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Abstract

Let k be a field, A a unitary associative k-algebra and V a k-vector space endowed with a distinguished
element 1y,. We obtain a mixed complex, simpler than the canonical one, that gives the Hochschild, cyclic,
negative and periodic homologies of a crossed product E := A# ¢V, in the sense of Brzezifski. We actually
work in the more general context of relative cyclic homology. Specifically, we consider a subalgebra K of A
that satisfies suitable hypothesis and we find a mixed complex computing the Hochschild, cyclic, negative
and periodic homologies of E relative to K. Then, when E is a cleft braided Hopf crossed product, we obtain
a simpler mixed complex, that also gives the Hochschild, cyclic, negative and periodic homologies of E.
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Introduction

The problem of developing tools to compute the cyclic homology of smash product algebras
A#k[G], where G is a group, was considered in [11,22,15]. For instance, in the first paper the
authors obtained a spectral sequence converging to the cyclic homology of A#k[G]. In [15], this
result was derived from the theory of paracyclic modules and cylindrical modules developed by
the authors. The main tool for this computation was a version for cylindrical modules of the
Eilenberg—Zilber theorem. In [1] this theory was used to obtain a Feigin—Tsygan type spectral
sequence for smash products A#H, of a Hopf algebra H with an H-module algebra A.

It is natural to try to extend this result to the general crossed products A# s H introduced in
[3,10], and to more general algebras such as Hopf Galois extensions. In [18] the A-relative cyclic
homology of a Galois H extension C /A was studied, and the results obtained were applied to the
Hopf crossed products A# ¢ H, computing the absolute cyclic homology when A is a separable
algebra. As far as we know, [20] was the first work dealing with the absolute cyclic homology of
a crossed product A# ¢ H, with A nonseparable and f nontrivial. In that paper the authors derive
a Feigin-Tsygan type spectral sequence for crossed products A# s H, under the hypothesis that
H is cocommutative and f takes values in k. Finally, the main results established in [20] were
extended in [8] to the general Hopf crossed products A# ¢ H introduced in [3,10]. In particular,
there were constructed two spectral sequences converging to the cyclic homology of A#H.
The second one, which is valid under the hypothesis that f takes values in k, generalizes those
obtained in [1,20].

Let k be a field. An associative and unital k-algebra E is a smash product of two associative
and unital algebras A and B if the underlying vector space of E is A ®; B, the maps

A—F and A E
ar——a @y 1 b——=1Q® b

are morphisms of algebras and (a ®; 1)(1®xb) = aQxb foralla € A and b € B. Let
R: BQr A — A Qi B be the map defined by R(b Qi a) = (1 ®;b)(a @ 1). It is evident
that each smash product E is completely determined by the map R. This justifies the notation
A#p B for E. A smash product A#r B is called strong if R is bijective. A different generalization
of the results established in [1] was obtained in [24], where a mixed complex was found,
simpler than the canonical one, that computes the cyclic homology type groups of a strong
smash product algebra. Using this the authors construct a spectral sequence that converges to the
cyclic homology of A#g B. The Hochschild (co)homology of strong smash products was studied
in [12].

Let V be a k-vector space endowed with a distinguished element 1 and A an associative
and unital k-algebra. We say that an algebra E with underlying vector space A ®; V is one of
Brzezinski’s crossed product of A with V' if it is associative with unit 1 ®; 1, the map

A E
ar——a®; 1,

is a morphism of algebras and the left A-module structure of A ®; V induced by this map is
the canonical one. Brzezinski’s crossed products are a generalization of Hopf crossed products
and smash products of algebras (the relation between smash products and Brzezifiski’s crossed
products of algebras is analogous to the relation between group smash products and group
crossed products). The goal of this work is to present a mixed complex (X %, Ay, D*), simpler
than the canonical one, that gives the Hochschild, cyclic, negative and periodic homologies
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of Brzezinski’s crossed products of A with V. This result generalizes the main results of
[8, Section 2] and [24]. Moreover in this case our complex also works when the smash product
is not strong. We actually work in the more general context of relative cyclic homology.
Specifically, we consider a subalgebra K of A that satisfies suitable conditions, and we find a
mixed complex computing the Hochschild, cyclic, negative and periodic homology groups of
E relative to K (which we simply call the Hochschild, cyclic, negative and periodic homology
groups of the K -algebra E). Of course, when K is separable, this gives the absolute homologies.
Our main result is Theorem 6.2, in which we prove that (X 0 Ay, D*) is homotopically equivalent
to the canonical normalized mixed complex of E. As an application we obtain four spectral
sequences converging to the cyclic homology of the K-algebra E. The first one generalizes
those given in [8, Section 3.1] and [24, Theorem 4.7], and the third one those of [1,20] and [8,
Section 3.2]. As far as we know, the results of the core of this paper (Sections 3—6) apply to
all the up to date existent types of crossed products of algebras with braided Hopf algebras,
in particular to the underlying algebras of the crossed product bialgebras considered in [2] and
to the L-R smash products introduced in [4,5]. In Sections 7-10 we consider the cleft braided
Hopf crossed products introduced in [13]. The main result of these sections is that when E is
a cleft braided Hopf crossed product, (X I D*) is isomorphic to a simpler mixed complex
(X..d..D.).

Our method of proof is different from that used in [15,1,20,24], since they are based on
the results obtained in [12] and the perturbation lemma instead of a generalization of the
Eilenberg—Zilber theorem.

Finally we want to point out that in this paper we also study the Hochschild homology
and cohomology of E with coefficients in an arbitrary E-bimodule M. More precisely, we
obtain complexes, simpler than the canonical ones, that compute the Hochschild homology and
cohomology of E with coefficients in M. Using them we get spectral sequences that generalize
the Hochschild—Serre spectral sequences [17], and we get some result about the cup product of
the Hochschild cohomology of E and the cap product of the Hochschild homology of E with
coefficients in M.

1. Preliminaries

In this article we work in the category of vector spaces over a field k. Hence we assume
implicitly that all the maps are k-linear maps. The tensor product over k is denoted by ®y.
Given a k-vector space V and n > 1, sometimes we let V& denote the n-fold tensor product
V Q-+ Q¢ V. Given k-vector spaces U, V, W and amap f: V — W we write U ® f for
idy ® f and f ®; U for f ®;idy. We assume that the reader is familiar with the notions of
algebra, coalgebra, module and comodule. Unless otherwise explicitly established we assume
that the algebras are associative unitary and the coalgebras are coassociative counitary. Given an
algebra A and a coalgebra C, we let

UWAQA—> A, nk— A A:C—-C®C and €¢:C —>k

denote the multiplication, the unit, the comultiplication and the counit, respectively, specified
with a subscript if necessary. Moreover, given k-vector spaces V and W, welett: V@ W —
W & V denote the flip (v ®; w) = w ®; v.

In this article we use the nowadays well known graphic calculus for monoidal and braided
categories. As usual, morphisms will be composed from top to bottom and tensor products will
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be represented by horizontal concatenation in the corresponding order. The identity map of a
k-vector space will be represented by a vertical line, and the flip by the diagram

- (1.1)
Given an algebra A, the diagrams
v, P, Y and (1.2)

stand for the multiplication map, the unit, the action of A on a left A-module and the action
of A on aright A-module, respectively. Given a coalgebra C, the comultiplication, the counit,
the coaction of C on a right C-comodule and the coaction of C on a left C-comodule will be
represented by the diagrams

A b K and A (1.3)

respectively.
Consider a k-linear map ¢: V@ W — W ®; V. If V is an algebra, then we say that c is
compatible with the algebra structure of V if

comBW)=Wern and co(u@ W)= (W®p)o(c®V)o(VRko).

If V is a coalgebra, then we say that c is compatible with the coalgebra structure of V if
WRre)oc=e@W and (Wit A)oc=(cQiV)o(VQic)o(ARQrW).
Finally, if W is an algebra or a coalgebra, then we introduce the notion that ¢ is compatible with

the structure of W in the obvious way.

1.1. Brzeziriski’s crossed products

In this subsection we recall a very general definition of crossed product, introduced in [7],
and its basic properties. For the proofs we refer the reader to [7,2]. Throughout this paper A is a
unitary algebra and V is a k-vector space equipped with a distinguished element 1 € V.

Definition 1.1. Given maps x: V@A — AQrVand F: VRV — A®;V, we let A#V
denote the algebra (in general nonassociative and nonunitary) whose underlying k-vector space
is A ®; V and whose multiplication map is given by

pany = (na & V) o (ua®kF) o (AQk x Qr V).
The element a ®; v of A#V will usually be written as a#v. The algebra A#V is called a crossed
product if it is associative with 1#1 as identity.
Definition 1.2. Let y: V@3 A > A®; Vand F: V®; V — A Q®; V be maps.

(1) x isarwisting map if it is compatible with the algebra structure of A and x (1 Q¢ a) = a Q¢ 1.
) Fisnormal if F(1 @ v) = Fw @i 1) =1 Q; v.
(3) F is a cocycle that satisfies the twisted module condition if

= and .)( where ¥ = x and [(£) = F.
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More precisely, the first equality says that F is a cocycle and the second one says that F
satisfies the twisted module condition.

Theorem 1.3 (Brzeziriski). The algebra A#V is a crossed product if and only if x is a twisting
map and F is a normal cocycle that satisfies the twisted module condition.

Note that the multiplication of a crossed product has the following property:
(a#l) (b#v) = abitv. 1.4)

In particular a +— a#l is an injective morphism of k-algebras. We consider A as a subalgebra
of A#V via this map. Conversely, each k-algebra with underlying vector space A ®; V, whose
multiplication map satisfies (1.4), is a crossed product. The twisting map x and the cocycle F
are given by

x(v @ a) = (I#v)(a#l) and F(v®;w) = (1#v)(1#w).

Definition 1.4. Let A#V be a crossed product with associated twisting map x and cocycle F,
and let R be a subalgebra of A. We say that:

— R is stable under x if x(V®r R) C RQi V;
— F takes its values in RQr Vit F(VQr V) C R V.

1.2. Braided Hopf crossed products

Braided bialgebras and braided Hopf algebras were introduced by Majid (see his survey [21]).
In this subsection, we make a quick review of this subject following the intrinsic presentation
given by Takeuchi in [23]. Then, we review the concept of braided Hopf crossed products
introduced in [13]. Let V be a k-vector space. Recall that a map ¢ € Endk(V®%) is called a
braiding operator of V if it satisfies the equality

(€@ V)o(VRrc)o(c®i V) =(V®rc)o(c®iV)o (Vo).

Definition 1.5. A braided bialgebra is a k-vector space H, endowed with an algebra structure, a
coalgebra structure and a bijective braiding operator ¢ of H, called the braid of H, such that: ¢
is compatible with the algebra and coalgebra structures of H, n is a coalgebra morphism, € is an
algebra morphism and

Aop=uQrn)o(Hc®H)o (AR A).

Moreover, if there exists amap S: H — H, which is the convolution inverse of the identity map,
then we say that H is a braided Hopf algebra and we call S the antipode of H.

Usually H denotes a braided bialgebra, understanding the structure maps, and ¢ denotes its
braid.

Definition 1.6. Let H be a braided bialgebra and A an algebra. A transposition of H on A is a
bijective twisting map s: H ® A — A ®; H which is compatible with the bialgebra structure
of H. That is, s is a twisting map that satisfies the equation

(s®k H) o (H®is)o(c®rA) = (A®xc)o(s®k H)o(H&ks)

(compatibility of s with ¢) and it is compatible with the algebra and coalgebra structures of H.
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Remark 1.7. It is easy to see that if s is a transposition then s ~! is compatible with the algebra

and coalgebra structures of H, with the algebra structure of A and that

(H@s Do '@k H)o(A®ke™ ) = "®H) o (H®ks™") o (s™' ® H).

Definition 1.8. Let s: H @ A — A ®; H be a transposition. A weak s-action of H on A is a
map p: H®; A — A, that satisfies:

(1) po(H®ru) =po(p®rp)o(HRks®A)o (AR ARy A),
2) p(h®i 1) =€(h)l,forallh € H,

B) p(1Qra) =a,foralla € A,

4) so(H®rp)=(p®r H) o (H®is)o(c®xA).

An s-action is a weak s-action which satisfies p o (H Qx p) = p o (U ®k A).

Remark 1.9. It is easy to see that if p is a weak s-action of H on A, then

(H®p)o(c @ A)o(HRs™) =s""o(pex H).
We will use the diagrams

Koo Xo X X and (1>

to denote the braid ¢ of H, its inverse ¢~!, the transposition s, its inverse s~ !, and the weak
s-action p, respectively.

Definition 1.10. Let s: H®r A — A ®; H be a transposition, p: HQ®; A — A a weak
s-action and f: H® H — A a k-linear map. We say that f is normal if f(1Qrx) =
f(x®r 1) = e(x) for all x € H, and that f is a cocycle that satisfies the twisted module
condition if

More precisely, the first equality is the cocycle condition and the second one is the twisted module
condition. Finally, we say that f is compatible with s if

(fRrH)o(HQrc)o(c® H) =50 (H®g f).

Definition 1.11. Let s: H®; A — A®; H be a transposition, p: H @, A — A a weak
s-action, f: H ® H — A anormal cocycle, compatible with s, satisfying the twisted module
condition, and R a subalgebra of A. We say that a R is stable under s and p if s(H @ R) C
R ®i H and p(H Qi R) C R, and we say that f takes its values in R if f(H Q@ H) C R.

Let H be a bialgebra, A an algebra, s: H @ A — A ®; H atransposition, p: H @y A - A
a weak s-action and f: H @ H — A a normal cocycle, compatible with s, that satisfies the
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twisted module condition. Let x : H @ A - AQ®x H and F: H @ H — A ®x H be the maps
defined by

X = (pQ®rH)o(HQs)o(A® A) and
Fi=(f@m)o(HRcRH)o (AR A).

In [13, Section 9] it was proven that y is a twisting map and F is a normal cocycle that satisfies
the twisted module condition.

Let R be a subalgebra of A. It is evident that if R is stable under s and p, then it is also stable
under y, and that if f takes its values in R, then F takes its values in R ®; H.

Definition 1.12. The braided Hopf crossed product A#;H associated with (s, p, f) is
Brzeziniski’s crossed product associated with x and F.

Let H®. H be the coalgebra with underlying space H ®; H, comultiplication map
Ang.H = (HOrc®r H) o (Ay ®r Ap) and counit €y g, g ‘= €y €. An important
class of braided Hopf crossed products are those where H is a braided Hopf algebra and whose
cocycle f: H®. H — A is convolution invertible. They are named cleft. In [13, Section 10]
it was proven that E is cleft if and only if the map y: H — E, defined by y(h) = 1#h, is
convolution invertible. Moreover, in this case,

y = ('@ H) o (SR H®S)o(H®ic)o(c® H)o(Ay ® H) o Ay.

1.3. Comodule algebras

Definition 1.13. Let s: H® A — AQ®; H be a transposition. Assume that A is a right
H-comodule with coaction v. We say that (A, s) is a right H-comodule algebra if and only
if

(1) vk H)os=(A®xc)o(sQr H) o (HQv),

(2) (uaQkun)o (AQks®r H)o (V®kv) =vopug,
3)v(l) =1® 1.

Let (A, s) and (A’, s") be H-comodule algebras. We say that amap f: A — A’ is a morphism
of H-comodule algebras from (A, s) to (A, s”), if it is a morphism of algebras, a morphism of
H-comodules and s" o (H ®; f) = (f ®« H) os.

