

the network with more edges presents a much higher Pagerank value.

Vertices with a darker shade and larger size in the figure indicate those

that contribute the most to the final value.
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(a) A network with low PageRank, pre-
sented in Section 4.2.3

(b) A network with high PageRank, pre-
sented in Section 4.2.4

Figure 2.18: Comparison of networks with different values of PageRank

• Chromatic Number[138]: This well known concept implies assigning

a “color” to each vertex, so that no two adjacent vertices share the

same color. If n colors are used in total, the mapping is known as an

n-coloring. The minimum possible n that still avoids coloring adjacent

vertices with the same color is referred to as χ, or Chromatic Number.

Obtaining this optimum value requires solving an NP-hard problem.

• Chromatic Information Content[138]: Once the minimum number of

colors to cover a graph is known via the computation of the chromatic

number (p. 34), a further optimization can be achieved by trying to

obtain a coloring that also distributes all χ colors amongst the vertices

in a way that minimizes the entropy of such distribution. In order

to compute such a value, or chromatic information content, the

following formula is defined:

Ic(G) = min
V̂

{

−

χ
∑

i=1

ni(V̂ )

n
log

ni(V̂ )

n

}

(2.51)

Where V̂ is some distribution of the vertices in color classes to form

a minimum coloring, expressed as V̂ = {Vi}
χ
i=1. Each Vi contains all

vertices with color i in the distribution being analyzed, and ni(V̂ ) =

|Vi|.

It is clear from the definition above that computing the chromatic in-

formation content optimally requires obtaining all possible coloring
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with the minimum number of colors, further adding to the complex-

ity of the calculations required. The total computation time requires

O(2nn). In order to be comparable to other faster methods presented

in this work, the computation of this measure should be attempted

by approximation, using sample coloring distribution of the estimated

minimum number of required colors. Also, to provide a means of ex-

pressing the complexity of a graph by this value, comparisons between

graphs should be made not just between their chromatic information

contents, but by considering the pair (Chromatic Number, Chromatic

Information Content).

The use of this measure in the literature encompasses operation design[211],

chemistry[64, 185] and software design[117].

• Number of Spanning Trees[104]: A spanning tree T of a graph G(V,E)

is a subgraph of G that defines a tree (a connected graph with no

cycles) encompassing all vertices v ∈ V , connected with a subset of

the original edge set (ET ⊆ E). This measure implies finding all such

trees, and returning their number.

• Linear Complexity[104, 143]: This number, in contrast with others

analyzed in this work, does not imply a formula tied to a specific

algorithm, but is instead a mathematical property defined in terms of

the adjacency matrix A of a finite, simple, and undirected graph with

n vertices. Considering the product AX = F , where X is a vector

x1, . . . , xn, a set of linear forms F is obtained. The idea is to reduce

as much as possible the number of linear forms in the result, without

losing information. If F = f1, . . . , fn, the linear complexity of the set,

L(F ), is the length r of the smallest sequence of linear computations

that can produce F .

In [143, 202] many properties are presented, which help compute the

linear complexity of a number of graphs, giving also bounds for more

general cases. The complexity to obtain this measure can be reduced

to O(|E| log( |V |2

|E|
)/ log |V |).

Despite its lack of a defining algorithm, some papers in chemistry [179]

and distributed systems [140] have applied the notions of this value to

help with bound analysis.

• Cyclomatic Number[104]: Also refered to as the circuit rank, this mea-

sure is the result of:

CN(G) = |E| − |V |+ CCG (2.52)
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Here, CCG is the number of connected components of a graph. For a

connected graph, CCG = 1.

• Balaban J Index[70]: This index measure requires the previous calcu-

lation of the Cyclomatic Number. Also, we need to define the Distance

or Row Sum of vi ∈ V as DSi. Finally the index is:

J(G) =
M

CN(G) + 1

∑

(vi,vj)∈E

[DSiDSj]
− 1

2 (2.53)

• Lempel-Ziv Complexity[32, 31]: Although the Lempel-Ziv complexity

is originally a complexity measure for strings[113] which attempts to

provide a computable value that is related to the Kolmogorov-Chaitin

complexity, in [31] a proposal is made to use it for graphs as well. The

conversion process is quite straighforward: form a string by concate-

nating the rows of the adjacency matrix A of a graph G, and apply

the already existing algorithms. If using, for example, the standard

approach suggested in [106], the value can be obtained in O(n). This

result is in principle valid for unweighted directed graphs, since the

“vocabulary” of the string is restricted to 0 and 1, but in the same

papers some variants are suggested, and in [31] it is stated that al-

though the computational time may be higher, the addition of more

complex elements in the adjacency matrix does not impede the use

of the general idea, since they only represent more symbols in the

vocabulary.

Given the simplicity of the idea behind this measure, and its ease of

computation, many interesting approaches may be derived, such as

analyzing the reduction in complexity after applying transformations

to a graph (e.g. reduce a full social graph to its proposed communities).

Other interesting properties mentioned in [31] are: “complementarity

(the complexity of a graph is the complexity of its complement) and

sample monotonicity (the complexity of a graph is at least as large as

the complexity of its most complex induced subgraph)”.

Although the original string measure is used in hundreds of derived

works, our interest is mainly with the proposal of interpreting the

Lempel-Ziv complexity as a measure for graphs. At least as a direct

reference, we could not find uses of this idea in specific domains as is

the case for other studied measures.

Apart from the already presented ideas, a lead for future work is men-

tioned in [31] related to the study of labeled graphs. It is theoretically
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possible to differentiate the inherent structural complexity of a graph

independently of labels, and that added by the specific labeling. In

order to separate this values, it is stated that ideally all possible la-

bellings should be analyzed, but the values can be estimated by means

of sampling the most relevant labellings, a task well suited for heuristic

algorithms.

• Assortativity[51]: When analyzing graphs with “classes” of vertices

(e.g. individuals with a given education or economic status, cells from

different organs, etc.), an interesting study is that of the comparison

of interaction within the class and between different classes. The as-

sortativity of a network attempts to explain the level of intra-class

interaction, meaning the tendency of a vertex of a given class to have

connection with other vertices of the same class.

In order to define a formula, some preliminary equations must be de-

fined: If C is a matrix of class-class interaction where cs,t represents

the number of edges between vertices of class s to those of class t, and

||C|| is the sum of all its elements, we will refer to Ĉ as the normalized

version of the matrix.

Ĉ =
C

||C||
(2.54)

The probability of a vertex of class t being connected to one of class

s is expressed as P type(t|s). This means that P type(s|s) represents the

probability of intra-class connections.

P type(t|s) =
ĉst

∑

u ĉsu
(2.55)

Considering NT as the total number of classes in the network, Q̃ repre-

sents an assortativity coefficient that captures the desired properties.

Q̃ =

∑

s P
(type)(s|s)− 1

NT − 1
(2.56)

An alternative formulation, which considers giving different weights to

the classes depending on the number of vertices for each of them, can

be found in [145].

As regards computation complexity, it can be argued that the matrix

C can be built in O(|E|), and the sums related to Q̃ require at most

O(|V |2), for a total time of O(|E|+ |V |2).

The concept of assortativity is referred to in a large number of stud-

ies, mainly in the areas of ecological [121, 176, 108], social [5, 133]



38 CHAPTER 2. MEASURING GRAPH COMPLEXITY

and epidemic [63, 135] networks, but also in collaboration [37] and

communication [142] networks.

• Modularity[51, 70, 147]: A critical method when identifying subgraph

communities, this measure is presented here as mentioned in [51].

First, c communities must be proposed by grouping the vertices in

V . Then we define the matrix M of size c × c. Elements mij (with

i 6= j) indicate: for the diagonals the percentage of edges in E that

belong inside the community, for the rest the percentage of edges in E

that connect both communities. The Modularity is then obtained by

the following formula:

Q =
∑

i

[mii − (
∑

j

mij)
2] (2.57)

This means that Q = TrM − ||M2||.

• Bipartivity[51]: A computation of a problem with NP-complete com-

plexity, it is expressed as the minimum value of

P = 1−

∑

ij aijδϑ(i),ϑ(j)
∑

ij aij
(2.58)

The fact that there are different values is due to the fact that ϑ is a

mapping of vertices to “types”, so all possible divisions of the graph

are to be considered. δ refers once again to the Kronecker symbol.

• Spectral Density[51, 75, 90]: This formula requires the use of the Dirac

delta function δ(x) [62].

ρ(λ) =
1

N

∑

t

δ(λ− λt) (2.59)

The values λt represent the different eigenvalues of the adjacency ma-

trix, and the parameter λ is the eigenvalue which density is to be

computed.

• Algebraic Connectivity[51]: This value is obtained by the second eigen-

value of the diagonalized Laplacian Matrix L = D − A, where D is a

diagonal matrix with dii =
∑

j aij and dij = 0 (∀i 6= j). The technique

that gives rise to this measurement is that of spectral bisection.

• Edge Reciprocity[51]: A measure specifically aimed at studying di-

rected graphs, it is related to the percentage of edges in E that have
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its counterpart also in E, i.e. (vi, vj) ∈ E ↔ (vj, vi) ∈ E. The formula

proposed is

ER =
̺− a

1− a
(2.60)

The required values are a (the mean value of elements in A) and ̺ =∑
ij aijaji

|E|
. In [51] it is stated that the use of wij in weighed graphs

implies an interesting use of the formula as well.

Definition 13. Remaining Degree Distribution: Instead of count-

ing the number of connections to/from a vertex, the Remaining Degree

Distribution excludes one edge. It is computed by:

q(k) =
(k + 1)P (k + 1)

〈k〉
(2.61)

• Network assortativeness[182]: The normalized correlation function sug-

gested in [182] as a measure of assortativeness for a given graph is

NA =
1

σ2
q





kmax
∑

j,k=1

jkqc(j, k)−

(

kmax
∑

j=1

jq(j)

)2


 (2.62)

The resulting values using the mentioned computation presents the

properties relevant to the analysis conducted in the mentioned paper.

• Controllability[119]: A measure of the number of vertices in the net-

work that connect to the rest in such a way as to allow to “control”

it. In [119] an approximation is presented to compute the value:

nD ≈ exp

[

−
1

2

(

1−
1

de− 1

)

〈k〉

]

(2.63)

Where de refers to the degree exponent.

• Critical/Redundant/Ordinary Links Distribution[119]: Three measures

that require first the complete analysis proposed in [119]. A critical

edge is one which is needed to maintain the controllability of the net-

work. Redundant edges have no impact whatsoever in the control

outcome. Finally, an ordinary edge does not have a direct impact on

the final value, but requires a change in the “driver nodes” that allow

for the computed controllability. This means that the percentage of

each of these classified edges can provide a structural measure of the

graph under study.
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2.4.3 Entropy Measures

A considerable number of complexity measures are based on the concept

of Entropy. Because of the relevance which this particular approach to

complexity has played in recent years, these measures will be presented in

a section of their own.

They all borrow from Information Theory the concept of Entropy, as

defined by Shannon [173]. For X, a variable (random and discrete) taking

values xi belonging to an alphabet A, and mass probability defined by

p(xi) = Pr(X = xi), the entropy of X is computed with:

H(X) = −
∑

xi∈A

p(xi) log p(xi) (2.64)

Many interesting properties of this formula and derived values can be used

in our analysis of graph complexity, and different means of achieving this

will be reviewed in the measures listed.

• Codelength[167]: This measure aims at explaining the most convenient

way to label the vertices in the network, so as to compute a minimum

entropy required to describe them.

All vertices are assigned a family, and then given a label that is not

reused in the same family, but might be reused in another one. Also,

each family is given a label, which is not reused for another family.

This ensures that each vertex can be described by concatenating its

label with that of its family, and ensures the minimum number of

labels are used throughout the network.

Reducing the number of bits required to store the label of a vertex

implies in turn that fewer information will be required to describe a

path in the network. The codelength L represents the lower bound on

the average number of bits per step that it takes to describe an infinite

random walk on a network partitioned according to a given partition

of the vertices.

To compute it, the following equation is used to obtain the codelength

for a given partition M (each family/class of nodes is referred to as a

module, and m is the total number of modules):

L(M) = qoutH(Q) +
m
∑

i=1

piwH(Pi) (2.65)
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To complete the explanation of the previous equation, some additional

references are in order:

qout =
m
∑

i=1

qi,out (2.66)

is the probability that a random walker in the network moves from a

vertex belonging to a certain module to one that belongs to another.

The probability qi,out of exiting a particular module i is:

qi,out = τ
n− ni

n− 1

∑

α∈i

pα + (1− τ)
∑

α∈i

∑

β /∈i

pαwαβ (2.67)

Where, (1) τ is the probability of a random walker to “teleport” to

another vertex, and is suggested to be defined as 0.15. (2) α, β are

vertices in the module. (3) wα,β is the strength of the connection

between these vertices. (4) Finally, pα is the ergodic visit frequency,

that is, the chance that a random walker chooses to visit vertex α.

The rest of the equations previously presented are completed with the

following components:

H(Q) =
m
∑

i=1

qi,out
∑m

j=1 qj,out
log

(

qi,out
∑m

j=1 qj,out

)

(2.68)

piw = qi,out +
∑

α∈i

pα (2.69)

H(Pi) =
qi,out

qi,out +
∑

β∈i pβ
log

(

qi,out
qi,out +

∑

β∈i pβ

)

+
∑

α∈i

pα
qi,out +

∑

β∈i pβ
log

(

pα
qi,out +

∑

β∈i pβ

) (2.70)

Although a time complexity is not provided, the implementation de-

tails provided in the supplementary material of the original paper men-

tion the use of a greedy algorithm followed by a simulating annealing

process, which most like requires polynomial time to run.

Further improvements have been made by the original authors, result-

ing in the possibility of creating a partition of multiple levels. The

source code, related papers and additional information can be found

at http://www.mapequation.org/code.html.

http://www.mapequation.org/code.html
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• Structural Information Content[57, 59, 58]: More a definition for a

familiy of formulas than a single equation, the Structural Informa-

tion Content is defined as the entropy of an information functional.

The underlying concept mentioned in [57] is that any function that

associates a probabilistic distribution to each vertex v in a graph G

can then be used to compute the entropy of the network.

IfV (G) = −

|V |
∑

i=1

pV (vi) log (p
V (vi)) (2.71)

Where the computation of pV (vertex probability) can be easily ex-

pressed as:

pV (vi) =
fV (vi)

∑

vj∈V
fV (vj)

(2.72)

Then, in [58] a specific function fV is presented (along with some

examples and results).

fV (vi) = αc1|S1(vi,G)|+c2|S2(vi,G)|+...+cρ(G)|Sρ(G)(vi,G)| (2.73)

In order to understand the previous equation three concepts must be

clarified:

1. α is a strictly positive value. It represents an equivalence relation

that partitions the vertices in the graph into subsets. This implies

that the formula as presented can be then interpreted in a number

of ways depending on the clustering provided by this parameter.

In [58] it is suggested that α be obtained by considering class

labels from the graph. It is obviously possible to take advantage

of this variable and use the Structural Information Content

with a metaheuristic to choose the values for α that give similar

entropies to graphs that are expected to be equivalent.

2. The set Sj(vi, G) is referred to as j-sphere of vertex vi regarding

graph G. Its definition is equivalent to the previously presented

concept of concentric ring (p. 17).

3. The values cj are another set of tuning parameters for the func-

tion. They allow for a prioritization of the structure in the graph.

Although the only restriction is that cj > 0, the author suggests

in [58] that they are defined in decreasing order as well (e.g. With

ρ(G = 4), choose c1 = 4, c2 = 3, c3 = 2, c4 = 1).
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The main strength of this measure is clearly the potential for use with

different heuristics and machine learning algorithms, made possible by

its underlying simplicity. As stated in [58], the total time complexity

is O(N3).

The known uses for the formula are mainly in biological and chemical

networks [70, 60].

An interesting approach to be taken with the idea of this measure

is that because of its multiple tuning parameters a multi-step meta-

heuristic could be devised. For instance, the optimum values for α

could be determined, and then the same could be done with cj. Given

that the computation of the j-spheres/concentric rings is one of the

most expensive parts of the formula, and they would not change from

one attempt to the next, they can be previously computed in order

to reduce as much as possible the total running time of this proposed

optimization strategy.

• Entropy of the Degree Distribution[51]: This very simple entropy mea-

sure considers the information that the degree of a vertex provides over

the overall degree distribution of the network. Needless to say, it over-

looks many of the structural properties of the network and in most

cases is not to be considered a strong measure of graph complexity.

Hdd = −
∑

k

P (k) logP (k) (2.74)

• Entropy of the Remaining Degree[51, 182]: A subtle change over the

previous calculation, this measure considers the remaining degree dis-

tribution q(k), already defined. The entropy formula is:

H∗ = −
∑

k

q(k) log q(k) (2.75)

• (Automorphism Based) Information Content[138, 59]: This measure

requires knowing Aut(G), that is, the automorphism group of the

graph under study. It is defined as “the set of all adjacency preserving

bijections of V ”. If |Aut(G)| = k, then {Vi|1 ≤ i ≤ k} is defined as

the collection of orbits for said group. If |V | = n and |Vi| = ni the

entropy measure is computed by:

Ia(G) = −
k
∑

i=1

ni

n
log

ni

n
(2.76)
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The formula for S(vi, vj) attempts to give an estimate of the amount

of information needed to identify one of the shortest paths from vi to

vj. It is computed with:

S(vi, vj) = − log2
∑

{p(vi,vj)}

P[p(vi, vj)] (2.77)

Where {p(vi, vj)} represents the set of all shortest paths between vi and

vj. The probability function used, P[p(vi, vj)], expresses the chance of

traveling that particular path in a random walk through the graph. It

is obtained with:

P[p(vi, vj)] =
1

ki

∏

j∈p(vi,vj)

1

kj − 1
(2.78)

The set {j ∈ p(vi, vj)} is to be interpreted as all vertices in the path,

excluding vi and vj.

Definition 14. Total System Throughflow: the sum of all di-

rected weights between all vertices in the network; TST =
∑

i

∑

j wij.

In [201] Tij is referred to as the normalized flux because the value is

divided by the TST.

• Entropy of effluxes[201]: This and the next related measures make use

of the TST just defined.

H(A) = −
∑

i

(

∑

j

Tij

)

log
∑

j

Tij (2.79)

is the entropy of effluxes or uncertainty of sender.

• Entropy of influxes[201]: Analogously to the previous value

H(B) = −
∑

j

(

∑

i

Tij

)

log
∑

i

Tij (2.80)

is the entropy of influxes or uncertainty of receiver.

• Joint Entropy[201, 182]: A composition of the both previous compu-

tations, analyzing the uncertainty of both sender and receiver;

H(A,B) = −
∑

i

∑

j

Tij log Tij (2.81)



2.4. COMPLEXITY MEASURES 45

• Redundancy[201]: This measure arises as a mixture of the conditional

entropies in the network. By adding the formula presented in [201]

for the uncertainty of sender if the receiver is known, with that of the

uncertainty of receiver is the sender is known, the redundancy R(A,B)

of the graph is described by:

R(A,B) = −
∑

i

∑

j

Tij log
T 2
ij

∑

k Tik

∑

l Tlj

(2.82)

• Mutual Information[201]: This combined formula expresses the infor-

mation about the sender if the receiver is known, but also the infor-

mation about the receiver if the sender is known.

I(A,B) = H(A,B)−R(A,B) (2.83)

• Medium Articulation[201]: This measure relies heavily on many of the

formulas previously mentioned.

MA = I(A,B)R(A,B) (2.84)

In [201], the following equivalent definitions are also presented:

MA = I(A,B)(H(A,B)− I(A,B)) (2.85)

and

MA = R(A,B)(H(A,B)−R(A,B)) (2.86)

• Target and Road Entropies[51]: These two related measures are pre-

sented here in one singular entry. They are similar in their approach

to the Entropy of effluxes and influxes previously mentioned. The dif-

ference is that they do not necessarily specify flow transmission based

on edge weight, but rather a nondescript “message flow”.

First, the vertex target and road entropies are defined:

Ti = −
∑

i,j∈V

ajicij log2 cij (2.87)

Ri = −
∑

i,j∈V

ajibij log2 bij (2.88)

Where aij refers to an element in the adjacency matrix A, cij represents

the fraction of “messages” targeted to i that go through j and bij is
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the fraction that goes through i originating from j. The graph entropy

values imply averaging the previous formulas:

T =
1

|V |
=
∑

i

Ti (2.89)

R =
1

|V |
=
∑

i

Ri (2.90)

• Information transfer function[182]: A form of mutual information ob-

tained by the conditional probabilities defined in [182], it is summa-

rized as:

I(q) =
kmax
∑

k=1

kmax
∑

k′=1

qc(k, k
′) log

qc(k, k
′)

q(k)q(k′)
(2.91)

Definition 15. Universal Hierarchical Graph (UHG): a reor-

ganization of a given network in a tree-like structure, with the excep-

tion that there can be cycles. Apart from the original vertex and edge

set, a level set L is required to organize the vertices, and a multi-level

function L indicates the assignment from vertex to level. Also, the

authors in [69] emphasize that a difference between a UHG and a gen-

eralized tree is that the former “is allowed to have an arbitrary number

of vertices on l = 0”. While there is no proposal for a general trans-

formation from an arbitrary graph to an UHG, the examples presented

in the mentioned paper hint that since the levels are expected to be a

succession of increasing natural numbers, most domains allow for a

simple interpretation of the network information that gives an idea of

a proper level set and level function. An interesting property of this

graph class is that there is a clear established partition of the nodes.

• Node entropy of a UHG[69]: Once all components of the UHG are

defined, its node entropy is computed using:

Hn(G) = −

|L|
∑

i=1

pni log2 p
n
i (2.92)

Where pni is the proportion of all vertices that are grouped at level i.

Time complexity is presented as O(|V |).

• Edge entropy of a UHG[69]: Based on the previous definitions, the

entropy based on the edges can be defined using:

He(G) = −

|L|
∑

i=1

pei log2 p
e
i (2.93)
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In this case, the probability function used requires obtaining pei =
ei

2|E|
,

with ei representing the number of edges of all vertices on level i. Time

complexity is presented as O(|V |2).

• Joint entropy of a UHG[69]: A proposed combination of both of the

previously presented probability distribution, by considering pij =

pni p
e
i the joint entropy is:

H2(G) = −

|L|
∑

i=1

|L|
∑

j=1

pij log2 pij (2.94)

In order to obtain a discrete joint probability entropy, pij is to be

computed as:

pij =







pni p
e
i∑

j p
n
j p

e
j

: i = j,

0 : i 6= j.
(2.95)

• Source Entropy of the Edge Set[32]: Based on another formula, that

of the first order Shannon entropy, this measure is expressed with:

Hes(G) = −(β log2 β + (1− β) log2 (1− β)) (2.96)

Where β is the measure for Edge Density(p. 19).

• Information for Adjacency[23]: This measure considers the adjacency

matrix A of the graph, and provides a constant value for a given num-

ber of vertices N .

Iadj = N2 log2 N
2 − 2(N − 1) log2 2(N − 1)

− (N2 − 2N + 2) log2 (N
2 − 2N + 2) (2.97)

• Information for Incidence[23]: An analogous computation related to

the Information for Adjacency, the formula for this measure is:

Iinc = N(N − 1) log2 N(N − 1)− 2(N − 1) log2 (N − 1)

− (N − 1)(N − 2) log2 (N − 1)(N − 2) (2.98)

• Information on Distances[59]: By considering a distance matrix D,

where the distances of the shortest paths are presented (dij), a finite

probability scheme related to the graph can be constructed. In [23], a

complete analysis on how to obtain the formula is presented.

ID(G) = |V |2 log (|V |2)− |V | log (|V |)−

ρ(G)
∑

i=1

2ki log (2ki) (2.99)
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According to [23], this formula provides “a statistical measure for the

degree of nonhomogeneity in distribution distances in a given graph”.

The idea behind its construction is related to the probability of the

different nodes to be at their respective distances between each other.

• Information on the Realized Distances[23]: A measure with a final

value expressed in [23] as “closer to the Wiener number”. The formula

uses this value in its expression:

I
W

D = −
∑

i

ki
i

W
log2

i

W
(2.100)

In the previous equation, W =
∑

i iki is the Wiener number, which

the mentioned paper explains as the “total distance of the graph”.

Unreviewed Measures

Some measures, which were referred to in the different works researched,

are mentioned next along with a short description. They present a novel

approach with respect to those previously presented and as such require

further study and are a possible source of future work derived from this

thesis.

• Average Search Information[51]: Based on the idea that the complex-

ity of a network is related to the ease of navigation through its edges.

The formula averages the search information for each combination of

vertices vi, vj ∈ V .

• Induced Subgraph Complexity[32]: Described in [32] as a measure

of “structural diversity”, this value requires analyzing the number of

different possible subgraphs that could be built using the vertices and

edges of the original network under study.

• Treewidth[159]: This measure, as well as Pathwidth and Entangle-

ment mentioned next, are obtained by considering the branch decom-

position[162, 78, 153] of graphs, which is not reviewed specifically in

this thesis but instead presented as a whole topic to be considered in

future work in Section 7.4.

For a given graph G, a game known as Treewidth Game can be ana-

lyzed in order to find the minimal number of “cops” k such that the

“Cop Player” wins the game TwGk(G). The Treewidth measure is de-

fined as k− 1. [159] contains the full definition of the game, including

its parameters and rules.
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• Pathwidth[159]: A variant of the Treewidth Game mentioned earlier

gives rise to this measure, defined as k − 1, where k is the minimum

number of cops required for the Cop Player to win the Pathwidth

Game PwGk(G).

• Entanglement[159]: Another game based measure, ent(G) is explained

in [159] as “the minimal number k such that the Cop player has a win-

ning strategy in the game EGk(G)”. The interested reader is referred

to said work for the full description.

• Locality Index[50]: Based on the matching index presented in [105]. In

[50] such index is changed to consider all immediate neighbors of each

node, instead of individual edges, giving rise to the Locality Index. Its

exact computation is not explicitly provided.

2.4.4 Summary of Measures Reviewed

Before finishing the chapter we present a list of all the different network

complexity measures that we have mentioned. They are grouped according

to the category previously given. The next chapters will make use of a small

selection of them to study whether their values can help determine, given a

specific network, to which domain it belongs.

Vertex Measures

Degree Centrality (Vertex Degree)

Average Vertex Shortest Path Length

Betweenness

Vertex Flow Betweenness Centrality

Closeness Centrality

Euclidean Centrality

Local/Vertex Clustering Coefficient

Local Cyclic Coefficient

Subgraph Centrality

Concentric/Hierarchical Measurements

Concentric number of nodes

Concentric number of edges

Concentric node degree

Concentric clustering coefficient

Convergence ratio

Intra-ring node degree

Inter-ring node degree

Concentric common degree

r-s clustering coefficient

Vertex/Edge Based

Cardinality of the Vertex Set

Cardinality of the Edge Set

Edge Density

Degree Based

Average Node Degree

Maximum Degree

Variance of the Degree

Degree Distribution

Average Degree of the Nearest Neighbors of Ver-

tices with a given Degree

Degree Heterogeneity

Degree Correlation

Mean of Absolute Distances

Zagreb Group Indices

Randic Connectivity Index

Rich-Club Coefficient

Shortest-Path Based

Average Shortest Path Length

Average Geodesic Distance

Wiener Index

Global Efficiency

Vulnerability

Complexity Index B

Combinatorial Complexity

Characteristic Path Length
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Betweenness Based

Average Node Betweenness/Betweenness Cen-

trality

Central Point Dominance

Flow Betweenness Centrality

Attentive Betweenness Centrality

Joint Betweenness Centrality

Eccentricity Based

Diameter

Radius

Other Averaging Measures

Average Euclidean Centrality

(Graph) Clustering Coefficient

Edge Clustering Coefficient

Cyclic Coefficient

Concentric Measurements

Average Connected Distance

Additional Measures

Offdiagonal Complexity (OdC)

Eigenvector Centrality

Chromatic Number

Chromatic Information Content

Number of Spanning Trees

Linear Complexity

Cyclomatic Number

Balaban J Index

Lempel-Ziv Complexity

Assortativity

Modularity

Bipartivity

Spectral Density

Algebraic Connectivity

Edge Reciprocity

Network assortativeness

Controllability

Critical/Redundant/Ordinary Links Distribu-

tion

Entropy Measures

Codelength

Structural Information Content

Entropy of the Degree Distribution

Entropy of the Remaining Degree

(Automorphism Based) Information Content

Entropy of effluxes

Entropy of influxes

Joint Entropy

Redundancy

Mutual Information

Medium Articulation

Target and Road Entropies

Information transfer function

Node entropy of a UHG

Edge entropy of a UHG

Joint entropy of a UHG

Source Entropy of the Edge Set

Information for Adjacency

Information for Incidence

Information on Distances

Information on the Realized Distances

Unreviewed Measures

Average Search Information

Induced Subgraph Complexity

Treewidth

Pathwidth

Entanglement

Locality Index

2.5 Review

This chapter provided a meaningful list of complexity formulas that allow

us to represent a graph as a single number (or collection of numbers, when

using vertex measures).

Section 2.4.4 presented the summary of the formulas reviewed, grouped

by considering their focus when analyzing the graph structure.

We have presented complexity measures that are easier to compute,

which sometimes implies discarding specific information only present in

graphs from a specific domain; and others that make use of additional data

not found in all structures, or that implies computing complex iterations

over the connections in the graph. All of their benefits and complications

should be considered when deciding to apply them to practical tasks.

With these formulas in hand, we can continue in following chapters to
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propose experiments where the structure of the graph is reduced to a man-

ageable dimension. This implies that, if we choose a set of measures that

are general enough, all graphs from different origins can be expressed in a

comparable way. This will be of critical importance in our task of finding

the way to classify graphs according to their domain.
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Caṕıtulo 2: Midiendo la complejidad de un grafo

Este caṕıtulo comienza el análisis de fórmulas y técnicas existentes que

podŕıan ser de utilidad a la hora de clasificar grafos de acuerdo a su dominio

de origen.

Primero analizamos las definiciones básicas que permiten entender a los

grafos y sus propiedades. Luego revisamos un gran número de fórmulas

que permiten representar la estructura compleja de un grafo como un único

número, o colección de números (por ejemplo un número por vértice, o un

número por eje). La sección 2.2 revisa los conceptos de grafo dirigido y

no dirigido, pesos de un grafo, grado de un nodo, componentes conexas,

camino en un grafo y matriz de adyacencia.

La sección 2.4 provee una lista de fórmulas de complejidad que permiten

representar un grafo como un único número (o colección de números, en

el caso de métricas para vértices). Las distintas fórmulas permiten tener

un amplio rango de elementos que podŕıan permitir diferenciar a los grafos

entre si, lo cual será clave para entender las técnicas de clasificación que

proponemos en los próximos caṕıtulos.

La sección 2.4.4 presenta el resumen de las fórmulas estudiadas, agru-

padas de acuerdo a su criterio para analizar la estructura del grafo. A

modo de ejemplo podemos mencionar métricas básicas como la cantidad

de vértices y ejes, grado máximo, grado promedio, promedio de camino

mı́nimo, diámetro y radio. También incluimos varias medidas de centralidad

y las llamadas de entroṕıa, basadas en los conceptos de teoŕıa de la infor-

mación.

Hemos presentado métricas de complejidad cuyo cálculo es sencillo, lo

cual implica descartar información espećıfica que sólo está disponible en

grafos de algunos dominios en particular. Otras requieren información

adicional que no estará presente en todas las estructuras, o que implican

cálculos complejos a lo largo de un gran número de iteraciones. Todos es-

tos beneficios y complicaciones deberán ser tenidas en cuenta a la hora de

aplicarlas con fines prácticos.



Chapter 3

Brief Overview of Classification

Techniques

3.1 Description

This chapter provides a detail on the classification problem that we will

seek to solve. Basically, we want to know, given a certain graph, to which

domain problem it belongs, just by looking at its structure.

The utility of such a system would be two-fold. On one hand, researchers

could be working with a network in their field, and use the system to deter-

mine if the graph in question is a representative of the domain, to ascertain

the best tools to analyze it. On the other hand, developing an automatic

domain classification system could help build generic tools to work with

networks. Combining both ideas, a subclassifier can be designed: if the

proposal of this thesis proves true, a network’s structure (described by a

series of graph measurements) can determine not only the domain problem

to which it belongs, but also the specific type inside its domain. In this

case a lot of time could be saved when looking for the best method to tackle

each graph problem. An example that this is feasible has been done in [169]

for Reaction Dependency Graphs and Species Network Graph, and also in

[44] for different network problem instances. Thus in this thesis we seek to

extend and generalize these two works for any network.

Just to mention some examples, a graph domain classification system

could:

• Distinguish whether some ecological networks behave as a social net-

work (i.e. determine if they share similar features).

53
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• Identify if a road network shares properties of other networks related

to it, such as communication towers, airport locations, flight routes,

etc.

• Differentiate between protein networks from different species.

• Compare a neuron network from a given subject with others from

different development stages to detect health issues.

We will begin the chapter by introducing a number of preliminary con-

cepts, that allow us afterwards to define our classification problem.

Then we proceed to list a selection of classification techniques, presenting

for each a detail of their functionality.

3.2 Problem Definition

There is much that can be learned from a network structure such as a

graph. A researcher could be interested in finding if a specific property is

displayed, check for the predominance of a certain kind of vertex, analyze

how the general structure relates to other networks, to name but a few.

