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Let 4(t) (t E i&!?) be a retarded, Lorentz-invariant function which satisfies, 
in addition, condition (c). We call “R” the family of such functions. Let f(z) be 

the Laplace transform of q%(t) E [w. We prove (Theorem 1) that f(z) can be 

expressed as a K-transform (formula (I, 2; 1)). We apply this formula to evaluate 
several Laplace transforms. We show that it affords simple proofs of important 

known results. Formula (I, 2; 1) is an effective complement to L. Schwartz’ 
method of evaluating Fourier transforms via Laplace transforms (“Thtorie des 

distributions,” p. 264, Hermann, Paris, 1966). We think this is the most useful 
application of our formula. 

I. THE BASIC FORMULA 

Let+(t) (t = (tl , t, ,..., t,) E W) be a radial integrable function: +(t) = F(Y~), 

where r2 = ~~zI ti2 and F(h) is a function of the scalar variable h. 
Let F[#J] designate the Fourier transform of 4: 

WI = J e--i(t~a>+(t) dt. 
Rfl 

A classical Bochner formula [l, p. 1871 expresses F(4) by means of a Hankel 
transform: 

x 
s 

%4 ~n’2J+2,,2{~(~02 + ..* + x;J’~) dA. 
0 
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Here J”(Z) is the well-known Bessel function [2, Vol. II, p. 2461. 
In this article we prove (Theorem 1) an analog of Bochner’s formula for 

Laplace transforms of the form (I, 1; I), where 4 is a function of the Lorentz 
distance, whose support is contained in the closure of the domain t, > 0, 
to2 - t,2 - .‘. - tt-1 > 0. This is our main result (formula (I, 2; l)), from 
which we derive important known results (with simpler proofs) and also new 
ones. 

When referring in the sequel to formula (I, 2; 1) we shall call it the “basic 
formula.” 

1.1. We begin with some definitions. 

Let t = (to , t, ,.,., 
t:-1 = 

t+r) be a point of l!P. We shall write to2 - tr2 - ... - 
u. By r, we designate the interior of the forward cone: I’+ = {t E Rnl 

t, > 0, u > O}; and by r+ we designate its closure. Similarly, C designates 
the domain C = {t E Rn/to < 0, u > 0}, and i? designates its closure. We 
put x = (z,, , zr ,..., a,-r) E C”, where a, = x, + iy, , v = 0, 1,2 ,..., 12 - 1; 
(4 z> = to%J + t,x, + ... + tn-lZn-l ; and dt = dt, dt, ... dt,-, . The tube T- 
is defined by T- = (z E P/y E V-}, where V- = {y E Rn/y,, < 0, yo2 - 

Y12 - ... -yip1 > 0). 
Similarly we put 

T+ = {z~C”ly~ V,), 

where 

The Laplace transform of $(t) is 

f(z) = L(4) = j e-i<t*z)+(t) dt. (I, 1; 1) 
R” 

Let F(h) be a function of the scalar variable A, and let 4(t) be a function 
endowed with the following properties: 

(4 d(t) = f+), 

(b) supp 4(t) = f: 3 

(4 e(t,v>$(t) EL, if y E V- . 

We call R the family of functions 4(t) which satisfies conditions (a), (b), 
and (c). Similarly we call A the family of functions which satisfy conditions 

(a’) +(t> = F(u), 

(b’) supp 4(t) E I=- , 

(4 e’t*@4(t) EL1 if y E V+ . 
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1.2. Now we can state our main theorem. 

THEOREM 1. Hypothesis: 

(4 9(t) E R 
(/3) ZE T-. 

Thesis: 

(24ww 
f(') ='{'8 = {.+2 + xt + . . . + $-, +$}(n-2)/4 

X 
s mF(h) h’n-2”4K~n-2,,2((h(Z12 + z22 + *** + z”,-~ - z,,“))‘/“) d& 

0 

(I, 2; 1) 
Here K,(z) designates the modified Bessel function of the third kind [2, Vol. II, 

p. 4271. 