Example 1.14. If E = A#/;H is a braided Hopf crossed product, then the map5: H ® E —
E ® H defined by § := (A®c) o (s @ H) is a transposition, and (E,s), endowed with
the comultiplication v: E — E ®; H, defined by v :== A ®; Ay, is an H-braided comodule
algebra. In particular (H, ¢) is an H-braided comodule algebra with comultiplication Ag.
Moreover the map y : H — E is a morphism of H-comodule algebras from (H, ¢) to (E,s).

Remark 1.15. The maps 5 and 5! will be represented by the same diagrams as the ones
introduced in (1.5) for s and s~!, respectively.
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1.4. Mixed complexes

In this subsection we recall briefly the notion of mixed complex. For more details about this
concept we refer the reader to [19,6].

A mixed complex (X, b, B) is a graded k-vector space (X,),>0, endowed with morphisms
b: X, - X,_1and B: X,, - X, 41, such that

bob=0, BoB=0 and Bob+boB=0.

A morphism of mixed complexes f: (X, b, B) — (Y,d, D) is a family of maps f: X,, = ¥,
suchthatd o f = foband Do f = f o B. Let u be a degree 2 variable. A mixed complex
X = (X, b, B) determines a double complex

b b lb \Lb
B B B B
Xzu™! Xou® <— Xju <— Xou?
b b lb
B B B
Xou~! X1u® <—— Xou
BP(X) = , ,
B B
XILF1 Xouo
b

.. <Bi X()I/t_l,
where b(xu') := b(x)u' and B(xu') := B(x)u'~!. By deleting the positively numbered columns
we obtain a subcomplex BN(X) of BP(X). Let BN'(X) be the kernel of the canonical surjection
from BN(X) to (X, b). The quotient double complex BP(X')/ BN'(X) is denoted by BC(X). The
homology groups HC,.(X"), HN,(&X") and HP, (X), of the total complexes of BC(&X"), BN(X) and
BP(&X) respectively, are called the cyclic, negative and periodic homology groups of X. The
homology HH,.(X), of (X, b), is called the Hochschild homology of X. Finally, it is clear that
a morphism f: X — ) of mixed complexes induces a morphism from the double complex
BP(X) to the double complex BP())).

Let C be a k-algebra. If K is a subalgebra of C we will say that C is a K-algebra. Throughout
the paper we will use the following notations.

(1) We set C := C/K . Moreover, given ¢ € C, we also denote by c the class of ¢ in C.
(2) We use the unadorned tensor symbol ® to denote the tensor product Qg .

(3) We write €®[ =CQ®- - ®C (I-times).

(4) Givency, ...,c, € Candi < j, we write ¢;; :=¢; @ --- ® ;.

(5) Given a K-bimodule M, we let M® denote the quotient M /[M, K], where [M, K] is the
k-vector subspace of M generated by all the commutators mA — Am, with m € M and
A € K. Moreover, form € M, we let [m] denote the class of m in M Q.
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By deﬁmtlon the normalized mixed complex of the K-algebra C is the mixed complex

c® c® ® b, B), where b is the canonical Hochschild boundary map and the Connes operator
B is given by

r

B([eor]) = Z(—l)ir[l R ¢ir ®coi—1].
i=0
The cyclic, negative, periodic and Hochschild homology groups HCK (0), HNK ), HPK (&)
and HHK (C) of C are the respective homology groups of (C ® c® ® b, B).

1.5. The perturbation lemma

Next, we recall the perturbation lemma. We present the version introduced in [9].
A homotopy equivalence data

p
Y, )= __(X,d),  h:Xe— Xe1, (1.6)

l
consists of the following:

(1) chain complexes (Y, 9), (X, d) and quasi-isomorphisms i, p between them,
(2) ahomotopy & from i o p toid.

A perturbation § of (1.6) is amap 6: X, — Xi—1 such that (d + 8)2 = 0. We call it small if
id —8 o h is invertible. In this case we write A = (id —8 o ) ~! 0 § and we consider

1
p
Y, = (X, d+8), h':X.— Xep1, (1.7)
-1
1

with

' =0+poAoci, i'=i+hoAoi, pl=p+poAoh,
h':=h+hoAoh.

A deformation retract is a homotopy equivalence data such that p oi = id. A deformation retract
is called specialif hoi =0, poh =0and hoh = 0.
In all the cases considered in this paper the map 8o/ is locally nilpotent, and so (id —8oh) ™! =

> (o h).

Theorem 1.16 (/9]). If § is a small perturbation of the homotopy equivalence data (1.6),
then the perturbed data (1.7) is a homotopy equivalence data. Moreover, if (1.6) is a special
deformation retract, then (1.7) is also.

2. A resolution for Brzezinski’s crossed products

Let E := A#V be Brzeziniski’s crossed product with associated twisting map x and cocycle
F,and let K be a subalgebra of A, stable under x. Let 1" be the family of all the epimorphisms of
E-bimodules which split as (E, K)-bimodule maps. In this section we construct a 7"-projective
resolution (X, dy), of E as an E-bimodule, simpler than the normalized bar resolution of
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E. Moreover we will compute comparison maps between both resolutions. Recall that for all
K-algebra C we let C and ® denote C/K and Qg , respectively. We also will use the following
notations.

(1) Given xp, ..., x, € Eandi < j, we write X;; to mean x; ®4 - - - ®4 X, both in E®4 i and
in (E/A)®h .

(2) We let ig: A — E and iz: A — E denote the maps defined by is(a) := a#l and
iz(a) := a#l, respectively.

(3) Weset V := V/k Moreover, given v € V, we also denote by v the class of v in V.

(4) We write V' B =V @k & V (I-times).

(5) Given vy, ...,vs € Vandi < j, we write v;; == v; Q¢ - - - ®k v;.

(6) We will denote by y any of the maps

V——E V—E

or V——=E/A
vVH——> 1#v Vi—— 1#v U —— 1#v.

s

So, y(v) stands for 1#v € E or for its class in E or E/A. More general, given a € A and
v € V we will let ay (v) denote a#v € E orits classin E or E/A.
(7) We will denote by V, Vi and V4 the image of y in E, E and E/A, respectlvely

(8) Givenvy; € e V& , we write y(vy;) tomean y (v;) @ - - - ® y(v]) both in E®’ and in E®
(9) Given vy € V®k, we write y4(v;;) to mean y(v;) ®4 ---®4 y(v;) both in E®A and in
(E/A)®h.
Note that £/A ~ A ®; V. We will use the following evident identifications
A @UE~AY @V, E®iE/A)® ~E@ Ve and
E® ~ E®4 @, VO

We consider A®" ®rV, EQp V®)‘ and E A Rk V& as E-bimodules via the actions obtained
by translation of structure. For all , s > 0, we let Yy and X, denote

EQAE/A® ®4E and E®A(E/A)® @ A° QE,
respectively. By the above discussion
Y, ~ (E V)@ E and X, =~ (E&x V) ®A® ®E.

Consider the diagram of E-bimodules and E-bimodule maps

-
a0 49
V2 12 22
Y, X2 X2
782
49 d?
V1 11 21
Y Xo1 X1
-9
4’ dl

20

X10 e,

Xo0
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where (Y, 0y) is the normalized bar resolution of the A-algebra E, introduced in [16]; for each
s > 0, the complex (X, d?s) is (—1)*-times the normalized bar resolution of the K -algebra A,
tensored on the left over A with E @4 (E/ A)®i\, and on the right over A with E; and for each
s > 0, the map vy is the canonical surjection. Each one of the rows of this diagram is contractible
as a (E, K)-bimodule complex. A contracting homotopy

O’gsi Yy — Xoy and o?

r+l,s° P Xps > Xr+l KE)

of the s-th row, is given by

agy (Xos ®4 7 (V) =0, ® 7 (v)
and

o115 (Ros ® a1 ® a1y () == (=D %o, @ a1,41 @ ¥ (v).
Letu: Yy — E be the multiplication map. The complex of E-bimodules

—i -9 -9 - -9 ) -9
E uYO IY] 2Y2 3Y3 4Y4 SYS 6

is also contractible as a Complex of (E, K)-bimodules. A chain contracting homotopy
_l:E—>Y0 and a Yy = Y41 (s =>0),
is given by 0 (Ro.511) = (—1)*R0 541 @4 L.

Forr > 0and 1 <[ < s, we define E-bimodule maps dfs: Xrs = Xr4i1—1,5—1 recursively on
[ and r, by:

%08 0v(z) ifl=1andr =0,
—aoodlodo(z) ifl=1andr > 0,
-1

d' @) = —Zooodl—fodf(z) ifl <l/andr =0,
j=1
-1 ) )
—Zooodl_/od](z) ifl </andr > 0,
j=0

forz e E@A(E/A)® @ A° @ K.
Theorem 2.1. There is a 1 -projective resolution of E

— d d. d. d. d:
E - Xo ! X1 2 X7 ’ X3 ! X4 RN (2.8)

where w: Xoo — E is the multiplication map,

n n—r
=P X, and d, ._Zd0n+zz [
=0

r+s=n r=1

Proof. This follows immediately from [14, Corollary A2]. [

In order to carry out our computations we also need to give an explicit contracting homotopy
of the resolution (2.8). For this we define maps

l . [ .
O] s—1* Y - Xj5—1 and O i1, 5—1 * Xrs = Xrtit1,5-1
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recursively on /, by:
-1 o
Url+l+1,s—1 = —Zao od oo’ (O<l<sandr>—1).
i=0
Proposition 2.2. The family
oo: E — Xo, Ont1: Xy => Xpy1 (n20),

defined by o := cr(())o 00, ! and

n+1 n n—r

— I -1 !

Ontl == — z :Ol,n—l+l ©0,41°Vn + z : z :0r+l+1,n—r—l (n=0),
1=0 r=0 1=0

is a contracting homotopy of (2.8).

Proof. This is a direct consequence of [14, Corollary A2]. [

Notations 2.3. We will use the following notations:

(1) For j,I > 1, we let Xt V®'li Rk A®[ — A®l Rk V®'li denote the map recursively defined
by:

X = X
!
X = (A® Ok X) °© (Xu Ok A)’
j
Xjs1g = (X ®x V®k) o (V& le)'
(2) Write X, == E® ® A% @ E. We let uj: X;; — X, denote the map defined by
u; (Xos @ a1, @ X) :=X0,i—1 @A XiXi11 DaXit1s @21, @ x
for0 <i < s, and

1, (Ro,5—1 @4 y(v) ® a1, ®x) == Y Ko,-1 @2y, @y ),
1

where Y, aﬁlr) v = x (v ar,).
(3) Given a K-subalgebra R of Aand 0 < u <r, welet X ﬁ" denote the £ -subbimodule_of Xrs
generated by all the simple tensors 1 ® 4 X5 ® aj, ® 1, with at least u of the a;’s in R.

Theorem 2.4. The following assertions hold:

(1) The map d": X,; — X,.;_1 is induced by the map Zfzo(—l)iug.
(2) Let R be a K -subalgebra of A, stable under y. If F takes its values in R ®y V, then

dl(er) C XR,l—l

r+l—1,s—1
foreachl > 1.

Proof. Letz € E®a(E/ A)®h @ Z®r ® K. The computation of d can be obtained easily by
induction on r, using that

dyy(2) =05, 0ds0vY(z) and d)(z)=—0)_jod_| odl(z forr>1.

Item (2) follows by induction on r and [, using the recursive definition of d’ (z). [
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Remark 2.5. By item (2) of the above theorem, if F takes its values in K ®; V, then (X, d)
is the total complex of the double complex (X, do,, dl,).

2.1. Comparison with the normalized bar resolution
Let (E ® f®* ® FE, b;) be the normalized bar resolution of the K-algebra E. As it is well

known, the complex

n b} — by 2 by
E<~—EQE<~—EQEQE~ EQEY @E~

is contractible as a complex of (E, K)-bimodules, with contracting homotopy

—N — e+l
§:E—>EQ®E  &u:EQE ®E—>EQ®E  ®FE (n>0),
given by &,(x) := (—1)"x® 1. Let
¢u: Xudy) > (E®E” QE,b,) and : (EQE® ®E,b) — (X., d)
be the morphisms of E-bimodule complexes, recursively defined by

¢o = 1id, Yo = id,
Ony1(z®1) =&, 10¢,0dp11(Zz® 1)

and

Y1 X® 1) =041 0%, 0 b;,_H(X ® 1.

Proposition 2.6. ¢ o ¢ = id and ¢ o v is homotopically equivalent to the identity map. A
homotopy w+1: ¢« o Yy — idy is recursively defined by

w1 =0 and wuq1(X) =& 0 (Pn 0 Y — id —w, 0 b)) (X),
forx e EQEY oK.
Proof. The proof of [14, Proposition 1.2.1] works in this context. [

—oyn—1 o ol
Remark 2.7. Since a)(E ® E® ® K) CEQ® E® ® K and & vanishes on E ® E® ® K,

wx®1) =§(@oyx®1) - (=D)'0X).

2.2. The filtrations of (E @ E°. ® E, b.) and (X+, dy)

Let
F'(Xp) = P Xu—ss

0<s<i

and let F! (E ® f®n ®F ) be the E-subbimodule of £ ® F®n ® E generated by the tensors
1 ® X1, ® 1 such that at least n — i of the x;’s belong to ‘A. The normalized bar resolution
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(E® E® ® E, bl) and the resolution (X, d,) are filtered by

FOEQE® @E)c FIEQE® ®E)C FAEQE® ®E)C
and

FO(X,) € F'(Xy) S F2(X) S FP(X) S FH(X) S FP(X) S -
respectively.
Proposition 2.8. The maps ¢, ¥ and w preserve filtrations.
Proof. For ¢ this follows from Proposition A.5. Let Q; = EQ(E/A)® ® e ® K. We
claim that
(@) (F (X)) € F'(Xy41) forall 0 <i <n,
(b) 7 (E @4 (E/A)®h ®Z®H ®A)C Q)+ F ' (Xypp) forall0 <i <n,
(©) o(Xon) < E®A(E/A)®A ® K + F (X1,
Yy (F(E® E2 @ E)NEQE® ® K) < Q' _,+ F=(X,) forall0 <i <n.
In fact (a)—(c) follow immediately from the definition of 1. Suppose (d) is valid for n. Let

X =X),+1®1 € Fi(E ®E®n+l ® E) ﬁE@FWJrl ® K where0<i<n+1.
Using (a), (b) and the inductive hypothesis, we get that for 1 < j < n,

T (Y (0,1 @ 3%/1 ®Xj12001 @ D) S T(C) + F (X))

C O+ F (X,

Since ¥ (x) = @ o ¥ o b'(x), in order to prove (d) for n + 1 we only must check that

W Xont1) € Oy + F' 7 (K1)
If x,41 € A, then using (a), (b) and the inductive hypothesis, we get

(¥ Xon+1)) = 7 (¥ (Xon ® Dxny1)

C 5(E®A(E/A)® ® % @A+ Fi=l (X))
C O+ F T (Xug),

and if x,4+; & A, then Xp 41 € FI-Y(E ® E®n ® E), which together with (a), (c) and the
inductive hypothesis, implies that

(V¥ (Xot1)) ST (F7(X0) € Qhyiy + F'7 Xy

From (d) it follows immediately that i preserves filtrations. Next, we prove that w also does it.
This is trivial for wy, since w; = 0. Assume that w, does. Let

X=x0,®1c FIEQE® ® E)NEQRE® ®K.
By Remark 2.7, we know that
oX) =&o0¢ oY (x)+ (—1)"& o w(Xon).
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From (d) and the fact that ¢ preserves filtrations, we get

Eopoy(x) eEop(Q ,+ F (X)) CEF N EQE” ®E))
c FEQES QE),

since $(¢(Q;7i)) CEER® F®n ® K) = 0. To finish the proof it remains to check that

Eowob'(x) C F(EQE® QE).