More can be said if the research in question is related to a specific scientific

discipline, as is the case for studies in social networks, protein interaction

networks, traffic networks, etc.

The objective of such a learning process can be categorized as either

supervised or unsupervised learning, depending on the type of input to

provide and the output expected.

Definition 16. Supervised learning is the learning process where there is

some kind of tutor (automatic or human) that gives the learner direct feed-

back about the appropriateness of its performance. This is usually achieved

by providing the learning system with a training set, experience which has

been labeled with the correct response to it, so that the learning system can

adjust itself to behave correctly [8].

In other words, Supervised Learning implies the researcher already

knows the expected output of a set of inputs, and intends to find a general

algorithm that can match those inputs to their known outputs, to be used

afterwards on previously unseen cases. The risk of such a process is that this

“matching algorithm” could represent only the mapping from the provided

samples, which is normally referred to as “overfitting”.

Special care must then be used when selecting the samples provided,

known as “training set” or “training data”. It should encompass a wide
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range of inputs that are representative of the general problem that is to be

solved. The most common approach is to partition the information available

between the “training set” and a “testing set”, so that the mapping can be

checked against a set of values for which the output is known, but that has

not been used during the learning process.

Definition 17. Unsupervised learning is characterized by having no

performance feedback. In this case, the task of the learning system is to

construct some kind of knowledge based only on the flow of experience E,

typically trying to identify the regularities existing on E [8].

Definition 18. Classification problem: Given a set of instances I =

{i1, . . . , in}, each of them labeled with a finite set of classes C = {c1, . . . , cm},

the task of classification is to create a certain theory T based on I and C

that, given an unlabeled new instance, can give a prediction of the class of

this instance [8].

A classification problem implies the need to separate a group of ob-

jects into differentiated classes, based on defining qualities that set them

apart, and that make up the essence of each group. Situations ranging

from a child’s game of recognizing object patterns (squares, circles) to cel-

lular analysis (when discerning between damaged and healthy cells) can be

regarded as classification problems.

Many mathematicians and computer scientists try to analyze situations

that fit this criteria to model the problem into a clear set of functions and

algorithms, to allow for a better chance of finding solutions that are more

accurate and easier to obtain.

The mapping implied by a classification problem falls into the category

of supervised learning previously defined.

We aim to provide a novel approach to the problem of assigning a class

to a given network, from a list of possible classes. As such, it is inherently

a classification problem. This can mean either matching graphs to the

domain from which they were originated, or categorizing graphs from a given

domain between a list of predetermined sub categories. An example of the

first proposal is determining whether a graph comes from a social network

or a traffic network. For the second proposal we can think for example

of determining the species from which a protein interaction network was

drafted.

Based on the ideas mentioned in [104], it is our assumption that differ-

ent networks will present similar values for some complexity measures, while
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more varied results for others. So a given graph might look “complex” if

analyzing its size (|V | and |E|), but have a relatively low Eigenvector cen-

trality. Considering that networks from a given domain sometimes represent

different instances of the same problem, it is reasonable to expect that some

characteristics will be present in most belonging to a given domain. If we

could find these similarities, and they could be observed as values for a

measure falling within a given range, then computing these formulas on an

unknown network could help us determine the domain problem it belongs

to.

The usefulness of such an approach could be furthered. If a researcher

working with different techniques to solve a problem, were to know that a

group of networks is better handled with one or another of those techniques,

and the networks already seen could be analyzed by their complexity mea-

sures, a matching between measurements ranges and techniques would allow

any future instance to be handled with the best approach from the start.

These ideas can also be applied within a domain, if a sub-classification

is required. Biological networks originating from different species might

present a certain distribution of results when measured, which could allow

a new specimen to be assigned a species based on the values obtained for

its corresponding network. Social structures from different environments

(relationships at work, sport events, school) could be differentiated, and

data from a given network could be compared to see if it “behaves in the

expected way of its type”.

The previous proposals can be seen as a generalization of the those pre-

viously studied for classifying instances of combinatorial optimization prob-

lems [44] and for predicting which stochastic simulator to run for instances

of synthetic biology networks [169].

3.3 Classification methods

Now that we have settled on considering the task as a classification problem,

we can focus on the way in which a system could learn to find similarities in

different networks, and propose a classification scheme for future networks

whose class we might want to determine.

There are various techniques and algorithmic approaches to classification

problems. In this work we will review three of them, and use each in our

experiments, to allow their advantages to be combined and to lower the

complications any disadvantages may create.
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3.3.1 K Nearest Neighbors

One of the simplest classification strategies, K Nearest Neighbors re-

quires some preliminary definitions before it can be explained.[17]

Definition 19. Nearest Neighbor: in the context of a classification prob-

lem, where each instance is represented by a set of values and a class, a

distance metric d can be computed between two instances. This could be

as simple as an euclidean distance if all the features are numeric, or could

require additional considerations in case of string attributes. Given a set

I of instances and a distance function D(x, y), the nearest neighbor of an

instance i is the instance j where D(i, j) = min(D(i, x)), ∀x ∈ I.

The previous definition can be extended to k nearest neighbors, if we

consider additional instances, such that if j1 is the nearest neighbor of i in

I, j2 is the nearest to i when not considering j1. The same procedure can

be followed until we have a set of nearest neighbors J = j1, j2, . . . , jk.

To obtain a classification algorithm, using the ideas mentioned we will

apply the procedure described in Algorithm 3.1.
✞

k : Number o f ne ighbors

I : Set o f known in s t an c e s

x : In s tance with unknown c l a s s

FOR ( i ∈ I )

di ← D(x, i)

Nearest Ne ighbors ← an empty c o l l e c t i o n

WHILE ( Nearest Ne ighbors . s i z e < k )

Nearest Ne ighbors ← i ∈ I with minimum di
Remove i from I

Votes ← an empty mu l t i s e t

FOR (n ∈Nearest Ne ighbors )

Votes . add (n . c l a s s )

Sugges ted Clas s ← c l a s s in Votes with the h i ghe s t

count

RETURN Sugges ted Clas s
✡✝ ✆

Algorithm 3.1: K Nearest Neighbor Classification

Given the right distance metric, and a reasonable distribution of the

samples, this algorithm easily finds the classes as expected in a classification

problem. Figure 3.1 is an example of one such “good case” for the K Nearest

Neighbor Classification, where a clear distribution can be identified.
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Figure 3.1: Instance distribution where K Nearest Neighbors is a good option.
There is a clear distinction between elements of class Diamond and elements of
class Cross

As it often happens with algorithms as simple as this one, the relative

ease of development is counterbalanced by a number of considerations that

have to be addressed. Depending on the distribution of the samples, the

number of features to use in the distance metric, and other factors, the class

assigned can be far from the real one.

Figure 3.2: Instance distribution where K Nearest Neighbors is not a good option

In figure 3.2 it can be observed that since there are more instances of

class diamond, and are closely packed with instances of the class cross, it is

likely that a k nearest neighbors algorithm might assign the diamond class

to all the instances presented.
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There are many proposals for tackling the different shortcomings of this

classification technique, from obtaining an “optimum” number of k to use,

to suggesting that k = 1 should always be preferred. Also some techniques

will consider weighted values for the votes offered by the neighbors [47].

Another characteristic that has been studied is the number and relevance

of the features in the instances that will allow to make a correct classifica-

tion. Obtaining a more detailed description of the instances might provide

a higher probability of finding the expected result, but because of the need

in the technique to assign a distance to every possible neighbor, running

times can get prohibitive as the number of features rises. This is why some

of the research in this field has targeted the need for better detection of the

relevant features [197, 205].

Because of the approach taken by the k nearest neighbor algorithm,

there is no generalization that explains the characteristics used in classi-

fying instances. Given a new input, the procedure (at least in its original

definition) requires all of the data to be considered each time.

3.3.2 Support Vector Machines

A mathematical approach to classification first proposed in [45] and im-

proved with new ideas in [172], support vector machines (SVM for short,

but also referred to as support vector networks) attempt to find a division

between the samples provided. Furthermore, this division is expressed as an

equation that could allow then to assign new instances to a certain region

in hyper-dimensional space.

In its simpler form, if instances are expressed as multi-dimensional ar-

rays, and their class is defined as either 1 or −1, a SVM will try and describe

each class by its “support vector” which defines the margin that best sep-

arates one class from the other. Afterwards, a hyperplane is determined

to ensure the maximum distance to the margins. It is the equation for the

hyperplane that allows then to classify new inputs as belonging to one or

the other class. Figure 3.3 presents the same situation that was mentioned

for k nearest neighbor, showing the margins and hyperplane.

The internal working of a SVM is based on the architecture of neural

networks, where the neurons have specialized functions to map inputs to

the hyper-dimensional space in which the support vectors are expressed.

One of the strengths of SVM is that even when an exact separation of the

data into different classes is not possible in the dimensionality considered,

the hyperplane resulting from the algorithm will ensure that it is the sep-
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Figure 3.3: SVM components: optimal margin and optimal hyperplane

aration with the minimal number of errors (this is known as a soft margin

hyperplane). Figure 3.4 shows an example of this situation.

Figure 3.4: Example of a soft margin in SVM

Another good property that arises from the way SVM are designed is

that the equation to separate between the classes is linear only in its simplest

definition. It is possible to define a more complex function and obtain, for

example, a higher degree polynomial to express the margin. Figure 3.5

presents a possible situation where such a scheme could be applied.

To obtain a classification that discriminates between more than 2 classes,

a combination of different SVM must be applied, either:
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Figure 3.5: Example of a higher degree polynomial used in a SVM

1. Build, for each class c, a SVM that separates between c and ¬c.

2. Build one SVM for each pair of classes, then perform a majority voting

on the results.

As can be seen from the details mentioned in this section, a support

vector machine provides a greater chance of tuning the algorithm to the

problem requirements. It provides better reuse than k nearest neighbors

because it can be processed once for all the training instances, and then

apply only the hyperplane functions to classify new inputs. One disadvan-

tage SVM present is the real possibility of overfitting the solution function

if too many samples are considered, or if they are not good representatives

of their respective classes.

Additionally, the hyperplane equation is not a good explanation of what

is the defining characteristic for separating one class from another, as it

represents just a mathematical aggregation of the instances features.

3.3.3 Evolutionary Rule Learning

The last algorithm that will be reviewed implies not only classifying in-

stances, but giving a human-readable explanation on how a future input

should be classified.

Learning Classifier Systems were first mentioned around 1978, being

[98] the most cited source of its definition. Today they are established as a

good option when trying to solve a wide range of problems ([97, 188, 10, 11,
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186]). First of all, a LCS is a machine learning technique. This means that

the system can, if presented with a task, increase its initial performance at

the task as it gains experience. Considerations that arise here are:

1. The task has to be measurable, so that the system’s efficiency can be

evaluated.

2. Experience has to be defined, and be measurable as well. This can

imply registering time, number of attempts at the task, space of inputs

already known to the system, etc.

3. The environment associated with performing the task needs to be mod-

eled, so that environmental information can be used as input by the

system.

In the particular case of LCS, the task is to classify a set of input data,

normally defined as an array of properties (for example classifying animals

by means of their height and weight).

Since they were presented, many systems have been designed that fall

into this category. The learning procedure is traditionally achieved by con-

sidering rules of the form IF condition THEN action, where the con-

dition is evaluated against an instance of the input data, and the action

implies classifying the current input with the value stated in the rule.

In the case of the animal classification example stated above, we could

have rules like (IF height < 1m and weight = 3kg THEN cat) and (IF

height < 0.5m and weight > 4kg THEN iguana).

The trick while developing these systems is to find an efficient way of

evolving rules like these and reach a set of rules that together classify with

high accuracy the whole input space (environment).

What remains to be said about them is that since its beginnings these

systems have taken advantage of many techniques from the artificial intelli-

gence area. The specific case of LCS we have chosen follows the Pittsburgh

approach, which means that a Genetic Algorithm (GA) is used as a

heuristic to guide the classification process.

Genetic Algorithms are an idea central to Evolutionary Compu-

tation (EC). The field of EC brings ideas from the biological sciences such

as DNA coding, survival of the fittest and trait inheritance. These ideas can

be employed by themselves to solve complex problems ([80, 81, 30, 110, 111,

112, 180, 96, 13, 163, 34, 189, 175, 193]). A genetic algorithm is composed

of the following elements:
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1. An initial population of individuals, with each representing a possible

solution to the problem.

2. Generations: the iteration step that identifies one group of individuals

from the next (offspring), usually fitter than the parents. In a GA,

the “result” is the last generation spawned when the stopping criteria

is reached.

3. A criteria for generating offspring from one or more individuals to give

rise to the next generation.

4. A criteria for generating small mutations, so as to ensure diversity

from one generation of individuals into the next.

5. A fitness criteria, that will ideally be higher in average among individ-

uals from one generation with regards to the previous one.

6. A stopping criteria.

These ideas are applied in the case of LCS to the rules described before.

Next is a detail of the definition of GA parameters for an LCS:

1. The population to evolve is a collection of rule sets as those defined

before. It is common to represent the rulesets as binary strings, with

different sections representing different rules. For example for a rule

predicating over 2 properties A and B with a possible value between

0 and 3, 2 bits can be used for each, meaning that 1100 is a ruleset

expressing “A = 3&B = 0”.

2. A generation is composed of the current collection of rule sets. It

stands that every rule set has at least one rule matching each possible

class, so that each individual (rule set) can always classify (even if

incorrectly) all of the input data. Some optimizations ignore one of

the classes and consider it a Default Class, allowing for smaller rule

sets.

3. In the rules used as example above, the offspring criteria could be

as simple as taking some rules from two different rule sets and join

them to create a new complete rule set, or as complicated as creating

new rules with the conditions from one rule set and the actions from

another, mixing them with a probability function. Special care must

be taken when mixing this rules, since the result must be a valid

ruleset.
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4. The mutation procedure usually implies a slight change in numerical

values, or, if the rules are represented by a byte string, some 0’s are

changed into 1’s or vice versa. As above, the validity of the resulting

ruleset must be checked.

5. A fitness formula indicates the ability of the rule set to classify the in-

put data correctly, helping to discard those rule sets that classify incor-

rectly or are unnecessarily more complex than others already present,

allowing the system to evolve more compact and accurate rule sets.

6. Learning Classifier Systems stopping criteria depends on the imple-

mentation considered. The model used for this thesis takes a param-

eter indicating the number of iterations to run, but others could well

stop when a certain classification accuracy is reached, or the rule sets

presents a certain property.

Aside from the EC component, Learning Classifier Systems require Ma-

chine Learning ideas to evaluate and correct the accuracy of the rules. The

studied case employs Reinforcement Learning, which means that the input

data already contains the expected classification (requiring the data to be

supervised when gathered) and the system tries to predict the class based

on the rules, to check then against the supplied classification, adjusting its

internal values accordingly (depending on whether it was right or not). The

specifics of such procedures vary greatly from one LCS to another, and so

are out of the scope of this work.

The greatest strength that a LCS will provide to this work with respect

to the other two techniques proposed, is the expression of the classification

“logic” in the form of human-readable rules.

BioHEL

In particular, we will be working with a specific implementation of a LCS,

known as BioHEL [9]. It is, more than an algorithm, a complete classifica-

tion system specifically tailored for large inputs such as the ones researched

and mentioned in Chapter 4.

BioHEL is based on GAssist, a Pittsburgh like learning classifier sys-

tem. GAssist, in turn, is an improvement over GABIL. The most relevant

characteristics of these systems are mentioned next, as presented in [190].

GABIL is described in detail in [103]. The features of GABIL that are

present in GAssist are:
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1. Fitness function (squared accuracy): the fitness of an individual (Rule-

Set) is computed as (#instances correctly classified
total #instances

)2.

2. Nominal Dataset representation: in the case of classification based

on attribute A1 with 4 possible values (X1,X2,X3,X4) and A2 with 2

possible values (Y1,Y2), the rule represented by the binary string 1101

01 implies the predicate “(A1 is X1 or X2 or X4) and (A2 is Y2)”.

3. Semantically correct crossover operator: different cut points can be

chosen in the parent rules, as long as they are placed in the same

position inside the offspring rule.

4. Bit flipping mutation for the nominal representation.

GAssist improves the state of the art for Pittsburgh Learning Classifier

Systems by integrating into GABIL the following features:

1. Explicit and static default rule: the best default rule in terms of accu-

racy and reduction of search space is selected and transparently used

throughout the system.

2. Adaptive discretization intervals (ADI): this technique implies an evolv-

ing discretization of real-valued attributes, that can vary for each rule

and attribute, and which can also split and merge as the system does

its job.

3. Incremental learning by alternating strata (ILAS): a windowing tech-

nique for generalization and run-time reduction.

4. Bloat control and generalization pressure methods: GAssist presents a

rule deletion operator, and a fitness function that considers the content

of the individuals in guiding the exploration process.

BioHEL was designed next, with the explicit focus of handling large-

scale datasets. We can highlight the following features:

• It applies an Iterative Rule Learning or Separate-and-Conquer ap-

proach [82].

• It is based on the Minimum Description Length (MDL) principle [161],

a metric which allows to balance the complexity and accuracy of the

rules produced.

BioHEL has proved to improve on the results previously produced by

GAssist [12, 187].
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3.4 Review

This chapter began with a definition of different concepts that are used

when working on classification problems.

With them we were able to build a definition of our task: the classifica-

tion of real world networks according to their domain.

Afterwards, the chapter introduced three techniques that might be em-

ployed when solving classification problems: K Nearest Neighbors, Support

Vector Machines and Evolutionary Rule Learning.

They will be used in following chapters to attempt to discern that which

might differentiate networks in one domain from another.
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Caṕıtulo 3: Breve revisión de técnicas de clasificación

Este caṕıtulo describe en detalle del problema de clasificación que pre-

tendemos resolver. Básicamente, queremos saber para un cierto grafo, el

dominio al que pertenece, observando únicamente su estructura.

La utilidad de un sistema de estas caracteŕısticas radica, por un lado,

en la posibilidad de que un investigador pueda determinar si un grafo es

“representativo” del dominio al que pertenece, para asegurarse de aplicar

las herramientas más eficientes para analizarlo. Por otro lado, desarrollar

un sistema de clasificación automática permitiŕıa construir herramientas

genéricas para trabajar con redes. De la misma manera, se puede pensar en

la confección de un sub-clasificador, las mediciones sobre un grafo podŕıan

permitir no solamente reconocer el dominio al que pertenece, sino el tipo

espećıfco dentro del mismo. Este tipo de herramientas ahorraŕıan tiempo

a los investigadores a la hora de buscar la mejor manera de encarar un

problema de grafos.

La sección 3.2 presenta las definiciones básicas de un problema de clasi-

ficación, aprendizaje supervisado y no supervisado.

En la sección 3.3 detallamos 3 tipos de algoritmos para resolver un

problema de clasificación:

• K Nearest Neighbors (KNN)

• Support Vector Machines (SVM)

• Evolutionary Rule Learning (ERL)

Para cada uno revisamos su funcionamiento, y repasamos brevemente

ventajas y desventajas de sus enfoques.

En particular, presentamos el sistema de aprendizaje de reglas BioHEL[9].

El mismo resuelve la clasificación a través de un Learning Classifier Sys-

tem (LCS) que incluye un complejo algoritmo genético. Adicionalmente,

tiene la ventaja de ofrecer como resultado de su ejecución un conjunto com-

pacto de reglas legibles para una persona, las cuales tienen la forma (SI

atributoA < valor1 Y atributoB > valor2 ENTONCES clase X).





Chapter 4

Network Domains and

Complexity Measures

4.1 Description

This chapter has two objectives. The first is to present a list of networks

from different domains, and provide a human-made classification that sepa-

rates them according to their origin. We will intend later to use automatic

classification techniques to try to determine if the networks in a domain

share some measure of complexity, as presented in Chapter 2.

The second objective will be to choose a subset of the complexity mea-

sures in Section 2.4. These values will then be computed for all of the net-

works selected, and statistical information about them will be presented.

By observing the distribution of these values, we will analyze the feasibility

of using them as discriminators between the domains under study. Also, in

following chapters, these values will be the inputs for a set of classification

algorithms, that will attempt to automatically distinguish the domain to

which each network belongs.

4.2 A selection of networks

For this project, several networks found in various sources have been com-

piled and organized according to their domain. This section lists each of

the problem domains, along with a summary of the networks that com-

pose them. This summary also indicates the corresponding references that

allow the interested reader to find additional information on the network

69
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composition and the context of its construction.

In order to give the reader a better understanding of how these networks

“look”, each domain will be presented alongside four visualizations of net-

works in it. These images were obtained by loading the networks using

the Gephi framework [15], then coloring the vertices from lighter to darker

according to their average degree, and also making vertices with higher av-

erage degree slightly larger. Finally, the structure of the networks was built

by running the Force Atlas 2 algorithm included with the framework [100].

All visualizations present the closest possible zoom to the structure, without

leaving any node outside, which means that more compact networks allow

a finer level of detail while networks with vertices that are determined to

exist further from a central cluster are presented with lesser detail.

In each subsection, we also present a detail of the networks’ number of

vertices and edges, sorted by number of vertices.

4.2.1 Assorted Biological

Under this category, we will consider a number of different networks that

represent processes in an organism, where vertices commonly represent a

gene, protein, transcription factor, etc. and edges reflect an interaction

between them ((e.g. a transcription factor activating or inhibiting a gene,

a protein-protein interaction, etc).

The categories for Combinatorial DNA Library Synthesis and Metabolic,

presented later, while still belonging to the “Biological” domain, are grouped

separately from this one since they offer a higher cohesion in the concepts

they represent.

All of the structures used can be obtained at https://wiki.gephi.org/

index.php/Datasets([83]) and http://networkrepository.com([164]), where

additional information about their construction can be accessed.

Table 4.1: Assorted Biological Networks

Graph |V | |E|

NT-bio-MUTAG g1 23 54
C Elegans 306 2345
NT-bio-celegans 453 2025
NT-bio-celegans-dir 453 2040
NT-bio-diseasome 516 1188

Graph |V | |E|

Disease 1419 3926
NT-bio-yeast 1458 1948
NT-bio-yeast-protein-inter 1870 4480
Yeast 2361 7182
NT-bio-dmela 7393 25569

• In NT-bio-celegans vertices are substrates and the edges are metabolic

reactions, with additional edges considered in the alternative network

https://wiki.gephi.org/index.php/Datasets
https://wiki.gephi.org/index.php/Datasets
http://networkrepository.com


4.2. A SELECTION OF NETWORKS 71

NT-bio-celegans-dir [65].

• Disease and NT-bio-diseasome are both related to disorders and dis-

ease genes linked by known disordergene associations [89].

• NT-bio-dmela presents vertices representing proteins and edges for the

protein-protein interactions [178]

• Yeast and NT-bio-yeast-protein-inter are both Protein-Protein inter-

action network, where the former was documented in [29] and the

latter in [101].

• C Elegans is a network from [65] with the information of a neural net-

work in a cell of C Elegans.

• NT-bio-MUTAG g1 and NT-bio-yeast are included in the biological

section of the networks available at [164].

A sample of some of the networks can be seen in Figure 4.1, while the

complete list with names, number of edges and vertices can be found in

Table 4.1.
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(a) Visualization of the “C Elegans” network (b) Visualization of the “NT-bio-
diseasome” network

(c) Visualization of the “NT-bio-yeast-
protein-inter” network

(d) Visualization of the “Yeast” network

Figure 4.1: Visualization of four different networks from those selected for the
Assorted Biological domain
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4.2.2 Code

Code networks are structures related to the evolution of development source

code, obtained from different programs and repositories. Vertices are nor-

mally users in a collaborative environment, or software packages, while edges

indicate a dependency or derivative work.

Table 4.2: Code Networks

Graph |V | |E|

Word Adjacencies 112 425
Github PHP 301 1071
Github Perl 365 4440
Photoviz 393 621
Github Python 532 2566

Graph |V | |E|

Github Japan 559 5276
JavaCode 724 1025
Github Europe 2711 11259
Github Profiles 2772 41984
Github Ruby 3742 24571

In particular, the networks included in this domain are:

• Github PHP, Github Perl, Github Python, Github Japan, Github Eu-

rope, Github Profiles, Github Ruby are project forking relations de-

tailed in https://lumberjaph.net/github-explorer/. Vertices are

users, and edges represent a project fork from the original user to the

one who starts the derived work.

• Photoviz is a structure detailing different commits to a SVN source

code repository, available at http://courses.polsys.net/gephi/datasets/

• In JavaCode, the structure of a Java program is presented. It can be

accessed from [83].

• The Word Adjacencies network represents a different kind of “code”,

since it implies adjacency between common adjectives and nouns [146].

Table 4.2 has the number of vertices and edges for each. Figure 4.2

provides the sample visualizations for this domain.

https://lumberjaph.net/github-explorer/
http://courses.polsys.net/gephi/datasets/


74 CHAPTER 4. NETWORK DOMAINS AND COMPLEXITY MEASURES

(a) Visualization of the “Github Python”
network

(b) Visualization of the “Github PHP” net-
work

(c) Visualization of the “Github Europe”
network

(d) Visualization of the “Github Ruby”
network

Figure 4.2: Visualization of four different networks from those selected for the
Code domain
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4.2.3 Collaboration

For the collaboration domain, we have selected networks from different pa-

pers and other resources, that represent a collaborative behavior between

individuals. This means that vertices will normally represent people, and

an edge will imply a joint work or interaction. We have deliberately mixed

here structures that represent both scientific collaborations as well as sports

and market interactions. It is our intention to observe if these structures

share enough common information to be then be classified together in the

experiments presented in following chapters.

Table 4.3: Collaboration Networks

Graph |V | |E|

NT-ca-sandi auths 86 124
Political Books 105 441
Football 115 613
netscience 379 914
CPAN Authors 840 2248
Political Blogs 1490 19025
NT-ca-CSphd 1882 1740

Graph |V | |E|

CPAN Distributions 2724 5018
General Relativity 4158 13422
NT-ca-Erdos992 5094 7515
High Energy Physics 12008 237010
Astro Physics 17903 196972
Condensed Matter 21363 91286

• General Relativity and High Energy Physics indicate scientific col-

laboration between authors in the General Relativity and Quantum

Cosmology, and High Energy Physics - Phenomenology, respecitvely.

They were originally presented in [115] (www.arxiv.org).

• Astro Physics and Condensed Matter are built and published in [144],

and represent posting preprints on the astrophysics and condensed

matter archives at www.arxiv.org.

• CPAN Authors and CPAN Distributions are networks published at

http://cpan-explorer.org/. The first indicates vertices for devel-

opers, linked with when they use the same Perl module. The second

indicates Perl modules and their interdependencies.

• NT-ca-CSphd is documented in [149, 164], and represents PhD’s in

computer science.

www.arxiv.org
www.arxiv.org
http://cpan-explorer.org/


76 CHAPTER 4. NETWORK DOMAINS AND COMPLEXITY MEASURES

• netscience, from [146], is a co-authoship network of scientists in net-

work theory and experiments.

• Football presents a network for the American football games between

Division IA colleges during regular season Fall 2000 [84].

• Political Blogs is built using Hyperlinks between political blogs in the

United States [4].

• Political Books links Amazon.com users, creating edges according to the

co-purchase of political book during 2004 (http://www.orgnet.com).

• NT-ca-Erdos992 is an Erdos collaboration network, presented in [16,

164].

• NT-ca-sandi auths was obtained from the Collaboration section at

[164].

A list with all these structures, sorted by number of vertices, indicating

also the number of edges, is presented in Table 4.3. For some examples on

the visual representation for some of them, refer to Figure 4.3.

Amazon.com
http://www.orgnet.com
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(a) Visualization of the “Political Books”
network

(b) Visualization of the “CPAN Authors”
network

(c) Visualization of the “General Relativ-
ity” network

(d) Visualization of the “NT-ca-Erdos992”
network

Figure 4.3: Visualization of four different networks from those selected for the
Collaboration domain
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4.2.4 Combinatorial DNA Library Synthesis

This domain was obtained from a set of large DNA synthesis (binary) net-

works employed in the experiments reported in [19] and [20]. Some of them

were originally used in [61].

These networks represent steps which could be used then to iteratively

build a complex DNA sequence. Vertices represent the different primitive

components, or combined components on successive levels, while edges con-

nect components from one step to the combined one in the next.

Figure 4.4 presents a visualization for some of the problems, while Table

4.4 presents the complete list with their respective number of vertices and

edges.

Table 4.4: Combinatorial DNA Library Synthesis Networks

Graph |V | |E|

example-A1-1-2 7 19 21
example-Anew-1-2 7 19 21
small artificial-A1-1-3 11 33 33
small artificial-Anew-1-3 14 39 42
ukb-Anew-1-5 110 241 330
ukb-A1-1-5 140 301 420
unott azurin-A1-1-3 170 359 510
unott azurin-Anew-1-3 170 359 510
phagemid-Anew-1-4 202 420 606

Graph |V | |E|

phagemid-A1-1-4 208 432 624
uh1-A1-1-3 304 626 912
uh1-Anew-1-3 344 706 1032
uh2-Anew-1-7 344 724 1032
uh2-A1-1-6 515 1066 1545
ethz-A1-1-3 690 1393 2070
ethz-Anew-1-4 696 1405 2088
iGE2008-Anew-1-5 836 1807 2508
iGE2008-A1-1-4 839 1813 2517

We consider two different sets of networks:

1. small artificial-A1-1-3 11, example-A1-1-2 7, ukb-A1-1-5 140, unott azurin-

A1-1-3 170, uh1-A1-1-3 304, uh2-A1-1-6 515, ethz-A1-1-3 690 and iGE2008-

A1-1-4 839 where built using the assembly algorithm originally pub-

lished in [61].

2. small artificial-Anew-1-3 14, example-Anew-1-2 7, ukb-Anew-1-5 110,

unott azurin-Anew-1-3 170, phagemid-Anew-1-4 202, phagemid-A1-1-

4 208, uh1-Anew-1-3 344, uh2-Anew-1-7 344, ethz-Anew-1-4 696 and

iGE2008-Anew-1-5 836 are equivalent solutions to the same DNA as-

sembly request built instead with a novel algorithm presented in [20].
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(a) Visualization of the “ukb-Anew-1-
5 110” network

(b) Visualization of the “phagemid-Anew-
1-4 202” network

(c) Visualization of the “uh2-Anew-1-
7 344” network

(d) Visualization of the “iGEM 2008-
Anew-1-5 836-fa” network

Figure 4.4: Visualization of four different networks from those selected for the
Combinatorial DNA Library Synthesis domain
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4.2.5 Communication

The communication networks presented here refer specially to situations

that might be categorized as social interactions, or even collaborations

(in a broad sense), but we will consider only those that are explicit com-

munications in the form of calls, face-to-face or electronic conversations,

or mailing. Additionally, some networks presented have been obtained

from the communication section of public network repositories (such as

http://networkrepository.com), to allow later an analysis on the human-

made classification of the networks published.

Table 4.5: Communication Networks

Graph |V | |E|

southernwomen 18 89
infect-hyper 113 2196
enron-only 143 623
radoslaw-email 167 5784
infect-dublin 410 2765
Mails 1133 10902
email-univ 1133 5451

Graph |V | |E|

fb-messages 1266 6451
reality 6809 7680
PGP Users 10680 24316
wiki-trust-dir 30598 61278
email-EU 32430 54397
Enron Mail 36692 367662
European Mail 265214 420045

In all cases the vertices are people, while the edges represent the com-

munication recorded by each particular network, as detailed next:

• Both infect-hyper and infect-dublin, presented in [181], are built con-

sidering a “proximity contact” between attendees to a conference and

an artscience exhibition, respectively.

• Enron Mail and enron-only are alternative networks built in [116, 41,

164] with information published by the Federal Energy Regulatory

Commission during an investigation.

• email-univ and Mails represent mails between members of a univer-

sity, where the latter includes edges in both directions [92].

• European Mail and email-EU are networks published in [115] using

mails between members of an European research institution. The sec-

ond one considers only mutual exchanges to create an edge.

http://networkrepository.com


4.2. A SELECTION OF NETWORKS 81

• radoslaw-email represents the interaction according to mails between

employees of a manufacturing company [132].

• wiki-trust-dir considers interactions between Wikipedia users on po-

litical pages [124].

• The PGP Users network considers users of the PGP algorithm and

their communication. It is presented in [21] and specified to include

only the giant connected component of the derived structure.

• southernwomen is built according to the participation of a group of

women in specific social events [54].

• reality was obtained from [66], and represents calls between subjects

of a reality experiment.

• fb-messages has vertices for different Facebook members, with edges

indicating communication between them [152].

In Table 4.5 all of the networks in this domain are listed, along with the

number of vertices and edges for each. Figure 4.5 then presents a sample

visualization for four of them.
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(a) Visualization of the “infect-hyper” net-
work

(b) Visualization of the “radoslaw-email”
network

(c) Visualization of the “email-univ” net-
work

(d) Visualization of the “PGP Users” net-
work

Figure 4.5: Visualization of four different networks from those selected for the
Communication domain
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4.2.6 Infrastructure

The infrastructure domain is a gathering of networks that represents the

real world location of different wide spanning projects. They range from

Internet routers to Airline routes.

Vertices represent the location of the different objects surveyed by the

networks, and the edges represent an existing real connection (cables, roads,

planned airplane route, etc.)

