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CODIMENSION THEOREMS
FOR COMPLETE TORIC VARIETIES

DAVID COX AND ALICIA DICKENSTEIN

(Communicated by Michael Stillman)

Abstract. Let X be a complete toric variety with homogeneous coordinate
ring S. In this article, we compute upper and lower bounds for the codimension
in the critical degree of ideals of S generated by dim(X) + 1 homogeneous
polynomials that do not vanish simultaneously on X.

Introduction

In this paper, X will denote a complete toric variety of dimension n. We will
work over C, so that the torus of X is (C∗)n. The dual lattices will be denoted
by M and N as usual, and the minimal edge generators of the fan of X will be
denoted by n1, . . . , nr ∈ N . Corresponding to each ni we have the irreducible
torus-invariant divisor Di and the variable xi in the homogeneous coordinate ring
S = C[x1, . . . , xr], which is graded by the Chow group An−1(X).

Consider a torus-invariant Cartier divisor D =
∑

i aiDi such that OX(D) is
generated by global sections. In Section 1, we recall a vanishing theorem of Batyrev
and Borisov [2] that describes Hi(X,OX(−D)) in terms of the polytope

∆D = {m ∈ MR | 〈m, ni〉 ≥ −ai}.

By Serre duality, we get a description of

Hi(X,OX(D + K)),

where K is the canonical class.
In Section 2, we consider homogeneous polynomials f0, . . . , fn ∈ S of degrees

α0, . . . , αn ∈ An−1(X) which satisfy the following two properties: first, the fi do not
vanish simultaneously on X, and second, each αi lies in Pic(X) and the correspond-
ing line bundle OX(αi) is generated by global sections. By abuse of terminology,
we will say that αi is globally generated in this situation.
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3154 DAVID COX AND ALICIA DICKENSTEIN

Following [4], we define the critical degree to be

(0.1) ρ =
n∑

i=0

αi − β0

where β0 =
∑r

j=1 deg(xj), and we let

I = 〈f0, . . . , fn〉 ⊂ S

be the homogeneous ideal generated by the fi. Then the Codimension Question
asks what is the dimension of (S/I)ρ, i.e., what is the codimension of Iρ in Sρ?

The main result of Section 2 computes upper and lower bounds for this codimen-
sion, when the associated family of polytopes is essential. In particular, it is always
nonzero. The assumption of having an essential family is natural since it is neces-
sary for the existence of a nontrivial sparse resultant whose vanishing is equivalent
to the condition that the fi do not have common zeros on X (see [11]). We also
give further geometric conditions on the polytopes under which the codimension at
the critical degree attains the upper bound that we present.

When the divisors involved are big and nef, our results imply that the codimen-
sion is 1. The first toric codimension-one theorem, proved in [7] using ideas from
[1], assumed that the αi were all equal to the class of a single ample divisor. This
was extended in [5] to the case when the αi were positive integer multiples of a sin-
gle ample class. In the general case when the αi are all ample, a codimension-one
theorem was proved in [4] provided that X was simplicial. All of these results now
follow from part (1) of Corollary 2.5.

The codimension in the critical degree is important because of its relation to
the theory of toric residues [3, 4, 5, 7, 8]. Toric residues are rational functions
of the coefficients of the given polynomials f0, . . . , fn; moreover, they are rational
hypergeometric functions determined by the lattice points of the associated family
of polytopes, with poles at the resultant locus [6]. As described in [7], a homoge-
neous polynomial H of critical degree gives rise to a rational n-form on X. Since
the fi do not vanish simultaneously on X, this n-form represents an element of
Hn(X, Ω̂n

X) � Hn(X,OX(−β0)). The toric residue of H is defined to be the trace
of this cohomology class. If the codimension is one and we have an explicit element
J of critical degree with known residue, then the computation of the toric residue of
H is reduced to writing H = cJ modulo I. When all degrees are equal and ample,
a choice of J is the toric Jacobian [7] associated to f0, . . . , fn. In case all degrees
are ample, explicit elements with residue equal to ±1 are known [4, 8], but it is still
an open problem to find such elements in the big and nef but not ample case.