Proof of Theorem 1. We make the change of variables 

u. = to2 _ t 
1 

2 _ . . . _ p 
n-l' 

% = t,, 
(I, 2; 2) 

u,-1 = t,-, . 

The corresponding Jacobian is 2t, > 0. With this change of variable f(z) 
becomes 

x exp{--i(zl,x, + ... + u,-,z,~~)} exp{-izo(uo + u12 + ... + ui-J”“] du 
2(U, + fq + 24; + ..* + z$Jl/2 

(192; 3) 
Let us write 

exp{ -iz,(u, + 24,” + u22 + * *. + Undo)““} 
2(U, + u12 + u22 + **. + z&)1/2 = &.&1 ? u2 9-**, UT+1). (I, 2; 4) 

With this notation the interior integral of the right-hand member of (I, 2; 1) 

becomes 

2 
s 

e -ih,zl+. . .+Un-~L”--I) 
guo,zo(ul ,.--v ~-1) du, a.. dun-1 . (I, 2; 5) p-1 
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1.3. We now get an explicit formula for the right-hand member of 
(I, 2; 5). This is a convergent Laplace transform which converges when y = 0: 

= s e --i(~g,+...+~n-1~n-l)~~,,~,(u~ ,..., u,pl) du, . . . dun-, 
p-1 

From (I, 2; 4) we conclude that the right-hand member of (I, 3; 1) is the 
Fourier transform of a radial integrable function (we have, by hypothesis, 
Im z,, = y0 < 0, us > 0). Consequently, it can be expressed by means of 
Bochner’s formula. We obtain 

F[g] = (2+-1)/e 
(x12 + ..- : q-1)(+3)/4 

s 

m e--is,(uo+A2h/2 

X **. + x;-~)~/~] d/i. (I, 3; 2) 
0 2(u, + A2)1/2 )I’n-1”2J(n-3),2[h(X12 + 

The right-hand member can be evaluated by a known formula [2, Vol. II, 
p. 31, formula 221. 

One obtains 

F[g] = (‘&#‘+2)/2 u~-2)/4 
(x,” + a.. + xi-1 - ,~~)+-2)/4 

xK (n-2),2N~J1’2(q + -** + xi-, - q>“y. (I, 3; 3) 

If we put X, + iyy = z, instead of X, , u = 1,2 ,..., 7t - 1, in the left-hand 
member of this formula, we recuperate our Laplace transform L[g]. We also 
obtain a regular function of variables z, if we proceed analogously with the 
right-hand member. 

This is a consequence of the fact that the expression zr2 + .a* + zi-r - a02 
never vanishes [4, p. 381. Therefore, the following formula is valid: 



LORENTZ-INVARIANT FUNCTIONS 55 

From (I, 2; 3) and (I, 3; 4) we conclude that 

(24WV 
f(z) = @,” + . . . + z;-l _ z,z)(n-2,/4 

X s m F@,) U~-2)'4K(n-2),2[U~/2(212 + * *. + z;-, - 2&y] duo , 
0 

which is identical to (I, 2; 1). This finishes the proof of Theorem 1. 

Note. We remark, for later purposes, that the following asymptotic formula 
is valid for t -+ co (cf. [5, p. 202, formula (l)]): 

( ) 
112 pt l/2 

Kn-2)12W2) - 4 pip (I, 3; 5) 

here we have written p2 = zi2 $ ... + zi-i - zo2. 
This formula is a consequence of the relation 1 arg p 1 < n/2. 

1.4. The two following representation formulas are easy consequences 
of the basic formula. 

THEOREM 2. Hypothesis: the same as that of Theorem 1. 