Table 4.6: Infrastructure Networks

Graph |V | |E|

Top-Ireland 7 11
Top-Australia 19 24
Top-Spain 19 31
Top-Belgium 22 25
Top-Canada 23 23
Top-Argelia 30 27
Top-Brazil 31 34
Top-Chile 37 36
Top-France 43 56
Top-Italy 61 75
Top-Armenia 65 59

Graph |V | |E|

Top-Japan 74 76
Airlines 235 2101
USAir97 332 2126
routers-rf 2113 6632
openflights 2939 30501
Power Grid 4941 6594
WHOIS 7476 56943
Internet Routers 22963
as-caida2007 26475 53381
internet-as 40164 85123
p2p-gnutella 62561 147878

• A number of networks were obtained from http://www.topology-zoo.

org/index.html. They represent the result of applying a trace to un-

derstand the topology of internet connections in different countries.

We have selected, from this survey, the following networks: Top-

Ireland, Top-Australia, Top-Spain, Top-Belgium, Top-Canada, Top-

Argelia, Top-Brazil, Top-Chile, Top-France, Top-Italy, Top-Armenia

and Top-Japan.

• Some flight routes and airport connections are present in the form of

the network Airlines, USAir97, openflights. They were obtained from

[83], [164, 43] and [151], respectively.

• Additional internet and intranet structured obtained were routers-rf

[164, 184], WHOIS [164, 122], Internet Routers [83], as-caida2007 and

internet-as.

• The network p2p-gnutella listed is presented in [164, 128].

http://www.topology-zoo.org/index.html
http://www.topology-zoo.org/index.html
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• Power Grid is a topology of the Western States Power Grid of the

United States, documented in [199].

The detail of networks with their vertex and edge size is included in Table

4.6. For a sample of the visualization of some networks in this domain, refer

to Figure 4.6.

(a) Visualization of the “Top-Australia” net-
work

(b) Visualization of the “Top-Brazil” net-
work

(c) Visualization of the “openflights” net-
work

(d) Visualization of the “Internet Routers”
network

Figure 4.6: Visualization of four different networks from those selected for the
Infrastructure domain
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4.2.7 Metabolic

The domain labeled metabolic in this work, represents a collection of “metabolic

networks” from different organisms. The vertices in these structures are the

different substrates that take place in the metabolic reactions of each or-

ganism presented. The edges are determined by the existance of a reaction

between the given substrates.

The list of networks used is shown on Table 4.7. Since for this domain

we have available a set of networks with a unique and consistent origin, it

presents itself as a good candidate for good classification and differentiation

from the other domains, and we expect our experiments to give better results

for these domains than for other with a more mixed set of networks, such

as is the case for collaboration (p.75) and communication (p.80).

Table 4.7: Metabolic Networks

Graph |V | |E|

C. pneumoniae 387 792
B. burgdorferi 409 880
M. pneumoniae 411 936
C. trachomatis 447 941
R. prowazekii 456 1014
M. genitalium 473 1060
T. pallidum 485 1117
A. pernix 490 1163
O. sativa 665 1514
A. thaliana 694 1593
P. furiosus 751 1768
P. horikoshii 767 1796
T. maritima 830 1980
E. nidulans 916 2176
C. tepidum 918 2159
C. jejuni 946 2257
H. pylori 949 2325
N. meningitidis 981 2393
A. actinomycetem comitans 993 2368
E. faecalis 1004 2462
P. gingivalis 1010 2348
M. bovis 1043 2468

Graph |V | |E|

S. pyogenes 1051 2577
M. leprae 1055 2515
N. gonorrhoeae 1055 2568
A. aeolicus 1057 2527
S. pneumoniae 1077 2629
M. jannaschii 1082 2589
M. thermoautotro phicum 1112 2705
C. elegans 1173 2864
A. fulgidus 1268 3011
C. acetobutylicum 1305 3202
H. influenzae 1424 3519
Synechocystis sp. 1430 3528
Y. pestis 1453 3469
S. cerevisiae 1511 3833
M. tuberculosis 1520 3685
R. capsulatus 1762 4296
P. aeruginosa 1971 4851
B. subtilis 2217 5535
E. coli 2275 5763
D. radiodurans 2280 5681
S. typhi 2361 5959

Table 4.7 contains all of the organisms selected, and indicates for each

network the number of vertices and edges involved. Then, in Figure 4.7 we

have chosen, as in previous domains, four networks to offer a visualization

that allows a quick contract of their structures.
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(a) Visualization of the “M. pneumoniae”
network

(b) Visualization of the “S. cerevisiae” net-
work

(c) Visualization of the “P. horikoshii” net-
work

(d) Visualization of the “M. leprae” net-
work

Figure 4.7: Visualization of four different networks from those selected for the
Metabolic domain
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4.2.8 Reaction Dependency Graph

A Reaction Dependency Graph (RDG) is built from the relation be-

tween reactions in a biochemical model. These models imply an analysis of

molecular species and the reactions between them. If a reaction Ri affects

the propensity of another reaction Rj from occurring, an RDG will include

vertices for Ri and Rj, as well as a directed edge (Ri, Rj).

Table 4.8: Reaction Dependency Graph Networks

Graph |V | |E|

BIOMD0000000103-RDG 42 348
BIOMD0000000139-RDG 45 318
BIOMD0000000303-RDG 45 345
BIOMD0000000333-RDG 45 333
BIOMD0000000147-RDG 51 355
BIOMD0000000256-RDG 56 574
BIOMD0000000328-RDG 58 588
BIOMD0000000268-RDG 61 310
BIOMD0000000230-RDG 64 613
BIOMD0000000356-RDG 64 395
BIOMD0000000334-RDG 66 591
BIOMD0000000332-RDG 69 645
BIOMD0000000250-RDG 78 334
BIOMD0000000344-RDG 80 701
BIOMD0000000326-RDG 91 582

Graph |V | |E|

BIOMD0000000056-RDG 94 424
BIOMD0000000175-RDG 102 921
BIOMD0000000223-RDG 109 677
BIOMD0000000244-RDG 109 347
BIOMD0000000338-RDG 115 452
BIOMD0000000339-RDG 115 452
BIOMD0000000340-RDG 116 457
BIOMD0000000152-RDG 120 1162
BIOMD0000000019-RDG 125 801
BIOMD0000000109-RDG 138 1570
BIOMD0000000049-RDG 150 1194
BIOMD0000000153-RDG 152 1734
BIOMD0000000014-RDG 300 7101
BIOMD0000000183-RDG 352 36672
BIOMD0000000255-RDG 827 25337

The set considered in this domain is built by taking 30 models obtained

from [150], which have been processed and studied in detail in [169].

The number of vertices and edges for the networks is displayed in Table

4.8, and the visualization of reference structures is included in Figure 4.8.
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(a) Visualization of the
“BIOMD0000000256-RDG” network

(b) Visualization of the
“BIOMD0000000019-RDG” network

(c) Visualization of the
“BIOMD0000000244-RDG” network

(d) Visualization of the
“BIOMD0000000332-RDG” network

Figure 4.8: Visualization of four different networks from those selected for the
Reaction Dependency Graph domain
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4.2.9 Social

The social domain presented here encompasses several different networks,

which all share the property of representing a social organization, and the

interrelation between its members. Such a general description most likely

applies as well to some of the networks listed in previous domains. The

general criteria applied was to relegate networks to this section only when

(1) they were not explicitly compatible with previous definitions or (2) the

original sources listed them in the “social” category, since analyzing the

correctness of human-made classifications is part of our experimental objec-

tives.

Most of the structures will of course have vertices to represent people,

and edges when there is a connection in the corresponding social group

represented.

Table 4.9: Social Networks

Graph |V | |E|

tribes 14 24
firm-hi-tech 33 147
Karate Club 34 78
Les Miserables 77 254
Jazz 198 2742
School 1 236 5899
School 2 238 5539
wiki-Vote 889 2914
EuroSiS 1285 7524
hamsterster 2426 16630

Graph |V | |E|

Twitter 3656 188712
advogato 5358 26788
wiki-elec 7118 103738
anybeat 12645 67053
gplus 23628 39242
epinions 26588 100120
sign-Slashdot081106 28598 78795
sign-Slashdot090216 29118 81134
sign-Slashdot090221 29131 81681

• Karate Club is the classical network of friendships between members

of a karate club [209].

• tribes presents the result of recording friendship between tribes in New

Guinea, as described in [160, 164].

• Les Miserables is another classical social network, where edges repre-

sent coappearance of characters in the novel Les Miserables [109].

• School 1 and School 2 both present edges according to face to face

interactions in a school, during the first and second days of a study,
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available at http://www.sociopatterns.org.

• Jazz is a network representing co-performances between jazz musicians

[87].

• advogato[127], anybeat [76], gplus and hamsterster [95] are social net-

work built using social relationships declared in the different sites. All

of them can be obtained from [164].

• epinions has a structure built using trust relationships from Epin-

ions.com [126, 164].

• wiki-elec and wiki-Vote represent information from administrator elec-

tions in Wikipedia, and accumulated voting information, respectively.

More information can be found in [114, 164].

• EuroSiS is based on the relations between Science in Society actors on

the Web of 12 European countries [83].

• Twitter is a collection of various Twitter mentions and retweets of

some part of the Twitter network, provided by the statistics account

https://twitter.com/rankinfo.

• firm-hi-tech, sign-Slashdot081106, sign-Slashdot090216 and sign-Slashdot090221

are additional networks presented in [164] in its “social” category.

All of the networks selected are listed in Table 4.9, along with the num-

ber of vertices and edges they present. In Figure 4.9, four of the selected

structures are displayed to give a visualization example for this domain.

http://www.sociopatterns.org
https://twitter.com/rankinfo
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(a) Visualization of the “Karate Club” net-
work

(b) Visualization of the “School 2” network

(c) Visualization of the “hamsterster” net-
work

(d) Visualization of the “epinions” network

Figure 4.9: Visualization of four different networks from those selected for the
Social domain
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4.2.10 Species Network Graph

In contrast with the previously mentioned Reaction Dependency Graph

(p.87), a Species Network Graph (SNG) is built from the relation be-

tween molecular species in a biochemical model. These models imply an

analysis of molecular species and the reactions between them. If the model

includes a reaction where Si is a species that behaves as the reactant and

Sj is the product, an SNG will include vertices for Si and Sj, as well as a

directed edge (Si, Sj).

Table 4.10: Species Network Graph Networks

Graph |V | |E|

BIOMD0000000328-SNG 18 29
BIOMD0000000103-SNG 21 60
BIOMD0000000230-SNG 26 85
BIOMD0000000147-SNG 27 61
BIOMD0000000256-SNG 29 89
BIOMD0000000139-SNG 30 55
BIOMD0000000356-SNG 32 68
BIOMD0000000303-SNG 41 62
BIOMD0000000268-SNG 46 82
BIOMD0000000250-SNG 53 70
BIOMD0000000333-SNG 54 89
BIOMD0000000344-SNG 54 163
BIOMD0000000109-SNG 55 186
BIOMD0000000056-SNG 56 80
BIOMD0000000152-SNG 64 202

Graph |V | |E|

BIOMD0000000183-SNG 67 536
BIOMD0000000338-SNG 67 62
BIOMD0000000339-SNG 67 62
BIOMD0000000340-SNG 68 63
BIOMD0000000326-SNG 73 142
BIOMD0000000334-SNG 73 130
BIOMD0000000153-SNG 75 256
BIOMD0000000244-SNG 77 59
BIOMD0000000332-SNG 77 137
BIOMD0000000223-SNG 81 157
BIOMD0000000014-SNG 86 560
BIOMD0000000019-SNG 95 225
BIOMD0000000049-SNG 97 257
BIOMD0000000175-SNG 118 226
BIOMD0000000255-SNG 504 1350

As before, we will consider for this domain a total of 30 models obtained

from [150], which have been processed and studied in detail in [169].

The number of vertices and edges for the networks is displayed in Table

4.10, and the visualization of reference structures is included in Figure 4.10.
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(a) Visualization of the
“BIOMD0000000332-SNG” network

(b) Visualization of the
“BIOMD0000000356-SNG” network

(c) Visualization of the
“BIOMD0000000340-SNG” network

(d) Visualization of the
“BIOMD0000000056-SNG” network

Figure 4.10: Visualization of four different networks from those selected for the
Species Network Graph domain
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4.2.11 Tweet

The last domain considered in this work is that of Tweeter retweets for

different topics.

Using a selection of the networks referenced in [165, 166, 195], available

at http://networkrepository.com, we have gathered an interesting set of

structures. Each vertex represents a Twitter user ui, while each edge (ua, ub)

indicates that user ua has retweeted user ub on the hashtag involved.

Table 4.11: Tweet Networks

Graph |V | |E|

NT-rt-retweet 96 117
NT-rt-twitter-copen 761 1029
NT-rt assad 2139 2803
NT-rt voteonedirection 2280 2468
NT-rt damascus 3052 3881
NT-rt obama 3212 3427
NT-rt occupy 3225 3964
NT-rt occupywallstnyc 3609 3936
NT-rt tlot 3665 4481
NT-rt israel 3698 4175
NT-rt lebanon 3961 4441
NT-rt alwefaq 4171 7123
NT-rt islam 4497 4616
NT-rt tcot 4547 5516
NT-rt bahrain 4676 8007
NT-rt gop 4687 5536

Graph |V | |E|

NT-rt p2 4902 6031
NT-rt oman 4904 6236
NT-rt libya 5067 5550
NT-rt uae 5248 6394
NT-rt dash 6288 7455
NT-rt saudi 7252 8094
NT-rt ksa 7302 8125
NT-rt mittromney 7974 8597
NT-rt onedirection 7987 8133
NT-rt gmanews 8373 8832
NT-rt http 8917 10318
NT-rt justinbieber 9405 9615
NT-rt barackobama 9631 9826
NT-rt lolgop 9765 10324
NT-rt-pol 18470 48365

The complete set of networks selected for this domain is presented in

Table 4.11, in ascending order of number of vertices. Figure 4.11 includes

a visualization of four representative structures.

http://networkrepository.com
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(a) Visualization of the “NT-rt alwefaq”
network

(b) Visualization of the “NT-rt damascus”
network

(c) Visualization of the “NT-rt uae” net-
work

(d) Visualization of the “NT-rt http” net-
work

Figure 4.11: Visualization of four different networks from those selected for the
Tweet domain
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4.3 A selection of measures

This section details the measures that will be considered in the rest of this

work. They were mainly chosen by their simplicity of calculation, consistent

implementation across different graph tools, and low correlation between

them.

After completing the research of all the complexity measures described

in chapter 2, we could see that many of them are combinations of others,

which can lead to a high correlation. Since our aim will be to classify

networks by means of their complexity, and this could require more or less

detail depending on the dataset considered, we thought it would be better to

have at our disposal a mix of many simple measures instead of few complex

measures that inherently contain some of the simpler ones.

The following measures were chosen to be analyzed, by running them

against all of the networks from the previously presented domains:

• |V | (p. 19)

• |E| (p. 19)

• Maximum Degree (p. 20)

• Diameter (p. 28)

• PathLength (p. 22)

• Closeness Centrality (p. 15)

• Betweenness Centrality (p. 25)

• Eigenvector Centrality (p. 32)

• Offdiagonal Complexity (p. 31)

• Clustering Coefficient (p. 29)

• Global Efficiency (p. 22)

• PageRank (p. 32)

• Codelength (p. 40)

For those measures where the value can be obtained for each vertex, we

propose a series of derived measurements:

• Average



4.3. A SELECTION OF MEASURES 97

• Minimum

• Maximum

• 1st Quartile

• 2nd Quartile (Median)

• 3rd Quartile

• Inter-Quartile Range

4.3.1 Correlation

To ensure that these measures are independent enough between them, we

present now a correlation analysis. For those measures where the value

depends on each vertex, we consider only the average value for all vertices

in the network. The values presented are computed considering Pearson

correlation[157].

First we will review the correlation in each domain, and then compare

how they relate to the overall correlation. A color code has been chosen

to help identify quickly the extreme values. The diagonal in the tables will

be indicated with a teal colored cell, correlations that present an absolute

value between 0.5 and 0.75 will be shown in yellow, and correlations above

that range will be displayed in red. The abbreviations used in the following

figures is presented in Table 4.12.

Table 4.12: Abbreviatons for the Complexity Measures in the Correlation results

|V | → Number of Vertices |E| → Number of edges
CL → Codelength Diam → Diameter
PL → PathLength Betw → Betweenness Centrality
Close → Closeness Centrality GE → Global Efficiency
MD → Maximum Degree OdC → Offdiagonal Complexity
Clust → Clustering Coefficient Eigen → Eigenvector Centrality
PR → PageRank

Figure 4.12 is the first of our correlation tables, presenting the distri-

bution in the Assorted Biological domain. We can observe the reasonable

correlation between number of vertices and edges. The values for PageRank

present a much lower relation with the other complexity measures. The cor-

relation of Offdiagonal Complexity with Maximum Degree is expected, but

it is interesting to observe the strong inverse correlation to both PageRank

and Eigenvector Centrality. There is also a complete correlation between

Eigenvector Centrality and PageRank.
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The subset of Code networks present a strong correlation between vari-

ous complexity measures, as show in Figure 4.13. Despite a lower relation

of number of vertices with the number of edges, they both interact strongly

with Betweenness and Closeness Centrality. They also share a high corre-

lation with PathLength and Diameter. The low correlation between Eigen-

vector Centrality and PageRank is the lowest observed so far.

In Figure 4.14 we present correlations for the Collaboration domain. It

shows a higher value for the relation of number of vertices and vertices to

Diameter and PathLength, while a lower value for that of the first two with

Betweenness and Closeness Centrality.

Figure 4.15 includes the correlations for the Combinatorial DNA Li-

brary Synthesis domain. Apart from the unsurprising correlation between

the number of edges and vertices, we can observe an almost complete cor-

relation between them both and Global Efficiency. We can also observe a

very strong correlation between PathLength (and Betweenness Centrality)

Figure 4.12: Correlation between the studied measures for all networks in the
Assorted Biological domain

Figure 4.13: Correlation between the studied measures for all networks in the
Code domain
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to the network Diameter. This figure presents as well a negative correla-

tion between the values obtained for PageRank and several of the other

complexity measures.

For the networks in the Communication domain, Figure 4.16 presents

Figure 4.14: Correlation between the studied measures for all networks in the
Collaboration domain

Figure 4.15: Correlation between the studied measures for all networks in the
Combinatorial DNA Library Synthesis domain

Figure 4.16: Correlation between the studied measures for all networks in the
Communication domain
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a set of values that is similar in many ways to that observed for the Code

domain. Maximum Degree appears now strongly correlated to number of

vertices and edges, but also to PathLength and Betweenness Centrality.

Figure 4.17: Correlation between the studied measures for all networks in the
Infrastructure domain

Infrastructure networks show a very strong correlation (Figure 4.17) be-

tween half of the complexity measures presented: number of vertices, num-

ber of edges, Codelength, Diameter, PathLength, Betweenness Centrality

and Closeness Centrality. The other values observed and nowhere as high as

these, which might indicate that the physical reality on which the networks

are based might affect the relation between the different properties.

Figure 4.18: Correlation between the studied measures for all networks in the
Metabolic domain

The metabolic networks studied have a correlation distribution for the

studied measures that is strikingly different from that observed so far. In

Figure 4.18 we can observe a very strong correlation between number of ver-

tices to: number of edges, CodeLength, Betweenness Centrality, Maximum

Degree, OffDiagonal Complexity, and a negative correlation to PageRank.

Maximum Degree and OffDiagonal Complexity also present a high correla-
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tion to various other measures. PageRank also present a negative correlation

to more than half of the other measures.

Figure 4.19: Correlation between the studied measures for all networks in the
Reaction Dependency Graph domain

In the case of Reaction Dependency Graphs, we display in Figure 4.19

the results of computing the correlation for the different measures. Except

for a few high values such as Diameter to PathLength or Number of edges to

maximum degree, it is one of the least correlated domains of those reviewed

so far.

Figure 4.20: Correlation between the studied measures for all networks in the
Social domain

Social networks present in Figure 4.20 another scenario that is different

from those previously seen up to now. There is a strong correlation for the

first half of the measures, similar to what was observed for the Infrastructure

domain, but there is a distinct lack of correlation for Closeness Centrality,

Global Efficiency and Maximum Degree to all of the others.

The domain of Species Network Graph has its correlation displayed in

Figure 4.21. The most relevant relations are between Diameter, Path-
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Length, Betweenness and Closeness Centrality. The other measures present

in general a much lower value.

The last domain is that of Tweeter retweets. Figure 4.22 allows a glimpse

at the relatively low correlation in the measures computed for these network

set. Betweenness Centrality is highly correlated to number of vertices and

edges, and also to CodeLength. These last three are also highly correlated

between themselves. But the other interactions are remarkably low.

With all the correlations reviewed per domain, we proceed now to com-

puting the correlation between the measurements for all the networks under

study.

Figure 4.23 is not an average of the values previously presented, but the

computation of the correlation considering all networks as a complete set.

In this final comparison, we observe a relatively low correlation between

the chosen measures, except for number of vertices, number of edges, which

are naturally involved in any other calculation.

Figure 4.21: Correlation between the studied measures for all networks in the
Species Network Graph domain

Figure 4.22: Correlation between the studied measures for all networks in the
Tweet domain
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When reviewing the individual domain correlations, except for Eigenvec-

tor Centrality and PageRank, all other measures had a tendency to have a

relatively small (< 0.75) positive correlation with each other, and negative

against these two. The values were in some cases above 0.8. This could

prove important from a classification perspective, since the correlation pat-

terns for different kind of networks is, itself, different. Thus providing strong

evidence that these preselected set of network features could form a set of in-

formative descriptors for classifying networks automatically. In the general

correlation analysis almost all of these influences seem to be smoothed up

to the point in which it seems that there is almost no influence of measure

over another.

Furthermore, when considering the highly correlated measures in this

last table, they could be seen as candidates for a future reduction in the

number of complexity measures, since they seem to share equivalent values.

But since many of them were more correlated for specific domains, a relation

between them could be instead added to the list of measures to experiment

on. They could very well be used in devising a significant way to distinguish

one domain from another, which is one of the main objectives of this work.

4.3.2 Real Time Complexity

Although Chapter 2 includes an estimated time complexity for all of the

measures selected, the real computing times of an algorithm can vary greatly

depending on the input parameters and the details of its implementation.

When computing the values for the complexity measures for all of the

networks presented, the running time required to compute each of them was

logged. We then considered the total time spent on each measure (the sum

Figure 4.23: Correlation between the studied measures for all networks in all
domains
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Table 4.13: Relative Running Time

Measure Theoretical Time Observed Time

Maximum Degree O(|V |) 0.1%
Diameter O(|V |3) 5.5%
PathLength O(|V |3) 5.5%
Closeness Centrality O(|V |3) 5.5%
Betweenness Centrality O(|V |3) 5.5%
Eigenvector Centrality O(|V |+ |E|) 3.7%
Offdiagonal Complexity O(|E|) 0.4%
Clustering Coefficient O(|V |3) 1.5%
Global Efficiency O(|V |2) 48.8%
PageRank O(|V |+ |E|) 1.2%
Codelength Polynomial 22.3%

of the time spent for all networks on that measure), related to the total

required for all the calculations performed. This relative running time is

presented in Table 4.13. For each of the measures chosen we can compare

the theoretical time (in terms of time complexity), and the percentage of

the total time running observed during the computations.

Even measures that theoretically present a greater time complexity than

others have their real execution times with the opposite relation in some

cases, as can be seen for the Global Efficiency, which has taken almost

half of the running time for all the different measures. One of the possible

reasons for this behavior is that different measures might make assumptions

about the network structure, or be optimal in scenarios where computer

memory is not a factor. After analyzing the usefulness of the measures

in the following chapters, the most promising ones could be subjected to

additional implementation improvements to ensure an overall increase in

performance for the experiments proposed.

4.3.3 Statistics per Network Class

Since we are interested in finding the differentiating factors between net-

works domains, and have so far chosen a set of complexity measures and

networks to apply them to, we focus now on understanding how the values

for those measurements are distributed across the different domains.

This final section of the chapter will look at a series of charts that present

the statistical distribution of the measurements observed. This will allow

us to better know what results are to be expected from the algorithms
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presented in Chapter 3.

The values computed for all networks have been normalized so that,

regardless of domain, all values for each measure will be between 0 and 1.

Furthermore, based on the measurements values, we have determined the

minimum, maximum, median, first and third quartile of each data series,

thus allowing the construction of a “boxplot” chart for each one of the

complexity measures chosen.

Figures 4.24 and 4.25 present the size measures (number of vertices and

number of edges). The extreme values that can be observed for some cat-

egories evidence the need to carefully detect outliers when preparing the

experiments, which will be shown in following chapters.

Figure 4.24: Statistical distribution of the observed values for |V |.The values

computed for all networks have been normalized between 0 and 1. The boxes

span from the first to the third quartile of each data series, with an inner line

representing the median. Lower and upper whiskers represent minimum and

maximum observed values respectively.
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Figure 4.25: Statistical distribution of the observed values for |E|

Although not strictly the subject of this thesis, the figures allow for

some interesting analysis. For example, it can be seen that social networks

present a larger edge to vertex ratio than communication networks, or that

metabolic networks seem to present a compact distribution, since neither

maximum |V | nor |E| are far from the quartile box.

Figure 4.26 displays the values for the Maximum Degree. Communica-

tion, Social and Tweet networks present the most extreme values, and the

Tweet networks are the ones with the higher first quartile, indicating that

the Maximum Degree might be a candidate to help differentiate this domain

from the rest.

Figure 4.26: Statistical distribution of the observed values for Maximum Degree
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Figure 4.27 displays the Diameter of the different networks considered.

Although most of the domain “boxes” are in the same range in the chart,

Metabolic networks stand out with a much higher first quartile, making this

measure an interesting candidate to detect the domain.

Figure 4.27: Statistical distribution of the observed values for Diameter

Figure 4.28 displays the values of the Path Length in each domain. Since

most of them had been show to present a high correlation with the Diameter

in section 4.3.1, it is no surprise to see once again the distribution along the

same values, except for the Metabolic domain, which we can expect to be

identifiable by means of this measure.

Figure 4.28: Statistical distribution of the observed values for PathLength
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Figure 4.29 displays the values for the Codelength measure previously

presented. Despite the fact that no single domain stands in a different

section of the value range, we can see an interesting differentiation in the

distribution of some domains. The quartile box for the Metabolic domain

does not interset with any of those for Combinatorial DNA Library Syn-

thesis, Reaction Dependency Graph nor Species Network Graph. The same

can be said for the Social Domain.

Figure 4.29: Statistical distribution of the observed values for Codelength

Figure 4.30 displays the values for the Offdiagonal Complexity. As in the

previous chart, some clear distinctions appear, that might help an automatic

system break ties when trying to identify different domains. Metabolic, So-

cial and Tweet networks present a separate distribution from networks from

the Combinatorial DNA Library Synthesis, Reaction Dependency Graph

and Species Network Graph domains.
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Figure 4.30: Statistical distribution of the observed values for Offdiagonal Com-

plexity

Figure 4.31 displays the Global Efficiency computed for the different do-

mains. Here, Tweet networks dominate the sprectrum of values observed,

making the rest of the domains indistinguishable. The Combinatorial DNA

Library Synthesis domain is the only other that shows a first quartile that

rises above the base line of the chart, while Metabolic and Reaction Depen-

dency Graph show no variation at all in their value range.

Figure 4.31: Statistical distribution of the observed values for Global Efficiency

We observe now the results of computing the measures for the different

concepts that apply to individual vertices, which has allowed us to consider
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a set of derived measures for each.

Betweenness Centrality will be reviewed first. As before, we present the

normalized value distribution for the domains under study.

Figure 4.32 displays the values for the average Betweenness Centrality.

Code and Social networks present a similar distribution, and the Metabolic

networks display a distribution that slightly distinguishes it from the other

domains.

Figure 4.32: Statistical distribution of the observed values for average Between-

ness Centrality

Figure 4.33 displays the values for the minimum Betweenness Central-

ity. As can be expected from a measure that identified minimum values,

most of the domains present a flat distribution. Only Reaction Dependency

Graph and Species Network Graph have a higher maximum value, but their

complete quartile box remains on the base line of the chart. Figure 4.34

presents a similar scenario for the maximum Betweenness Centrality. Ex-

cept for the Communication and Social networks, the domains present an

equivalent value, which does not allow for discriminating between them.
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Figure 4.33: Statistical distribution of the observed values for minimum Between-

ness Centrality

Figure 4.34: Statistical distribution of the observed values for maximum Between-

ness Centrality

Figure 4.35 displays the values for the median Betweenness Centrality.

Here the Metabolic domain presents a distinctive separation from the others.
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Figure 4.35: Statistical distribution of the observed values for median Between-

ness Centrality

Figure 4.36, which contains the values for the first quartile Betweenness

Centrality, allows for the same observation. In Figure 4.37 the third quartile

Betweenness Centrality is shown. Here the Code networks present a more

varied distribution, overlapping in values with the Metabolic domain, which

means this specific complexity measure might not allow to distinguish be-

tween the two. Finally, Figure 4.38 displays the values for the inter-quartile

range Betweenness Centrality, where Code and Metabolic domains overlap

again, while the other domains present a compact distribution on the lower

range of the observed values.
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Figure 4.36: Statistical distribution of the observed values for first quartile Be-

tweenness Centrality

Figure 4.37: Statistical distribution of the observed values for third quartile Be-

tweenness Centrality
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Figure 4.38: Statistical distribution of the observed values for inter-quartile range

Betweenness Centrality

We focus now our attention on Figures 4.39 to 4.45, where the values

for Closeness Centrality are presented.

In Figure 4.39 the distribution of the average values across all vertices

in each network are presented. We can observe another clear distinction

of the Metabolic networks, and this time Tweet networks are also clearly

distinguishable, since their values are below almost all others. Although

Combinatorial DNA Library Synthesis and Social networks present a more

compact quartile box, they intersect with other domains, which might mean

this measure will not be enough to set them apart.
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Figure 4.39: Statistical distribution of the observed values for average Closeness

Centrality

Figure 4.40 displays minimum Closeness Centrality for the chosen do-

mains. As with Betweenness Centrality, most categories present a low value

range for this measure. The domain that stands out is Reaction Dependency

Graph, with the both median an third quartile visible in the chart. Figure

4.41 displays a varied distribution for maximum Closeness Centrality, with

only Metabolic networks standing out.

Figure 4.40: Statistical distribution of the observed values for minimum Closeness

Centrality
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Figure 4.41: Statistical distribution of the observed values for maximum Closeness

Centrality

Figure 4.42, which shows median Closeness Centrality, allows a clear

distinction of the Metabolic domain. It also presents Tweet networks as

a compact set of values in the lower value range, which allows it to be

distingued from the other domains. Combinatorial DNA Library Synthesis

and Code networks present a quartile box that does not overlap, allowing

this measure to be a candidate to discriminate between the two.

Figure 4.42: Statistical distribution of the observed values for median Closeness

Centrality

In Figure 4.43 the first quartile Closeness Centrality has Metabolic net-
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works once again represented in a distant segment of the values with respect

to the other domains. Combinatorial DNA Library Synthesis networks also

stand out, since they are almost out of the range observed for Code, Collab-

oration, Communication and Reaction Dependency Graph domains. Tweet

networks are condensed on the bottom value of the chart.

Figure 4.43: Statistical distribution of the observed values for first quartile Close-

ness Centrality

Figure 4.44 is for the third quartile Closeness Centrality. Metabolic and

Tweet network are completely apart from each other, with not even an

overlap in the extreme values.

Figure 4.44: Statistical distribution of the observed values for third quartile Close-

ness Centrality
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Finally, Figure 4.45 displays the values for the inter-quartile range Close-

ness Centrality. This measure is the least useful of those for this centrality,

since there is overlap for almost all domains, with only Metabolic and Tweet

networks presenting a slight distinction in their value ranges.

Figure 4.45: Statistical distribution of the observed values for inter-quartile range

Closeness Centrality

To review the values obtained when measuring Clustering Coefficient,

we display them in Figures 4.46 to 4.52.

We begin with Figure 4.46, where the average values for Clustering Co-

efficient allow a clear distinction of networks from the Reaction Dependency

Graph domain. Combinatorial DNA Library Synthesis and Metabolic net-

works are apart from the other domains in their own flat distribution on the

bottom values of the chart, with a similar distribution observed for Tweet

networks.
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Figure 4.46: Statistical distribution of the observed values for average Clustering

Coefficient

Figure 4.47 shows the minimum values observed for Clustering Coeffi-

cient, where Reaction Dependency Graph is the only domain to stand out

in its general distribution.

Figure 4.47: Statistical distribution of the observed values for minimum Cluster-

ing Coefficient

The maximum values presented in Figure 4.48 shows a completely dif-

ferent scenario. Combinatorial DNA Library Synthesis and Metabolic net-

works present only a small distribution with low values, Infrastructure and

Species Network Graph networks both contain most values below the low
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half of the observed values, while the other domains show predominantly to

be distributed on the upper half of the values. The Reaction Dependency

Graph domain seems to present most of its networks with the maximum

value.