Since, w(E®E° QK)CE® 2 oK by definition, we have
Eowob(x) = (—1)"""E o w(x0n).
Hence, if x,, € A, then
Eowob(x) = (—1)"'&up1 (0a(X0.n-1 ® 1)x,)
Ce(FEQEY @ E)NERE" ®A)

—gnt!
CF(E®E ®E),

n—1
and if x,, & A, then xq, € F'~ 1(E(X)E® ® E), and so

n+1

Eowxo) CE(FUEREY ®E)C FEQEY ®E),

as we want. [
3. Hochschild homology of Brzezinski’s crossed products

Let E := A#V be Brzezinski’s crossed product with associated twisting map y and cocycle F,
and let K be a subalgebra of A, stable under yx. Recall that 7" is the family of all epimorphisms of
E-bimodules which split as (£, K)-bimodule maps. Since (X, dx) is a T-projective resolution
of E, the Hochschild homology of the K-algebra E with coefficients in an E-bimodule M is the
homology of M ®ge (X, dy). For r, s > 0, write

Xrs(M) = M®4(E/A)® @ A% ®.
It is easy to check that )?rS(M) ~ M Qpe X,g via

S(\rs(M) M®Ee er
[mQ@aXis®a]—m Qe (1 ®4X1s @ay ®1).

Let d ,S(M) — X,+1 1.s—1(M) be the map induced by idy ®Eed Via the above
1dent1ﬁcat10ns the complex M Qfge (X, dy) becomes (X M), d*) where

n n—r
X,(M) = P Xps(M) and d, ._Zd0,1+22 [
r+s=n r=11=0

Consequently, we have the following result.

Theorem 3.1. The Hochschild homology HK (E, M), of the K -algebra E with coefficients in M,
is the homology of (X (M), d*)
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Remark 3.2. If K is a separable k-algebra, then Hf (E, M) coincides with the absolute
Hochschild homology H. (E, M), of E with coefficients in M.

Remark 3.3. If K = A, then (X, (M), dy) = (Xo+(M), d[..).
Eemark 3.4. In order to abbreviate notations we will write X rs and X, ,» instead of X, rs (E) and
X, (E), respectively.
Forr,s >0, let
X,s(M) = M®4 E? @ A® .
Similarly as for X rs (M) we have canonical identifications
X, s(M)~ M Qg X
For0 <i <s,let
i Xps(M) — X,y (M)
be the map induced by u;. It is easy to see that
o([m ®aXis @i ]) = [mx; @4 Ko @ ay,l,
ﬁi([m RaXis ® alr]) =[m®AX1i—1 ®AXiXi+1 QAXit1s ®ay] forO<i<s

and

iy ([m ®aX15-1 Q4 y(v) @ay]) = Z[V(v( Nm @4 X1 -1 ® 3(1)]
I

where 3", al) @ v® == x (v @ ay).
Notations 3.5. We will use the following notations.

(1) We let W, € W; denote the k-vector subspace of M ® F®n® generated by the classes in

M® E® ® of the simple tensors m ® Xj, such that
#({j:x; ¢ AUVKH =0 and #({j:x; ¢ AUVk}H <1,

respectively.

(2) Given a K-subalgebra R of A, we let Ef denote the k-vector subspace of M ® E®n®
generated by the classes in M ® E® ® of all the simple tensors m ® X1, with some x;
in R.

(3) Given a K-subalgebra R of Aand 0 < u < r, we let X; X Ru + (M) denote the k-vector subspace

of X,S(M ) generated by the classes in er (M ) of all the s1mple tensors m ® 4 X15 ® ay,-, with
at least u of the a;’s in R. Moreover, we set XR”(M) =@ XR“(M)

(4) For j, 1 > 1, we let

r+s=n

S ,
X, VO @AY — A% @ V&

denote the map induced by the map x ;, introduced in Notations 2.3.
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(5) We let

_®r+x

Sh,,: VO @, A% - E

denote the map recursively defined by:
— Shyp =y ¥,

— Shy, =i,
— Ifr,s > 1, then

r . ) o1 i
Shy = Y (=1 (Sh-i @y @i ) o (VE @%, 04 ),
i=0
where x|, = idy.
Theorem 3.6. The following assertions hold.

(1) The morphism d: }?,s M) — )?,_1,3 (M) is (—1)*-times the boundary map of
the normalized chain Hochschild complex of the K-algebra A with coefficients in
M Q®4(E/ A)®4, considered as an A-bimodule via the left and right canonical actions.

(2) The morphism dl: X, (M) — }?r,s_l(M) is induced by Y _i_(—1)'u;.

(3) Let R be a K -subalgebra of A, stable under y. If F takes its values in RQy V, then

d'(X, () < XB7L o0
foreachl > 1.

Proof. Item (1) follows easily from the definition of d°, and items (2) and (3), from
Theorem 2.4. [J

Now it is convenient to note that A ® Z® ® M is an E-bimodule via

ay () - @0, ®m) - 'y (@) =) aag) ® y (v yma'y (v),
1

where ), agr) @k v = x (v ® ag,).

Remark 3.7. Note that
H, (Xis (M), 7)) = HE (A, M @4 (E/A)®)
and

H(X2(M).d),) = HA(E. A © 3% @ M).

R/gmark §:8. By item (3) of the above theorem, if ]i takes its values in K ®; V, then
(X«(M), d,) is the total complex of the double complex (X**(M), 4., d! )

kK TRk

3.1. Comparison maps

Let (M ® F®*®, b*) be the normalized Hochschild chain complex of the K-algebra E with
coefficients in M. Recall that there is a canonical identification

(MRE® ®.b,) ~ M (E®E® ®E.b).
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Let
bt (Xu(M),dy) > (MQE® ®,b,) and 9,: (MR E® ®,by) — (Xu(M), dy)

be the morphisms of complexes induced by ¢ and ¢ respectively. By Proposition 2.6 it is evident
that ¥ o ¢ = id and q) w is homotopically equivalent to the identity map. A homotopy
Dyt1: ¢* o w* — id, is the family of maps

_®n+1

<wn+1 MQEY® — MQE ®) "
n=

®n+|

1nducedby(a)n+1 E®E ®E—>E®E ®E)

n>0"
3.2. The filtrations of (M ® EC ®, by) and (X+(M), d)
Let
FI(Xa(M) = P Xu—ss(M).

0<s<i
The complex ()?*(M ), c’l\*) is filtered by
FO(Xo(M)) € F'(X(M)) € F*(Xu(M)) € F (X (M) € FHXu(M) S -+ .
Using this fact we obtain that there is a convergent spectral sequence

EL =HK(A, M@i(E/A)®r) = HE (E, M). (3.9)

Let F! (M ® F®n ®) be the k-vector subspace of M & F®n® generated by the classes in
M ® F® ® of the simple tensors m & X1, such that at least n — i of the x;’s belong to A.

The normalized Hochschild complex (M ® F®*®, b*) is filtered by
FIMRE ®) c F'(MRE" ®) C FA(M®E” ®) C

The spectral sequence associated to this filtration is called the homological Hochschild—Serre
spectral sequence.

Proposition 3.9. The maps a {/7 and @ preserve filtrations.

Proof. This follows immediately from Proposition 2.8. [J

Corollary 3.10. The homological Hochschild—Serre spectral sequence is isomorphic to the
spectral sequence (3.9).

Proof. This follows immediately from Proposition 3.9 and the comments following
Remark 3.8. [0

Proposition 3.11. Let R be a K-subalgebra of A, stable under x. If F takes its values in
R ®i V, then

?5([m ®4 ya(V1i) ® a1 —i]) = [m @ Sh(vi; @ aj )] + [m @ x],

with [m ® x] € Fi~! (M ® E® ®) NW, N 65. In particular El;preservesﬁltrations.



3520 G. Carboni et al. / Advances in Mathematics 231 (2012) 3502-3568

Proof. This follows immediately from Proposition A.5. [

In the next proposition we use the following notations:
Ri=F(M®E” &)\ F'' (Mo E" ®)
and

Fi(X,(M)) = FI (X, (M) N XR' ().

Proposition 3.12. Let R be a K -subalgebra of A, stable under x, such that F takes its values
in R ® V. The following equalities hold.

() w([m ®y(vii) @ a4, n]) [m®aya(vii) ® aj41 nl.
Q) Ifx=[m®Xx1,] € R; N'W,, and there is 1 < J <isuchthat xj € A, then 1//(X) =0.
) Ifx= [m ®y(VL,i-1) ®a;y(v;) ® al—H,n] then

V() = [m @4 ya(vii—1) ®aaiya(vi) @ aip1,n]

1
+ Z [y m@ayaviic) @a @al); ],

modulo F' 2(X (M)), where ), alJrl 2 Ok v(l) = X (v; ®k Aj+1.1)-
@) If x = [m QY (Vi j—1) ®a;y () @ ¥ (Vjs1,i) ® Ajy1,4| with j < i, then
V(%) = [m®ava(vij—1) ®aajya)) @4 ya(Vjr1i) ® aip1n],
modulo Fi=2(X,(M)).
b)) Ifx= [m Qy(Vi—1)®a;,j—1®ajy(vj)® aj_H,n] with j > i, then

Y(x) = [V(vj-l))m ®aya(Vii—1) ® a;; ® a(-ljrly,,],

modulo Fé_z()?n (M)), where ), aE.l_)H . Ok v(]) =X (vj @k Aj+1,0)-
©) If x =[mQXx1,] € E,- HW; and there exists 1 < j1 < ja» < n such that xj, € A and

xj, € Vi, then ¥/ (x) € Fi 2(X,(M)).
Proof. This follows immediately from Proposition A.7. [
Proposition 3.13. If x = [m ® x1,] € F/(M ® E® ®) N W; then

®n+]

ox) =[m®yl withim®yle F(M®E  ®)N Wi

Proof. This follows immediately from Proposition A.9. [
4. Hochschild cohomology of Brzezinski’s crossed products

Let M be an E-bimodule. Since (X4, dy) is a 7 -projective resolution of E, the Hochschild
cohomology of the K-algebra E with coefficients in M is the cohomology of the cochain
complex Homge (X4, di), M).

For each s > 0, we let Homu ((E/ A)®§4, M) denote the abelian group of left A-linear maps
from (E/A)®4 to M. Note that Homy ((E/A)®4, M) is an A-bimodule via

aa(Xys) = aXja) and  aaXiy) = aXiy)a.
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For each r, s > 0, write

X (M) = Hom k) ((E/4)®3 @ A%, M) ~ Homg. (A%, Homa((E/A)®4, M)).
It is easy to check that the k-linear map

" HomEe(er, M) — 5(\”(M),
given by

f(@)(Xis ®@ayr) = a(l®aXisQa; 1),
is an isomorphism. For each [ < s, let

dr s XLl oy > XS (M)

be the map induced by Homge (d’,, M). Via the above identifications the complex

rs?
Homge ((Xx, dx), M)
becomes ()?*(M), Zi\*), where
- - . n n—r
X"(M)= @ X"*(M) and d":= Zdl'urzz:a}” g
r+s=n r=11=0

Consequently, we have the following result.

Theorem 4.1. The Hochschild cohomology Hy (E, M), of the K -algebra E with coefficients in
M, is the cohomology of (X*(M) d*)

Remark 4.2. If K is a separable k-algebra, then H} (E, M) coincides with the absolute
Hochschild cohomology H*(E, M), of E with coefficients in M.

Remark 4.3. If K = A, then (X*(M), d*) = (X**(M), d").

Remark 4.4. In order to abbreviate notations we will write X" and X" instead of X" (E) and
X" (E), respectively.

For each s > 0, we let Homy (E ®) , M) denote the abelian group of left A-linear maps from
E®4 to M. Note that Homy (E®4, M) is an A-bimodule via

aa(Xis) = aXza) and aa(Xiy) = a(Xis)a.
Forr,s > 0, let

X" (M) := Hom(a, x)(E®* ® A®", M) ~ Homg«(A®", Homu(E®4, M)).
Similarly as for X' (M), we have canonical identifications

X" (M) ~ Homge (X, M).

For0 <i <s,let

o XN M) - XT(M)
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be the map induced by u;. It is easy to see that

~40 — —

u (o)(X1s ® a1,) = x1a(Xos @ ag,),

u (o) (X1 541 ®ar) = a(X1,i—1 @4 XiXi+1 QaXit1s ®ay,) forO<i<s
and

()X 1 @4 y(0) @ay) = Yy a® 1 @ay)y ),
[

where ), aglr) @k v = x (v ®rayy).

Notations 4.5. We will use the following notations.

(1) We let F! (F®n) denote the K-bimodule of EC. generated by the simple tensors X, such
that at least n — i of the x;’s belong to A.

(2) We let W, denote the K-subbimodule of E®n generated by the simple tensors X1, such that
#({j:x; ¢ AUVEH =0.

(3) Given a K-subalgebra R of A, we let C, Rt denote the K -subbimodule of f®n generated by

all the simple tensors X1, with some x; in R.
(4) Given a K-subalgebra R of A and 0 < u < r, we let X}, X"s (M) denote the k-vector subspace

of X”(M) consisting of all the (A, K)-linear maps
w: (E/A® @ A% = M,

that factorize through the (A, K)-subbimodule
XRru

r4u,s—u—1
—u— o tu
of (E/A)®A . ® A® generated by the simple tensors Xj s—,—1 ® aj y4y, with at least u
of the a;’s in R.
Theorem 4.6. The following assertions hold.

(1) The morphism 21\0: )?r_l’S(M) — jf\”(M) is (=1)5-times the coboundary map of the
normalized cochain Hochschild complex of A with coefficients in Homy ((E /A)®i1, M),

considered as an A-bimodule as at the beginning of this section.
(2) The morphism d1 Xrs— LM > X”(M) is induced by Z 0(—1)’ i
(3) Let R be a K -subalgebra of A, stable under x. If F takes its values in RQy V, then

Zi\l()’(\r"rl—l,s—l(M)) g 52&&"1_1(]‘4)7
foralll > 1.

Proof. Item (1) follows easily from the definition of d°, and items (2) and (3), from
Theorem 2.4. [J

For each r > 0, we let Homg (A ® Z®r, M) denote the abelian group of right K -linear maps
from A° to M. Note that Homg (A ® A% , M) is an E-bimodule via

(ay@)--ay@))@o) =Y ya(aal))a'y @),
1

where Y, al) @, v® == x (v ®y ap,).
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Remark 4.7. Note that
H' (X* (M), d§") = Hi (A, Homa ((E/A)®%, M)
and

HE (X7 (M), d*) = B, (E, Homg (A ® A%, M)).