1. The vanishing theorem

Now let D be a torus-invariant Cartier divisor on a complete toric variety X.
We define the polytope ∆D as in the introduction and we use int(∆D) to denote
the relative interior of ∆D. Here is the vanishing theorem from [2, Thm. 2.5].

Theorem 1.1. Let D be a torus-invariant Cartier divisor on a complete toric
variety X and let ∆D be the polytope defined above. If OX(D) is generated by
global sections, then:

(1) Hi(X,OX(−D)) = 0 for i �= dim(∆D).
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(2) There is an isomorphism

Hdim(∆D)(X,OX(−D)) �
⊕

m∈M∩int(∆D)

C · χ−m

which is equivariant with respect to the natural (C∗)n action on each side.

Remark 1.2. We should note that for a complete toric variety X, the sheaf OX(D)
is generated by its global sections if and only if D is a nef divisor (this observation
appears in [9] and [10]). Also, in the terminology of [9], such a divisor D is called
�-semiample, where � = dim(∆D).

Using Serre Duality, we get the following corollary of Theorem 1.1. As usual,
K = KX denotes the canonical divisor of X.

Corollary 1.3. Under the same hypotheses as Theorem 1.1, we have:

(1) Hi(X,OX(D + K)) = 0 for i �= n − dim(∆D).
(2) There is an isomorphism

Hn−dim(∆D)(X,OX(D + K)) �
⊕

m∈M∩int(∆D)

C · χm

which is equivariant with respect to the natural (C∗)n action on each side.

Proof. We know that K is given by the Weil divisor −
∑r

j=1 Di. By Serre Duality,

Hi(X,OX(D) ⊗OX
OX(K)) � Hn−i(X,OX(−D))∗.

However, given any Weil divisors E and F on X, the natural map

OX(E) ⊗OX
O(F ) → OX(E + F )

is easily seen to be an isomorphism when E or F is Cartier. Since D is Cartier by
assumption, the above duality may be written

Hi(X,OX(D + K)) � Hn−i(X,OX(−D))∗.

By functoriality, this is compatible with the (C∗)n action on everything. From here,
the corollary follows immediately from Theorem 1.1. �

Remark 1.4. When D is big and nef, we have dim(∆D) = n. Then Corollary 1.3
implies that

Hi(X,OX(D + K)) = 0, i > 0.

This is the Kawamata-Viehweg vanishing theorem from [10].

2. Codimension in the critical degree

As in the introduction, fix α0, . . . , αn ∈ Pic(X) ⊂ An−1(X) such that each αi

is globally generated. This implies that each αi determines a lattice polytope ∆i

which is well-defined up to translation by an element of M .
Given polynomials fi ∈ Sαi

(so that deg(fi) = αi), we obtain the homogeneous
ideal I = 〈f0, . . . , fn〉 ⊂ S. We want to study the codimension of Iρ in Sρ, where
ρ =

∑n
i=0 αi − β0 is the critical degree (0.1).

Before stating our main result we need a definition.
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Definition 2.1. Let ∆i, i ∈ I, be polytopes in Rn. Given J ⊂ I, set

∆J =
∑

j∈J ∆j .

The family {∆i, i ∈ I} is called essential if for every J ⊂ I with |J | ≤ n, we have

dim(∆J ) ≥ |J |.

We will also use the standard notation

(2.1) l∗(∆) = #(M ∩ int(∆))

to denote the number of lattice points of a polytope ∆ which lie in the relative
interior of ∆.

Here is our codimension theorem.

