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ABSTRACT

Aims. We study the stability and modes of non – isothermal coronal loop models with different intensity values of equilibrium twisted
magnetic field.
Methods. We use an energy principle obtained by means of non – equilibrium thermodynamic arguments. The principle is expressed
in terms of Hermitian operators and enables us to consider the coupled system of equations, the balance of energy equation and the
equation of motion, to obtain modes and eigenmodes in a spectrum ranging from short to long-wavelength disturbances without using
weak varying approximations of the equilibrium parameters. Long-wavelength perturbations introduce additional difficulties because
the inhomogeneous nature of the medium produce disturbances corresponding to continuous intervals of eigenfrequencies, which
cannot be considered as purely sinusoidal.
Results. We analyze the modification of periods, modes structure, and stability when the helicity, the magnetic field strength, and the
radius of the fluxtube are varied. The efficiency of the damping due to the resonant absorption mechanism is analyzed in terms of
modes that can either impulsively release or store magnetic energy.
Conclusions. We find that the onset of the instability is associated with a critical value of the helicity and the magnetic energy content
has a determinant role on the instability of the system with respect to the stabilizing effect of the resonant absorption mechanism.
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1. Introduction

1.1. Variational principle

A crucial requirement of any theoretical model of coronal struc-
tures is to describe the stability and evolution of far-from-
equilibrium states that are responsible for the characteristic rich
topology and dynamics of the solar corona. This requires the
coupling of thermal and mechanical equations. Different stabil-
ity analyses of solar structures can be found in the literature,
generally restricted to special types of perturbations and spe-
cific equilibrium models. These include, models that consider
adiabatic configurations such as those analyzed by means of the
classical criterion of Bernstein (1958), or those that assume static
equilibrium and analyze the thermal stability. In the application
of Bernstein’s criterion, the adiabatic assumption implies that
the energy balance equation is not required and dissipation is
therefore impossible. The assumption of static models is also a
strong, and often unjustified, restriction for open systems.

We apply an energy principle to analyze the stability of solar
coronal loops when helical modes are present. The principle was
developed in previous papers (Paper I: Costa & González 2006;
Costa et al. 2004; see also Sicardi Schifino et al. 1991) using
a general procedure of irreversible thermodynamics – based on
firmly established thermodynamic laws – that can be understood

as an extension of Bernstein’s MHD principle to situations far
from thermodynamic equilibrium.

In Paper I and Costa et al. (2004), we showed how to ob-
tain the variational principle for solar coronal structures from the
equations that describe the dynamics of the system. The method
consists of obtaining a Lyapunov function, also known as a gen-
eralized potential, that represents the mathematical expression
of the stability conditions. The principle is subject to physically
reasonable requirements of hermiticity and antihermiticity over
the matrices. For a more detailed presentation, see Paper I and
references therein.

1.2. Solar coronal loops

MHD loop oscillations in the corona are known to be strongly
damped, with decaying times of a few periods Np ≈ 2−7 pe-
riods. While thermal conduction, and radiative cooling mech-
anisms, could be the responsible for the damping of pure
MHD slow magnetoacoustic mode oscillations, they are unim-
portant in shaping the MHD fast modes. Resonant absorption
and phase mixing appear more promising in means of account-
ing for the rapid decay (Halberstadt & Goedbloed 1994, here-
after HG; Goossens et al. 2002) of the ideal fast oscillations of
these strongly inhomogeneous and structured plasma systems.
Inhomogeneous equilibrium distributions of plasma density and
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temperature varying continuously across the magnetic field pro-
duce plasma waves with continuous intervals of eigenfrequen-
cies. The presence of the Alfvén ideal MHD continuum in a
thin edge layer is inferred from the highly anisotropic charac-
ter of the fast magnetoacoustic waves that generates a peak in
the amplitudes where the perturbation develops large gradients
and the absorption has maxims. However, there is another type
of continuum commonly known as slow magnetosonic contin-
uum associated with the inhomogeneity of the equilibrium pa-
rameters along the axis of the loop (see Paper I). These inhomo-
geneities are associated, for example, with changes in the density
concentration at the loop basis. If the magnetic field is twisted,
the inhomogeneities lead to the coupling of Alfvén and slow
magnetosonic continuum modes (Belien et al. 1997).

The resonant absorption mechanism of wave heating con-
sists of the non-dissipative transfer of wave energy from the col-
lective line-tied wave with fast discrete eigenvalues (kinetic en-
ergy of the fast radial component) to a local resonant mode in
the Alfvén continuum, (kinetic energy of the azimuthal compo-
nent), which is then dissipated in an enhanced manner. Then,
the continuum oscillations are converted into heat by dissipative
processes; since the medium has large gradients in the Alfvén
speed, the oscillations of neighboring field lines become out-
of-phase and shear Alfvén waves lead to enhanced viscous and
ohmic dissipation (see Heyvaerts & Priest 1983, for the linear
regime, and Nakariakov et al. 1997, for the nonlinear one). The
mode conversion from the collective to the local mode occurs
in a time that is non-dissipative and generally far shorter than
the second timescale that is related to the dissipative damping of
the small-scale perturbations of the local mode in the resonance
layer (Roberts 2000; Van Doorsselaere et al. 2004).

