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ABSTRACT 
We study the coupling between the hot plasma confined in a coronal loop and the much colder chromo- 

spheric plasma at the footpoints. Considering the coronal heating rate as a control parameter, we find that the 
static equilibrium becomes unstable for heating rates below a critical value, giving rise to the appearance of a 
stable limit cycle. 

Starting from the hydrodynamic equations, we derive a model which generalizes the analysis of Kuin and 
Martens and consistently takes into account the condensation-evaporation process. In this paper, we linearize 
our equations in order to find the bifurcation point where the stability of the static equilibrium is lost. We 
also show that this model can provide a natural explanation for the excess widths of EUV spectral lines 
formed in the transition region. Moreover, we can predict the observed reduction in the broadening of these 
lines when they form in certain active regions, like quiescent prominences or sunspots. 
Subject headings: hydromagnetics — Sun: corona 

I. INTRODUCTION 
The high-resolution EUV and X-ray observations obtained 

by Skylab 15 years ago revealed a highly filamented corona 
composed by a wide variety of magnetic loop-like structures 
confining a very hot plasma (T ^ 106 K). 

Since these loops emit in soft X-rays during time scales much 
longer than their typical radiative cooling times, it seems ade- 
quate to describe them through a static energy balance 
between a heating source and conductive and radiative losses. 
Several static models which describe the thermal structure of 
coronal loops have been proposed (see Rosner, Tucker, and 
Vaiana 1978; also Craig, McClymont, and Underwood 1978; 
Vesecky, Antiochos, and Underwood 1979). From these equi- 
librium solutions, it is possible to derive scaling laws which 
satisfactorily describe the gross observed properties of the 
plasma confined in the loops under a wide range of conditions. 
However, these scaling laws do not reveal which is the true 
nature of the heating processes that contribute to heat the 
coronal plasma. 

It is also important to notice that these equilibria must also 
be stable against small-amplitude perturbations if we expect to 
observe the system in these states. Fortunately, the stability 
analysis of a particular static equilibrium is much more infor- 
mative with respect to the heating processes that take place 
than the equilibrium is itself, as has been shown by McCly- 
mont and Craig (1985a, b). 

The linear theory of the thermal stability of static coronal 
loops has been investigated in a number of papers. Antiochos 
(1979) and Hood and Priest (1980) concluded that static loops 
are thermally unstable and thus the system must be in a cease- 
less dynamic state. However, Chiuderi, Einaudi, and Torricelli- 
Ciamponi (1981) and also Craig and McClymont (1981) found 
that static equilibria are either stable or have a very small 
instability growth rate. The difference between both sets of 
papers lies in the treatment of the boundary conditions at the 
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base of the loop. For this reason, McClymont and Craig 
(1985a) and Antiochos et al. (1985) studied in detail the 
response of the chromospheric plasma to coronal pertur- 
bations in order to find appropriate boundary conditions for 
the coronal stability problem. Recent numerical studies of the 
nonlinear thermal evolution show that loops taller than 
5 x 108 cm are stable to finite amplitude perturbations 
(Klimchuk, Antiochos, and Mariska 1987). 

