
A&A 426, 1065–1073 (2004)
DOI: 10.1051/0004-6361:20040428
c© ESO 2004

Astronomy
&

Astrophysics

A new technique for comparing solar
dynamo models and observations

P. D. Mininni1,� and D. O. Gómez1,2

1 Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria,
1428 Buenos Aires, Argentina
e-mail: mininni@df.uba.ar

2 Instituto de Astronomía y Física del Espacio, CONICET, Ciudad Universitaria, 1428 Buenos Aires, Argentina
e-mail: dgomez@df.uba.ar

Received 11 March 2004 / Accepted 5 July 2004

Abstract. We present a new technique suitable for a detailed comparison between solar dynamo models and observations.
The method is based on the technique of dynamo spectroscopy proposed by Hoyng & Schutgens (1995) and bi-orthogonal
decomposition of solar data. This decomposition provides a representation of the mean and fluctuating components of the
flows, yielding relevant information for the comparison. To illustrate the method, we use a simple kinematic dynamo model of
the solar cycle. Irregularities are introduced in the evolution of the magnetic fields modeling the turbulent behavior of the solar
convective region with a random perturbation on the external source for the poloidal field. After fine tuning the parameters of
the model we obtain solar like solutions displaying a magnetic cycle of 22 years, with fluctuations in its period and amplitude.
In addition, the model generates Maunder-like events with a time span of 60−100 years.
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1. Introduction

Since the pioneering papers by Parker (1955) (proposing the
first theoretical mechanism for sunspot formation), Babcock
(1961) (a qualitative model of the solar cycle) and Leighton
(1969) (the first numerical simulation based on Babcock’s
scenario), our understanding of the solar dynamo has in-
creased considerably (Dikpati & Charbonneau 1999; Nandy &
Choudhuri 2002). Mean field theory (Steenbeck et al. 1966)
provided a mathematical formalism for the dynamo problem,
although many of its assumptions are still being debated.
On the other hand, in the last years the number of observa-
tions available of the solar magnetic and velocity fields grew
steadily. These observations led to the construction of im-
proved models for the solar cycle, which involve many differ-
ent mechanisms such as current generated by turbulent mo-
tions (Charbonneau & MacGregor 1996), Babcock-Leighton
(Durney 1995; Dikpati & Charbonneau 1999, and references
therein), or buoyant instabilities of magnetic flux tubes within
the base of the convective region (Ferriz-Mas et al. 1994;
Caligari et al. 1995).

Detailed models now describe magnetic field reversals ev-
ery 11 years, migration of activity toward the equator as the
cycle evolves, and a maximum of activity limited to a belt
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in latitude, among other features. However, many features are
extremely difficult to model. A good example of these dif-
ficulties is the fact that sunspots only appear in a narrow
belt between ±30◦ (Nandy & Choudhuri 2002 for a detailed
discussion).

Even more difficult to explain and model are the observed
irregularities. From cycle to cycle, the sunspot number may
vary by as much as 100%, while the period displays fluctua-
tions within the range from 9 to 13 years. Superimposed on
these fluctuations are secular changes on timescales of cen-
turies, like the Maunder minimum which took place during the
second half of the seventeenth century (Ribes & Nesme-Ribes
1993; Beer et al. 1998). To explain the nature of these irreg-
ularities, two different mechanisms have been invoked in the
literature: chaos or stochasticity. The complexity of chaotic dy-
namo systems was studied more extensively in truncated mod-
els (Zeldovich & Ruzmaikin 1990; Knobloch & Landsberg
1995; Knobloch et al. 1998, and references therein) although
it has been shown that the introduction of additional degrees of
freedom in such truncated systems often destroys the proper-
ties of the chaotic attractor (Weiss et al. 1984; Cattaneo et al.
1996; see however Tobias 1997). Also, there are no firm indica-
tors of the existence of chaos in the sunspot number timeseries
(Carbonell et al. 1994).

On the other hand, the first numerical model of the so-
lar dynamo was also the first one to include stochastic effects
as the origin of the observed irregularities (Leighton 1969).
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Choudhuri (1992) was the first to propose that the kinetic he-
licity (proportional to the mean field α-effect) must fluctuate
around its mean value, with a spatial and time correlation given
by the properties of giant cells in the solar convective region.
In 1998 these structures were finally observed (Beck et al.
1998).

The comparison between observations and models (either
chaotic or with stochastic effects) is usually done in a rather
qualitative way. However, the sunspot data contain a large
amount of information concerning the shape and dynamics of
the spatial distribution of magnetic activity, which is not con-
sidered for the validation of the models. This problem turns
out to be quite relevant, since many of the observed features
of the solar cycle can indeed be reproduced either with chaotic
or stochastic paradigms. The critical question is therefore: how
can we validate/refute solar dynamo models displaying com-
plex dynamics?