The entire temporal pattern description of modes that ex-
hibit a combination of global (discrete line-tied fast eigenmode)
and localize (Alfvén continuum mode) behavior is known as
quasi-mode. The mixed nature of the modes is not only due
to the temporal behavior but also to the boundary value prob-
lem, which produce a spatial behavior that is of a mixed nature,
i.e. coronal loops with line-tying constraints that cannot support
pure waves, i.e. Alfvén, slow or fast magnetoacoustic modes.
HG studied the mixed spectral description of coronal loops (i.e.
the resulting superposition of basic waves that adjust the line-
tied condition) without assuming a straight magnetic field and
forcing the loop to follow the photospheric velocity perturba-
tions. They found that pure Alfvén and pure slow modes are ob-
tained as singular limiting cases of the spectra of Alfvén-fast or
slow-fast modes, where the fast components are localized in a
photospheric boundary associated with the line-tied condition.
The coronal part of the loop which acts as a resonant cavity
of both large Alfvén and fast components of small but rapidly
varying amplitudes located in the photospheric boundary layer.
They found that the heating of coronal loops by resonant ab-
sorption is due to the line-tied Alfvén continuum that no longer
depends on the poloidal magnetic field; the corresponding eigen-
modes also have a global ballooning feature, which is character-
ized by an accumulation point given by the Alfvén frequency.
In Goedbloed & Halberstadt (1993, hereafter GH), a variational
principle, based on Bernstein’s principle, was obtained to derive
the Alfvén and slow continuum frequencies in a line-tied inho-
mogeneous cylinder. Stability considerations led the authors to
the global stability of coronal loops.

Following results of Paper I, we apply our energy principle
to consider the stability and mode structure of loop inhomoge-
neous coronal models of non-vanishing helicity. Our principle
has the advantage that it does not require a WKB approximation

and that, as afore mentioned, it allows the consideration of the
coupling of the thermal and mechanical equations that are nec-
essary to analyze far from equilibrium states.

2. The MHD stability criterion for coronal structures

Solar coronal conditions with large Reynolds numbers are well
described by ideal MHD plasma models (i.e. infinite electrical
conductivity σ � 1 of vanishing viscosity and ohmic dissipa-
tion). The fundamental equations that we consider are therefore
the mass conservation equation, the perfect gas law or state equa-
tion for a fully ionized H plasma, and the induction equation
with vanishing magnetic diffusivity due to the conductivity prop-
erties. The energy balance equation takes the form:

ργ

(γ − 1)
D
Dt

( p
ργ

)
= −∇ · Fc − Lr + H (1)

Fc is the heat flux due to particle conduction along the loop,
Lr is the net radiation flux, and H the heating function, which
was chosen as in Paper I: H = hρ + H0. Equation (1) expresses
the fact that the gain in particle energy (internal plus kinetic)
is due to the external heating sources represented by the heating
function, heat flow, and radiation losses; all other heating sources
were considered as vanishing terms implying that the optically
thin assumption holds. We note that the non-ideal contribution
in the energy equation (L) is associated with the open character
of the loop system.

When a linearization about a nonlinear equilibrium or sta-
tionary state is performed and a procedure has been completed
in which the hermiticity requirements are fulfilled, the general-
ized energy principle and the respective frequencies are obtained
(Paper I and Costa et al. 2004) as:

δ2Wp =
1
2

∫
(ξ∗βFξ + T ∗1 AT1 + T ∗1 Bξ − ξ∗BT1)d3x ≥ 0. (2)

ω2 = −
∫

(ξ∗βFξ + T ∗1 AT1 + T ∗1 Bξ − ξ∗BT ∗1)d3x∫
(ξ∗βρ0ξ)d3x

(3)

with the same normalization condition as in Paper I. F is the
known Bernstein operator for the system, ξ and T1 are the mo-
tion and temperature perturbations and operators A and B are as
in Paper I. For the non-dissipative cases (L = 0 or equivalently
T1 = 0), the final expressions (discarding the presence of fac-
tor β that appears in the equations to fit the Hermitian and anti-
Hermitian conditions) are reduced to the well-known Bernstein
MHD energy principle and its respective frequencies.

3. Application to an inhomogeneous loop model
of non-vanishing helicity

On the one hand, the azimuthal component of the loop pertur-
bation is believed to be one of the principle responsible of reso-
nant absorption and damping of ideal oscillations. On the other
hand, this component is associated with the storage of magnetic
energy in systems of non-vanishing helicity that is eventually re-
leased by instabilities. Therefore, we are interested in analyzing
changes in the stability of non-homogeneous loops affected by
helical perturbations; loops have inhomogeneous distributions
of plasma density and temperatures, affected by body modes
and non-vanishing helicity. The Alfvén, slow, and fast magne-
toacoustic cylinder modes can then no longer be associated with
the azimuthal, longitudinal, and radial components, respectively.
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The observational importance of helical modes cannot be ne-
glected and it is not understood well how helicity affects impor-
tant physical features of mode oscillations (e.g. damping mecha-
nisms, stability and periods). However, a mode classification can
be accomplished by the analysis of mode variations, described in
an orthogonal basis, while helicity is varied. The basis is formed
by orthogonal displacements both parallel and perpendicular to
the magnetic field, and radial displacement (and perpendicular
to the surface of the tube) that is of observational interest.

The fundamental modes are observationally and energeti-
cally more important in general than their harmonics. In these
global modes, the inhomogeneous nature of the medium cannot
be ignored: it determines the structure of the disturbance, which
we cannot assume to be sinusoidal; this implies that the tradi-
tional normal mode analysis cannot be applied in this case, i.e.
at least a WKB approximation, with parameters that vary weakly
compared with the scale of typical wavelength, is required. The
occurrence of either an infinitely degenerate eigenvalue or an
accumulation point that produces a continuous spectrum are as-
sociated with inhomogeneities. We consider two types of inho-
mogeneities: the inhomogeneity of the equilibrium parameters
along the loop axis, and the inhomogeneity across the loop axis
when the radius is varied. As a first order approximation, we ne-
glect the effect of gravitational stratification and confine the anal-
ysis to characteristic spatial scales lower than the pressure scale
height in the solar corona. To analyze the stability and to obtain
the frequencies and modes, the physical quantities in Eqs. (2)
and (4) must be calculated along the loop structure.