However, the issue of nonlinear stability of coronal loops is 
an active field, where many questions still remain unanswered. 
For example, it is not clear which is the actual role of the 
chromospheric material in its interaction with the perturbed 
coronal plasma. A plausible stabilizing effect usually invoked 
in connection with solar flares is the so-called evaporation- 
condensation mechanism. Whenever a coronal temperature 
enhancement takes place, the corresponding increase of con- 
ductive flux to the bases drives an expansion of chromospheric 
material into the corona (evaporation). In this way, the coronal 
density and consequently the radiative losses grow up, thus 
contributing to stop the temperature enhancement. It seems 
reasonable to assume that this mechanism, as well as its reverse 
(condensation), also takes place (with lower intensity) in non- 
flaring regions. Moreover, Craig and McClymont (1987), using 
simple arguments, show that this must be the case for ther- 
mally stable loops. In this respect, Kuin and Martens (1982) 
produced a very interesting and comprehensive model, where 
the condensation-evaporation mechanism was phenomeno- 
logically considered. This simple model shows the global 
behavior of the corona when the coupling with the chromo- 
sphere is included and predicts that under certain conditions, a 
stable limit cycle appears in a density-temperature diagram. 
The major limitation of this model is that its equations are not 
a direct consequence of hydrodynamic considerations, as has 
been noticed by Craig and Schulkes (1985). However, the limit 
cycle behavior seems to be contained among the solutions of 
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the full set of hydrodynamic equations, as has been shown by 
Pakkert, Martens, and Verhulst (1987) using nonlinear diffu- 
sion asymptotic techniques. 

A possible evidence of the existence of the evaporation- 
condensation process in nonflaring regions are the observed 
excess widths of EUV spectral lines formed in the transition 
region (see Cheng, Doschek, and Feldman 1976; Feldman and 
Doschek 1977). Typical turbulence velocities of roughly 20 km 
s_1 are inferred measuring the width of these lines. These velo- 
cities appear to be smaller over active regions like sunspots or 
quiescent prominences (Feldman and Doschek 1977), where 
values of about 10 km s -1 have been measured. 

In this paper, we attempt to derive from the hydrodynamic 
equations a simple model which describes the main features of 
the coupling between the chromosphere and the corona. More- 
over, we find that when the coronal heating rate falls below a 
certain critical value, the static equilibrium becomes unstable 
and the system evolves toward a limit cycle in the density- 
temperature diagram. In § II, we write down the general equa- 
tions of the problem and describe briefly the set of equilibrium 
solutions (labeled by their heating rate value) whose linear 
stability we are going to study. In § III, the model equations 
are derived, and in § IV, we obtain the stability conditions for 
static equilibria as well as the critical heating rate value under 
which these equilibria are unstable. We also calculate the 
period of the limit cycle and the linear instability rate for the 
set of unstable solutions. The nonlinear saturation of this 
linear instability will be pursued both analytically and numeri- 
cally in a future paper (Gómez, Sicardi Schifino, and Ferro 
Fontán 1990, hereafter Paper II). Finally, in § V, we discuss the 
results obtained and their observational implications. Upon 
estimating the typical velocity of material through the tran- 
sition region, we show that our model can explain the excess 
width of spectral lines formed in this region. Assuming the 
dissipation of magnetic stresses driven by photospheric con- 
vection as a heating mechanism, we can show that the 
observed reduction of the Doppler width of these lines in mag- 
netically active regions is due to the suppression of the limit 
cycle solution. 

II. GENERAL EQUATIONS AND EQUILIBRIUM SOLUTIONS 

Due to the fact that the coronal magnetic field is strong 
enough, a one-dimensional hydrodynamic description of the 
plasma along each field line is well justified. Let us consider a 
coronal loop of half-length L along which we define a coordi- 

nate z as shown in Figure 1. The hydrodynamic equations in 
this coordinate system are 

dtn = — dz(nv), 

+ ng , 

(2.1a) 

(2.1b) 

fô,P= -ezQ - ÏPdzv + vdzp - P2<I>(T) + E , (2.1c) 

and the state equation between pressure (P), particle density 
(n), and temperature (T) 

P = 2nkBT , (2.2) 

holds, where kB is the Boltzmann constant and m, is the ion 
mass. The quantity v is the fluid velocity, g is the gravitational 
acceleration along the loop, Q is the classical heat flux 

Q= -K0T
5l2dzT , (2.3) 

K0 = 10 6 ergs K 7/2 cm-1 s-1 is the thermal conductivity 
constant (Spitzer 1962), <f>(T) is the radiative loss function at 
constant pressure (see Martens and Kuin 1982), and E is the 
heating rate per unit volume. We have employed cgs units for 
all quantities except the temperature, which is expressed in K. 