In previous studies we presented a set of tools to analyze the
complexity in the sunspot data (Mininni et al. 2000, 2002a,b).
In particular, Mininni et al. (2002b) presented a study of the
temporal and spatial complexity in the sunspot data distribution
using bi-orthogonal decomposition (BOD). The analysis yields
evidence for a strong fluctuating component in the solar cycle
and no evidence of low dimensional chaos, at least on the time
scales that can be studied with these data. However, the BOD
(Aubry et al. 1992; Holmes et al. 1996) can be used not only to
search for complexity in a dataset, but also to characterize its
geometrical properties and make comparisons with theoretical
models. The first idea in this direction was proposed by Hoyng
& Schutgens (1995) in the context of a different decomposition.
They introduced the name dynamo spectroscopy for the com-
parison between the spectral properties of solutions of the dy-
namo equations and decompositions into spherical harmonics
of the solar magnetic fields (Stenflo & Voguel 1986) or sunspot
distribution (Gokhale 1992).

In this work we compare results from a theoretical model
with observations using the BOD. To this end, we use a sim-
ple kinematic dynamo model of the solar cycle in spherical
coordinates. The model is based on the one already presented
in Mininni & Gómez (2002), with some improvements in the
modeling of the solar velocity profiles. In this model nonlin-
ear effects are responsible for the saturation of magnetic fields,
and a random force is introduced to model some of the ob-
served irregularities. The model is 1D in latitude and time. To
the best of our knowledge, Wang et al. (1991) were the first
to present a radially averaged 1D model with meridional flow.
While 2D models are now available (Dikpati & Charbonneau
1999; Nandy & Choudhuri 2002), to study irregular dynam-
ics long exploratory runs in both hemispheres with high lati-
tudinal resolutions must be carried out. As a result, we made
a special effort to obtain a good 1D reduction of the dynamo
equations, keeping as much information as possible from the
observed solar velocity profiles, and displaying solar-like so-
lutions. We want to point out that we are not proposing this
simplified model as a physical description of the solar dynamo,
but rather as a paradigmatic example in which the power of
spectral comparison can be easily appreciated. In this context,
a study of the effect of stochastic force in 2D models in one

hemisphere with moderately long runs was carried out recently
by Charbonneau & Dikpati (2000).

The BOD is applied to the synthetic series generated by
the model and to observations. A good agreement between the
model and observations is found. Moreover, several features
(such as a 7-year peak in the time power spectrum of the obser-
vational data) can be identified in the synthetic series, and re-
lated to physical effects such as the nonlinear saturation due to
Lorentz forces. We believe that the methodology and its results
must be extended to other models as well (including 2D mod-
els), to validate or refute different physical mechanisms and to
build a realistic model for the solar cycle.

In Sect. 2 we introduce the BOD as a tool to study and
compare spatio-temporal series. Section 3 describes our sim-
ple model and the source of irregularities in the solar cycle.
Comparison between the BOD of our model and observations
is not made until Sect. 4 for the sake of clarity. In addition to
modeling the fluctuations observed in the period and amplitude
of the cycles, our stochastically forced model spontaneously
generates long periods of reduced activity. While the main aim
of this work is to introduce the method used for a compari-
son with observations, in Sect. 5 we present a short discussion
of these special solutions which resemble Maunder minimum
events. Finally, in Sect. 6 we present the conclusions of our
work.

2. Bi-orthogonal decomposition

To compare the solutions of dynamo models with the observed
sunspot series, we will study the statistical properties of the
magnetic fields. In previous studies this comparison was made
considering only partial information provided by the obser-
vational dataset (Hoyng 1993; Dikpati & Charbonneau 1999;
Charbonneau & Dikpati 2000). Several observational laws ex-
ist which summarize statistical properties observed in the solar
cycle, such as Joy’s law, Hale’s law, and the correlation be-
tween phase and amplitude in the sunspot series (Hoyng 1993;
Charbonneau & Dikpati 2000). Beside checking the validity
of these laws, other features such as the mean period and am-
plitude of the cycles, and the latitudinal belt where maximum
activity takes place, are sometimes also compared (Dikpati &
Charbonneau 1999; Mininni & Gómez 2002).

In a recent work we presented a detailed analysis of the
complexity present in the sunspot number database using bi-
orthogonal decomposition (Mininni et al. 2002b). Since the
BOD is essentially a statistical decomposition, all the infor-
mation summarized in the observational laws mentioned above
is comprised in its results. Basically, the BOD consists of de-
composing a spatio-temporal signal into an orthogonal set of
temporal and spatial modes which are coupled to one another.
This decomposition is performed in terms of empirical modes
which are eigenvectors of a linear operator constructed using
the empirical data. This projection has the property of being
optimal: the empirical modes are ordered by their energy in-
stead of their wave number (Aubry et al. 1992; Holmes et al.
1996).