3.1. Mechanical equilibrium

To determine an equilibrium configuration, we assume force–
free equations. This assumption is justified for coronal condi-
tions due to the fact that in plasmas of low β (gas pressure over
the magnetic pressure), the pressure gradient can be neglected
in comparison with the Lorentz force. For the chromosphere
and photosphere, the force-free approximation may not be a
good one. However, it is a widespread supposition (Ruderman
2007): perturbed systems are believed to relax to new force-free,
minimum energy states and chromospheric conditions appear
to be well described by force-free models from an altitude of
4. × 105 m (Aschwanden 2004, Chap. 5).

Coronal loops are modeled as thin cylindrical fluxtubes,
where the curvature and related forces are neglected so that the
cylindrical geometry can be applied. The fluxtube is assumed
as line-tied to the photospheric plasma through its footpoints,
which are forced to follow the photospheric velocity perturba-
tions. The random velocity field creates a vorticity that in general
twists the coronal fluxtubes. A relation between the helical twist
and the force-free parameter can therefore be derived as follows
(e.g. Sturrock 2004). The coronal loop model is obtained from
the equations

∇ × B0 = α(r)B0 j × B0 = 0. (4)

Since B0 is force–free, ∇p = 0 everywhere and has a constant
value along the loop. We consider a straight cylinder of a nonuni-
form distribution of density and temperature and a uniform twist
over an initially non-rotated field B = (0, 0, Bz), which produces
the unperturbed magnetic field

B0 = (Br, Bφ, Bz) = (0, B0br/Δ, B0/Δ)

with Δ = 1 + b2r2 and b = 2ΠNt/L (where Nt is the number of
turns over the cylinder length L). Then,

Bφ
Bz
=

r∂φ
∂z
=

r2πNt

L
= br α(r) =

2b
Δ
· (5)

We assume a given value of the cylinder radius r = R, and the
line element is therefore a function of the coordinate z such that
s = s(z). The dependence of the coordinates with the radial com-
ponent is taken into account by considering different values of
the radius R

ds2 = R2dφ2 + dz2 =
(
1 + R2b2

)
dz2 = Δdz2. (6)

3.2. Thermal equilibrium

The thermal equilibrium is obtained, as in Paper I, by assum-
ing that L = 0 in the balance energy Eq. (1). The procedure
developed consists of obtaining the function of the temperature
along the arc element s by integrating Eq. (1) with the constraint
L = 0 and the boundary conditions of temperature at the bottom
Tb = 104 K and temperature at the top Tt = 106 K. The following
expression (see Chap. 6 of Priest 1982) is obtained

[
dT
ds

]2

=
p2χ

2k2
Bk0(α + 3

2 )
Tα−

7
2

[
1 −

( T
Tt

)2−α]
, (7)

which has to be inverted to obtain T = f −1(s) (Arfken & Weber
1995) as

dT
ds
= A

[
dBv
dv

dv
dT

]−1

where Bv
(1
2
, q

)
=

∫ v

0
tp−1(1 − t)q−1dt (8)

with p =
1
2

; v = 1 − (T/Tt)2−α; q =

(
α

2
+

3
4

)
(2 − α) + 1

A = (2 − α)T
α
2 − 11

4
t

((
p2χ)/(2k0

(
α +

3
2

)
k2

B

)) 1
2

.

We use α = − 1
2 so q = 6

5 to calculate the modes numerically,

s =
1
ABv

(1
2
,

6
5

)
→ A = 5

2
T 3

t

⎛⎜⎜⎜⎜⎜⎝ p2χ

2k0k2
B

⎞⎟⎟⎟⎟⎟⎠
1
2

.

From the boundary conditions, υ = 0; the constant
value of the heating function therefore becomes H0 =

7p2χTα−2
t /

(
8k2

B(α + 3
2 )

)
.

3.3. The perturbation

To calculate the stability and structure of the modes, the general
perturbation along the equilibrium magnetic field is written to be

ξ = [ζr(r, z)et + iζφ(r, z)eφ + ζz(r, z)ez]eimφ T1 = T1(r, z)eimφ (9)

with r = R. The φ dependence only appears in the exponents
that multiply the perturbation; the integration with respect to
this coordinate is straightforward. By representing the equilib-
rium functions of the different quantities with a 0 sub-index, and
defining

et = (Rbeφ + ez)/
√
Δ∇‖ = et(et · ∇)ρt =

mp

kBTt
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where eφ, ez are cylindrical versors and et the tangential versor,
we obtain a non-dimensional expression for the energy principle
of Eq. (2)

δ2Wp = δ
2Wc + δ

2Wm + δ
2Whc + δ

2Wr (10)

where δ2Wc is the generalized potential energy associated with
the compressional terms, δ2Wm corresponds to the magnetic con-
tributions, δ2Whc corresponds to the heat conduction terms, and
δ2Wr to the radiative contributions. The explicit form of these
functions are given in the Appendix. The Bernstein generalized
potential energy corresponds to the magnetic contribution and
part of the compressional one. In the generalized version of the
energy principle, additional terms appear in the δ2Wc term, and
δ2Whc and δ2Wr are entirely new terms.

4. Results and discussion

Convective motion of the photosphere is believed to provide en-
ergy that is stored in twisted magnetic coronal fields, produc-
ing long-lived coronal structures, until it is released by insta-
bilities (Raadu et al. 1988; Vrsnak et al. 1991). On the other
hand, continuous spectra are often associated with stability.
Unstable modes are often assumed to have a discrete spectrum
(see Freidberg 1982; or Priest 1982). There are two types of
possible continuous spectra in this problem. The inhomogene-
ity of the equilibrium parameters along the loop axis produces
a continuum that couples whith the Alfvén continuum (Belien
et al. 1997); when the disturbances considered are comparable to
the inhomogeneous characteristic wavelength, stable eigenval-
ues can give rise to a continuous spectrum (L/2, the equilibrium
structure in the z component). This is the case studied in Paper I.
On the other hand, GH established, for non vanishing helicity
systems, that there is a continuous spectrum associated with the
line-tied Alfvén resonance that produces damping and heating
by the resonant absorption mechanism and directly relates to the
stability of loops. They also described how the resonant singular
limit ω, could be obtained from the class of physically permissi-
ble solutions,

ω(r) =
nBz(r)∫ L

−L

√
ρ(z)dz

· (11)

This resonance occurs because of the absence of an explicit de-
pendence on the azimuthal magnetic field component (Bϕ).