Remark 4.8. By item (3) of the above theorem, if F takes its values in K ® V, then
(X*(M) d*) is the total complex of the double complex (X**(M) dr, d**)

4.1. Comparison maps
Let (Homge (E®*, M), b*) be the normalized Hochschild cochain complex of the K -algebra
E with coefficients in M. Recall that there is a canonical identification
(Homge (E®, M), b*) ~ Homg (E ® X ® E, b,), M).
Let
$*: (Homge(E®", M), b*) —> (X*(M), d*)
and
7*: (XA(M), d) —> (Homge(E® , M), b*)

be the morphisms of complexes induced by ¢ and ¥ respectively. By Proposition 2.6 it is evident
that ¢> 1// = id and 1// ¢ is homotopically equivalent to the identity map. A homotopy
@*t1: ¥* 0 ¢* — id* is the family of maps

o+l —Q"
(an-ﬁ-l: HOII][(E(E® , M) — HOHIKB(E® s M)) o
n=

1nducedby(a)n+1 E®E ®E—>E®E ®E)

n>0"
4.2. The filtrations of (Homge(EC , M), b*) and (X* (M), d¥)

Let
Fi (X" (M) = P X"~ (m).

s>i
The complex (5(\ (M), 2*) is filtered by
Fo(X*(M)) 2 Fi(X*(M)) 2 F(X*(M)) 2 F3(X*(M)) 2 F4(X*(M)) 2 - --
Using this fact we obtain that there is a convergent spectral sequence

E}® = Hi (A, Homs ((E/A)®4, M)) = H'S(E, M). (4.10)

Let F; (HomKe (F@)*, M )) be the k-submodule of HomKe(F@)*, M) consisting of all the maps
o € Homge (E® , M), such that a(F i (F® )) = 0. The normalized Hochschild complex
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—®* .
(Homge(E™ , M), b*) is filtered by

Fo(Homge(E® . M)) 2 Fy(Homge(E® . M)) D - . 4.11)

The spectral sequence associated to this filtration is called the cohomological Hochschild—Serre
spectral sequence.

Proposition 4.9. The maps q/b\, 1///\ and @ preserve filtrations.

Proof. This follows immediately from Proposition 2.8. [

Corollary 4.10. The cohomological Hochschild—Serre spectral sequence is isomorphic to the
spectral sequence (4.10).

Proof. This follows immediately from Proposition 4.9 and the comments following
Remark 4.8. O

Corollary 4.11. When M = E the spectral sequence (4.10) is multiplicative.

Proof. This follows from the previous corollary and the fact that the filtration (4.11) satisfies
FnF, C Frp4+n, where

(BB)Xtmn) = BX1m)B K1),
for § € Homge(E® . E) and p’ € Homg(E® , E). O
Proposition 4.12. Let R be a K - subalgebra of A, stable under x. Assume that F takes its values
in RQ®y V. Then, for each B € HomKe(E , M), we have
O(B)(ya(V1) ® arn—;) = B(Sh(Vy; ® a1u—)) + B(X),
withx € FI=\(E® )y nwrn ke,
Proof. This follows immediately from Proposition A.5. [
In the next proposition R} denotes F i (E®n) \ Fi-l (F®n).
Proposition 4.13. For all o € X"~"i (M), the following equalities hold.

(D) Y@ (v (Vi) @ ai41,0) = &(va (Vi) @ ais1,0)- R
(2) If x1, € R N W}, and there is j < i such that x; € A, then ¥ (a)(X1,) = 0.

Proof. This follows immediately from items (1) and (2) of Proposition A.7. [
5. The cup and cap products for Brzezinski’s crossed products

The aim of this section is to compute the cup product of HH} (E) in terms of (5(\ * d *) and
the cap product of H*K(E, M) in terms of (X™*, d*) and (X,(M), d,). First of all recall that by
definition

— the cup product of HH (E) is given in terms of (Homge (F*, E), b*), by
(BBYX1 mtn) = BX1m) B K1 mtn)s
for B € Homge(E® , E) and ' € Homg(E | E),
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— the cap product
HX(E, M) x HHZ(E) — HX (E, M) (m <n),

is defined in terms of (M ® f®*®, by) and (Homge (F®*, E), b*), by

m@xy, ~ B =mpXy) ® Xm+1,n5

where 8 € Homge(E", E). When m > n we setm @ X1, ~ B := 0.
Definition 5.1. For o € X" and o’ € X" we define ¢ oo’ € X'+ by

(@ o) (yaviy) @ar) = 3 (=D a(yatvi) @ ap))e’ (rav}y o) @ arr).
1

where r’ =r +r',s" =s+s"and ), aglr) Rk VSJ)FLS,, = y(vsﬂ’sﬂ ® alr).

Theorem 5.2. Let o € X"*, o' € X"¥ andn :=r +r +s+s'. Let R be a K -subalgebra of A,
stable under x. If F takes its values in R ®; V, then

a(@\(a) v{b\(a/)) =aea modulo @ )?El’)l
i>s+s’

where X Ef)l denotes the k-vector subspace of Xn—ivi consisting of all the (A, K)-linear maps

«: (E/A® @ A% S E,
that factorize throughout A @ (W N CXY), where WY and CE* are as in Notations 4.5.
Proof. Let +”,s” € N such that ¥’ + s” = n, and let ys(viyr) ® a,» € X,nen. Set
T := Sh(viy» ®k aj,»). By Proposition 4.12,
$(V (@) V@) (yatie) @ap) = (¥ (@) Y @) (T +x),
withx € Fs"~! (E®") N WF N CRe. Since, by Proposition 4.13,
—ifs” < s+, then (¥ (@) —¢ () (x) =0,
—ifs” # 5+ s/, then (1//(04) vl/f(ot’))(T) =0,
—ifs” =5+ s/, then

(V@ P @))T) =D (D" a(yatvis) ®a)))a (ya), ) @ ari1,m).
i
where ), aYr) Qk VE,Z)F]’S// = Y(VH_LS// ® alr),
the result follows. [
Corollary 5.3. If fAtakis its values in K ®y V, then the cup product of HHY (E) is induced by
the operation e in (X*, d*).

Proof. It follows from Theorem 5.2, since X 'I’(_(i)' =O0foralli. O

Definition 5.4. Let [m ®4 ya(vis) ® aj,] € )?,S(M) anda € X% . Ifr' < rands’ < s, then
we define [m ®4 ya(vis) ® aj ] ea € Xr—r’,s—s’(M) by

[m®aya(vis) ®aj]ea = Z(—l)sw [ma(ya(vig) ® 3(1?') @A YA (VS)H,S)
1

®ar/+l,r],
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where

s/ =s—s and Za(llr), Rk V(',l_1 s =X (Vyq1s @ary).
;
Otherwise [m ®4 ya(Vis) @ aj] e := 0.

Theorem 5.5. Let [m ®4 ya(vis) @ ay,] € S(\rs(M), aeX" andn =r+s—r —s' Let R
be a K-subalgebra of A, stable under x. If F takes its values in R Qi V, then

Y ((Im@aya(viy) ®an]) ~ ¥(@) = [m®a ya(viy) ®ai,]ea

modulo

B (XX,00 + Ma(xSe) @aE/® @77,

i<s—s'
where X 5;, denotes the k-vector subspace of (E/ A)®it/ ®Z®r, generated by all the simple tensors
mQ@aXiy Qay, with at least 1 of the a;’s in R.
Proof. By Proposition 3.11,

V(6(m ®ayatvis) ®ay]) ~ ¥(@) = ¥ (([m @ T1+ [m ® X1,451) ~ ¥ (@),

where

r+s J— —R
T :=Sh(vi; ®a;,) and [m®x1, 1] FF (M®E® @) NW, s NCri,.
Moreover, by Proposition 4.13, we know that

—ifs’>sorr’ >r, then[m®T] ~ ¥ (a) =0,
—ifs’ <sandr’ <r,then

m®TI~P@) =Y (=) ‘m@a(viy®al)) @Sh(v?,,  ®carii).

i

where Z a(l) Ok vh(vl:—l,s = Y(Vs’—i-l,s ®k 1),
—if s’ > s, then [m ® X| y45] ~ l’ﬁ\(a) =0,
—if s’ < s, then

[m @ xX1r15] ~ V@) € " (M @E” ®) N W, N (Cy + Gu),
where G, = My (@)(Ch., ) ® B

Now, in order to finish the proof it suffices to apply items (1) and (2) of Proposition 3.12. [J

C’(\)roll\ary 5.6. If F takes its values in K ®y V, then in terms of the complexes (5(\ «(M), cli\*) and
(X*, d*), the cap product

HX(E, M) x HH?(E) — HX  (E, M),
is induced by e.

Proof. It follows immediately from the previous theorem. [J
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6. Cyclic homology of Brzezinski’s crossed products

The aim of this section is to construct a mixed complex computing the cyclic homology of E,
whose underlying Hochschild complex is (X, dx).

oy okt
Lemma 6.1. Let B,: E ® E® ® > E® E® ® be the Connes operator. The composition
B o®o B o ¢ is the zero map.
Proof. Let x := [x0 ®4 ya(V1i) ® a1 4—i] € 5(\,17,-,1‘. By Proposition 3.11, we know that
$x) e F(EQE® @) NW,.

Hence
1

Bodx e (KOE® @) nFH(EQES @) NW,,,.

and so, by Proposition 3.13

+1

o~ — 1 . —N N
@oBodx) e (KQ®E® @) NF(EQE® ®) NWua CkerB,
as desired. [J

Foreachn > 0,let D, : X, — )?n+1 be the map D= {ﬁ\oB oa.

Theorem 6.2. (5(\ * Zi;, 5*) is a mixed complex that yields the Hochschild, cyclic, negative and
periodic homologies of the K -algebra E. Moreover we have chain complexes maps

P v o
Tot(BP(X,.d. Do) = Tot(BP(E® E° ®, by, B.)) -
@
given by
5n(xui) = a(x)ui +woBo c’i(x)u"_1 and @n(xui) = Z 1’/7 o (Boo) x)u'~/.

Jj=0

These maps satisfy 7 o ® =idand ®o U is homotopically equivalent to the identity map. A
homotopy 241: Py 0o U, — id, is given by

ﬁn+l(xui) = Zc’z} o(Bo a)j(x)ui—j'
j=0

Proof. This result generalizes [8, Theorem 2.4], and the proof given in that paper works in our
setting. [

Remark 6.3. If K is a separable k-algebra, then (5(\ £ ;l; 5*) is a mixed complex that gives the
Hochschild, cyclic, negative and periodic absolute homologies of E.

In the next proposition we use the notation F Ié(f(\n) = FJ ()?n) nx f 1 (E) introduced above
Proposition 3.12.

Proposition 6.4. Let R be a K -subalgebra of A, stable under x, such that F takes its values in
R ®i V. The Connes operator D satisfies the following.
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(D) If x = [aoya(voi) ® a1 -], then
i
D) =Y Y (=D [1@aya(v),; ) ®aaoya(vo)) @), _],
j=0 1

i v l I} —
modulo Fgp(X,11), where Zz ag’)n_i Rk VEJ)FM =X (Vjy1,i Qcarn—i)-
(2) If x=1[ao®4 ya(V1i) ® aj y—;], then

n—i

Dx) =Y ;<—1>f"+f"+"[1 ®avaVi) ® a1, ®ao @af)],

j=0
modulo Flie_l(f(\,,ﬂ), where Zl ail; Rk ngl) = X (V1 ®karj).
Proof. (1) We must compute 5()() = {E oBo a(x). By Proposition 3.11,
D(x) = o B([aoy (vo) ® Sh(vy; ®k a1.n—i)]) + ¥ o B(lagy (vo) ® x]),
where [agy (vo) ® x] € FI~1(E ®F®n®) NW, ﬂEf. Now
e+l
- B([aoy(vo) ® Sh(vy; Q al,n_,-)]) is a sum of classes in £ ® E® ® of simple tensors
1 ® yin+1, withn — i of the y;’s in i(A), i of the y;’s in Vg and one y; & iz(A) U Vg,
e+l
— B([aoy (vo) ® X]) is a sum of classes in £ ® E® @ of simple tensors 1 ® 2,41, with at
leastn — i + 1 of the z;’s in iZ(Z) and exactly one z; in E\ (iX(Z) U Vg).
The result follows now easily from the definition of Sh and items (3)—(6) of Proposition 3.12.
(2) As in the proof of item (1) we have
D(x) = ¥ o B(lao ® Sh(vi; ®ca1.n—i)1) + ¥ o B([ao @ x]),
where [ay ® x] € FI~/(E® E¥ ®) NW, N Cxr. Now

_ B([do ® Sh(vy; Qx algn_,-)]) is a sum of classes in E ®F®n+l ® of simple tensors 1 @ y1 n+1,
withn —i + 1 of the y;’s in iZ(X) and i of the y;’sin Vg,

_ B([ao ® X]) is a sum of classes in £ ® F®"+] ® of simple tensors 1 ® 21,41, with each z; in
iX(Z) U Vg and atleast n — i + 2 of the z;’s in iX(Z).

The result now follows easily from the definition of Sh and items (1) and (2) of

Proposition 3.12. [

Corollary 6.5. If K = A, then (X, dy, Ds) = (Xox, dg,,, Dox), where
n
Doy ([aya(von)]) = Z(—l)"+]"[1 ®4 Ya(Vjt1,0) ®aaya(vo))].
=0
6.1. The spectral sequences

The first of the following spectral sequences generalizes those obtained in [8, Section
3.1] and [24, Theorem 4.7], while the third one generalizes those obtained in [1,20] and
[8, Section 3.2]. Let

~ o ~ ~ s ~
deg: Xps = Xr—1,s and dy 0 Xpg = X1
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be as at the beginning of Section 3 and let
5,(«)5: irs - S(\r,s+l
be the map defined by

N

D°(lagya(vos) ® ay,]) = Z Z(—l)””[l ®Aa VA (VEIL,S) ®4 aoya(vo;) ® a(ll,)],
=01

! 1 -
where ), agr) Ok V;J)rl,s =X (Vj+1,s @k arr).

6.1.1. The first spectral sequence
Recall from Remark 3.7 that

Hy (X, d2) = HE (A, E @4(E/A)®).
Let

dvy: HE (A, E®@A(E/A)®Y) — HE (A, E®@A(E/A)® )
and

Dyy: HE (A, E@a(E/A)®H) — HE (A, E@4(E/A)®H)
d!

be the maps induced by d' and DO, respectively.

Proposition 6.6. For eachr > 0,

Y (A, E@a(E/A)®h) = (Hf (A, E®A(E/A)®4), dy, Dr*)
is a mixed complex and there is a convergent spectral sequence

(EL.. d,)y=0 = HCK, (E),
such that Zf, = HC; (I:If (A E ®A(E/A)®j§)>for allr,s > 0.

Proof. For each s, n > 0, let
F*(TouBC(X, d, D)) == P F* ™ Xy,
Jj=0
where F*~2/(X,_» ;) is the filtration introduced in Section 3.2. Consider the spectral sequence
(E,

v
o & )v>0, associated with the filtration

F° (Tot(BC(X,.. ds.. D,))) € F ' (Tot(BC(X,. d,. D)) € - -

of Tot(BC(f(\ % c/i\*, 5*)) A straightforward computation shows that

0 —~ .
- Z:sr = ®j20 Xr,S—Zjuj’

0 0 0 . -0 ;
- ‘{sr : Z:sr e ZA,r—l 18 @,/30 dr,s—Zju]’

s



3530 G. Carboni et al. / Advances in Mathematics 231 (2012) 3502-3568

1 o~ .
- Z:sr = @jzo Hr (X*»~V_2j’ 23,5—2]’)“]’

1 1 1 . < ; < o
- Jsr : Z:sr - Z:s—l,r 18 @jz() d”-,S—2ju] + @jzo DV’S—zjuj L
From this it follows easily that I:I:( (A, E®a(E/ A)®z) is a mixed complex and
2 v K *
£ = HC, (Hr (A, E ®A(E/A)®A)).