Thesis : 

(a) If 72 = 2m + 2, m = 0, l,..., 

f(z) = L[+] = (-1)” 22’%” g j==F(A) K0[(xS)1’2] dh. 
0 

(I, 4; 1) 

(b) I f  n = 2m + 1, m = 1,2 ,..., 

f(z) = L{$} = (-I)” 22m-1~” g ImF(h) A-112e-(~@“z dh. (I, 4; 2) 
0 

Proof of Theorem 2. We shall need the formula 

which follows, by iteration, from the well-known relation 

(I, 4; 3) 

K&) 1 d GA4 
- = ---zp-1’ 9 z dz 
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The basic formula can be written as 

f(z) = 2(2,+*-W s m $‘(4 @/2 K(n;;$f’z) du. (I, 4; 4) 
0 

From (I, 4; 3) and (I, 4; 4) we get 

f(z) = (-1)” 2(n-2)/2+m+l,+-2)/2 g jmj7(u2) ~(n/a)-nz~(:~~!~~~~~'~) due 
0 

(I, 4; 5) 

If we put n = 2m + 2 here, we get (I, 4; 1). 
If in the same formula we put n = 2m + 1 and use the known relation 

K,,,(z) = (~r/2)]/~ z-1/2e-z, 

we obtain (I, 4; 2). This proves the theorem. 

Note 1. Formula (I, 4; 2) seems to be equivalent to a very interesting 
result due to Leray, [4, p. 41, formulas (19, 1 l)], which he proves by a com- 
pletely different method. 

Note 2. Formulas (I, 4; 1) and (I, 4; 2) are analogs, for Laplace transforms, 
of two Bochner formulas [ 1, p. 187, formulas (17) and (1811, valid for Fourier 
transforms of radial functions. 

II. APPLICATIONS OF THE BASIC FORMULA 

11.1. We begin by considering the following functions of the family R 
introduced by Riesz [6, p. 17; cf. also 7, p. 89; 8, p. 179; and 9, p. 721: 

Wt, 01, m, 4 = 

(m-2U)(~-n)/4 

n n ( _ 2)/2p+n-2)/2ga/2) .k-d ~2WW> if tEr+, 

= 0 if t$r+. 

(II, 1; 1) 

Here 01 is a complex parameter, m a real nonnegative number and n the 
dimension of the space. W(t, 01, m, n), which is an ordinary function if Re OL 
is an, is an entire distributional function of 0~. 

From the basic formula one obtains immediately, for Re IX > n 

2(&+n-2,/z m(n-o)/2 

WQ = p(n-1)/2rr~n-2,/22(o+n-2,/2~(or/2) 

X 
s 

m @-1”2(+)1’2 Ln,,,W) %-2,,2(+) d4 (II, 1; 2) 
0 

where we have put p2 = z12 + *** + ziml - zo2. 
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This integral can be explicitly evaluated by means of a known formula 
[2, Vol. II, p. 137, formula (16)], thus obtaining 

L[W(t, 01, m, n)] = (p2 + m2)-(a/2). (II, 1; 3) 

This formula is valid for 

Rear >2n-4 (II, 1; 4) 
and 

Rep > 0. (II, 1; 5) 

This last condition effectively holds as a consequence of our assumption 
z E T- (in this connection see [4, p. 381). 

11.2. Formula (II, 1; 3) has useful applications. It follows from 
(II, 1; 5) that p2 + m2 never vanishes. Consequently, the function which appears 
at the right-hand member of (II, I; 3) is an entire function of a. We conclude, 
by appealing to the principle of analytical in continuation, that (II, 1; 3) is 
valid for every 01. If we put (Y = -2k, K = 0, 1,2 ,... in (II, 1; 3) we get 

L{t, [Y = -2/z, m,n} = (p2 + m2}". (II, 2; 1) 

From this formula, in conjunction with the identity 

WZI + m2)Q} = (p2 + m2)k 

we conclude, appealing to the uniqueness theorem for Laplace transforms, that 

W(t, a = -2K, m, n) = (0 + m2}%. or, 2; 2) 

It is well known that the convolution W, c W, exists for every couple a, /3 
of complex numbers [8, p. 1771. F rom this one concludes, taking into account 
(II, 1; 3) and the uniqueness theorem for Laplace transforms, that 

W(t, a, m, 4 * W, A m, 4 = WC 0~ + 8, m, 4. (II, 2; 3) 

This formula appears in [7, p. 891. From (II, 2; 3) and (II, 2; 2) we get 

{(Cl + m”)“> W. = W,-,k . w, 2; 4) 

This formula (for K = 1) appears in [I, p. 891. 