Figure 4.48: Statistical distribution of the observed values for maximum Cluster-

ing Coefficient

Figure 4.49, with the median values for Clustering Coefficient, displays

a flat distribution of the Combinatorial DNA Library Synthesis, Metabolic

and Tweet domains, a common value distribution for the other networks,

with a lower overlap for Reaction Dependency Graph only in the lower

values. A similar scenario is displayed in Figures 4.50 and 4.51, which show

the first and third quartile values respectively. The inter-quartile range of

the computed values for Clustering Coefficient, shown in Figure 4.52, keeps

the flat distribution for Combinatorial DNA Library Synthesis, Metabolic

and Tweet networks, but has a less clear distinction in the distribution of

Reaction Dependency Graph.
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Figure 4.49: Statistical distribution of the observed values for median Clustering

Coefficient

Figure 4.50: Statistical distribution of the observed values for first quartile Clus-

tering Coefficient
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Figure 4.51: Statistical distribution of the observed values for third quartile Clus-

tering Coefficient

Figure 4.52: Statistical distribution of the observed values for inter-quartile range

Clustering Coefficient

Figures 4.53 to 4.59 contain the distribution for the different measures

related to Eigenvector Centrality.

The average values are presented in Figure 4.53. Reaction Dependency

Graph and Species Network Graph domains show a similar distribution,

with little overlap to the other domains. Combinatorial DNA Library Syn-

thesis networks are observed to occupy the higher value range.
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Figure 4.53: Statistical distribution of the observed values for average Eigenvector

Centrality

The minimum values, displayed in Figure 4.54 show an almost com-

plete distribution of the domains in the lower values of the chart, with

only Reaction Dependency Graph reaching to slightly higher values. Fig-

ure 4.55 presents the maximum value distribution, where all networks have

presented the maximum possible value. This is expected since the measure

under study is in itself an average, which means that some vertex provides

the maximum normalized Eigenvector Centrality, and thus is detected when

considered for this chart.

Figure 4.54: Statistical distribution of the observed values for minimum Eigen-

vector Centrality
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Figure 4.55: Statistical distribution of the observed values for maximum Eigen-

vector Centrality

The median values presented in Figure 4.56 are distributed similarly to

the average values previously presented. Figure 4.57 shows that the first

quartile values present a more compressed distribution of the same kind.

Figure 4.56: Statistical distribution of the observed values for median Eigenvector

Centrality
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Figure 4.57: Statistical distribution of the observed values for first quartile Eigen-

vector Centrality

In Figure 4.58, the third quartile values for Eigenvector Centrality can

be seen to keep a distinctive value range for Combinatorial DNA Library

Synthesis networks, but in this chart networks in the Reaction Dependency

Graph overlap with them. A similar analysis can be observed for the inter-

quartile range, shown in Figure 4.59.

Figure 4.58: Statistical distribution of the observed values for third quartile

Eigenvector Centrality
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Figure 4.59: Statistical distribution of the observed values for inter-quartile range

Eigenvector Centrality

The final set of complexity measures that have been computed for all ver-

tices in all networks is PageRank. Figures 4.60 to 4.66 contain the different

charts that study the values observed.

Figure 4.60 presents the value of the averaged PageRank values. There

is a strong overlap in the values for all domains. This is mainly due to the

fact that Infrastructure networks present a wider range of values, covering

that observed for the others. The minimum and maximum PageRank dis-

tributions, shown in Figures 4.61 and 4.62 respectively, have an equivalent

distribution for the different domains.

Figure 4.60: Statistical distribution of the observed values for average PageRank
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Figure 4.61: Statistical distribution of the observed values for minimum PageR-

ank

Figure 4.62: Statistical distribution of the observed values for maximum PageR-

ank

Figures 4.63, 4.64, 4.65 and 4.66 repeat the pattern mentioned for the

previous charts. They each display the values for median, first quartile,

third quartile and inter-quartile range for the computed PageRank of the

vertices.
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Figure 4.63: Statistical distribution of the observed values for median PageRank

Figure 4.64: Statistical distribution of the observed values for first quartile

PageRank
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Figure 4.65: Statistical distribution of the observed values for third quartile

PageRank

Figure 4.66: Statistical distribution of the observed values for inter-quartile range

PageRank

From all of the distributions observed for the PageRank measure, the

most distinctive feature is the fact that Species Network Graph and Re-

action Dependency Graph domains, while indistinguishable between them-

selves, present little to no overlap to the other domains, except for Infras-

tructure.
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4.4 Review

This chapter began with a list of 11 proposed domains, for studying a set of

networks which were used by researchers in each of them, giving us 240 in

total to analyze. Some of these domains share some degree of similarity in

their field of study, like Reaction Dependency Graphs and Species Network

Graphs, while others represent a completely separate concept, like Tweet

networks.

After presenting each of them, and providing some visualization exam-

ples, a selection of 13 measures from those presented in Chapter 2 was

made. Benefiting from the fact that some of them are vertex measures, we

derived additional graph measures for their average, maximum, minimum,

and quartile distributions, reaching in total 43 measures for each network.

These values, which were found as easy to compute, but with low over-

all correlation between them, will be used in following chapters to build

experiments that apply classification algorithms, with the final objective

of helping us determine if network structure can be used to identify the

domain to which each belongs.

Although a variety of networks properties and features have been re-

ported for a number of domains in the literature, to the best of our knowl-

edge, no previous attempt has been made up to now to look in detail at the

correlation between several of these measures within a domain data set, and

across data sets from different domains. Thus the results presented in this

chapter represent the addition of new knowledge, and could be used in the

future to guide the first steps of even larger data-driven network automated

classification.
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Caṕıtulo 4: Dominios de redes y métricas de

complejidad

Este caṕıtulo tiene dos objetivos. El primero es obtener suficientes re-

des de distintos dominios, preferentemente de situaciones del mundo real, y

aplicar una clasificación manual que las separe de acuerdo a su origen. En

caṕıtulos siguientes intentaremos usar clasificación automática para deter-

minar si las redes de un mismo dominio comparten valores similares para

alguna de las métricas de complejidad analizadas en el caṕıtulo 2.

El segundo objetivo es seleccionar un subconjunto de las métricas pre-

sentadas en la sección 2.4. Estos valores son calculados para todas las redes

elegidas, y se presenta información estad́ıstica para cada caso. Observando

la distribución de los valores analizamos la factibilidad de usarlos para dis-

criminar entre los distintos dominios estudiados. En los próximos caṕıtulos

estos valores calculados serán el valor de entrada de los algoritmos de clasi-

ficación, los cuales intentarán distinguir automáticamente el dominio al que

pertenece cada red.

En la sección 4.2 se presentan los 11 dominios elegidos:

• Biológicas varias

• Código

• Colaboraciones

• Śıntesis automática de bibliotecas de ADN

• Comunicación

• Infraestructura

• Metabólicas

• Grafos de dependencia de reacciones

• Sociales

• Grafos de redes de especies

• Tweets
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En total se proponen 240 redes para analizar. Algunos dominios presen-

tan similitudes en su campo de estudio, como los grafos de dependencia de

reacciones (RDG) y los grafos de redes de especies (SNG). Por otro lado,

otros dominios son completamente independientes, como el caso de las redes

en base a Tweets.

La sección 4.3 presenta las 13 métricas elegidas, y aprovechando que

algunas de ellas aplican a cada vértice en un grafo, se derivan métricas

adicionales en base al promedio, mı́nimo, máximo, y cuartiles de las mismas.

En total disponemos de 43 métrias para cada grafo.

Se presenta un análisis de la correlación de los valores obtenidos por

cada dominio, aśı como también considerando el total de grafos.

Luego realizamos una comparación de los tiempos de procesamiento

teóricos de las métricas con el tiempo relativo total que fue necesario para

calcularlas.

Finalmente, presentamos gráficos “boxplot” donde para cada métrica

se compara la distribución estad́ıstica de los valores obtenidos, agrupados

por dominio. Observando los solapamientos en estas imágenes es posible

vaticinar la posibilidad (o imposibilidad) de que un algoritmo de clasi-

ficación pueda diferenciar los dominios de grafos en base a las métricas

calculadas.



Chapter 5

Validating Classification Ability

5.1 Description

In this chapter we propose a custom classification of automatically generated

networks. They are to be used to validate the capacity of the proposed

algorithms, regarding their ability to offer an insightful partitioning of the

data provided to them.

First we will detail the source of a technique that allows creating arbi-

trary artificial instances of networks, where some of their attributes can be

specified.

Then we will review the statistics for the generated networks, and fi-

nally they will be analyzed using the algorithms proposed in Chapter 3.

The results of these classification experiments will set the expectations for

equivalent processes, to be applied in the next chapter, to the real network

reviewed in Section 4.2.

5.2 Creating Artificial Networks

5.2.1 CiGRAM

In order to ensure that the ideas mentioned so far as regards network mea-

surements and classification algorithms are sound, we need to test them in

a “controlled” environment. This implies that before applying any process

to the networks researched and presented in Section 4.2, the algorithms

should be tested against networks where the measures and classes are well

organized and known beforehand, without any room for misclassification in

the original sources, nor misinterpretation of vertex or edges data. It would

133
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also be beneficial that this initial benchmark set of networks be based on a

scheme that allows the generation of as many networks as desired, prefer-

ably allowing any number of networks with similar characteristics to be

built, so that we are allowed to test different aspects of the ideas proposed.

Fortunately, there is such a way. We define now CiGRAM, as presented

at http://cigram.ico2s.org/.

Definition 20. CiGRAM (Circular Gaussian Random grAph Model)

is a generator for complex networks with configurable topology. It is able to

model flexible node degree distributions, degree assortativity and community

structure. Its overreaching objective is to create graphs topologically similar

to real-world networks.

With this utility, random networks can be built, always ensuring that

some specific properties are obtained.

• Number of nodes

• Graph density [0, 1]

• Number of communities

• Assortativity [−5, 5]

To give an idea of the different structures that can be obtained using

CiGRAM, Figure 5.1 shows an assortment of networks with different sizes

built with the application. In Figure 5.2 the variation when density changes

can be observed. As the number of communities changes, instances like

those presented in Figure 5.3 are built. The effect of assortativity is shown

in Figure 5.4.

Figure 5.1: Examples of CiGRAM networks with different number of nodes

Also, for more advanced experiments, the following can also be defined:

http://cigram.ico2s.org/
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Figure 5.2: Examples of CiGRAM networks with different density

Figure 5.3: Examples of CiGRAM networks with different number of communities

Figure 5.4: Examples of CiGRAM networks with different assortativity

• Standard deviation of the node positions

• Standard deviation of the scores of each node position

• Fraction of edges between communities [0, 1]

• Probability of community overlapping [0, 1]

• Standard deviation of the community positions

• Standard deviation of the scores of each community position
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Apart from using the online visual tool to create networks, the source

code is available, which allows for custom tools to be built upon this gen-

erator.

5.2.2 Generated Networks in Custom Classes

In order to benefit from the features provided by CiGRAM, while keeping

a manageable number of classes and instances to analyze, we propose the

creation of the following networks, detailed in Table 5.1.

Table 5.1: Artificial Networks to be created with CiGRAM

Attribute Possible Values

Number of Vertices 100, 1000
Graph Density 0.1, 0.9
Number of Communities 10, 50
Random Seed 1...20

From the values in the table, it can be seen that 3 attributes will vary

between 2 possible values, giving raise to 8 different classes, where each

is represented by 20 different instances. With this simple configurations,

we have now access to a set of 160 networks that present a similar distri-

bution to the researched ones presented in Section 4.2. This is crucial to

our experiments, since by considering an equivalent number of “domains”,

each with a comparable number of networks as those presented in previous

chapters for the real networks, will allow us to validate the capabilities of

the classification algorithms to work in such an environment and produce

useful results. With these artificial networks in hand, we can proceed to

testing our ideas using the algorithms detailed in Section 3.3.

5.3 Generated Networks Statistics

Figure 5.5 presents the correlation between the selected measures for all of

the networks generated with the ranges defined in the previous section.

As can be seen, there is a higher level of dependency between these

values, owing to the fact that they were created with a strict set of pa-

rameters. This fact must be considered when analyzing any differences in

behavior between the artificial networks vs that of the researched ones.

Figures 5.6 to 5.15 allow us to review the distribution among the pro-

posed artificial classes for some of the chosen measures. The domains pre-

sented in the charts correspond to the 8 parameters variations proposed.
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Figure 5.5: Correlation between the selected measures for the generated networks

They are named according to the following schema:

n[Number of Vertices]-d[Graph Density]-k[Number of Communities]

Figure 5.6 shows the values for Diameter. Here we can begin to observe

how a set of artificially built networks can create a distinct set of measures.

The values for the classes with density 0.9 all appear around the lower

quarter of the chart, with the classes that have density 0.1 appear over them,

with even some distance between each. A classification algorithm that could

take advantage of these value distribution could clearly distinguish at least

2 artificial classes, based on their density.

Figure 5.6: Statistical distribution of the observed values for Diameter in the

artificial networks generated

Figure 5.7 shows the values for PathLength. Because the density was

one of the parameters applied to generate the different classes, once again
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we can observe a distinct distribution of the values in thie measure. We can

also appreciate that there is almost no overlap in values between the classes

that have 100 and 1000 vertices.

Figure 5.7: Statistical distribution of the observed values for PathLength in the

artificial networks generated

Figure 5.8 present the distribution of the Codelength measure for the

artificial networks. These results will surely be a boon for our experiments,

since there is a clear step-increase for each class. We can propose now that

Codelength allows to distinguish artificial networks of different number of

vertices and densities, although it does not easily differentiate them by

number of communities.
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Figure 5.8: Statistical distribution of the observed values for Codelength in the

artificial networks generated

Figure 5.9 presents the values for Offdiagonal Complexity. Although

there is overlap for all classes with the same number of vertices, this mea-

sures provides a clear way of distinguishing at least 2 groupings of classes:

those with 100 and those with 1000 vertices. It is a great example of a

measure that provides a solution to part of the classification problem, sug-

gesting that a combination of complexity measures with low correlation

might provide a good classification ability.

Figure 5.9: Statistical distribution of the observed values for Offdiagonal Com-

plexity in the artificial networks generated
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The Global Efficiency of the artificial networks, presented in Figure 5.10,

shows a clear distinction between the classes, but only when their density

is low. We can observe that there is almost no overlap in the quartile

boxes for the classes with density 0.1, but all networks with density .9 are

given the same value. This raises the question of the range of values in the

artificial generation parameters that might create networks that are clearly

distinguishable, and those that might confuse a classification algorithm.

Figure 5.10: Statistical distribution of the observed values for Global Efficiency

in the artificial networks generated

Figure 5.11 shows the values for Betweenness Centrality of the networks,

considering the average value over all vertices. We can observe than only

the classes with density 0.1 and 1000 vertices are away from the general

distribution.
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Figure 5.11: Statistical distribution of the observed values for average Between-

ness Centrality in the artificial networks generated

The distribution averaged Closeness Centrality is shown in Figure 5.12,

with a striking resemblance to PathLength. This is not surprising since the

correlation analysis have already pointed out the similarities between both.

Figure 5.12: Statistical distribution of the observed values for average Closeness

Centrality in the artificial networks generated

Figure 5.13 shows the values for Clustering Coefficient, averaged over all

vertices for each network. There is an almost perfect match in the quartiles

boxes for the classes that share number of vertices and diameter. This allow

to conjecture that the number of communities in a network does not affect
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the Clustering Coefficient, or at least not its average.

Figure 5.13: Statistical distribution of the observed values for average Clustering

Coefficient in the artificial networks generated

Average Eigenvector Centrality, which had also been shown to present a

high correlation (although negative) to PathLength, is presented in Figure

5.14. This measure seems to allow only to distinguish the density of the

different classes.

Figure 5.14: Statistical distribution of the observed values for average Eigenvector

Centrality in the artificial networks generated

Finally, we present in Figure 5.15 the values for average PageRank. From

the correlation analysis we could already predict some of the distribution
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observed here, since it has a strong negative correlation to the number of

vertices and also to the Offdiagonal Complexity.

Figure 5.15: Statistical distribution of the observed values for average PageRank

in the artificial networks generated

The parameters that guide the construction of these networks seem to

impose a structure that is reflected in a greater rigidity for most of the

values presented. This fact, far from being a complication, allows a clearer

view of the possibility of classifying networks via the measurement of the

complexity measures proposed. If an algorithm such as those proposed in

chapter 3 is to discriminate between families of instances with attributes in

defined ranges, then the first step must be to confirm that they can do so

with the artificial networks presented here.

We must observe in general that for a given number of vertices, when the

density is specified at 0.9, the distribution charts presented seem to have

almost no difference between the variation in number of communities. This

gives way to the possibility that each of those two pair of classes might not

present enough differences when reduced to the measures under study, that

would allow them to be differentiated.

5.4 Learning to Classify Artificial Networks

With the instances created and their statistics reviewed, it is time to put

these artificial networks under the scrutiny of the classification algorithms,

to evaluate their learning abilities.
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In order to ensure a consistent and reproducible environment, where all

of the proposed classification algorithms are available, we will make use of

Keel.

Definition 21. KEEL (Knowledge Extraction based on Evolution-

ary Learning)[6] is an open source Java software tool that can be used for

a large number of different knowledge data discovery tasks. It is freely avail-

able at http: // www. keel. es/ .

With a software platform as Keel, we can easily build experiments by

providing the instances of the classification problem described, then ask it

to apply different algorithms. All of the classification techniques in Section

3.3 are included.

The instances presented to the classification algorithms must contain all

the information of the complexity measures computed for each network in

the different domains/classes. To achieve this, we will convert each network

to a row in the input files. Each row will indicate the value for each of the

measures computed for the given network, and the assigned class/domain

at the end. With a list of all such instance rows, we can proceed to use Keel

as a platform for executing the classification algorithms.

Since some of the implementations proposed make use of a seed for

pseudo-random behavior, the results presented will be an average of 250

successive runs of each algorithm. To analyze the statistical significance

of the results obtained, we will also provide a histogram for the testing

accuracy observed and compare it to either (1) a uniform distribution (for

non-stochastic results) or (2) an equivalent normal distribution according

to its mean and standard deviation (for stochastic results).

Because the objective of this work is to confirm the plausibility of apply-

ing classification techniques to learn about networks via their complexity

measures, we will restrict the experiments to the simpler variants of the

algorithms reviewed. Keel provides a wide range of more complex imple-

mentations that might allow to improve on our results, as well as other clas-

sification algorithms that might also be suited for the experiments. Such a

task is a possible focus of future research.

From the algorithms offered, we propose to create the following experi-

ments, listed in Table 5.2.

The parameters used for each algorithm are left at their defaults as

proposed by Keel. They are listed next in Table 5.3.

To build the training and testing sets, we will apply Keel’s experiment

building feature. The 20 instances for each of the 8 artificial classes provide

http://www.keel.es/
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Table 5.2: Keel algorithms to classify our CiGRAM networks

Full Name Short Name Reference

K-Nearest Neighbors Classifier KNN-C [47]
Improved KNN Condensation IKNN-C [205]
C-SVM C SVM-C [45]
NU-SVM NU SVM-C [172]
Bioinformatics-oriented hierarchical
evolutionary learning

BioHel-C [9]

Table 5.3: Parameters used for the Keel algorithms

Algorithm Parameter Value

KNN-C K Value 1
Distance Function Euclidean

IKNN-C Gamma rate with 0.1
respect to the number
of instances of
the minority class
Xi multiplicative factor 0.2
Xi exponential factor −0.5
Distance Function Euclidean

C SVM KERNELtype RBF
C 100.0
eps 0.001
degree 1
gamma 0.01
coef0 0.0
nu 0.1
p 1.0
shrinking 1

NU SVM KERNELtype RBF
C 1000.0
eps 0.001
degree 10
gamma 0.01
coef0 0.0
nu 0.1
p 1.0
shrinking 1

Algorithm Parameter Value

BioHEL-C defClass disabled
popSize 100
selectAlg tournament

WOR
tournamentSize 1
crossoverProbability 1.6
mutationProbability 1.6
elitismEnabled TRUE
numIterations 100
numRepetitions 1
Learning
generalizeProbability 1.1
specializeProbability 1.1
winMethod ilas
numStrataWindowing 1
numStages 1
smartInitMethod TRUE
classWiseInit TRUE
probOne 1.75
useMDL TRUE
numIterationsMDL 10
initialTheory 1.01
LengthRatio
mdlWeightRelaxFactor 1.9
coverageBreakpoint 1.1
coverageRatio 1.9

us with a total of 160 collection of inputs. The training set will be built by

taking 15 of the 20 instances for each class, while the remaining 5 will be

grouped into a testing set.

One of the ways in which we can observe the classification capabilities

of the different algorithms is using the confusion matrices obtained after

running each of them. Each cell (r, c) of the matrix presents the percentage

of instances of the class determined by row r that were assigned the class

specified by column c. To simplify reading the results, the classes are pre-

sented with the simplified names shown in Table 5.4, keeping the order in

which they were presented in the statistical distribution charts. The next

section will then provide a summary of the exact values for classification
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accuracy.

Table 5.4: Simplified names for the artificial classes

Full Name Short Name

n100-d0.1-k10 Class1
n100-d0.1-k50 Class2
n100-d0.9-k10 Class3
n100-d0.9-k50 Class4
n1000-d0.1-k10 Class5
n1000-d0.1-k50 Class6
n1000-d0.9-k10 Class7
n1000-d0.9-k50 Class8

Table 5.5: Training Set Confusion Matrix for KNN-C for CiGRAM networks

Class1 Class2 Class3 Class4 Class5 Class6 Class7 Class8

Class1 100% 0% 0% 0% 0% 0% 0% 0%
Class2 0% 100% 0% 0% 0% 0% 0% 0%
Class3 0% 0% 33% 67% 0% 0% 0% 0%
Class4 0% 0% 47% 53% 0% 0% 0% 0%
Class5 0% 0% 0% 0% 100% 0% 0% 0%
Class6 0% 0% 0% 0% 0% 100% 0% 0%
Class7 0% 0% 0% 0% 0% 0% 87% 13%
Class8 0% 0% 0% 0% 0% 0% 20% 80%

Table 5.6: Testing Set Confusion Matrix for KNN-C for CiGRAM networks

Class1 Class2 Class3 Class4 Class5 Class6 Class7 Class8

Class1 100% 0% 0% 0% 0% 0% 0% 0%
Class2 0% 100% 0% 0% 0% 0% 0% 0%
Class3 0% 0% 20% 80% 0% 0% 0% 0%
Class4 0% 0% 60% 40% 0% 0% 0% 0%
Class5 0% 0% 0% 0% 100% 0% 0% 0%
Class6 0% 0% 0% 0% 0% 100% 0% 0%
Class7 0% 0% 0% 0% 0% 0% 100% 0%
Class8 0% 0% 0% 0% 0% 0% 60% 40%

Table 5.5 shows the confusion matrix for the training set of the KNN-

C algorithm, while table 5.6 presents the values for the testing set. They

present a promising scenario, since there is an mix up when classifying
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Class3 and Class4, and another between Class7 and Class8. This differ-

ence is more significant in the training than in the testing set of instances,

most likely due to the higher number of samples in the first case which allow

a more precise result. In general terms, it seems that the classification has

been possible.

Figure 5.16: Histogram for KNN-C testing accuracies of CiGRAM networks. A
uniform result is produced due to the lack of pseudo-random numbers in the
algorithm.

The testing accuracy distribution histogram is presented in Figure 5.16.

Here we can confirm a uniform distribution of the values, since the algorithm

does not make use of pseudo-random numbers.

Table 5.7: Training Set Confusion Matrix for IKNN-C for CiGRAM networks

Class1 Class2 Class3 Class4 Class5 Class6 Class7 Class8

Class1 87% 13% 0% 0% 0% 0% 0% 0%
Class2 7% 93% 0% 0% 0% 0% 0% 0%
Class3 0% 0% 33% 67% 0% 0% 0% 0%
Class4 0% 0% 53% 47% 0% 0% 0% 0%
Class5 0% 0% 0% 0% 93% 0% 0% 7%
Class6 0% 0% 0% 0% 100% 0% 0% 0%
Class7 0% 0% 0% 0% 0% 0% 53% 47%
Class8 0% 0% 0% 0% 0% 0% 33% 67%

In Tables 5.7 and 5.8 the training and testing results for the IKNN-C

variant are presented. This algorithm shows similar values, but a reduction

in the accuracy appears due to the complete missclassification of Class6 in-

stances as belonging to Class5. Also, both training and testing sets present

some missclassifications between Class1 and Class2.
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Table 5.8: Testing Set Confusion Matrix for IKNN-C for CiGRAM networks

Class1 Class2 Class3 Class4 Class5 Class6 Class7 Class8

Class1 80% 20% 0% 0% 0% 0% 0% 0%
Class2 0% 100% 0% 0% 0% 0% 0% 0%
Class3 0% 0% 40% 60% 0% 0% 0% 0%
Class4 0% 0% 60% 40% 0% 0% 0% 0%
Class5 0% 0% 0% 0% 100% 0% 0% 0%
Class6 0% 0% 0% 0% 100% 0% 0% 0%
Class7 0% 0% 0% 0% 0% 0% 100% 0%
Class8 0% 0% 0% 0% 0% 0% 60% 40%

Figure 5.17: Histogram for IKNN-C testing accuracies of CiGRAM networks.
Since all runs provided the same result, the observed values present a uniform
distribution.

Figure 5.17 confirms that this algorithm is also deterministic in its re-

sults.

Table 5.9: Training Set Confusion Matrix for C SVM-C for CiGRAM networks

Class1 Class2 Class3 Class4 Class5 Class6 Class7 Class8

Class1 100% 0% 0% 0% 0% 0% 0% 0%
Class2 0% 100% 0% 0% 0% 0% 0% 0%
Class3 0% 0% 93% 7% 0% 0% 0% 0%
Class4 0% 0% 67% 33% 0% 0% 0% 0%
Class5 0% 0% 0% 0% 100% 0% 0% 0%
Class6 0% 0% 0% 0% 0% 100% 0% 0%
Class7 0% 0% 0% 0% 0% 0% 87% 13%
Class8 0% 0% 0% 0% 0% 0% 27% 73%

When applying the Support Vector Machine implementation present in
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Table 5.10: Testing Set Confusion Matrix for C SVM-C for CiGRAM networks

Class1 Class2 Class3 Class4 Class5 Class6 Class7 Class8

Class1 100% 0% 0% 0% 0% 0% 0% 0%
Class2 20% 80% 0% 0% 0% 0% 0% 0%
Class3 0% 0% 100% 0% 0% 0% 0% 0%
Class4 0% 0% 80% 20% 0% 0% 0% 0%
Class5 0% 0% 0% 0% 100% 0% 0% 0%
Class6 0% 0% 0% 0% 0% 100% 0% 0%
Class7 0% 0% 0% 0% 0% 0% 80% 20%
Class8 0% 0% 0% 0% 0% 0% 40% 60%

Keel as C SVM-C we obtain the training and testing outputs displayed in

tables 5.9 and 5.10 respectively. It shows a stable result, comparable to

that observed for the first algorithm. There is again a partial misclassifica-

tion between Class3 and Class4, and there is also some confusion between

Class7 and Class8. It is convenient to remember that the classes were gen-

erated with a simple scheme that was not intended to provide any specific

complication for the algorithms. Moreover, the fact that all networks are

compressed to the same number of measures means that it is not necessarily

more difficult to differentiate between small networks that it is larger ones.

Figure 5.18: Histogram for C SVM-C testing accuracies of CiGRAM networks

Although the algorithm, as offered in Keel, provides the possibility of

indicating a random seed, we can observe in Figure 5.18 that the results

obtained do no deviate from one single outcome, ensuring a statistical sig-

nificant value.

In order to analyze a variant of Support Vector Machines, NU SVM-C

is considered next. Table 5.11 contains the confusion matrix for the training

set and Table 5.12 the one for the testing set. The outcome is not that dif-
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Table 5.11: Training Set Confusion Matrix for NU SVM-C for CiGRAM networks

Class1 Class2 Class3 Class4 Class5 Class6 Class7 Class8

Class1 100% 0% 0% 0% 0% 0% 0% 0%
Class2 0% 100% 0% 0% 0% 0% 0% 0%
Class3 0% 0% 60% 40% 0% 0% 0% 0%
Class4 0% 0% 47% 53% 0% 0% 0% 0%
Class5 0% 0% 0% 0% 100% 0% 0% 0%
Class6 0% 0% 0% 0% 0% 100% 0% 0%
Class7 0% 0% 0% 0% 0% 0% 20% 80%
Class8 0% 0% 0% 0% 0% 0% 7% 93%

Table 5.12: Testing Set Confusion Matrix for NU SVM-C for CiGRAM networks

Class1 Class2 Class3 Class4 Class5 Class6 Class7 Class8

Class1 100% 0% 0% 0% 0% 0% 0% 0%
Class2 20% 80% 0% 0% 0% 0% 0% 0%
Class3 0% 0% 80% 20% 0% 0% 0% 0%
Class4 0% 0% 60% 40% 0% 0% 0% 0%
Class5 0% 0% 0% 0% 100% 0% 0% 0%
Class6 0% 0% 0% 0% 0% 100% 0% 0%
Class7 0% 0% 0% 0% 0% 0% 80% 20%
Class8 0% 0% 0% 0% 0% 0% 20% 80%

ferent from the basic implementation, most likely because the improvement

in this version is focused on allowing a finer tuning of the situation, and we

are explicitly avoiding such customization for now, running only with the

default values included in Keel.

Figure 5.19: Histogram for NU SVM-C testing accuracies of CiGRAM networks

As for the previous implementation, the outcome presented in Figure
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5.19 is that of a constant result across all runs of the experiment.

Table 5.13: Training Set Confusion Matrix for BioHEL-C for CiGRAM networks

Class1 Class2 Class3 Class4 Class5 Class6 Class7 Class8

Class1 100% 0% 0% 0% 0% 0% 0% 0%
Class2 0% 100% 0% 0% 0% 0% 0% 0%
Class3 0% 0% 91% 9% 0% 0% 0% 0%
Class4 0% 0% 12% 88% 0% 0% 0% 0%
Class5 0% 0% 0% 0% 100% 0% 0% 0%
Class6 0% 0% 0% 0% 0% 100% 0% 0%
Class7 0% 0% 0% 0% 0% 0% 98% 2%
Class8 0% 0% 0% 0% 0% 0% 1% 99%

Table 5.14: Testing Set Confusion Matrix for BioHEL-C for CiGRAM networks

Class1 Class2 Class3 Class4 Class5 Class6 Class7 Class8

Class1 96% 2% 1% 1% 0% 0% 0% 0%
Class2 20% 80% 0% 0% 0% 0% 0% 0%
Class3 0% 0% 55% 45% 0% 0% 0% 0%
Class4 0% 0% 41% 59% 0% 0% 0% 0%
Class5 0% 0% 0% 0% 98% 2% 0% 0%
Class6 0% 0% 0% 0% 10% 90% 0% 0%
Class7 0% 0% 0% 0% 0% 0% 83% 16%
Class8 2% 0% 0% 0% 0% 0% 23% 75%

Finally, we are left with Tables 5.13 and 5.14, which show the accuracy

when classifying instances in the training and testing sets while running

BioHEL-C. Although the training set presents a significant improvement

over the results observed when applying the other algorithms, we see that

the testing set still creates some confusion. We must remember here that

the values presented are an average over 250 runs, where both higher and

lower classification performances were observed.

In Figure 5.20 a histogram is presented with the different values ob-

tained for the testing accuracy of the repeated experimental attempts. The

chart also presents an overlap simulation of a normal distribution with the

equivalent mean and standard deviation observed (79.48% and 4.47% re-

spectively).

Despite the slight misclassifications, we must point out that with the

right tool, and the correct parameters, it has been possible to obtain a good

classification accuracy with all of the algorithm families proposed.
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Figure 5.20: Histogram for BioHEL-C testing accuracies of CiGRAM networks

The classes that cause more degradation in the overall accuracy are

Class3, which is confused with Class4, and Class7, often mixed with

Class8. By reviewing Table 5.4, we can reinterpret these results. n100 −

d0.9−k10 gets confused with n100−d0.9−k50 and n1000−d0.9−k10 with

n1000− d0.9− k50. These means that the algorithms are having trouble in

differentiating networks with different number of communities when their

density is higher. This comes as no surprise when comparing the results

obtained with the statistical distribution charts presented in Section 5.3,

where these pairs were presented on the same range of values for all the

measures under study, even presenting only a very compact quartile box,

which means that most networks in these classes gave similar values.

5.5 Results for the Artificial Networks

After considering all the tables presented in the previous section, we can now

build a detail of the observed accuracy for each algorithm. The P -value pre-

sented was computed using a Friedman test. Table 5.15 shows these values.

We have already observed that KNN-C and IKNN-C show no classification

ability with the instances provided, that C SVM-C and NU SVM-C share

similar values in both training and testing accuracy, and that BioHEL-C

has an even higher accuracy when training, but no improvement over the

Support Vector Machine algorithms when considering its testing accuracy.

With these results, we can be confident in continuing the proposed ideas

of classifying networks by means of their complexity measures, this time

applying the algorithms to the real networks researched and presented in

Section 4.2.

One final detail that is of interest with the results produced by the
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Table 5.15: Classification Accuracy for the Artificial Networks

KNN-C IKNN-C C SVM-C NU SVM-C BioHEL-C

Training Set 81.67% 59.17% 85.33% 78.33% 96.89%
Testing Set 75.00% 62.50% 80.00% 82.50% 79.48%

P -value is 3.57× 10−215 for the training set and 1.71× 10−179 for the testing set.