In order to finish the proof note that the filtration of Tot(BC()? % 5\,’* 5*)) introduced above is

canonically bounded, and so, by Theorem 6.2, the spectral sequence (‘£
the cyclic homology of the K-algebra E. [

v v
o & )v=0 converges to

6.1.2. The second spectral sequence
For each s > 0, we consider the double complex

& & 4 lﬁo
~ D0 -~ Do Do

Xagu® <—— X3 s_qu! <—— X3 ou? <—— X3 5_3u°

& a° &

1
|

~ DY ~ DY ~
Xosu® <—— Xo s qu' <=—— X 5ou?

Xosu®
where the module X, osu? is placed in the intersection of the 0-th column and the 0-th row.

Proposition 6.7. There is a convergent spectral sequence
(EL., 95)=0 = HCK, (B,

such that E! = H,(Tot(Z})) for all r, s > 0.

Proof. For each s, n > 0, let

F*(TotBC(X. d, D)) = P F* ™ (Xuj)u’
j=0

where F*$~/ (5(\”,2 ;) is the filtration introduced in Section 3.2. Consider the spectral sequence
(E?., 95.)v>0, associated with the filtration

FO(Tot(BC(X+, dx, D,))) € F'(Tot(BC(Xs, ds, D)) S -+
of Tot(BC(X,, dy, Dy)). By definition
E?r = 5(\rsuo 2] S(\r—l,s—l"t @ ir—2,s—2“2 @ S(\r—3,‘v—3u3 ST
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and the boundary map 8?, : E?r — Egrfl is induced by d+D. Consequently, by Theorem 3.6
and item (1) of Proposition 6.4,

(EY,3°) = Tot(Z,) foralls >0,

sk Ogx) =

and so E! = H, (Tot(Z})) as desired. Finally, it is clear that (E},, d.)y>0 converges to
HCK (E). O

6.1.3. The third spectral sequence
Assume that F takes its values in K ®; V. Recall from Remark 3.7 that

Hy(%..dL) =H)E. A®A” Q).

Let

dry: HAE, A®AY @ E) — HA(E.A®A® @ E)
and

Dr: HAE, A® A @ E) — HA(E.A®A® ®E)
be the maps induced by d° and D°, respectively.

Proposition 6.8. For each s > 0,

A —&* —o* “ o

0 (£, 4047 @) = (H}(E.A®A" @), dy. D.y)
is a mixed complex and there is a convergent spectral sequence

(€r,. 00 )v=0 => HCE, (E),
such that @%S = HC, (ﬁ?(E, AR® Z®* ® E)) forallr,s > 0.

Proof. For each r,n > 0, let
§ (Tot(BC(X. d. D)) = P~/ (Xn—2j)u’.
Jj=0
where
F 7 Xyoaj) = @ Xin—i—2j.
i<r—j

v

Consider the spectral sequence (&;,

07 )v>0, associated with the filtration
§(Tot(BC(X,, ds, D.))) € §' (Tot(BC(X., du, D)) S -
of Tot(BC(f(\ % 3;, 5*)) A straightforward computation shows that
- €)= D0 Xr—js—ju’,
. 0 : 1 j
- 095' €9S - QEr,s—l 18 @jZO dr—j,s—juj’
~ ~ )
- ins = ®j20 H; (Xr—j,*—j, drfj,*fj)u'/’
~ 0}t € > €y I8 Djngdrjis—ji! + Do Drjs—ju’ .
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.. . . A —®* . .
From this it follows easily that H (E, AR A® ® E) is a mixed complex,
1 A il 2 A n
¢ =HAE,A®A® ®E) and € = HC,(HA, (E.A®AY ® E)).
In order to finish the proof note that the filtration of Tot(BC(f(\ %9 Zl;, 5*)) introduced above is

canonically bounded, and so, by Theorem 6.2, the spectral sequence (&}, d¢,)y>0 converges to
the cyclic homology of the K -algebra E. [

6.1.4. The fourth spectral sequence

Assume that F takes its values in K ®; V. Then the mixed complex (5(\ % 3;, 5*) is filtrated
by

‘FO(X\*’&\*”D\*)E‘Fl(}?ﬂﬂa\*ab\*)gfz(g*?a\*’ B*)g"' ) (6'12)
where
Fr(Xy) = @S(\i,n—zﬁ
i<r

Hence, for each r > 1, we can consider the quotient mixed complex

- F(R.d.D))

ro.

T (X, 4. D)

It is easy to check that the Hochschild boundary map of X is Zz’\,l* X e —> X r«—1 and that, by
item (1) of Proposition 6.4, its Connes operator is /D\SS : 5(\” — ?,,SH.

Proposition 6.9. There is a convergent spectral sequence
(€. 8Y)v=0 = HCK, (E),
such that ', = HCy(X") for all r, s > 0.

Proof. Let (£, §.)v>0 be the spectral sequence associated with the filtration

rs’ -rs
FO(Tot(BC(X ., dy. Dy))) € F'(Tot(BC(X,. dv. D)) S -,
of Tot(BC(X, dy, D,)), induced by (6.12). It is evident that
F'(Tot(BC(X, d, D))u) = ) F (Xn—2j)u’.
Jj=0
Hence,
8;95 = S(\rsuo S>) gr,s—Zu ® 5.(:r,s—4u2 S>) 3‘(},5—6”3 ®D---

and 80 : €0 — £° s_1 18 the map induced by d + D. Consequently,

r7

(£2,8%) = Tot(BC(X")),

rs’ -rs

and so &L = HC,(X") as desired. Finally, it is clear that (&Y, 87 )v=0 converges to
HCK (E). O
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7. Hochschild homology of cleft braided Hopf crossed products

Let E := A#;H be the braided Hopf crossed product associated with a triple (s, o, f),
consisting of a transposition s: H ®; A — A ®y H, a weak s-action p of H on A, and a normal
cocycle f: H® H — A, compatible with s, that satisfies the twisted module condition. Let
K be a subalgebra of A stable under s and p, and let M be an E-bimodule. In this section we
show that if H is a Hopf algebra and E is cleft, then the complex (3(\* (M), Zl;) of Section 3
is isomorphic to a simpler complex (X,(M),d,). In the sequel we will use the following
notations:

(1) Fors > 1, we letpc,: H 9 H® denote the map recursively defined by
pc; ==1id,
pc, == (H QK PCy_1 Ok H) o (H Rk c‘g";ci1 R H).
(2) For s > 1 we let H®: denote the coalgebra with underlying space H i, comultiplication
A = pc, oA®k and counit & gt = ¢®. Note that A® induces a k-linear map from

H® 10 HS* x " , which we will also denote with the symbol A et A similar remark
is valid for the maps s,,, gc, and c,, introduced below.

(3) Let 5 H®rE — EQ®¢H be as in Example 1.14. For each s > 1, we let
pSs: (E @ H)® — E® ®; H®k denote the map recursively defined by

H®

ps1 = id,
pis = (E @ pSy_1 ® H) o (E @58 @ H).
(4) For s, r > 1, we let sy H®% @ A®" — A® @ H® denote the map recursively defined
by:
S11 =9,
strit = (A% @cs) o (s1r @k A),
Ss+1,r == (slr Rk H®i) o (V Rk ssr).
(5) Fors > 2, weletgc,: H ® — H®k denote the map recursively defined by:
gc, =rc,
8¢,41 = (H ®k g¢,) 0 Cs1,
where ¢ : H® Q) H® — H® @ H® is the map obtained by mimicking the definition
of sy, but using c instead of s.
(6) Let [M ®Z®r, Ky Qi ﬁ®i be the k-vector subspace of M ®Z®r Rk ﬁ®i generated by the
commutators

am@ay ®chi; — Y m@aa® @chf) with i € K,
i
where

Y 2O @chf] = sthi, @ ).

i
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. _®r _®.Y
Givenm € M,a;, € A~ andh;, € H %, we let [m ® a1, ]y ® his denote the class of
m @ ay, Q hys in
_®)‘ _®S
M®A™ ®.H*

Y”(M) = —Q —x "
M®A™ ,Klg®H™

Remark 7.1. Note the following.

(1) The map pc, acts over each element (h ®x /1) ®k - - - Sk (hy R Is) of H®%S, carrying the /;’s
to the right by means of reiterated applications of c. .

(2) The map pS; acts over each element (a;#h| Qi l1) Qx - - - Qi (as#hs Qi ls) of (E Qp H)®i,
carrying the /;’s to the right by means of reiterated apPlications of 5.

(3) The map sy, acts over each element hi; ® aj, of H R4 A% carrying the h;’s to the right
by means of reiterated applications of s.

(4) The map gc, acts over each element hy; of H S, carrying the i-th factor to the s —i + 1-place
by means of reiterated applications of c.

(5) If the restriction of s to H ® K 1is the flip, then

M®Z®r =)
@ H

Xpy(M) = ————
M® A , K]

Remark 7.2. For each s € N, we consider E ® as a H®:-comodule via
v = pés o (A @ A)%%.

Note that v 0 y® = (y® @ H®) 0 A ye: and that v induce a coaction

va: E®h o E®) @ H®:, (7.13)
such that
vaoy®i =@ H®)o Ay (7.14)

where y®1: H® — E®i is the map given by y®a(hi) = ya(hys). We will also use the
Y p g YV V.

symbol v 4 to denote the map from (E/A)® to (E/A)® @ H-* induced by (7.13). We will
use the property (7.14) freely in the sequel.

! and vy will be represented by the same
1

Remark 7.3. The maps AH®§-’ Csrs c;r], Ssrs Sgr

diagrams as the ones introduced in (1.3) and (1.5) for A, ¢, ¢™" s, s~ land v.

For each r, s > 0, we define the map 6, : )?m M) = X,s(M), by
9([m RaX1s @ alr]) = Z(_])rs [mxl( ) .. x§0) ® aglr)]H Ok ng)(t),
i
where
1 — 1 _
xfo) @4 @4x0 ® X§ )@k @ xD = X(l(;) ®k X(ls) =v4X1s)
and

=0 1 D@ —(0 1
SR @) 0x = 5 15 (x) @)
i
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Proposition 7.4. The map 6, is invertible. Its inverse is the map 0,4, given by

19(X) — Z(—l)”m)/_l(hy)(l)(”) . —l(h(l)(l)(J)) ® YA (h(l)(z)) ® a(lir)v
ij

where

X :=[m®a g Qhy,
Zh(’)@) al) =571 (a;, @ hyy)

i

and

Zzhm(l)(n@ h(l)(2)® a(l) — Z(gc R H®: ) o AH@’S (h(l))® a(l)
i i

Proof. See Appendix B. [
We will need the following generalization of the weak action p of H on A.

Definition 7.5. For all » € N, we let p,: H @ A®" — A® denote the map recursively defined
by

r+1
pri=p and pri1=(pr ®p1)o (H®ks, ®A) o (A® A% ).

Forh € Handay,...,a, € A,weseth-ay, = p,(hQay,).
e = -l
Letd,,: Xps(M) — X,y 15_1(M)bethe map d,, := 6,4 15 0d., oDys.

Theorem 7.6. The Hochschild homology of the K-algebra E with coefficients in M is the
homology of (X«(M), d), where

n n—r
X,(M) = @@ X,(M) and d, ._Zd0n+ZZd,n .
rts=n r=11=0

Moreover,

r—1

—0 .

d (x) = [ma; @ az 1g Qr his + Z(—l)'[m ®ari—1 ®aiai+1 @ ai+1,r10 Q his
i=1

+ Z(—l)r[ar(i)m ®ai,—1]n ®chj)
i
and
=1
d (x) = (=1)"[me(h1) ® a1, ], @ oy

o
+ Z(—l)r+' [m ®air]|,; Qchii—1 ®khihit1 ®xhita s

_1, MH(HOA DHOQR
+ Z(_l)r+s [y(h@)my 1(h§ YU ID( )) ® hE YU D(2) ~a§ )] h§/3 y
I
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where

x = [m ®air]g ® his,
Y h{) @ca? =5 @ i),
i

N .

Z hD @ hﬁ’s)_l R h? = c(hy -1 ®x h§”) & h®

J
and
H(HU ! ' — D j

Y on"Veal) @chi)  @ch® =3 s @ @ch") @kl @chl?.

Jjl j
Proof. See Appendix B. [
Bemark 7.7. In order to abbreviate notations we will write X,s and X, instead of X (E) and
X, (E), respectively.

Ru

Notation 7 8_ Given a K-subalgebra R of A ancﬂ) <u<r,welet 7” (M) denote the k-vector
subspace of X, (M) generated by the classes in X ;(M) of all the simple tensors m @ a;, ®x hyy,

. — —R —R
with at least u of the a;’s in R. Moreover, we set Xnu(M) = X M(M).

r+s=n “‘rs

Proposition 7.9. Let R be a K -subalgebra of A, stable under s and p. If f takes its values in
R, then

=l = —R,[-1
d (Xrs(M)) S X, 01y 5y (M),
foralll > 1.
Proof. This is an immediate consequence of item (3) of Theorem 3.6. [

Remark 7.10. By the previous proposition, we know that if f takes its values in K, then
(Y* (M), c_l*) is the total complex of the double complex (Y** (M), c_lg*, 31 )

*%

7.1. The filtration of (X (M), dy)
Let F/(X,(M)) := @,; Xn—s,s(M). The chain complex (X, (M), d.,) is filtered by

FOX.(M)) € F' (X (M) € F2(Xu(M)) € F3(Xou(M)) C --- . (7.15)

Remark 7.11. By Proposition 7.4 and the definition of (X«(M), d,), the map
0. (Xo(M), dy) — (Xo(M), dy),

givenby 6, =) .. 6y, is an isomorphism of chain complexes. It is evident that 6, preserves
filtrations. Consequently, the spectral sequence introduced in (3.9) coincides with the spectral
sequence associated with the filtration (7.15). Clearly the compositional inverse of 6, is the map

O (Xe(M), dy) —> (X (M), dy),
defined by 9, := P, ,_, Frs.
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Remark 7.12. In [14, Corollary 3.1.3] it was proven that if H is a standard Hopf algebra, K = k
and s is the flip, then the above mentioned spectral sequence satisfies E,2S = H; (H ,H. (A, M )).

. . . =0 =l . .. -
Since the formulas obtained in Theorem 7.6 for d and d involve the transposition s, a similar
result for the general case discussed in the present paper does not seem to be valid.

7.2. Comparison maps

Let
6. (Xu(M).d,) > (MOE® ®,b,) and ¥,: (M@®E® ®.b,) — (Xu(M).d)

be the morphisms of chain complexes defined by E* = ¢* o ¥y and w* =0x0 w*, respectively.
By the comments in Section 3.1, we know that ¥/ o ¢ =idand ¢ o Y = ¢> w is homotopically
equivalent to the 1dent1ty Moreover, by Proposition 3.9 and Remark 7.11, the morphisms ¢ and
1// and the homotopy @1 : qb* I[/* — id,, preserve filtrations.

8. Hochschild cohomology of cleft braided Hopf crossed products

Let E := A#7H, K and M be as in Section 7. In this section we show that if E is cleft, then
the complex (X (M), d*) of Sectlon 4 is 1somorphlc to a simpler complex (X (M), 4 ).
For each r, s > 0, we consider A «H % as a left K¢-module via

(A1 Qr A2) (a1, ®r hys) = Z Maw\é‘) ®k hi’ﬁ,
i

where ), A(l) Rk h(') = s(hyy ®i A2). Let
X" (M) .= Homge (Z®r Rk H®i‘, M).
For each r, s > 0, we define the map 6" : X (M) —> 5(\”(M), by

Q(ﬂ)(ils ® alr) = Z(_l)”xf()) . (O)ﬂ(a(l) ® X(l)(l)),
i

where
0 1 0 _
x! )®A @4 x & xl( @@ xV = X( )®k Xh =vaX1y)
and

Zx(O) oca® @ xV = 50 gy s(x @y ay,).