Details of the decomposition can be found in Mininni et al.
(2002b), and a comprehensive description can be found in
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Holmes et al. (1996). Here we outline the method used to obtain
the time and spatial modes. Given a spatio-temporal (in general
complex valued) signal u(x, t), where x ∈ X and t ∈ T are re-
spectively the space and time variables, we can define a linear
operator U : H(X)→ H(T ) and its adjoint U∗ : H(T )→ H(X)
such that

∀ φ ∈ H(X) (Uφ)(t) =
∫

X
u(x, t)φ(x) dx, (1)

∀ψ ∈ H(T ) (U∗ψ)(x) =
∫

T
u∗(x, t)ψ(t) dt. (2)

H is a linear Hilbert space with the standard inner product, and
the asterisk denotes transpose complex conjugate operation.
Assuming that U is a compact operator, we can write a con-
vergent series which represents the BOD of the signal u(x, t),

u(x, t) =
∑
k=1

αkφ
∗
k(x)ψk(t). (3)

From Eqs. (1) and (2), the bi-orthogonal modes φ(x) and ψ(t)
are solutions of the eigenvalue problem given by

(U∗Uφk)(x) = α2
kφk(x) (4)

(UU∗ψk)(t) = α2
kψk(t). (5)

Here the functions φk(x) and ψk(t) are called respectively the
eigenfunctions and the time traces of the decomposition, and
the squared eigenvalue α2

k is called the energy of the mode k.
In the case of a finite and discrete dataset, let us assume

that the matrix Ui j (i = 1, 2, 3, . . . ,NX ; j = 1, 2, 3, . . . ,NT )
stores the intensity of the toroidal magnetic field for different
latitudes and times (i labels the NX latitudinal bins and j la-
bels the NT time steps available in the dataset). In general,
NT � NX . Then the eigenvalues and eigenvectors of the ma-
trix U∗U are computed (this is a small problem involving a
NX × NX matrix). From Eq. (4) it follows that the eigenvalues
obtained are the energies α2

k (here k labels the ordering, from
larger to smaller energies), and the eigenvectors are the empir-
ical modes denoted in the continuum case as φk(x). Therefore,
for the discrete dataset the eigenfunctions φk(x) are NX vectors
of NX components each.

The time traces in Eq. (5) could be obtained in the same
way by solving the eigenvalue problem for the matrix UU∗.
However, this is a larger matrix with NT × NT elements.
Instead, the discrete version of Eq. (1) can be used. Therefore
the NX vectors with NT elements representing the time traces
ψk(t) are obtained after multiplying the row vectors of the spa-
tial eigenfunctions with the matrix U, except for a normaliza-
tion factor.

One of the difficulties involved in the comparison be-
tween models and observations is related to the definition of
mean fields. Almost all solar dynamo models include some
kind of averaging to obtain axisymmetric equations (Dikpati
& Charbonneau 1999; Ossendrijver 2000). As a result, the
models predict the evolution of the mean fields as a func-
tion of space and time. On the other hand, the solar mag-
netic field is highly intermittent. Therefore the interpretation
of the results becomes intricate, since the translation from ob-
served fields to mean fields involves an unknown filling factor

(Ossendrijver 2000). The BOD provides the most efficient way
of capturing the dominant components of infinite-dimensional
processes with only a few modes (Holmes et al. 1996). When
applied to turbulent flows, it provides a representation of the
mean and fluctuating velocity fields, and the corresponding
modes can be related to two-point velocity correlations (Pope
2000). This ability to provide a representation of the mean and
fluctuating component of a flow yields relevant information for
the comparison of dynamo models.

3. A simple dynamo model

3.1. The dynamo equations

We will work in spherical coordinates under the kinematic ap-
proximation, i.e. we assume the velocity field to be given by
U = ur(r, θ)r̂ + uθ(r, θ)θ̂ + r sin θ ω(r, θ)φ̂, with all the veloc-
ity profiles known and where ω describes the solar differential
rotation.

Below the solar tachocline, the rotation velocity inferred
from helioseismology remains approximately constant, and the
inner region seems to rotate like a rigid body. The latitudinal
shear observed in ω is small at the base of the tachocline, while
above it ω displays a profile that remains approximately inde-
pendent of the radius across the convective region until reach-
ing the surface. At the surface, the differential rotation pro-
file ωs is given by observations (Beck 1999),

ωs (θ) = a + b cos2 (θ) + c cos4 (θ) , (6)

where a = 2.913 × 10−6 rad s−1, b = −0.405 × 10−6 rad s−1,
c = −0.422 × 10−6 rad s−1. The meridional velocity fields ur

and uθ are assumed to be incompressible although in a strati-
fied medium, following the expressions in Mininni & Gómez
(2002).