Table 5.16: Rules produced by BioHEL for the Artificial Networks

0:Betweenness(Q2) is > 0.20975111
THEN n1000-d0.1-k50 (Class6)

1:Betweenness(IQR) is > 0.14870113
THEN n1000-d0.1-k10 (Class5)

2:Clustering(Q1) is < 0.5174123
OR PageRank(Max) is < 0.95674664
THEN n100-d0.1-k50 (Class2)

3:Eigenvector(Q2) is < 0.743402
THEN n100-d0.1-k10 (Class1)

4:OffdiagonalComplexity is < 0.83688915
OR Clustering(IQR) is > 0.091581926
OR PageRank(Avg) is < 0.9197471
THEN n1000-d0.9-k50 (Class8)

5:|E| is > 0.01002797
OR Closeness(Q2) is > 0.38967088
THEN n1000-d0.9-k10 (Class7)

6:|V| is > 0.40778017
OR Codelength is > 0.63766336
OR Betweenness(Avg) is < 0.5914795
OR Betweenness(Q1) is

BETWEEN (0.048583686 AND 0.38698635)

OR Betweenness(IQR) is < 0.727874
OR MaximumDegree is > 0.70464796
OR OffdiagonalComplexity is > 0.37859428
OR Clustering(IQR) is < 0.5421958
OR Clustering(Max) is > 0.30774963
OR Eigenvector(Q1) is > 0.55717087
OR Eigenvector(IQR) is

BETWEEN (0.63593376 AND 0.90244687)
OR PageRank(Avg) is < 0.7112693
OR PageRank(Q1) is < 0.4935823
OR PageRank(Q3) is < 0.4277151
OR PageRank(Min) is < 0.4896802
THEN n1000-d0.9-k50 (Class8)

7:Closeness(Max) is
BETWEEN (0.2988854 AND 0.97010934)

OR OffdiagonalComplexity is < 0.49941477
OR Clustering(IQR) is < 0.96575373
OR Eigenvector(Q1) is > 0.7926535
OR Eigenvector(Q2) is

BETWEEN(0.79922175 AND 0.967829)
OR PageRank(Q2) is < 0.690705
THEN n100-d0.9-k50 (Class4)

8:OffdiagonalComplexity is > 0.45171407
THEN n100-d0.9-k10 (Class3)

9:ELSE n100-d0.9-k50 (Class4)

algorithms is the mentioned structure of BioHEL output, which takes the

form of a set of rules that can be then used to understand the “logic”

behind the classification. In the case of our artificial networks, the best rule

set generated obtained a training accuracy of 98.33% and a testing accuracy

of 92.50%, and produced the rules presented in Table 5.16.

When analyzing these rules, it can be seen that BioHEL ended up using

the most complex rules to try and differentiate between Class3 and Class4,

also applied many different measures when classifying Class4 and Class8,

and used the default rule to choose Class4 in all other situations not already

considered.

This classification criteria is not only human-readable, but also easy to

parse and insert into an automatic program that could classify instances

just by reading the values in the input. Furthermore, given that repeated

experiment attempts provide each with one resulting rule set, they can be

combined in a majority voting scheme, possibly granting increase classifica-

tion accuracy.
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5.6 Review

Throughout this chapter we have presented CiGRAM, an artificial network

generator, that allowed us to define a set of 8 evenly distributed network

classes, with a distribution similar to that obtained for the real networks in

Section 4.2.

The networks created were then measured using the different formulas

determined in Section 4.3, and the distribution of their statistics was pre-

sented. Some of the classes created were observed to have a greater overlap

in the values obtained, while others seemed to be clearly distinguishable.

With the set of complexity measures computed for each of the networks,

the classification algorithms suggested in Section 3.3 were run and the re-

sults presented. We used the Keel framework for generating the experi-

ments, and the parameters for each algorithm were detailed.

After reviewing the experimental results, we could confirm that the

classes with more overlap in the complexity measures were more difficult

to classify, but despite that most of the classification algorithms employed

obtained a testing accuracy around 80%. We will analyze in the following

chapter whether that level of accuracy can be maintained when the do-

mains and networks analyzed come from the real world examples described

in Section 4.2.
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Caṕıtulo 5: Validando la habilidad de clasificación

Este caṕıtulo presenta un conjunto de 160 redes generadas artificialmente

y clasificadas en 8 dominios, en base a su criterio de construcción. De esta

manera se pretende validar la idea de que es posible clasificar redes en

distintas categoŕıas de acuerdo a los valores observados para las métricas

elegidas.

Para obtener las redes artificiales utilizamos el generador CiGRAM, que

permite especificar ciertos parámetros deseables de las redes a crear.

Para todas las redes generadas se calculan las métricas y se presenta

su distribución estad́ıstica en la sección 5.3. Podemos observar que para

algunas de las métricas los valores obtenidos se solapan en los distintos

dominios (por ejemplo PageRank en la figura 5.15). Sin embargo, en otros

casos la diferencia es más notoria, como se observa para Codelength en la

figura 5.8.

En la sección 5.4 se presenta el resultado de ejecutar los algoritmos de

clasificación con un conjunto determinado de parámetros. Para garantizar

que los experimentos sean comparables, todos son ejecutados a través del

ambiente de experimentación Keel [6].

Luego de ejecutar los algoritmos de clasficación, pudimos comprobar

que los dominios que presentaban mayor solapamiento en la distribución

estad́ıstica de sus valores fueron los que presentaron menor precisión en los

resultados. A pesar de ello, la mayoŕıa de los algoritmos elegidos consiguió

llegar a un rendimiento del 80%.

En el próximo caṕıtulo intentaremos estudiar si estos niveles de precisión

se mantienen al trabajar con las redes reales relevadas en el caṕıtulo 4 y sus

correspondientes dominios.





Chapter 6

Experiments

6.1 Description

This chapter defines a set of experiments planned to analyze the feasibility

of solving the classification problem using the information described up to

now. After each experiment we present the results obtained, and an analysis

of the observations.

The first aim will be to reproduce the classification experiments using

the learning algorithms included in Keel, presented in Chapter 5. Only

this time, the categories and instances to consider will be the real world

networks presented in Section 4.2.

As mentioned in Section 5.4, the different networks will be converted to

instances of our training and testing sets. The input files for Keel contain,

for each network, the set of measurement values represented by real numbers

between 0 and 1 (since we have normalized all results as explained in 4.3.3),

and the name of the domain. The detection and handling of outlier values

is described in the current chapter in Section 6.3.

Our final objective is the confirmation of our hypothesis: that studying

the complexity measures of networks from different domain problems allows

to find defining/discriminating qualities for each category. Moreover, we

want to find a deterministic set of steps using classification algorithms to

ensure a reproducible way of harnessing this findings. Although the previous

chapter provided encouraging results, with testing accuracies over 80% in

most cases, and also individual results over 90%, we need to confirm that

the level of success for real networks classified according to the domains

proposed is not reduced.

157
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Each experiment implies selecting a subset of the instances available

and running the classification algorithms with a specific set of measures

from those presented. The set of classification algorithms is the same as

presented in Table 5.2. The parameters assigned for each of them is kept at

its default values, presented in Table 5.3. The training and testing sets are

once again input files, where each contains a row (instance) for each network

considered in the set. The values for an instance are the sequence of real

numbers between 0 and 1 that represent the complexity measure values

computed for the network, finishing with a string value that represents

the domain for the network. All results presented are averaged over 250

runs, with a statistical analysis of the testing accuracy results to ensure its

significance.

In order to avoid cluttering this chapter with tables, only the average

training and testing accuracies are presented, while the confusion matrices

for each experiment are presented in the appendices of this document. The

histogram distribution is only presented for BioHEL results, since the other

classification algorithms proved to provide deterministic results for each

given experiment, and would imply presenting a repetition of single bin

histograms.

6.2 Direct classification

The first approach will be to apply the same algorithms from Keel shown

before, considering all instances and categories without additional process-

ing. The next sections will then consider additional possible improvements

on the experiment set up.

The training and testing set will first be built using Keel’s K-fold building

feature, selecting a 10-fold cross validation scheme. Afterwards we will

perform additional experiments selecting a specific set of the networks as

representatives for each domain.

We expect these trials to include some uneven results as the instances

chosen for each run are selected at random.

Table 6.1: Classification accuracy when considering all real networks reviewed

KNN-C IKNN-C C SVM-C NU SVM-C BioHEL-C

Training Set 66.51% 26.30% 76.48% 80.56% 93.45%
Testing Set 66.25% 36.67% 65.42% 62.92% 62.21%

P -value is 3.57× 10−215 for the training set and 9.52× 10−120 for the testing set.



6.2. DIRECT CLASSIFICATION 159

Table 6.1 shows that the IKNN-C algorithm is the one having the most

trouble classifying the instances, even failing to obtain an accurate result for

the training set. All other techniques show a reduced testing accuracy when

compared to the attempt at classifying artificial instances as presented in

Section 5.5. It is interesting to note that only KNN-C obtains a comparable

training and testing accuracy, possibly hinting at an over-specialization of

the other algorithms during their training.

Figure 6.1: Histogram for BioHEL-C testing accuracies when considering all real
networks reviewed, using Keel automatic 10-fold

Figure 6.1 contains the distribution of results for the training accura-

cies observed, with a standard deviation of 4.82%. The maximum result

achieved by this algorithm in the experiment was 75.00%.

At this point it is interesting to observe that the correlation observed

for the real networks (Figure 4.23), which was significantly lower than that

of the artificial networks (Figure 5.5), was not a good predictor of the clas-

sification accuracy in the experiments proposed. Contrary to what the

correlations could have implied, it seems the algorithms find it easier to

discriminate between the artificial categories than the real ones.

On the other hand, the box plot figures presented in Section 4.3.3 for

the real networks and 5.3 for the artificial networks, do serve as good pre-

dictors for the observed classification accuracy. If the differences in the

different domains are more closely related to the classification capability of

the algorithms, we can propose the following hypothesis: a rule generating

process such as the one included in BioHEL should be able to produce, for

an experiment with statistics that present a clearer distinction between the

categories (as seen for the artificial networks) a smaller rule set, with rules

that make use of less attributes. For an experiment where the statistics

present a less clear distinction (as seen for the real networks), we would
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expect on average a larger rule set, where each rule would generally require

a larger number of attributes to try to discriminate between the categories.

To test this hypothesis, we present in Table 6.2, the average and standard

deviation for the number of rules produced by BioHEL in the experiments

that analyze the artificial networks, and compare it to the same value when

considering the real networks. We also present the average and standard

deviation of the number of attributes used per rule in the rule set.

Table 6.2: Number of rules and number of attributes per rule, produced by
BioHEL in the artificial and real networks experiments.

Rules per rule set Attributes per rule
Average St. Dev. Average St. Dev.

Artificial Networks 8.74 1.04 2.35 0.74
Real Networks 18.51 1.93 4.61 0.88

The values observed in Table 6.2 confirm our hypothesis, since the real

networks present a rule set that is on average more than twice as long and

with double the number of attributes required per rule.

We continue now with additional experimental proposals, with the ob-

jective of trying to improve the classification accuracy observed.

6.3 Outlier detection

One possible source of noise in the classification results is generated by the

existence of outliers in the data.

Definition 22. An outlier is any instance in a collection of data whose

information is not aligned with the general range of values under study. This

could be evidence of an error in the gathering of the data, or a measurement

that represents a situation with a lower chance of occurring.

Since classification techniques rely in part on the established range of

values for the measurements under study, we decided to run additional

experiments where possible outliers in the instances researched are detected

and singled out. They will be separated in the following experiments from

both training and testing sets, to be reused later on as additional validation

for the algorithm solutions.

To provide a simple and effective detection of outliers, we will apply the

technique presented by John Tukey in [196]. The method implies consider-

ing the range of values presented by all the data, computing its First and
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Third Quartiles, as well as the Inter-Quartile Range, and then determining

a lower and upper bound:

Lower Bound = (1st Quartile)− (1.5× Inter-Quartile Range) (6.1)

Upper Bound = (3rd Quartile) + (1.5× Inter-Quartile Range) (6.2)

Since our instances are composed of several measurements, and any of

them could be used to determine an outlier, we will determine the bound

for |V | and |E| for each network domain. Then, we will proceed to classify

as outliers any instance where these measurements are outside the lower

or upper bound in their respective domains, for any of the two measures

considered.

After applying the technique mentioned, the networks listed in Table 6.3

were categorized as outliers and removed from all experiments that follow

in the chapter, unless explicitly stated.

Table 6.3: Outlier instances

Network Domain

NT-bio-dmela Assorted Biological
Github Profiles Code
Astro Physics Collaboration
Condensed Matter Collaboration
High Energy Physics Collaboration
Enron Mail Communication
European Mail Communication
as-caida2007 Infrastructure
internet-as Infrastructure
Internet Routers Infrastructure
p2p-gnutella Infrastructure
BIOMD0000000014-RDG Reaction Dependency Graph
BIOMD0000000183-RDG Reaction Dependency Graph
BIOMD0000000255-RDG Reaction Dependency Graph
BIOMD0000000014-SNG Species Network Graph
BIOMD0000000183-SNG Species Network Graph
BIOMD0000000255-SNG Species Network Graph
NT-rt-pol Tweet

6.4 All instances except outliers

Once the detailed outliers were removed, the correlation for the different

measures was computed again.
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Figure 6.2: Correlation between the selected measures when the outliers are
removed

Figure 6.2 presents the new correlations observed. When compared to

the previous values in Figure 4.23 from Section 4.3.1, the most significant

change is a slight reduction of some higher correlations.

The next experiment will be then to run the algorithms, again using

Keel partition generation (10 folds), this time considering the instances

that are not outliers. We expect an equal or better performance from all

the classification techniques used, although it might still be possible to

encounter a lower testing accuracy, considering that the partitioning of the

sets is done without any specific considerations.

Table 6.4: Classification accuracy when not considering outliers (automatic par-
titioning)

KNN-C IKNN-C C SVM-C NU SVM-C BioHEL-C

Training Set 66.97% 27.47% 76.02% 81.38% 95.27%
Testing Set 67.55% 38.79% 64.84% 61.78% 64.31%

P -value is 3.57× 10−215 for the training set and 2.68× 10−113 for the testing set.

Table 6.4 presents little to no change with respect to the previous experi-

mental result. There is some small increase in training and testing accuracy

for most algorithms, but no testing result surpasses a 70% accuracy. The

IKNN-C algorithm continues to present the lowest performance, with no

domain distinguished from another. The confusion matrices for both train-

ing and testing accuracies are presented in the appendices.

The histogram for the BioHEL testing accuracies is present in Figure

6.3. The standard deviation observed in the normal curve is 5.56%. The

maximum value obtained is 75.91%, completing the situation of slight im-

provements over the previous experiment.
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Figure 6.3: Histogram for BioHEL-C testing accuracies when discarding outliers,
using Keel automatic 10-fold

Table 6.5: Number of rules and number of attributes per rule, produced by
BioHEL when discarding outliers, using Keel automatic 10-fold

Rules per rule set Attributes per rule
Average St. Dev. Average St. Dev.

18.05 1.69 4.65 0.93

In Table 6.5 we confirm that the average number of rules and attributes

per rule in the BioHEL results is still presenting a complexity far greater

than that observed for the artificial networks.

Beginning with the next proposed experiment, we aim at creating a

better distribution of the networks (instances), in order to provide a more

balanced data set. It is our expectation that with a better distribution

of the training and testing sets in regards to domain representation, the

classification algorithms can run in a scenario that allows for improved ac-

curacies.

6.5 Manual partitioning of the training/testing sets

Continuing with the experimental design, we will propose taking a specific

70% of the instances and use them in a training set, with the remaining

30% employed as the testing set.

To select them, we will sort the instances in each domain by “size” and

roughly 1 for every 3 to obtain the chosen ratio. To allow for a wider range

of coverage in our experiments, size will be determined using the number of

vertices, and then another experiment will consider the number of edges.
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This implies we will be able to run 2 new experiments, to which we will

refer to in the following chapter as “Vertices 70/30” and “Edges 70/30”.

Afterwards, the same process will be repeated to create a partition where

90% of the instances are used in the training set, and 10% left for the testing

set. Again, we will manually select 1 for every 10 instances to achieve this

partitioning. The resulting proposals will be presented then as “Vertices

90/10” and “Edges 90/10”.

Our expectation for these experiments is that they should provide a

more accurate classification, since the sampling of the training set has been

specifically chosen to be representative of the complete set, with all of the

testing values well within the same range.

The detail of the instances chosen for each set can be found in the

appendices of this document.

Table 6.6: No Outliers Classification Accuracy (70% / 30% manual partitioning
based on |V |)

KNN-C IKNN-C C SVM-C NU SVM-C BioHEL-C

Training Set 64.90% 22.52% 81.46% 81.46% 96.25%
Testing Set 61.97% 25.35% 60.56% 59.15% 59.94%

P -value is 2.44× 10−204 for the training set and 2.44× 10−167 for the testing set.

Figure 6.4: Histogram for BioHEL-C testing accuracies when discarding outliers,
using 70% / 30% manual partitioning based on |V |

Table 6.6 displays experimental accuracies when manually building the

training sets with 70% of the instances, leaving 30% for testing, according

to number of vertices. The testing accuracies obtained are even less than for

previous experiments, reducing the possibilities of applying this approach

as a means of improving the classification ability of the algorithms.
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Figure 6.4 presents the histogram when applying BioHEL, with an ob-

served standard deviation of 3.10%, and an overall maximum of 69.01%.

This chart continues to prove that the results obtained are consistent across

several runs, although in this scenario even the maximum obtained fails to

represent a useful classification scheme.

Table 6.7: Number of rules and number of attributes per rule, produced by
BioHEL when discarding outliers, using 70% / 30% manual partitioning based
on |V |

Rules per rule set Attributes per rule
Average St. Dev. Average St. Dev.

16.42 1.74 4.06 0.88

Table 6.7 informs the average and standard deviation for number of

rules per rule set and number of attributes per rule in the BioHEL results.

Although there is a slight decrease in the number of rules, it is still double

the value observed previously for the artificial networks, and the number of

attributes per rule remains at the same levels.

Table 6.8: No Outliers Classification Accuracy (70% / 30% manual partitioning
based on |E|)

KNN-C IKNN-C C SVM-C NU SVM-C BioHEL-C

Training Set 63.58% 23.18% 80.13% 88.08% 97.39%
Testing Set 70.42% 33.80% 67.61% 66.20% 66.05%

P -value is 3.57× 10−215 for the training set and 4.53× 10−178 for the testing set.

When the selection of networks for the training and testing sets is based

on |E|, the training and testing accuracies are instead those presented in

Table 6.8. Although higher than for the |V | based experiments, the testing

accuracies do not exceed results observed before. At least with a 70%/30%

split, neither |V | nor |E| seem to allow for a distribution of instances that

helps in obtaining better classification accuracy.

In figure 6.5, the testing accuracy distribution when running the 250

experiments with BioHEL is shown. The standard deviation observed is

3.48%, with the best result producing 74.65% testing accuracy. In the same

way that was observed for the average accuracies of all algorithms, the values

in this experiment are near those observed when producing the training and

testing sets using Keel automatic 10-fold feature.
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Figure 6.5: Histogram for BioHEL-C testing accuracies when discarding outliers,
using 70% / 30% manual partitioning based on |E|

Table 6.9: Number of rules and number of attributes per rule, produced by
BioHEL when discarding outliers, using 70% / 30% manual partitioning based
on |E|

Rules per rule set Attributes per rule
Average St. Dev. Average St. Dev.

17.58 1.25 4.83 0.96

Table 6.9 shows that the size of the rule sets produced by BioHEL is

similar to those observed before.

We proceed now to the following set of experiments, where a 90% of the

non-outlier instances are considered for the training set and the remaining

10% are grouped to serve as testing set.

Table 6.10: No Outliers Classification Accuracy (90% / 10% manual partitioning
based on |V |)

KNN-C IKNN-C C SVM-C NU SVM-C BioHEL-C

Training Set 67.51% 26.40% 78.17% 80.20% 95.81%
Testing Set 60.00% 36.00% 60.00% 72.00% 58.30%

P -value is 3.57× 10−215 for the training set and 1.45× 10−174 for the testing set.

Table 6.10 presents the accuracies when using the partition based on

sizes determined by |V |. With the exception of the NU SVM-C classifica-

tion algorithm, the results obtained are comparable with those obtained for

the 70%/30% manual partitioning based on |V |. The interesting result that

differs is the testing accuracy of NU SVM-C, which is the higher obtained

with this technique in all the experiments presented so far when using real
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networks. All of the values observed are still below the promising accuracies

presented for Artificial networks in the Section 5.4 of the previous chapter.

Both Support Vector Machines and the BioHEL algorithm continue to pro-

vide high training accuracies which are not sustained for the testing sets,

hinting at an over-specialization on the features presented by the training

instances.

Figure 6.6: Histogram for BioHEL-C testing accuracies when discarding outliers,
using 90% / 10% manual partitioning based on |V |

Figure 6.6 is the histogram of the testing accuracies presented by Bio-

HEL. The standard deviation recorded is 4.86%, similar to those previously

observed. Although the average is not an improvement over previous ex-

periments, the maximum testing accuracy in this experiment when using

BioHEL was 72.00%, which means that there are runs when BioHEL reached

the same results than NU SVM-C. When considering these findings, we can

consider that the higher number of samples in the training set can poten-

tially provide a better classification result.

Table 6.11: Number of rules and number of attributes per rule, produced by
BioHEL when discarding outliers, using 90% / 10% manual partitioning based
on |V |

Rules per rule set Attributes per rule
Average St. Dev. Average St. Dev.

17.61 1.73 4.17 0.83

When observing Table 6.11, it can be seen that the complexity of the

rule sets produced by BioHEL does not change significantly with respect to

the experiments previously presented in this section.

When dividing the instances into training and testing sets according to
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Table 6.12: No Outliers Classification Accuracy (90% / 10% manual partitioning
based on |E|)

KNN-C IKNN-C C SVM-C NU SVM-C BioHEL-C

Training Set 63.96% 19.80% 77.66% 82.74% 95.88%
Testing Set 72.00% 44.00% 60.00% 80.00% 63.39%

P -value is 3.57× 10−215 for the training set and 2.98× 10−200 for the testing set.

|E| with a 90%/10% split, the results are those shown in Table 6.12. Testing

accuracy for C SVM-C and BioHEL-C are slightly below the experiment

with 70%/30% split. But the most interesting result is the testing accuracies

of the other algorithms. KNN-C, IKNN-C and NU SVM-C present the

highest values for each algorithm across all the experiments performed with

real networks. Although the accuracy of IKNN-C is still below any result

of interest, the most important finding is the testing accuracy of NU SVM-

C, providing a strong classification at 80.00%, much closer to the results

observed for the artificial networks in the previous chapter.

Considering the last four experiments, it is without doubt that the num-

ber of edges provide a more accurate way of partitioning instances when

creating training and testing sets for our classification algorithms.

Figure 6.7: Histogram for BioHEL-C testing accuracies when discarding outliers,
using 90% / 10% manual partitioning based on |E|

The last histogram we need to review is the one presented in Figure 6.7.

Although the average testing recorded is 63.39%, the standard deviation in

the results was 6.14%. This is in part because the best BioHEL experiment

in the 250 runs achieved a testing accuracy of 80.00%, reaching the same

result that NU SVM-C for this experiment. This is, to our understanding,

an even better outcome, since BioHEL provides us with a set of rules that
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allow the classification of the networks in a human readable way, which eases

the efforts to apply it to further projects. This best rule set is presented in

Table 6.13.

Table 6.13: Best ruleset produced by BioHEL when discarding outliers, using
90% / 10% manual partitioning based on |E|

00: Betweenness(Q3) is > 0.009807494
OR Clustering(Max) is < 0.49995282
THEN Metabolic

01: |E| is > 9.6093665E-4
OR Closeness(Avg) is > 0.0031226687
OR Closeness(Q3) is < 0.1692386
OR Eigenvector(Avg) is < 0.891398
THEN SpeciesNetworkGraph

02: OffdiagonalComplexity is > 0.10147023
OR Clustering(Max) is < 0.064023055
OR Eigenvector(Q3) is > 0.3981593
THEN CombinatorialDNALibrarySynthesis

03: Clustering(IQR) is > 0.113217935
OR Clustering(Max) is > 0.44832414
OR Eigenvector(Min) is > 0.0028145611
OR PageRank(Q2) is
BETWEEN (0.055136032 AND 0.98772764)
THEN Social

04: Closeness(Min) is < 0.9819039
OR OffdiagonalComplexity is
BETWEEN (0.14153215 AND 0.43907204)
OR Clustering(Avg) is
BETWEEN (0.0010310696 AND 0.63036)
OR Eigenvector(Q2) is > 0.0177089
OR Eigenvector(Q3) is > 0.04434352
OR PageRank(Min) is < 0.30869475
THEN ReactionDependencyGraph

05: |E| is < 0.4533041
OR Betweenness(Q2) is < 0.5938384
OR Betweenness(Min) is < 0.53768516
OR Closeness(Avg) is
BETWEEN (0.02464278 AND 0.29275)
OR Closeness(Q2) is < 0.59215415
OR Closeness(IQR) is
BETWEEN (0.27906564 AND 0.6538935)
OR Closeness(Min) is < 0.74175996
OR Closeness(Max) is
BETWEEN (0.16553417 AND 0.62577844)
OR GlobalEfficiency is < 0.5310019
OR MaximumDegree is
BETWEEN (0.050123066 AND 0.6597434)
OR Clustering(Max) is
BETWEEN (0.25693303 AND 0.74306697)
OR Eigenvector(Avg) is < 0.34877324
OR Eigenvector(Q1) is < 0.6777469
OR Eigenvector(Q2) is < 0.31767222
OR Eigenvector(IQR) is < 0.38055673
OR PageRank(Avg) is < 0.3643762
OR PageRank(Q2) is < 0.59571415
OR PageRank(Max) is
BETWEEN (0.18540487 AND 0.49678728)
THEN SpeciesNetworkGraph

06: GlobalEfficiency is > 0.005893192
OR Eigenvector(Q2) is > 0.0048568067
OR PageRank(Max) is > 0.057587724
THEN ReactionDependencyGraph

07: Clustering(Q3) is < 0.49987158
OR PageRank(Q1) is
BETWEEN (0.052726876 AND 0.5013969)
THEN Infrastructure

08: OffdiagonalComplexity is < 0.6523598
OR Clustering(Avg) is > 0.39331004
OR Clustering(IQR) is > 0.046484824
OR Eigenvector(Avg) is > 0.07282676
OR PageRank(IQR) is < 0.84130305
THEN Tweet

09: |E| is > 0.059126627
OR Clustering(IQR) is < 0.75337255
OR Eigenvector(IQR) is > 0.0022295131
THEN Tweet

10: Closeness(Q1) is > 0.2355396
OR Clustering(Q3) is > 0.46679175
THEN Infrastructure

11: Closeness(Max) is > 0.09994781
OR Clustering(Q3) is > 0.21303262
OR PageRank(IQR) is < 0.99251384
OR PageRank(Max) is > 0.13399653
THEN Collaboration

12: |V| is > 0.0026750874
OR Closeness(Q2) is > 0.12743585
OR Closeness(Q3) is
BETWEEN (0.25736293 AND 0.397376)
THEN Collaboration

13: Betweenness(Q3) is < 0.014767424
OR Closeness(Avg) is
BETWEEN (0.1946039 AND 0.5063392)
OR Clustering(IQR) is < 0.35929194
THEN Communication

14: |E| is > 0.015957251
OR Betweenness(Q3) is < 0.1125778
THEN Tweet

15: Closeness(Q1) is < 0.38494322
OR Closeness(Q2) is > 0.0015463152
OR OffdiagonalComplexity is > 0.3929616
THEN Code

16: Closeness(Max) is > 0.06881322
OR PageRank(Avg) is
BETWEEN (0.0033149263 AND 0.9989146)
THEN AssortedBiological

17: Closeness(Avg) is
BETWEEN (0.116268456 AND 0.8539514)
THEN Infrastructure

18: ELSE Tweet



170 CHAPTER 6. EXPERIMENTS

Table 6.14: Number of rules and number of attributes per rule, produced by
BioHEL when discarding outliers, using 90% / 10% manual partitioning based
on |E|

Rules per rule set Attributes per rule
Average St. Dev. Average St. Dev.

18.50 1.58 4.87 0.91

Table 6.14 shows, as in previous results, that the number of rules per

rule set, and the number of attributes per rule in the BioHEL results is on

the same scale across all experiments involving real networks, hinting at an

intrinsic complexity of the classification problem, as predicted by the box

plot figures presented in Section 4.3.3.

6.6 Outliers as a testing set

To complete the set of experiments, we will once again consider the set of

instances previously marked as outliers, using them as the testing set of the

experiments presented so far. The idea behind this proposal is to evaluate

whether any of the algorithms has been able to build a classification scheme

that is applicable as well to the outlier networks for the different domains.

It is our intention to determine if any of the experimental set-ups pro-

posed is conductive to obtaining a resulting classification that is general

enough to accommodate for unexpected values, keeping as much as possible

its previous accuracy.

Table 6.15: Classification Accuracy for Outliers as testing set

KNN-C IKNN-C C SVM-C NU SVM-C BioHEL-C

All non-outliers 33.33% 27.78% 16.67% 27.78% 30.02%
70% |V | 33.33% 22.22% 11.11% 27.78% 29.80%
70% |E| 38.89% 22.22% 16.67% 16.67% 27.20%
90% |V | 38.89% 27.78% 16.67% 27.78% 29.71%
90% |E| 27.78% 16.67% 11.11% 22.22% 26.78%

P -values is 1.70× 10−154 for All non-outliers, 1.26× 10−185 for 70% |V |,

2.98× 10−192 for 70% |E|, 1.31× 10−180 for 90% |V | and 1.19× 10−182 for 90% |E|.

Table 6.15 presents the summarized testing accuracy for the different

experiments when tested against the outlier instances. In it, the algorithms

show the expected low accuracy across all experiments. The highest results
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are obtained when considering all non-outlier instances, and even in this

scenario only KNN-C and BioHEL-C go above 30% testing accuracy. The

maximum accuracy for BioHEL is observed at 50.00%, which is still far

below the promising results produced in previous experiments.

With this results it is clear that the techniques proposed still lack the

ability to handle unseen instances that are outside the range of the values

presented during training.

6.7 Review

In this chapter we finally present and run the set of experiments to check

whether it is possible to classify networks, once reduced to a set of com-

plexity measurements, according to their domain of origin.

We proposed a set of experimental schemes which began with simple

partitioning in folds using the Keel framework automatic partitioning fea-

ture. Outliers in the original data were detected and considered separately

in following experiments. Then we detailed a division of the network in-

stances according to their size, as understood from the number of vertices

and edges. This division was done twice: considering 70% for the training

set and 30% for testing, and then 90% for training with only 10% for test-

ing. Finally we analyzed the possibility of using the same training sets but

checking testing accuracy of the classification algorithms against the set of

outliers previously distinguished.

We have found that most of the times a simple K Nearest Neighbor

classification algorithm obtained the best accuracy, while a more complex

technique such as Support Vector Machine or Evolutionary Rule Learning

seemed to over-specify on the characteristics of the training instances. The

latter provide an almost perfect training accuracy, but testing accuracy

results that were on par and sometimes below the values observed for the

simpler K Nearest Neighbor classifier.

Our 70/30 splitting technique for training and testing instances did not

improve the results obtained in the experiment with automatically gener-

ated folds, and gave even lower accuracy when vertices were used as the

set building criteria. When splitting 90/10 considering number of edges we

were able to obtain testing accuracy results that reached values nearer the

80% observed for the artificial networks in Chapter 5. Throughout all the

experiments we were able to confirm that BioHEL, the proposed Evolu-

tionary Rule Learning algorithm, offered a low deviation in accuracy over

the different runs performed, and managed to offer a maximum result that
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was always near the top of the observed accuracies for all algorithms. This,

coupled with the fact that it provides as a result a set of clear rules for

obtaining the accuracy reported, allows us to propose it as an effective tool

in scenarios such as the one reviewed in this work.
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Caṕıtulo 6: Experimentos

Este caṕıtulo define un conjunto de experimentos para analizar la factibilidad

de resolver el problema de clasificación propuesto. Luego de cada experi-

mento se presentan los resultados obtenidos, y un análisis de lo observado.

El primer objetivo es recrear los experimentos del caṕıtulo 5, pero en

este caso utilizando las redes reales presentadas en la sección 4.2.

Para analizar nuestro problema de clasificación, cada red es representada

por una colección de valores numéricos entre 0 y 1 (usando la normalización

explicada en la sección 4.3.3), y un atributo adicional que indica el do-

minio al que pertenece. Denominamos a cada una de estas representaciones

“instancia” del problema de clasificación. Luego estas instancias son dis-

tribuidas con distintos criterios en conjuntos de entrenamiento y de prueba.

Adicionalmente, en la sección 6.3 proponemos una técnica para la de-

tección de outliers.

El objetivo final es la confirmación de nuestra hipótesis: dado un con-

junto de redes de distintos dominios, es posible encontrar cualidades que

definen cada dominio, a través del estudio de métricas de complejidad cal-

culadas a partir de las redes.