Proposition 8.1. The map 0" is invertible. Its inverse is the map ' given by
_ NOW - 1
l?(ot)(an ®k hls) — Z(_l)rsy l(hgl)( )(])) . l(h(l)( >(J))C(('}/ (h(l)(z)) ® a(l))
ij
where

Zh%l)@) a(l). s™!(air ®«hyy)

i
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and

(1) (2 ' s ' '
T i el = Y (e, 01 A7) o 4y D 063
J

i i

Proof. For r,s > 0, consiiier Xrs, 5(\,5(_E Rk E) /a\nd X,s(E ®L<\E) as in Sections 2, 3 and 7,
respectively. Notice that (X4 (E Qk E), d,) and (X.(E Qi E), dy) are E-bimodule complexes
via

11([(e1 ®k €2) ® a1y @i hig)Az = [(e1h2 @k A1e2) @ a1 ]n & hug

and
M ([(e1 @k €2) ®a X5 @ ai,]) A2 = [(e1h2 @k Aie2) ®4 X5 Qp ai].

Let 0ys: Xp5 — 5(\”(E Qi E) be the E-bimodule isomorphisms defined by
0(e2®@a X1 ®ar ®er) = [(e1 Ok e2) ®aXis @ arrl,

and let " : Homge (X, s(E Q E), M) — X"* (M) be the isomorphism given by
o (@) (@1 @ hys) = a([(1 @k 1) ® a1, 1z & hiy).

It is easy to see that the diagrams

Hompge (G,S s M)

Homge (Yrs(E Qr E), M) Hompge ()A(”(E 1 E), M)

\LH()mEe (er s M)

w’ HOInEc(XrS, M) (8.16)
\L;r.&‘
e ors ~
X (M) XS (M)
and
—~ Homge (95,M) —
Homge (X,5(E @k E), M) Homge (X (E Qk E), M)
lHomEe (0rs M)
HOmEe(X”, M) 'S
£
= v’ —rs
X"(M) X (M),
where

— ¢ is the map introduced at the beginning of Section 4,
— 6,5 and ¥, are the morphisms introduced in Section 7,

commute. Hence 6”¢ is invertible and ¢"* is its inverse. [
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Letd,”: X777 (M) > X (M) be the map @, := 9" o 4 o "+ =151,

Theorem 8.2. The Hochschild cohomology of the K-algebra E with coefficients in M is the
cohomology of (X*(M), d*), where

n n n—r
X'M)= P X" (M) and d' :=Zd, +ZZd’” "
r+s=n =1 r=1 I=

Moreover,

r—1

do(B)(x) = a1B(ax ®chig) + Y (=1 B(ario1 ® @iy ® a1, Sk hiy)
i=1

+ Y (=1 Blar,—1 @ h))a?
i

and
di(B)(x) = (=) e(h1)B(a1r ®x hyy)
s—1 i
+ Z(—l)rJrlﬂ(alr @k hyi—1 ® hihiz1 Qi hitas)
i=1
+ Z(—l)r+s)/71 (hgl)(j)(l)(l))ﬂ(h§1)(j)(l)(2) . aglr) 0 h(l{z,l)y(hﬁz)%
jl
where
X = ay, ® hyy,
Zh(” ®cal =s""(ar ®hyy),
Z hPY @y h(lﬁ)_l ®h® = cs1.1(hi -1 R h") @ h?
J
and

NG NG, ‘
Zh§ DO &, a(l) Rk h(J) 1 Bk h? = ZS ar, ® h' )(])) Ok hi{z_l @ h?.
7l

Proof. We will use the same notations as in the proof of Proposition 8.1. By that proposition and
the definition of (X *(M ), d*), the map
6*: (X' (M), d") — (X*(M), d"),

given by 6" = 3" . 6", isan isomorphism of complexes Hence, by the discussion at the

beginning of Section 4, the cohomology of (X (M), d ) is the Hochschild cohomology of the
K -algebra E with coefficients in M. In order to complete the proof we must compute dg and d.
Since

Homge (04, M): HomEe((Y*(E k E), dy), M) —> Homge (X4(E ®; E), dy), M),
Homge (04, M): Homge (X4 (E &4 E), dy), M) —> Homge (X, dy), M)
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and
¢*: Hompge((Xs, dy), M) —> X' (M),
where
on = Z ors and "= Z ",
r+s=n rt+s=n

are also isomorphisms of complexes, from the commutativity of the diagram (8.16), it follows
that

@*: Homge((X(E ® E), dy), M) — (X" (M), d"),
where w” == "

rs . .
ras=n @, is also an isomorphism. Hence

dy (B) (i, @k hiy) = o (B)(@oy ([(1 @k 1) @ a1, 1y & hiy))
and
4 (B) (i, @k hiy) = o (B) @y (11 @k 1) @ i, 1y & hiy)).

Now the desired result can be immediately obtained using Theorem 7.6. [J

Notation 8.3. Given a K-subalgebra R of Aand 0 < u < r, we let Y;fu (M) denote the k-vector
subspace of X" (M) consisting of all the K¢-linear maps

B: A% o HY > M

u S—u—r

xR Rk " generated by the

o+
that factorize through the K¢-subbimodule X, ,, (| of A%
simple tensors aj ;1 ®k hy 5,1, with at least u of the a;’s in R.

Proposition 8.4. Let R be a K-subalgebra of A, stable under s and p. If f takes its values in
R, then

4(X T ) € X (M),
foralll > 1.

Proof. This is an immediate consequence of item (3) of Theorem 4.6. [J

Remark 8.5. By the above propoiition, if ]_“ takfs its values in K, then (Y*(M ), E*) is the total
complex of the double complex (X**(M), d;*, d}k*)

8.1. The filtration of (X (M), d")
Let F;(X" (M)) := Dy X" 7" (M). The cochain complex (X" (M), d") is filtered by

Fo(X (M) 2 Fi(X"(M)) 2 F,(X"(M)) 2 F3(X (M)) 2 --- . (8.17)

Remark 8.6. By Proposition 8.1 and the definition of (X" (M), d"), the map
6% (X" (M), d) — (X*(M), &),
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given by 6" = . _ 6" is an isomorphism of cochain complexes. It is evident that 6*
preserves filtrations. Consequently, the spectral sequence introduced in (4.10) coincides with
the spectral sequence associated with the filtration (8.17). Clearly the compositional inverse of
0* is the map

9% (XH(M), d%) — (X" (M), d),
defined by 9" = ) AR

r+s=n

Remark 8.7. In [14, Corollary 3.2.3] it was proven that if H is a standard Hopf algebra, K = k
and s is the flip, then the above mentioned spectral sequence satisfies Egs = H* (H JH (A, M )).
Since the formulas obtained in Theorem 8.2 for dg and d; involve the transposition s, a similar
result for the general case discussed in the present paper does not seem to be valid.

8.2. Comparison maps

Let
¢+ (Homge (E®", M), b*) — (X"(M),d")
and
V(X (M), d) — (Homge(E®", M), b*)

be the morphisms of cochain complexes defined by @ =" o$* andy " = </j>\* o6*, respectively.
By the comments in Section 4.1, we know that ¢ o ¢ = id and ¥/ o ¢ = 1///\ ) a is homotopically
equivalent to the identity. Moreover, by Proposition 4.9 and Remark 8.6, the morphisms ¢ and
¥, and the homotopy ®*t!: ¥ o ¢" — id*, preserve filtrations.

9. The cup and cap products for cleft crossed products

Let E := A#;H, K and M be as in Section 7. Assume that E is cleft. The aim of this section
is to compute the cup product of HH}’} (E) in terms of (Y*, 3*) and the cap product of Hf (E, M)

in terms of (X", d") and (X, (M), d,). We will use the diagrams introduced in (1.1), (1.2), (1.3),
(1.5) and Remark 7.3. We will need the following generalization of the maps p, introduced in
Definition 7.5.

Definition 9.1. For all r,s € N, we let p;,: H® @ A% — A% denote the map recursively
defined by

p1r = pr and Ps+1,r = Pl1r © (H Qk psr)-
Forhy,...,hys € Handay,...,a, € A, wesethy -ay, := pgr(hiy Q¢ ay,).

Remark 9.2. The map py, will be represented by the same diagram as p.

Notations 9.3. Let B be a k-algebra. For all n € N we let u,: B® — B denote the map
recursively defined by

n1:=idp and puy1 = pup o (U A B).
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<r+r s+s'

Definition 9.4. For 8 € X ' and B’ € X ° we define B x B/ € X as (—1)"'S times the
map induced by

D p Cc ¢
4

where
- D= A®, D = A®2A,JC = H® and C' := H®: ,
- B:D®;C — Eand B': D' ®; C' — E are the maps induced by 8 and f’, respectively,

—u:=pyo y®'7c/ and U := g o 7®7§/ o gc,/, in which ¥ is the convolution inverse of y.
Proposi/ti/on 9.5. Let o be the operation introduced in Definition 5.1. For each f € X" and
peXx”,

O(BxB)=06(B)eb(B).
Proof. See Appendix B. [

Theorem 9.6. Let B € X ', B € X * andn :=r+r +s+s'. Let R be a K -subalgebra of A,
stable under s and p. If f takes its values in R, then

S(FB) TB)) =p+p modulo €D Xy,
i>s+s'

where Y’;ﬂ;l denotes the k-vector subspace of X' consisting of all the K°-linear maps

B: A% R H*

— E,
that factorize through W 0 CR¥, where W and CR* are as in Notations 4.5.

n >’

Proof. This is an immediate consequence of Proposition 9.5 and Theorem 5.2. [

Corollary 9.7. If f takes its values in K, then the cup product of HH} (E) is induced by the

operation x in (Y*, 3*).
Proof. It follows from Theorem 9.6, since Y’;(_(i)’ =0foralli. O

Definition 9.8. Let 8 € X .Forr > r’ and s > s’ we define

Xps(M) ————————> X, 1y (M)

[m®aylp @ hiy—— ([m @ ay, ]y i hiy) x B
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as (—1)" 6= times the morphism induced by

where

- D =A% D =A%  C:=H® and C' .= H®,

— B: D' ®; C' — E is the map induced by 8,

—u:=pyoy® and W := py o P& o gc,, in which ¥ is the convolution inverse of .

Ifr <7 ors <s’, then we set ([m ® ay, 1y Qhiy) » B :=0.

Proposition 9.9. Let e be the action introduced in Definition 5.4. The equality
9 (([m @ ai]u @k his) x B) = ¥ (Im @ a1, 1y R hys) @ 6()

holds for each [m @ a1,y Qi his € X, (M) and B € Yr,s,.

Proof. See Appendix B. O

Theorem 9.10. Let [m @ a1,y Qchys € X,s(M), Be X ° andn:=r+s—r —s'. Let R be
a K-subalgebra of A, stable under x. If f takes its values in R, then

V(o(Im @ ay g @k hi) ~ ¥ (B)) = (Im @ ai 1y chis) * B

modulo

—RI —R s—s' g
D (Xn_i’i(M) + MB(XEL) @a(E/A®Y ®A )
i<s—s’
where 75; denotes the k-vector subspace of A% Rk " generated by all the simple tensors
ay, ®y hy g, with at least 1 of the a;’s in R.

Proof. This is an immediate consequence of Proposition 9.9 and Theorem 5.5. O

Corollary 9.11. If f takes its values in K, then in terms of (X+(M), dy) and (Y*, E*), the cap
product

HX(E, M) x HH(E) — HX | (E, M),
is induced by *.

Proof. It follows immediately from the previous theorem. [
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10. Cyclic homology of a cleft braided Hopf crossed product

Let E = A#yH, K and M be as in Section 7. In this section we show that if E is
cleft, then the mixed complex (X*, d*, «) of Section 6 is isomorphic to a simpler mixed
complex (X4, dy, Dy). We will use the diagrams introduced in (1.1), (1.2), (1.3), (1.5),
Remarks 7.§\and 9.2.

Let 0,: X, — X4 be the map introduced in Remark 7.11 and 9 its inverse. Recall that
b = D, 15— /G\rs. Hence ¥, = @, ,_, Urs, Where 9 is the inverse of 6,;. For each n > 0, let
D, :=6,410 D, 0 9,.

Theorem 10.1. (Y*, dy, 5*) is a mixed complex that gives the Hochschild, cyclic, negative and
periodic homologies of the K -algebra E. More precisely, the mixed complexes (Y*, d,, 5*) and

(E ® E®*, by, B*) are homotopically equivalent.
Proof. Clearly (7 o s, 5*) is a mixed complex and
Oy : (g*s ’d\*s 5*) — (Y*v 3*7 5*)
is an isomorphism of mixed complexes. So the result follows from Theorem 6.2. [J
We are now going to give a formula for D,.For0 < j<s,let
~ —Q" —® ®A+1
T:M®A ®kH —>M®A ®kH K

be the map induced by

where
- D =A%, C:=H® and C' := H®
— &' . ..
— ¥ denotes the map ¥®+ *, where ¥ is the convolution inverse of y,

— 1 denotes the maps u; and pg—j,

5=
— u denotes the map ps—j o y®k
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— & denotes the map gc,,_,; introduced in item (5) of Section 7,
— S denotes the map S ®
andlet7;: X, — X, 41 be the map induced by 7;.
In the next theorem we use the notation F(X,41) := F*(X,41) N ij—l (E).