To understand the conditions in which the mechanism can
dominate and describe the different scenarios such as the driving
of the instability or the damping of mode oscillations, it is criti-
cal to gain knowledge about the dynamics and energetic contri-
bution of twisted structures. The implications of the twisting in
theoretical and observational descriptions are poorly known; for
example, the modification of the dispersion relation is unclear
and observational data are inferred indirectly.

We have focused our attention on describing the changes
in periods, stability, and mode structure of coronal loops when
the helicity, the magnetic field intensity, and the radius are var-
ied. For loops of vanishing helicity, it is well established that
the Alfvén line-tied resonance continuum is responsible for the
damping of kink (m = 1) quasi-modes via the transfer of energy
from the radial component into the azimuthal one, i.e. from dis-
crete global modes into the local continuum modes where phase
mixing can take place. The twisting of the magnetic field leads
however to the coupling of MHD cylindrical modes that make
it difficult to provide a classification in terms of the behavior of
pure-like modes.

To calculate modes and frequencies, we followed the
schematic procedure described in Paper I and in Galindo Trejo
(1987). We used a symbolic manipulation program to integrate
the equations and the perturbations in δ2Wp were expanded in
a six dimensional-Fourier basis in terms of the independent co-
ordinate z that adjusts to boundary conditions, i.e. the four per-
turbed components (Eq. (9)) were expanded in a six mode basis
to obtain 24 eigenvalues and eigenvectors for each of the helic-
ity and the magnetic field values. Only the first eighteen eigen-
values were considered (the others are more than two orders of
magnitude smaller and accumulate at zero; the eigenvectors are
also vanishingly small). A quadratic form for δ2Wp was therefore
obtained and minimized with the Ritz variational procedure. A
matrix discrete eigenvalue problem, affected by a normalization
constraint, was obtained. From the resulting modes and the gen-
eralized potential energy (Eq. (2)): δ2Wp ≥ 0 the stability of each
mode was determined.

The coronal loop parameters used were L = 1010 cm (or
100 Mm), Tb = 104 K Tt = 106 K, ne = 108 cm−3, pt = 2kBTt
and ρt = mp pt/kBTt. Frequencies and modes were calculated
for two different values of the magnetic field B0 = 10 G and
100 G, and for three different values of the helicity b = 3.1 ×
10−8, 3.1 × 10−7, 1.9 × 10−6 which correspond to the adimen-
tional values ba = 2.8, 28, 170 with Nt = 0.45, 4.3, 13.7, and
Nt is the number of turns over the cylinder length. These helic-
ity values, defined as weak, moderated, and strong helicity, re-
spectively correspond to the classification given in Aschwanden
(2004, Chap. 5). The adimensional radius was initially chosen
to be R = 0.01. We summarize below the conclusions obtained
from the data analysis displayed in three tables.

Table 1 shows the periods (in minutes) for weak, moderate,
and strong helicity for two values of the magnetic field intensity
B0 = 10 G and 100 G (left and right panel, respectively). S and U
letters indicate the stable-unstable character of the modes. From
the table, we see that:

I) Weak helicity modes are stable. This is in accordance with
the analytic results by Ruderman (2007), who studied non-
axisymmetric oscillations of a thin twisted magnetic tube
with fixed ends in a zero-beta plasma.

II) Higher modes have an accumulation point at zero, indicat-
ing the presence of a continuum spectra of stable modes (as
in Paper I). We note that, calculus performed on a discrete
basis, as in our case, provide spectra that are necessarily
discrete. An accumulation of discrete eigenvalues therefore
suggests a stable continuum spectrum.

III) The B0 = 10 G case has larger periods than the B0 = 100 G
one. For moderate and strong helicity, the eigenvalues of the
first panel follow a scaling law with that of the second one
i.e. they scale with the magnetic field intensity exactly as
the Alfvén speed does P10 G � 10P100 G.

IV) As HG and GH found, we note a clustering in the spectra as-
sociated with the change from real to imaginary eigenvalues
(and viceversa). There is a pronounced change (in the spac-
ing of the periods or/and in the stability) between the sixth
mode and the seventh mode. This is noted by a double line
in Table 1 and related to the importance of the parallel com-
ponent with respect to the perpendicular component (see
Table 2). Up to period number ten, real – imaginary eigen-
values in the first panel (B0 = 10 G) correspond to real–
imaginary ones in the second panel (B0 = 100 G). Apart
from high order periods n > 10, the imaginary stable eigen-
values became imaginary unstable ones when the helicity is
increased from weak to moderate. For B0 = 10 G and weak
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Table 1. Eighteen first periods associated with stable (S) and unstable (U) eigenvalues (minutes) for A) left panel: B0 = 10 G with A1) left column:
weak helicity, A2) middle column: moderate helicity, A3) right column: strong helicity and B) right panel: B0 = 100 G with B1, B2, B3 the same
as in A. Higher order modes were not considered.

