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Espacios homogéneos infinito-dimensionales

Esta tesis esta enfocada en aspectos geométricos del analisis funcional relacionados con
la gemetria de curvatura negativa de algunos espacios homogéneos modelizados en espacios
de Banach. En la primera parte se demuestra en el contexto de estructuras reductivas
un teorema de descomposicion de Corach-Porta-Recht para espacios simétricos de Finsler
de curvatura semi-negativa. Este teorema de descomposicién se aplica a la descripcion
geomeétrica de complexificaciones de algunos espacios homogéneos de dimension infinita.
En la segunda parte se desarrolla un nuevo enfoque de cardcter geométrico a problemas
de similaridad. Analizamos en diferentes contextos acciones isométricas naturales en el
cono de operadores positivos e inversibles relacionadas con representaciones de grupos y
algebras.

Palabras clave: Algebras con traza, Grupo de Banach-Lie, Complexificacion, De-
scomposicion de Corach-Porta-Recht, Espacio CAT(0), Espacio homogéneo, Estructura
de Finsler, Problema de similaridad, Representacion acotada, Teorema de punto fijo de
Bruhat-Tits, Variedad bandera, Variedad Grassmanniana, Variedad de Stiefel.






Infinite-dimensional homogeneous spaces

This thesis is focused on differential geometric aspects of functional analysis related to
the non-positively curved geometry of some homogeneous spaces, which are modeled on
Banach spaces. In the first part an extended Corach-Porta-Recht decomposition theorem
for Finsler symmetric spaces of semi-negative curvature in the context of reductive struc-
tures is proven. This decomposition theorem is applied to give a geometric description of
the complexification of some infinite dimensional homogeneous spaces. In the second part
a new approach of geometrical nature to similarity problems is developed. We analyze
in several contexts a natural isometric action on the cone of positive invertible operators
which is related to group and algebra representations.

Keywords: Algebra with trace, Banach-Lie group, Bounded representation, Bruhat-
Tits fixed point theorem, CAT(0) space, Coadjoint orbit, Complexification, Corach-Porta-
Recht decomposition, Finsler structure, Flag manifold, Grassmann manifold, Operator
decomposition, Reductive structure, Stiefel manifold, Similarity problem.
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Introduccion

Espacios homogéneos de dimension infinita y curvatura
no positiva

En anos recientes, el estudio geométrico de algebras de operadores y sus espacios homogé-
neos se ha vuelto un tema central en el estudio de la geometria infinito-dimensional. Este
estudio es una fuente de ejemplos y contraejemplos, y las técnicas usadas en algebras
de operadores (algebras de Banach y 4lgebras C* con sus herramientas distinguidas) son
usadas para obtener resultados sobre variedades de dimension infinita abstractas, a partir
del estudio de sus grupos de automorfismos e isometrias, y del estudio de sus fibrados
principales asociados. El lector puede ver el reciente libro [9] de D. Beltitd para una
resefia completa sobre estos objetos y una amplia lista de referencias, véase también la
seccion "Precedentes" al final de esta Introduccion.

Un espacio homogéneo para un grupo de Lie G es una variedad en la que el grupo G
actiia transitivamente, i.e. una o6rbita. Puede ser visto alternativamente como un cociente
G/H de un grupo de Banach-Lie G por un subgrupo de Lie H. En el caso en el que el
espacio homogéneo es la variedad de operadores positivos e inversibles de un algebra de
operadores (munido de una estructura de Finsler que le da una geometria de curvatura
negativa) se puden probar teoremas de descomposicion que extienden la usual descom-
posicion polar. Con estos teoremas de descomposicion dotamos a las complexificaciones
de algunos espacios homogéneos con la estructura de fibrado vectorial asociado, y con
estos fibrados vectoriales asociados o fibrados covariantes definimos estructuras complejas
adaptadas en los fibrados tangentes de orbitas coadjuntas y o6rbitas de similaridad uni-
taria de sistemas de proyecciones (variedades bandera) e isometrias parciales (variedades
de Stiefel).

Usando propiedades de la variedad de operadores positivos e inversibles como la con-
vexidad de la distancia a lo largo de geodésicas, la minimalidad de proyecciones sobre
subvariedades y la existencia de circuncentros de conjuntos acotados, estudiamos prob-
lemas de similaridad desde una perspectiva geométrica. Los problemas de similaridad
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preguntan en distintos contextos cuando un grupo H de operadores acotados e inversibles
(que actian en un espacio de Hilbert) es conjugado a un grupo de operadores unitarios.
Otras preguntas relacionadas se centran en las propiedades de los operadores positivos
e inversibles s tales que s !Hs es un grupo de operadores unitarios. Si un grupo de
operadores inveribles es conjugado a un grupo de operadores unitarios entonces es uni-
formemente acotado. El enunciado reciproco no vale, por lo que se deben hacer supuestos
adicionales sobre el grupo para que éste sea unitarizable. Una variante de este problema
es estudiar homomorfismos unitales de algebras 7 : A — B(H), donde A es un algebra C*,
y estudiar bajo que condiciones sobre el homomorfismo 7 y el algebra A, la imagen 7(Uy)
del grupo de unitarios de A es unitarizable. En este caso las ¢rbitas de representaciones
son espacios homogéneos con la accion dada por conjugacion g-m = gn(-)g~*, donde 7 es
una representacion y g es un operador inversible.

Resultados principales

Empezamos haciendo algunas observaciones sobre la notacién que va a ser usada. Deno-
tamos variedades con las letras M, N y con las letras z, y, z los puntos de las variedades.
Sif: M — N es un mapa suave entre dos variedades usamos la notacion f, : TM — TN
para el mapa tangente y f., : T,M — Ty,)N para el mapa tangente en x € M. 5i
a: I — M es una curva suave entonces definimos como es usual &(t) = a(2). Denota-
mos a los campos vectoriales con las letras griegas &, A y a los homorfismos con las letras
griegas 7, p. Las letras maytusculas X, Y, Z denotardn vectores. Los caracteres germani-
cos @, u, p seran usados para denotar algebras de Lie y sus subespacios. Denotamos con
G, H, U a los grupos y con g, h, u, v a sus elementes. Las primeras letras del alfabeto
a, b, ¢ seran usadas para denotar operadores positivos e inversibles. Denotamos con V,
W'y Z espacios de Banach y con U subconjuntos abiertos de estos espacios cuando los
consideramos como imagenes de cartas locales.

En el Capitulo 1 introducimos resultados béascos sobre teoria de Lie y sobre espacios
simétricos infinito-dimensionales de curvatura negativa que van a ayudar a entender mejor
los otros capitulos. Un espacio simétrico de Finsler de curvatura semi-negativa M = G/U
se define como un cociente G/U, donde G es un grupo de Banach-Lie, U es el conjunto
de puntos fijos de una involucion ¢ : G — G y || - || es una norma Ady-invariante en
p = Ker(oxa + 1) ~ Tiy(G/U) que le da a G/U una estructura de Finsler tal que el
diferencial en todo punto del mapa exponencial es un operador expansivo. Denotaremos
M = G/U = Sym(G70> H ) H)

En el Capitulo 2 estudiamos descomposiciones de espacios simétricos de Banach y
complexificaciones de espacios homogéneos modelizados en grupos de Banach-Lie. En
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la Seccion 2.2 recordamos la definicion de la categoria de pares reductivos introducida
por Beltita y Galé en [7]. Una estructura reductiva con involucién es un cuadruple
(Ga,Gp; E,0) tal que:

e (Gp es un subgrupo de Lie del grupo de Banach-Lie G4

e I/ : g4 — gp es un operador lineal entre las algebras de Lie de los grupos de
Banach-Lie G4 y G tal que Ad, o E = E o Ad, para todo g € Gp.

e 0:G4 — G4 es una involucion tal que o(Gp) =Gpy 0. 0 E = FEooy.

Usando esta categoria y la construccion de un entornorno tubular global obtenida por
Conde y Larotonda en [16] obtenemos un teorema de descomposicion para sucesiones
finitas de pares reductivos de grupos de Banach-Lie:

Teorema. Si para n > 2 tenemos las siguientes inclusiones de grupos de Banach-Lie, las
siguientes funciones entre sus dlgebras de Lie

G CGyC -

N

Gn

E> E3 En
gir<s— go<— ... 0On

y un morfismo o : G, = G, tales que:

L4 (Gm anl; Ena U);<Gn717 Gn72; En7 o

ductivas con involucion.

Gn1)se s (G2, G1; E, 0|c,) son estructuras re-

o M, = G,/U, = Sym(G,,o,| - ||) es un espacio simétrico de Finsler simplemente
conexo y de curvatura semi-negativa.

o |[Ey. |l =1 para k =2,....,n, donde usamos la norma del item anterior restringida
aPr=pn g

Entonces las funciones
(I)n:UnXpEn X"'X]JE2 Xp1—>Gn

(tny Xy - -, Xo, Y1) 5 upe™n . eX2eM

. +
U, pg, X - Xpg, Xp1 = G,
(Xp, .., X, Y)) s eV1eX2 | eXnm1e2XneXnr o X2ph

son difeomorfismos, donde pg, = KerE, Npy, para k =2,...,n.
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En la Seccién 2.3 la complexificacion de algunos espacios homogéneos es estudiada. Si
G es un subgrupo de un grupo de Banach-Lie G4 y o es una involucion en G4 que deja a
G p invariante, entonces bajo ciertas hipotesis el cociente Uy /Up de los subgrupos de pun-
tos fijos respectivos de G4 y Gp es una subvariedad Uy /Up <— G 4/Gp que es el conjunto
de puntos fijos de la involucion o : G4/Gp — G4/Gp, gGp — o(g)Gp. Por lo tanto la
variedad compleja G 4 /G g puede ser considerada una complexificacion de la variedad real
Ua/Ug. El teorema de descomposicion es usado para munir a la complexificacion G4/Gp
del espacio homogéneo U, /Up con la estructura de fibrado vectorial asociado:

Teorema. Sea My = G4/Uy = Sym(Ga,o,| -||) un espacio simétrico de Finsler sim-
plemente conexo y de curvatura semi-negativa, y sea (Ga,Gp; FE,0) una estructura re-
ductiva con involucion tal que ||Ely|| = 1. Sea WF : Uy x pp — Ga, (u,X) — ueX y
K (u, X) — [(u, X)] el mapa cociente. Entonces existe un unico difeomorfismo analitico
real y Ux-equivariante WF : Uy Xuy PE — Ga/Gp tal que el diagrama

E

Ua X pE e G4

l Lq

Ua Xug bE LA Ga/Gp

conmuta, donde q: Ga — Ga/Gp, g — gGp es el mapa cociente.
Por lo tanto el espacio homogéneo G 4/Gp tiene la estructura de fibrado vectorial U 4-
equivariante sobre Uy /Ug con la proyeccion dada por la composicion

(\I,E)—l

Ga/Gp Ua Xug PE Ua/Up

ue*Gp — [(u, X)] = ulUp parau € Uy y X € pg
y fibra tipica pg.

Este teorema es usado para construir bajo ciertas hipdtesis un isomorfismo G4/Gp ~
T(Ua/Up) entre las complexificaciones y el fibrado tangente de espacios homogéneos de
la forma U, /Ug:

Corolario. Supongamos las condiciones del teorema anterior y supongamos que G4 es
un grupo de Banach-Lie complejo, E es C-lineal y u = ip. Entonces

(wF)~! O of
GA/GB —— Uy Xyg PE — Ugy Xug Ug — T(UA/UB)

ue™ G = [(u, X)) = [(u, X)) = (b w0 (iX)
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es un difeomorfismo Ua-equivariante entre la complexificacion Ga/Gp y el fibrado tan-
gente T(Ua/Ug) del espacio homogéneo Ua/Up. Aqui p, : Ua/Up — Uy /Upg, vUp +—
uvUpg es una traslacion, u es el dlgebra de Lie de Uy y up = KerE Nu. Con esta
identificacion la involucion og : Ga/Gp — Ga/Gp, gGp — o(9)Gp es la funcion
T(Ua/Up) = T(Us/Up), V — =V.

Por lo tanto los fibrados tangentes de una clase de grupos de Banach-Lie pueden
ser munidos de una estructura de variedad compleja. En estos casos, el mapa entre
sus fibrados tangentes dado por V — —V es anti-holomorfo como en las estructuras
complejas adaptadas estudiadas por Lempert y sus colaboradores, véase [39]. Ejemplos de
estos espacios homogéneos son orbitas coadjuntas en ideales de operadores p de Schatten,
variedades bandera, y variedades de Stiefel en el contexto de &lgebras de operadores, véase
8, 14, 27].

En el Capitulo 3 un nuevo enfoque de orden geomeétrico a problemas de similaridad es
desarrollado. La principal contribucién es el anélisis en diferentes contextos de la estruc-
tura del conjunto de orbitas de la accion isométrica natural de grupos H de elementos
inversibles sobre el cono P de elementos positivos inversibles de un algebra de operadores.
Esta acciéon esta dada por h-a = hah* con he€ Hy a € P.

En la Seccién 3.3 la convexidad de la distancia a lo largo de geodésicas en el cono de
operadores positivos inversibles es usada para probar la siguiente desigualdad geométrica:

Proposicion. Sit: A — B(H) es un homorfismo unital acotado entre un dlgebra C* A y
el algebra de operadores acotados que actuan en un espacio de Hilbert H, y s es un operador
positivo inversible que minimiza ||s||||s7|| entre los operadores positivos inversibles r tales

1

que Ad, o =rm(-)r~! es una x-representacion, entonces

1Ady ol < Il y | Adse 0 7lles. = lImllos
donde || - ||co. es la norma completamente acotada de un homomorfismo.

Este resultado fue obtenido por Pisier en [53] usando técnicas de interpolacion com-
pleja. Ademas, propiedades de minimalidad de proyecciones sobre conjuntos convexos
en P son usados para probar propiedades de minimalidad de unitarizantes candnicos

de homomorfismos unitales 7 = gp(')g_l

. Aqui g es un operador inversible en B(H) y
p: A — B(H) es una x-representacion de un éalgebra C* A tal que existe una esper-
anza condicional F : B(H) — p(A)’. Los unitarizantes canénicos fueron obtenidos por

Andruchow, Corach y Stojanoff en [2].

Teorema. Si | — E|| = 1 entonces el positivo inversible candnico s tal que Adsom : A —
B(H) en una x-representacion satisface ||s||||s7 || = ||7||co., i-e. minimiza ||r||||r~| entre
los positivos inversibles r tales que Ad, o w es una x-representacion.
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En la Seccion 3.4 estudiamos la existencia de unitarizantes de grupos de operadores in-
versibles H, i.e. positivos inversibles s tal que sHs™! es un grupo de operadores unitarios,
cuando estos grupos actuan en variedades P de operadores positivos inversibles munidos
de una métrica derivada a partir de una traza. El teorema de punto fijo de Bruhat-Tits
es usado para demostrar que la raiz cuadrada del circuncentro de {hh*},cy en P es un
unitarizante de H. En el caso de algebras de von Neumann finitas obtenemos el siguiente
resultado de existencia probado con técnicas distintas en [64]:

Teorema. Si H es un grupo de operadores inversibles en un dlgebra de von Neumann
finita A tal que suppcy ||| = |H| < oo entonces existe un s € {a € A: |H|7'1 < a <
|H|1} tal que s Hs es un grupo de operadores unitarios en A.

En este caso mostramos que las subvariedades normales al conjunto de puntos fi-
jos son invariantes bajo la accion h - a = hah*. Si By(H) es el ideal de operadores de
Hilbert-Schmidt, entonces probando que la accion canénica de G = {g € By(H) + C1 :
g es inversible} sobre P = {g € By(H) + C1 : g > 0} restringida a algunos subgrupos H
tiene puntos fijos obtenemos:

Teorema. Si H es un grupo de operadores inversibles en Bo(H)+C1 tal que suppeg||hh*—
1||2 < oo entonces existe un s en P tal que s"*Hs es un grupo de operadores unitarios.

Algunos de los resultados presentados en esta tesis fueron publicados en revistas in-
ternacionales como articulos de los cuales soy el unico autor [42, 43].

Precedentes
Los resultados en esta tesis tienen precendentes en los siguientes trabajos:

e Los teoremas de descomposicion tienen como precedente la decomposicién polar
de operadores. En 1955 Mostow [46] muni6 al conjunto de matrices positivas in-
versibles con una metrica Riemanniana de curvatura negativa. Usando esta métrica
Mostow construyé entornos tubulares globales de subvariedades totalmente geodési-
cas, donde la nocién de vector normal a la subvariedad estd dada por el producto
interno de Hilbert-Schmidt. Este resultado fue extendido por Larotonda en [37] al
contexto de perturbaciones Hilbert-Schmidt de la identidad. Corach, Porta y Recht
estudiaron la geometria de curvatura no positiva del cono de operadores positivos
e inversibles de un algebra C* en |20, 21, 22, 23]. Basados en estos trabajos Porta
y Recht demostraron un teorema de descomposicion en [57]; en este trabajo la var-
iedad y la subvariedad son los operadores positivos e inversibles de un algebra A y
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una subalgebra B respectivamente, y la nocion de vector normal a la subvariedad es
dada por el nicleo de una esperanza condicional £ : A — B. En [15] Conde y Laro-
tonda extendieron este teorema al contexto de espacios simétricos G/U modelizados
en espacios de Banach.

En 1955 [45] Mostow us6 el teorema de descomposicion obtenido en [46] para probar
que un espacio homogéneo con grupo asociado GG cuyo subgrupo de isotropia es
conexo y autoadjunto (modulo el radical de G) admite un fibrado covariante, i.e. es
isomorfo a un fibrado vectorial asociado. En [10] este fibrado covariante fue usado
por Bielawski para construir un isomorfismo entre el fibrado tangente de G/K y la
complexificacion de G/K, donde G/K es un espacio localmente simétrico de tipo
compacto con K conexo. Un fibrado analogo fue construido por Beltita y Galé en
|6] en el contexto de algebras C* usando el teorema de descomposicion de Porta y
Recht. Aqui los espacios homogéneos son variedades Grassmannianas generalizadas
Ua/Ug, donde Uy y Ug son los grupos unitarios de algebras C* relacionadas por una
esperanza condicional £ : A — B. Como consecuencia se obtiene un isomorfismo
T(Uas/Up) ~ G4/Gp, donde G4 y Gp son los grupos de operadores inversibles del
algebra A y de la subdlgebra B respectivamente.

El estudio geométrico de espacios de representaciones es un area de investigacion
activa, véase [31] para el caso de dimension finita. Aqui los espacios de repre-
sentaciones son munidos con la estructura de variedad topologica o algebraica y
los problemas principales son la determinaciéon de las componentes conexas y las
clausuras de orbitas. En el contexto de dimension infinita Andruchow, Corach y
Stojanoff demostraron que &lgebras de operadores son inyectivas o nucleares si los
correspondientes espacios de representaciones son espacios homogéneos reductivos,
véase [41]. Esta linea de investigacion fue continuada por Corach y Galé en [18, 19]
donde diagonales virtuales de dlgebras de Banach proveen formas de conexién en
los espacios de representaciones, véase el articulo [30] de Galé y el Capitulo 8 del
libro de Runde [58] para mayor informacion.

La pregunta sobre cudles grupos uniformemente acotados de B(?) son similares
a grupos de unitarios tiene una larga historia. Un resultado antiguo de teoria de
representaciones afirma que si H C B(C™) es un grupo uniformemente acotado en-
tonces es similar a un grupo de matrices unitarias. Dado que la clausura del grupo
es compacta, esta tiene una medida de Haar bi-invariante y el unitarizante se ob-
tiene como la raiz cuadrada del promedio de {hh*},cp. Posteriormente Elie Cartan
demostro que grupos de Lie semisimples G admiten (modulo conjugacion) un tnico
subgrupo compacto maximal K, usando que G/K es una variedad Riemanniana de
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curvatura negativa y el teorema de punto fijo de Cartan, véase [34, I. 13 y VL. 2.
Szokefalvi-Nagy [60, Teorema I| demostrd que toda representacion uniformemente
acotada Z — B(H) es unitarizable. Este resultado fue extendido por Day [25],
Dixmier [26], Nakamura y Takeda [47] a toda representacion uniformemente aco-
tada de un grupo topolégico promediable, promediando sobre la media invariante.
Otros enfoques en el contexto de dimension infinita no involucran representaciones,
véanse los articulos de Ostrovkii, Shulman, Turowska, Vasilescu y Zsido [50, 64].



Introduction

Infinite-dimensional homogeneous spaces and non-positive
curvature

In recent years, the geometrical study of operator algebras and their homogeneous spaces
has become a central topic in the study of infinite dimensional geometry. It is a source
of examples and counterexamples, and the operator algebra techniques (Banach algebras
and C* algebras, with their distinguished tools) are being used for obtaining results on
abstracts infinite dimensional manifolds by studying their groups of automorphism, isome-
tries, and their associated fiber bundles and G-bundles. The reader can see the recent
book 9] by D. Beltita for a full account of these objects and a comprehensive list of
references, see also the section "Precedents" at the end of this section.