Theorem 2.2. Suppose that X is a complete toric variety of dimension n. Let
αi ∈ Pic(X), 0 ≤ i ≤ n, be globally generated and assume that the corresponding
family of polytopes {∆i, 0 ≤ i ≤ n} is essential. If fi ∈ Sαi

, 0 ≤ i ≤ n, do not
vanish simultaneously on X, then:

(1) The codimension of Iρ in Sρ satisfies the inequalities

1 +
∑

dim(∆�)=1

l∗(∆�) ≤ dim((S/I)ρ) ≤ 1 +
n−1∑
k=1

∑
dim(∆J )=|J|=k

l∗(∆J),

where in the right-most sum we always assume that J ⊂ {0, . . . , n}.
(2) The codimension of Iρ in Sρ is given by

dim((S/I)ρ) = 1 +
n−1∑
k=1

∑
dim(∆J )=|J|=k

l∗(∆J )

if one of the following is satisfied for every J with 1 ≤ |J | ≤ n − 2:
(a) dim(∆J ) �= |J | + 1;
(b) dim(∆J ) = |J | + 1 but ∆J has no interior lattice points;
(c) dim(∆J ) = |J | + 1 but dim(∆J∪I) > |J | + |I| for nonempty subsets

I ⊂ {0, . . . , n} such that I ∩ J = ∅ and |J | + |I| < n.

Proof. Since fi is a global section of OX(αi), we get a Koszul complex

0 → OX(−
∑

iαi) → · · · →
⊕

i

OX(−αi) → OX → 0,

which is exact since each OX(αi) is locally free and the fi have no common zeros.
By hypothesis, each sheaf in the Koszul complex is locally free. Since the sheaf

TorOX
i (E ,F) vanishes whenever i > 0 and E or F is locally free, it follows that the

Koszul sequence remains exact after tensoring with O(ρ) = O(α0 + · · · + αn − β0)
(which need not be locally free). This gives the exact sequence

0 → OX(−
∑

iαi) ⊗OX
OX(ρ) → · · · →

⊕
i

OX(−αi) ⊗OX
OX(ρ) → OX(ρ) → 0.

Since the αi all come from Cartier divisors, the reasoning used in the proof of
Corollary 1.3 implies that we can write this exact sequence as

0 → OX(−β0) →
⊕

i

OX(αi − β0) → · · · → OX(α0 + · · · + αn − β0) → 0.
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Figure 1. Possible nonzero differentials when n = 4

Using ρ = α0 + · · · + αn − β0, this becomes

(2.2) 0 → OX(−β0)︸ ︷︷ ︸
F0

→
⊕

i

OX(αi − β0)︸ ︷︷ ︸
F1

→· · ·→
⊕

k

OX(ρ − αk)︸ ︷︷ ︸
Fn

→ OX(ρ)︸ ︷︷ ︸
Fn+1

→ 0.

We will now study the hypercohomology of the complex F•.
Since (2.2) is exact, the hypercohomology H∗(X,F•) vanishes identically. Hence

we get a spectral sequence

Ep,q
1 = Hq(X,Fp) ⇒ 0

where the differential dp,q
1 : Ep,q

1 → Ep+1,q
1 is induced by the map Fp → Fp+1 of

the Koszul complex (2.2).
We compute Ep,q

1 as follows. When p = 0,

(2.3) dim(E0,q
1 ) = dim

(
Hq(X,OX(−β0))

)
=

{
0, q < n,

1, q = n,

where q = n uses the isomorphism Hn(X,OX(−β0)) = Hn(X,OX(K)) � C given
by the trace map.

When p > 0, we have

Fp =
⊕
|J|=p

OX(αJ − β0), αJ =
∑

j∈Jαj .

Then Corollary 1.3 and (2.1) imply that

(2.4) dim(Ep,q
1 ) =

∑
|J|=p

dim
(
Hq(X,OX(αJ − β0))

)
=

∑
|J|=p,dim(∆J )=n−q

l∗(∆J ).

Our assumption that {∆i, 0 ≤ i ≤ n} is essential implies that dim(∆J ) ≥ |J | when
|J | ≤ n. Combining this with |J | = p, dim(∆J ) = n − q from (2.4), we see that
n − q ≥ p when p ≤ n in the last summation of (2.4). Thus

(2.5) Ep,q
1 = 0 when p + q > n, except for En+1,0

1 = Sρ.