We have used the following radiative loss function (in the 
following, T6 is the temperature in MK): 

f2.285 x 10l9(T6)
9-7 T6 < 8.10-3 , 

<2>(T) =J 1.313 x lO^Tg) 8.1(T3 < T6 < 10“1 , (2.4) 

[l.313 x 10-3(r6)
-3 10“1 < T6 , 

where we have matched the fit of Peres et al. (1982) to an 
appropriate VAL model (Vernazza, Avrett, and Loeser 1981) 
for T < 8 x 103 K, to the fit of Craig and McClymont (1986). 
We also used 

<HT)=< 

'2.295 x 1019(T6)
9-7 

5.290 x 107(T6)
415 

T6 < 8.10“3, 

8.10-3 < rfi < 2.10“ 

2.209 x KT^Ty-0-77 2.10-2 < T6 < 10" 

1.313 x 10-9(T6)-
3 10_1 < T6 , 

(2.5) 

in order to test the influence of the Lya losses in our calcu- 
lations. 

We will consider both the coronal and chromospheric parts 
of the loop with sizes much smaller than their corresponding 

0 
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height scales (H = IkßT/niig). Thus, we neglect gravity effects, 
and as a consequence, the pressure equilibrium simply reads 
P = const throughout the loop. The static equilibrium equa- 
tions corresponding to equations (2A)-{23) are 

v = 0 = d2Po, (2.6) 

dzQ = E - P2
0<KT0), (2.7a) 

Q= -K0T
5

0/
2dzT0, (2.7b) 

where </>(T) is the function detailed in equation (2.4). Because of 
the symmetry of the loops, we consider Q(z = 0) = 0. The other 
boundary condition needed to solve equation (2.7) will be 
Q(z = L) = 0. This type of equilibria is usually called the iso- 
lated loop, and it has been shown (see Antiochos 1979) that 
they are unstable if the same boundary conditions are also 
applied to the perturbation field. We extend this coronal equi- 
librium into the chromosphere at the constant temperature T0b 
which satisfies 

Eb = P2<KT0b), (2.8a) 

comparable to those obtained by Rosner, Tucker, and Vaiana 
(1978) or Craig, McClymont, and Underwood (1978). Our 
scaling laws (see Fig. 2) are 

P0L = Cp{EL2Y* = 0.029 ergs cm~3(EL2)0 911, (2.9a) 

T0 = CT(EL2)ßT = 0.575 x 106 K (EL2)0 286, (2.9b) 

T0b = Cb(EL2)ßb = 8.21 x 103 K (EL2y0 085, (2.9c) 

where E is expressed in (1/9000) ergs cm-3 s_1 units and L is 
expressed in 3 x 109 cm units. We have checked that the excess 
of radiative losses through Lya does not appreciably affect our 
equilibria (the relative departure remains below 5%). We have 
also checked that even when the temperature profile becomes 
very steep in the transition region, the conductive flux never 
exceeds 1% of the saturated flux value corresponding to that 
temperature [Qsat = \nme{kB T/me)312, where me is electron 
mass]. This result is in coincidence with a similar conclusion of 
Somov (1978) in connection with solar flares and shows that 
the Spitzer’s formula for conductivity remains applicable. 

= 0 < y* < 1 . (2.8b) 

This equilibrium includes corona, transition region, and 
upper chromosphere and assumes a spatial discontinuity in the 
heating rate. For any positive value of y*, the temperature T0b 

is reached at a finite distance below the transition region. But 
as y* goes to zero (spatially continuous heating rate), this dis- 
tance becomes infinite. This fact has been carefully discussed 
by Craig, Robb, and Rollo (1982), and more recently by 
McClymont and Craig (1985a), who define a parameter y* in a 
way equivalent to equation (2.8b). 