A homogeneous space for a group G is a manifold on which the group G acts transi-
tively, i.e. an orbit. It can be alternatively be viewed as a quotient G/H of a Banach-Lie
group G by a Lie subgroup H. In the case where the homogeneous space is the manifold
of positive invertible operators of an operator algebra (endowed with a Finsler structure
making it negatively curved) decomposition theorems extending the usal polar decompo-
sition can be proved. With this decomposition thorems we endow the complexifications
of certain homogeneous spaces with the structure of associated vector bundles, and with
these associated vector bundle structures or fiberings, we define adapted complex struc-
tures on tangent bundles of coadjoint orbits in operator ideals, and unitary similarity
orbits of system of projections (Flag manifolds) and partial isometries (Stiefel manifolds).

Using properties of the manifold of positive invertible operators such as the convexity
of the distance along geodesics, the minimanility of projections onto submanifolds and
the existence of circumcenters of bounded sets, we study similarity problems from a
geometrical perspective. Similarity problems ask in different contexts when a group H of
invertible bounded operators acting on a Hilbert space is conjugate to a group of unitaries.
Other related questions are about the positive invertible operator s such that s™'Hs is a
group of unitary operators. If a group of bounded invertible operators on a Hilbert space

xXvil
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is conjugate to a group of unitaries then it is uniformly bounded. The converse does not
hold in general, so further assumptions on the group have to be made. One variant of
this problem is to look at a unital algebra homomorphism 7 : A — B(H), where A is a
C*-algebra, and study under what conditions on the map 7 and the algebra A, the image
of the unitary group under m is unitarizable. In this case the orbits of representations
are homogeneous spaces for the natural conjugation action g -7 = gn(-)g~', where 7 is
a representation and ¢ is an invertible operator. See [54] for further information about
similarity problems.

Main results

A few words about notation are in order. We use M, N to denote manifolds and the
letters x, y, z to denote its points. For a smooth map between manifolds f : M — N
we use the notation f, : TM — TN for the tangent map and f., : T,M — TN for
the tangent map at x € M. If « : [ — M is a smooth curve then we define as usual
a(t) = aue(2). We denote vectors fields with greek letters ¢, A and homomorphisms with
greek letters m, p. The capital letters X, Y, Z will be reserved for vectors. German
characters g, u, p will be used to denote Lie algebras and subspaces of Lie algebras. We
denote with G, H, U groups and with ¢, h, u, v its elements. The first letters of the
alphabet a, b, ¢ will be reserved for positive invertible operators. We denote by V, W
and Z Banach spaces and with U open subsets of these Banach spaces when we consider
them as local charts.

In Chapter 1 we introduce basic results of Lie theory and results about infinite dimen-
sional negatively curved symmetric spaces which will help understand the other chapters.
A Finsler symmetric space of semi-negative curvature M = G /U is defined as a quotient
G /U, where G is a Banach-Lie group, U is the fixed point set of an involution 0 : G — G
and || - || is an Ady-invariant norm on p = Ker(o, + 1) ~ T1y(G/U) which gives G/U
a Finsler structure such that the diferential of the exponential map at every point is an
expansive operator. We denote M = G/U = Sym(G, o, | - ||).

In Chapter 2 we address decompositions of Banach symmetric spaces and complexifi-
cations of homogeneous spaces modeled on Banach-Lie groups. In Section 2.2 we recall
the category of reductive pairs introduced by Beltitd and Galé [7]. A reductive structure
with involution is a quadruple (G4, Gp; F, o) such that:

e (Gp is a Lie subgroup of the Banach-Lie group G4

e F:ga— gpis alinear map between the Lie algebras of the Lie groups G4 and Gpg
such that Ad, o E' = E o Ad,, for every g € Gp.



X1X
e 0: Gy — G4 is an involution such that o(Gp) = Gp and 0,1 0 E = E 0 0,;.

Using this category and a global tubular neighborhood theorem proved by Conde and
Larotonda [16] a polar decomposition for nested finite sequences of reductive pairs of
Banach-Lie groups is obtained:

Theorem. If for n > 2 we have the following inclusions of connected Banach-Lie groups,
the following maps between their Lie algebras

G CGyC -

N

Gn

FEo> E3 E,
gr<— g ... < 0On

and a morphism o : G,, — G,, such that:

e (Gn, G 1;E,,0),(Gh1,Gn9;En,0|G, 1), -, (Ga,G1; E3, 0la,) are reductive struc-
tures with involution.

o M, =G,/U, = Sym(G,,o,]| -|) is a simply connected Finsler symmetric space of
semi-negative curvature.

o ||Ep. Ml =1 for k=2,...,n, where we use the norm of the previous item restricted
to pr :==pNgg.

Then the maps
(I)n:UnXpEn X"'X]JE2 Xp1—>Gn

(tny Xy -+, Xo, Y1) 5 upe™n . e¥2eM

. +
\I/ann X X PRy Xp1—>Gn
(Xp, .., X, Y1) 1 V12 eXnm1e2XneXnt o X2l

are diffeomorphisms, where pg, = KerE, Npy fork=2,...,n.

In Section 2.3 the complexifications of some homogeneous spaces are studied. If Gg
is a subgroup of the Banach-Lie group G4 and o is an involution on G4 leaving Gpg
invariant, then under certain conditions the quotient U, /Up of the respective fixed point
subgroups of G4 and Gp is a submanifold Us/Up < G4/Gp which is the fixed point
set of the involution og : G4/Gp — Ga/Gp, gGp — 0(g9)Gp. Therefore the complex
manifold G 4/Gp can be considered as a complexification of the real manifold Us/Ug. The
decomposition theorem is used to give the complexifications G 4/Gp of a homogeneous
space Us/Up the structure of an associated vector bundle:



XX

Theorem. Let My = Go/Us = Sym(Ga,o,| - ||) be a simply connected Finsler sym-
metric space of semi-negative curvature and (Ga,Gp; E,0) a reductive structure with
involution such that ||El,|| = 1. Consider V5 : Uy X pp — Ga, (u,X) — ueX and
ko (u,X) — [(u,X)] the quotient map. Then there is a unique real analytic, Ua-
equivariant diffeomorphism WE : U, Xug P — Ga/Gp such that the diagram

E

Ua X pE el G4

l |

Ua Xug PE L. Ga/Gp

commutes, where q : Go4 — G4/Gpg, g+— gGp is the canonical quotient map.
Therefore the homogeneous space G 4/G g has the structure of an U s-equivariant fiber
bundle over Us/Up with the projection given by the composition

(\I,E)—l

Ga/Ggp Ua Xup PE Ua/Ug

ue*Gp — [(u, X)] = ulUp forue Uy and X € pg

and typical fiber pg.

This theorem is used to construct under certain assumptions an isomorphism G4 /Gp ~
T(Ua/Ug) between the complexification and tangent space of homogeneous spaces U, /Up:

Corollary. Assume the conditions of the previous theorem are satisfied and assume that
G 4 15 a complex Banach-Lie group, E is C-linear and uw=ip. Then

(vE)—1 e aP
GA/GB e UA XUg PE — UA Xuyg Wg — T(UA/UB>

ue Gp = [(u, X)] = [(u, X)) = (fa) 0 (X))

is a Ug-equivariant diffeomorphism between the complexification G4/Gp and the tan-
gent bundle T(Us/Ug) of the homogeneous space Us/Up. Here p, : Ua/Up — Uy /Upg,
vUp +— wvUg is a translation, u is the Lie algebra of Uy and ug = KerENu. Under the
above identification the involution og : G4/Gp — Ga/Gp, gGp — o(9)Gp is the map
T(UA/UB) — T(UA/UB), Vi—-V.

Therefore for a class of smooth homogeneous spaces of Banach-Lie groups their tan-
gent bundles can be endowed with a complex manifold structure. In this case, the map
between their tangent bundles given by V' +— —V is anti-holomorphic as in the adapted
complex structures studied by Lempert and his co-workers, see [39]. Examples of these
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homogeneous spaces are coadjoint orbits in p-Schatten ideals, flag manifolds, and Stiefel
manifolds in the context of operator algebras, see [8, 14, 27].

In Chapter 3 a new approach of geometrical nature to similarity problems is developed.
The main contribution here is related to the analysis in different contexts of the orbit
structure of the natural isometric action of subgroups H of the group of invertible elements
on the cone P of positive invertible operators of an operator algebra. This action is given
by h-a = hah* with h € H and a € P.

In Section 3.3 the convexity of the distance along geodesics in the cone of positive
invertible operators is used to prove the following geometric inequality:

Proposition. If 7 : A — B(H) is a completely bounded unital homomorphism between a
C*-algebra A and the algebra of bounded operators on a Hilbert space H, and s is a positive
invertible operator that minimizes ||s||||s™|| among the positive invertible operators such
that Ad, o = sm(-)s™! is a x-representation, then

[Adye o ]| < |7 and |Ady o 7lcs. = |7l
where || - ||cp. is the completely bounded norm of a homomorphism.

This result was proved by Pisier in [55] using complex interpolation techniques. Also,
minimality properties of projections to closed convex sets in the cone P are used to prove
minimality properties of canonical unitarizers of unital homomorphisms 7 = gp(-)g~'.
Here g is an invertible operator in B(H) and p : A — B(H) is a *-representation of a
C*-algebra A such that there is a conditional expectation £ : B(H) — p(A)". These

canonical unitarizers where obtained by Andruchow, Corach and Stojanoff in [2].

Theorem. If ||[ — E|| = 1 then the canonical positive invertible s making the unital
homomorphism Adsom : A — B(H) a x-representation satisfies ||s||||s7Y| = ||7]lcs., i-e.
it minimizes the quantity ||r||||r=Y| among the positive invertible r such that Ad, o7 is a
x-representation.

In Section 3.4 we address the question of existence of unitarizers of groups of invertible
operators H, i.e. positive invertibles s such that sHs™! is a group of unitaries, when these
groups act on manifolds P of positive invertible operators endowed with a metric derived
from a trace. Here the Bruhat-Tits fixed point theorem is used to show that the square
root of the circumcenter of {hh*},cy in P is a unitarizer of H. In the case of a finite von
Neumann algebra we obtain the following existence result proved previously in [64] using
different techniques:

Theorem. If H is a group of invertible operators in a finite von Neumann algebra A such
that supycy ||h]| = |H| < oo then there is an s € {a € A: |H|™'1 < a < |H|1} such that
s Hs is a group of unitary operators in A.
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In this case the submanifolds normal to the set of fixed point are shown to be invariant
under the action h - a = hah*. If By(H) is the ideal of Hilbert-Schmidt operators then
by proving that the canonical action of G = {g € By(H) + C1 : g is invertible} on
P ={g € By(H) +C1 : g > 0} restricted to some subgroups H has a fixed point we
obtain the following result:

Theorem. If H is a group of invertible operators in Bo(H)+ C1 such that suppeg|hh* —
1||o < oo then there is an s in P such that s~ Hs is a group of unitaries.

Some of the results in this thesis have been published in research articles [42, 43|, for
which I am the sole author.

Precedents

The results in this thesis have precedents in the following works:

e Decomposition theorems have precedents in the polar decomposition of operators. In
1955 Mostow [46] endowed the set of positive invertible matrices with a Riemannian
metric of negative curvature. Using this metric Mostow constructed global tubular
neighborhoods to totally geodesic submanifolds where the notion of normal vector
to the submanifold is provided by the Hilbert-Schmidt inner product. This result
was extended by Larotonda in [37] to the context of Hilbert-Schmidt perturbation
of the identity operator. Corach, Porta and Recht studied the non-positively curved
geometry of the cone of positive invertible elements in C*-algebras in [20, 21, 22, 23|.
Based on this work Porta and Recht proved a decomposition theorem in [57]; here
the manifold and submanifold are the positive invertible elements of an algebra A
and a subalgebra B respectively, and the notion of normal vector to the submanifold
is provided by the kernel of a conditional expectation £ : A — B. In [15] Conde and
Larotonda extended this theorem to the context of symmetric spaces G /U modeled
on Banach spaces.

e In 1955 [45] Mostow used the decomposition theorem obtained in [46] to prove
that a homogeneous space with associated group G whose isotropy subgroup is
connected and selfadjoint (modulo the radical of G) admits a covariant fibering, i.e.
is isomorphic to an associated vector bundle. In [10] this covariant fibering was used
by Bielawski to construct an isomorphism between the tangent bundle of G/K and
a complexification of G/K, where G/K is a locally symmetric space of compact
type with K connected. An analogous fibering was constructed by Beltita and Galé
in [6] in the context of C*-algebras using the decomposition theorem of Porta and
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Recht. Here the homogeneous spaces are generalized Grassmann manifolds U, /Up,
where U, and Upg are the unitary groups of C*-algebras related by a conditional
expectation F : A — B. Hence, an isomorphism T(U,/Ug) ~ G 4/Gp is obtained,
where G4 and Gpg are the groups of invertible elements of the algebra A and the
subalgebra B respectively.

The geometrical study of spaces of representations is an active area of research, see
[31] for the finite dimensional case. Here the spaces of representations are endowed
with the structure of a topological or algebraic manifold and the main problems are
to determine the connected components and the closure of orbits. In the infinite di-
mensional setting Andruchow, Corach and Stojanoff proved that operator algebras
are injective or nuclear if the corresponding space of representations are homoge-
neous reductive spaces, see [41]. This line of research was continued by Corach and
Galé in [18, 19] where virtual diagonals of Banach algebras provide connection forms
in the spaces of representations, see [30] by Galé and [58, Chapter 8| by Runde for
further information.

The question of which uniformly bounded subgroups of B(H) are similar to groups
of unitaries has a long history. An old result of representation theory states that
it H C B(C") is a uniformly bounded subgroup, then it is similar to a group of
unitaries. Since the closure of the group is compact it has a bi-invariant Haar
measure and the unitarizer is obtained as the square root of the average of {hh*}pep.
Later Elie Cartan showed that a semisimple Lie group G admits up to conjugacy
a unique maximal compact subgroup K using the fact that G/K is a Riemannian
manifold of negative curvature and the Cartan fixed point theorem, see [34, I. 13
and VI. 2|. Szokefalvi-Nagy [60, Theorem I| showed that any uniformly bounded
representation Z — B(#H) is unitarizable. This was extended by Day [25|, Dixmier
[26], Nakamura and Takeda [47] to any uniformly bounded representation of an
amenable topological group, via averaging over an invariant mean. Other approaches
in the infinite-dimensional context do not involve representations, see [50, 64| by
Ostrovskii, Shulman, Turowska, Vasilescu and Zsido.
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Chapter 1

Preliminaries

1.1 Introduction

In Sections 1.2 and 1.3 the reader can find basic information about Lie theory, fibre
bundles and connections. General references for differential geometry in the context of
Banach manifolds are [1, 36].

In Section 1.4 symmetric spaces are introduced and the basic properies of its cannonical
connection and exponential are presented. The basic example of symmetric space, the
quotient G/U where U is the fixed point space of an involution o on a Banach-Lie group
G, is analyzed. Special features when G/U = P is the space of positive invertible elements
in a C*-algebra and G and U are the groups of invertible and unitary elements respectively
are shown. The connection derived in this section is the same one as the one derived in
[22] as the horizontal invariant subspaces of a principal bundle G — G /U = P.

In Section 1.5 norms on tangent spaces of manifolds which make parallel transport iso-
metric are introduced. These norms determine distance functions and we analize different
compatibility conditions between the topology of the manifolds, norms and distance. We
derive equations for the tangent norms in the case G/U = P. The canonical action of
G on G/U = P is shown to be isometric, a fact that implies that parallel transport is
isometric.

In Section 1.6 the property of semi-negative curvature for manifolds with certain con-
nections and compatible tangent norms is defined. We present some consequences of this
property such as the exponential metric increasing property || X —Y|| < d(exp(X), exp(Y))
and the the convexity of the distance along two geodesics.
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1.2 Lie theory

1.2.1 Lie groups and Lie algebras

We denote by V(G) the set of vector fields on G. If G is a Lie group we say that a vector
field £ € V(G) is left invariant whenever for all h € G the diagram

(L)«

TG TG
4 T ¢
G Ln G

commutes, that is
th,g = (Lh)*gfg

for all g,h € G. We denote by V,(G) the set of all left invariant vector fields on G. The
map

TG = VI(G), X))y =(Ly)aX € T,G

for X € T'G and g € G is a linear isomorphism with inverse
CHVIG) 5 TH(G), £ &
If ¢, ¢ € V(G) then [¢,(] € V(G), where
V(G) x V(G) = V(G), (§¢) =16
is the Lie bracket of vector fields. By means of + we can define a bracket in 717G such that
(X Y]) = [u(X), (V)]
for X,Y € T1G. This bracket is bilinear, antisymmetric and satisfies the Jacobi identity
XY 2+ Y (2 X+ [2,[X, Y] = 0

for all X,Y,Z € T1G. The tangent space T1G at the identity of a group G with the
bracket operation is the Lie algebra of the group and is denoted by g.

Definition 1.2.1. A Lie group homorphism ¢ : R — G is called a 1-parameter sub-
group of G. Given X € g there is a unique 1-parameter subgroup

expx :R— G
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such that expx(0) =1 and (eajpx)(O) = X. We define the exponential map
exp.g— G

by setting
exp(X) = expx(1).

Definition 1.2.2. A map o : g — b between two Lie algebras g and b is o Lie algebra
homomorphism if
a([X,Y]) = [(X), a(Y)]

for all XY € g.

Proposition 1.2.3. If ¢ : G — H is a Lie group homomorphism, then ¢,1 : g — b is a
Lie algebra homomorphism.

Example 1.2.4. Let Z be a real Banach space and A = B(Z) the unital associative real
Banach algebra of all bounded linear operators on Z. Hence the group
GL(Z) ={g € B(Z) : g is invertible }
is a Banach-Lie group whose Lie algebra is B(Z) with bracket defined by [X,Y] = XY —
Y X whenever X|Y € B(Z) ~ Ti\(GL(Z)). In this case the exponential is the usual
exponential given by power series
o0 X”
exp: B(Z) — GL(Z), exp(X) = Z —

n!’
n=0

Theorem 1.2.5. Let ¢ : G — H be a Lie group homomorphism, then the following
diagram s commutative:

H

G

[ [ezp
¢*1

g

—>h

Proof. If X € g then t — ¢(exp(tX)) is a one-parameter subgroup of H whose tangent
at 0 s ¢.1(X). But t — exp(tp. (X)) is the unique 1-parameter subgroup of H whose
tangent at 0 is ¢, (X). Thus

Plexp(tX)) = exp(td. (X))
forallt € R. Hence at t =1

p(exp(X)) = exp(¢.a(X)).
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1.2.2 Group actions

Definition 1.2.6. Let X be a set and let G be a group. A map p: G x X — X such that

plgh, x) = plg, p(h, x)), p(l,z) ==

for all g,h € G and x € X 1is called an action of G on X and we call X a G-set. We
usually write p(g,x) = g - x. For a fired g € G the map x — (g, ) is a biyection of X
wich we shall denote by p,. For x € X we define the stabilizer of v as the group

Stab(x) ={g e G:g -z =2z}
and the orbit of x as the set
Oc(z) ={g-z:9€G}.
There is a bijection G/Stab(x) ~ Og(x) given by
G/Stab(x) — Og(x), ¢Stab(x)— g - .
For g € G we have
Stab(g - x) = gStab(x)g™".

An action s called transitive if for v,y € X there is a g € G such that g -y = =x.
This is equivalent to Og(x) = X for all x € X. An action is called free if g-x = h -z
for g,h € G and x € X then g="h. A map ¥V : X — Y between two G-spaces is called
G-equivariant if for all g € G and v € X

U(g-x)=g- V()

If M is a manifold and G is a Lie group, an action p: G x M — M which is smooth,
i.e. €, is called a smooth action of G on M. If M is a linear space and each p, is
bounded linear, then G — GL(M), g — p, is a representation of G.

Lemma 1.2.7. Let pu be a smooth action of G on M and assume that x is a fized point
of the action. The the map
VG — GL(T,M)

defined by
Vg = (bg)sa : TeM — T, M

s a representation of G.
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For g € G let Ly, and R, stand for the left and right translation diffeomorphisms on
G defined by L,h = gh and Ryh = hg for h € G. A Lie group G acts on itself by inner
automorphisms:

I:GxG—G, I(g,h)=1I,(h)=ghg'=L,R;~1h = R,1L,h.
The identity is a fixed point of this action, hence the map
G = GL(g), g~ (Iga
is a representation of (G. This is called the adjoint representation and is denoted by
Ad: G — GL(g).
We let the differential of the adjoint representation at the identity be denoted by ad,
ad = Ad, : T'G = g — B(g).