11.3. Formula (II, 1; 1) simplifies when m = 0. Indeed, if we replace 
Jtir-,,ji2 by its Taylor series in the right-hand member of (II, 1; 1) we get 
immediately 

&-“112 

W(f, a, m = 0,4 = R,(u) = Hn(a) if t E P, 
(II, 3; 1) 

-0 if t $ P. 
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Here we have put 

f&(a) zzz 4+2)/2plr ; r 
0 i 

(r-n+2 
i 2 . 

(II, 3; 2) 

The R,(u) were introduced by Riesz [7, p. 311. From formulas (II, 1; 3), 
(II, 2; 2), (II, 2; 3) and (II, 2; 4) we obtain, respectively, putting in them m = 0, 

L[Ra] = {z,” + ... + z;-, - X;}-(+), (II, 3; 3) 

R-2&4 = Ok& (II, 3; 4) 

R, * R, = &+B, (II, 3; 5) 

q R, = RN+. (II, 3; 6) 

A formula equivalent to (II, 3; 3) app ears in [S, p. 264, formula (VII, 7; 37)]. 
Formula (II, 3; 4) is due to Schwartz [S, p. 50, formula (II, 3; 3211. Formulas 
(II, 3; 5) and (II, 3; 6) are due to Riesz. 

11.4. We shall give a last application of the basic formula. 
Let m be a nonnegative number and let 01 be a complex parameter. 
We write 

qx m2 a) = (x - m"K' = (x - m2)er-l , , 
w w if x - m2 ' 0, (II, 4; 1) 

= 0 if x - m2 < 0. 

G is an ordinary function of a when Re Q: > 0, and it is well known that the 
following formula is valid [lo, p. 571: 

= s(k) 
ma ’ 

a--k 
(II, 4; 2) 

where k = 0, 1,2 ,... . 
Starting from G(x, m2, a) we define by composition the n-dimensional function 

GR(t, m2, a, n) = 
(24 - m”)“;’ = (24 - m2)arw1 

w +l> 
if u - m2 > 0 and t, > 0, 

=o if t belongs to the 
complementary set. (II, 4; 3) 

We now evaluate, by means of the basic formula, the Laplace transform 
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of Gs. Assuming that Re 01 3 1, remembering that KU = K-, and putting 
again pa = q,a + ... + zzpl - zaa we arrive at the formula 

L[G,(t, m2, n, 41 = 
2(27p4V 
T(a) p-w 

:< [” (s2 - m2)ol-l s(n-1)12(sp)1/2 K~~-~),~(sp) ds. (II, 4; 4) 

This integral is known [2, Vol. II, p. 129, formula (13)], and we obtain 

L[G,(t, m2, a, n)] = 2a(2~)(n-2)/2 ma+(n-2)/2 . p-“+(?-“)/2K=+cn-2,,2(mp). (II, 4; 5) 

This formula, which we have proved on the assumption that Re 01 3 1, 
is valid, by analytical continuation, for every complex 01. 

If we put m = 0 in (II, 4; 5) we obtain 

L[GR(t, m = 0, OL, n)] = (2n)(n-2)/2 22~+(n/2)-2,,-2~+2-a~ F). (II, 4; 6) 

We remark that in deriving (II, 4; 6) we have used the known asymptotic 
formula (valid for s + 0) 

K,(s) N P-T(v) s-“. (a 4; 7) 

11.5. We shall register some particular cases of (II, 4; 5). Putting 
a = 1 in it, we get 

L[GR(t, m2, ol = 1, n)] = 2(2~)(~-~)p mn/2p-(“/2)Kn,2(mp). (II, 5; 1) 

This is the Laplace transform of the characteristic function of the volume 
bounded by the forward sheet of the hyperboloid u = m2. Putting m = 0 
in (II, 5; 1) we get (appealing again to the asymptotic formula (II, 4; 7)) 

L[GR(t, m = 0, 01 = 1, n)] = 2”/2(2~)(n-2)/2 p-“r(1/2). (II, 5; 2) 

The Laplace transform (II, 5; 2) is the so-called “Bochner kernel for the 
forward cone” which appears in the theory of several complex variables [ll, 
p. 299, formula (139); 12, p. 1681. 