Considering the observed velocity field, in the kinematic
approximation we must solve the induction equation to obtain
the magnetic field B

∂B
∂t
= ∇ × (U × B) + η∇2 B, (7)

where η is the magnetic diffusivity. We assume axisymme-
try and write down the magnetic field in spherical coordi-
nates in terms of its toroidal and poloidal components, i.e.
B = Bφφ̂ + Bp, where Bp = ∇ × (Apφ̂).

There is strong observational evidence that suggests that
dynamo action takes place at the bottom of the convective re-
gion. Therefore we reduce the induction Eq. (7) to 1D equa-
tions for Ap and Bφ as a function of latitude (Mininni & Gómez
2002). Helioseismic measurements suggest that the meridional
velocity field varies in the radial direction more smoothly than
the magnetic field and differential rotation profiles. Therefore
Eq. (7) is decomposed into its poloidal and toroidal compo-
nents, and we take the meridional flow components ur and uθ
out of the radial derivatives and approximate them by their
radially averaged values (Fig. 1).

To properly model the strong and localized radial shear ob-
served in the differential rotation, we expand all radial deriva-
tives in the dynamo equations. Radial derivatives of the un-
knowns Ap and Bφ were replaced by the corresponding field
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Fig. 1. Radially averaged components of the meridional flow, for a
maximum meridional velocity at the surface of 20 m s−1.

component times 1/L0 (where L0 is the typical depth of the
tachocline), while for the differential rotation we use ∂rω ≈
(ωs − ωc)/L0 = ∆ω/L0, where ωc describes the rotation of the
core as a rigid body. In this way, we consider the most impor-
tant property of the tachocline known from observations: that
the core rotates as a rigid body, and that the differential rotation
profile remains almost constant from the surface through most
of the convective region.

To write down the resulting equations in dimensionless
units we define dimensionless variables with the aid of a typ-
ical time T0 (approximately 1 year), and a typical longitude
L0 
 1 R�. The magnetic field is expressed in velocity units.
Under all these assumptions Eq. (7) finally becomes

∂Bφ

∂t
= −

(
ur + ε

∂uθ
∂θ

)
Bφ − εuθ ∂Bφ

∂θ

+

(
∆ω cos θ − sin θ

∂ωs

∂θ

)
Ap + ∆ω sin θ

∂Ap

∂θ

+
1

RM

(
− ε2

sin2 θ
+ ε2 cot θ

∂

∂θ
+ ε2 ∂

2

∂θ2
− 1

)
Bφ

∂Ap

∂t
= − (ur + ε cot θ uθ) Ap − εuθ ∂Ap

∂θ
+ αBφ

+
1

RM

(
− ε2

sin2 θ
+ ε2 cot θ

∂

∂θ
+ ε2 ∂

2

∂θ2
− 1

)
Ap (8)

where RM = L2
0/(T0η), ε = L0/R� ≈ 0.1, and uθ and ur are the

radially averaged values of the meridional flow. A new term,
controlled by the coupling constant α has been added to the in-
duction equation to model the process responsible for the con-
version of toroidal into poloidal magnetic field.

If the magnetic energy becomes comparable to the kinetic
energy, nonlinear effects cannot be neglected. Therefore we in-
troduce the back-reaction of the magnetic field on the α source
term as

α→ α(B) =
α

1 + B2
φ/B2

0

sin (θ) cos (θ), (9)

where the latitude profile was set to fit estimates of kinetic
helicity from solar observations (Kuzanyan et al. 2000), and
where B0 is a free parameter of the model related to the sat-
uration value of the magnetic field. Magnetic flux tube sim-
ulations suggests than the saturation takes place when Bφ ≈
104−105 G (Choudhuri & Gilman 1987; Fan et al. 1993;
D’Silva & Choudhuri 1993), and these values were used to es-
timate B0 in the model.

The integration is done in both solar hemispheres. The
boundary conditions at the poles are

Bφ(θ = 0) = Bφ(θ = π) = 0 (10)

∂Ap

∂θ

∣∣∣∣∣∣
θ=0

=
∂Ap

∂θ

∣∣∣∣∣∣
θ=π

= 0. (11)

The reduction of the dynamo equations to a 1D model allows us
to perform long time simulations at sufficiently large latitudinal
resolutions, a feature that will become crucial for obtaining the
results presented in Sects. 4 and 5.