Los algoritmos aplicados son los mismos que se mencionaron previa-

mente en la tabla 5.2, utilizando los parámetros por defecto, los cuales se

resumen en la tabla 5.3. Presentamos resultados que representan el prome-

dio de 250 ejecuciones, y realizamos un análisis estad́ıstico para garantizar

la significancia de los resultados.

Los primeros experimentos, presentados en la sección 6.2, utilizan la

partición automática de Keel para generar conjuntos de entrenamiento y

prueba.

Luego, en la sección 6.3 se determinan los outliers en el conjunto original

de redes para considerarlos por separado.

A continuación proponemos un criterio manual de separación de instan-

cias, primero en base a cantidad de vértices y luego en base a la cantidad

de ejes. Con estos criterios, construimos un esquema donde el 70% de las

redes son utilizadas para entrenamiento y el 30% restante para prueba, aśı

como también usando 90% y 10% respectivamente.
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Finalmente presentamos experimentos donde los outliers son utilizados

como conjunto de prueba, para estudiar la capacidad de generalización de

las clasificaciones obtenidas.

En general, observamos que el algoritmo de clasificación K Nearest

Neighbor (el más simple de los propuestos) obtiene la mayor precisión, ya

que los otros algoritmos parecen sobre-especificar su aprendizaje para las

caracteŕısticas del conjunto de entrenamiento.

Los resultados más interesantes se obtienen para el caso en que parti-

cionamos las instancias en 90/10 considerando la cantidad de ejes (tabla

6.12). En el mismo la precisión sobre el conjunto de prueba se acerca al

80% como hab́ıamos observado para las redes artificiales en el caṕıtulo 5.

A lo largo de todos los experimentos pudimos observar que el sistema

BioHEL tiende a ofrecer entre sus ejecuciones algunos resultados que están

entre las precisiones más altas, con el beneficio adicional de que su salida está

conformada por reglas que son de fácil lectura, ayudando a la comprensión

de lo estudiado.



Chapter 7

Conclusions and Discussions

7.1 Description

In this final chapter we will review the contributions of the work presented,

and summarize the different conclusions observed in previous chapters.

With that we will present an analysis of the feasibility of our original

proposal, along with the relevant observations that can be gathered from

the findings of the different experiments presented.

Afterwards we conclude with a number of possible topics for future work.

7.2 Contributions

Before reviewing all the findings in each chapter, we mention first the most

relevant contributions that this work has produced.

• Exhaustive evaluation of algorithms to calculate network properties.

• Extensive analysis of properties and their correlations within networks

domains and across domains.

• Demonstration that simple classification algorithms can utilize some

of these network properties to classify a large number of artificial net-

works.

• Demonstration that this can be taken further to classify real networks.

175
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7.3 Findings

We started this work with the intention of determining whether there is an

underlying equivalence in different networks from a given domain, such that

they can be observed, learned, and used then in classifying it. In a way, we

want to understand if there is an “identity” to the graph that represent a

specific subject in the form of a network.

To achieve that, we started by proposing a large number of complexity

measures from the literature. Since we need a way to compare networks

of completely different origins, graph shapes and characteristics, we deter-

mined that they would be require to minimize the input data for possible

experiments. In Section 2.4.4, we presented the summary of the formu-

las reviewed, grouped by considering their focus when analyzing the graph

structure.

We presented a set of 3 different approaches to classification problems: K

Nearest Neighbors, Support Vector Machines and Evolutionary Rule Learn-

ing. These algorithms were found to be available in the Keel framework,

which has allowed us to propose comparable experiments that apply them.

With the goal of classifying networks in different domains, we reviewed

a number of scientific papers, journals and open network repositories to

create a well balanced data set, with 11 domains and a total of 240 networks.

The visualization of some sample graphs from those selected allowed a more

clear understanding of the complex structures that are involved in our work.

These figures also helped us learn how complexity increases in the different

domains as the number of vertices and edges grow in number.

Some of the formulas studied required specific information only avail-

able for graphs obtained from specific domains, or expensive computations

that defeated the idea of simplifying the analysis of a large number of net-

work instances. With that in mind, we obtained in Section 4.3 a list of

13 selected measures that were deemed suitable for our experiments. Since

some of them offer values for each vertex in a network, they were further con-

verted into derived measures for average, maximum, minimum, and quartile

distribution values, giving a total of 43 graph measures, which were then

computed to each of our 240 networks. We were able to confirm their cor-

relation by domain and in general, and found that although a considerable

correlation existed between some of them in specific domains, the overall

values were smoothed out. We presented then a statistical distribution of

the recorded measures, which allowed a preliminary analysis of the possibil-

ities that classification techniques would have if attempting to distinguish
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the domains chosen when considering the networks provided.

With the use of the artificial network generator CiGRAM, 20 random

sample networks were built for each of 8 different classes, in a way to create

a synthetic benchmark for our experiments. The statistical distribution

of these networks by class was recorded and presented. With the resulting

charts we were able to find that of the 8 artificial network classes, two pairs of

them displayed overlapping values, which was mentioned as a possible source

of confusion for the classification algorithms. In reviewing the experimental

results in Section 5.4, we found this hypothesis proven true, as the most

significant reduction in testing accuracy was observed for the 4 highlighted

classes. At this time we could conclude that the algorithms were having

trouble in differentiating networks with different number of communities

when their density was higher. Despite this observation, an overall accuracy

of 80% was achieved for most of the algorithms. Moreover, we could obtain

the set of rules created by BioHEL, the Evolutionary Rule Learning in use,

and observe that it explicitly employed the larger part of its best solution

to differentiate between the 4 classes that presented the overlap.

Once we had confirmed the feasibility of our proposed experiments for

classifying artificial networks according to their designated class, we focused

on running equivalent scenarios, this time considering the real world net-

works reviewed in Section 4.2.

A different set of experiments were proposed and their results analyzed.

First all network instances were divided in 10 folds and then further into

training and testing sets using Keel automatic fold building feature, which

does not apply any specific criteria to the distribution. Except for one

algorithm (IKNN-C), which produces low quality results for all of the ex-

periments in Chapter 6, we obtained testing accuracies that hardly sur-

passed 60%, considerably below the values observed previously for artificial

networks. We proposed retrying the automatic fold experiment, this time

excluding network instances that were deemed as outliers, with no improve-

ment in the results.

In order to analyze the relevance of supplying the classification algo-

rithms with an even distribution of samples when training, we proposed

additional experiments which specified a 70% of the networks in each class

to be considered for the training set, evenly selected according to number

of vertices and also another experiment using the number of edges instead.

We observed slightly increased testing accuracies that got nearer to 70%,

but only when we selected the networks considering number of edges.

A better result was finally observed when 90% of the instances were used
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for the training set, specially when the distribution was made according to

the number of edges. In this opportunity, one of the Support Vector Ma-

chine algorithms (NU SVM-C ) obtained an 80% testing accuracy, a value

comparable to the one displayed during the classification of artificial net-

works. BioHEL also produced for this experiment results that achieved 80%

testing accuracy in one of the 250 runs that were executed. This fact im-

plied that we could present a set of human-readable rules that allow this

classification accuracy when applied to the network instances considered,

without the need to re-run any experiment, since they can be easily applied

by translating them into a specific algorithm.

We also attempted to classify the network instances determined to be

outliers from our original set, and found that no one of the classification

algorithms employed was able to surpass a 50% accuracy when classifying

them. This implied that we should discard for now the possibility of consid-

ering that the classification ability of the algorithms is able to understand

instances that are far from the representative values in terms of complexity

measures.

We can conclude that our objective of attempting to classify networks

according to their domains of origin is a concrete possibility, with the added

value that we could reproduce similar results for artificial and real networks.

Furthermore, the observed statistical distribution of the complexity mea-

sures provided a consistent preview of the classification possibilities for the

domains considered, both in artificial and in real world domains.

7.4 Future Work

With the ideas, experimental proposals and results obtained in this work,

there remain a number of interesting directions in which to continue the

research of using network complexity measures to classify their problem

domain.

1. Alternative Categories : an interesting subject of study would be to

understand if the domain problems chosen for this work allow for a

complete understanding of the possible results that could be obtained

with the techniques proposed. Since some of the categories were more

troublesome for the classification algorithm than others, it would be

interesting to determine a criteria that allows a given domain problem

to be labeled as “feasible for classification through complexity mea-

sures” or not.
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2. Sub-Domain Categories : this work sets the ground for analyzing the

classification possibilities of some domain problems. We have proposed

in the beginning of this work that the same ideas could be applied to

more specific networks, using sub-domain problems as categories.

3. Different Selection of Measures : we have reviewed a large number of

measures. Only some of them were chosen, and then expanded with

statistical alternatives such as average, inter-quartile range, minimum,

etc. A next step in this direction would be to try different combinations

of complexity measures, and perform feature selection by iteratively

choosing the ones that are more conductive to higher accuracies. The

compact rule results provided by BioHEL could help choose only those

that are referenced in the resulting rulesets.

4. Better artificial networks : reading the resulting rulesets built by Bio-

HEL, we have at our disposal a range of expected values for the mea-

sures that were relevant for the classification task. Some of these mea-

sures could be considered in artificial network providers such as the

CiGRAM framework used in this work. This means that researchers

could create as many artificial networks as required that present prop-

erties known to exist in real networks for their domain problem.

5. Focus on branch decomposition techniques : Measures based on the

concept of branch decomposition[162, 78, 153] (such as Tree-width,

Branch-width, Path-width, Carving-width, Clique-width, etc.), have

not been reviewed in this thesis, but offer a whole range of possibilities.

Although their optimal solution is an NP-hard optimization problem,

different solvers exist that could be considered and explored using some

of the ideas studied in the previous chapters.

6. Alternative result analysis : Apart from the accuracy computed for the

different experiments, different techniques exist that would focus on

other aspects of the ideas proposed. For instance, the use of measures

such as Fleiss’ Kappa[77, 93] or Matthews Correlation Coefficient[130]

would give an alternative interpretation to the results of the different

solvers and determine their relevance.

7. Alternative correlation analysis : Instead of computing the correlation

of the different measures using Pearson correlation[157], alternative

formulas such as Spearman[141] could be applied and the differences

studied.
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Caṕıtulo 7: Conclusiones y propuestas

El caṕıtulo final de esta tesis repasa las contribuciones del trabajo realizado,

presenta un resumen de las observaciones obtenidas en caṕıtulos previos, y

enumera propuestas de trabajo futuro.

Contribuciones

• Evaluación exhaustiva de algoritmos para cálculo de propiedades de

redes.

• Extenso análisis de propiedades y su correlación para redes de un

mismo dominio, aśı como entre dominios.

• Demostración de que algoritmos de clasificación sencillos son capaces

de utilizar las propiedades de las redes para clasificar un gran número

de redes artificiales.

• Demostración de que es posible extender la clasificación a redes reales.

Hallazgos

Comenzamos este trabajo con la intención de determinar si era posible

encontrar una equivalencia entre redes que pertenecen a un mismo dominio,

de manera de observarlas y usarlas para su posterior clasificación. Para

ello se propuso estudiar un gran número de métricas de complejidad de

la literatura. Las mismas fueron presentadas y agrupadas de acuerdo al

enfoque que implican al analizar la estructura de un grafo.

Estudiamos 3 alternativas para resolver problemas de clasificación: K

Nearest Neighbors, Support Vector Machines y Evolutionary Rule Learning .

Presentamos a su vez el ambiente de experimentación Keel, el cual nos

permitió ofrecer resultados comparables tanto en la construcción de los

experimentos como en la salida de las ejecuciones.

Para estudiar la capacidad de estos algoritmos a la hora de clasificar, ob-

tuvimos de distintas fuentes un total de 240 redes, las cuales consideramos

como pertenecientes a uno de 11 dominios distintos. Se presentó una visualización

de algunas redes en cada dominio para ayudar a la comprensión de su es-

tructura.
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De las métricas relevadas, elegimos un subconjunto de 13 que presenta-

ban facilidad de cómputo y baja correlación entre ellas. Aquellas que traba-

jan sobre nodos fueron derivadas en base a su máximo, mı́nimo, promedio

y cuartiles, para darnos un total de 43 métricas sobre grafos. Se realizó un

análisis estad́ıstico completo sobre las 240 redes y se observó la distribución

de los valores obtenidos.

A través del generador de redes artificiales CiGRAM se creó un con-

junto de 160 redes artificiales pertenecientes a 8 dominios distintos, con

el objetivo de estudiar una distribución similar a la ofrecida por las redes

reales relevadas. Las mismas fueron sometidas al mismo análisis estad́ıstico

y de correlación. Pudimos observar que 2 pares de dominios presentaban

valores solapados en todas las métricas elegidas, lo cual fue postulado como

un posible factor que complicaŕıa la tarea de ser distinguidas por los al-

goritmos de clasificación presentados. Esta hipótesis resultó cierta, ya que

si bien los algoritmos lograron en general un rendimiento en su precisión

del 80%, los mayores problemas en la discriminación fueron observados en

los dominios que presentaban valores solapados. Adicionalmente pudimos

observar las ventajas de trabajar con el sistema de aprendizaje por reglas

BioHEL, el cual ofreció un conjunto de reglas legibles donde pudo apreciarse

la mayor dificultad para distinguir entre los dominios artificiales con valores

solapados.

Al momento de analizar la factibilidad de clasificar las redes reales, pro-

pusimos distintos experimentos. El primero implicó utilizar el método de

particionamiento automático de Keel, con el cual apenas se sobrepasó el

60% de rendimiento. Resultados similares se obtuvieron luego de eliminar

las redes que fueron identificadas como outliers.

Para estudiar la relevancia de la distribución de las instancias entre los

conjuntos de entrenamiento y prueba, propusimos una asignación manual,

donde el 70% fue utilizada en el primero y el 30% restante en el segundo.

Para esta asignación se usaron dos criterios: de acuerdo a la cantidad de

vértices en cada grafo, y luego en base a la cantidad de ejes. Considerando

la cantidad de ejes, se logró mejorar en estos experimentos el rendimiento

a valores más cercanos al 70%.

Repetimos la idea de construir manualmente los conjuntos, esta vez asig-

nando 90% al conjunto de entrenamiento y 10% al conjunto de prueba. En

este caso, al aplicar el criterio de cantidad de ejes, una de las variantes de

Support Vector Machine (NU SVM-C ) logró una precisión del 80%, simi-

lar a lo obtenido para las redes artificiales. BioHEL también obtuvo este

rendimiento en una de las ejecuciones para este experimento. A través de
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la lectura del conjunto de reglas legibles que generó, pudimos observar la

factibilidad de aplicar las mismas en experimentos futuros, sin necesidad de

volver a ejecutar los algoritmos de clasificación.

En un último experimento, propusimos reusar los conjuntos de entre-

namiento previamente analizados, y un conjunto de pruebas que esté com-

puesto únicamente por los grafos identificados como outliers. En este caso,

menos del 50% fueron clasificados correctamente, lo cual implica que los

esquemas sugeridos hasta el momento no permiten manejar este tipo de

situaciones.

Concluimos que nuestro objetivo de clasificar redes de acuerdo a su

dominio de origen utilizando métricas de complejidad es una posibilidad

concreta, con el valor agregado de haber podido observar resultados simi-

lares tanto en redes artificiales como reales. Adicionalmente, las distribu-

ciones estad́ısticas de las métricas de complejidad generadas nos permitieron

obtener una predicción consistente del potencial de clasificar los dominios.

Trabajo futuro

Las ideas presentadas en este trabajo y los resultados obtenidos, nos

permiten proponer las siguientes ideas para encarar trabajos futuros en la

tarea de clasificar redes utilizando métricas de complejidad.

1. Categoŕıas alternativas : expandir el análisis realizado a otros dominios.

En base a lo observado en el presente trabajo, será de gran interés com-

prender si existen dominios más o menos factibles de ser categorizados

a través de métricas de complejidad.

2. Sub-dominios como categoŕıas : hemos propuesto en el comienzo de

este trabajo la idea de aplicar técnicas similares a las presentadas para

distinguir redes que pertenecen a distintos sub-dominios.

3. Métricas alternativas : esta tesis presenta un análisis sobre un gran

número de métricas, de las cuales sólo algunas fueron elegidas para

el proceso de clasificación. Uno de los siguientes pasos seŕıa estu-

diar otras de las fórmulas relevadas. Utilizando los resultados de los

conjuntos de reglas provisto por BioHEL, seŕıa factible plantear un

esquema iterativo donde se identifiquen las de mayor efectividad en la



7.4. FUTURE WORK 183

clasificación.

4. Mejores redes artificiales : Con los resultados provistos por BioHEL,

tenemos a nuestra disposición el detalle de las métricas que fueron de

mayor relevancia en la clasificación. Alguna de ellas son en particu-

lar parámetros disponibles en la construcćıon de redes artificiales del

sistema CiGRAM utilizado. Esto significa que un investigador podŕıa

crear tantas redes artificiales como sean necesarias y garantizar que

las propiedades de las mismas la identifiquen con el dominio real al

que simulan pertenecer.

5. Aplicar Técnicas de descomposición de ramas : La mediciones basadas

en el concepto de decomposición de ramas no fueron estudiadas en

esta tesis, pero ofrecen una gran cantidad de posibilidades. Aunque

su solución óptima es un problema NP-hard, existen soluciones exactas

que podŕıan considerarse usando las ideas estudiadas en los caṕıtulos

anteriores.

6. Análisis alternativo de resultados : además de la precisión calculada

en los distintos experimentos, existen otras técnicas que permitiŕıan

presentar otros aspectos de las ideas presentadas. Por ejemplo, medi-

ciones como Fleiss’ Kappa[77, 93] o el coeficiente de correlación de

Matthews[130] permitiŕıan una interpretación alternativa de los resul-

tados de los distintos clasificadores.

7. Análisis alternativo de correlaciones : En lugar de calcular la correlación

entre los valores de las mediciones usando la fórmula de Pearson[157],

se podŕıan aplicar fórmulas alternativas como la de Spearman[141], y

estudian las diferencias con respecto a lo obtenido.





Appendix A

Appendices

A.1 Manual partitioning

This is the list of instances that were chosen for each of the manual parti-

tioning experiments in Section 6.5.

When sorting based on the number of vertices, the instances shown in

Table A.1 are those that were selected to represent the 30% of the non-

outlier inputs to be used as the testing set. Table A.2 presents the selected

10% for the equivalent experiment.

For the sorting based on the number of edges, the list are presented in

Tables A.3 and A.4 for 30% and 10% respectively.

The training sets for each experiment were built by removing the in-

stances mentioned in the previous table from the complete list of non-

outliers.
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Table A.1: Manually selected 30% based on |V |

Network Domain

example-Anew-1-2 7 CombinatorialDNALibrarySynthesis
ukb-Anew-1-5 110 CombinatorialDNALibrarySynthesis
unott azurin-Anew-1-3 170 CombinatorialDNALibrarySynthesis
uh1-A1-1-3 304 CombinatorialDNALibrarySynthesis
uh2-A1-1-6 515 CombinatorialDNALibrarySynthesis
iGE2008-Anew-1-5 836 CombinatorialDNALibrarySynthesis
C Elegans AssortedBiological
NT-bio-diseasome AssortedBiological
NT-bio-yeast-protein-inter AssortedBiological
Github PHP Code
Github Python Code
Github Europe Code
Political Books Collaboration
CPAN Authors Collaboration
CPAN Distributions Collaboration
infect-hyper Communication
infect-dublin Communication
fb-messages Communication
wiki-trust-dir Communication
Top-Australia Infrastructure
Top-Canada Infrastructure
Top-Chile Infrastructure
Top-Armenia Infrastructure
USAir97 Infrastructure
Power Grid Infrastructure
C. trachomatis Metabolic
T. pallidum Metabolic
A. thaliana Metabolic
T. maritima Metabolic
C. jejuni Metabolic
A. actinomycetem comitans Metabolic
M. bovis Metabolic
N. gonorrhoeae Metabolic
M. jannaschii Metabolic
A. fulgidus Metabolic
Synechocystis sp. Metabolic
M. tuberculosis Metabolic
B. subtilis Metabolic
BIOMD0000000139-RDG ReactionDependencyGraph
BIOMD0000000147-RDG ReactionDependencyGraph
BIOMD0000000268-RDG ReactionDependencyGraph
BIOMD0000000334-RDG ReactionDependencyGraph
BIOMD0000000344-RDG ReactionDependencyGraph
BIOMD0000000175-RDG ReactionDependencyGraph
BIOMD0000000338-RDG ReactionDependencyGraph
BIOMD0000000152-RDG ReactionDependencyGraph
BIOMD0000000049-RDG ReactionDependencyGraph
Karate Club Social
School 1 Social
EuroSiS Social
advogato Social
gplus Social
sign-Slashdot090216 Social
BIOMD0000000103-SNG SpeciesNetworkGraph
BIOMD0000000256-SNG SpeciesNetworkGraph
BIOMD0000000303-SNG SpeciesNetworkGraph
BIOMD0000000333-SNG SpeciesNetworkGraph
BIOMD0000000056-SNG SpeciesNetworkGraph
BIOMD0000000339-SNG SpeciesNetworkGraph
BIOMD0000000326-SNG SpeciesNetworkGraph
BIOMD0000000332-SNG SpeciesNetworkGraph
BIOMD0000000049-SNG SpeciesNetworkGraph
NT-rt assad Tweet
NT-rt obama Tweet
NT-rt tlot Tweet
NT-rt alwefaq Tweet
NT-rt bahrain Tweet
NT-rt oman Tweet
NT-rt dash Tweet
NT-rt mittromney Tweet
NT-rt http Tweet
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Table A.2: Manually selected 10% based on |V |

Network Domain

ukb-Anew-1-5 110 CombinatorialDNALibrarySynthesis
uh2-A1-1-6 515 CombinatorialDNALibrarySynthesis
NT-bio-diseasome AssortedBiological
Github Python Code
CPAN Authors Collaboration
radoslaw-email Communication
reality Communication
Top-Canada Infrastructure
USAir97 Infrastructure
C. trachomatis Metabolic
T. maritima Metabolic
M. bovis Metabolic
A. fulgidus Metabolic
B. subtilis Metabolic
BIOMD0000000303-RDG ReactionDependencyGraph
BIOMD0000000344-RDG ReactionDependencyGraph
BIOMD0000000019-RDG ReactionDependencyGraph
Jazz Social
gplus Social
BIOMD0000000256-SNG SpeciesNetworkGraph
BIOMD0000000056-SNG SpeciesNetworkGraph
BIOMD0000000332-SNG SpeciesNetworkGraph
NT-rt damascus Tweet
NT-rt bahrain Tweet
NT-rt onedirection Tweet
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Table A.3: Manually selected 30% based on |E|

Network Domain

example-Anew-1-2 7 CombinatorialDNALibrarySynthesis
ukb-Anew-1-5 110 CombinatorialDNALibrarySynthesis
unott azurin-Anew-1-3 170 CombinatorialDNALibrarySynthesis
uh1-A1-1-3 304 CombinatorialDNALibrarySynthesis
uh2-A1-1-6 515 CombinatorialDNALibrarySynthesis
iGE2008-Anew-1-5 836 CombinatorialDNALibrarySynthesis
NT-bio-diseasome AssortedBiological
NT-bio-celegans-dir AssortedBiological
NT-bio-yeast-protein-inter AssortedBiological
Photoviz Code
Github Python Code
Github Europe Code
Political Books Collaboration
NT-ca-CSphd Collaboration
NT-ca-Erdos992 Collaboration
enron-only Communication
email-univ Communication
reality Communication
email-EU Communication
Top-Canada Infrastructure
Top-Argelia Infrastructure
Top-Chile Infrastructure
Top-Italy Infrastructure
USAir97 Infrastructure
openflights Infrastructure
C. trachomatis Metabolic
T. pallidum Metabolic
A. thaliana Metabolic
T. maritima Metabolic
C. jejuni Metabolic
A. actinomycetem comitans Metabolic
M. bovis Metabolic
N. gonorrhoeae Metabolic
S. pneumoniae Metabolic
A. fulgidus Metabolic
H. influenzae Metabolic
S. cerevisiae Metabolic
B. subtilis Metabolic
BIOMD0000000139-RDG ReactionDependencyGraph
BIOMD0000000303-RDG ReactionDependencyGraph
BIOMD0000000147-RDG ReactionDependencyGraph
BIOMD0000000338-RDG ReactionDependencyGraph
BIOMD0000000256-RDG ReactionDependencyGraph
BIOMD0000000334-RDG ReactionDependencyGraph
BIOMD0000000223-RDG ReactionDependencyGraph
BIOMD0000000175-RDG ReactionDependencyGraph
BIOMD0000000109-RDG ReactionDependencyGraph
firm-hi-tech Social
wiki-Vote Social
EuroSiS Social
gplus Social
sign-Slashdot090216 Social
wiki-elec Social
BIOMD0000000139-SNG SpeciesNetworkGraph
BIOMD0000000147-SNG SpeciesNetworkGraph
BIOMD0000000339-SNG SpeciesNetworkGraph
BIOMD0000000250-SNG SpeciesNetworkGraph
BIOMD0000000230-SNG SpeciesNetworkGraph
BIOMD0000000334-SNG SpeciesNetworkGraph
BIOMD0000000223-SNG SpeciesNetworkGraph
BIOMD0000000152-SNG SpeciesNetworkGraph
BIOMD0000000153-SNG SpeciesNetworkGraph
NT-rt voteonedirection Tweet
NT-rt damascus Tweet
NT-rt israel Tweet
NT-rt islam Tweet
NT-rt libya Tweet
NT-rt uae Tweet
NT-rt bahrain Tweet
NT-rt onedirection Tweet
NT-rt justinbieber Tweet
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Table A.4: Manually selected 10% based on |E|

Network Domain

ukb-Anew-1-5 110 CombinatorialDNALibrarySynthesis
uh2-A1-1-6 515 CombinatorialDNALibrarySynthesis
NT-bio-celegans-dir AssortedBiological
Github Python Code
NT-ca-CSphd Collaboration
infect-dublin Communication
Mails Communication
Top-Argelia Infrastructure
USAir97 Infrastructure
C. trachomatis Metabolic
T. maritima Metabolic
M. bovis Metabolic
A. fulgidus Metabolic
B. subtilis Metabolic
BIOMD0000000250-RDG ReactionDependencyGraph
BIOMD0000000256-RDG ReactionDependencyGraph
BIOMD0000000152-RDG ReactionDependencyGraph
Jazz Social
sign-Slashdot090216 Social
BIOMD0000000147-SNG SpeciesNetworkGraph
BIOMD0000000230-SNG SpeciesNetworkGraph
BIOMD0000000152-SNG SpeciesNetworkGraph
NT-rt obama Tweet
NT-rt libya Tweet
NT-rt mittromney Tweet
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A.2 Experimental Training and Testing Accuracies Detail

We present here the confusion matrices for the training and testing sets of

the different experiments executed in Chapter 6 when considering the real

networks.

The abbreviations used throughout the tables are shown in Table A.5

Table A.5: Abbreviations names for the real network domains in the experimental
result tables

Domain Abbreviation

Assorted Biological A.Bio.
Code Code
Collaboration Collab.
Combinatorial DNA Library Synthesis C.DNA
Communication Comm.
Infrastructure Infra.
Metabolic Meta.
Reaction Dependency Graph RDG
Social Social
Species Network Graph SNG
Tweet Tweet

Table A.6: All Instances (Automatic Partitioning) KNN-C Training Set Confu-

sion Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 88% 0% 0% 0% 0% 11% 0% 1% 0% 0% 0%

A.Bio. 0% 19% 10% 9% 10% 12% 0% 11% 0% 10% 19%

Code 0% 2% 56% 2% 0% 0% 0% 1% 1% 18% 20%

Collab. 0% 14% 15% 21% 11% 9% 0% 0% 0% 8% 23%

Comm. 0% 2% 0% 10% 13% 20% 0% 7% 13% 1% 34%

Infra. 5% 18% 1% 0% 2% 43% 1% 14% 1% 0% 17%

Meta. 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%

Social 4% 0% 0% 3% 0% 11% 0% 78% 0% 3% 0%

Tweet 0% 0% 5% 1% 0% 0% 0% 5% 73% 0% 18%

RDG 3% 6% 3% 0% 0% 0% 0% 0% 0% 87% 0%

SNG 3% 6% 9% 10% 5% 6% 0% 0% 14% 3% 44%
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Table A.7: All Instances (Automatic Partitioning) KNN-C Testing Set Confusion

Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 89% 0% 0% 0% 0% 11% 0% 0% 0% 0% 0%

A.Bio. 0% 20% 10% 20% 10% 10% 0% 10% 0% 0% 20%

Code 0% 0% 60% 0% 0% 0% 0% 0% 0% 20% 20%

Collab. 0% 15% 15% 23% 15% 8% 0% 0% 0% 8% 15%

Comm. 0% 0% 0% 14% 14% 21% 0% 0% 14% 0% 36%

Infra. 5% 14% 0% 5% 0% 45% 0% 14% 0% 0% 18%

Meta. 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%

Social 3% 0% 0% 3% 0% 7% 0% 80% 3% 3% 0%

Tweet 0% 0% 5% 0% 0% 0% 0% 5% 74% 0% 16%

RDG 3% 3% 7% 0% 0% 0% 0% 0% 0% 87% 0%

SNG 3% 6% 10% 6% 10% 6% 0% 0% 13% 3% 42%

Table A.8: All Instances (Automatic Partitioning) IKNN-C Training Set Confu-

sion Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 32% 0% 0% 0% 0% 17% 0% 30% 0% 21% 0%

A.Bio. 0% 4% 9% 9% 10% 26% 0% 10% 0% 10% 22%

Code 0% 2% 16% 16% 0% 16% 0% 1% 8% 18% 24%

Collab. 0% 14% 9% 8% 15% 17% 0% 0% 0% 2% 36%

Comm. 0% 6% 1% 26% 6% 14% 0% 6% 9% 0% 33%

Infra. 2% 15% 2% 0% 11% 35% 0% 17% 1% 0% 19%

Meta. 0% 16% 0% 0% 0% 0% 19% 59% 0% 0% 6%

Social 1% 3% 0% 4% 4% 23% 0% 49% 7% 3% 5%

Tweet 0% 1% 1% 5% 11% 2% 0% 4% 37% 0% 40%

RDG 1% 7% 3% 19% 7% 0% 0% 0% 0% 31% 32%

SNG 1% 5% 7% 10% 27% 8% 0% 0% 19% 2% 22%

Table A.9: All Instances (Automatic Partitioning) IKNN-C Testing Set Confusion

Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 33% 0% 0% 0% 0% 11% 0% 39% 0% 17% 0%