Another particular case of (II, 4; 5) is obtained by putting 01 = --k, k = 0, I,... 
in it. 

We obtain 

L[GR(t, m2, CY = --K, n)] 

= L[S~)(u = m2)] 

= 2-k(27~)(+2)/~ m-‘c+(n-2)12pl+(z-n)/2K_1,+(,_2)12(ntp). (II, 5; 3) 
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If we put 01 = --k in (II, 4; 6) we get 

L[Qyu)] = (2?7)(7@)~2 2-2”+~~7+y-k + (n - 2)/2) p-+=+2. (II, 5; 4) 

We observe that, in constrast with formula (II, 5; 3), which is valid for every 
k = 0, 1, 2 )...) formula (II, 5; 4) requires, for its validity, that --K + (n - 2)/2 # 
0, -1, -2 )... . 

The particular cases, corresponding to K = 0, of formulas (II, 5; 3) and 
(II, 5; 4) read as follows: 

L[S,(u - m”)] = (2Ty-2)/2 m(n-2)/2p(2-n)/2K(,_2),2(mp), (II, 5; 5) 

L[6,(u)] = p/yq(7w~ r (q) p. (II, 5; 6) 

A formula equivalent to (II, 5; 6) appears in [ll, p. 2991. 

11.6. We now evaluate by a different method the Laplace transform 
of @‘(u - m”). 

The idea consists in expressing the right-hand member of the basic formula 
as a scalar product. This may be done when the support ofF(/\) does not contain 
the origin. In the case of the function GR(t, m2, a, n) we get 

L[Wt, m2, a, 41 

x (’ - m2)“;’ , 

r(4 

(IL 6; 1) 

The function+(A) = h(“-2)/4K~n-2),2[~1/2(~12 + ... + ,& - z+,~)~/~] is indeed 
a test function in the interval [mz, co) when m2 > 0 (cf. the asymptotic formula 
(I, 3; 5)). 

If we put in CY = --k, k = 0, I,... (II, 6; l), we get 

L[S~)(u - m2)] 

x (#k)(,?j - m2), )\(n--2)PK 
(n-2) 12 

[~1/2(z 2 + . . . + $- - z 2)1/2j\ 
1 111 0 ’ 
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or, equivalently, 

qqyu - m”)] 

= (z,” + . . . + ,$-, _ 2;)(n-2)/4 

x (-I)” D~~~z[h(R-2)‘2K(,_2),2[h1’*(212 + “. + g-1 - z,2)“2]]. 

(II, 6; 2) 

For this formula to hold for every k it is essential that m2 > 0; but if ri = 0 
it also holds in the case m = 0. The formula at which one arrives is, naturally, 
identical to (II, 5; 6). 

We remark that the formulas we have obtained for the Laplace transforms 
of functions of the family R are also valid for functions of the class A (this 

. . 
apphes m particular to the basic formula); the only difference is that, for functions 
of the class A, the formulas are valid on the assumption Im .x0 > 0. 

11.7. We shall refer briefly to a last application of the basic formula, 
namely, the evaluation of Fourier transforms as limits of Laplace transforms. 
Schwartz [8, p. 2641 has evaluated the Fourier transform of the functions 
R&x, n) of Riesz, by evaluating their Laplace transforms (first step), and then 
passing to the limit (in S’) for y -+ 0, where y E V- (second step). The method 
was later employed by Lavoine [13] and Vladimirov [I 1, p. 299-3021. It works 
generally for any +(t) E R which is, besides, a continuous function of slow 
growth. It is clear that the basic formula greatly facilitates the use of Schwartz’ 
method, since it disposes of its first step. 

One of us (S.E.T.) has evaluated by Schwartz’ method the Fourier transforms 
of all the functions (or distributions) whose Laplace transforms appear in the 
preceding pages. The results will appear in a separate article. 
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