Pi Weak Moderate Strong Weak Moderate Strong
P1 1.921 S 0.209 S 0.525 i U 0.159 S 0.021 S 0.052 i U
P2 1.869 S 0.204 S 0.450 S 0.158 S 0.020 S 0.044 S
P3 1.535 S 0.169 S 0.430 S 0.154 S 0.017 S 0.042 S
P4 1.533 S 0.168 S 0.424 i U 0.153 S 0.0167 S 0.042 i U
P5 1.306 S 0.143 S 0.206 i U 0.151 S 0.014 S 0.020 i U
P6 1.228 S 0.135 S 0.177 i U 0.15 S 0.013 S 0.017 i U
P7 0.068 i S 0.070 i U 0.125 S 0.0047 i S 0.007 i U 0.0125 S
P8 0.064 i S 0.066 i U 0.122 S 0.0046 i S 0.006 i U 0.012 S
P9 0.042 i S 0.044 i U 0.101 S 0.0044 i S 0.0043 i U 0.0101 S
P10 0.041 i S 0.043 i U 0.100 S 0.0043 i S 0.0042 i U 0.01 S
P11 0.033 S 0.036 S 0.989 S 0.0042 i S 0.0036 S 0.099 S
P12 0.032 S 0.035 S 0.096 S 0.0041 i S 0.0035 S 0.0096 S
P13 0.030 i S 0.031 i U 0.085 S 0.003 S 0.0031 i U 0.0086 S
P14 0.027 i S 0.029 i U 0.081 S 0.0026 S 0.003 i U 0.0081 S
P15 0.025 S 0.027 S 0.077 S 0.0025 S 0.0027 S 0.0077 S
P16 0.024 S 0.026 S 0.076 S 0.002 S 0.003 S 0.0076 S
P17 0.02 S 0.02 S 0.063 S 0.0024 S 0.0021 S 0.0063 S
P18 0.018 S 0.02 S 0.059 S 0.0024 S 0.0025 S 0.006 S

and moderate helicity cases, there are five different groups
of periods (P1−P6; P7−P10; P11−P12; P13−P14; P15−P18)
(see also Table 2). The clustering is more difficult to estab-
lish i.e. the differences are less pronounced with increasing
magnetic field intensity and higher order periods.

To compare our results with those given by previous authors, we
calculated the frequency of Eq. (11) for our modes. We found
that all periods, apart from P1 − P6 weak helicity modes, sat-
isfy the relation and therefore belong to the Alfvén continuum
spectrum justifying the scaling law described in III. As found by
HG, we conclude that the change in the real–complex character
of the P6 − P7 eigenvalues is associated with the existence of an
accumulation point of the resonant Alfvén continuum, however
we find that this change is not necessarily related to a change in
the stability as they claimed. We note that all modes with weak
helicity are stable (even the imaginary ones); in all other cases,
the imaginary character of the eigenvalues is associated with in-
stability. The continuum stable eigenvalue conjecture is however
still valid (Freidberg 1982; Priest 1982); it applies to a spectrum
with an accumulation point at zero; we found stable modes for
all the helicity values and for the two magnetic field values with
Pn>14. We note that the analysis of the remaining stable modes is
of interest because, depending on the relative characteristic times
of stable and unstable modes, the stable ones could be active and
accessible to observations.

The presence of at least one unstable mode implies that
the equilibrium state is unstable. Taking into account the entire
range of stable modes, we are able to confirm previous results;
we therefore conclude that field configurations with some de-
gree of twisting provide a stabilizing effect, allowing the storage
of magnetic energy (Raadu 1972). This implies that when the
helicity is augmented the stable weak case becomes unstable,
which suggests that a critical value exists.

In Paper I, we derived only one unstable mode. This was
classified as a slow magnetoacoustic mode bacause of the al-
most longitudinal character (parallel to the magnetic field) of
the wavevector perturbation and the fact that the period did not

vary with magnetic field intensity resembling acoustic waves of
sound speeds, vs, independently of the magnetic field. The char-
acteristic unstable time obtained in Paper I was τu = 36 min,
which corresponded to a typical slow magnetoacoustic funda-
mental period with a characteristic wavelength of the order of
the loop length L/2. We also obtained a continuous set of sta-
ble modes; these were classified as fast magnetoacoustic modes
because of the significance of the component orthogonal to the
magnetic field and the fact that the eigenvalues scaled with the
intensity of the magnetic field as P11 G � 10P100 G, which re-
sembles the dependence of the Alfvén waves vA ∼ B0.

Table 2 (first panel) displays the resulting features associ-
ated with the relative intensity of the components both parallel
and perpendicular to the field (where (ξ‖, ξ⊥, ξr) is an orthogo-
nal basis) and their classification as either slow-like (S) or fast-
like (F). The relative phase between the components is also indi-
cated in the table by P (in phase) and IP (inverted phase). Table 2
(second panel) also shows the intensity relationship between the
cylindrical components. To classify the modes and then com-
pare them with the slow and fast magnetoacoustic modes ob-
tained in Paper I, we calculated the cylindrical mode components
and also both the components tangential and normal to the field
(ξ‖ = (Rbξφ + ξz)/Δ; ξ⊥ = (ξφ − Rbξz)/Δ). We are interested in
the ξ‖, ξz, ξr , ξ⊥, and ξφ components because: when the helic-
ity is weak, the ξ‖ component is expected to play the slow-mode
role of ξz in Paper I; and the ξr component is related to the fast
modes and determines the resonant absorption mechanism when
uniform cylindrical flux tubes are considered by the transfer of
energy to the ξφ component. When helicity and inhomogeneous
distribution of equilibrium parameters are present, it is worth in-
vestigating the transfer of energy from the ξr component to the
others. In this case, the resonant damping of global oscillations
occurs by converting the kinetic energy of the radial component
into kinetic energy of the ξ‖ and ξ⊥ components; both compo-
nents then form the plane orthogonal to ξr, which is equivalent
to the plane formed by ξφ and ξz.