When n = 4, (2.3) and (2.5) give the picture shown in Figure 1 of all possible
nonzero differentials in the spectral sequence.
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Now consider En+1,0
r . By (2.2), En,0

1 → En+1,0
1 → En+2,0

1 is⊕
k

Sρ−αk
−→ Sρ −→ 0.

Since this comes from the Koszul complex of the fi, the image of the first map is
Iρ. It follows that

En+1,0
2 = (S/I)ρ.

All differentials starting from En+1,0
2 obviously vanish, and the only differentials

which can map to this position are those on the “diagonal” p+q = n as in Figure 1.
Furthermore, on the diagonal, the only nonzero differentials dn−q,q

r are dn−q,q
q+1 :

En−q,q
q+1 → En+1,0

q+1 . Since the spectral sequence converges to zero, it follows easily
that

dim((S/I)ρ) ≤
n∑

q=1

dim(En−q,q
1 ).

By (2.3) and (2.4), we get the upper bound of part (1) of the theorem. As for the
lower bound, note that the differentials

d0,n
n+1 : E0,n

n+1 → En+1,0
q+1 and d1,n−1

n : E1,n−1
n → En+1,0

q+1

must be injective since the spectral sequence converges to 0 and nothing can map
to these positions. (In Figure 1, these correspond to the differentials d5 and d4.)
Using (2.3) and (2.4) again, we get the lower bound of part (1).

Turning to part (2) of the theorem, suppose that every differential dr mapping
to Ep,q

r is zero for p + q = n and q > 0. Since the spectral sequence converges to
zero, this implies that

dim((S/I)ρ) =
n∑

q=1

dim(En−q,q
1 ).

From this, we easily get the desired formula for the codimension. Hence it suffices
to prove that these differentials vanish when condition (a), (b) or (c) is satisfied
by any J with 1 ≤ |J | ≤ n − 2. A differential mapping to the diagonal p + q = n
originates from the “sub-diagonal” p + q = n − 1. Thus we need to prove that all
differentials

dp,q
r : Ep,q

r −→ Ep+r,q−r+1
r

vanish when p + q = n − 1 and q − r + 1 > 0 (i.e., r ≤ q).
To analyze this, first note that for arbitrary (p, q), Corollary 1.3 implies that

(2.6) Ep,q
1 =

⊕
|J|=p,dim(∆J )=n−q

HJ ,

where

(2.7) HJ = Hq(X,OX(αJ − β0)) =
⊕

m∈M∩int(∆J )

C · χm.

In particular, when p + q = n − 1, the description of Ep,q
1 becomes

Ep,q
1 =

⊕
dim(∆J )=|J|+1=n−q

HJ .
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The subsets J ⊂ {0, . . . , n} in this direct sum satisfy

(2.8) |J | = p = n − q − 1 ≤ n − 2 and dim(∆J) = n − q = |J | + 1.

Every J in the discussion which follows will satisfy (2.8).
Now consider dp,q

1 : Ep,q
1 → Ep+1,q

1 for p + q = n − 1 and q ≥ 1. By (2.7) and
(2.8), we see that HJ = 0 when J satisfies conditions (a) or (b) of part (2) of the
theorem. Now suppose J satisfies condition (c). Since d1 comes from the Koszul
complex, (2.6) for (p + 1, q) shows that dp,q

1 restricted to HJ is a map

dp,q
1 : HJ −→

⊕
i/∈J,dim(∆J∪{i})=n−q

HJ∪{i}.