The sign of the net α effect has not been definitely es-
tablished. The flux tube analysis of Ferriz-Mas et al. (1994)
and MHD simulations of Brandenburg & Schmitt (1998) pre-
dict a mostly positive α effect on the northern hemisphere. On
the other hand, theoretical estimates (Parker 1987; Rüdiger &
Kichatinov 1993), other MHD simulations (Ossendrijver et al.
2001), and observational estimates (Kuzanyan et al. 2000), ob-
tain an effective negative α effect in the northern hemisphere
(with positive α at the surface in some cases). Also, Choudhuri
et al. (1995) demonstrated that a meridional flow can force the
equatorward migration of magnetic activity irrespective of the
sign of α. Since this discussion is beyond the goal of our model,
following Ossendrijver (2000), α was assumed to be nega-
tive in the northern hemisphere. The set of Eqs. (8) were nu-
merically integrated using a centered finite-difference scheme
with 500 points in latitude, and a predictor-corrector method to
evolve in time, with a time step of T0/500.

3.2. Solar dynamo solutions

Preliminary results of this model have been shown in Gómez &
Mininni (2003). In Fig. 2 we show contour levels of the toroidal
magnetic field Bφ obtained as a result of integrating the equa-
tions with η = 3.39 × 1011 cm2 s−1, α = 14.02 cm s−1, and
B0 = 103 Gauss. Choudhuri (1992) estimates the α coefficient
to range between 3 cm s−1 and 30 cm s−1, while Dikpati &
Charbonneau (1999) estimate η ≈ 3 × 1011 cm2 s−1. The rota-
tion of the core is ωc = 2.243 × 10−6 rad s−1. The maximum
value of the toroidal field is 105 Gauss, and the period of the
cycle is close to 12 years. Also, the magnetic field at the poles
shows an inversion close to the maximum of activity.

The evolution of the toroidal magnetic field is reasonably
solar-like. The magnetic cycle starts at a latitude close to 60◦.
As the cycle evolves, the magnetic activity below this latitude
migrates toward the equator, while magnetic field concentra-
tions above 60◦ migrate toward the poles, in good agreement
with observations. Note that the direction of migration is par-
tially related to the meridional flow, but also to the sign of α
and of the derivatives of ω. In particular, ∂ω/∂r (in our model,
proportional to ωs − ωc) changes sign at mid latitudes while α
has the same sign in each hemisphere. Therefore, the change in
sign of the product α(∂ω/∂r) is related to the migration direc-
tion. The region of strongest magnetic activity concentrates in
a belt around ±50◦, while the maximum of magnetic activity is
reached close to 30◦.

Figure 3 shows the toroidal magnetic field with η = 5.75 ×
1011 cm2 s−1, and α = 10.35 cm s−1. The period is close
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Fig. 2. Contour plot of the toroidal magnetic field in a latitude-
time plane (butterfly diagram), for η = 3.39 × 1011 cm2 s−1, α =
14.02 cm s−1, and B0 = 103 Gauss. Full and dashed lines indicate
opposite polarities. The maximum value of B is 105 G.

to 11 years. Here, the region of strongest magnetic activity is
concentrated in a narrow belt around ±40◦, and the maximum
of magnetic activity is reached at 25◦.

The meridional flow speed has a profound influence in de-
termining the period of the cycle, while the amplitude of α does
not. This is in good agreement with results arising from higher
dimensional codes (Dikpati & Charbonneau 1999). However,
the amplitude of α is related with the latitudinal spread of mag-
netic activity, with larger values of α implying a wider latitu-
dinal belt for magnetic activity. The value of ωc also controls
the latitude of maximum activity, since this quantity is related
to the latitude where α(∂ω/∂r) changes sign.

3.3. Helicity fluctuations and irregularities

As was previously mentioned, attempts to model the irregular
dynamics of the solar cycle have been traditionally associated
either with low dimensional chaos or stochastic effects. Studies
made of the observational time series to decide between these
two paradigms did not give conclusive results, since the amount
of data is not large enough for statistical studies (Carbonell
et al. 1994). However, several observed features of the cycle
(Hoyng 1993; Charbonneau & Dikpati 2000; Mininni et al.
2000, 2002a) suggest that the correct paradigm is the stochastic
scenario.

What is the origin of these stochastic effects? In the outer
regions of the sun, the temperature gradient is strong enough to
drive convective turbulence. In mean field theory, the ergodic
hypothesis made to define averages of the fields gives rise to
fluctuating coefficients in the dynamo equations when the av-
erage over a statistical ensemble is replaced by an average over
a finite number of convective cells. Since the number of cells
is finite, fluctuations around mean values can be rather large
(Choudhuri 1992; Hoyng 1993). Moreover, recent observations
(Kuzanyan et al. 2000) and theoretical estimates (Choudhuri
1992; Ossendrijver & Hoyng 1996) suggest that the amplitude
of the fluctuations can be even larger than the mean field values.