By analyzing the component amplitudes of the P1−P6 modes
with respect to the P7 − P18 modes in the weak helicity case (the
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Table 2. First panel: intensity relationship between the tangential and normal field components of the eighteen first periods for B0 = 10 G, for
weak (first column), moderate (second column), and strong helicity (third column) cases. The (P) indicates in phase and (IP) indicates inverted
phase. Second panel: intensity relationship between the cylindrical components of the eighteen first periods for B0 = 10 G, for weak (first column),
moderate (second column) and strong helicity (third column), cases.

Pi Weak Moderate Strong Weak Moderate Strong
P1 ξ‖ � ξ⊥ �→ 0 S ; IP ξ‖ > ξ⊥ S ; IP ξ‖ ≥ ξ⊥ P ξz � ξφ ∼ ξr �→ 0 ξz � ξφ ∼ ξr ξr ≤ ξφ; ξz �→ 0
P2 ξ‖ � ξ⊥ �→ 0 S ; IP ξ‖ > ξ⊥ S ; IP ξ‖ ≥ ξ⊥ P ξz � ξφ ∼ ξr �→ 0 ξz � ξφ ∼ ξr ξr ≤ ξφ; ξz �→ 0
P3 ξ‖ � ξ⊥ �→ 0 S ; IP ξ‖ > ξ⊥ S ; IP ξ‖ ≥ ξ⊥ P ξz � ξφ ∼ ξr �→ 0 ξz � ξφ ∼ ξr ξr ≤ ξφ; ξz �→ 0
P4 ξ‖ � ξ⊥ �→ 0 S ; IP ξ‖ > ξ⊥ S ; IP ξ‖ ≥ ξ⊥ P ξz � ξφ ∼ ξr �→ 0 ξz � ξφ ∼ ξr ξr ≤ ξφ; ξz �→ 0
P5 ξ‖ � ξ⊥ �→ 0 S ; IP ξ‖ > ξ⊥ S ; IP ξ‖ ≥ ξ⊥ P ξz � ξφ ∼ ξr �→ 0 ξz � ξφ ∼ ξr ξr ≤ ξφ; ξz �→ 0
P6 ξ‖ � ξ⊥ �→ 0 S ; IP ξ‖ > ξ⊥ S ; IP ξ‖ ≥ ξ⊥ P ξz � ξφ ∼ ξr �→ 0 ξz � ξφ ∼ ξr ξr ≤ ξφ; ξz �→ 0
P7 ξ⊥ � ξ‖ �→ 0 F; P ξ⊥ > ξ‖ F; P ξ⊥ ≥ ξ‖ IP ξr ∼ ξφ � ξz �→ 0 ξr ∼ ξφ � ξz �→ 0 ξz > ξr > ξφ
P8 ξ⊥ � ξ‖ �→ 0 F; P ξ⊥ > ξ‖ F; P ξ⊥ ≥ ξ‖ IP ξr ∼ ξφ � ξz �→ 0 ξr ∼ ξφ � ξz �→ 0 ξz > ξr > ξφ
P9 ξ⊥ � ξ‖ �→ 0 F; P ξ⊥ > ξ‖ F; P ξ⊥ ≥ ξ‖ IP ξr ∼ ξφ � ξz �→ 0 ξr ∼ ξφ � ξz �→ 0 ξz > ξr > ξφ
P10 ξ⊥ � ξ‖ �→ 0 F; P ξ⊥ > ξ‖ F; P ξ⊥ ≥ ξ‖ IP ξr ∼ ξφ � ξz �→ 0 ξr ∼ ξφ � ξz �→ 0 ξz > ξr > ξφ
P11 ξ⊥ � ξ‖ �→ 0 F; P ξ⊥ > ξ‖ F; P ξ⊥ ≥ ξ‖ IP ξr ∼ ξφ � ξz �→ 0 ξr ∼ ξφ � ξz �→ 0 ξz > ξr > ξφ
P12 ξ⊥ � ξ‖ �→ 0 F; P ξ⊥ > ξ‖ F; P ξ‖ ≥ ξ⊥ IP ξr ∼ ξφ � ξz �→ 0 ξr ∼ ξφ � ξz �→ 0 ξr > ξφ > ξz
P13 ξ⊥ � ξ‖ �→ 0 F; P ξ⊥ > ξ‖ F; P ξ⊥ ≥ ξ‖ IP ξr ∼ ξφ � ξz �→ 0 ξr ∼ ξφ � ξz �→ 0 ξz > ξr > ξφ
P14 ξ⊥ � ξ‖ �→ 0 F; P ξ⊥ > ξ‖ F; P ξ⊥ ≥ ξ‖ IP ξr ∼ ξφ � ξz �→ 0 ξr ∼ ξφ � ξz �→ 0 ξz > ξr > ξφ
P15 ξ⊥ � ξ‖ �→ 0 F; P ξ⊥ > ξ‖ F; P ξ‖ ≥ ξ⊥ P ξr ∼ ξφ � ξz �→ 0 ξr ∼ ξφ � ξz �→ 0 ξr > ξφ > ξz
P16 ξ⊥ � ξ‖ �→ 0 F; P ξ⊥ > ξ‖ F; P ξ‖ ≥ ξ⊥ P ξr ∼ ξφ � ξz �→ 0 ξr ∼ ξφ � ξz �→ 0 ξr > ξφ > ξz
P17 ξ⊥ � ξ‖ �→ 0 F; P ξ⊥ > ξ‖ F; P ξ‖ ≥ ξ⊥ P ξr ∼ ξφ � ξz �→ 0 ξr ∼ ξφ � ξz �→ 0 ξr > ξφ > ξz
P18 ξ⊥ � ξ‖ �→ 0 F; P ξ⊥ > ξ‖ F; P ξ‖ ≥ ξ⊥ P ξr ∼ ξφ � ξz �→ 0 ξr ∼ ξφ � ξz �→ 0 ξr > ξφ > ξz