With the canonical bracket in B(g) described in Example 1.2.4 ad is a morphism of Lie
algebras, i.e.
ad[ny} = [adx, ady] = aandy — adyadX

for X,Y € g. We denote Ad(g) by Ad, and ad(X) by adx.
Proposition 1.2.8. If G is a Lie group
adxY = [X,Y]
for XY € g adxY =[X,Y].
Applying Theorem 1.2.5 to the automorphism I, of G we get

Proposition 1.2.9. If G is a Lie group then for g € G

G G
ea:p] ]ea:p
Ad,

g g

commutes, or

exp(Ady(X)) = I (exp(X)) = glexp(X))g™"
forge G and X € g.
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Also applying Theorem 1.2.5 to the homomorphism of Lie groups Ad : G — GL(g)
we get

Proposition 1.2.10. If G is a Lie group

G A GL(g)

ez*p[
ad

g

commutes, or
ad
e’ X = Adezp(X)

for X € g.
Example 1.2.11. In the case of GL(Z) for a Banach space Z the adjoint representation
15 given by
Ad: GL(Z) — B(B(Z)), AdyX =gXg~'
and

1 _
6Ang — 6ng :geXg 1 _ ]g(GX)

for g€ GL(Z) and X € B(Z) =T\GL(Z).

1.2.3 Principal and associated fibre bundles

If U is a Lie subgroup of a Lie group G in the sense that it is a submanifold of the manifold
G, then the Lie algebra u of U has a complement p in g, i.e. g = u @ p. Therefore the
quotient space M = G /U has a Banach manifold structure and the quotient map

q:G—=>G/U=M, g—qlg) =gU
is a submersion. For h € G, let
pn s M — M, n(q(g)) = q(hg) = q(Lng)
for g € G. Differentiating the last equation in g € G we get

(Nh)*q(g)q*g = q*hg(Lh)*g-

The action of G on M given by h - q(g) = un(q(g)) is smooth and transitive.
The maps ¢.1 : p = ToM and (pg)so : ToM — Ty M for g € G are isomorphisms so
that a generic vector in Tj M will be denoted by (1tg).0q:1 X with X € p.
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Definition 1.2.12. A principal G-bundle, where G denotes a Lie group, is a fiber
bundle m : P — X together with a continuous right action of G on P which preserves the
fibers and acts freely and transitively on them. This implies that each fiber of the bundle
is diffeomorphic to the group G itself.

Note that ¢ : G — G/U = M is a principal U-bundle. If p is Ady-invariant, then
restricting the adjoint representation there is a representation Ad : U — B(p) and U acts
on Gxpbyu-(9,X)=(gu!, Ad,X) for u € U and (g, X) € G x p. We denote by [g, X]
the orbit of (g, X) and by G Xy p the orbit space which is a smooth manifold. In this
case there is an associated vector bundle

7:Gxyp— G/U, [9,X]— gU =q(9)

with typical fiber p. Note that G acts on G Xy p by g - [h, X| = [gh, X] and on G/U by
g - hU = ghU. With these actions the quotient map 7 is G-equivariant.

Theorem 1.2.13. If p is Ady-invariant then there is a G-equivariant vector bundle iso-
morphism from the associated vector bundle G xy p — G/U onto the tangent bundle
T(G/U) = G/U given by

A:Gxyp—T(G/U), [(u, X)) = (1) w01 X,
where the action of G on T(G/U) is given by u - — = (p,)«— for every u € G.

Proof. Let 6 : G x G/U — G/U be given by (g, hU) — ghU, then 056 : G x T(G/U) —
T(GJU), (g,V) = (11g)«V. Since p = T,(G/U), X — g X restricting 020 to GxT,(G/U)
we get amap Ag: G xp =T (G/U), (9,X) — (tbg) 001X

We assert that there is a unique G-equivariant diffeomorphism A : G xyp — T(G/U)
such that A o k = Ay, where x is the quotient map (g, X) — [(g, X)].

To prove that A is well defined we see that for every g € G, u € U and X € p

Ao(u-(9,X)) = Ao(gu™, AduX) = (ftgu-1) w01 Adu X
= (Hgu1)so@s1 (1)1 X = (pgu-1qlu)a X
= (pgttu—1qLyRy=1) X = (tgqLy-1 Ly Ry=1)a X
= (gqRy—1)aX = (1gq)s1 = (tg)s0q:1X = Ao(g, X)

The uniqueness of A is a consequence of the surjectivity of k. Note that A is surjective
because (ig).0 1 To(G/U) = Ty (G/U) is bijective for every g € G. To see that A is



8 CHAPTER 1. PRELIMINARIES

injective assume that (1g, )o@ X1 = (fgy)x0q1X2. Then q(g1) = q(g2) and therefore there
is a u € U such that g;u = go. Then

(Ngl)*OQ*lxl = (Ugg)*oQ*1X2 = (,ugl'uQ)*1X2 = (NulﬂuQ)*1X2
= (:ugluuqRufl)*lXQ = (,ugquuRufl)*lXZ
= (gq1u)1 X2 = (f1g, )x0qs1AduXo

so that Ad, X5 = X; and we conclude that u - (g2, X2) = (g1, X3). O

1.3 Sprays and connections

In this section we recall some facts about sprays and connections, see Capter IV Sections
3 and 4 in |36] for further information. A second-order vector field on a manifold M is a
vector field F': TM — TTM on T'M satisfying 7,0 F = idry;, where m : TM — M is the
projection map ([36] IV, 3). Let s € R and let spp : TM — TM, X — sX denote the
multiplication by s in each tangent space. A second order vector field is called a spray if

F(sX) = spu«(sF(X))

forall s € Rand X € TM. For X € T, M let vx : J — TM be the maximal integral
curve of F' with initial condition X, that is yx(0) = X and

Bx = F(Bx).

The domain D, C T'M is the set of all the vectors X € T, M for which the maximal
integral curve fBx is defined in [0,1]. The exponential map derived from the spray is
defined as

exp : Degp — M, exp(X) = m(yx(1))

and for x € M we denote by exp, the restriction of exp to Dy, N1, M. The geodesic with
initial speed X € T, M is given by

aft) = m(Bx (1))

Locally, if U is an open subset of a Banach space V then TU ~ U x V, TTU =~
xV)x(VxV)and m,,x)(Y,Z) = (z,Y). A second-order vector fie : —
UxV)x(VxV)and m,x)(Y, Z Y). A d-ord field F : TU — TTU

can be written as

F(z,X) = (a,X, X, f(z,X))
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where f: U x V — V is a smooth map. The spray condition means that

(a,sX,sX, f(s,8X)) = F(x,sX) = (srm)«(sF (X))
= srus(z, X, s X, sf(X, X))
= (2,5X,s5X,5 f(x, X))

which means that the maps f(z,-) are quadratic. Using the polarization identity we can
define the Cristoffel symbols

1
Lo(X,Y) = (@ X +Y) = f(z, X = Y)), forz € U and X,Y € V.

We can locally define a covariant derivative as

(Dﬁg)x = C:/nfx - Fw(§x7 Cac)

The covariant derivative is a bilinear function
V(M) x V(M) = V(M), (&) De¢

wich is C°°(M) linear in the first variable, i.e. Dse( = fDe(C for £, € V(M), f € C(M)
and satisfies the Leibniz rule in the second variable, i.e.

De(f¢) = &(f) + fDeC

for £, € V(M) and f € C°(M). Let a: J — M be a C*-curve and let ty,t; € J. We
denote by

Pttol (a) : Ta(to)M — Ta(tl)M

the corresponding linear map given by parallel transport along .

In a local chart U parallel transport is defined as follows. If a : J — U is a C%-curve
and o, t; € J, then for each v € Ty )U =V let (a,vx) : J = TU = U x V be the unique
lift of v with initial condition 7% (t9) = X and which is a-parallel, i.e. which solves the
first-order linear differential equation

Vx () = Doy (@ (1), 7x (1))

for all t € J. Then P*(a): V — V is the linear map defined as X — vyx(t).
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1.4 Symmetric spaces

Definition 1.4.1. Let M be a Banach manifold. We say that (M, u) is a symmetric
space in the sence of Loos if

pw:MxM— M, (z,y)—zx-y
15 a smooth map with the following properties:
S1 z-x=ux forall x € M.
S2 x-(x-y)=y forallz,y € M.
S3z-(y-2)=(z-y) (x-2) forall z,y,z € M.

S4 Every x € M has a neighborhood U such that x -y =y implies x =y for all y € U,
hence x is an isolated fized point of the morphism y — x -y for all x € M.

See [40] where this axioms where defined for finite dimensional manifolds.

For x € M we define a map 0 : M — M, 0,(y) = = -y. For all z € M this map
satisfies

(az)*x = _ZdeM

This follows from the fact that o, is an involution with isolated fixed point x, see S2 and
S4. If we identify T(M x M) with TM x TM then

X X = ,u*(l,’y)(X, Y)

for X € T,M and Y € T,M defines on T'M the structure of a symmetric space. In
each tangent space T, M the product satisfies X - Y = 2X — Y. For X € TM we
write ox = TM — TM for the symmetry given by ox(Y) = u.(X,Y) = X - Y and
O : M — TM the zero section. The function

F:TM —TTM,  F(X)=—(0x00).X

defines a spray on M, see Theorem 3.4 in [48]. Note that ox 0o O : M — TM so that
(0x 00).: TM = TTM. i

If o : R — M is a geodesic then we call the maps 7, s = 0a(2)00a(0); § € R, translations
along a. The following is Theorem 3.6 in [48].

Theorem 1.4.2. Let (M, u) be a connected symmetric space and F' the canonical spray
defined based on . Then
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o Aut(M,p) = Aut(M, F), i.e. a diffeomorphism ¢ of M satisfies F' o ¢ = (¢y)s 0 F
if and only if pop=po(px ).

o [ s uniquely determined by the property of being invariant under all symmetries

{Jx}xeM-
o (M, F) is geodesically complete, i.e. Deyy =TM.

o Let a: R — M be a geodesic and let 7, = Ta(3) © Oa(0); S € R be the translations

along .. Then these are automorphisms of (M, ) with
Tas(a(t)) = alt + s)
and parallel transport along the geodesic o is given by
(Tas)saty = Py () : TayM = Lo M

for s,t € R.

1.4.1 Banach Lie groups with involution

A connected Lie group G with an involutive automorphism o is called a symmetric
Banach-Lie group. Let g be the Banach-Lie algebra of GG, and let

U={geG:o(g) =g}

be the subgroup of fixed points of 0. Then the Banach-Lie algebra u of U is a closed and
complemented subspace of g, a complement is given by the closed subspace

p={X€g:0aX=-X}.

The Lie algebra u is the eigenspace of 0,1 corresponding to the eigenvalue +1 and p is the
eigenspace corresponding to the eigenvalue —1. Since u is complemented U is a Banach-
Lie subgroup of GG, and the quotient space M = G /U has a Banach manifold structure.
A natural chart around o = ¢(1) is given by

X = q(exp(X))

restricted to a suitable neighborhood of 0 in p. Note that o(eX) = ¢71X = =X for every
X ep.

We also define GT = {go(g)~! : g € G}, which is a submanifold of G and note that
there is a diffeomorphism

¢:G/U -G, gUw go(g) "



12 CHAPTER 1. PRELIMINARIES

We use the notation g* = o(g)~! for g € G.
There is a smooth action of G on G* defined by

VG — Aut(GY),  v.(y) = xyx* = vyo(x) !
and onother smooth action of G on G/U given by translation
7:G — Aut(G/U), 7,(hU) = ghU.

Under the isomorphism ¢ the translation 7, corresponds to v, i.e. ¢ o1, = 1), o ¢ for all
x € G. We can define a map

p: Gt x Gt =G, xxy=plry) =ay 'z
and a map
p:G/Ux GJU - GJU, gU x hU = p(gU, hU) = go(g) 'o(h)U.
Under the diffeomorphism ¢ the map p corresponds to pu, i.e.
pop=po(pxap).
See the Chapter XIII Section 5 in |36] for further information about symmetric spaces.

Proposition 1.4.3. The action of G on M = G /U is by automorphisms of (M, ).

Proof. This follows from
(g - hU,g-hoU) = p(ghiU, ghsU) = ghio(ghy) " o(gha)U
= ghio(h1) 'o(g)o(9)o(he)U = ghio(h1) " o(ha)U
= g M(hlth)'

]

Proposition 1.4.4. The multiplications on GT ~ G /U satisfy the properties stated in
Definition 1.4.1, so (G", p) and (G /U, u) are symmetric spaces and ¢ is an isomorphism
of symmetric spaces.

Proof. We verify (S1), (S2) and (S3) for the multiplication p in Gt and (S4) for the
multiplication p in G/U:

S1 zz o =x for x € GT.
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S2 x(xytx) 'z =y for z,y € GT.

1 1 1 1 1

S3 x(yzly)tw = wyTlzy e = (ay ) (2T ez ) (ay T ) = (ay i) (e ) T (ay T )

for z,y,2 € G™.

S4 Since G acts transitively on G /U, it is sufficient to verify this condition in the base-
point o. Since 0,(gU) = 0- gU = o(g)U we see that (0,).0 = —idr, 11

1.4.2 Geodesics and exponential map of G/U

In this subsection we compute the geodesics, the exponential map and the derivative of
the exponential map of a symmetric space (G /U, ) derived from a symmetric Banach-Lie
group (G,0).

Proposition 1.4.5. The geodesics in (G/U, u) through o = q(1) are given by
R — G/U, t — qexp(tX))
with X € p.

Proof. We calculate the geodesic « such that «(0) = ¢(1) = 0o and &(0) =Y = q.,.X €
T,M for an X € p by computing the flows of Killing fields in two different ways. Killing
fields are infinitessimal automorphisms of symmetric spaces, i.e. if (¢;)icr iS a one-
parameter family of automorphisms of (M, u) then

d
= — M TM
X dt t:0¢t -

is a Killing field. Killing fields satisfying x(0) =Y = ¢.,.X € T,M and which are parallel
at 0, i.e. (0,)« 0 X = —X © 0,, are unique.
If a: R — M is the geodesic with a(0) =0 and &(0) =Y let 7, = 0,1, 0 04(0) denote

t
3
the translations along a which form a one-parameter group of automorphisms. Then

d

= — M —=TM
dt t:OTt -

5%

is a Killing vector field on M wich satisfies &(0) = Y. Since 0,040, = 0,,, in every
symmetric space we see that

OoTt = 0'00'&(%)0'0 - O-Joa(%) = 0-04(—%) = O'Oé(_%)O'OO'O = T_¢0,.
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If we derivate the last equality in ¢ = 0 we get
(05)s 08y = =€y 0 0,
Consider the one-parameter group on M given by
Ae(gU) = exp(tX)gU.

Since this one-parameter group is by automorphisms of (M, ) its infinitesimal vector field

d
nx(gU) = | exp(tX)gU
is a Killing vector field which satisfies nx(0) = ¢.1 X . Since X € p we see that
o.(exp(tX)gU) = 0 exp(tX)gU = o(exp(tX)g)U = exp(—tX)o(g)U

so that differentiating this equation at t = 0 we get

(00)s 0nx(gl) = L] exp(—tX)o(g)U =~ L eap(tX)o(g)U

dt lt=0 dt lt=0
Also y
—11x 0 0,(9U) = —nx(0- gU) = =nx(0(9)U) = ——| _ exp(tX)o(g)U.
and we get

<00)* ONlx = —T1x © 0.

By uniqueness we conclude that & = nx and that the flows of these two vector fields are
equal, so that the geodesic « is given by

a(t) = 7i(0) = Ai(0) = eap(tX)U = glexp(tX)).

Therefore the exponential at o of the symmetric space M = G /U is given by

expo(qaX) = qlexp(X)).
If define Fxp = q o exp we have Exp = exp, o q,1.

Corollary 1.4.6. Since the action of G on M = G /U is transitive geodesics through q(g)
are given by
R — G/U, t — q(gexp(tX))

with X € p.
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Remark 1.4.7. We note that o(I,e") = L,e ™ for every X € p and u € U, so that
0 Ad, X = —Ad, X and p is Ady-invariant. Since o is a group automorphism, o, is an
automorphism of Lie algebras and the following inclusions hold:

wul Cu, [uplSp, [pplCu
In particular, p is ad,-invariant.

For each X € g we have by [34, Theorem 1V.4.1]
1 — e odx
*X — Lex *
expex = (Leap(x))1 = 7

Using this equation we can derive the formula for the differential of the exponential map.

Proposition 1.4.8. If Exp is the exponential map of the symmetric space G/U then

sinh adx

Exp*X — (Mexp(X))*oW .

for X e p~T,M.

Proof. Since Exp = q o exp, differentiating at X € p we get

1— e*adX

EIP*X = Qxrexp(X)ETPxX = Q*exp(X)(Lezp(X))*l
CLdX

Differentiating ftesp(x) © ¢ = q © Leap(x) at 1 yields

Gxexp(X) (Lea:p(X) )*1 = (Mexp(X))*OQ*l

so that
1— e—adx
EIp*X - (,uexp(X))*OQ*l adX
Writing 1’2(;;)( in a power series and then as a sum of the even and odd powers we see
that

1 — e~ %dx 1 — coshadx N sinh adx

CLdX adX adX
Using the properties of the bracket in Remark 1.4.7 we see that for Y € p

1-— CoshadXY  u and SinhadXY cp
adX CLdX

so the stated formula follows. ]

Corollary 1.4.9. The map Exp.x is invertible if and only if Spec((adx)?|,) N {—n?m?:
n € N} = {0}.
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1.4.3 Connection, geodesics and exponential of P

If A is a unital C*-algebra, G is the group of invertible elements of A endowed with the
manifold structure given by the norm and o is given by

c:G—G, g (g_l)*,

then U = {g € G : 0(g) = g} is the group of unitary operators of A. In this case p = A,
the set of self-adjoint elements of A and u = A, is the set of skew-adjoint elements of A.
We have an ismorphism G/U ~ G, gU — gg* where G* = {gg* : g € G} is the set of
positive invertible elements in A which we will denote by P. Since P is an open subset of
the real Banach space Ay of self-adjoint elements of A it is a submanifold of the manifold
A,.

Also, P has the structure of symmetric space with symmetries given by u(a,b) =
oa(b) =a-b=ab'afor a,b € P. The associated symmetries in TP are

(a,X)-(b,Y) = (abla, Xbla+ab ' X —ab 'Y 'a)
which restricted to T, P are
(G,X) ) (CL,Y) = (CL, 2X — Y)

Therefore O(a,1x) © Z : P — TP is given by

1 1
b (b,0) — (a, 5X) - (b,0) = (ab™'a, 5(Xb—la +ab ' X))
s0 that (0,150 Z)u(Y) =

1 1
(ab~'a, é(Xb_la +ab ' X), —ab'Yb a, —§(Xb_1Yb_1a +ab”'Yb 1 X).

Hence
F(a,X) = —(0(41x) © Z)utax) = (0, X, X, Xa™' X).

We see that in this case f(a, X) = Xa'X so that by polarization the Cristoffel symbol
is

(X, Y) = %(Xa‘lY +YalX).
Proposition 1.4.10. The exponential map at 1 1s given by
expy(1,X) = e~
for X € A,, hence the geodesics through 1 with initial speed X € A, >~ T\ P is given by

R — P, t— e
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Proof. Let vq,x) : R — T'P be the unique smooth curve in T'P such that

70.x)(0) = (1, X), and (ya.x))(t) = F(ya,x)(t)).
Such curve is given by
Tax)(t) = (e, Xe)
since (1,x)(0) = (1, X) and
(Ya,0) (1) = (€%, XetX, Xet¥, X2eX) = F(e!X, Xe'™) = F(yq x)(t))-
The exponential map at 1 is given by
expi(1, X) = m(yax)(1) = 7(e*, Xe¥) =¥
which is the usual exponential. We note that the geodesic o : R — P such that a(0) =1
and &(0) = X is given by
at) = m(yax () = 7((e”, XeX)) = X,

O

Corollary 1.4.11. Since the connection is invariant under the transitive action of G on
P, if v is a geodesic and g € G it follows that 14 0 v is a geodesic. Therefore

P o2 P
ez’p1] TEII)a
(¥ %)*1
TP - T, P

or
a%e:vp(X)a% = expa(a%Xa%)

fora € P and X € A, ~ TP, so that the exponential map of the connection of P at

a € P s given by

1 -l -1 -1 -1
expq : T,P — P, exp(X) = aze® X 2a2 = qe” X =X a

forae Pand X € A, ~T,P.
Therefore the unique geodesic v such that y(0) = a and 4(0) = X € Ay, ~T,P is

1 _1 1
ta”2Xa 2

v(t) = aze az.

If we use the function log : P — A which is the inverse of exp : Ay — P obtained applying
the analytic functional calculus we can compute the unique geodesic v,y : [0, 1] — P joining
a and b. It is given by

Yap(t) = a2 (a”2ba”2)"a3,
t.log(a)

where at = e as usual.
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1.5 Finsler structure and distance

1.5.1 Definitions

The following is Definition 1.3 and Definition 1.4 in [48].

Definition 1.5.1. Let M be a Banach manifold. A tangent norm on M is a function
b : TM — RT whose restriction to every tangent space T,M is a norm. We write
|1 X ||z = ba(X) for X € T,M and x € M. A continuous tangent norm b on M is called
compatible if for each x € M there exists a chart ¢ : U — V around x and constants
m, M > 0 such that

mb(X) < ||6eX]| < MH(X)

for allz € U and v € T,M. A Finsler manifold is a pair (M,b) of a Banach manifold
M and a compatible tangent norm b. A metric d on M is called a locally compatible
metric if for each x € M there exists a chart ¢ : U — V around x and constants
m, M > 0 such that

m.d(z,y) < |lo(z) — o(y)|| < M.d(z,y)

forallz,y € U.