The above considerations define a family of equilibria with 
three free parameters (£, L, and y*). For this reason, we shall 
hereafter take E and y* as the control parameters for a given 
loop of half-length L. According to our model, once the values 
of E and y* are fixed, the static equilibrium and its stability can 
be univocally derived. 

Following usual procedures (see Withbroe 1981; also 
Rosner, Tucker, and Vaiana 1978), we obtain scaling laws quite 

III. DERIVATION OF THE MODEL EQUATIONS 

Following Kuin and Martens (1982), we recognize three dif- 
ferent time scales associated with the problem. A dynamical 
time scale 

Td = Az/cs (3.1) 

(where cs is the speed of sound and Az is a typical length), 
during which pressure inhomogeneities relax, a radiative time 
scale 

Tr 2P0(T) ’ (3‘2) 

during which thermal equilibrium is achieved through radi- 
ative losses, and a conductive time scale 

3P(Az)2 

Zc~2K0T
112’ 

(3.3) 

during which thermal inhomogeneities smooth out. For 
coronal conditions xc

d
OT xc

c
OT z™r, while in the chromo- 

fOO 

P 
(crg.cm'^j 

1 

P. 

0.01 

Fig. 2. Scaling laws derived from our static equilibrium model. The quantities T0, T0b, and P0 L are plotted as functions of EL2. Dashed line indicates unstable 
static equilibria (for y* = 0.05). 
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sphere, there relations are significantly altered, being T®hr 

TShr ^ Tchr an(l Tdhr ^ Td°r- Therefore, if we are interested in the 
evolution of the system at the time scale T¡:or, we can suppose 
pressure equilibrium (Td T^or) and also thermal equilibrium in 
the chromosphere (T¡:hr T®or). Due to its fast relaxation, the 
chromospheric thermal balance immediately adapts to the 
coronal changes. 

Because of the above considerations, we believe that a very 
simplified model which retains some of the relevant features of 
the true problem, can be a spatially uniform corona (which 
includes the transition region) in contact with another spatially 
uniform thin region of the upper chromosphere which we call 
the base. We define the base as a thin region of the upper 
chromosphere (centered around z = L) which is reactive to 
thermal perturbations of the coronal plasma (see Fig. 3). We 
are going to consistently find the temporal evolution of the 
hydrodynamic quantities describing the material contained in 
the base and the one contained in the corona. For this purpose, 
we perform spatial averages of the exact hydrodynamic equa- 
tions and model the fluxes between these regions. We consider 
density, temperature, and pressure to be of the form 

/(z, t) =/0(z)[l + ôf(t)-] , (3.4a) 

fb(z, t) =/0*(z)[l + Sfb(t)-] , (3.4b) 

where /0(z) is the static equilibrium (see § II) and <5/(0 is the 
nonlinear separation from the equilibrium value. The subscript 
“b” indicates the part of the function corresponding to the 
base. Carrying over this form into equations (2.1) and spatially 
averaging throughout the corona (plus transition region) 

n0dtôn = — ^ (1 + ônb)nob vb , (3.5a) 

0 = ôzPo, (3.5b) 

lPod,ôp= - ^-^P0(l+öp)Vj- 

+ £[1 - (1 + <5p)2(l + <57y] , (3.5c) 

where QL is the heat flux reaching the base and vb is the fluid 

Fig. 3.—Static thermal distribution along the z-axis [T0(z)], indicating the 
location of the base. Dashed line corresponds to the time-dependent tem- 
perature distribution T(z, t) = ro(z)[l + <5T(i)] assumed in our model. 

velocity through the base-corona interface. Similarly, we will 
call vb the fluid velocity crossing the bottom of the base. The 
exponent y is the power of the function </>(T) at coronal tem- 
peratures (y = — 3 ; see eq. [2.4]). We have employed the nota- 
tion 

fLdz 
fo = Jo -/oW . (3.6) 