By condition (c), we know that dim(∆J∪{i}) > |J |+1 for i /∈ J . But |J | = n−q−1
by (2.8), so that dim(∆J∪{i}) > n− q. Comparing this to the above description of
dp,q
1 shows that dp,q

1 = 0 when p + q = n − 1 and q ≥ 1, as claimed.
Next consider dp,q

2 : Ep,q
2 → Ep+2,q−1

2 , where p + q = n − 1 and q ≥ 2. To
understand this map, we will recall its definition which follows from the Snake
Lemma. Let U be a Leray covering of X, so that the cohomology groups Hq(X,Fp)
can be identified with the Čech cohomology of X with respect to this covering. As
usual, we call δ the maps between cochain groups. Also let

Zq(U ,Fp) ⊂ Cq(U ,Fp)

denote the corresponding Čech group and its subgroup of cocycles. Then we com-
pute d2 using the following diagram:

Cq−1(U ,Fp+1) d1−→ Cq−1(U ,Fp+2)
δ ↓

Zq(U ,Fp) d1−→ Zq(U ,Fp+1)
↓ ↓

0 → ker(d1) → Hq(X,Fp) d1−→ Hq(X,Fp+1)
↓ ↓ ↓

Ep,q
2 0 0
↓
0

In this diagram, s ∈ Ep,q
2 lifts to an element of Ep,q

1 = Hq(X,Fp) represented by
s′ ∈ Zq(U ,Fp). Then

(2.9) d1(s′) ∈ Zq(U ,Fp+1)

represents 0 ∈ Hq(X,Fp+1). Thus d1(s′) lifts to Zq−1(U ,Fp+1), i.e., d1(s′) = δ(s′′)
for some s′′ ∈ Zq−1(U ,Fp+1). It is then easy to see that

(2.10) d1(s′′) ∈ Zq−1(U ,Fp+2),

so that d1(s′′) represents an element of Ep+2,q−1
1 = Hq−1(X,Fp+2). This is killed

by d1 and represents dp,q
2 (s) ∈ Ep+2,q−1

2 . It follows that d2 is constructed by
applying d1 twice to suitable liftings.

Since dp,q
1 vanishes, Ep,q

2 is a quotient of Ep,q
1 . So we may assume that s ∈ Ep,q

2

comes from HJ for some J satisfying (2.8). As before, this vanishes if J satisfies
conditions (a) or (b) of part (2). Now assume J satisfies condition (c). Then as
above s gives s′ ∈ Zq(U ,Fp) where we only use the summand of Fp corresponding
to J . Since d1 comes from the Kozsul complex, we see from (2.9) that d1(s′) only
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involves summands of Fp+1 corresponding to J ∪ {i} for i /∈ J . Then the same is
true for s′′, so that in (2.10), d1(s′′) only involves summands of Fp+1 corresponding
to J ∪ {i, j} for i, j /∈ J and i �= j.

This shows that dp,q
2 (s) ∈ Ep+2,q−1

2 is represented by an element of Ep+2,q−1
1

involving only summands HJ∪{i,j} for i, j /∈ J and i �= j. Yet to actually appear in
Ep+2,q−1

1 , the summand must satisfy n− (q − 1) = dim(∆J∪{i,j}) by (2.6). This is
impossible since condition (c) implies that

dim(∆J∪{i,j}) > |J | + 2 = (n − q − 1) + 2 = n − (q − 1).

It follows that dp,q
2 = 0 when p + q = n − 1 and q ≥ 2.

The argument for general r is similar. Here, p + q = n − 1, q ≥ r, and
dp,q
1 , . . . , dp,q

r−1 vanish. Then Ep,q
r is a quotient of Ep,q

1 , so we may assume that
s ∈ Ep,q

r comes from HJ for J as in (2.8). Since d1 comes from the Koszul com-
plex and dr is obtained by applying d1 r times to suitable liftings, we see that
dp,q

r (s) ∈ Ep+r,q−r+1
r is represented by an element of Ep+r,q−r+1

1 involving only
summands HJ∪I for |I| = r and I ∩ J = ∅. In order to appear in Ep+r,q−r+1

1 , the
summand must satisfy n − (q − r + 1) = dim(∆J∪I) by (2.6). This is impossible
since condition (c) implies that

dim(∆J∪I) > |J | + |I| = (n − q − 1) + r = n − (q − r + 1).