Definition 1.5.2. A metric d is called a compatible metric if it is locally compatible
and the topology induced from the metric d coincides with the original topology. A metric
Banach manifold is a pair (M,d) of a Banach manifold M and a compatible metric d.

If (M,b) is a Finsler manifold we define the length Length(v) of a piecewise C'-curve
v:J —= M as the improper Riemann integral

Length(y) = /

byt (1)) € [0, 00] = / 148yt € [0, o).
J J

We obtain a metric d on M by
d(z,y) = inf{Length(y) : v is a piecewise smooth curve joining x and y}.
We call (M,b) complete if it is a complete metric space with respect to the metric d.

The following is Proposition 12.22 in [63] which implies that every Finsler manifold is
a metric Banach manifold in a canonical fashion.

Proposition 1.5.3. The metric d on a Finsler manifold (M, b) is compatible and invari-
ant under the group of all diffeomorphisms ¢ of M with bo ¢, = b.
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Definition 1.5.4. Let (M, u) be a connected symmetric space, F' the canonical spray on
M, and b a compatible tangent norm on M. If b is invariant under parallel transport,
then we call (M, b, F) a Finsler manifold with spray.

The following is Corollary 1.11 in [48].

Proposition 1.5.5. If (M,b, F) is a complete Finsler manifold with spray then (M,d) is
complete if and only if M 1is geodesically complete, i.e. Deyp = TM.

Note that in the finite dimensional theory of Finsler manifolds the function b : TM —
R* is assumed to be smooth on the complement of the zero section and strictly convex on
each tangent space. In our infinite dimensional context we do not assume these conditions.

1.5.2 Finsler structure on G/U

If (G,0) is a symmetric Banach-Lie group we want to turn M = G/U into a Finsler
manifold on which G acts isometrically, see the paragraph previous to Lemma 3.10 in [48].
We assume that there is a norm on p compatible with norm on 7,M given by any local
chart wich is invariant under the group Ad(U), i.e. ||Ad,(X)|| = || X]| for every u € U and
X € p. We identify TM ~ G xy p as in Theorem 1.2.13. Then b: TM ~ G xy p — RT,
b([g, X]) = || X is well defined and defines a tangent norm on M.

Proposition 1.5.6. The tangent norm given by b : TM — R" is compatible with the
topology of M.

Proof. The function

F:p—B(p), X— —Smhadx

CLdX
is continuous with F'(0) = 1, so that there is a neighborhood U of 0 in p with ||F(z)7!]] <
m and ||F(z)|| < M for all x € U. Then

1
— X < [[Bape X = | F(2)X] < M|X]|
forall z € U and X € p. O

The following proposition is evident.

Proposition 1.5.7. The function b : TM — R* is invariant under the action of G on
G xyp~TM given by g - [h, X] = [gh, X], or alternatively by g - X = (p14).X.

Proposition 1.5.8. The function b : TM — R" is invariant under parallel transport so
that (G/U,b, F) is a Finsler manifold with spray.
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Proof. Parallel transport is the derivative at a point of the composition of two symmetries
by the last item in Theorem 1.4.2. Since the composition of two symmetries is a translation
and by Proposition 1.5.7 the derivative of translations leaves the function b invariant the
statement of the proposition follows. O

To make clear the dependence of M with its underlying Banach-Lie group, involution
and Finsler structure we shall write M = G/U = Sym(G, o, | - ||,) and we shall call M a
Finsler symmetric space.

1.5.3 Finsler structure on P

Let A is a unital C*-algebra and P ~ G /U is the symmetric space described in Subsection
1.4.3. In this case p = A, the set of self-adjoint elements of A and the uniform norm on A,
which we denote by |||, is Ady-invariant because it is unitarily invariant. We can identify
the manifold G/U with the manifold of positive invertible elements P. If ¢ : G/U — P,
gU — gg* then the identification

¢*

~

GXU AS TP

T(G/U)

9, W] = qug(Lg)aW = (99", gWg* + gW*g")

implies that a Finsler metric can be defined on P with the norms || - ||, : T,P — R*
for a € P which satisfy

1(¥g)raX llvy(a) = 19X 9 llgag = X1l
for every X € A, ~T,P,a € P and g € G. Then, for a € P
1%, 3)aXlly ) = llazXaz[la = [|X][ = [|X]

so that
IX|lo = a2 Xa 2| for X € A, ~ T,P.

In this way a Finsler symmetric space P = G/U = Sym(G, o, || - || 4,) is defined. See [22],
where this norm was first introduced. Also note that Proposition 1.5.3 in this case can
be formulated as:

Proposition 1.5.9. The action 1 of G on (P,d) given by g - a = gag* is isometric.

See Proposition 1 in [21].
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1.6 Symmetric spaces of semi-negative curvature

1.6.1 A generalized Cartan-Hadamard theorem

Definition 1.6.1. We say that a complete Finsler manifold with spray (M,b, F) has
semi-negative curvature if for all v € M and X € T, M the operator between Banach

spaces
(exps)ix : To(M) = Tx (To(M)) = Teap,(x)(M)

is expansive and surjective. This means that for X € T,M NDeyp and Y € Tx (T, M)
[(expe)x (V)| = [[Y]]
and (expy)«x is invertible for each X € Ty M N Deyy.
This is Definition 1.4 in [48].

Theorem 1.6.2. Let (M, b, F') be a connected Finsler manifold with spray which has semi-
negative curvature. Then (M,b, F') is complete if and only if it is geodesically complete,
and in this case for each x € M the exponential map

expy T, M — M
s a surjective covering. In particular, if M is simply connected, then the exponential map

expy : T,M — M is a diffeomorphism.

Definition 1.6.3. A simply connected complete Finsler manifold with spray (M,b, F')
which has semi-negative curvature is called a Cartan-Hadamard manifold.

Remark 1.6.4. Let (M, b, F') be a Cartan-Hadamard manifold and x € M. IfT" : [0,1] —
T.M is a smooth curve and v = exp, ol : [0,1] — M, then

Lengthr, v (T') < Lengthp(7)

since
17l = [[(expa) ey (L) leap. 0y = [Tl
fort €|0,1].

Using the inequality in the last remark on can prove the following exponential metric
increasing property:
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Proposition 1.6.5. Let (M,b, F') be a Cartan-Hadamard manifold, then for x € M and
X YeTl, M
| X =Y, < d(exp.(X), exp.(Y))

and
| X | = d(z, exp.(X)).

For two points x,y € M the unique geodesic segment o, : [0,1] — M joining them is
lenght minimizing.

See Theorem 3.5 in Chapter XI, Section 5 of [36] for a proof of this fact in the context
of Hilbert manifolds and Lemma 3.1 in [15] for a proof in the present context. The next
theorem was proved in [38]

Proposition 1.6.6. Let (M, b, F) be a Cartan-Hadamard manifold, then for two geodesic
segments o, B : [0,1] — M the distance map

[0,1] = [0,400), t— d(a(t),B(t))

18 conver.

1.6.2 Criterion for semi-negative curvature of G/U

In [48] Neeb established a criterion for semi-negative curvature of a Finsler symmetric
space G/U = Sym(G, o, || - ||,) using the concepts of dissipative and expansive operator.

Definition 1.6.7. Let Z be a Banach space. For z € Z we put
F(z)={a€Z":|laf £1,{a,2) = ||z[[}.

We call A € B(Z) dissipative if for each z € Z there exists an o € F(z) with Re{a, A(z)) <
0.

The following is Theorem 2.2 in [48].

Theorem 1.6.8. For A € B(Z) the following are equivalent
o A is dissipative.
e For each t > 0 the operator 1 — tA is expansive.

o || <1 holds for all t > 0.
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o Re(a, A(z)) <0 holds for all z € Z and o € F(z).
e For each t > 0 the operator 1 — tA is expansive and suryective.

Using this theorem Neeb proved a criterion for semi-negative curvature for Finsler
symmetric spaces, see [48, Proposition 3.15]:

Theorem 1.6.9. Let M = G/U = Sym(G, o, || - ||y) be a Finsler symmetric space. Then
the following conditions are equivalent:

o M has semi-negative curvature.
o The operator —(adx)?|, is dissipative for all X € p.
o The operator 1 + (adx)?|, is expansive and invertible for all X € p.

Si“a}g;dx o is expansive and invertible for all X € p.

o The operator X € p,

1.6.3 semi-negative curvature of P

In [20, Theorem 1] the "exponential metric increasing property" which states that for
a€ Pand XY € T,P
[ X = Ylla < d(expa(X), expa(Y))

was shown to be equivalent to Segal’s inequality which states that for self-adjoint
operators X and Y
[eX I < Jlez e e .

The following was proved by Corach, Porta and Recht in the Remark at the end of [20]
using the exponential metric increasing property

Theorem 1.6.10. The Finsler symmetric space P = GJU = Sym(G, o, | -||) of positive
invertible elements of a C*-algebra has semi-negative curvature.

Therefore, by Proposition 1.6.6 for two geodesics a and g in P the map
0,1] = Pt d(at), 5(t))

is convex. This was proved in Theorem 2 of [23| using |23, Theorem 1] which states that
if J is a Jacobi field along a geodesic o in P then

t = [T ()l
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is convex. In [3] this fact was shown to be equivalent to the Lowner-Heinz inequality
which states that for positive operators A, B and t € [0, 1]

IAB*|| < [[AB]|".
In Theorem 6.3 in [22] and Proposition 2. in [21] the following was proved:

Proposition 1.6.11. The unique geodesic Yo : [0, 1] = P joining a and b minimizes the
distance, which is given by

d(a,b) = Length(vap) = ||llog(a™2ba"2)]|.

Remark 1.6.12. The geodesic is not unique with this property due to the fact that the
norms on the tangent spaces are not uniformly conver.

In [16] this work was extended to the context of unititzed p-Schatten operators. Let
A = B(H) stand for the set of bounded linear operators on a separable complex Hilbert
space ‘H, with the uniform norm denoted by || - ||. For 1 < p < oo let A, be the ideal of
p-Schatten operators with p-norm || -||,. Let G, stand for the group of invertible operators
in the unitized ideal, that is G, = {g € A*: g—1 € A,}, then G, is a Banach-Lie group
(one of the so-called classical Banach-Lie groups [33]), and A, identifies with its Banach-
Lie algebra. Consider the involutive automorphism o : G, — G, given by g — (g*)~'.
Let U, C G), stand for the unitary subgroup of fixed points of o. In this case p is the
set of self-adjoint operators in A, and the norm || - ||, on p is Ady -invariant. We can
identify the manifold G,/U, with the manifold of positive invertible operators in G,. The
following was proved by Conde and Larotonda in the appendix of [16]

Theorem 1.6.13. The Finsler symmetric space M, = G,/U, = Sym(G,,o,| - ||,) is
simply connected and has semi-negative curvature.



Chapter 2

Decompositions and complexifications
of some infinite-dimensional
homogeneous spaces

2.1 Introduction

In this chapter we extend certain results on the geometric description of complexifications
of homogeneous spaces of Banach-Lie groups studied by Beltita and Galé in [6] and also the
decompositions of the acting groups by means of a series of chained reductive structures.

In Section 2.2 we recall the definition of reductive structures, which can be interpreted
as connection forms F on homogeneous spaces of the form G4/Gp. Examples in the
context of operator algebras are given: conditional expectations, their restrictions to
Schatten ideals and projections to corners of operator algebras. The Corach-Porta-Recht
splitting theorem by Conde and Larotonda [16] is used to prove an extended Corach-
Porta-Recht splitting theorem in the context of several reductive structures.

In Section 2.3 the Corach-Porta-Recht splitting theorem is used to give a geometric de-
scription of homogeneous spaces of the form G 4/Gp as associated principal bundles over
Ua/Ug. Under additional hypothesis about the holomorphic character of G 4 and the invo-
lution o on G4 it is possible to interpret G 4/G g as the complexification of Us/Ug. Under
these additional assumptions G4 /G is identified with the tangent bundle of U, /Up and
it is shown that this identification has nice functorial properties related to the connection
form E. Finally, we use the three examples of connection forms introduced in Section
2.2, to give a geometrical description of the complexifications of flag manifolds, coadjoint
orbits in Schatten ideals and Stiefel manifolds respectively.

25
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2.2 Splitting of Finsler symmetric spaces

2.2.1 Polar and Corach-Porta-Recht decomposition

We recall some facts about the fundamental group of M and polar decompositions [48,

Theorem 3.14 and Theorem 5.1| which are consequences of the Cartan-Hadamard theorem
1.6.2.

Theorem 2.2.1. Let M = G/U = Sym(G,o,| - ||,) be a Finsler symmetric space of
semi-negative curvature, then

1. The exponential map qo Exp :p — M is a covering of Banach manifolds and

I'={X cp:q)=q1)}

is a discrete and additive subgroup of pNZ(g), with I’ ~ m (M) and M ~p/I". Z(g)
denotes the center of the Banach-Lie algebra g. If X,Y € p and q(eX) = q(eY),
then X =Y eI

2. The polar map
m:pxU—G, (X,u)— e u

is a surjective covering whose fibers are given by the sets {(X — Z,e?u): Z € T'},
ue U, X €p. If M is simply connected the map m s a diffeomorphism.

Let A be a unital C*-algebra, since by Theorem 1.6.10 G/U is simply connected and
has semi-negative curvature we get the usual polar decomposition of invertible elements
as a product of a positive invertible element and a unitary.

Corollary 2.2.2. In the context of Theorem 2.2.1 G, = . Note that given h € G}
there is a g € G4 such that h = go(g)~'. Using the polar decomposition in G there are
X €p andu € U such that g = eXu. Then h = eXuo(eXu)™! = eXuute® = ¥ € .
We note also that eX = e2¥a(e2X)1 € G for every X € p.

The following decomposition theorem in the context of Finsler symmetric spaces of
semi-negative curvature was proven by Conde and Larotonda in [16].

Theorem 2.2.3. Corach-Porta-Recht decomposition
Let M = G/U = (G,0o,] - |ly) be a simply connected Finsler symmetric space of
semi-negative curvature. Let p € B(p) be an idempotent, p* = p. Let 5 := Ran(p),
s’ := Ran(1 — p) = Ker(p), so that p =s @ §'. If ad2(s) C s, adi(s’) C ' and |p|| =1,
then the maps
O:U x5 x5 — G, (u, X,Y) = ueXe
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U:s xs5— G (X,Y) = eV e* e

are diffeomorphisms.

2.2.2 Reductive structures with involution
The following two definitions are from Beltitd and Galé |7].

Definition 2.2.4. A reductive structure is a triple (G4,Gp; E) where G4 is a real
or complex connected Banach-Lie group with Banach-Lie algebra g4, Gp is a connected
Banach-Lie subgroup of G4 with Banach-Lie algebra g, and E : g4 — ga s a R-
linear continuous transformation which satisfies the following properties: E o E = E;
RanE = gg, and for every g € Gg the diagram

E
gA—0B

Adgl lAdg
E

94— 0B
commutes.

Definition 2.2.5. A morphism of reductive structures from (G4,Gp; E) to (GNA, Gp: E)
is a homomorphism of Banach-Lie groups a : G4 — G a such that a(Gp) C G and such
that the diagram

E
gA— 9B
Oé*ll la*l
g !
gA—0B
commutes.

For example, a family of automorphisms of any reductive structure (Ga,Gp; E) is
given by I, : v+ grg™, Ga — Ga, (9 € Gp).

Remark 2.2.6. If (G4, Gp; E) is a reductive structure, the the identity map ide, : G, —
G is a morphism of reductive structures because idg,(Gp) = Gp and (idg, )« o E =
Eo(idg,)s. If a is a morphism of reductive structures from (G4, Gp; E) to (G4, Gp; E)
and B is a morphism of reductive structures from (G, Gp; E) to (CfA,dB; E) then

Boa(Gp) = B(a(Gp)) C B(GR) C Gp
and

(Boa)*lOE:B*loa*loEzﬁ*loan*l:EOB*IOQ*IZEO(BOO[)*I
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so that B o« is a morphism of reductive structures from (G4, Gp; E) to (CfA7 Gp: E) We
conclude that we can define a category whose objects are reductive structures and whose
morphism are morphisms of reductive structures.

Now we introduce involutions in reductive structures:

Definition 2.2.7. If (G, Gp; E) is a reductive structure and o is an involutive morphism
of reductive structures we call (Ga,Gp; E,0) a reductive structure with involution.
If (G4,Gg;E,0) and (G4,Gp; E, &) are reductive structures with involution and o is
a morphism of reductive structures from (Ga,Gg; E) to (Ga,Gp: E) such that a o 0 =
0 o« then we call o a morphism of reductive structures with involution from
(Ga,Gp; E,0) to (Ga,Gp; E,5).

As in Remark 2.2.6 the reductive structures with involution and morphisms of reduc-
tive structures with involution are a category.

Definition 2.2.8. If B is a C*-subalgebra of a C*-algebra A then a C-linear projection
E: A — A with RanE = B, E(14) = 1g(= 14) and ||E|| = 1 is called a conditional
expectation. By Tomiyama’s theorem [62] the following holds

E(biaby) = b1 E(a)bs foralla € A; by,by €B

E(a*) = E(a)” for all a € A.

Example 2.2.9. Conditional expectations in C*-algebras

Let A and B be two unital C*-algebras, such that B is a subalgebra of A and let
E : A — B be a conditional expectation. Let Gy for A € {A, B} be the Banach-Lie group
of invertible operators in A endowed with the topology given by the uniform norm. Then
the Banach-Lie algebra of Gy is gan = A. Since in this case we have Ady,(X) = gXg " for
each g € Gy and X € A ~ TG we see that

E(Ady(X)) = E(gXg ™) = gE(X)g ™" = Ady(E(X))

for g € Gg and X € A ~ TG so the expectation E : gy = A — gg = B satisfies the
conditions of Def. 2.2.4. We conclude that (G a,Gp; E) is a reductive structure. In fact,
this is a classical example that was the motivation of that definition in the paper [7].

If (Ga,Gp; E) is a reductive structure that is derived from an inclusion of C*-algebras
and a conditional expectation as above then o : Ga — Ga, a — (a™1)* is involutive,
satisfies 0(Gp) = Gp and since 0, : A — A, X — —X* it also satisfies

E(0.(X)) = E(=X") = —E(X)" = 0.1 (E(X))
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for X € A. Hence o defines an involutive automorphism of reductive structures and
(Ga,Gp; E,0) is a reductive structure with involution.

If for two triples (A, B; E), (A, B; E) there is a bounded x-homomorphism ¢ : A — A

which satisfies poE = Eog, then o = é|la, defines a morphism of reductive structures with
involution from (G 4,Gp; E,0) to (dA, Gp: E, 7). To see this note that from ¢po K = Eo¢
it follows that $(B) = ¢(FE(A)) = E(¢(A)) C E(A) = B so that o(Gp) C Gp. Note that
g =¢:A=gs— A=gysothat a,y 0 E = Eoa,. Also a(o(a)) = a((a™1)*) =
((aa))™)" = 6(a(a)) for a € Ga.
Example 2.2.10. We use the notation of the last paragraph of Subsection 1.6.3 where
groups of Schatten perturbations of the identity is discussed. Let B C A = B(H) be a
C*-subalgebra, and let E : A — B be a conditional expectation with range B such that
E sends trace-class operators to trace-class operators and E is compatible with the trace,
that is Tr(E(x)) = Tr(z) for any trace-class operator x € A. Let p > 1, A, be the ideal
of p-Schatten operators in A, B, = BN A,

Gap={9e€eA":g—1€ A} and Gg,={9g€ A" :g—1¢€ B,}.
Then ga, = A, and g, = B, are the Banach-Lie algebras of G 4, and G, respectively.

It was proven in Section & of [16] that E, = Els, : A, — B, and that |E,| = 1. It easy
to see that (Gap, Gpp; Ep,0) is a reductive structure with involution.

Example 2.2.11. Corners

Let H be a Hilbert space, n > 1 and p;, i =1,...,n+1 be pairwise orthogonal non-zero
projections with range H; and Z::ll p; = 1. Let G4 be the group of invertible elements of
B(H) and let

( [g1 O 0 0 )
0 go ... 0 0

Gp = oo et g dnwertible in B(H;) fori=1,...,n p;
0 0 ... g. O

(\o o0 ... 01 ,

where we write operators in B(H) = B(H1 @ ... ® Hpq1) as (n+ 1) x (n+ 1) matrices
with the corresponding operator entries.
In this case g4 = B(H) and

(/X; 0 ... 0 0
0 Xy ... 0 O

9B = : oo, s Xg i B(H) fori=1,...,n
o 0 ... X, 0

(\o 0o ... 0 0 )
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If we consider the map E : ga — g, X — Y i piXp; and o = (-)*7 it is easily
verified that (G 4,Gp; E,0) is a reductive structure with involution. To see this note that

if

a0 0 0
0 g 0 0
g=1: : € Gp
0 0 gn 0
0 O 0 1
and
X1 X12 Xin  Xinn
Xa1 Xo2 Xon  Xontr
X = : : : ; € B(H) = 1G4,
Xn,l Xn,2 Xn,n Xn,n-i-l
Xnt11 Xnpy12 Xont1n Xntint
then
g X11097" 1 Xi205" 01 X100," 91 Xin
92X2197" 952205 92 X000, 92 Xomt
AdyX = gXg ' = : : : : :
InXn101" GnXnags ' InXnngn' gnXnntr
Xn-|—1,191_1 Xn+1,292_1 Xn-l—l,ng;l Xntint1
so that
g1 X119 0 0 0
0 95 ' X005 0 0
E(Ang) = : : : :
0 0 gian7n97?1 0
0 0 0 0

Aslo note that |E|| = 1 since we get E by first taking the diagonal blocks and then
making the last block of the diagonal blocks zero and these two operators have norm 1.