Since the equilibria we consider are those whose conductive 
fluxes vanish at the bases of the loop (see § II), QL will be 
nonzero only when perturbations are present. Because we 
place the point z = L just below the transition region of these 
equilibria, we propose QL to be 

= ^ K0Toí2T0ÔT , (3.7) 

where Lb is the base thickness. If we develop our equilibrium 
solution T0(z) linearly around z = L, wq find (see Appendix) 
using equations (2.7) and (2.8) that in the very low transition 
region, the temperature exponentially approaches the value T0b 
on a typical length scale which we identify as Lb, 

u 
(K0T^Y 
\ ybE ) 

In 2 + 2yh{e - 1)\ 

y* / 
(3.8) 

Notice that (as has been remarked in § II) the singularity for 
y* -► 0 implies here that Lb goes logarithmically to infinity as 
predicted by Craig, Robb, and Rollo (1982). Of course, this 
result does not imply that the whole chromosphere reacts to 
coronal perturbations, but simply that equation (3.8) is not 
valid to define Lb. For this reason, we are not going to consider 
the y* -► 0 case in our model. 

Because of the very large conductive time scale of the 
chromosphere, we are going to consider the base as energeti- 
cally decoupled from the rest of the chromosphere. However, 
due to the very short dynamic time scale, we suppose that the 
chromosphere instantaneously replenishes or evacuates the 
base according to the requirements of the condensation- 
evaporation process. Thus, the base is maintained at constant 
density throughout its evolution (önb = 0). This condition is 
actually satisfied whether the fluid crosses this region in a time 
shorter than the time scale in which we are interested (T¡:or). 
Whenever coronal loops evolve exhibiting limit cycle behavior, 
we expect v æ L/T¡:or. Thus, the crossing time throughout the 
base results in {LJv) æ (L&/L)i¡:or T¡:or, as asserted above. 
Since both this typical time scale for mass flow and the thermal 
relaxation time are much shorter than Tc

r°\ the base instantane- 
ously achieves a stationary state, its evolution is therefore 
enslaved to the coronal perturbations. 

Computing the spatial average of equations (2.1a) and (2.1c) 
in the base, we find 

«06vh = n*)bvb , (3.9a) 

0 = 7^ + “ i’oO + <5p) / - vb) 
L-'b L 

+ E„ll - (1 + <5p)2(l + <5TJ«] . (3.9b) 

According to the definition of Lb (see Appendix), we find 

(3.10) 
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We can use this relation in equation (3.9) to obtain an expres- 
sion for Vb as a function of the perturbations, 

2 e 

[Millo 
L PoLb 1 

ÔT EbLbl-(l+ôp) yb + 2 
+ 

+ P0 1 + ôp 
(3.11) 

The temperature perturbations are calculated with the aid of 
the state equation (2.2) : 

ÔT = (ôp - Sh)/(1 + ôn), (3.12a) 

ÔTb = dp . (3.12b) 

Substituting equations (3.7) through (3.12) into equation (3.5), 
we obtain 

a Hopf bifurcation takes place whenever the real part of a pair 
of complex conjugate eigenvalues changes from a negative to a 
positive sign. An examination of expression (4.4) immediately 
reveals that a Hopf bifurcation appears when the trace of L 
crosses the zero while the determinant remains positive. We 
find from equation (4.3) and by applying the scaling laws in 
equation (2.9) the region in the plane of parameters (y*, EL2) 
where the static equilibrium is linearly unstable. This region 
has been shaded in Figure 4a, where we see that for any given 
small value of y*, there exists a critical value, (EL2)*, below 
which the static equilibrium is not stable, and a limit cycle 
solution takes place. For situations close to the critical (E = 
E*), the period of the limit cycle is given by the expression 

3P 
T0 = 27t —7T det~1/2(L). (4.4) 

drôn — ■ 
1 

{a<5r + /?^l-(l+<5Pr
+2 

1 + 

dzôp = i - (i + ôp)2(i + ÔTY 

(3.13a) 