It follows that dp,q
r = 0 when p + q = n − 1 and q ≥ r. This completes the proof of

the theorem. �

Theorem 2.2 has the following corollaries.

Corollary 2.3. Let ∆0, . . . , ∆n be an essential family of lattice polytopes in Rn.
Then the Minkowski sum ∆0 + · · · + ∆n has at least one interior lattice point.

Proof. If X∆ is the toric variety determined by ∆ = ∆0 + · · ·+∆n, then dim(Sρ) is
the number of interior lattice points of ∆. The lower bound given by Theorem 2.2
implies that dim(Sρ) ≥ dim((S/I)ρ) ≥ 1, and the corollary follows. �

Remark 2.4. Corollary 2.3 may fail if ∆0, . . . , ∆n are not essential. For example,
suppose that ∆1 + · · ·+∆n has dimension n−1 and ∆0 is an interval of length one
relative to an integral linear functional constant on the affine hyperplane containing
∆1 + · · · + ∆n. It is easy to see that ∆0 + · · · + ∆n has no interior lattice points.
We are grateful to Günter Ziegler for this observation.

Corollary 2.5. Suppose that X is a complete toric variety of dimension n. Let
αi ∈ Pic(X), 0 ≤ i ≤ n, be globally generated and assume that fi ∈ Sαi

, 0 ≤ i ≤ n,
do not vanish simultaneously on X. Then:

(1) If the polytopes ∆i all have dimension n, then

dim((S/I)ρ) = 1.

(2) If n = 2 and {∆0, ∆1, ∆2} is essential, then

dim((S/I)ρ) = 1 +
∑

dim(∆i)=1

l∗(∆i).

Proof. This follows immediately from part (2) of Theorem 2.2. �
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Remark 2.6. In part (1) of Corollary 2.5, the hypothesis that αi is globally generated
and ∆i has dimension n is equivalent to assuming that αi is the class of a big and
nef divisor on X.

When n = 3, the conditions of part (2) of Theorem 2.2 are equivalent to the
assumption that if dim(∆i) = 2, then either ∆i has no interior lattice points or
dim(∆i +∆j) = 3 for all j �= i. It follows that Theorem 2.2 computes the codimen-
sion in the critical degree for many but not all cases of essential supports when X
has dimension 3.

There is one case where further general results are possible.

Theorem 2.7. Suppose that X is a complete toric variety of dimension n ≥ 3. Let
αi ∈ Pic(X), 0 ≤ i ≤ n, be globally generated and assume that the corresponding
family of polytopes {∆i, 0 ≤ i ≤ n} is essential and satisfies

(2.11) dim(∆i) ∈ {1, n − 1, n}, i = 0, . . . , n.

Let fi ∈ Sαi
, 0 ≤ i ≤ n, and assume the following two conditions:

(1) The fi do not vanish simultaneously on X.
(2) For every J ⊂ {0, . . . , n} with dim(∆J) = |J | = n− 1 and dim(∆i) = n− 1

for at least one i ∈ J , the equations on X∆J
given by fj = 0 for j ∈ J have

only finitely many solutions, all of which lie in the torus of X∆J
.

Then the codimension of Iρ in Sρ is given by

(2.12) dim((S/I)ρ) = 1 +
∑

dim(∆J )=|J|<n

( ∑
J⊂J

(−1)|J|−|J | l∗|J|(
∑

�∈J P�)
)

,

where, for a lattice polytope ∆ and integer k ≥ 0,

l∗k(∆) =

{
0, dim(∆) �= k,

l∗(∆), dim(∆) = k.

The condition (2.11) is still rather restrictive, yet examples with n = 4 show
that the formula (2.12) can fail when we omit (2.11). Furthermore, when we do
assume (2.11), condition (2) on the fi is probably unnecessary, yet we cannot figure
out how to prove the theorem without using this hypothesis. For these reasons, we
omit the proof of Theorem 2.7.
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