2.2.3 Extended Corach-Porta-Recht decomposition

Definition 2.2.12. If (G4, 0) is a symmelric Banach-Lie group we say that a connected

subgroup G C G 4 is tnvolutive if 0(Gp) = Gp.

The next lemma is Corollary I1.3 in [48].
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Lemma 2.2.13. If A € B(Z) is a bounded operator on the Banach space Z and W is a
A-invariant subspace of Z, then Alw is dissipative.

Remark 2.2.14. If Gg C G4 s an involutive Banach-Lie subgroup with Banach-Lie
algebra gg C ga and ga = p ® u is the eigenspace decomposition of 0.1, we can write
g =P Dug, where pg :=pNgp and ug :=uNgg.

Proposition 2.2.15. Given a Finsler symmetric space
Ma = Ga/Us= Sym(Ga,o. ||
of semi-negative curvature, if Gg is an involutive subgroup, then
Mp = Gp/Up = Sym(Gg,0lcp: || |lss)

is a Finsler symmetric space of semi-negative curvature. Also, by adapting the notation
of the first item of Theorem 2.2.1, the inclusion 'y C T sNpp holds. In particular, if M,
15 simply connected then Mp 1s also simply connected.

Proof. We can restrict the Ady ,-invariant norm of My = G4/Uy to pp to give Mp =
Gp/Up a Ady,-invariant norm. Since for each X € p the operator —(adx)?|, is dissipative
and —(adx)?|,(ps) C pp for all X € pp, we conclude by Lemma 2.2.13 that the operator
—(adx)?|p, is dissipative for all X € pp. Therefore Mp = G/Up = Sym(Gp,ola,, || -
|ps) has semi-negative curvature.

If X € I'p then ¢ o Expp(X) = op so that Expa(X) = Expp(X) € Ug C Uy and
qa o Exps = 04. We conclude that I'g CT'4y Npp. O

Remark 2.2.16. If (Ga,Gp; E) is a reductive structure, since Ad, o E = E o Ad, for
each g € Gp we see that Ad,(KerE) C KerE for every g € Gp. If o is an involutive
automorphism of reductive structures and g4 = udyp is the decomposition into eigenspaces
of 0.1 then Ady,(p) C p and Ady,(u) C u, so that the actions Ad : Ugp — B(pg) and
Ad : Ug — B(ug) are well defined, where we denote pp := Ker ENp and ug := KerENu.

The following theorem is a generalization of the Corach-Porta-Recht-type decomposi-
tion from Theorem 2.2.3.

Theorem 2.2.17. If for n > 2 we have the following inclusions of connected Banach-Lie
groups, the following maps between their Lie algebras

E> E3 En
gr<— go<— ... 0On

and a morphism o : G, — G, such that:
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° (Gn7 Gn—l; ETL7 0-);(Gn—1a Gn—Q; En7 o
tures with involution.

Go1)s s (G2, G1; Ba, 0lg,) are reductive struc-

o M, =G,/U, = Sym(G,,o,]| -|) is a simply connected Finsler symmetric space of
semi-negative curvature.

o |[Eyll =1 for k=2,...,n, where we use the norm of the previous item restricted
t0 P =P M G-

Then the maps
D, U, Xpg, X Xpp, Xp1 = G,

(s Xy o+, Xo, Y1) 5 upe™n . eX2eM

U, P, X X pg, X p1 — GF
(Xp, .o, X, Y1) s V12 eXnm1e2XneXn-t o X2l
are diffeomorphisms, where pg, = KerEp Npy fork=2,...,n.

Proof. Note that Prop. 2.2.15 implies that M} := G}/Uy are simply connected Finsler
symmetric spaces of semi-negative curvature for £ = 2,...,n. We prove the statement
about the map ® for the case n = 2 and then prove the statement for n > 2 by induction.

Since Ey 0 04 = 0.1 0 Ey, Es(p2) C po, we can consider p := Esfp, : po — pa. We see
that [|p|| = 1 and Ker(p) = Ran(1 — p) = pg,. Also, since F2 = E, and Ran(E,) = g1,
Ran(p) = p1. The condition ady (p1) C py1 of the statement of Theorem 2.2.3 is trivial.
Also note that for every g € G and for every X € gy, Ady(Ex(X)) = E2(Ady(X)). If
Y € gy and we differentiate Adgv (Ea(X)) = Eo(Adyy (X)) at t = 0 we get ady (F2(X)) =
Es(ady (X)) and therefore ady, (KerEy) € KerE,. Since adp,(p2) C pa2 we conclude that
ad§1 (pE,) € pg,. Theorem 2.2.3 implies the existence of a diffeomorphism

®QZU2XPE2XP1—>G2
(ug, X2, Y1) — uge*2e™™. (2.1)

Assume now that n > 2 and that the theorem is true for Kk =n — 1 and k = 2. We prove
that ®,, is surjective. If g, € G, then the splitting (2.1) derived above from Theorem
2.2.3 applied to the reductive structure (G,,G,_1; E,) implies the existence of u,, € U,
X, € pg, and Y,_; such that g, = u,eX"e¥n-1. Since e'-1 € G,,_; applying (2.1) in the
case k =n —1 we get u,_ 1 € Up_1, X;oo1 € PE,_,,--., X2 € pp, and Y7 € p; such that
e¥n-1 =y, _1eXn=1 ... eX2e¥1. Then

X, Y, Xno1 X Vi _ Ad -1 Xn

Gn = Upe~ e "t = uneX”un_le ) = UpUp_16 “n-1 eXn-1 . X2
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is in the image of ®,, because Adu,—ian €pg,.
We prove that ®,, is injective. Assume that

’ !/ / !
upeXmeXn=t o eX2e? = o eXnefn1 e,

Since eXn-1 ... eX2eM € G,,_; there are u,_; € U,_; and Y,,_; € p,_; such that

Xn-1

Up_1e 1 = ¢ e

e,

Also there are u),_; € U,—; and Y,]_; € p,,_; such that

/ / / / /
un_leyn—l =M1 2o,
Then Ly
Ad_l Xn Yoo1 _ 1/ w L n y’
UpUp—1€ “n-1""e "t =y u, e “n-loeinl

and because of the uniqueness of the splitting theorem for £ = 2 we conclude that

Uplp_1 = uLul, 4
Ad 1 X, = Ad,: X! (2.2)
n—1 n—1

. / / /! ’
Since u,_e¥n-1 = eXn-1 . eX2e¥1 and v/, je¥n-1 = efn-1 X2t

-1 Xn—l

—1 i / 1
un_le X2€Y1 — eYn_1 — €Y !/ X X26Y1

/
...e =, e e

the uniqueness of the splitting theorem for £ = n — 1 implies that w, 1 =), _;, X,,_1 =
X! 4., Xo =X} and Y7 =Y/. The equalities in (2.2) say that u,, = v}, and X, = X/,
also hold.

We prove that U, is bijective based on the fact that ®, is bijective. If p, € G7
then p, = g,g; for some g, € G,. DBecause ®, is surjective there are u, € U,
X, € pg,,---, Xo € pg, and Y] € p; such that g& = wu,e’"...eX2e¥1. Then p, =

2Xn  eX2eM and we conclude that W, is surjective. To see that
! / / / !
Xz e¥Xn X2l = eMieXa | X eXeeT. If

gng: = eeX2 . e
U, is injective let assume that e

! ! ! .
gn = eV1eX2 . eXnand ¢/, = e¥ieX2 . e®n then g,g% = ¢,¢"; and therefore there is an

u, € U, such that g,u, = g/,. Then upen . eX2e¥t = eXn | eX2¢¥1 and we conclude
that (X,,...,Xo, Y1) = (X],..., X, Y)).

We prove that @, is a diffeomorphism by induction. Theorem 2.2.3 states that ®, is
a diffeomorphism. Assume that n > 2 and that &, _; is a diffeomorphism. If g, € G,

then g, = u,(gn)eX9)e¥n-1092) where (u,, X, Yn_1) : G — U, X P, X Pp_1 is smooth

..e
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because the inverse of the Corach-Porta-Recht splitting is smooth in the case n = 2. If
we denote f(g,) := e¥""19n) then f is a smooth map and

Flgn) = 1 (F(gn))eXr 10 @) | Xalfom) (o)
where
(unthnfl’ s 7X2;}/i) : anl — Unfl X pEn,l X X PEQ X pl

is a smooth map. Since

G = Un(gn) X"y, 1 (f(gn))eXn-1Ulm) o Xal ) Y1(F(9n)) —

un(gn)un—l(f(gn))€Ad“511(f(g”))Xn(g")eX"‘l(f(g")) L eX2(en) eV1(f(gn))

we get that @1 : G,, = U, X pg, X -+ X pp, X P1

9n > (UN(gn)un—l(f<gn))> Ad1f1 (f(gn))XN<gn)> ce aXQ(f(gn))a Yl(f(gn)))

n—1

is smooth.
We prove next that U~! = (X,,, ..., Xy,Y]) is smooth. Let g, € G,,, then if p, = g*gn,

Pp = e(?l (Pn))e(yﬂpn)) . 6(Yn71(pn))e(QYn(pn))e(Ynfl(Pn)) . e(YQ(pn))e(?l(pn))'

Since g, = Up(gn)eXn9n) | eX2(90)V1090) where @1 = (u,, X,, ..., X2, Y1), we get

Pn = Glgn = eY1(9n) o X2(gn) o Xn-1(gn) o2Xn(gn) o Xn-1(gn)  oX2(gn)Y1(gn)
so that
(X_na"'7727?1> = (Xna---7X27}/i) S

where 7 : G, — G}, 9, — ¢'g,. Since 7 is a submersion we conclude that ¥~ =
(X,,...,X3,Y ) is smooth.
O

Remark 2.2.18. We note that in the context of the previous theorem, if Fy,; := Fji1 0
.-+ 0 By, then (G, Gj; Fy ;) is a reductive structure and || Fy jlp, || = 1.

Remark 2.2.19. The splitting theorem of Porta and Recht [57] asserts that if we have a
unital inclusion of C*-algebras B C A and a conditional expectation E : A — B then the
map

D:Uxs xpp xpg — Gy

(u, X,Y) = ueXe
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1s a diffeomorphism, where pg are the self-adjoint elements of KerE and pp are the
self-adjoint elements of B.

Theorem 2.2.17 in the case n = 2 is a formulation of the Corach-Porta-Recht splitting
(Theorem 2.2.3) in the context of reductive structures. The aformentioned Porta-Recht
splitting theorem is a special case of the previous theorem if we consider (Ga,Gp; E,0)
derived from the triple (A, B; E) as in Example 2.2.9 and verify that the conditions of
the theorem are satisfied because of what was stated in Theorem 1.6.10. The Corach-
Porta-Recht theorem covers the case where the inclusion of algebras and the map E are
not unital, as in Example 2.2.11 of reductive structures. It also covers the case where the
symmetric space and reductive structure are derived from unitized ideals of operators as
in 2.2.10, see the appendiz in [16].

The Corach-Porta-Recht theorem in the context of several reductive structures (Theo-
rem 2.2.17) covers for example the case of multiple unital inclusions of C*-algebras and
conditional expectations between them

Ay CAC---CA,

E E En
Ay & Ay & &2 A,

2.3 Complexifications

2.3.1 Complexifications of homogeneous spaces

Proposition 2.3.7 to Remark 2.3.15 here are extensions of Section 5 of [6], from the context
of C*-algebras to the context of Finsler symmetric spaces of semi-negative curvature with
reductive structures.

Definition 2.3.1. A continuous map F : X x [0,1] — X is called a strong deformation
retraction of a space X onto a subspace A if forx € X, a € A and t € [0,1]

F(z,0) =2z, F(z,1)€ A, F(a,t)=a.

If such a map F exists then A is a strong deformation retract of X.

Definition 2.3.2. If U is an open subset of a complex Banach space Z and W is a
another complex Banach space then a smooth map ¢ : U — W is called holomorphic if
Gse : T,U = Z — Tyoy)W = W is C-linear for all x € U, and is called anti-holomorphic
if uw is conjugate linear for all v € U, i.e. ¢uu(AX) = Apuo(X) for x € U, X € Z and
A € C. A Banach manifold is a complex Banach manzifold if it is modeled on a complex
Banach space and it has an atlas such that the transition maps are holomorphic.
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Definition 2.3.3. Let X be a Banach manifold. A complezification of X is a complex
Banach manifold Y endowed with an anti-holomorphic involutive diffeomorphism o such
that the fized point submanifold Yo = {y € Y : o(y) = y} is a strong deformation retract
of Y and Yy is also diffeomorphic to X.

Example 2.3.4. Let M = G/U = Sym(G,o,| - ||) be a simply connected Finsler sym-
metric space of semi-negative curvature. Theorem 2.2.1 guarantees that U is a strong
deformation retract of G. If G is a complex Banach-Lie group and o is anti-holomorphic,
then G is a complezification of U. In the context of C*-algebras the group of invertible
elements G is a complezification of the group of unitary elements U with o = (-)~'*. Note
that U 1s not a complex analytic manifold.

Definition 2.3.5. Let (G4, 0) be a symmetric Banach-Lie group with involutive subgroup
Gp. We define og : G4/Gp — Ga/Gp, uGp — o(u)Gp and \ : Uy/Up — G4/Gp,
UUB — UGB.

We now give a criterion which implies that U, /Up is diffeomorphic to the fixed point
set of the involution og.

Proposition 2.3.6. If My = G4/Us = Sym(Ga,o, | -||) is a Finsler symmetric space of
semi-negative curvature, Gg is an involutive subgroup of Ga, and T C pp, then GiNGp =
G%.

Proof. Since G}, C Gy NGy always holds, it is enough to prove that Gi NGp C G}. By
Corollary 2.2.2 G}, = ¢ and G = €. If ¢ € G}, N Gp then there is an X € p such
that g = eX. Since G is an involutive subgroup Gz /Up has semi-negative curvature and
using the polar decomposition of Theorem 2.2.1 in G guaranties the existence of u € Ug
and Y € pp such that ¢ = ue¥. Then, Theorem 2.2.1 applied to G4 tells us that for
certain Z € I', u = eZ and Y = X — Z. Since I' C gp we conclude that X € gp and
therefore g € Gf£. O

Proposition 2.3.7. If G, = G NGp, then A(Ua/Up) = {s € G4/Gp : 0c(s) = s}.

Proof. The inclusion C is obvious. Given s = uGp such that og(s) = s, u"lo(u) € Gp.

Since u'o(u) € G the hypothesis G = G} N Gp implies that u~'o(u) € G}, and
therefore there exists w € Gp such that v 'o(u) = ww*. Then vw = o(u)w* ! =

o(u)o(w) = o(uw), so that uw € Uy and s = uGp = uwGp = A(uwUg). O

We give a geometric description of the complexification G4/Gp of Us/Ug in the
context of reductive structures. This can be seen as an infinite dimensional version of
Mostow fibration, see [46, 44| and Section 3 of [10].
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Remark 2.3.8. Since the actions Ad : Ugp — B(pg) and Ad : Ugp — B(ug) are well
defined we get the homogeneous vector bundles Uy Xy, pp — Ua/Up and Us Xy, up —
Ua/Ug, [(u, X)] — uUp, where the actions of Ug on Ux Xy, pr and Uy Xy, ug are given
by v (u, X) = (uvt, Ad, X).

Theorem 2.3.9. Let My = G4/Us = Sym(Ga,o,| - ||) be a simply connected Finsler
symmetric space of semi-negative curvature and (G 4, Gp; E,0) a reductive structure with
involution such that ||El,|| = 1. Consider WE : Uy X pp — Ga, (u, X) = ue® and & :
(u, X) — [(u, X)] the quotient map. Then there is a unique real analytic, U 4-equivariant
diffeomorphism UF : Uy Xug P — Ga/Gp such that the diagram

E

\I}O
Ua X pE Ga

l Lq

Ua Xy, PE i>GA/GB

commautes.
Therefore the homogeneous space G 4/G g has the structure of an U -equivariant fiber
bundle over Us/Up with the projection given by the composition

(pFHy—1 =

Ga/Ggp Ua Xyy pp—— Uas/Ugp

ue*Gp — [(u, X)] = ulUp forue Uy and X € pg
and typical fiber pg.
Proof. To prove that UF is well defined we show that for u € Uy, v € Ug and X € pg
q(UF(u, X)) =ueXGp = uww e uGp = uv e X Gy

= q(V§(w™", Ady X)) = ¢(VF (v - (u, X)))

The uniqueness of UF is a consequence of the surjectivity of x.
Theorem 2.2.17 for the case n = 2 implies the existence of a diffeomorphism

@:UAXPEX]JB—)GA

(u, X,Y) = ueXe.

If gGp € GA/Gp there is (u, X,Y) € Uy X pg x pp such that g = ueXe¥ and we get
gGp = ueXe¥ G = ueXGp, proving the surjectivity of ®.

To see that W¥ is also injective assume that u1e*X'Gp = use*2Gp. Then there is a
b € Gp such that u;e*'b = use*2. Since G is an involutive connected subgroup of G4
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and G4/U, has semi-negative curvature, Proposition 2.2.15 states that Gp/Up has also
semi-negative curvature and we can apply the polar decomposition (Proposition 2.2.1) in
Gp: there are unique v € Ug and Y € pp such that b = ve¥. Then

eAd’u_le Y X1 Y X2

(u1v) eV = ueXveY = u e = uge

and applying (®)~! to this equality we get (u1v, Ad,-1X1,Y) = (ug, X»,0), which implies
that v=1 - (u1, X1) = (ug, X3).

Finally, we prove that U” is an analytic diffeomorphism. Since & is a submersion and
VP o (= qoWF) is a real analytic map UF is real analytic. Since the map &' : g —
(u(g), X(g9),Y(g)) is analytic, the map o : g — [(u(g), X (9))], Ga — Ua Xy, pg is also
analytic. Since ¢ is a submersion and o = (V¥)~! o ¢ we see that (¥F)~! is analytic. [

Corollary 2.3.10. If we analyse the diagram of Theorem 2.3.9 in the tangent spaces
using the following identifications T10)(Ua X 9g) ~ ua xpg, Ti1,0)(Ua Xv, 9E) 2 Up X pg
and T,(Ga/Gp) ~ KerE then

(P)ur0) i Ua X pr =04, (Y, 2)—=Y +Z
Ky(1,0) S Ua X Pp — Ug X Pg, Y, Z)— (1 -E)Y,Z)
Q1 94— KerE, Wi (1-E)W
and therefore
(@) : us X pp — KerE,  (1-E)Y,Z2)—» (1-E)(Y+2)=(1-E)Y + Z
We conclude that
(®%)s10) : UE X pp — KerE, (X, 2)—»X+Z
1 an isomorphism.

Corollary 2.3.11. If we assume the conditions of Theorem 2.3.9, the fized point set of
of the involution o on Ga/Gp ~ U Xy, pE is diffeomorphic to Uy /Up and Ua/Ug is
a strong deformation retract of Ga/Gp. If G4 is a complex Banach-Lie group and o is
anti-holomorphic then G4 /Gp is a complexification of Uy /Up.

If we define 7¢ : Uy Xy, pp — Ua Xy, Pe, [(u, X)] = [(u, —X)], then the following

diagram
e

Ua Xug PE Ua Xug PE

@Ej lw

Ga/Gp S Ga/Gp

commutes.
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Proof. Note that I' = {0} so that Prop. 2.3.6 implies G5 = G N G} and Prop. 2.3.7
states that U, /Ug is diffeomorphic to the set of fixed points on o¢.

Alternatively, the diagram tells us that the set of fixed points of the involution o is
UE({[(u, X)] € Ua xu, pp : 7a([(u, X)]) = [(u, X)]}) = VF({[(u,0)] : u € Ua}) = {uGp :
u € UA} = /\(UA/UB).

If we define F': (Ua Xy pr) X [0,1] = Ua Xu, pE, ([(u, X)], t) — [(u, tX)] we see that
{[(u,0)] : w € Up} is a strong deformation retract of Us Xy, pr and {[(u,0)] : w € Up} is
diffeomorphic to U, /Ug.

If o is anti-holomorphic then og is anti-holomorphic, and it follows from Definition
2.3.3 that G4/Gp is a complexification of Uy /Up. O

2.3.2 Complex structure on 7' (Us/Up)

Using the Mostow fibration obtained in Theorem 2.3.9 we construct under certain condi-
tions an isomorphism 7(U,/Up) ~ G 4/Gp between the tangent space and the complex-
ification of the homogeneous spaces Us/Up. This isomorphism gives the tangent spaces
T(Ua/Ug) a complex structure.