A.Bio. 0% 20% 10% 20% 10% 10% 0% 10% 0% 0% 20%

Code 0% 0% 50% 0% 0% 0% 0% 0% 10% 20% 20%

Collab. 0% 23% 15% 23% 8% 8% 0% 0% 0% 0% 23%

Comm. 0% 7% 0% 14% 21% 21% 0% 0% 7% 0% 29%

Infra. 5% 9% 0% 5% 5% 50% 0% 9% 0% 0% 18%

Meta. 0% 9% 0% 0% 0% 0% 23% 58% 0% 0% 9%

Social 3% 0% 0% 3% 0% 17% 0% 67% 7% 3% 0%

Tweet 0% 0% 5% 0% 5% 0% 0% 5% 58% 0% 26%

RDG 0% 3% 7% 20% 10% 0% 0% 0% 0% 23% 37%

SNG 0% 13% 13% 3% 16% 6% 0% 0% 13% 3% 32%



192 APPENDIX A. APPENDICES

Table A.10: All Instances (Automatic Partitioning) SVM-C Training Set Confu-

sion Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

A.Bio. 1% 21% 7% 20% 4% 26% 0% 4% 0% 0% 17%

Code 0% 0% 33% 1% 0% 20% 0% 0% 0% 9% 37%

Collab. 0% 1% 9% 49% 0% 17% 0% 8% 0% 8% 9%

Comm. 0% 0% 0% 11% 23% 30% 0% 0% 6% 1% 29%

Infra. 5% 1% 5% 4% 1% 69% 0% 10% 0% 1% 6%

Meta. 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%

Social 0% 0% 0% 0% 0% 9% 0% 91% 0% 0% 0%

Tweet 0% 0% 0% 0% 0% 0% 0% 0% 96% 0% 4%

RDG 0% 0% 0% 0% 0% 3% 0% 0% 0% 97% 0%

SNG 0% 0% 2% 7% 1% 10% 0% 3% 17% 3% 57%

Table A.11: All Instances (Automatic Partitioning) SVM-C Testing Set Confu-

sion Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

A.Bio. 10% 0% 10% 20% 0% 40% 0% 10% 0% 0% 10%

Code 0% 0% 20% 10% 0% 20% 0% 0% 0% 10% 40%

Collab. 0% 15% 8% 23% 0% 23% 0% 8% 0% 8% 15%

Comm. 0% 0% 0% 21% 7% 29% 0% 0% 7% 7% 29%

Infra. 9% 5% 5% 9% 5% 41% 0% 14% 0% 0% 14%

Meta. 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%

Social 0% 0% 0% 0% 0% 13% 0% 80% 0% 0% 7%

Tweet 0% 0% 0% 0% 0% 0% 0% 5% 79% 0% 16%

RDG 3% 0% 0% 0% 0% 7% 0% 0% 0% 90% 0%

SNG 3% 0% 3% 10% 3% 6% 0% 0% 23% 3% 48%

Table A.12: All Instances (Automatic Partitioning) NUSVM-C Training Set Con-

fusion Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

A.Bio. 2% 74% 1% 9% 3% 7% 0% 1% 0% 1% 1%

Code 0% 8% 76% 2% 2% 0% 0% 0% 0% 0% 12%

Collab. 0% 21% 21% 32% 7% 6% 0% 1% 0% 5% 8%

Comm. 0% 9% 5% 22% 48% 7% 0% 0% 0% 0% 9%

Infra. 1% 4% 2% 6% 4% 72% 2% 5% 0% 1% 6%

Meta. 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%

Social 0% 0% 0% 1% 0% 3% 0% 95% 0% 0% 0%

Tweet 0% 0% 0% 0% 0% 0% 0% 0% 96% 0% 4%

RDG 0% 0% 0% 0% 0% 1% 0% 0% 0% 99% 0%

SNG 1% 11% 5% 5% 12% 3% 0% 0% 13% 3% 46%
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Table A.13: All Instances (Automatic Partitioning) NUSVM-C Testing Set Con-

fusion Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

A.Bio. 10% 10% 10% 30% 0% 20% 0% 0% 0% 0% 20%

Code 0% 10% 50% 0% 10% 0% 0% 0% 0% 10% 20%

Collab. 0% 23% 23% 15% 8% 15% 0% 0% 0% 8% 8%

Comm. 0% 7% 0% 21% 29% 14% 0% 0% 14% 7% 7%

Infra. 5% 9% 9% 5% 5% 41% 5% 23% 0% 0% 0%

Meta. 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%

Social 0% 3% 0% 0% 0% 10% 3% 80% 0% 3% 0%

Tweet 0% 0% 0% 5% 0% 0% 0% 5% 84% 0% 5%

RDG 3% 3% 3% 3% 3% 0% 0% 0% 0% 83% 0%

SNG 3% 16% 6% 13% 16% 3% 0% 0% 26% 3% 13%

Table A.14: All Instances (Automatic Partitioning) BioHEL-C Training Set Con-

fusion Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

A.Bio. 0% 61% 1% 21% 7% 1% 0% 0% 0% 0% 10%

Code 0% 0% 87% 2% 0% 0% 0% 0% 0% 0% 10%

Collab. 0% 1% 0% 84% 5% 2% 0% 0% 0% 0% 8%

Comm. 0% 1% 1% 13% 71% 2% 0% 0% 0% 0% 12%

Infra. 0% 1% 0% 3% 3% 88% 0% 1% 0% 0% 3%

Meta. 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%

Social 0% 0% 0% 0% 0% 0% 0% 100% 0% 0% 0%

Tweet 0% 0% 0% 0% 0% 0% 0% 0% 100% 0% 0%

RDG 0% 0% 0% 0% 0% 0% 0% 0% 0% 99% 0%

SNG 0% 0% 0% 2% 1% 0% 0% 0% 1% 0% 95%

Table A.15: All Instances (Automatic Partitioning) BioHEL-C Testing Set Con-

fusion Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 93% 0% 0% 0% 0% 3% 2% 1% 0% 0% 0%

A.Bio. 6% 6% 10% 25% 10% 6% 7% 2% 0% 8% 21%

Code 0% 5% 18% 16% 4% 7% 1% 6% 2% 4% 38%

Collab. 0% 7% 15% 10% 10% 13% 0% 9% 3% 10% 23%

Comm. 0% 4% 10% 17% 5% 13% 0% 3% 4% 10% 34%

Infra. 7% 3% 5% 11% 8% 26% 1% 18% 1% 5% 15%

Meta. 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%

Social 4% 0% 1% 1% 0% 8% 1% 75% 4% 3% 1%

Tweet 0% 0% 2% 1% 0% 1% 0% 4% 82% 0% 10%

RDG 1% 1% 3% 2% 0% 2% 0% 1% 0% 88% 2%

SNG 2% 4% 8% 7% 6% 9% 1% 4% 8% 4% 48%
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Table A.16: Non Outliers (Automatic Partitioning) KNN-C Training Set Confu-

sion Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 88% 0% 0% 0% 0% 11% 0% 1% 0% 0% 0%

A.Bio. 0% 21% 11% 20% 10% 14% 0% 22% 0% 0% 2%

Code 0% 2% 42% 4% 0% 10% 0% 10% 1% 10% 21%

Collab. 0% 18% 11% 9% 21% 2% 0% 0% 0% 10% 29%

Comm. 0% 2% 0% 11% 15% 7% 0% 0% 16% 1% 48%

Infra. 6% 15% 1% 1% 2% 38% 0% 17% 1% 0% 20%

Meta. 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%

Social 4% 3% 0% 3% 0% 12% 0% 76% 1% 0% 0%

Tweet 0% 0% 5% 0% 0% 0% 0% 5% 73% 0% 17%

RDG 0% 3% 4% 0% 0% 0% 0% 0% 0% 93% 0%

SNG 0% 3% 7% 10% 8% 3% 0% 0% 14% 3% 51%

Table A.17: Non Outliers (Automatic Partitioning) KNN-C Testing Set Confu-

sion Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 89% 0% 0% 0% 0% 11% 0% 0% 0% 0% 0%

A.Bio. 0% 22% 11% 22% 11% 11% 0% 22% 0% 0% 0%

Code 0% 0% 44% 0% 0% 11% 0% 11% 0% 11% 22%

Collab. 0% 30% 10% 10% 20% 0% 0% 0% 0% 10% 20%

Comm. 0% 0% 0% 8% 17% 8% 0% 0% 17% 0% 50%

Infra. 6% 17% 0% 0% 0% 39% 0% 17% 0% 0% 22%

Meta. 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%

Social 4% 4% 0% 4% 0% 11% 0% 74% 4% 0% 0%

Tweet 0% 0% 5% 0% 0% 0% 0% 5% 74% 0% 16%

RDG 0% 4% 4% 0% 0% 0% 0% 0% 0% 93% 0%

SNG 0% 7% 7% 7% 7% 3% 0% 0% 13% 3% 53%

Table A.18: Non Outliers (Automatic Partitioning) IKNN-C Training Set Con-

fusion Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 32% 0% 0% 0% 0% 17% 0% 49% 2% 0% 0%

A.Bio. 5% 1% 9% 20% 10% 31% 0% 17% 1% 0% 6%

Code 0% 0% 30% 14% 0% 11% 0% 9% 4% 10% 23%

Collab. 0% 19% 10% 10% 13% 6% 0% 0% 0% 7% 36%

Comm. 0% 2% 2% 24% 0% 14% 0% 0% 9% 0% 49%

Infra. 3% 11% 2% 2% 2% 42% 0% 14% 2% 0% 22%

Meta. 0% 0% 0% 0% 0% 0% 10% 80% 0% 0% 10%

Social 2% 7% 2% 5% 1% 20% 0% 46% 13% 0% 5%

Tweet 0% 1% 4% 5% 9% 2% 0% 1% 39% 0% 39%

RDG 0% 4% 4% 12% 6% 0% 0% 0% 0% 48% 26%

SNG 0% 1% 8% 11% 28% 6% 0% 1% 19% 3% 23%
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Table A.19: Non Outliers (Automatic Partitioning) IKNN-C Testing Set Confu-

sion Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 39% 0% 0% 0% 0% 11% 0% 44% 6% 0% 0%

A.Bio. 0% 22% 11% 22% 11% 11% 0% 22% 0% 0% 0%

Code 0% 0% 44% 0% 0% 11% 0% 11% 0% 11% 22%

Collab. 0% 30% 10% 10% 10% 10% 0% 0% 0% 0% 30%

Comm. 0% 0% 8% 8% 17% 17% 0% 0% 8% 0% 42%

Infra. 6% 6% 0% 0% 6% 44% 0% 11% 0% 0% 28%

Meta. 0% 0% 0% 0% 0% 0% 9% 79% 0% 0% 12%

Social 4% 4% 4% 7% 4% 11% 0% 59% 4% 0% 4%

Tweet 0% 0% 0% 5% 11% 0% 0% 5% 74% 0% 5%

RDG 0% 4% 4% 4% 4% 0% 0% 0% 0% 59% 26%

SNG 0% 3% 7% 3% 23% 7% 0% 0% 13% 3% 40%

Table A.20: Non Outliers (Automatic Partitioning) SVM-C Training Set Confu-

sion Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

A.Bio. 11% 12% 4% 5% 5% 11% 0% 6% 0% 1% 44%

Code 0% 0% 26% 4% 5% 14% 0% 0% 0% 10% 42%

Collab. 0% 0% 9% 17% 8% 10% 0% 8% 0% 10% 39%

Comm. 0% 0% 0% 6% 27% 4% 0% 0% 8% 1% 55%

Infra. 9% 1% 2% 1% 1% 60% 0% 2% 0% 1% 23%

Meta. 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%

Social 0% 0% 0% 0% 0% 13% 0% 86% 0% 0% 0%

Tweet 0% 0% 1% 0% 0% 0% 0% 0% 94% 0% 5%

RDG 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%

SNG 0% 0% 2% 1% 3% 6% 0% 0% 17% 3% 69%

Table A.21: Non Outliers (Automatic Partitioning) SVM-C Testing Set Confu-

sion Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

A.Bio. 11% 0% 11% 0% 0% 22% 0% 11% 0% 0% 44%

Code 0% 0% 0% 0% 11% 11% 0% 0% 0% 11% 67%

Collab. 0% 0% 10% 0% 10% 20% 0% 10% 0% 10% 40%

Comm. 0% 0% 0% 8% 8% 8% 0% 0% 8% 8% 58%

Infra. 11% 0% 6% 0% 0% 39% 0% 11% 0% 6% 28%

Meta. 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%

Social 0% 0% 0% 0% 0% 15% 0% 74% 4% 4% 4%

Tweet 0% 0% 5% 0% 0% 0% 0% 5% 74% 0% 16%

RDG 0% 0% 0% 0% 4% 0% 0% 0% 0% 96% 0%

SNG 0% 0% 3% 7% 7% 7% 0% 0% 23% 3% 50%
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Table A.22: Non Outliers (Automatic Partitioning) NUSVM-C Training Set Con-

fusion Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

A.Bio. 6% 63% 1% 4% 6% 12% 0% 0% 0% 0% 7%

Code 0% 9% 73% 4% 0% 1% 0% 0% 0% 1% 12%

Collab. 0% 17% 23% 41% 9% 2% 0% 1% 0% 3% 3%

Comm. 0% 7% 13% 17% 47% 4% 0% 1% 0% 0% 11%

Infra. 2% 4% 4% 4% 1% 73% 0% 7% 0% 1% 4%

Meta. 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%

Social 0% 0% 0% 1% 0% 3% 0% 95% 0% 0% 0%

Tweet 0% 0% 0% 0% 0% 0% 0% 0% 93% 0% 7%

RDG 0% 0% 1% 0% 0% 0% 0% 0% 0% 99% 0%

SNG 0% 8% 7% 4% 12% 3% 0% 0% 14% 3% 48%

Table A.23: Non Outliers (Automatic Partitioning) NUSVM-C Testing Set Con-

fusion Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

A.Bio. 11% 22% 11% 0% 22% 0% 0% 0% 11% 0% 22%

Code 0% 11% 33% 11% 0% 0% 0% 11% 0% 11% 22%

Collab. 0% 20% 40% 0% 0% 0% 0% 10% 0% 10% 20%

Comm. 0% 8% 17% 8% 33% 8% 0% 0% 8% 8% 8%

Infra. 6% 11% 6% 11% 0% 39% 0% 17% 0% 0% 11%

Meta. 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%

Social 0% 0% 15% 0% 0% 7% 4% 70% 0% 0% 4%

Tweet 0% 0% 0% 0% 0% 0% 0% 5% 68% 0% 26%

RDG 0% 4% 4% 0% 0% 0% 0% 0% 0% 93% 0%

SNG 0% 10% 20% 3% 20% 7% 0% 0% 27% 3% 10%

Table A.24: Non Outliers (Automatic Partitioning) BioHEL-C Training Set Con-

fusion Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

A.Bio. 0% 74% 1% 9% 7% 0% 0% 0% 0% 0% 9%

Code 0% 0% 80% 3% 1% 0% 0% 0% 0% 0% 16%

Collab. 0% 0% 0% 86% 5% 0% 0% 0% 0% 0% 8%

Comm. 0% 0% 0% 6% 79% 0% 0% 0% 0% 0% 15%

Infra. 0% 0% 0% 1% 2% 92% 0% 2% 0% 0% 3%

Meta. 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%

Social 0% 0% 0% 0% 0% 0% 0% 100% 0% 0% 0%

Tweet 0% 0% 0% 0% 0% 0% 0% 0% 100% 0% 0%

RDG 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%

SNG 0% 0% 0% 0% 1% 0% 0% 0% 1% 0% 97%
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Table A.25: Non Outliers (Automatic Partitioning) BioHEL-C Testing Set Con-

fusion Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 95% 0% 0% 0% 0% 2% 2% 1% 0% 0% 0%

A.Bio. 8% 4% 14% 16% 9% 6% 7% 2% 0% 4% 31%

Code 0% 4% 17% 16% 6% 8% 0% 11% 1% 2% 35%

Collab. 0% 7% 15% 5% 15% 9% 0% 16% 4% 9% 19%

Comm. 0% 3% 9% 15% 7% 6% 0% 5% 6% 7% 42%

Infra. 8% 4% 4% 7% 4% 30% 0% 22% 0% 3% 18%

Meta. 0% 0% 0% 0% 0% 0% 99% 0% 0% 0% 0%

Social 4% 1% 2% 2% 1% 11% 2% 69% 6% 1% 2%

Tweet 0% 0% 3% 1% 0% 1% 0% 5% 80% 0% 10%

RDG 0% 1% 1% 1% 1% 1% 0% 0% 0% 92% 2%

SNG 0% 2% 8% 4% 9% 7% 2% 4% 8% 4% 52%

Table A.26: Non Outliers (70/30 Vertex based) KNN-C Training Set Confusion

Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 92% 0% 0% 0% 0% 8% 0% 0% 0% 0% 0%

A.Bio. 0% 33% 0% 17% 0% 17% 0% 17% 17% 0% 0%

Code 0% 17% 50% 0% 0% 0% 0% 17% 0% 0% 17%

Collab. 0% 43% 0% 0% 29% 0% 0% 0% 0% 14% 14%

Comm. 0% 0% 0% 13% 0% 13% 0% 0% 25% 0% 50%

Infra. 0% 8% 0% 0% 17% 42% 0% 25% 8% 0% 0%

Meta. 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%

Social 6% 0% 0% 0% 0% 17% 0% 72% 0% 0% 6%

Tweet 0% 0% 0% 0% 0% 0% 0% 8% 69% 0% 23%

RDG 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%

SNG 0% 5% 14% 10% 5% 0% 0% 0% 29% 5% 33%

Table A.27: Non Outliers (70/30 Vertex based) KNN-C Testing Set Confusion

Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 83% 0% 0% 0% 0% 17% 0% 0% 0% 0% 0%

A.Bio. 0% 0% 0% 33% 33% 0% 0% 33% 0% 0% 0%

Code 0% 0% 0% 33% 0% 0% 0% 0% 33% 0% 33%

Collab. 0% 0% 33% 0% 67% 0% 0% 0% 0% 0% 0%

Comm. 0% 0% 0% 0% 25% 0% 0% 0% 0% 0% 75%

Infra. 17% 33% 0% 0% 0% 33% 0% 17% 0% 0% 0%

Meta. 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%

Social 0% 11% 0% 0% 0% 0% 11% 78% 0% 0% 0%

Tweet 0% 0% 0% 0% 0% 0% 0% 0% 83% 0% 17%

RDG 0% 11% 11% 0% 0% 0% 0% 0% 0% 78% 0%

SNG 0% 0% 0% 33% 11% 11% 0% 0% 0% 0% 44%
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Table A.28: Non Outliers (70/30 Vertex based) IKNN-C Training Set Confusion

Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 8% 0% 0% 0% 0% 17% 0% 75% 0% 0% 0%

A.Bio. 17% 0% 0% 17% 0% 17% 0% 0% 0% 0% 50%

Code 0% 0% 50% 0% 0% 0% 0% 17% 0% 0% 33%

Collab. 0% 29% 0% 0% 43% 0% 0% 0% 0% 0% 29%

Comm. 0% 0% 0% 13% 0% 25% 0% 0% 13% 0% 50%

Infra. 8% 8% 0% 0% 17% 33% 0% 25% 0% 0% 8%

Meta. 0% 0% 0% 0% 93% 0% 0% 0% 0% 0% 7%

Social 6% 0% 6% 0% 0% 33% 0% 28% 11% 0% 17%

Tweet 0% 0% 0% 15% 15% 0% 0% 0% 46% 0% 23%

RDG 0% 0% 0% 28% 6% 0% 0% 0% 0% 56% 11%

SNG 0% 0% 14% 10% 14% 0% 0% 0% 33% 5% 24%

Table A.29: Non Outliers (70/30 Vertex based) IKNN-C Testing Set Confusion

Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 0% 0% 0% 0% 0% 17% 0% 83% 0% 0% 0%

A.Bio. 0% 0% 0% 33% 33% 0% 0% 33% 0% 0% 0%

Code 0% 0% 33% 33% 0% 0% 0% 0% 0% 0% 33%

Collab. 0% 0% 33% 0% 67% 0% 0% 0% 0% 0% 0%

Comm. 0% 0% 0% 0% 25% 0% 0% 0% 0% 0% 75%

Infra. 17% 17% 0% 0% 0% 50% 0% 0% 0% 0% 17%

Meta. 0% 0% 0% 0% 100% 0% 0% 0% 0% 0% 0%

Social 0% 11% 0% 0% 11% 22% 0% 44% 11% 0% 0%

Tweet 0% 0% 0% 0% 17% 0% 0% 0% 50% 0% 33%

RDG 0% 11% 11% 33% 0% 0% 0% 11% 0% 33% 0%

SNG 0% 0% 0% 33% 11% 11% 0% 0% 11% 0% 33%

Table A.30: Non Outliers (70/30 Vertex based) SVM-C Training Set Confusion

Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

A.Bio. 17% 33% 0% 17% 0% 0% 0% 0% 0% 0% 33%

Code 0% 0% 17% 17% 17% 0% 0% 0% 0% 0% 50%

Collab. 0% 0% 0% 43% 0% 14% 0% 14% 0% 14% 14%

Comm. 0% 0% 0% 13% 50% 0% 0% 0% 0% 0% 38%

Infra. 0% 0% 0% 8% 0% 75% 0% 8% 0% 0% 8%

Meta. 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%

Social 0% 0% 0% 6% 0% 6% 0% 89% 0% 0% 0%

Tweet 0% 0% 0% 0% 0% 0% 0% 0% 85% 0% 15%

RDG 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%

SNG 0% 0% 0% 0% 5% 5% 0% 0% 5% 5% 81%
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Table A.31: Non Outliers (70/30 Vertex based) SVM-C Testing Set Confusion

Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

A.Bio. 0% 0% 0% 33% 0% 0% 0% 33% 0% 0% 33%

Code 0% 0% 0% 0% 0% 33% 0% 0% 0% 0% 67%

Collab. 0% 0% 0% 0% 0% 33% 0% 0% 0% 0% 67%

Comm. 0% 0% 0% 0% 25% 0% 0% 0% 0% 0% 75%

Infra. 17% 0% 0% 17% 0% 33% 0% 17% 0% 0% 17%

Meta. 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%

Social 0% 0% 0% 11% 11% 0% 11% 67% 0% 0% 0%

Tweet 0% 0% 0% 0% 0% 0% 0% 0% 33% 0% 67%

RDG 0% 0% 0% 0% 0% 11% 0% 0% 0% 89% 0%

SNG 0% 0% 0% 11% 11% 22% 0% 0% 0% 0% 56%

Table A.32: Non Outliers (70/30 Vertex based) NUSVM-C Training Set Confu-

sion Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

A.Bio. 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Code 0% 0% 83% 0% 17% 0% 0% 0% 0% 0% 0%

Collab. 0% 29% 14% 43% 14% 0% 0% 0% 0% 0% 0%

Comm. 0% 0% 13% 13% 75% 0% 0% 0% 0% 0% 0%

Infra. 0% 8% 8% 0% 0% 75% 0% 8% 0% 0% 0%

Meta. 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%

Social 6% 0% 0% 0% 0% 6% 0% 89% 0% 0% 0%

Tweet 0% 0% 0% 0% 0% 0% 0% 0% 100% 0% 0%

RDG 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%

SNG 0% 0% 10% 5% 29% 5% 0% 0% 24% 5% 24%

Table A.33: Non Outliers (70/30 Vertex based) NUSVM-C Testing Set Confusion

Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

A.Bio. 0% 0% 0% 33% 0% 0% 33% 0% 0% 0% 33%

Code 0% 0% 0% 33% 0% 33% 0% 0% 0% 0% 33%

Collab. 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0%

Comm. 0% 25% 0% 0% 75% 0% 0% 0% 0% 0% 0%

Infra. 17% 17% 0% 17% 0% 33% 0% 17% 0% 0% 0%

Meta. 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%

Social 0% 0% 0% 22% 0% 0% 22% 56% 0% 0% 0%

Tweet 0% 0% 0% 0% 0% 0% 0% 0% 67% 0% 33%

RDG 0% 11% 11% 0% 0% 0% 0% 0% 0% 78% 0%

SNG 0% 11% 22% 0% 11% 22% 0% 0% 11% 0% 22%
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Table A.34: Non Outliers (70/30 Vertex based) BioHEL-C Training Set Confusion

Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

A.Bio. 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Code 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0%

Collab. 0% 0% 0% 86% 0% 0% 0% 0% 0% 0% 14%

Comm. 0% 0% 0% 0% 100% 0% 0% 0% 0% 0% 0%

Infra. 0% 0% 0% 0% 0% 83% 0% 17% 0% 0% 0%

Meta. 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%

Social 0% 0% 0% 0% 0% 0% 0% 100% 0% 0% 0%

Tweet 0% 0% 0% 0% 0% 0% 0% 0% 100% 0% 0%

RDG 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%

SNG 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%

Table A.35: Non Outliers (70/30 Vertex based) BioHEL-C Testing Set Confusion

Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

A.Bio. 0% 0% 0% 33% 0% 0% 0% 0% 0% 0% 67%

Code 0% 0% 67% 0% 0% 33% 0% 0% 0% 0% 0%

Collab. 0% 33% 0% 67% 0% 0% 0% 0% 0% 0% 0%

Comm. 0% 0% 0% 0% 0% 0% 0% 0% 0% 25% 75%

Infra. 17% 17% 0% 50% 0% 0% 0% 17% 0% 0% 0%

Meta. 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%

Social 0% 0% 0% 0% 0% 0% 33% 56% 0% 11% 0%

Tweet 0% 0% 0% 0% 0% 0% 0% 0% 100% 0% 0%

RDG 0% 11% 0% 0% 0% 0% 0% 0% 0% 89% 0%

SNG 0% 0% 0% 11% 11% 11% 11% 0% 11% 0% 44%

Table A.36: Non Outliers (70/30 Edge based) KNN-C Training Set Confusion

Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 92% 0% 0% 0% 0% 8% 0% 0% 0% 0% 0%

A.Bio. 0% 0% 17% 0% 17% 33% 0% 17% 0% 0% 17%

Code 0% 17% 33% 0% 0% 0% 0% 17% 17% 0% 17%

Collab. 0% 14% 14% 14% 14% 14% 0% 0% 0% 0% 29%

Comm. 0% 13% 0% 0% 0% 25% 0% 0% 25% 0% 38%

Infra. 0% 17% 0% 0% 0% 25% 0% 25% 0% 0% 33%

Meta. 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%

Social 0% 6% 0% 0% 0% 6% 6% 78% 0% 0% 6%

Tweet 0% 0% 8% 0% 0% 0% 0% 8% 62% 0% 23%

RDG 0% 6% 6% 0% 0% 0% 0% 0% 0% 89% 0%

SNG 0% 5% 5% 14% 5% 5% 0% 0% 10% 5% 52%
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Table A.37: Non Outliers (70/30 Edge based) KNN-C Testing Set Confusion

Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 83% 0% 0% 0% 0% 17% 0% 0% 0% 0% 0%

A.Bio. 0% 33% 0% 33% 0% 0% 0% 33% 0% 0% 0%

Code 0% 0% 67% 0% 0% 0% 0% 0% 0% 33% 0%

Collab. 0% 33% 0% 0% 33% 0% 0% 0% 0% 33% 0%

Comm. 0% 25% 0% 0% 25% 0% 0% 0% 0% 25% 25%

Infra. 17% 17% 0% 0% 0% 50% 0% 17% 0% 0% 0%

Meta. 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%

Social 22% 0% 0% 0% 0% 11% 0% 67% 0% 0% 0%

Tweet 0% 0% 0% 0% 0% 0% 0% 0% 100% 0% 0%

RDG 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%

SNG 0% 0% 11% 11% 22% 0% 0% 0% 11% 0% 44%

Table A.38: Non Outliers (70/30 Edge based) IKNN-C Training Set Confusion

Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 17% 0% 0% 0% 0% 8% 0% 75% 0% 0% 0%

A.Bio. 17% 0% 17% 0% 17% 33% 0% 0% 0% 0% 17%

Code 0% 17% 33% 0% 0% 0% 0% 17% 17% 0% 17%

Collab. 0% 14% 0% 14% 14% 14% 0% 0% 0% 14% 29%

Comm. 0% 13% 0% 0% 0% 38% 0% 0% 0% 0% 50%

Infra. 0% 17% 17% 0% 0% 25% 0% 8% 8% 0% 25%

Meta. 0% 0% 0% 0% 0% 0% 0% 100% 0% 0% 0%

Social 6% 11% 11% 0% 0% 11% 0% 44% 11% 0% 6%

Tweet 0% 0% 8% 8% 8% 0% 0% 0% 38% 0% 38%

RDG 0% 17% 6% 0% 0% 0% 0% 0% 0% 39% 39%

SNG 0% 5% 5% 14% 24% 5% 0% 0% 10% 5% 33%

Table A.39: Non Outliers (70/30 Edge based) IKNN-C Testing Set Confusion

Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 17% 0% 0% 0% 0% 0% 0% 83% 0% 0% 0%

A.Bio. 0% 33% 0% 33% 0% 0% 0% 33% 0% 0% 0%

Code 0% 0% 67% 0% 0% 0% 0% 0% 0% 33% 0%

Collab. 0% 33% 0% 0% 33% 33% 0% 0% 0% 0% 0%

Comm. 0% 25% 25% 0% 25% 0% 0% 0% 0% 0% 25%

Infra. 17% 17% 17% 0% 0% 50% 0% 0% 0% 0% 0%

Meta. 0% 0% 0% 0% 0% 0% 0% 100% 0% 0% 0%

Social 22% 0% 11% 0% 0% 11% 0% 44% 11% 0% 0%

Tweet 0% 0% 0% 0% 0% 0% 0% 0% 50% 0% 50%

RDG 0% 0% 0% 0% 0% 0% 0% 0% 0% 67% 33%

SNG 0% 0% 11% 11% 33% 0% 0% 0% 11% 0% 33%
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Table A.40: Non Outliers (70/30 Edge based) SVM-C Training Set Confusion

Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

A.Bio. 17% 33% 0% 0% 0% 17% 0% 0% 0% 0% 33%

Code 0% 0% 17% 0% 0% 33% 0% 0% 0% 0% 50%

Collab. 0% 0% 0% 57% 0% 0% 0% 14% 0% 0% 29%

Comm. 0% 0% 0% 13% 13% 0% 0% 0% 0% 0% 75%

Infra. 8% 0% 0% 8% 0% 67% 0% 0% 0% 0% 17%

Meta. 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%

Social 0% 0% 0% 0% 0% 11% 0% 89% 0% 0% 0%

Tweet 0% 0% 0% 0% 0% 0% 0% 0% 77% 0% 23%

RDG 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%

SNG 0% 0% 0% 0% 0% 5% 0% 0% 0% 5% 90%

Table A.41: Non Outliers (70/30 Edge based) SVM-C Testing Set Confusion

Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

A.Bio. 0% 0% 0% 33% 0% 0% 0% 33% 0% 0% 33%

Code 0% 0% 33% 0% 0% 0% 0% 0% 0% 33% 33%

Collab. 0% 0% 0% 0% 0% 33% 0% 0% 0% 33% 33%

Comm. 0% 0% 0% 25% 0% 0% 0% 0% 0% 25% 50%

Infra. 17% 0% 17% 0% 0% 50% 0% 0% 0% 0% 17%

Meta. 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%

Social 0% 0% 0% 0% 0% 0% 0% 100% 0% 0% 0%

Tweet 0% 0% 0% 17% 0% 0% 0% 0% 33% 0% 50%

RDG 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%

SNG 0% 0% 0% 11% 11% 0% 0% 0% 22% 0% 56%

Table A.42: Non Outliers (70/30 Edge based) NUSVM-C Training Set Confusion

Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

A.Bio. 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Code 0% 17% 83% 0% 0% 0% 0% 0% 0% 0% 0%

Collab. 0% 0% 14% 86% 0% 0% 0% 0% 0% 0% 0%

Comm. 0% 0% 13% 13% 63% 0% 0% 0% 0% 0% 13%

Infra. 0% 8% 8% 0% 8% 67% 0% 8% 0% 0% 0%

Meta. 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%

Social 0% 0% 0% 0% 0% 6% 0% 94% 0% 0% 0%

Tweet 0% 0% 0% 0% 0% 0% 0% 0% 77% 0% 23%

RDG 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%

SNG 0% 5% 0% 0% 14% 0% 0% 0% 0% 5% 76%
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Table A.43: Non Outliers (70/30 Edge based) NUSVM-C Testing Set Confusion

Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

A.Bio. 0% 33% 33% 33% 0% 0% 0% 0% 0% 0% 0%

Code 0% 33% 0% 33% 0% 0% 0% 0% 0% 33% 0%

Collab. 0% 0% 33% 0% 33% 0% 0% 0% 0% 33% 0%

Comm. 0% 0% 75% 0% 25% 0% 0% 0% 0% 0% 0%

Infra. 0% 0% 33% 0% 0% 67% 0% 0% 0% 0% 0%

Meta. 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%

Social 22% 0% 0% 0% 0% 11% 11% 56% 0% 0% 0%

Tweet 0% 0% 17% 0% 0% 0% 0% 0% 83% 0% 0%

RDG 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%

SNG 0% 11% 11% 0% 33% 0% 0% 0% 11% 0% 33%

Table A.44: Non Outliers (70/30 Edge based) BioHEL-C Training Set Confusion

Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

A.Bio. 0% 86% 3% 1% 10% 0% 0% 0% 0% 0% 0%

Code 0% 0% 98% 0% 0% 0% 0% 0% 0% 0% 1%

Collab. 0% 0% 0% 97% 0% 1% 0% 1% 0% 0% 0%

Comm. 0% 3% 1% 5% 87% 0% 0% 0% 0% 0% 4%

Infra. 0% 1% 1% 1% 5% 87% 0% 5% 0% 0% 2%

Meta. 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%

Social 0% 0% 0% 0% 0% 0% 0% 100% 0% 0% 0%

Tweet 0% 0% 0% 0% 0% 0% 0% 0% 100% 0% 0%

RDG 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%

SNG 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 99%

Table A.45: Non Outliers (70/30 Edge based) BioHEL-C Testing Set Confusion

Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

A.Bio. 0% 18% 14% 25% 10% 5% 11% 5% 0% 3% 9%

Code 0% 9% 42% 15% 2% 6% 3% 12% 0% 6% 5%

Collab. 0% 7% 8% 1% 9% 11% 0% 11% 1% 29% 23%

Comm. 0% 3% 20% 3% 18% 8% 0% 10% 0% 15% 24%

Infra. 17% 4% 8% 5% 5% 28% 0% 16% 0% 3% 14%

Meta. 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%

Social 20% 0% 0% 0% 0% 7% 6% 63% 3% 0% 0%

Tweet 0% 0% 1% 0% 0% 1% 0% 3% 85% 0% 9%

RDG 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%

SNG 0% 2% 16% 7% 4% 4% 3% 6% 15% 0% 43%
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Table A.46: Non Outliers (90/10 Vertex based) KNN-C Training Set Confusion

Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 88% 0% 0% 0% 0% 13% 0% 0% 0% 0% 0%

A.Bio. 0% 25% 13% 13% 13% 13% 0% 25% 0% 0% 0%

Code 0% 13% 25% 0% 0% 0% 0% 13% 13% 13% 25%

Collab. 0% 22% 11% 11% 22% 0% 0% 0% 0% 11% 22%

Comm. 0% 0% 0% 0% 20% 10% 0% 0% 0% 0% 70%

Infra. 0% 13% 0% 0% 0% 44% 0% 19% 0% 0% 25%

Meta. 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%

Social 4% 0% 0% 4% 0% 13% 0% 75% 4% 0% 0%

Tweet 0% 0% 6% 0% 0% 0% 0% 6% 71% 0% 18%

RDG 0% 0% 4% 0% 0% 0% 0% 0% 0% 96% 0%

SNG 0% 4% 7% 11% 7% 4% 0% 0% 11% 4% 52%

Table A.47: Non Outliers (90/10 Vertex based) KNN-C Testing Set Confusion

Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

A.Bio. 0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0%

Code 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0%

Collab. 0% 0% 0% 0% 100% 0% 0% 0% 0% 0% 0%

Comm. 0% 0% 0% 50% 0% 0% 0% 0% 50% 0% 0%

Infra. 50% 50% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Meta. 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%