real and imaginary eigenvectors of Table 1, respectively), we are
able to classify the first modes as slow-like modes because: I)
their tangential components ξ‖ are at least an order of magni-
tude larger than the normal ones ξ⊥; II) as the helicity is weak
ξ‖ ≈ ξz and ξr → 0; ξφ → 0, the wavevector is almost tangential
to the magnetic field; III) they have a larger characteristic time
and a shorter characteristic speed than the imaginary eigenvec-
tors. In contrast, imaginary eigenvalues are associated with large
values of the ξr component and ξ⊥ component (due to large val-
ues of ξφ: see the second panel, Table 2) , and small values of
the ξ‖ and ξz components. As in Paper I, when the eigenvalues
change form real to imaginary, the period declines significantly
and the type of mode varies from slow to fast magnetoacoustic.
In Paper I, we found that the acoustic mode has the same eigen-
value for both magnetic field intensities; here, in contrast, the
modes are affected by the strengthening of the magnetic field that
produces an-order-of-magnitude shorter period than in the non-
helicity case. The ξ‖ and ξ⊥ components are in an inverted phase
for real eigenvector modes and in phase for imaginary eigenvec-
tor modes.

For moderate helicity, the overall description is similar but
all cases have non vanishing ξφ components and all periods have
a resonant line-tied continuum. As mentioned, real-imaginary
eigenvalues correspond to stable-unstable behavior.

In the strong helicity case, as for the weak and moderate
ones, we find for P1 − P6 larger, but comparable, values of the
ξ‖ component with respect to the ξ⊥ component. In this case,
the two components of the mode are in phase. This relationship
between the ξ‖ and ξ⊥ components of Table 2 (FP), and their
associated phases is found again in the modes with P15 − P18.
Although these features are associated with the slow magnetoa-
coustic characterization, Table 2 (SP) shows that because ξz is
vanishingly small, the strong helicity case cannot be classified
as a slow mode.

When helicity is present, the mixed character of the modes
makes it difficult to identify the components involved in the
damping mechanism. However, taking into account the resonant

frequency of Eq. (11), we noted (in HG) that all modes, except
those with P1 − P6 periods of the weak helicity case, have res-
onant frequencies suggesting that resonant absorption in helical
modes is associated with modes of significant values of ξ⊥ com-
ponent. If this argument is correct, we can affirm that the damp-
ing mechanism of body helical modes is associated with the
transfer of radial component kinetic energy into ξ⊥ component
kinetic energy, which is not only related to the ξφ cylindrical con-
tribution but also to that ξz by the expression ξ⊥ = (ξφ − Rbξz)Δ.

We also analyzed the change in the period as a function of
radius for different values of the helicity. For weak helicity we
found that, the increase in the radius leads to a decrease in the
period. This is in accordance with observations: for example,
observed sausage modes are associated with thicker and denser
loop structures and lower periods; while in other cases (unstable
cases) the increase in the radius leads to an increase in the period.

The first and second panel of Table 3 indicate the variation
in the radius R with twist bR for weak and moderate helicity,
respectively. Ruderman (2007) proposed that the line-tying con-
dition at the tube ends should stabilize the tube and suggested a
critical value (∼Lb < q, where q is a positive constant and L is
the loop length) for the onset of instability. Linton et al. (1996)
found that, when the helicity increases above a critical value, the
kink isolated twisted magnetic flux tubes below the photosphere
become unstable. In Table 3 this can be seen as a variation in
R with the twist value bR, for constant values of the helicity b
in two cases: weak and moderate. Stability is guaranteed when
the loop radius is varied between R = 0.01 and R = 0.1 and
the helicity is weak b = 0.05, for almost the same value of the
length of the loop, L. However, when the helicity is incremented
to b = 0.5, even for the radius of R = 0.01, the loop structure is
unstable; the instability can then be associated with the presence
of helicity values higher than a critical value.

Figure 1 shows the general potential energy for P6 and P7 in
the weak and moderate cases. We note the change in this func-
tion when the system turns from stable to unstable, as helicity is
augmented i.e. from δ2Wp > 0 to δ2Wp < 0. Figures 1a and c



A. Costa and R. González: Stability and mode analysis of solar coronal loops. II 761

Table 3. First panel – stable case: variation in the Radius with the Twist for weak helicity b = 0.05 and B0 = 10 G. Second panel – unstable case:
variation in the Radius with the Twist for moderate helicity b = 0.5 and B0 = 10 G.

R L R/2L Twist = bR R L R/2L Twist = bR
0.01 9.05 × 107 0.005 0.028 0.01 8.07 × 107 0.005 0.28
0.02 9.04 × 107 0.01 0.057 0.015 8.32 × 107 0.008 0.43
0.03 9.02 × 107 0.015 0.085 0.02 7.86 × 107 0.011 0.57
0.04 8.99 × 107 0.02 0.11 0.025 7.38 × 107 0.015 0.71
0.05 8.96 × 107 0.025 0.14 0.03 6.88 × 107 0.02 0.85
0.06 8.9 × 107 0.03 0.17 0.04 5.97 × 107 0.03 1.13
0.1 8.7 × 107 0.05 0.28 0.05 5.2 × 107 0.04 1.42

Fig. 1. Energy content of the sixth and seventh mode for B0 = 10 G. a) Total potential energy and b) magnetic potential energy respectively
for the sixth mode P6 = 1.23 min and for weak helicity. c) Total potential energy and d) magnetic potential energy respectively for the sixth
mode P6 = 1.23 min and for moderate helicity. e) Total potential energy and f) magnetic potential energy respectively for the seventh mode
P7 = 0.07 min and for weak helicity. g) Total potential energy and h) magnetic potential energy respectively for the sixth mode P7 = 0.07 min and
for moderate helicity.