Theorem 2.3.12. If we assume that the conditions of Theorem 2.5.9 are satisfied then
there is a Ug-equivariant vector bundle isomorphism from the associated vector bundle
Ua Xyzup — Ua/Ug onto the tangent bundle T(Ua/Ug) — Ua/Up given by o : Ug Xy,
ugp — T(Ua/Ug), [(u, X)] = (ftu)x0q1 X, where the action of Uy on T(Ua/Ug) is given
by u - — = (py)s— for every u € Uy.

Proof. Let o : Uy x Uy/Up — Ua/Ug be given by (u,vUg) — uvUg, then dyav : Uy X
T(Ua/Ug) = T(Ua/Ug), (u,V) — (pt)«V. Since E o0, = 0, 0o E E(u) C u, and since
E(ga) = gp we get the decomposition u = ug @ ug. Then ug ~ T,(Us/Up), X — qaX
and restricting Oy to Uy x T,(Us/Up) we get a map of : Us x ug — T(Ua/Up),
(u, X) = (fh) w01 X -

As in Theorem 1.2.13 we can prove that there is a unique Ug-equivariant diffeomor-
phism of : Uy xp, ug — T(Us/Up) such that o o k = af’, where & is the quotient map
(u, X) — [(u, X)]. O

Lemma 2.3.13. If o is an anti-holomorphic involutive automorphism of a complexr Banach-
Lie group G4 then tu = p.

Proof. If X € u, 0, X = X and 0,1(iX) = —ioc.,u X = —iX so that iX € p. The other
inclusion is proved in a similar way. O
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Example 2.3.14. If G 4 is the group of invertible elements of a C*-algebra A and o is the
usual involution, then the previous lemma applies and we get p = Ay the set of self-adjoint
elements of A and u = ip = 1A; = Ags the set of skew-adjoint elements of A.

Remark 2.3.15. Assume the conditions of Theorem 2.3.9 are satisfied and that G4 is
a complex Banach-Lie group, u = ip, and E is C-linear. Since Ad,(iX) = iAdy(X) for
every g € G4 and X € g we conclude that © : Uy Xy, pp — Ua Xy, g, given by
[(u, X)] = [(u,iX)] is well defined. Theorem 2.3.9 and Theorem 2.3.12 imply that the
composition

GA/GB &) UA XUg PE g) UA Xyg UE a—) T(UA/UB)

is a Uga-equivariant diffeomorphism between the complezification G o/Gp and the tangent
bundle T(U4/Ug) of the homogeneous space Uy /Ug. Under the above identification the
involution o¢ is the map V — =V, T(Us/Up) — T(Ua/Up).

Remark 2.3.16. The isomorphism in Remark 2.3.15 gives the tangent bundle of Ua/Ugp
a complex manifold structure which depends on the map E. With this complex manifold
structure the map T(Ua/Ug) — T(Ua/Up), V — =V is anti-holomorphic as in the case
of Lempert adapted complex structures which where first studied in [39]. If M is an
analytic Riemannian manifold then a complex structure on a disc bundle

TEM ={V € TM :|V| < R}

for an R > 0 s called adapted if for every unit speed geodesic v : I — M the map

d
Gyt a4 bi = (b

£> forael andbe (—R, R)

is holomorphic. In this case the complex structure is unique and the map THM — THEM,
V +— =V is antiholomorphic. The complex structure of Remark 2.3.15 is global but not
canonical.

The following proposition shows that the diffeomorphism between G4 /Gp and T'(U4/Up)
respects the natural morphisms that can be defined between homogeneous spaces of the
form G4/Gp and tangent bundles of homogeneous spaces given by T(Ua/Ug).

Proposition 2.3.17. Let (G4, Gp; E;0) and (G4, Gp; E; ) be reductive structures with
involution that satisfy the conditions of the previous remark and let o : Gy — Gy
be a holomorphic morphism of reductive structures with involution. If we define ag :
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Ga/Gp — CfA/CEB, gGp a(g)dg and ay : Ua/Up — UA/UB, ulUp — Oz(u)UB then
the diagram

GA/GB';UA XUg uE%T(UA/UB)

GNA/G;B<—NU:A X7, u]g;-T(UA/UB)
commutes, where the horizontal arrows correspond to the morphisms of Rem. 2.5.15.

Proof. Since oo =édoa, a(Ug) C UB and oy is well defined. Since ayq 00, = G4 0 a1,
a,1(u) Cu. Also F o ay; = ayq o E implies a,q(KerE) C KerE so that a,(ug) C ug.
Given u € Uy and X € ug, a(u) € Uy and a,q X € up and we have the following diagram

ue*Gp =———[(u, X)) ———— (ftu)x0@s1 X

] [o

()1 )G = (@), @1 (X)) (fiau) ol v X.

It is enough to verify that the values in the vertical arrows correspond to the stated
morphisms. Note that

ag(ue™Gp) = a(u)ea*l(iX)(fB = a(u)eia*l(X)GB

since 1 (1X) = i, (X) because « is holomorphic. Since oy o fi, = fia) © oy and
goa = ayoqwe get

CYU*q(u)(,Uu)*o%kl)( = (ﬁa(u))*oaU*OQ*lX = (ﬂa(u))*og*la*lX'
]
Remark 2.3.18. Observe that the construction of maps in Proposition 2.3.17 are func-
torial. If (Ga,Gp; E;0), (Ga,Gp; E;6) and (Ga,Gp; E;6) are reductive structures with
involution, and o : G4 — G4 and B : G4 — G4 are morphisms of reductive structures

with involution we can define ag, Pa, (Boa)g, au, Bu and (B o a)y in the same way as
wn Proposition 2.3.17. Then

BG o Qg = (ﬁ o a)G and ﬁU* O yx = (BU OOéU>* - (6 OO‘)U*.

Also (idGA)G = idGA/GB and ((idGA)U)* = (idUA/UB)* = idT(UA/UB)~
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2.3.3 Examples of homogeneous spaces

There are two basic examples of homogeneous spaces Uy /Up in the infinite dimensional
context, the flag manifolds and the Stiefel manifolds. Coadjoint orbits of classical Banach-
Lie groups of compact operators are examples of flag manifolds.

Example 2.3.19. Flag manifolds

Let 'H be a Hilbert space and let p;, i = 1,...,n be pairwise orthogonal projections in
B(H) each with range H; such that Y. p; = 1. If we consider the action of the unitary
group Ua of B(H) on the set of n-tuples of pairwise orthogonal projections with sum 1
given by u-(qi, ..., q,) = (uqru*, ... ug,u®) then the orbit of (p1,...,pn) can be considered
as an infinite dimensional version of a flag manifold. This orbit is isomorphic to Uy /Up

where
(75} 0 0
0 U2 0 . .
Up = L | :wi undtary in B(H;) fori=1,...,np;
0 0 U,

and we write the operators in B(H) = B(H1 @ --- & H,) as n X n-matrices with corre-
sponding operator entries. If we consider the group G of invertible operators in B(H)
with the usual involution o, the involutive subgroup

Gp = o | ¢ gi invertible in B(H;) fori=1,...,n p;
0 0 ... gn

and the conditional expectation E : ga — g5, X — Y. piXp; then we are in the context
of Example 2.2.9 and Theorem 2.3.9. Therefore Theorem 2.3.12 and Remark 2.3.15 give
a geometric description of the complexification of the flag manafold.

In Section 6 and 7 of [6] the reader can find further examples of generalized flag
manifolds and in [27, 28] the metric geometry of some generalized Grassmann manifolds
is studied.

Remark 2.3.20. The case of the flag manifold with two projections is the infinite dimen-
sional Grassmannian. The case of the Grassmannian where the decomposition of H s
H = Cn® (Cn)* for a non-zero vector n € H is the projective space P(H).
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Grassmannians have the structure of a symmetric space. If H is a Hilbert space then
we can identify the set of subspaces of H with the set of selfadjoint involutions in B(H)
which we denote by . A subspace KK C H corresponds to the selfadjoint involution

ex =2pc—l=pc—pcr KOK- =Kok, (&n)— (& -n)

where pi is the orthogonal projection onto K. The manifold T is a symmetric space if we
define a product by

e-f=ef le=cfe
fore, f e, sothat
€1y " CHy = CHICHYCHy = Ceyy Ho
for subspaces Hi, Ho C H.

Other examples of flag manifolds in the infinite dimensional context are coadjoint
orbits in operator ideals, which now can be described geometrically.

Example 2.3.21. Coadjoint orbits

In the setting of FExample 2.2.10 let 1 < p,q < oo such that 1/p+1/q = 1. The
Lie algebra of the Banach-Lie group G4, s 94, = A,, the ideal of p-Schatten operators.
The Lie algebra of the real Banach-Lie group Uap i ua,, the skew-adjoint p-Schatten
operators. The trace provides strong duality pairings g7, ~ @aq and Wy, ~ ua .

We denote by Ad* : Gap v+ B(gag), Adj(X) = (Adg-1)*(X) = gXg~" for g € Ga,
and X € g%, =~ gaq, the coadjoint action of Gap and by Ad* = Uay — Blua,), Ad;(X) =
(Ady-1)*(X) = uXu™" foru € Upy and X € Wy, = uaq, the coadjoint action of Ug,y.

For a fized X € uay C gag let Og(X) = {Ad}(X) : g € Ga,} be the coadjoint orbit
of X under the action of Ga, and Oy(X) = {Adi(X) : g € Ua,} be the coadjoint orbit
of X wunder the action of Us,. Since X is a compact skew-adjoint operator it is diag-
onalizable, i.e. there is a finite or countable sequence of pairwise orthogonal projections
(p)N, with N € NU {oc} such that SN p; = 1 and X = 2% \ips, where \; # ),
fori # j and (\)Y, CiR. The map E : Y ZZJ\LI p:Y'p; @5 a conditional expectation
from A onto the C*-subalgebra B = {Y € A :p;Y =Yp; for all i > 1}. This conditional
expectation sends trace-class operators to trace-class operators and preserves the trace, so
the conditions on E in Example 2.2.10 are satisfied. The coadjoint isotropy group of X
for the action of Gap 1s{g € Gap: gXg ' = X} = Gp, and the coadjoint isotropy group
of X for the action of Uay is {u € Uny : uXu™' = X} = Up, (this follows from the
fact that an operator commutes with a diagonalizable operator if and only if it leaves all
the eigenspaces of the diagonalizable operator invariant). Thus, making the identifications
Oc(X) ~ Gap/Gpyp and Oy(X) ~ Ua,/Upp, Theorem 2.3.9, Theorem 2.3.12 and Re-
mark 2.3.15 give a geometric description of the complezification of the flag manifold; there
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is a Uap-equivariant fiber bundle isomorphism between Og(X) and T(Opy(X)) covering
the identity map of Oy(X).

For the case of trace class operators ga1 = Ay we have to restrict the coadjoint orbits
under consideration to the orbits of compact skew-adjoint operators, since g%, = B(H)
an arbirtrary bounded skew-adjoint operators are not diagonalizable.

Likewise, it is now possible to give a geometric description of the complexification of
the Stiefel manifolds, see [14] for further information about the metric geometry of Stiefel
manifolds.

Example 2.3.22. Stiefel manifolds

Let H be a Hilbert space and let p;, i = 1,2 be pairwise orthogonal projections in B(H)
each with range H; such that py + pa = 1. If we consider the action of the unitary group
Ua of B(H) on the set of partial isometries given by by u - v = uv then the orbit of py
can be considered as an infinite dimensional version of a Stiefel manifold. This orbit
is isomorphic to Uy /Up where

1 0
Up = s w is unitary in B(Hz) o,
0 u

and we write the operators in B(H) = B(H1 & Ha) as 2 X 2-matrices with corresponding
operator entries. If we consider the group Ga of invertible operators in B(H) with the
usual involution o, the involutive subgroup

10
Gg = . g is invertible in B(H2) o ,
0 g

and the map E : ga — g, X — (1 — p)X (1 — p) then we are in the context of Example
2.2.11 and Theorem 2.3.9. Therefore Theorem 2.3.12 and Remark 2.5.15 give a geometric
description of the complexification of the Stiefel manifold.

Remark 2.3.23. In the case of the Stiefel manifold where the decomposition of H s
H = Cn® (Cn)* for a non-zero vector n € H we see that Us/Up ~ {£ € H : ||€| = 1},
the unit sphere in the Hilbert space H.
The unit sphere in the Hilbert space has the structure of symmetric space with product
defined by
§-n=2¢&mE—n

for&neS.
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Coadjoint orbits in ideal of p-Schatten operators can be endowed with the structure of
symplectic manifold. The following is Theorem 7.3 and 7.4 of [49] where Odzijewicz and
Ratiu endow coadjoint orbits with symplectic forms. For further reading on the coadjoint
orbits in the infinite dimensional setting, see Section 7 in [49] and Section 4 in [8].

Theorem 2.3.24. Let G be a (real or complex) Banach Lie group with Lie algebra g.
Assume that:

1. g admits a predual g..

2. the coadjoint action of G on the dual g* leaves the predual g. invariant, that is,
Ad;(g.) € g. for any g € G.

3. for a fized p € g. the coadjoint isotropy subgroup G, ={g € G : Ad;p = p} is a Lie
subgroup of G in the sense that it is a submanifold of G.

Then the Lie algebra of G, equals g, = {{ € g : adgp = 0} and the quotient topological
space G/G, admits a unique (real or complex) Banach manifold structure making the
canonical projection m : G — G/G, a surjective submersion. The manifold G/G, is
symplectic relative to the 2-form w, given by

wo(m(9))((m 0 Lyg)ai&, (w0 Ly)uan) = (p, [, n])

for &, m € g where (-,-) : g« X g = R or C is the canonical pairing between g, and g. The
two form w, is invariant under the action of G on G/G, given by g - w(h) = ©(gh) for
g,h € G.

The results in this chapter have been published in [42].
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Chapter 3

A geometric approach to similarity
problems

3.1 Introduction

In this chapter we study similarity problems geometrically by analyzing the action of a
group H of invertible operators in a C*-algebra A on the positive invertible operators P
given by h -a = hah*.

In Section 3.2 we prove basic properties of the action of a group H of invertible elements
of a C*-algebra on the cone of positive invertible elements given by h - a = hah* and its
relation to unitarizers of groups, i.e. positive invertibles s such that s~'Hs is a group of
unitaries.

In Section 3.3 we define the similarity number and size of a group and relate it to
geometric properties of the orbits of the natural action on P. This geometric approach
is used to prove some interpolation results in Pisier’s study of similarity problems, so
given a unital homomorphism 7 : A — B(H), a family of unital homomorphisms with
norm tending to 1 is derived and the norms and completely bounded norms of these
homomorphisms are related to the orbits of the natural action of 7(U). We also give
an answer to a problem posed by Andruchow, Corach and Stojanoff in |2, 4] about the

I where

minimality properties of the canonical unitarizers of some representations g (-)g~
g is an invertible operator and 7 : A — B(H) is a -representation such that there is a
conditional expectation E : B(H) — ©(A).

In Section 3.4 we address the question of the unitarizability of uniformly bounded
groups in B(H) in two contexts where the metric on the manifolds of positive invertible
operators are derived from a trace: the trace in a finite von Neumann algebra and the

trace in the ideal of Hilbert-Schmidt operators. In these contexts of CAT(0) spaces the
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Bruhat-Tits fixed point theorem is used to prove similarity results.

3.2 Fixed point set and orbits

Definition 3.2.1. If A is a C*-algebra, P s the set of positive invertible elements and G
the group of invertible elements of A, then for a subgroup H C G we define the action I
of H on P as h-a = I(a) = hah*. To make clear which subgroup H of G acts on P we
shall sometimes write Iy. The fived point set for this action is P? = {a € P : I,(a) =
a for all h € H}. The orbit of a € P is Oy(a) ={h-a:h € H}. A group H is said to be
unitarizable if there is an invertible operator s such that s~*Hs is a group of unitaries.

Remark 3.2.2. Note that if s is a unitarizer of H and s = bu is the polar decomposition
of s into a product of a positive invertible b and a unitary u, then b is a positive unitarizer
of H because u=*b" Hbu is a group of unitaries. In this case ||s|| = |||

The next proposition shows how positive unitarizers are related to fixed points of the
action I.

Proposition 3.2.3. A positive invertible operator s is a positive unitarizer of the group
H if and only if s* is a fized point for the action I of H on P.

Proof. Observe that

s'THs CU < s 'hs(s'hs)*=1forallhe H
s 'hs*h*s™' =1forall h € H
I,(s*) = hs®h* = s* for all h € H.

T 0

We next show how orbits and fixed point sets behave under translations.

Proposition 3.2.4. Let a group G act on a set X. If H is a subgroup of G then for
feGandxr e X

7 Ou(x) = Opapgs(f - 1)

and
f—l CXH Xflef.
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Proof. To prove the first identity observe that

Op-rp(x) = {(f'hf)-x:heH}
{7 (f2):heH}
= [T Ah(fr2)he HY
= [ 0n(f ).

Substituing f~! -z for  we get the result. The second identity follows from

e X T & fnf.z=axforalhe H
& frto(h-(f-x2)=aforallhe H
& h-f-x=f-xforalhe H
s faxeXPoreft XH

]

Remark 3.2.5. If A is a C*-algebra, P is the set of positive invertible elements and G

the group of invertible elements of A, then Proposition 3.2.4 says that for a subroup H of
G and for f € G anda € P

I1-1(Og(a)) = [ Ou(a) f~" = Oprpgp(fraf 1)

and
L (p™)y = f7'p e = PP

Remark 3.2.6. If H is a group of unitaries in B(H), then the commutant H' of H in
B(H) is a von Neumann algebra so that

PY = {acP:I,(a)=hah™ =a for allh € H}
= {a€ P:ha=ah foralheH}
= PNH =exp(H N Ay).

Definition 3.2.7. A closed real subspace S C A; >~ T1 P is called o Lie triple system if
[X,Y],Z] € S for every X,Y,Z € S. A closed submanifold C C P is totally geodesic
if exp,(T,C) = C for all a € C.

Proposition 3.2.8. Let H be a group of invertible elements, then the fized point set PH
of the action I is a totally geodesic submanifold of P.
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Proof. If H is not unitarizable then P¥ is empty. If H is unitarizable and f is a positive
unitarizer, then by Prop. 3.2.5 PH = fPI ' HI f 5o that the fixed point set is a translation
of the fixed point set of the unitary group f'Hf. By Remark 3.2.6 P/ 'Hf = pn
(f*Hf) =exp((f~'Hf)' N Ay). Since (f~'Hf)" is a #-subalgebra of A it is a Lie triple
system. From the identity [X,Y]* = —[X* Y*] it is easy to verify that A is e Lie triple
system. Therefore the intersection (f~'H f) N A, is a Lie triple system and by Corollary
4.17 in [15] P/ = P (fYHf) = exp((f"Hf) N A,), beeing the exponential of
a Lie triple system, is a totally geodesic submanifold. Since P¥ is a translation of the
totally geodesic subset P/~ H7 it is also totally geodesic. O]

3.3 Similarity number and size of a group

3.3.1 Geometric characterization of the similarity number and
size of a group

Recall that by Proposition 1.5.9 the action I of G on P given by g-a = gag* is isometric
and that by Proposition 1.6.11 the distance between two positive invertibles elements a
and b is given by

d(a,b) = Length(yas) = lllog(a™*ba™?)].

Definition 3.3.1. For subsets C,D C P and a € P we define as usual dist(C, D) =
infeecyend(x,y), dist(a, D) = infrepd(a,x) and diam(D) = sup, yepd(x,y).

Definition 3.3.2. The size of a group H C G is |H| = suppen||h||. The similarity
number of H is Sim(H) = inf{||s||||s™!| : s is a unitarizer of H}.

The similarity number defined above is not the same as the similarity degree defined
and used in Pisier’s approach to similarity problems in [56, 55|. By Remark 3.2.2 it is
straightforward to check that

Sim(H) = inf{||s||||s™"|| : s is a positive unitarizer of H}

Proposition 3.3.3. For a group H the identities
dist(Oy (1), P = dist(1, P) = log(Sim(H))

and

diam(O(1)) = 2log(|H])
hold.
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Proof. We donote by A,.:(a) and by Ayin(a) the maximum and the minimum of the
spectrum of @ € P. Then, using the characterization of unitarizers

Sim(H) = inf{||s|||[s7"| : s is a positive unitarizer of H}

= inf ||la2|||la”Z| by Proposition 3.2.3 (3.1)
a€PH

1
g (Dme(@)F
acPH )\mm(a)

Also, using the fact that for a € P¥ and o > 0 we have aa € P

dist(1,P?) = inf d(1,a) = inf ||I
ist(1, P7) nf d(1,a) = inf log(a)]
= inf mazx{log(Anaz(a)), —log(Amin(a))}
acPH
= inf  max{log(Anaz(aa)), —log(Apin(aa))} (3.2)
acPH o>0
= inf  max{log(Anaz(a)) + log(a), —log(Amin(a)) — log(a)}
acePH a>0
= inf  mazr{log(Apnaz(a)) + ¢, —log(Amin(a)) — c}
ac€PH cecR

= aierlefH %(log()\max((l)) — log(Amin(a)))
= log ( inf (Mﬁ) .

acPH )\mm(a)
Combining (3.1) and (3.2) we get
dist(1, P™) = log(Sim(H)).