Social 0% 33% 0% 0% 0% 0% 0% 67% 0% 0% 0%

Tweet 0% 0% 0% 0% 0% 0% 0% 0% 100% 0% 0%

RDG 0% 33% 0% 0% 0% 0% 0% 0% 0% 67% 0%

SNG 0% 0% 0% 33% 0% 0% 0% 0% 33% 0% 33%

Table A.48: Non Outliers (90/10 Vertex based) IKNN-C Training Set Confusion

Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 0% 0% 0% 0% 0% 25% 0% 75% 0% 0% 0%

A.Bio. 0% 0% 13% 13% 13% 13% 0% 25% 0% 0% 25%

Code 0% 0% 25% 0% 0% 0% 0% 13% 25% 13% 25%

Collab. 0% 11% 11% 22% 0% 0% 0% 0% 0% 11% 44%

Comm. 0% 0% 10% 20% 0% 10% 0% 0% 10% 0% 50%

Infra. 0% 13% 0% 0% 0% 50% 0% 13% 0% 0% 25%

Meta. 0% 0% 0% 0% 0% 0% 0% 100% 0% 0% 0%

Social 0% 4% 0% 8% 0% 25% 0% 50% 8% 0% 4%

Tweet 0% 0% 6% 0% 0% 0% 0% 6% 53% 0% 35%

RDG 0% 0% 4% 4% 0% 0% 0% 0% 0% 54% 38%

SNG 0% 0% 7% 11% 30% 4% 0% 0% 22% 4% 22%
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Table A.49: Non Outliers (90/10 Vertex based) IKNN-C Testing Set Confusion

Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 0% 0% 0% 0% 0% 0% 0% 100% 0% 0% 0%

A.Bio. 0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0%

Code 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0%

Collab. 0% 0% 0% 0% 100% 0% 0% 0% 0% 0% 0%

Comm. 0% 0% 0% 50% 0% 50% 0% 0% 0% 0% 0%

Infra. 0% 0% 0% 0% 0% 50% 0% 0% 0% 0% 50%

Meta. 0% 0% 0% 0% 0% 0% 0% 100% 0% 0% 0%

Social 0% 33% 0% 0% 0% 0% 0% 67% 0% 0% 0%

Tweet 0% 0% 0% 0% 0% 0% 0% 0% 100% 0% 0%

RDG 0% 33% 0% 0% 0% 0% 0% 0% 0% 67% 0%

SNG 0% 0% 0% 33% 33% 0% 0% 0% 0% 0% 33%

Table A.50: Non Outliers (90/10 Vertex based) SVM-C Training Set Confusion

Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

A.Bio. 13% 13% 13% 0% 0% 13% 0% 0% 0% 0% 50%

Code 0% 0% 13% 0% 0% 38% 0% 0% 0% 0% 50%

Collab. 0% 0% 0% 56% 0% 0% 0% 11% 0% 11% 22%

Comm. 0% 0% 0% 0% 30% 10% 0% 0% 0% 0% 60%

Infra. 0% 0% 6% 0% 0% 69% 0% 6% 0% 0% 19%

Meta. 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%

Social 0% 0% 0% 0% 0% 13% 0% 88% 0% 0% 0%

Tweet 0% 0% 0% 0% 0% 0% 0% 0% 100% 0% 0%

RDG 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%

SNG 0% 0% 0% 4% 7% 4% 0% 0% 19% 4% 63%

Table A.51: Non Outliers (90/10 Vertex based) SVM-C Testing Set Confusion

Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

A.Bio. 0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0%

Code 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%

Collab. 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0%

Comm. 0% 0% 0% 0% 0% 0% 0% 0% 50% 50% 0%

Infra. 50% 0% 0% 0% 0% 0% 0% 0% 0% 0% 50%

Meta. 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%

Social 0% 0% 0% 0% 0% 33% 0% 67% 0% 0% 0%

Tweet 0% 0% 0% 0% 0% 0% 0% 0% 100% 0% 0%

RDG 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%

SNG 0% 0% 0% 33% 33% 0% 0% 0% 0% 0% 33%
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Table A.52: Non Outliers (90/10 Vertex based) NUSVM-C Training Set Confu-

sion Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

A.Bio. 13% 50% 0% 13% 0% 13% 0% 13% 0% 0% 0%

Code 0% 13% 63% 0% 0% 13% 0% 0% 0% 0% 13%

Collab. 0% 0% 11% 56% 22% 11% 0% 0% 0% 0% 0%

Comm. 0% 0% 10% 0% 60% 10% 0% 0% 0% 0% 20%

Infra. 0% 6% 0% 6% 0% 63% 0% 25% 0% 0% 0%

Meta. 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%

Social 0% 0% 0% 0% 0% 4% 0% 96% 0% 0% 0%

Tweet 0% 0% 0% 0% 0% 0% 0% 0% 94% 0% 6%

RDG 0% 0% 4% 0% 0% 0% 0% 0% 0% 96% 0%

SNG 0% 11% 0% 4% 4% 7% 0% 0% 26% 4% 44%

Table A.53: Non Outliers (90/10 Vertex based) NUSVM-C Testing Set Confusion

Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

A.Bio. 0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0%

Code 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0%

Collab. 0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0%

Comm. 0% 0% 0% 0% 0% 0% 0% 0% 0% 50% 50%

Infra. 50% 0% 0% 0% 0% 50% 0% 0% 0% 0% 0%

Meta. 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%

Social 0% 0% 0% 0% 33% 0% 0% 67% 0% 0% 0%

Tweet 0% 0% 0% 0% 0% 0% 0% 0% 100% 0% 0%

RDG 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%

SNG 0% 33% 33% 0% 0% 0% 0% 0% 0% 0% 33%

Table A.54: Non Outliers (90/10 Vertex based) BioHEL-C Training Set Confusion

Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

A.Bio. 0% 78% 1% 14% 5% 0% 0% 0% 0% 0% 2%

Code 0% 1% 75% 13% 1% 1% 0% 0% 0% 0% 9%

Collab. 0% 0% 0% 93% 2% 0% 0% 0% 0% 0% 4%

Comm. 0% 0% 0% 12% 80% 1% 0% 0% 0% 0% 6%

Infra. 0% 0% 0% 1% 3% 94% 0% 2% 0% 0% 1%

Meta. 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%

Social 0% 0% 0% 0% 0% 0% 0% 100% 0% 0% 0%

Tweet 0% 0% 0% 0% 0% 0% 0% 0% 100% 0% 0%

RDG 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%

SNG 0% 0% 0% 1% 1% 0% 0% 0% 1% 0% 97%
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Table A.55: Non Outliers (90/10 Vertex based) BioHEL-C Testing Set Confusion

Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 99% 0% 0% 0% 0% 0% 1% 0% 0% 0% 0%

A.Bio. 0% 2% 6% 83% 0% 2% 0% 2% 0% 1% 5%

Code 0% 12% 58% 4% 2% 5% 0% 0% 0% 0% 20%

Collab. 0% 2% 34% 12% 6% 26% 2% 0% 0% 0% 18%

Comm. 0% 1% 9% 34% 7% 5% 0% 1% 12% 3% 29%

Infra. 47% 5% 6% 22% 4% 7% 0% 2% 0% 0% 7%

Meta. 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%

Social 1% 1% 4% 15% 5% 4% 4% 63% 0% 2% 1%

Tweet 0% 0% 0% 0% 0% 0% 0% 1% 99% 0% 0%

RDG 0% 4% 7% 10% 3% 4% 0% 1% 0% 69% 2%

SNG 0% 1% 6% 17% 5% 2% 2% 19% 27% 0% 22%

Table A.56: Non Outliers (90/10 Edge based) KNN-C Training Set Confusion

Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 88% 0% 0% 0% 0% 13% 0% 0% 0% 0% 0%

A.Bio. 0% 0% 13% 25% 13% 13% 0% 25% 0% 0% 13%

Code 0% 13% 25% 0% 0% 0% 0% 13% 13% 13% 25%

Collab. 0% 22% 11% 11% 22% 0% 0% 0% 0% 0% 33%

Comm. 0% 10% 0% 30% 0% 10% 0% 0% 10% 0% 40%

Infra. 6% 13% 0% 0% 0% 44% 0% 13% 6% 0% 19%

Meta. 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%

Social 4% 4% 0% 4% 0% 17% 0% 71% 0% 0% 0%

Tweet 0% 0% 6% 0% 0% 0% 0% 6% 71% 0% 18%

RDG 0% 4% 4% 0% 0% 0% 0% 0% 0% 92% 0%

SNG 0% 4% 11% 11% 4% 4% 0% 0% 15% 4% 48%

Table A.57: Non Outliers (90/10 Edge based) KNN-C Testing Set Confusion

Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

A.Bio. 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Code 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0%

Collab. 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%

Comm. 0% 0% 0% 0% 50% 0% 0% 0% 0% 0% 50%

Infra. 0% 50% 0% 0% 0% 50% 0% 0% 0% 0% 0%

Meta. 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%

Social 0% 0% 0% 0% 0% 67% 0% 33% 0% 0% 0%

Tweet 0% 0% 0% 0% 0% 0% 0% 0% 100% 0% 0%

RDG 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%

SNG 0% 0% 0% 33% 33% 0% 0% 0% 0% 0% 33%
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Table A.58: Non Outliers (90/10 Edge based) IKNN-C Training Set Confusion

Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 0% 0% 0% 0% 0% 25% 0% 75% 0% 0% 0%

A.Bio. 0% 0% 13% 25% 13% 13% 0% 13% 0% 0% 25%

Code 0% 13% 25% 0% 0% 0% 0% 13% 13% 13% 25%

Collab. 0% 22% 11% 11% 22% 0% 0% 0% 0% 0% 33%

Comm. 0% 10% 0% 30% 0% 20% 0% 0% 10% 0% 30%

Infra. 0% 13% 0% 0% 0% 44% 0% 19% 0% 0% 25%

Meta. 0% 0% 0% 0% 3% 0% 0% 0% 0% 0% 97%

Social 0% 8% 0% 4% 17% 21% 0% 29% 21% 0% 0%

Tweet 0% 0% 6% 0% 12% 0% 0% 0% 41% 0% 41%

RDG 0% 13% 4% 0% 8% 0% 0% 0% 0% 38% 38%

SNG 0% 4% 11% 11% 26% 4% 0% 0% 19% 4% 22%

Table A.59: Non Outliers (90/10 Edge based) IKNN-C Testing Set Confusion

Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 0% 0% 0% 0% 0% 0% 0% 100% 0% 0% 0%

A.Bio. 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Code 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0%

Collab. 0% 0% 0% 0% 0% 100% 0% 0% 0% 0% 0%

Comm. 0% 0% 50% 0% 50% 0% 0% 0% 0% 0% 0%

Infra. 0% 50% 0% 0% 0% 50% 0% 0% 0% 0% 0%

Meta. 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%

Social 0% 0% 0% 0% 0% 67% 0% 33% 0% 0% 0%

Tweet 0% 0% 0% 0% 0% 0% 0% 0% 100% 0% 0%

RDG 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%

SNG 0% 0% 0% 33% 33% 0% 0% 0% 0% 0% 33%

Table A.60: Non Outliers (90/10 Edge based) SVM-C Training Set Confusion

Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

A.Bio. 13% 13% 0% 13% 0% 13% 0% 13% 0% 0% 38%

Code 0% 0% 13% 13% 0% 13% 0% 0% 0% 13% 50%

Collab. 0% 0% 11% 33% 11% 0% 0% 11% 0% 0% 33%

Comm. 0% 0% 0% 10% 50% 10% 0% 0% 10% 0% 20%

Infra. 6% 0% 0% 0% 0% 69% 0% 0% 0% 0% 25%

Meta. 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%

Social 0% 0% 0% 0% 0% 17% 0% 83% 0% 0% 0%

Tweet 0% 0% 0% 0% 0% 0% 0% 0% 94% 0% 6%

RDG 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%

SNG 0% 0% 0% 4% 4% 4% 0% 0% 19% 4% 67%
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Table A.61: Non Outliers (90/10 Edge based) SVM-C Testing Set Confusion

Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

A.Bio. 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%

Code 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%

Collab. 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%

Comm. 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%

Infra. 0% 0% 0% 0% 0% 50% 0% 0% 0% 0% 50%

Meta. 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%

Social 0% 0% 0% 0% 0% 100% 0% 0% 0% 0% 0%

Tweet 0% 0% 0% 0% 0% 0% 0% 0% 100% 0% 0%

RDG 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%

SNG 0% 0% 0% 0% 33% 0% 0% 0% 0% 0% 67%

Table A.62: Non Outliers (90/10 Edge based) NUSVM-C Training Set Confusion

Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

A.Bio. 13% 38% 0% 0% 25% 0% 0% 0% 0% 0% 25%

Code 0% 13% 75% 0% 0% 13% 0% 0% 0% 0% 0%

Collab. 0% 11% 22% 44% 11% 11% 0% 0% 0% 0% 0%

Comm. 0% 0% 0% 30% 50% 0% 0% 0% 0% 0% 20%

Infra. 0% 6% 13% 0% 6% 75% 0% 0% 0% 0% 0%

Meta. 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%

Social 0% 0% 4% 0% 0% 4% 0% 92% 0% 0% 0%

Tweet 0% 0% 0% 0% 0% 0% 0% 0% 100% 0% 0%

RDG 0% 0% 4% 0% 0% 0% 0% 0% 0% 96% 0%

SNG 0% 4% 7% 0% 0% 4% 0% 0% 19% 4% 63%

Table A.63: Non Outliers (90/10 Edge based) NUSVM-C Testing Set Confusion

Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

A.Bio. 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Code 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0%

Collab. 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%

Comm. 0% 0% 50% 50% 0% 0% 0% 0% 0% 0% 0%

Infra. 0% 0% 0% 0% 0% 100% 0% 0% 0% 0% 0%

Meta. 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%

Social 0% 0% 0% 0% 0% 33% 0% 67% 0% 0% 0%

Tweet 0% 0% 0% 0% 0% 0% 0% 0% 100% 0% 0%

RDG 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%

SNG 0% 0% 0% 33% 0% 0% 0% 0% 0% 0% 67%
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Table A.64: Non Outliers (90/10 Edge based) BioHEL-C Training Set Confusion

Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

A.Bio. 0% 72% 2% 7% 11% 1% 0% 0% 0% 0% 8%

Code 0% 0% 76% 5% 3% 1% 0% 0% 0% 0% 15%

Collab. 0% 0% 0% 89% 4% 0% 0% 1% 0% 0% 6%

Comm. 0% 0% 0% 6% 85% 0% 0% 0% 0% 0% 8%

Infra. 0% 1% 0% 0% 4% 94% 0% 0% 0% 0% 1%

Meta. 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%

Social 0% 0% 0% 0% 0% 0% 0% 100% 0% 0% 0%

Tweet 0% 0% 0% 0% 0% 0% 0% 0% 100% 0% 0%

RDG 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%

SNG 0% 0% 0% 0% 0% 0% 0% 0% 1% 0% 98%

Table A.65: Non Outliers (90/10 Edge based) BioHEL-C Testing Set Confusion

Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 99% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

A.Bio. 0% 3% 8% 34% 22% 1% 0% 0% 0% 0% 31%

Code 0% 8% 34% 14% 2% 4% 0% 1% 0% 1% 36%

Collab. 0% 13% 2% 0% 0% 3% 0% 3% 0% 77% 2%

Comm. 0% 2% 7% 33% 7% 1% 0% 4% 0% 0% 48%

Infra. 3% 1% 4% 16% 3% 46% 0% 1% 0% 3% 24%

Meta. 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%

Social 0% 0% 1% 0% 0% 62% 0% 36% 0% 1% 0%

Tweet 0% 0% 0% 0% 0% 0% 0% 3% 68% 0% 29%

RDG 0% 0% 0% 0% 0% 0% 0% 0% 0% 99% 1%

SNG 0% 1% 6% 5% 16% 0% 0% 1% 1% 1% 68%

Table A.66: Non Outliers Vs Outliers (Automatic Partitioning) KNN-C Testing

Set Confusion Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

A.Bio. 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%

Code 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0%

Collab. 0% 0% 0% 0% 0% 67% 0% 0% 0% 0% 33%

Comm. 0% 0% 0% 0% 0% 50% 0% 0% 0% 0% 50%

Infra. 0% 25% 0% 0% 50% 25% 0% 0% 0% 0% 0%

Meta. 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Social 0% 0% 0% 0% 0% 0% 0% 100% 0% 0% 0%

Tweet 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

RDG 33% 33% 0% 0% 0% 0% 0% 0% 0% 33% 0%

SNG 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
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Table A.67: Non Outliers Vs Outliers (Automatic Partitioning) IKNN-C Testing

Set Confusion Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

A.Bio. 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%

Code 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0%

Collab. 0% 0% 0% 0% 0% 67% 0% 0% 0% 0% 33%

Comm. 0% 0% 0% 0% 50% 50% 0% 0% 0% 0% 0%

Infra. 0% 25% 0% 0% 50% 25% 0% 0% 0% 0% 0%

Meta. 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Social 0% 0% 0% 0% 0% 33% 0% 67% 0% 0% 0%

Tweet 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

RDG 0% 33% 0% 33% 0% 0% 0% 0% 0% 0% 33%

SNG 0% 0% 0% 0% 0% 100% 0% 0% 0% 0% 0%

Table A.68: Non Outliers Vs Outliers (Automatic Partitioning) SVM-C Testing

Set Confusion Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

A.Bio. 0% 0% 0% 0% 100% 0% 0% 0% 0% 0% 0%

Code 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%

Collab. 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%

Comm. 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%

Infra. 0% 0% 0% 0% 0% 0% 25% 0% 0% 0% 75%

Meta. 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Social 0% 0% 0% 0% 0% 33% 0% 67% 0% 0% 0%

Tweet 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

RDG 33% 0% 0% 0% 0% 33% 0% 0% 0% 33% 0%

SNG 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Table A.69: Non Outliers Vs Outliers (Automatic Partitioning) NUSVM-C Test-

ing Set Confusion Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

A.Bio. 0% 0% 0% 0% 100% 0% 0% 0% 0% 0% 0%

Code 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0%

Collab. 0% 33% 0% 0% 0% 67% 0% 0% 0% 0% 0%

Comm. 0% 0% 0% 0% 0% 50% 0% 0% 0% 0% 50%

Infra. 0% 0% 0% 50% 0% 0% 25% 0% 0% 0% 25%

Meta. 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Social 0% 0% 0% 0% 0% 0% 0% 100% 0% 0% 0%

Tweet 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

RDG 0% 0% 0% 0% 0% 33% 0% 33% 0% 33% 0%

SNG 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
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Table A.70: Non Outliers Vs Outliers (Automatic Partitioning) BioHEL-C Test-

ing Set Confusion Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

A.Bio. 0% 12% 3% 6% 25% 10% 0% 0% 0% 1% 42%

Code 0% 0% 9% 2% 9% 0% 0% 0% 0% 0% 79%

Collab. 0% 3% 14% 1% 4% 27% 6% 0% 0% 1% 43%

Comm. 0% 1% 2% 1% 22% 36% 0% 0% 0% 0% 37%

Infra. 0% 6% 3% 4% 39% 11% 3% 0% 0% 9% 25%

Meta. 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Social 10% 0% 0% 0% 0% 9% 0% 79% 1% 0% 0%

Tweet 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

RDG 6% 4% 6% 16% 1% 1% 0% 3% 0% 63% 0%

SNG 81% 0% 0% 1% 0% 17% 0% 0% 0% 0% 0%

Table A.71: Vertex Based 70 vs Outliers KNN-C Testing Set Confusion Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

A.Bio. 0% 0% 0% 0% 100% 0% 0% 0% 0% 0% 0%

Code 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0%

Collab. 0% 0% 0% 33% 0% 67% 0% 0% 0% 0% 0%

Comm. 0% 0% 0% 0% 0% 50% 0% 0% 0% 0% 50%

Infra. 0% 0% 0% 0% 50% 25% 25% 0% 0% 0% 0%

Meta. 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Social 0% 0% 0% 0% 33% 0% 0% 67% 0% 0% 0%

Tweet 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

RDG 33% 33% 0% 0% 0% 0% 0% 0% 0% 33% 0%

SNG 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Table A.72: Vertex Based 70 vs Outliers IKNN-C Testing Set Confusion Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

A.Bio. 0% 0% 0% 0% 100% 0% 0% 0% 0% 0% 0%

Code 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0%

Collab. 0% 0% 0% 33% 0% 67% 0% 0% 0% 0% 0%

Comm. 0% 0% 0% 0% 0% 50% 0% 0% 0% 0% 50%

Infra. 0% 0% 0% 0% 50% 25% 0% 0% 0% 0% 25%

Meta. 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Social 0% 0% 0% 0% 33% 67% 0% 0% 0% 0% 0%

Tweet 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

RDG 0% 33% 0% 33% 0% 0% 0% 0% 0% 33% 0%

SNG 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%



A.2. EXPERIMENTAL TRAINING AND TESTING ACCURACIES DETAIL 213

Table A.73: Vertex Based 70 vs Outliers SVM-C Testing Set Confusion Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

A.Bio. 0% 0% 0% 0% 100% 0% 0% 0% 0% 0% 0%

Code 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%

Collab. 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%

Comm. 0% 0% 0% 0% 0% 50% 0% 0% 0% 0% 50%

Infra. 0% 0% 0% 0% 50% 0% 25% 0% 0% 0% 25%

Meta. 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Social 0% 0% 0% 0% 33% 33% 0% 33% 0% 0% 0%

Tweet 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

RDG 33% 0% 0% 33% 0% 0% 0% 0% 0% 33% 0%

SNG 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Table A.74: Vertex Based 70 vs Outliers NUSVM-C Testing Set Confusion Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

A.Bio. 0% 0% 0% 0% 100% 0% 0% 0% 0% 0% 0%

Code 0% 0% 0% 0% 100% 0% 0% 0% 0% 0% 0%

Collab. 0% 33% 0% 0% 0% 67% 0% 0% 0% 0% 0%

Comm. 0% 0% 0% 0% 0% 50% 0% 0% 0% 0% 50%

Infra. 0% 0% 0% 0% 50% 25% 25% 0% 0% 0% 0%

Meta. 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Social 0% 0% 0% 0% 0% 0% 0% 100% 0% 0% 0%

Tweet 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

RDG 33% 0% 33% 0% 0% 0% 0% 0% 0% 33% 0%

SNG 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Table A.75: Vertex Based 70 vs Outliers BioHEL-C Testing Set Confusion Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

A.Bio. 0% 4% 2% 11% 66% 4% 2% 0% 0% 0% 10%

Code 0% 0% 2% 0% 1% 12% 0% 0% 0% 0% 84%

Collab. 0% 3% 5% 1% 11% 44% 15% 0% 0% 0% 20%

Comm. 0% 0% 1% 2% 8% 44% 0% 0% 0% 0% 43%

Infra. 0% 1% 5% 2% 41% 21% 23% 0% 0% 0% 7%

Meta. 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Social 13% 0% 0% 0% 0% 7% 0% 78% 1% 0% 0%

Tweet 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

RDG 4% 7% 9% 12% 2% 1% 0% 1% 0% 64% 1%

SNG 84% 2% 0% 2% 1% 7% 0% 3% 0% 0% 0%

Table A.76: Edge Based 70 vs Outliers KNN-C Testing Set Confusion Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

A.Bio. 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%

Code 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0%

Collab. 0% 0% 0% 0% 0% 67% 0% 0% 0% 0% 33%

Comm. 0% 0% 0% 0% 50% 50% 0% 0% 0% 0% 0%

Infra. 0% 0% 0% 0% 25% 25% 25% 0% 0% 0% 25%

Meta. 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Social 0% 0% 0% 0% 0% 0% 0% 100% 0% 0% 0%

Tweet 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

RDG 33% 33% 0% 0% 0% 0% 0% 0% 0% 33% 0%

SNG 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
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Table A.77: Edge Based 70 vs Outliers IKNN-C Testing Set Confusion Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

A.Bio. 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%

Code 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0%

Collab. 0% 0% 0% 0% 0% 67% 0% 0% 0% 0% 33%

Comm. 0% 0% 0% 0% 50% 50% 0% 0% 0% 0% 0%

Infra. 0% 0% 0% 0% 25% 25% 0% 0% 0% 0% 50%

Meta. 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Social 0% 0% 33% 0% 33% 0% 0% 33% 0% 0% 0%

Tweet 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

RDG 0% 33% 0% 0% 0% 0% 0% 33% 0% 0% 33%

SNG 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Table A.78: Edge Based 70 vs Outliers SVM-C Testing Set Confusion Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

A.Bio. 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%

Code 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%

Collab. 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%

Comm. 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%

Infra. 0% 0% 0% 0% 0% 0% 25% 0% 0% 0% 75%

Meta. 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Social 0% 0% 0% 0% 0% 33% 0% 67% 0% 0% 0%

Tweet 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

RDG 33% 0% 0% 0% 0% 33% 0% 0% 0% 33% 0%

SNG 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Table A.79: Edge Based 70 vs Outliers NUSVM-C Testing Set Confusion Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

A.Bio. 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0%

Code 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0%

Collab. 0% 67% 0% 0% 0% 0% 0% 0% 0% 0% 33%

Comm. 0% 0% 0% 50% 0% 0% 0% 0% 0% 0% 50%

Infra. 0% 0% 0% 0% 50% 0% 25% 0% 0% 0% 25%

Meta. 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Social 0% 0% 0% 0% 33% 0% 0% 33% 0% 0% 33%

Tweet 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

RDG 0% 0% 0% 0% 0% 0% 0% 67% 0% 33% 0%

SNG 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Table A.80: Edge Based 70 vs Outliers BioHEL-C Testing Set Confusion Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

A.Bio. 0% 4% 0% 0% 7% 6% 2% 2% 0% 10% 68%

Code 0% 1% 14% 2% 2% 3% 0% 0% 0% 1% 77%

Collab. 0% 2% 6% 5% 6% 7% 11% 0% 0% 1% 62%

Comm. 0% 2% 11% 2% 9% 14% 1% 0% 0% 6% 56%

Infra. 0% 1% 11% 2% 13% 9% 9% 0% 0% 11% 43%

Meta. 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Social 28% 0% 0% 0% 0% 2% 0% 67% 1% 0% 1%

Tweet 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

RDG 8% 10% 5% 0% 1% 3% 0% 6% 0% 66% 1%

SNG 82% 1% 1% 0% 1% 12% 0% 2% 0% 0% 0%



A.2. EXPERIMENTAL TRAINING AND TESTING ACCURACIES DETAIL 215

Table A.81: Vertex Based 90 vs Outliers KNN-C Testing Set Confusion Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

A.Bio. 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%

Code 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0%

Collab. 0% 0% 0% 0% 0% 67% 0% 0% 0% 0% 33%

Comm. 0% 0% 0% 0% 50% 50% 0% 0% 0% 0% 0%

Infra. 0% 25% 0% 0% 50% 25% 0% 0% 0% 0% 0%

Meta. 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Social 0% 0% 0% 0% 0% 0% 0% 100% 0% 0% 0%

Tweet 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

RDG 33% 33% 0% 0% 0% 0% 0% 0% 0% 33% 0%

SNG 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Table A.82: Vertex Based 90 vs Outliers IKNN-C Testing Set Confusion Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

A.Bio. 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%

Code 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0%

Collab. 0% 0% 0% 0% 0% 67% 0% 0% 0% 0% 33%

Comm. 0% 0% 0% 0% 50% 50% 0% 0% 0% 0% 0%

Infra. 0% 25% 0% 0% 50% 25% 0% 0% 0% 0% 0%

Meta. 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Social 0% 0% 0% 0% 0% 33% 0% 67% 0% 0% 0%

Tweet 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

RDG 0% 33% 0% 33% 0% 0% 0% 0% 0% 0% 33%

SNG 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Table A.83: Vertex Based 90 vs Outliers SVM-C Testing Set Confusion Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

A.Bio. 0% 0% 0% 0% 100% 0% 0% 0% 0% 0% 0%

Code 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%

Collab. 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%

Comm. 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%

Infra. 0% 0% 0% 0% 0% 0% 25% 0% 0% 0% 75%

Meta. 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Social 0% 0% 0% 0% 0% 33% 0% 67% 0% 0% 0%

Tweet 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

RDG 33% 0% 0% 0% 0% 33% 0% 0% 0% 33% 0%

SNG 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Table A.84: Vertex Based 90 vs Outliers NUSVM-C Testing Set Confusion Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

A.Bio. 0% 0% 0% 0% 100% 0% 0% 0% 0% 0% 0%

Code 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0%

Collab. 0% 33% 0% 0% 0% 67% 0% 0% 0% 0% 0%

Comm. 0% 0% 0% 0% 0% 50% 0% 0% 0% 0% 50%

Infra. 0% 25% 0% 0% 50% 0% 25% 0% 0% 0% 0%

Meta. 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Social 0% 0% 0% 0% 0% 0% 0% 100% 0% 0% 0%

Tweet 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

RDG 0% 0% 33% 0% 0% 0% 0% 33% 0% 33% 0%

SNG 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
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Table A.85: Vertex Based 90 vs Outliers BioHEL-C Testing Set Confusion Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

A.Bio. 0% 9% 2% 0% 18% 5% 0% 0% 0% 2% 63%

Code 0% 1% 6% 2% 8% 5% 0% 0% 0% 0% 78%

Collab. 0% 4% 16% 1% 6% 25% 6% 0% 0% 0% 42%

Comm. 0% 0% 3% 0% 19% 36% 0% 0% 0% 0% 41%

Infra. 0% 6% 5% 6% 39% 13% 4% 0% 0% 0% 26%

Meta. 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Social 12% 0% 0% 0% 0% 8% 0% 79% 1% 0% 0%

Tweet 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

RDG 4% 4% 4% 22% 0% 1% 0% 2% 0% 63% 0%

SNG 82% 0% 0% 1% 0% 16% 0% 0% 0% 0% 0%

Table A.86: Edge Based 90 vs Outliers KNN-C Testing Set Confusion Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

A.Bio. 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%

Code 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0%

Collab. 0% 0% 0% 0% 0% 67% 0% 0% 0% 0% 33%

Comm. 0% 0% 0% 0% 0% 50% 0% 0% 0% 0% 50%

Infra. 0% 25% 0% 0% 50% 25% 0% 0% 0% 0% 0%

Meta. 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Social 0% 0% 0% 0% 0% 33% 0% 67% 0% 0% 0%

Tweet 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

RDG 33% 33% 0% 0% 0% 0% 0% 0% 0% 33% 0%

SNG 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Table A.87: Edge Based 90 vs Outliers IKNN-C Testing Set Confusion Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

A.Bio. 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%

Code 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0%

Collab. 0% 0% 0% 0% 0% 67% 0% 0% 0% 0% 33%

Comm. 0% 0% 0% 0% 0% 50% 0% 0% 0% 0% 50%

Infra. 0% 25% 0% 0% 50% 25% 0% 0% 0% 0% 0%

Meta. 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Social 0% 0% 0% 33% 0% 33% 0% 33% 0% 0% 0%

Tweet 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

RDG 0% 33% 0% 0% 0% 0% 0% 33% 0% 0% 33%

SNG 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Table A.88: Edge Based 90 vs Outliers SVM-C Testing Set Confusion Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

A.Bio. 0% 0% 0% 0% 100% 0% 0% 0% 0% 0% 0%

Code 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%

Collab. 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%

Comm. 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%

Infra. 0% 0% 0% 0% 25% 0% 25% 0% 0% 0% 50%

Meta. 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Social 0% 0% 0% 0% 0% 67% 0% 33% 0% 0% 0%

Tweet 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

RDG 33% 0% 0% 0% 0% 33% 0% 0% 0% 33% 0%

SNG 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
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Table A.89: Edge Based 90 vs Outliers NUSVM-C Testing Set Confusion Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

A.Bio. 0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0%

Code 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0%

Collab. 0% 33% 0% 0% 0% 0% 0% 0% 0% 0% 67%

Comm. 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%

Infra. 0% 0% 0% 50% 25% 0% 25% 0% 0% 0% 0%

Meta. 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Social 0% 0% 0% 0% 0% 33% 0% 67% 0% 0% 0%

Tweet 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

RDG 0% 0% 0% 0% 0% 0% 0% 67% 0% 33% 0%

SNG 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Table A.90: Edge Based 90 vs Outliers BioHEL-C Testing Set Confusion Matrix

C.DNA A.Bio. Code Collab. Comm. Infra. Meta. Social Tweet RDG SNG

C.DNA 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

A.Bio. 0% 17% 6% 3% 33% 11% 0% 0% 0% 0% 29%

Code 0% 0% 12% 6% 11% 4% 0% 0% 0% 0% 67%

Collab. 0% 4% 10% 2% 4% 17% 4% 0% 0% 1% 57%

Comm. 0% 0% 3% 1% 21% 24% 0% 0% 0% 0% 51%

Infra. 0% 5% 3% 4% 36% 10% 3% 1% 0% 9% 29%

Meta. 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Social 10% 0% 0% 1% 0% 29% 0% 57% 1% 1% 1%

Tweet 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

RDG 6% 11% 7% 5% 1% 2% 0% 4% 0% 64% 0%

SNG 73% 2% 0% 0% 0% 20% 0% 4% 0% 0% 0%
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