display the total energy composed by the compressional, radia-
tive, thermal, and magnetic energy contributions of P6 mode in
the weak and moderate case respectively. The same features but
for the P7 mode are shown in Figs. 1e and g. Figures 1b and d
show the magnetic energy content alone for the P6 mode in the
weak and moderate case, respectively. Figures 1f and h show the
magnetic energy content for the P7 mode, for the weak and mod-
erate case, respectively. It can be seen, in this and all other cases,
that the magnetic energy content has a deciding role in the stabil-
ity or instability of the system, i.e. the stability changes when the
magnetic generalized potential energy changes sign. A result of
this analysis is therefore that the stability of the twisted coronal
loops is determined fundamentally by the storage of magnetic
energy, since the other contributions are less significant. When
the helicity is weak or negligibly small and the magnetic contri-
bution has a stabilizing effect, the other non-dominant contribu-
tions, as the non-adiabatic ones, can play an important role. This
makes possible, for example, the damping of fast excitations due
to resonant absorption. Even when one of these contributions is
unstable, stable modes could be active for a while if their char-
acteristic periods are shorter than the characteristic time of the
instability. This was the case in Paper I, where we obtained a
slow mode with an unstable characteristic times of τ ∼ 36 min
that coexisted with stable fast modes of periods of P ∼ 1 min;
we demonstrated that the instability can be saturated nonlin-
early producing a limit-cycle solutions, i.e. an oscillation be-
tween parallel plasma kinetic energy and plasma internal energy

where the magnetic energy plays no relevant role. The contri-
bution to the stable or unstable character of the modes is due
mostly to the magnetic energy content and not to other ener-
getic contributions. We note that as the balance energy equation
considers non-adiabatic contributions, i.e. radiation, heat flow,
and heat function (with L = 0 at the equilibrium), the result-
ing perturbations are not constrained to the force–free condition.
One result of the analysis is therefore that the pertubation energy
contribution is due mainly to magnetic forces. For these types of
twisted magnetic field models, non–adiabatic perturbations (e.g.
thermal perturbations) and resonant absorption appear unimpor-
tant to guarantee stability; a loop system with a weak storage of
magnetic energy (low values of the helicity) could be released
if the helicity is suddenly increased, e.g., by footpoint motions.
Meanwhile, all the “zoo” of coronal seismology could be active
and accessible to observations.

Appendix A: Generalized potential energy terms

From the procedure described above and extensively exemplified
in Paper I, we can obtain – lengthly but in a straightforward way
– the explicit terms for the energy principle given in Eq. (10)

δ2Wp = δ
2Wc + δ

2Wm + δ
2Whc + δ

2Wr

where the right side of the equation corresponds to the compres-
sional, magnetic, heat conduction, and radiative contributions,

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20079052&pdf_id=1
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respectively. The compressional term δ2Wc = δ
2Wc1 +δ

2Wc2 has
an additional contribution (δ2Wc2) with respect to Bernstein’s
principle:

δ2WB = δ
2Wc1 + δ

2Wm

δ2Wc1 =
1
2

∫ 1

−1
dzβ

{
T0ρ0(1 − m)

ξ2r
R2
− m

R
T0

×
(
δ

dρ0

ds
ξzξφ + ρ0

(
ξrξφ

R
− m

R
ξ2φ +

dξφ
dz

))

+δ
dT0

ds

(
δ

dρ0

ds
ξ2z + ρ0

(
ξrξφ

R
− m

R
ξφξz + ξz

dξz
dz

))

+T0

(
δ2 d2ρ0

ds2
ξ2z + δ

dρ0

ds
ξz

dξz
dz

+ρ0

(
ξz
R

dξr
dz
− m

R
ξz

dξφ
dz
+ ξz

d2ξz

dz2

)

+ Δ
dρ0

ds

(
ξrξφ

R
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R
ξφξz + ξz

dξz
dz

))
·

The magnetic contribution is:

δ2Wm = C1

{
βδ

(
m
R

BφBzξrξφ − BφBz
dξr
dz
ξz

−
(

BφBz

R
+ Bφ

dBz

dr

)
ξ2r +

(
m
R

BφBzξrξφ + Bφ
dBφ
dr
ξ2r

))

−β
((

B2
z

dξ2r
dz
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φξ
2
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(
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dr
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dr
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)2 ξ
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R
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R
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·

The heat conduction term results:

δ2Whc =−C2

⎧⎪⎪⎨⎪⎪⎩5
T 3/2

0

δ

dT0

ds
T1

dT1

dz
+ T 2

1

(
− T 5/2

0

(mb
δ

)2 15
4

T 1/2
0

dT 2
0

ds

+
5
2

T 3/2
0

d2T0

ds2

)
+

1
δ2

T 5/2
0 T1

d2T1

dz2

⎫⎪⎪⎬⎪⎪⎭·

The new compressional contribution is expressed as:

δ2Wc2 = −β
(

m
R
ρ0ξφT1 + δ

dρ0

ds
ξzT1 + ρ0ξz

dT1

dz

)

and the term associated with radiation was:

δ2Wr = −αT 2
1ρ

2
0Tα−1

0 − β
(

m
R
ρ0ξφT1 + Δ

dρ0

ds
ξzT1

+ρ0T1
dξz
dz
+
ρ0

R
ξrT1

)

where the following changes were made:

ρ → ρ
ρt

; T → T
Tt

; Bφ,z → Bφ,z
B0

; b→ bS

r, z → r,z
S ; δ2Wp → δ2Wp/

(
χTα+1

t ρ2
t L/m2

p

)
,

S = ΔL and the non-dimensional constants:

C1 = ρ
2
t Tα+1

t B2
0/(μ0kBTtne); C2 = cT

7
2−α

t /(S 2n2
e).

were used. All the quantities were defined as in Paper I.
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