Also

dZSt(OH(l),PH> = infheHdiSt(Ih(1>,PH)
= infaendist(1, I, (P"))
= infrepgdist(1, PT)
= dist(1, P™),
where the second equality follows from the fact that I is isometric, and the third

equality follows from the fact that P¥ is I invariant.
Since
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d(1,hh") = |llog(hh”)|| = maz{log||hh*||, log||(hh™) |}
= max{log(||hll*), log (A~ |*)II}

we get

diam(Og (1)) = supd(l,hh")

heH
= sup maz{log(||h|*), log(|[n*|*)]I}
heH

— suplog(|[h]?)
heH
— sup 2log(|/4l])
heH
— 2log(|H]).
L]

Remark 3.3.4. Note from the proof of dist(1, P%) = log(Sim(H)) that an a € P which
minimizes the distance to 1 corresponds to a unitarizer az which minimizes the quantity
Islllls~H| among all unitarizers. Also, a unitarizer s such that ||s||||s™!|| = Sim(H) can
be scaled to have simetric spectrum, i.e. 10g(Anaz(S)) = —10g(Amin(s)) and the resulting
scaled fized point s> minimizes the distance to 1.

Proposition 3.3.3 was proved independently by Schlicht (see Lemma 5.2 and the proof
of Lemma 5.6 in [59]). The next lemma proved by Schlicht in the case of B(H) (see
Lemma 3.4 in [59]) shows that closest points to the identity 1 in P exist. We include a
proof in the case of von Neumann algebras. Note that this is equivalent by Proposition

3.3.3 to proving that for a unitarizable group H there is a positive unitarizer s such that
Isllls~H| = Sim(H).

Lemma 3.3.5. Let A be a von Neumann algebra with separable predual and let H be a
subgroup of G, then there is an a € P¥ such that dist(1, P?) = d(1, a).

Proof. For a € P
d(1,a) = |llog(a)|| = maz{log(Amaz(a)), —log(Amin(a))},

where \q.(a) and A, (a) denote the maximum and minimum eigenvalues of a € P C Aj.
Hence the metric balls around 1 are operator intervals, i.e.

B[l,r]={be P:d(1,b) <r} =[e", €.
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There is a sequence (a,), € P? such that d(1,a,) — dist(1, P?) = inf,cpu d(1,b). Since
the set
{a€ A:hah* =aforallhe H} = ﬂ{aeA:hah*:a}
heH

is weak operator closed, and for every r > 0 the set [e™", e"] is is also weak operator closed
we conclude that P# N [e™", e"] is weak operator closed. Also, since the weak operator
topology on closed balls is metrizable and compact it follows that there is a subsequence
of (a,), which converges weakly to an a € P”. This subsequence, which we still denote
by (an)n, also satisfies d(1,a,) — dist(1, P¥) = infycpu d(1,b). For every € > 0 there is
an n. € N such that for n > n. we have

an € B[1,dist(1, Py + €| = [e—dist(LPH)—e’ edist(l,PH)—i-e].

Since operator intervals are weak operator closed it follows that the weak limit a of (ay,),
is in [e~dist(LPT)—e odist(LPY)+e) -~ Therefore d(1,a) < dist(1, PT) + ¢ for every ¢ > 0 so
that d(1,a) < dist(1, P?). Since d(1,a) > dist(1, P?) = inf,cpn d(1,b) the conclusion
follows. [

3.3.2 Geometric interpretation of similarity results

Similarity results for homomorphisms of C*-algebras can be obtained by restricting at-
tention to the group of unitaries in the C*-algebra. The following is Lemma 9.6 in [51].

Proposition 3.3.6. If A and B are unital C*-algebras and w : A — B is a unital
homomorphism, then 7 is a x-homomorphism if and only if m sends unitaries to unitaries,
i.e. m(Ua) C Up, where Uy and Ug are the group of unitaries of A and B respectively.

Note that homomorphisms are algebra homomorphism which not necessarily preserve
the x-operation.

Proof. If m sends unitaries to unitaries then for every u € Uy
r(w) =m(u") =7(u)" =)’

so that 7 preserves the % operator on unitaries. Since every element of A is a real linear
combination of four unitaries (see Proposition 13.3 in [17]) and 7 is linear we conclude
that 7 is a x-homomorphism. The other implication is clear. O

Definition 3.3.7. For a C*-algebra A and an inverible s € A we define the unital bounded
homomorphism

Ady: A A, Ady(a) = sas™" fora € A.
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Corollary 3.3.8. If A and B are unital C*-algebras and ©m : A — B is a unital ho-
momorphism, then Adg o m is a x-homomorphism for an invertible s € B if and only if
Ady(m(Ua)) = s 'w(Ua)s is a group of unitaries.

Proposition 3.3.9. If A and B are unital C*-algebras and w : A — B is a unital
homomorphism, then |T(Ua)| = ||7||.

Proof. That |m(Ua)| < ||| is clear. To prove that ||7|] < |7(Ua)| we use the fact that in a
C*-algebra the closed unit ball is the closed convex hull of unitaries in the algebra, see [24,
Theorem 1.8.4]. If a € A is such that ||a|| < 1, for e > 0 there is a convex combination of
unitaries > - | a;u; in A such that |la—>"7" | oyu,|| < e. Hence ||m(a)||—||7m(d>01, asu,)|| <
I(a) —m (325 ciw) || < [7lllla—220, ciuil] < Il and [[w(a)l] < [[w (D25 ciws) || +ell].
Since [|m (325, cwu)|| = 12252y com(ua) | < D00y aillm(wa) | < 325y culm(Ua)| = [w(Ua)]
the conclusion follows. ]

If a C*-algebra A is represented by means of a one-to-one x-homomorphism ) : A —
B(#), then for n € N an n x n operator matrix (1(a;;));;=; acts naturally on H =
H @ ...®H (n times) and has therofore a C*-algebra norm inherited from B(H™). Tt
is easy to check that this C*-algebra of n x n operator matrices does not depend on the
particular choice of representation 1) and we denote it by M,,(A), or using tensor notation
A® M,(C).

Definition 3.3.10. If A and B are two unital C*-algebras and w : A — B is a linear
map, the completely bounded norm of 7 is ||7||.p. = suppen||m||, where

T =7 @ Idp, ¢y : Mp(A) = A® M,(C) = B® M,(C) = M,(B)
(a’i,j)ijl = (W(ai,j))ijl-
If ||7]|es. < 00 then 7 is a completely bounded map.
The following result is due to Haagerup, see Theorem 1.10 [32].

Theorem 3.3.11. Let A be a C*-algebra with unit and let 7 : A — B(H) be a bounded
unital homomorphism. Then 7 is similar to a *-homomorphism (i.e. there is an invertible
s € B(H) such that Adsom is a x-homomorphism) if and only if w is completely bounded.
If ™ is completely bounded then

7 |les. = inf{l[s~ |||s]| : Ads o 7 is a *-homomorphism }.

Proposition 3.3.12. Let A be a C*-algebra with unit and let 7 : A — B(H) be a com-
pletely bounded unital homomorphism. Then

”7rHc.b, = SZm(W(UA)) = emp(dzst(17 PW(UA)>)'



3.3. SIMILARITY NUMBER AND SIZE OF A GROUP 55
Proof.

I7lles. = inf{|s|||ls™*| : Ads o7 is a *-homomorphism } by Theorem 3.3.11
inf{||s|||[s"| : s is a unitarizer of 7(U4)} by Corollary 3.3.8
Sim(mw(Uya)) by Definition 3.3.2

= exp(dist(1, P™U4)) by Proposition 3.3.3.

]

Pisier used bounds that relate the similarity number and size of groups to characterize
classes of groups and algebras, see Theorem 1 in [53]| and the discussion following that
theorem. If we take the logarithm in inequalities of the form

Sim(H) < K|H|*
for positive constants K and « we get by Proposition 3.3.3

dwKLPﬂ)gthQ—k%DHﬂ)

Recall that a C*-algebra A is nuclear if for every C*-algebra B the tensor product
algebra A ® B has a unique C*-algebra norm, see Theorem 3.8.7 in [11]. Theorem 1 in
[53] becomes

Theorem 3.3.13. A C*-algebra A is nuclear if and only if for every unital completely
bounded homomorphism v : A — B(H)

dist(1, P"")) < Dy (1)

where Uy is the group of unitaries of A. A C*-algebra A is finite dimensional if and
only if there is a ¢ > 0 such that for every unital completely bounded homomorphism

Y A— B(H)
Mﬂﬂwa”)§c+%DwmﬂD.

Remark 3.3.14. The new statement of Theorem 3.3.13 has therefore a geometric in-
tepretation in terms of metric properties of the orbits of the action I o of Uy on P.

A similar translation of Pisier’s characterizations of amenable and finite discrete groups
was obtained by Schlicht, see Corollary 5.8 in [59].
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3.3.3 Geometric interpolation for the similarity number and size
of a group

Instead of the complex interpolation techniques used by Pisier [55, Lemma 2.2 and Lemma
2.3| we use geometric interpolation.

Definition 3.3.15. For a uniformly bounded group of invertible elements H in a C*-
algebra A let Dy : P — R" be defined by Dy(a) = diam(Oy(a)) for a € P, so that
Dy (a) is the diameter of the the orbit that contains a.

Proposition 3.3.16. The map Dy : P — R™ is invariant for the action of I, geodesically
conver and 2-Lipschitz.

Proof. That Dy is invariant follows from the fact that Og(h - a) = Og(a) for a € P and
heH.

To prove that Dy is geodesically convex we see that for a geodesic v, : [0,1] — P
the following holds

D (Vap(t)) supnerd(Yap(t), b - Yap(t))

= supnherd(Vap(t), Vhans(t))

supnep (td(a, h - a) + (1 —t)d(b,h - b))
tsuppepd(a, b - a) + (1 — t)suppepd(b, h - b)

IA A

where the first inequality follows from the fact that the distance along geodesics is convex,
see Proposition 1.6.6.
To prove that Dy is 2-Lipschitz observe that

Dyu(a) = suppend(a,h-a)

suppep (d(a,b) +d(b,h -b) +d(h-b,h-a))
supper (2d(a,b) + d(b, h - b))

= 2d(a,b) + suppend(b,h - b)

2d(a,b) + Dy (b).

IN

Therefore Dy (a) — Dy (b) < 2d(a,b). By symmetry Dy (b) — Dg(a) < 2d(b, a) so that
|Dy(a) — Dy (b)| < 2d(a,b). O
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Remark 3.3.17. For a geodesic v in P the quotient

 Du(3(t) - Da(1(0))
A = = 6w 40)

15 a conver function of t because Dy is geodesically convex. It is bounded above by 2 and
bounded below by —2 because Dy is 2-Lipschitz. Therefore the limit of f.,(t) when t — oo
exrists and we can interprete this quantity as a slope of Dy at infinity.

Proposition 3.3.18. For a geodesically convex subset C' C P the map
P—R" ar~ dist(a,C)

15 geodesically convexr and 1-Lipshitz.

Proof. Let € > 0 and let e, f € C' such that d(a,e) < d(a,C)+ 5 and d(b, f) < d(a,C)+5.
Since v, 5 lies in C' we have for ¢ € [0, 1]
dist(Yap(t),C) < dist(Yap(t), Ve, r (1)) < (1 —t)d(a,e) + td(b, f)
< (1 —t)dist(a,C) + tdist(b,C) + €.
Taking € > 0 arbitrary small we get the inequality. Observe also that
d(a,C) < infeco(d(a,b) + d(b, ¢)) = d(a,) +d(b,C),
so that by symmetry we get the Lipschitz bound. O]

Theorem 3.3.19. If H is a uniformly bounded group, v, = 7,2 52(t) is the geodesic con-

EE U]
necting positive invertible elemets r? and s*> and H, = ~, 2H~? is the one-parameter
family of groups between the group r— Hr and the group s~'Hs then

|Hy| < |rtHr|* s Hsl|'

If H is a unitarizable group, v, = Y2 2(t) is the geodesic connecting positive invertible
1 1

2 and s* and H; = v, *H~? is the one-parameter family of groups between the

group r—*Hr and the group s *Hs then

elemets r

Sim(Hy) < Sim(r ' Hr)' "' Sim(s~ ' Hs)"

If H is a unitarizable group, and s is a positive unitarizer such that d(1, PH) = d(1, s?)
(and therefore ||s||||s7t| = Sim(H) by Remark 3.3.4), then the family of groups (Hy)ep
with H, = sT'Hs' satisfies

|H| < [H['

and

Sim(H,) = Sim(H)'™".
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Proof. By Proposition 3.2.4 for f € G and b € P

Dp1ys(b) = dmm(Of_le(b)):diam(fflOH(fbf*)f’l*)
— diam(Ou(fbf*)) = Du(fbf").

Now, using the fact that v, = 7,2 52(t) is a geodesic and the geodesic convexity of Dy

DHt(l) - DviéHﬂ/%(1>:DH(’yt>

= Du(v20(t) < (1—)Dy(r?) +tDy(s”)
= (1 - t)Dr‘lHr(l) + tDr—lHr(l)'

Exponentiating this equation and using Proposition 3.3.3 we get
|Ht|2 < |r—1HT|2(1—t)|S—1H8|2t
and therefore
|Hy| < |r~"Hr|" s Hs|".
By Proposition 3.2.4 for f € G and b € P

Dyps(b) = diam(Op-1pgy(b)) = diam(f ' Op(fof*)f1)
= diam(Opu(fbf*)) = Du(fof")
and
dist(b, P11y = dist(b, f~'p" 1) = dist(fbf*, P™).

Since P is geodesically convex we can use the convexity of the map a — d(a,),
therefore

1

dist(1, PH) = dz’st(l,P%_%H%j)
= dist(y, P") = dist(y,2 2 (t), PY)
< (1—=t)d(r*, P") + td(s*, P™)

(1 —t)dist(1, P" ") 4+ tdist(1, P*~ 1),

Exponentiating this inequality we obtain
Sim(H;) < Sim(r~ Hr)'"'Sim(s~ ' Hs)".
Now, if the geodesic is v, 2 (t) = s*, then since H; = s™'Hs is a group of unitary

[He| < [H]™.
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In the inequality for the similarity number we can get instead an equality. Since s? is a

point in P¥ which minimizes the distance from 1 to P and geodesic have minimal lenght,

s* minimizes distance between the points in P to any point in the geodesic v, 2 (t) = s*.

Therefore
dist(1, Py = dist(1, P" b ) = dist(y,, P") = (1 — t)dist(1, PY).
Exponentiating this equation and using Proposition 3.3.3 we get
Sim(H;) = Sim(H)' ™.
O

Corollary 3.3.20. In the case of a completely bounded unital map ©: A — B(H) we can
define a family of maps my = Ady o such that

lmell < Il and ||me]les. = lImllcy!

The previous theorem was first obtained by Schlicht (see Lemma 3.6, Corollary 3.7
and Lemma 5.3 in [59]) without using explicitly the geometric properties of the function
Dy and considering the case of a geodesic vy 2 (t) = s*.

Remark 3.3.21. If H is a unitarizable group then for h € H and a positive unitarizer s
of H
18l = lls(s™ hs)s | < [lsllls™ Rsllls™ I = lIsllIs~"

since s~ths is unitary. Taking the supremum over h € H and the infimum over positive
unitarizers s we obtain

|H| < Sim(H).

If we take logarithms we see that this inequality is equivalent to

Dy (1) < 2dist(1, PH).

This inequality can also be obtained using the fact that Dy is 2-Lipschitz. If a € P
is such that dist(1, P) = d(1,a), then since Dg(a) =0

Dy(1) = |Dy(1) — Dy(a)| < 2d(1,a) = 2dist(1, P™).

Therefore, the fact that |H| < Sim(H) corresponds to the geometric fact that the
diamater of the orbit of the identity element is less or equal than twice the distance between
the identity element and the fixed point set of the action.
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3.3.4 Minimality properties of canonical unitarizers

In [2]| and [4] Andruchow, Corach and Stojanoff studied the differential geometry of spaces
of representations of some classes of C*-algebras and von Neumann algebras. Let A be
a unital C*-algebra and B(#H) the algebra of bounded linear operators on a separable
Hilbert space H. Denote by R(A, B(H)) the set of bounded unital homomorphisms from
A to B(H) and by Ro(A, B(H)) the subset of x-representations. The group G of invertible
operators in B(H) acts on R(A, B(#)) by inner automorphisms by the formula

(g-7)(a) = (Ady o 7)(a) = gr(a)g™

for a € A and g € G. The group of unitary operators U acts on Ry(A, B(#)) in the same
way. In this way R(A, B(#H)) and Ry(A, B(H)) are homogeneous spaces. There is also an
action of U on conditional expectations defined in B(H) given by u- E = Ad, 0 E o Ad,-1.

Given my € Ry(A, B(H)) and a fixed conditional expectation E,, : B(H) — m(A)" one
obtains, by the splitting theorem of Porta and Recht in [57] (see Remark 2.2.19), that for
every 7 in the G-orbit of my in R(A, B(H)) there is a natural way of choosing a unique
positive operator s € GG such that Ad, o 7 is a *-representation in the following way: if
g € G is such that m = Ad, o my the Porta-Recht splitting asserts that there are u € U,
Yo =Yy" € mo(A) and Zy = Zy* € Ker(Ey,) such that g = ue?°e*®. Then for a € A

mi(a) = we®eXmy(a)e e %0u*

ue”my(a)e “ou*

e umy(a)u*e” "4

eAduZO (

uZou™

u - o) (a)e %,

If we define p = w-my = Ad, omy, Xo = Ad,(Zy) and E, = u- B, = Ad, 0 E;, 0 Ad,-1,
then Ad,-x, om = p € Ry(A,B(H)) and X, € Ker(E,). Also X, and p are unique with
this properties: if o’ = v - 7 for a unitary v and X € Ker(E,), where E, = v - E,,
then Ad _x; om = p' € Ro(A, B(H)) implies Xo = X; and p = p. See Remark 5.7. and
Theorem 5.8 in |2] for further details.

Andruchow, Corach and Stojanoff asked before Remark 5.9 in [2] and in [4, Section
1.5] if e, which is the canonical invertible operator such that Ad, x, o m is a *-
representation, satisfies ||eX°||[[e™%|| = ||m1||cs.- To give an answer and a geometrical
insight to this question we recall a theorem proved by Conde and Laratonda in [16,
Corollary 4.39] stated in the case of operator algebras and conditional expectations.



3.3. SIMILARITY NUMBER AND SIZE OF A GROUP 61

Theorem 3.3.22. Let A be a C*-algebra and B a C*-subalgebra of A. Let E: A — B be
a conditional expectation and let

(AsnN Ker(E)) x By — P

(X,Y) s e¥eter

be the CPR splitting of P. Then ||[(I—FE)|a.|| = 1 if and only if for every X € A;NKer(F)

and Y € B, a closest point in exp(B,) to e¥eXeY is e?, i.e.

dist(exp(Bs), e e*e¥) = d(e?¥, e e e") = |log(e™)| = || X||.

Theorem 3.3.23. Assuming the notation and construction of canononical unitarizers of
the beginning of this section

|71 e, = ewp(dist(e_QXO, Pp(UA))) = exp(dist(e_zxo, exp(p(Ua) NB(H)s)))-
If |[I = Ex,|| = 1 then [le*|[le=*| = [|m1]|c.s.-

Proof. Note that

17illes. = Slm( 1(Ua))
ist(1, pPm(Ua) )) by Proposition 3.3.12
exp dzst(l POPUNETE)) ince Ad,-xo 0T = p
dzst(l X0 prlUa)eXoy) by Proposition 3.2.4
(1, T (PPOD))) = exp(dist(T,-x, (1), PPV
= exp(dist(e”2Xo, prlUa)y))
= exp(dist(e **® exp(p(Us) N B(H),))) by Remark 3.2.6 .

This proves the first equality.
If |I — E, || =1, since

E,: B(H) = Ady(mo(Ua)") = Ady(mo(Ua))" = p(Ua)’

and
I~ Bl = | Ady o (I — Exy) 0 Adyes | |1 — Eny| =1

we get ||/ — E,|| = 1. Therefore by Theorem 3.3.22

dist(exp(p(Ua) NB(H),),e™) = d(1,¢”) = || X]|



62 CHAPTER 3. A GEOMETRIC APPROACH TO SIMILARITY PROBLEMS

for X € Ker(E,). Hence, since X, € Ker(E,)
|71l e, = exp(dist(e_zxo, exp(p(Ua) NB(H)s))) = ell2Xoll.

Since e~ %0 is an orthogonalizer of m; we get ||| < |[eX0]||le=¥0||. Also ||eXe|||e=X°|| <
e2IXoll always holds, hence we get the equality stated in the theorem. O

We next give an example of a conditional expectation E satisfying ||/ — E| = 1.