In the solar dynamo, convective motions play a crucial role
in the source of the poloidal field. The spatial and temporal

Fig. 3. Contour plot of the toroidal magnetic field in a latitude-
time plane (butterfly diagram), for η = 5.75 × 1011 cm2 s−1, α =
10.35 cm s−1, and B0 = 103 Gauss. Full and dashed lines indicate
opposite polarities. The maximum value of B is 104 G.

complexity of the convective cells can be described introduc-
ing a fluctuating component in the small scale velocity field,
which in turn brings fluctuations into the α coefficient. Dynamo
models with fluctuations in α have been studied extensively by
Choudhuri (1992), and Hoyng (1993). In our model, we split α
into a mean component α0 and a fluctuating part δα = rξ.
Therefore,

α = α0 + r ξ(θ, t), (12)

where ξ(θ, t) is a Gaussian stochastic process with dispersion
equal to unity. Therefore, the dimensionless parameter r is the
rms value of the stochastic part of α.

What are the correlation properties of the fluctuations in α?
The α effect is related to the helical velocity field in the solar
convective region, and therefore requires the reflection symme-
try to be broken by an external force. In the Sun, this is done
by the Coriolis force. The reciprocal of the Rosby number mea-
sures the relevance of the Coriolis force in the dynamics of the
fluid

RS =
U

2LΩ
, (13)

where U and L are characteristic velocities and lengths, and
Ω is the rotation frequency (2π/Ω ≈ 27 days). Considering
RS ≈ 1 we can estimate the smallest scale that will feel the ef-
fect of the Coriolis force. For convective motions with veloc-
ities of a few meters per second we obtain that the smallest
relevant length scale is about 1 × 105 km, precisely the size of
the giant cells.

Recently, giant cells have been measured in the Sun and
were found to be rather elongated, covering less than 10◦ in lat-
itude but about 40◦ in longitude (Beck et al. 1998). Considering
these results, we assume a latitudinal correlation of 8× 104 km
(equivalent to 9 cells in latitude), with δα spatially constant in
each cell. The value of δα in each cell was randomly changed
once every 60 days (the correlation time of these structures).
As an example, in Fig. 4 we show the result of integrating the
resulting stochastic dynamo equations, with r = 14.02 cm s−1

(i.e. δα/α ≈ 1). When stochastic fluctuations are introduced,
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Fig. 4. Toroidal magnetic field, for a time correlation of 60 days, and
a spatial correlation of 8 × 104 km, with r = 14.02 cm s−1. Note the
transequatorial activity and the asymmetry between hemispheres.

the mean period of the cycle is slightly increased, as cor-
rectly predicted in previous models and theoretical estimates
(Ossendrijver & Hoyng 1996).

While Fig. 4 displays an irregular cycle with fluctuations
in amplitude and period, the cycle can be easily identified dur-
ing the whole integration. In this sense, the solution shown in
Fig. 4 resembles the normal irregular dynamics of the solar cy-
cle observed in the last 300 years, with fluctuations on small
scales and times but displaying a strong magnetic cycle. The
cycle remains stable, even though it is strongly perturbed by
noise. The solution keeps showing cyclic magnetic fields for
long times (note that Fig. 4 spans for more than 150 years). It
is well known that stochastically forced models can correctly
describe several properties of the solar cycle, such as phase
and amplitude correlation and statistical properties of the ob-
served fluctuations (Charbonneau & Dikpati 2000; Mininni &
Gómez 2002). On the other hand, large-scale secular events
like Maunder minimum seem hard to obtain in stochastically
forced models, although there are some linear (Ossendrijver
et al. 1996; Ossendrijver & Hoyng 1996) and nonlinear mod-
els (Moss et al. 1992; Ossendrijver 2000) that previously ob-
tained results resembling these phenomena. In the next section
we will focus on the normal cycle, comparing the results of
numerical simulations with decompositions of the observations
from 1874. However, we want to point out that when carrying
out long runs with our simple model we obtain the occurrence
of grand minima, as will be shown later in Sect. 5.

4. Comparison between model and observations

A BOD of the temporal and latitudinal distribution of solar
magnetic fields inferred from sunspots since 1874 showed that
the butterfly diagram can be interpreted as the result of two
oscillations with approximately constant amplitudes and phase
shift (Fig. 5c), both with periods close to 22 years (Mininni
et al. 2002b). These two oscillatory modes alone comprise
84.4% of the total energy of the decomposition, and their corre-
sponding spatial eigenfunctions are antisymmetric with respect
to the equator (Fig. 5a). All the symmetric modes of the BOD
in the reconstructed magnetic fields (responsible for asymme-
tries in the distribution of sunspots) only contain 9.6% of the
energy of the system.