Theorem 10.2. Let R be a K-subalgebra of A, stable under s and p. If f takes its values in R,
then the map Dy, : X3 — Xp41, where r + s = n, is given by

S
Dy =y (~) g,
j=0

modulo Fy, Xng1)
Proof. See Appendix B. O

Applying the previous theorem to the classical case (i.e. when H is a standard Hopf algebra
ands: H ®; A — A ®y H is the flip), we obtain an expression for D modulo F)Ye (X5+1), which
is more convenient than the one given in [8, Theorem 3.3]. Explicitly, we have:

s
— ; 4 Dy — 1,0
D) = Y (=D [yl 6ay nyy T 6@y -y )
=0
(3) 3) 3 () 2) (D 1 (2)
L CERY N (h$ - ay,)- )]H ®ch;L,  ®rhy Sy - hf ))®khlj
modulo Fj, (X,41), where
X = [ay (ho) ® a1, 1y @i hyy,
(O] 2 3) 4) (©) (i ) 3
hi o ®ch i @chi), (®chil, (®chil, = (‘dH®,{ Ok AH®5—/‘) o Apyes (hiy)
and
h-a, =h" a1 ® - @h" . a,

in which & - a denotes the weak actionof 7 € H ona € A.
10.1. The spectral sequences

Let

-0 — —
dyg: Xes = Xr—1y and d: Xpg = X1

rs:*

be as above Theorem 7.6 and let
—0 — —
Drs: Xrs = X541

be the map defined by D' (x) = Y 50 (— 1)+,

10.1.1. The first spectral sequence
Let

Jrs: H, (Y*s» 3(>:s) — H, (Y*,S—lv 32,5_1)
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and

brs . H, (Y*v s

—0

d

xS

) — H, (Y*,s+17 d
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. =1 —0 .
be the maps induced by d and D, respectively. Let

0
*,s+1)
0 = = = 1 — - —

F (Tot(BC(X«, dx, Dy))) € F (Tot(BC(Xy,dy, Dy))) C -+

be the filtration of Tot(BC (X, dy, Dy)), given by

j=0
satisfies

F (Tot(BC(X. d. D)n)) = EP F* 4 (Xp_2j)u’,

where FS=2/(X,_» ;) is the filtration introduced in Section 7.1. Since the isomorphism
9*2 (g*, 21\*, 5*) — (Y*, E*v 5*)a

particular

0, (7 *(Tot(BC(X, d, 13)),,)) = F*(Tot(BC(X, d, D)),

d,). drs. Drs

v

. )

where F° (Tot(BC(f .d, 5))n) is as in the proof of Proposition 6.6, the spectral sequence
-0

introduced in that proposition coincides with the one associated with the filtration (10.18). In
I:Ir (Y**a d**) = (Hr (Y**7
is a mixed complex and

2 N -0
L, = HC, (11, (X..r.2.)).
10.1.2. The second spectral sequence

For each s > 0, we consider the double complex

& & ia‘) ia‘)
—0 —0 —0
— Jo - Jo - Jo
X3gu® <—— X3, qu! <—— X3 _ou® <— X3 4_3u°
g, = a i izo
_ 5 _ 5 _
Xosu® <— Xo s ju' <—— X 5_ou®
& &
_ ’
Xlsuo Xl,sflu
&

(10.18)
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where XozuY is placed in the intersection of the O-th column and the 0-th row. Let
FO(Tot(BC(X, dy, Dy))) € F'(Tot(BC(X4, dy, Dy))) C -+ (10.19)

be the filtration of Tot(BC(X, dx, Dy)), given by

D)),) =P F* I (Xuaj)u’,

j=0

F*(Tot(BC(X, d,

where FS~/(X,_» ;) is the filtration introduced in Section 7.1. Since the isomorphism
Oy (5(\*, a\*, 5*) — (7*7 E*a 5*),
satisfies

0, (Fs (Tot(BC(X, d, 13))n)) = F*(Tot(BC(X, 4, D))a),

where F* (Tot(BC(f(\ ZZ\ 5)),,) is as in the proof of Proposition 6.7, the spectral sequence
introduced in that proposition coincides with the one associated with the filtration (10.19). In
particular Tot(ug) ~ Tot(Z,), and so E = H(Tot(Z)) forall r, s > 0.

10.1.3. The third spectral sequence
Assume that f takes its values in K. Let

dys: My (i dy) — Ho(Krmrndy )
and
Dyt Hy (X, dy,) — Hy(Xrar1,dy i)
be the maps induced by 30 and 50, respectively. Let
F°(Tot(BC(X 4, d, Dy))) € §' (Tot(BC(X 4, dy, Ds))) C -+ (10.20)

be the filtration of Tot(BC(Y*, dy, Dy)), given by

§ (Tot(BC(X. d. D)) = P F 7 X2’
J=0
where
F 7 Xnoaj) = @ Xin—i—2j.
i<r—j

Since the isomorphism
Oy : (5(\*, a;, 5*) — (Y*, 3*7 B*):
satisfies

6, (3" (TotBC(X, d. D)) ) = §' (Tot(BC(X, d. D)),
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where §" (Tot(BC()A( .d, 5))n) is as in the proof of Proposition 6.8, the spectral sequence
introduced in that proposition coincides with the one associated with the filtration (10.20).
In particular

ﬁs (Y**, El*) = (Hs (Y**, El*), dv*m b*s)

is a mixed complex and

—

€2 =H,(X..d,,) and €2 =HC, (HS(X**, d**)>.

Remark 10.3. The homology Hj (Y o El*) seems to be difficult to compute because of the

involved formula of @'. In particular it is not clear for us if H semisimple implies that
H; (Y,*, Ej*) =0fors > 0.

10.1.4. The fourth spectral sequence
Assume that f takes its values in K. Then the mixed complex (Y*, dy, 5*) is filtrated by

F (X4 dy, Dy) € F'(Xs,dy, Dy) C F*(Xsds, Di) S -+, (10.21)
where
Fr(Xn) =P Xin-i-
i<r

Hence, for each r > 1, we can consider the quotient mixed complex
ir '_ JTV(Y*’E*’E*)
' -7:7_1(7*,3*,5*)'

It is easy to check that the Hochschild boundary map of X is 3:* : Xys — X,.+_1, and that, by

item (1) of Theorem 10.2, its Connes operator is 5?*: X — 7,,*“. Since the isomorphism
9*2 (g*, 21\*, 5*) — (Y*, E*v 5*)’

satisfies

@(fr(;?*, dy. 13*)) = F'(X,..d. Dy),

where F" ()? %9 21;, ﬁ*) is as in Section 6.1.4, the spectral sequence introduced in Proposition 6.9

coincides with the one associated with the filtration (10.21). In particular X ~ X' and so
& =HC(X).

Appendix A

This appendix is devoted to prove Propositions 3.11-3.13. Lemmas A.1, A.2, A.4 and A.6,
and Propositions A.5, A.7 and A.9 generalize the corresponding results in [8]. Except for
Propositions A.5 and A.8 we do not provide proofs, because the ones given in that paper work in
our setting.
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We will use the following notations.

(1) We let L,y C U,y denote the K -subbimodules of X, generated by the simple tensors of the
form

1Qayalvis) @a,®1 and 1Q4 va(vis) ®ar, Q y(v),

respectively. Moreover we set

Ly = @ L.y and U, = @ Us.

r+s=n r+s=n

(2) Given a subalgebra R of A we set

R1 . R1
Xn = @ er

r+s=n

where X! is as in Notations 2.3.
(3) We write Fj(X,) := F'(X,) N XK.

(4) We let W, denote the K-subbimodule of E' ® F@)n ® E generated by the simple tensors
1 ® X1, ® 1 such that x; € A U Vg forall i.

(5) We let W, denote the K -subbimodule of E ® E®n ® E generated by the simple tensors
1 ®x1, ® I suchthat #({j : x; ¢ AU Vk}) < 1.

(6) Given a subalgebra R of A, we let C f denote the E-subbimodule of E ®F®n ® E generated
by all the simple tensors 1 ® X1, ® 1 with some x; in R.

(7) Let R; denote F/ (E® E° @ E)\ FI"(E® E® ® E).

The identification X,y >~ (E Rk V®2) ® K®r ® E induces identifications
Ly~(KxV*) @AY @K and U~ (K V) ®A® @KV,

where, as at the beginning of Section 2, V' denotes the image, k ® V,of y: V — E.

Lemma A.1. We have
n n—r

— _ 0 -1 l
O+l = =00,n41° Tpt1 ©Vn + Z Zgr+l+1,n7r71'
r=01=0

Lemma A.2. The contracting homotopy & satisfies & oo = (.

Remark A.3. The previous lemma implies that

Y (Xon ® 1) = (=1)"5 0 ¥ (Xon)

foralln > 1.

Lemma A 4. It always holds that d' (L) C Ur4i1-1,5—1, for each | > 2. Moreover

dl(Lrs) - ELr,s—l + Ur,s—l-
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Proposition A.5. Let R be a subalgebra of A, stable under x. If F takes its values in R i V,
then

P(1®4ya(vi) ®a1,—i ®1) =1 @ Sh(vy; @k a1 n—i) ® 1
modulo F'~1(E ®F®” ® E)nW,nCk.
Proof. We proceed by induction on n. For n = 1 this is trivial. Assume that it is true for n — 1. Let
X :=1®4 ya(vii) ® aj ,—; ® 1. By item (2) of Theorem 2.4, the fact that d'(x) € Un—iti—1,i-1
(by Lemma A.4), the inductive hypothesis and the definition of £, we have

Eopod(x) e F' (EQE® @ EYn W, NCR foralll > 1.
So,

px)=to0¢pod’X)+Eopod (x) (mod FI™'(E 9EY ® E)NW,NCH).
Moreover, by the definitions of °, ¢ and &,

Eogod’(®) = (—1)"E0d(1®ayavi) ®ar i),
and by Theorem 2.4 and the definitions of ¢ and &,

Eogod' ® =) (-)top(1®syatvii—) ®a),_; @y (),
l

where Zl agl,)nfi Rk vl-(l) = X (v; ®ay ,—i). The proof can be now easily finished using the
inductive hypothesis. [

Lemma A.6. Consider a stable under y subalgebra R of A such that F takes its values in
R ®y V. The following facts hold.

(1) Let x == 1®a ya(V1;) @ aj11,0. If i < n, then
Tx) =X = (=1)"®aya(vi)) @211, ® 1.

Q) Ifz=1@4va(V1i-1) ® Ajn_1 @ any (vy), then o' (z) € Uyp_iyip1i-1- for | = 0 and
ol(z) e XR for1 > 1.

G)If2=1@aya(V1i-1) ® i1 @y (vy), then o' (z) = 0 for | = 0.

D Ifz =10aya(vii—1) @ aj -1 @ apy(vy) and i < n, then o(z) = O'O(Z), modulo
Fi72(X,) N Uy

G)Ifz = 1Qaya(Vin—1) ® ayy(vy), then o(z) = —0% 0 071 0 v(2) 4+ 6%®2), modulo
Fi2(X,) N U

©) If 2=1®4ya(V1.0-1) ® ¥ (vp), thenT(2) = =0 0 0" 0 v(2).

MNDIfz=104ya(V1,i-1) ®2; 1 @y (vy) and i < n, theno (z) = 0.

Proposition A.7. Let R be a stable under x subalgebra of A such that F takes its values in
R ®y V. The following facts hold.

MYARYMWi)®a11, ®1) =1®aya(vii) @211, L B
Q) Ifx=1®x1, ®1 € R; N W, and there exists 1 < j < i suchthat x; € A, then ¥ (x) = 0.
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A Ifx=10y(Vii-1) ®aiyv) @ajt1,, ® 1, then
V(X)) =1Q4 ya(vi,i—1) @aaiy(v) ®ai41, @1
: _ ) 0
+ Z ®A VA(Vl,l—l)®al ®al+1)n®y(v, )7
7

modulo FI’.Q_Z(X,,) N Uy, where ), a;lilyn Qx vl.(l) = X (v; QK Aj+1.1)-
@D Ix=10y(vj-1)®a;y(v;)) ®Y(Vj+1,i) ®aj+1, ® 1 with j < i, then
YX)=104va(V1,j—1) ®aajy(v;) ®aya(Vit1,i) a1, ® 1,
modulo Fiy 2(X,) N Uy.
O)Ifx=10y(v,i—1)®a;,j—1®ajy(;)®ajt1, ® 1 with j > i, then

Y(x) = Z 1®4aya(vii-1) ®a;; ® a.(/‘l—)i-l,n ® V(U;D),
]

modulo FI’;Z(X,,) N Uy, where ), a;lil’n Rk v;l) =XV ®raji1n).

6)Ifx=18x1,®1 € Ry N W, and there exists | < j1 < jo < n such that Xj € A and
Xj, € Vk, then Y(x) € Fiy 2(X,) N Uy

Proof. Fgr items (1)—(5) the proofs given in [8] work. We next prove item (6). Assume first that
Xn & i7(A) UV. Then, by Remark A.3 and item (2),

Y(x) = (=D"0 o y(1®x1x) = (—=1)"7(0) = 0.

Assume now that x, € A. Then, by the inductive hypothesis

i—2
Y =(=D"Toy(1®x1,) €T <X,f_‘1 nép Un—1—1,1A> ,
=0

and the result follows from items (1) and (4) of Lemma A.6. Finally, assume that x,, € V. Then,
by the inductive hypothesis or items (3), (4) or (5),

i—2
Yv(x) =(=1)'"coy(1®x1,) €0 <AUn—i,i—1 @ @ Un—l—l,W) )
=0
and the result follows from items (4) and (7) of Lemma A.6. [
Proposition A.8. The following facts hold.
M Ifx=1Q0y(vy)®ay,—; @1, then
$oy(x) =1Q®Sh(vy; ®ar,—i) @1

modulo Fi_l(E ®F®n ® E) nw,nNn C,If.
(2) If x=1®x1,®1 € R;NW, and there exists 1 < j < i suchthatx; € A, then po(x) = 0.
G)Ifx=1®y(Vii-1) ®a;y(vi) ®ait1, ® 1, then

pov® =Y a @Sh(v\_, Ok vi Rk ais1n) ® 1
l

1 1
+ > 1®Sh(vii—1 ®a; ®a)), ) @y
1
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modulo
(FU(E®E” @ E)naw, + FA(EQE® ® E)nW,V)nCk,
where

1 ] ) 1
Y al @uvli | = x(viic1@ca) and ZaflM@ v = T (v @k ars10)-
1

@D Ix=1Qy((Vj-1)®a;jy©;) ®Y(Vj+1,)) ®ai+1, ® 1 with j < i, then
goym = al @Sh(v{’,_ @V ®airia) @1,
]
modulo
(F(EQE” @ E)naw, + FA(E®E” @ E)nW,V)nCf,
where Z,aj)@)k v%l) 1= x(V1,j—1 @k aj).
G Ifx=1QyVi- l)®311 1®ajy(j)®ajr1, ®1with j > 1, then

poY(x) = Z 1 ® Sh(vy,i—1 ®ra;; ® ajH,,,) ® )/(vﬁ-l))
]
modulo F'=%(E ®E®n ® E) N W,V NCR.

©) If x=1®x1, ® 1 € Ri N W, and there exists 1 < ji < j» < n such that Xj € A and
xj, € Vg, then

poyx e F2EQEY ® E)nW,VnCk.

Proof. (1) This follows from item (1) of Propositions A.7 and A.5.
(2) This follows from item (2) of Proposition A.7.
(3) By item (3) of Proposition A.7,

poy(x) = Z¢ (@” ®aya_ @k vi) ® 2114 ® 1)
+ fo’ ®ava(vii-1) ®ai ®a,(21n®y(v(1)))

modulo ¢>(F1"{2(X ) N U,), where
Zai(l) Ok vgl)l | = x(V1,i—1 ®ka;) and Zal(lll n Ok v(l) =X (vi ®k Aj+1,n)-
I
The desired result follows now from Proposition A.5.
(4) By item (4) of Proposition A.7,
$op(x) = Z¢> D @ryav_ @vi) @i, ®1)

modulo Fl"e_z(X,,) N U,,, where Zl ai(l) Rk v(ll)l 1 = X (V1,j—1 ® a;). To conclude the proof of
this item it suffices to apply Proposition A.5.

(5) By item (5) of Proposition A.7,
poy(x) = qu ®aya(vii-) ®a; @aly,  ®ye)),
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modulo ¢(F1’IQ_Z(X,,) NUy,), where ), a EIJ)H 2 Ok v( )= =X (vj ®kaj+1,n). The result follows by
applying Proposition A.5.

(6) Proceed as in the proof of item (5) but using item (5) of Proposition A.7 instead of
item (5). O

Proposition A9. If x=1® X1, ® 1 € R; N W), then

. _®n+l
wx) e F(EQE  QE)NWyyi.

Appendix B

The purpose of this appendix is to prove Proposition 7.4, Theorem 7.6, Propositions 9.5 and
9.9, and Theorem 10.2. We will freely use the notations introduced in the previous sections, and
the properties established in Definitions 1.6, 1.8 and 1.13, and Remarks 1.7 and 1.9. We will also
use the diagrams introduced in (1.1), (1.2), (1.3), (1.5), Definition 1.2 and Remarks 1.15, 7.3 and
9.2. Actually, in this appendix we will use them with a wider meaning. Finally we let 7 denote
the convolution inverse of y.