Example 3.3.24. Let A = B(H) be the C*-algebra of bounded operators acting on a
Hilbert space H. Let p € B(H) be an orthogonal proyection, so that ¢ = 2p — 1 is a
self-adjoint unitary, i.e. a symmetry. Then

1
E:BH)— B(H), X— §(X +¢Xq) =pXp+ (1 —p)X(1—p)
is a conditional expectation onto the subalgebra A ={X € B(H) : pX = Xp}. Since

1 1
IX = B = [IX = (X +¢Xq)|| = |5 (X — ¢Xq)l| < [|X]|

we conclude that ||[I — E|| = 1. If H; is the range of p and Hs is the range of 1 — p then
we have the orthogonal sum H = Hi @& Hs. If we write the operators in B(H) as 2 x 2
matrices with respect to this decomposition then

X1 Xio X1 0
E:B(H)— A, —
Xo1 X 0 X

3.4 Groups of isometries of CAT(0) spaces in the con-
text of operator algebras

If G is an amenable group with invariant mean ¢ and 7 : G — B(H) is a uniformly
bounded representation, then using abusive notation

1

o= ([ romtorao)

is a unitarizer of H = 7(G), so that the unitarizer is the square root of the center of mass
of {hh*}nen, see [25, 26, 47]. In the opposite direction, Ehrenpreis and Mautner [29]
constructed a nonunitarizable bounded representation of SLs(R) on H, and the group
SLy(R) was later replaced by any countable group containing the free group Fs.

We present a proof of the fact that a uniformly bounded group H of invertible elements
is similar to a unitary group in two cases:
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e The group H lies in a finite von Neumann algebra.

e The group H is close to the trivial group in that suppep||h — 1||2 < 0o, where || - [|2
is the Hilbert-Schmidt norm.

The proofs involve new metric geometric arguments in the non-positively curved space
of positive invertible operators of the algebra which yield an explicit unitarizer. In these
contexts where the metric is derived from a Hilbertian norm the Bruhat-Tits fixed point
theorem implies that the square root of the circumcenter of {hh*},cy is a unitarizer of
H.

In 1974 Vasilescu and Zsido proved the unitarizability of uniformly bounded groups
of invertible operators in finite von Neumann algebras using the Ryll-Nardzewsky fixed
point theorem [64] and the weak topologies of the operator algebra.

3.4.1 CAT(0) spaces and groups of isometries

We recall some well-known results from metric geometry. A general reference is [13|. For
the convenience of the the reader we include the proof of the Bruhat-Tits fixed point
theorem.

Definition 3.4.1. A metric space (X, d) satisfies the semi-parallelogram law if for all
x,y € X there is a w € X such that for all z € X the following inequality holds

d(x,y)? + 4d(w, 2)* < 2[d(x, 2)* + d(y, 2)?].
A CAT(0) space or Bruhat-Tits space is a complete metric space in which the semi-
parallelogram law holds.

If we set z = x and z = y in the semi-parallelogram law it follows that
2d(w, x) = 2d(w,y) < d(z,y).

Using the triangle inequality we see that
1 1

so that ]
d(z2) = d(z,y) = d(x,y).

The point w is uniquely determined because if w’ is another such point, we put z = w’ in
the law to get
1 1
d(w,y)* + dd(w, w')* < 2d(z,w)* +d(y, w')’] < 2[(d(z,y))* + (5d(z,))"] = d(w,y)

so that d(w,w") = 0.



64 CHAPTER 3. A GEOMETRIC APPROACH TO SIMILARITY PROBLEMS

Remark 3.4.2. The unique point z in the definition of semi-paralleogram law is called
the midpoint between x and y and we denote it by m(z,y). We therefore have a function
m: X X X = X called the midpoint map.

The following result is Serre’s Lemma [36, Ch. XI, Lemma 3.1].

Lemma 3.4.3. Let (X,d) be a CAT(0) space and S a bounded subset of X. Then there
is a unique closed ball B,[x] of minimal radius containing S.

Proof. To prove uniqueness suppose there are two balls B,[z] and B, [y] of minimal radius
containing S. Let z € S so d(z,x) < r and d(z,y) < r. Let w be the midpoint between z
and y. By the semi-parallelogram law

d(z,y)? + 4d(w, 2)* < 2[d(z, 2)% + d(y, 2)2] < 4p?
and therefore
d('Iu y)2 < 4(T2 - d(wv Z)z)'

For each € > 0 there is a z € S such that d(z,w) > r — € since otherwise there is an € > 0
such that d(z,w) < r — € for all z € S so that S C B,_[w] contradicting the minimality
of the balls B,[z] and B,[y]. It follows that d(z,y) = 0, that is z = y.

To prove existence, let (x,), be a sequence of points which are centers of balls of radius
r, which contain S, with

rn — ro = inf{r: there is x € X such that S C B,[z]}.

If the sequence (z,), is a Cauchy sequence, then it convergerges to a point xy and since
S C B, [x,] for all n € N we see that B, [xo] is the unique closed ball of minimum radius
containing S.

Let w,,, be the midpoint between x,, and x,,. By the minimality of ry, given € > 0 it
follows that S & B,,_¢[wmy] so there is an & € S such that

d(2, Wiy )? > 1% — €.
We apply the semi-paralleogram law. Then
(X, 1) + 4d(Wynp, )* < 2[d(2, ) + d(2,, 7)?]
so that

d(2p, 1) 2[d(2, )2 + d(z0, )% — 4d(Wyn, 7)*

2[d(x, )2 + d(zp, )% — 477 + 4de
2r2 + 212 — 4r? + de

ININ A

thus proving that (z,), is Cauchy. O
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Definition 3.4.4. The center y of the closed ball B,|y| in the previous lemma is called
the circumecenter of the bounded set S.

Using Serre’s lemma one can prove the Bruhat-Tits fixed point theorem, [12].

Theorem 3.4.5. If (X,d) is a CAT(0) space and I : G — Isom(X) is an action of a
group G on X by isometries which has a bounded orbit, then the circumcenter of each
orbit is a fixed point of the action.

Proof. We denote the action by ¢g-x for ¢ € G and z € X. Since the action is isometric
and there is a bounded orbit all orbits are bounded. For € X let B,[y] be the unique
closed ball of minimal radius which contains G - x. The existence of this ball is given by
Lemma 3.4.3. If g € G then G-z = g-(G-x) C g- B,[y| = B,[g-y] where the last equality
follows since the action is isometric. From the uniqueness of the closed balls of minimal
radius containing G - x we conclude that g -y = y. Therefore, g -y = y for every g € G
and y is a fixed point of the action. m

3.4.2 Finite von Neumann algebras

The metric geometry of the cone of positive invertible operators in a finite von Neumann
algebra was studied in [5, 16]. In this section we recall some facts from these papers.

Let A be a von Neumann algebra with a finite (normal, faithful) trace 7. Denote by
Ay the set of self-adjoint operators of A, by G the group of invertible operators, by U the
group of unitary operators, and by P the set of positive invertible operators

P=e¢*={aeG:a>0}

Since P is an open subset of A, in the norm topology it is a submanifold of A, and its
tangent spaces will be identified with Ay endowed with the uniform norm || - ||.

We make of P a weak Riemann-Finsler manifold by assigning for each a € P the
following 2-norm to the tangent space T,(P) ~ A;

| X|laz = a2 Xa 2|5,  for X € A, ~ T,(P)
where
IX|lo = 7(X?2  for X € A,.

Note that || X[, = 7(X2)2 < ||X] for all X € A,. Since there is no M > 0 such
that|| X |l = 7(X2%)2 > M| X]| for all X € A, we see that this tangent norm is not
compatible with the manifold structure of P in the sense of Definition 1.5.1.
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One obtains a geodesic distance d on P by considering for a,b € P
d(a,b) =inf{Length(y) : v is a piecewise smooth curve joining a and b},

where smooth means differentiable in the norm induced topology and the lenght of a curve
7 :[0,1] — P is measured using the norm above:

1
Length(y) = / 14E) 2l
0

If A is finite dimensional, i.e. a sum of matrix spaces, this metric is well-known: it is the
non positively curved Riemannian metric on the set of positive definite matrices [46].
If A is of type I, the trace inner product is not complete, so that P is not a Hilbert-
Riemann manifold and (P,d) is not a complete metric space, see Remark 3.21 in [16].
By [5, Theorem 3.1 and Remark 3.2| the unique minimizing geodesic between a and b
for a,b € P is given by

and has lenght equal to
d(a,b) = Length(va) = ||log(a™2ba™?)]5.

The action of G on P given by I,(a) = gag* is isometric, i.e. d({,(a),1,(b)) = d(a,b), and
sends geodesic segments to geodesic segments, i.e. Iy 0 Yo = V1,(a),1,00) for all a,b € P
and g € G. See the Introduction of [5].
By |5, Lemma 3.5] P has the exponential metric increasing property, i.e. for X|Y €
A, ~T\P
1X = Y < d(ewpy(X), expr(¥))

and
|1 X||2 = d(expi(X), expi(0)) = d(exp(X), 1).

Proposition 3.4.6. Let a € P and v : [0,1] — P be a geodesic. Then
1
d(7(0),7(1)) + 4d(a,7(3))* < 2(d(a,7(0))* + d(a,7(1))*)

so the metric space (P,d) satisfies the semi-parallelogram law, see Definition 3.4.1 above.

Proof. Since the action [ is transitive and sends geodesic segments to geodesic segments
we can assume that 7(%) = 1. Therefore there are X,Y € A, >~ T1 P such that

expi(—=X) =7(0), expi(X)=~(1), exp(Y)=a.
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Since the parallelogram law holds in 7} P we have
20V3 + 211 X115 = Y — X3 + [IY + X3,
which multiplied by two yields
Y5+ 1X = (=X =20IY = X[ +2Y — (=X) 5.
Using the exponential metric increasing property

4d(exp1(Y),1)* + d(expi(X),expi(—X))?
< 2d(exp(Y), expi(X))? + 2d(exp, (Y), expi (—X))>.

Substituing we get

4d(a, 7(%))2 +d(7(0),7(1))* < 2(d(a,(1))* + d(a, 7(0))?).

Existence of unitarizers of bounded subgroups

A subset C' C P is geodesically convez if v,,(t) € C for every a,b € C and t € [0, 1], and
is midpoint convez if q4(3) € C for every a,b € C. Note that a geodesically convex set
is midpoint convex.

Lemma 3.4.7. If C C P is geodesically convex then its closure C in (P, d) is geodesically
conver.

Proof. By |5, Cor. 3.4] the distance along two geodesics is convex, i.e.

[07 1] — [07 +OO) t— d(’yal,bl (t)v Yaz by (t))

is convex for all ay, by, as, by € P. Hence, for ¢t € [0, 1] fixed, (a, b) — 7,4(t) is d-continuous.

If a,b € C and t € [0,1] let (an)n, (bn)n be sequences in C such that a, — a and
b, — b. Since C' is geodesically convex v, »,(t) € C for all n € N. The d-continuity of
(a,b) = 7a5(t) implies that va, 4, (t) — Yas(t), s0 that v,4(t) € C. O

Lemma 3.4.8. For 0 < ¢ < cg the interval P, ., = {a € P : 11 < a < el} is
geodesically conver.
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Proof. By Proposition 4.2.8 and Excercise 4.6.46 in [35] if ¢ € (0,1] and a and b are
positive invertible elements in a C*-algebra A such that a < b then o' < ' (this is the
Loewner-Heinz inequality). It is easily verified that for ¢ € A if a < b then cac* < cbe*.
Therefore, if a,b € P such that

cal <a,b<ceol.

then

_ _1, 1 _
cra ' <a"2ba"2 < cpat

and exponentiating with ¢ € [0, 1] we get
cla™t < (a’%ba’%)t <da.
We conclude that
al <dd1<ca™ < a%(a_%ba_%)ta% <cha't < el < ol
0

Lemma 3.4.9. For 0 < ¢; < c¢g the interval P, ., = {a € P : c;1 < a < ¢31} endowed
with the metric d is a complete and bounded metric space.

Proof. In P, ., the linear metric and the rectifiable distance are equivalent |16, Prop.
3.2|, i.e. there are C,C" > 0 such that |la — b||» < Cd(a,b) and d(a,b) < C'|ja — b]| for
all a,b € P, ,.

Since || - ||2 induces a complete metric on subsets of A which are weakly closed and
bounded in the uniform norm, and F,, ., is weakly closed and bounded in the uniform
norm, we conclude that (P, .,,d) is a complete metric space.

Also, (P., ¢,,d) is a bounded metric space because d(a,b) < C'||a —b|l2s < C'|ja—0b| <
2C"¢y for all a,b € P, ,. O

Theorem 3.4.10. If H C G is a subgroup such that sup,cy |h|| = |H| < oo then there
is an s € Byj-1 g such that sT'Hs C U.

Proof. Consider the isometric action [ : H — Isom(P) given by Ij,(a) = hah* for h € H
and a € P. We denote the action by h-a = Ij,(a). Take X; = H -1 and define inductively
Xont1 = {Yap(t) 1 a,0 € X,,,t € [0,1]} for n > 1. Let

conv(H - 1) = U X

neN
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Since Pg-2 g2 is geodesically convex and the action sends geodesic segments to
geodesic segments, if X,, C Pgj-2 g2 then X, 1 C B2 gp for all n € N. There-
fore conv(H - 1) C Pyj—2 g follows from Xy = H -1 = {hh*}pen C Pluj-2up. Also,
using the fact that P2 g2 is closed in (P, d) we conclude that conv(H -1) C P2 up.

Since the action sends geodesic segments to geodesic segments, if X, is invariant under
the action I then X, is invariant for all n € N. Since X; = H -1 is invariant, we conclude
that conv(H - 1) is invariant. The action is also isometric, hence conv(H - 1) is invariant
and we can restrict the action [ to this subset.

The space (conv(H - 1), d) is midpoint convex and the semi-parallelogram law holds in
P, hence this law also holds in (conv(H - 1),d). Since conv(H -1) is a closed subset of the
complete metric space (P -2 g2, d) the space (conv(H - 1),d) is complete. We conclude
that (conv(H - 1),d) is a complete metric space in which the semi-parallelogram holds.

Since (Pp|-2,u|2, d) is a bounded metric space conv(H - 1) is a bounded set. Therefore
the restricted action has bounded orbits, and Theorem 3.4.5 states that there is an a €
conv(H - 1) such that I,(a) = hah* = a for all h € H. Therefore by Proposition 3.2.3
a 2Haz C U,ie s= a2 is a unitarizer of H.

Because the square root is an operator monotone function and a € Pg|-2 g2, we see
that s = a% € P\H\*l,\H|- ]

This last result was published in [43].

Invariants given by a conditional expectation

We want to further analyze the orbit structure of the action I. Using Proposition 3.2.4
we can assume that H is a group of unitaries. By a theorem of Takesaki [61] there is a
conditional expectation F : A — H' N A compatible with the trace, i.e. E(7(z)) = E(z)
for € A. The conditional expectation provides an orthogonal splitting

A=(ANH')®, Ker(E)
with respect to the inner product (z,y) = 7(y*x). Theorem 5.4 and Corollary 5.5 in [5]
in this case imply the following result.

Proposition 3.4.11. Assuming the context of this section, let
(AsNnKer(E)) x (A;,NnH')— P

(X,Y) = e¥eter

be the bijection given by the Porta-Recht splitting. If a = e¥eXeY is the factorization of

a € P then the closest point in exp(A;NH') to a is €®¥, and this point is unique with this
property.
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Proposition 3.4.12. The sets e¥ eAs"Ker(E)eY gre invariant for the action I. The cir-

sﬁKerE)eY < 27

cumcenter of any orbit in e¥ 4 s e

Proof. We have

Ker(B)=(ANH) ={XcA:7(XY*)=0forall Y € H' N A}.
Then Ker(FE) is Ady-invariant because if X € Ker(E),Y € AN H' and h € H then

T7(Ady(X)Y*) = 7(hXh'Y*) = 7(hXY*h ™) = 7(h 'hXY™) = 7(XY™).
If a = e¥eXe is a decomposition of a given by the Porta-Recht splitting then

I(a) = hah=t — heY eXeY =1 — pAdn(Y) gAdn(X) fAdn(Y) _ Y pAdn(X) Y

so that the sets ¥ e(4sNKerE)eY are invariant for the action 1.

An orbit in e¥elAsNEerE)eY ig of the form {eYeA(XeY © b € H} for some X €
AsN Ker(E), and its circumcenter is a fixed point of the action which is closest to each
element in the orbit by Lemma 3.4.3 and Theorem 3.4.5. This point is e?¥" by Proposition
3.4.11.

O

3.4.3 Hilbert-Schmidt perturbations of the identity

We next consider the case when the group is close in some sense to the trivial group T1.

The geometry of the positive invertible unitized Hilbert-Schmidt operators was studied
in [37]. Let By(H) stand for the bilateral ideal of Hilbert-Schmdit operators of B(H).
Recall that By(H) is a Banach algebra without unit when given the Hilbert-Schmidt norm
lalls = tr(a*a)? and that |ja|| < ||al2 for a € By(H). We consider the following complex
linear subalgebra of B(H)

By(H) +Cl ={a+ Al :a€ By(H),\ € C}

consisting of the Hilbert-Schmidt perturbations of scalar multiples of the identity.
There is a natural Hilbert space structure for this subspace, where the scalar operators
are orthogonal to Hilbert-Schmidt operators, which is given by the inner product

{a+ X\ b+ By = tr(ab*) + \B.

This product is well defined and positive definite. We see that By(H)+ C1 is complete
with this norm since the Hilbert-Schmidt inner product induces a complete norm on the
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ideal of Hilbert-Schmidt operators (see Theorem 3.4.9 in [52]). The model space we are
considering is the real space of By(H) + C1, which is By(H)s + R1. This space inherits
the structure of a real Banach space, and with the same inner product it becomes a real
Hilbert space. Inside By(H)s+R1 consider the open subset of positive invertible operators
P={a:aeBy(H)s+Rl,a> 0}

For a € P we identify T, P with By(H)s + R1 and endow this manifold with a real

Riemannian metric by means of the formula
(X,Y)e=(a'X,a'Y),.

The unique geodesic v, : [0,1] — P joining a and b is given by

and realizes the distance, i.e.

d(a,b) = Length(vas) = ||llog(a~2ba"?)]Ja,

see Theorem 3.8 and Remark 3.9 in [37].
With this metric P is a complete metric space. By Remark 2.4 in [37] the exponential
map of P at a € P is given by exp, : T,P ~ By(H)s + Rl — P

1 i -1 1 -1
exp(X) = aze® X *a2 = qe” X =X afor X € By(H)s +R1 ~T,P.

The metric in P is invariant for the action of the group of invertible elements: if g is
an invertible operator in By(H) + C1 then I, : P — P is an isometry, see Lemma 2.5 in
[37].

By Lemma 3.11 in [37] the exponential map increases distance and preserves distance
of geodesic rays, i.e.

X =Yy <d(e®,e¥) and | X||2 = d(1,e).

From this and the invariance of the distance under the action I it follows in the same
way as in Proposition 3.4.6 that the semi-parallelogram law holds in P.

Theorem 3.4.13. If H is a group of invertible elements in Bo(H)+C1 such that suppep||hh*—
1||o = C < oo then there is an s in P such that s™'Hs is a group of unitaries.
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Proof. Since suppep||hh* — 1|2 = C < oo, for h € H
[Rbh7]] — |1 < [[hh* — 1| < [[ah" = 1|2 < C,

so that
(C+ 1)1 < hh* < (C+1)1.

We want to prove that diam(Oy (1)) = suppenl||log(hh*)||2 is finite. For h € H, since
hh* — 1 is compact hh* is diagonalizable and has eigenvalues (s;); C [(C'+ 1)1, (C' + 1)].
Then

e~ 15 = D2~ 17 < €2
J
We see that log(hh*) is diagonalizable and has eigenvalues (log(s;));. Let D be a real
number such that |log(x)| < D|x — 1| for all x € [(C'+ 1), (C + 1)]. Then

llog(hh™)ll3 = log(s;)* < ) D*(s; — 1)* < D*C*.
J

Since the last inequality holds for all h € H we see that diam(Og(1)) < D?*C?. Since
Op(1) is bounded, by Theorem 3.4.5 the circumcenter @ € P of this set is a fixed point
for the action I restricted to H. By Proposition 3.2.3 s = a2 is a unitarizer of H. O

Proposition 3.4.14. If H is a group of invertible elements such that suppeyl|lh — 1|2 =
M < oo, then H is a group of invertible elements in Bo(H)+ C1 such that suppen||hh* —
|| < oo and is therefore unitarizable.

Proof. That H C By(H) + C1 is apparent. Since ||h]| — [|[1|| < ||h = 1] < ||h = 1]|s < M
for all h € H we see that ||h]| < M + 1 for all h € H. Since

hh*—1=hh*—h+h—1=h(h*—1)+h—1
for all h € H it follows that
|hR" = 1[a < [[A[[|R" = 1o + [[h = 1]s < (M +1)M + M

for all h € H so that suppep||hh* —1||a = (M +1)M + M < oo. By Theorem 3.4.13 H is
unitarizable. ]
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