Auto-correlation analysis of the time traces for the first two
modes shows that the series has positive correlation for time
lags close to ≈0 and ≈±22 years, and negative correlation in

Fig. 5. First two BOD spatial eigenfunctions: a) observations,
and b) model, and corresponding time traces: c) observations,
and d) model.

the ≈±11 years time lag. On the other hand, the autocorrela-
tion of the remaining time traces falls immediately below 0.2,
which implies a strong irregular component in the rest of the
modes. Also, a periodicity close to 7 years can be clearly ob-
served in the power spectrum of the first time traces (Mininni
et al. 2002b). The existence of this periodicity was considered
a signature of nonlinearity in the underlying dynamical system,
and has been reported in previous analyses of the sunspot time
series (Bracewell 1985).

When we apply the BOD to the toroidal magnetic field
given by our unperturbed model (e.g. solutions of the type
shown in Figs. 2 and 3), 100% of the energy goes into the
asymmetric modes, and the first two modes comprise more
than 96% of the total energy. The rest of the modes only cor-
respond to small corrections with short length scales, while the
corresponding time traces are overtones of the 22-year cycle.
However, when the BOD is applied to the system perturbed
by noise (Fig. 4), the first two modes have 92% of the energy,
and symmetric modes appear with 7% of the total energy. This
values are in good agreement with observational results. As
the amplitude of the noise is increased these numbers increase
smoothly. Therefore the energy distribution in the decompo-
sition can be used to statistically adjust the amplitude of the
noise. As the amplitude of the fluctuations in α is related to ve-
locity fluctuations in giant cells, this result can be used to check
in models the proposed link between giant cell movements and
solar activity. We want to point out that in this analysis the BOD
was applied to several solutions of the same type as the one
shown in Fig. 4, i.e. normal cycle solutions with the same time
span as the available observations (129 years). This decision is
made to ensure the validity of the statistical comparison, since
the data available since 1874 do not show Maunder minimum
events.

Figure 5 shows a comparison of the first two modes of the
BOD of observations and of the toroidal magnetic field given
by our model. Several features can be identified in both decom-
positions. The first two time traces in both series have a period
of 22 years and an almost constant phase shift of about π/2
(Figs. 5c and d). The spatial modes also share recognizable
features, such as equatorial symmetry (Figs. 5a and b). Note



P. D. Mininni and D. O. Gómez: Comparison between dynamo models and observations 1071

Fig. 6. Time power spectrum for the first mode of the BOD of the
toroidal magnetic field generated by the model.

that in our model magnetic activity peaks at latitudes close to
the observed ones. However, the distribution of magnetic fields
in our model is more localized in latitude than in the solar
case (the peaks in the spatial eigenfunctions are narrower). This
feature can be tuned in our model by increasing the magnetic
diffusivity.

The correlation coefficients for the first two model time
traces show positive correlation at 0 and ±22 years, and neg-
ative correlation at ±11 years, as for the observations. The cor-
relation for the rest of the model time traces falls quickly be-
low 0.2, but weak periodicities in 11 and 22 years can still be
identified in these modes.

Perhaps one of the most remarkable features of the de-
composition of the synthetic series is the fact that the model
correctly generates the observed peak of 7 years in the time
spectrum of the first two modes. Figure 6 shows the tempo-
ral power spectrum for the first time trace of the BOD of the
toroidal magnetic field generated by the model. After perform-
ing several simulations with different values of the parameters
in the model, we can confirm that this peak is the signature
of the nonlinearity in this dynamical system. Actually, the am-
plitude and position of the peak in Fourier space are related
to the particular nonlinearity that we used and its amplitude.
For the quenching used in our model, under the approximation
α(B) = α0(1 + (B/B0)2)−1 ≈ α0(1 − (B/B0)2), the only non-
linearity in the induction equation is cubic. It is well known
that a cubic nonlinearity generates a peak at 3ω due to beat-
ing (Mininni et al. 2002b), where ω = 2π/22 year−1 is the
fundamental frequency of the system. Therefore, the spectral
properties of the BOD of the observations can be used through
comparison with other models to check the correct expression
for the mechanism of nonlinear saturation of the dynamo.

5. Maunder minimum

The solutions obtained with our model (Fig. 4) show long peri-
ods of normal magnetic activity with intense and well defined
cycles. Fluctuations can be observed both in the amplitude and

Fig. 7. Toroidal magnetic field showing occurrence of a grand mini-
mum.

Fig. 8. Magnetic energy at mid latitudes.

in the period of the cycle, as well as slight asymmetries be-
tween hemispheres. These periods of normal activity last for
long times, ranging from 100 to 700 years.