Let C; and C, be two coalgebras. It is easy to see that if ¢c: C1®; Ca — Cr®; Cy is
compatible with the coalgebra structures of C; and Cj, then Ci ®; C, is a coalgebra with
counit ec, ®k ¢, via A == (C] @ c® C2) o (Acl R ACZ). We will denote this coalgebra
by Cl Q¢ C2-

Lemma B.1. Let E be a k-algebra. If u: Ci — E and v: Co — E are convolution invertible
k-linear maps, then the map ug o (u @y v) is also convolution invertible and its inverse is
WE © wleruHoe

Proof. Setw:=u"',7:=v"!, f:= ppo(u®;v)and g :== ug o (VR i) o c. We have

fg= ?Jg‘”“m@’

as desired. Similarly g * f = ngpoec,g.c,c U

Let E be a k-algebra. Recall that for all s € N we let u: E® — E denote the map
recursively defined by

ur:=idg and psip = pg o (us A E).

Lemma B.2. Let E be a k-algebra and let H be a braided bialgebra. If u: H — E is a
convolution invertible k-linear map, then for all s € N, the map [ o u®t, is also convolution
invertible. Its inverse is jus o i®k o gc,, where u is the convolution inverse of u and gc,: H G -
H® is the map introduced at the beginning of Section 7.

Proof. We make the proof by induction on s. The case s = 1 is trivial. Assume that the
result is valid for s. Let C; := H®: and C; = H. By the previous lemma the k-linear map
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IE © ((,us o u®i) Rk u) is convolution invertible and its convolution inverse is @g o ((,us o
% o gc,) ®k ﬁ) o cg1. But, by [13, Corollary 4.21], we know that H®§+1 = C1 ®¢,, C2 and

1
et

(@®k o ge,) @) ocy1 = u® ogey,y. O

Proof of Proposition 7.4. Let
Os: MR®4CRkD—> M@ DR C and Brs: M@ D@k C — M®4C Qi D,

be the k-linear maps diagrammatically defined by

M D C
J

e bg\ﬁ and

where

- C:=H%,C = E® and D := A%,

— t is the map induced by s : E® — E,
—y =y® and U := pu,; o y®k o gc,.

R
Il

It is easy to see that 65 and ¥, are induced by -=n~ 5” and (— IN)” 5”, respectively. Hence in
order to finish the proof we must see that ¥, o 6,; = id and 6,5 o ¥,; = id. Let

L:C—>E®,C and L:C—> E®4C
be the k-linear maps defined by

L=@ExD®C)owa®C) and L := (s 07%% oge, @k y®1)o Ac,
where v 4 is the coaction introduced in Remark 7.2. Clearly

0= (M ®s5) 0 (5@ C® D)o (M®4 L& D)
and

9= (5®k C ®x D) o (M®kz®k D) o (M®k S;rl),

where g denotes tlle riggt action of E on M. We will prove that 5” o 5, s = id and we leave the
task to prove that 6,5 o ¥,y = id to the reader. Let I': M ®; C — M ®4 C be the isomorphism
given by I'(m ®x hyy) = m ®4 ya(hiy). Since

Brs 06y = (FRC)o (ML) o (FRkC)o(M®aL) D
and
(M®aL)ol' = (M®a 50 y® @ C) o (M & Ac),

we have

M C M c
I o(@@rC) oM@ L)o(p@kC)o(M®aL)ol = H%— @

where v := g o y®i and v := u; o 7®7< o gc,. To finish the proof it suffices to note that v is the
convolution inverse of v, by Lemma B.2. [
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Lemma B.3. Let s, r € N. For C .= H® and D = A®1r<, the equality

c D

%=

is true.

Proof. When s = r = 1, the formula is true by definition. Assume that » > 1 and that the
formula is valid for H and D' := A% "', Let D := A®". We have

H p A

Assume finally that s > 1 and the formula is valid for C’ := H ® " and D .= A%, Then, we

KR

where C .= H®:.
Lemma B.4. Let s, r € N. For C :== H® and D := A%k, the equality

o

Proof. In fact, we have

SRR

where the first equality follows from Lemma B.3.
Proof of Theorem 7.6. By Remark 7.11, the map
Ot (Xo(M), dy) = (Xu(M), dy)

is true.

is an isomorphism of chain complexes. Hence, by the discussion at the beginning of Section 3,
the homology of (X, (M), d) is the Hochschild homology of the K -algebra E with coefficients

. =0 =1 . =0
in M. In order to complete the proof we must compute d and d . First we consider the map d .
Let

i M@y E® @ A% > M4 E®h @ A% (0<i<r)
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be the morphisms defined by

m®aX|s—1 Q4 xsa ® a, ifi =0,
Vi(mQ@aXis ®ag) = {mMOaXi; Qa1,—1 ®aai+1 a4, f0<i<r,
arm @4 Xis @ay | ifi =r.
For0 <i < r,setv; := 6 oV; o}, where § and ¥ are as in the proof of Proposition 7.4. By

item (1) of Theorem 3.6 we know that d° is induced by > _o(—=1)'7;. Hence, 2" is induced by
Yo _o(=D* +i7;. So, in order to complete the computation of 4 it is enough to calculate the v;’s.
We begin with the computation of vy. Let C := HE® , D= A® , Y = y®'1v<_] , W= Ms—1,

s—1

u=poyandu:=puoy® o gc,_1. Since, by Lemma B.2,

fc B 4 ¢ " + [i\ i ¢ H 4
4 gt e
] L] =2

|

we have
MAD4CH
/J
A
_ / M A DCH
o= () = [( =H 1
AN
B 1 %
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i—1 r—i—1 K 3
Now, we compute v; for 0 < i < r. Let Dy = A® Dy = A% ,C = H®f‘, y = y®i,
—_ —_—Y
= s, u:=poyandu = puoy® ogc,. By LemmaB.2

M Dy A ADycC
! 2F M DA ADyC

r—1

It remains to compute v,. Let D := A®k
U :=poy® ogc,. By LemmaB.2,

,C = H®,y = y®, = pus,u = oy and

D AC
J

D

M
V= ég

AC
J M D AC

/;
@

Ui M @4 E® @ A% — M@, E® @ A% (0<i<s)

=1
We next compute d . Let

be as above Notations 3.5. We set

W =0oWjod for0<i<s.
By item (2) of Theorem 3.6 we know that d! is induced by Zfzo(— 1)i%;. Hence, 31 is induced
by Zl’fzo(—l)r“ﬁi. So, in order to complete the computation of 31, we must calculate the

s—1

7;’s. We begin with 7. Let D = A®, C = H® W o= pg—1,u = poy® and

s—1
U:=puoy® ogc,_ ;. Again by Lemma B.2,
78 D H C " D HC
7 J g

up =
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— . i—1 s—i—1 .
Now, we compute i; for 0 < i < s.Let C; := H®  and C, := H® '~ . Consider the map
, .
®: H® —s A®; H® |

diagrammatically defined by
b b

@:: \ ’

T

i—1 s—i—1
where y denotes both y®x  and y®k  , and p denotes both ;1 and us_;_1. Since

ok

where C := H® u;: H® —> H®: ' is the map given by

C

Cy

ui(hyy) =hy i1 Qrhihiy1 Qrhiyo

i—1 s—i—1

and u denotes ;1 0 y® , ws_i—1 0 y®  and u; o y®, we have

E@% éjg%ﬂdzg;“é,

where D := A% and U := p; o 7®i o gc,, again by Lemma B.2. Finally, we compute u;. Let
s—1

C = H®i_], D = A®i,u = Uy—1 oy‘g’sk_I andu = /,LS_107®1<_ ogc,_;. Again by Lemmas B.2
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and B.4,

which finishes the proof. [

Lemma B.5. We have

c ¢ D
cCc D \C

= \ ’

Y
where C == H®:, C' := H® and D := A%,
Proof. For s = s’ = r = 1 the result is valid by definition. An inductive argument using

I-<A:I-<<1A=\\\ |
SRR

shows that the result is valid when s = r = 1 and s’ € N. A similar argument using the equality

H C ¢ A
H Cc A

Nead %t
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shows that the result is valid when r = 1 and s, s’ € N. Finally, again an inductive argument

using
C[/DA CLC’DA (LC/DA CLC/DA C\i‘;DA
=\ =0 =\ = \ s
R G [
%} <y Ly HY
O

completes the proof.

Lemma B.6. The following equality holds:

C D
Xy
where C := H®: and D := A®k.

Proof. In fact,

C D
C D C D
where the first and last equalities follow from Lemma B.3. [

Lemma B.7. We have

D C ¢’ D C (¢
J
SR
where C .= H®:, C' := H® and D = A®%.

Proof. In fact, we have

D C ¢/

c 7 7 b c c’
D//CC’ ///) D;C D4CC k D C ('
A (159 1N Tl A& i |
AN
where the first equality follows from Lemma B.3, and the third one follows from
LemmaB.5. O

Let
9" : Homa p)(E® ® A®', E) — Homg< (A® ® H®, E)
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and
6™ : Homge(A® @ H®, E) — Hom(a ) (E®4 ® A®', E)
be the k-linear maps diagrammatically defined by

D C

-, ¥
5(,8) :=é\ and 5(0{) ::éé ’

where

—C:=H%,C=(E/A)® and D = A%,
— T is the map induced by s : E® — E,
-y = y®ix and u = 07®i o gc,.

It is easy to see that ”° and 9" are induced by (—1)”5” and (—1)”5”, respectively.

Definition B.8. For

o € Hom i) (E® ® A% E) and o € Homeu i (E4 ® A | E)
we define

oea’ € Homy p) (E®SAN ® A®'”’ E)
by

(@e) (ya(vig) ®ay) = Y a(ya(viy) ®af))a (vav'), ) @ ariy,).

1

where r” :=r +r/,s" =5+ and ), aglr) ®k V‘EIJ)FLS,, =X (Vs41,5” ®@arr).

LemmaB.9. Let C := H®, C' .= H® , D := A® and D' := A® . We have

where

— y denotes the maps y®'/§, y®ls< , y®iﬂ and y®jx,
—  denotes the maps s and [Ly,

— U= Uy o y®7< and u denotes both the maps (s o 7‘8’7« o gcg and Ly o 7®7§< 0 gCyr.
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Proof. In fact,

where the first equality follows from the definition of 5(,5):5(,5/ ), the second one, from
Lemma B.6, and the third one, from Lemma B.2. [

Proof of Proposition 9.5. Let C := H®:, ¢’ .= H® , D := A% and D' := A® and let
B:D®iC—>E and B:D & C — E
be the maps induced by 8 and 8, respectively. Let

— y denote both the maps y®4 and y ®x,

— 1 denote both the maps us and g/,
— u denote the map gy o ¥k,
— 1 denote both the maps jz5 0 7®k o gc, and iy 0 7 o ge,.

We have

where the first equality follows from Lemma B.9, the second and third ones are easy to check
(and left to the reader), and the last one follows from Lemma B.7. So, in order to finish the proof

(DB e0(p)). O
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Lemma B.10. Let C := H®:, C' .= H® and D := A®k. We have:

where

— y denotes the maps y®7r< and J/®'2,
— W denotes the map iy,

/ /
—u:= uy o y® and U denotes both the maps s o 7k o ge, and Ly o 7% o gc,.

Proof. By the definition of 6 and Lemma B.2,

c’ c D’
, , L \.(
c C D 2\
(X% o0
%) - | ® -
8B | 7|

as desired. [

Definition B.11. Let 7’ < r and s’ < s. For
m®asX; ®a;, € M®4 E®4 @ AY  and o€ Hom(A’E)(E@YA/ ® A% E),
we define
(maya(vis) ® ay, ) € M ®4 ESi” @ A%
by
(m®aya(vis) ® aj)ea = Z ma(ya(vViy) @ a(lir),) ®4 yA(vg’;)JrLs) a1,
i

where ) a(lir), Rk VSLLS =X (Vy1,s ® a1).
Proof of Proposition 9.9. The case s < s’ or r < r’ is trivial. Assume that s’ < s and r’ < r.
Let C .= H®, C' = H®f=/, D = A% and D' := A%k and let
B:D®yC — E
be the map induced by . Let

— y denote both the maps y®7r< and y®i4 ,
— w denote the map ug,
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— u denote the map s o y @k,
— u denote both the maps u; o 7®7§ ogcg and g o 7®’/§ o gCy.

A direct computation shows that

where the first equality follows from Lemma B.10, the second one from Lemma B.6, the third and
fourth ones are easy to check (and left to the reader), and the last one follows from Lemma B.7.
Since the first diagram represents the map

Y”-(M) Xr—r/,s—s’(M)
[m ® ay 1y ®k his ———0((Im @ ai1u @ hiy)e0(B)).

and this map induces (— 1)’,(“_**/) times the morphism

Yrs (M) Xr—r’,s—s’ (M)
[m ®ay ] Qr his—— (Im @ a1, 1y ®; hiy) x B,

this finishes the proof. [

Lemma B.12. Let C = H‘X’g. We have

E C E ‘C
® @ ®
= @7

§ IV

where 1 == i j, 0 = /,LO)/®/{' andﬁ::,uo?‘g"li o gc;.
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Proof. In fact, by Lemma B.2,

G

as desired.

Lemma B.13. Let C := H®:. We have
c
c
2790
OO

where g is the map gc,,, S = Sk, W=y, Y = 7‘2’2' andu = Loy ogc,.

Proof. We proceed by induction on n. The case n = 1 follows from [13, Lemma 10.7(2)].
Assume n > 1 and let ¢’ .= H®' ' Then,

é/@@é

where the third equality follows from the inductive hypothesis and [13, Lemma 10.7(2)], the
fourth one follows from [13, Proposition 4.3] and [13, Lemma 10.7(2)], and the fifth one, from
the definition of A¢ and [13, Corollary 4.21]. O

Proof of Theorem 10.2. For 0 < j < s, let
T E@AE® @ A% — E®y E® @ A
be the map defined by

Tj(aoya(vos) ® ayy) = Z 1®ava (V]+1 $) ®aaoya(voj) ® a[,,
7

where ) ailr) Rk Vy)ﬂ s =X(Vji1,5®ral), and letT;: X,y —> )A(,,sH be the map induced by

7j. By Proposition 6.4 we know that

D(laoya(vos) ® ay,]) = Z(—l)‘“"'yfj([aom (Vos) ® a1, ])
=0
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modulo F, ()? r+s). Hence

N
D(laoy (ho) ® a1, 1m @k his) = > (=1)**/760 0 Tj 0 ¥ (laoy (ho) ® a1, 11 @ hiy)
Jj=0
modulo Fp, (X 41). Now, since Or.5+1 © Tj o Uy is induced by (—1)’9~m+1 oTjo 5”, in order to
finish the proof we must show that ?j = 0,511 0 Tj o Uys. In the sequel
~ y denotes the maps y %, y® ', y®4 and y®1 ", and 7 denotes 7,
— w denotes both the maps (v ; and g,
— u denotes both the maps . ; o y®£ and pg_j o y®iﬂ,
®

o gc,

— u denotes both the maps 1 o 7®£ ogejand pug—joy s—j

— & denotes the map gc,,_,; introduced in item (5) of Section 7,
_ S denotes the map S .
Let D = A®%, Cy :== H® and C, := H® . By Lemma B.4

oE D Cyp C
J
E DC &

‘L’j 019” =

Consequently, by Lemmas B.12 and B.13,

E DC O
7

Or,s+1 0 Tjo Vrs =
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as desired. [
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