However, from time to time the modeled small scale gi-
ant cell fluctuations excite strong asymmetries between hemi-
spheres. This can be observed in Fig. 7. When these events take
place, the amplitude of the cycle decreases substantially, the
period decreases, the latitudinal span of magnetic activity is
also reduced, and activity enters long periods reminiscent of
solar grand minima. Usually in these periods of reduced ac-
tivity there is a strong asymmetry between the hemispheres,
as was observed during the solar Maunder minimum by Ribes
& Nesme-Ribes (1993). As an example, in Fig. 7 the south-
ern hemisphere is more active than the northern hemisphere
for three cycles during the minimum. Note that many features
observed in this simulation (such as the equatorial asymmetry,
the reduction of the period, and of the latitudinal span of mag-
netic activity) were also observed during the Maunder mini-
mum (Ribes & Nesme-Ribes 1993).

These events of reduced activity typically last for 60−
100 years, and can be statistically observed every 400 years.
The events are not periodic, and the mean time between events
can be reduced by increasing the amplitude of the fluctuations.

Figure 8 shows the magnetic energy at mid latitudes con-
tained in the toroidal magnetic field (supposed to be in phase
with the sunspot number), properly normalized to be reminis-
cent of the observed sunspot number. Two minima events can
be observed in the time series, separated by a long period of
normal behavior. From abundances of 14C and 10Be we know
that the solar Maunder minimum was probably preceded by
similar episodes, the previous one taking place about 200 years
earlier (Beer et al. 1998).

During the normal activity stage the energy in antisymmet-
ric modes (in sunspots distribution) is less than 10%, as men-
tioned in the previous section. During grand minima, on the
other hand, the energy is almost equally distributed between
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symmetric and antisymmetric modes according to our simula-
tions. This change in the symmetry of magnetic fields seems to
give rise to the occurrence of Maunder minima. This origin was
already suggested in the literature (Sokoloff & Nesme-Ribes
1994; Knobloch & Landsberg 1995; Knobloch et al. 1998) al-
though the catalyst of this change in the symmetry is not clear.
Our model shows that giant cell statistical properties can gen-
erate this change, giving as a result solutions which display an
alternation of periods of normal activity and minima events.

The initial condition we use for the numerical integration is
symmetric around the equator. The introduction of noise turns
on overtones much weaker than the fundamental solution, but
with mixed parity. The nonlinearity in the dynamo equation
naturally couples this high frequency and these mixed-parity
modes with the fundamental mode, thus generating this alter-
nation between the parity of the solutions. The mixed parity so-
lutions seem to be unstable, since minima last for a finite time
and take place before the system again reaches the almost sym-
metric state. Note that this origin of reduced activity is differ-
ent from models with thresholds for the emergency of magnetic
fields, which integrate over only one hemisphere (Ossendrijver
2000).

6. Discussion

We present a technique suitable for a detailed comparison be-
tween solar dynamo models and observations. The method,
which can be applied to 2D models as well, consists of per-
forming bi-orthogonal decompositions of the solar observa-
tions and the results obtained from the model, to carry out a
spectral comparison between both data sets.

To this end we use a simple kinematic dynamo model of
the solar cycle. The dynamo equations in spherical coordinates
were reduced to a 1D system for the toroidal and poloidal com-
ponents of the magnetic field, with a special effort to preserve
as much information as possible from the observed solar ve-
locity profiles. Irregularities were introduced modeling the tur-
bulent behavior of the solar convective region with a random
perturbation in the source of the poloidal field. The statistical
properties of the perturbation are chosen to match correlations
observed in the giant cells.

As a result, we obtain solar-like solutions, displaying a
22 years magnetic cycle, magnetic activity concentrated in a
belt, migration of the activity to the equator, and inversion of
the polar magnetic field during the maximum of the cycle. The
cycles are irregular and display fluctuations in period and am-
plitude. When performing long simulations, we find that these
periods of normal activity alternate with periods of reduced ac-
tivity reminiscent of the solar Maunder minimum.

The 1D model introduced in Sect. 3 is very simple, and it is
only intended as an example to illustrate the use of BOD tech-
niques to compare data and theory. However, we want to point
out one issue that 2D models must address before the compar-
ison can be performed. The BOD allows a quantitative study
of symmetries, while 2D models tend to generate unrealisti-
cally symmetric magnetic fields (Ossendrijver 2000; Dikpati
& Gilman 2001). To overcome this, most 2D models impose
antisymmetry and confine the integration to one hemisphere.

It has been proposed that changing the spatial location of
the α-effect could overcome this problem (Dikpati & Gilman
2001). Also recent 3D simulations display the correct symme-
try (Zhang et al. 2003). Integrations in both hemispheres must
be performed for the comparison to be meaningful. We believe
that the statistical and spectral comparison will allow the vali-
dation or refutation of different physical scenarios of the solar
dynamo, and will make it possible to achieve the construction
of a realistic dynamo model with prediction capability.
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