+ I Ml - (1 + Sp)n+21 + f «0ÔT , (3.13b) 
3 3e 

where 

_ 3 e Molli =  !_ 
“ 5 e - 1 EL2h ’ P 5 e — 1 1 — y* ’ 

(3.13c) 

and T = (2E/3P0)t is roughly the time in T¡:or units, h = Lb/L 
and 0 = T0b/T0 are dimensionless functions of E (of order 1). 
Relations (3.12) and (3.13) constitute the full set of equations 
which describe the nonlinear evolution of our simplified 
chromosphere-corona model. 

IV. ANALYSIS OF LINEAR STABILITY 

Linearizing equation (3.13) with respect to the perturbations 
ôn and ôp, we find 

where 

and 

L = 
5 „ 

y-TaO 
3e 

djfy = L • i/f (4.1) 

(4.2) 

<* - 0 ^ (?!, + 2) 

-y - 2 - - ßh(yb + 2) + — ad I 

(4.3) 

As is well known, the stability or instability of the equilibria 
under consideration is connected with the sign of the real part 
of the eigenvalues of the matrix L: 

K2 = Mthi±. /(Lit + M 
— (L11L22 Lj^2 L2i) • 

Figure 4b shows the dependence of this period upon the 
parameter y*. For any choice of parameters inside the shaded 
region of Figure 4a, the system is attracted to a stable limit 
cycle, as is schematically shown in Figure 5. The amplitude of 
this cycle as a function of the heating rate as well as its stability 
will be described in Paper II both analytically and numerically. 

Hereafter and just as an illustrative example, we are going to 
consider 

y* = 0.05 , (4.5) 

and we reserve the subscript to refer to a quantity evalu- 
ated at the critical point. We obtained 

(EL2)* = 12.5 , (4.6a) 

T* = 1.2 x 106 K , (4.6b) 

Tb* = 6.6 x 103 K , (4.6c) 

P*L = 0.3 ergs cm-3 , (4.6d) 

(4.4) 

We calculated these eigenvalues for E varying within the range 
10"1 to 10"5 ergs cm-3 s-1 and y* between 0 and 0.5 and 
found that they always satisfy = À ^ As predicted by elemen- 
tary stability theory (see, for instance, looss and Joseph 1980), 

0. 0.1 0.2 0.3 
r* 

Fig. 4.—(a) Critical value of the parameter EL2 (in units of 1015 ergs cm-1 

s_1) as a function of y*. Shaded region corresponds to linearly unstable static 
equilibria, (b) Period of the limit cycle (evaluated at the critical point) as a 
function of y*. 
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Fig. 5.—Schematic diagram showing the static and limit cycle equilibria. Dashed line indicates unstable equilibria. 

From equation (3.11), we can derive the order of magnitude 
of the velocity fields that cross along the bases of the loop. 
Evaluating equation (3.11) close to the critical point, we get a 
lower limit for i;¿~, since it is a decreasing function of EL2. 
Keeping terms up to the first order in ön and ôp, we find that 
the second term in equation (3.11) becomes negligible com- 
pared to the first, thus resulting in 

obviously quite important, but due to its complexity, we have 
considered it beyond the scope of the present work. 

Since we are able to consistently follow the temporal evolu- 
tion of both the base and the corona, we can derive an estimate 
of the coupling factor / defined by Kuin and Martens (1982). 
We write down their evolution equations in the notation 
employed throughout this work : 

vb* — —0.54 km s 1 ôp . (4.7) 
As we have shown in § III, the mass flow through the base can 
be regarded as stationary (with nv spatially constant). Given 
that pressure is constant along the loop, we find that velocity 
increases linearly with temperature. Therefore, if we imagine a 
loop as a bundle of thermally independent flux tubes, each 
undergoing a limit cycle but with phases evenly distributed, we 
can estimate the Doppler width of a line forming in a region of 
temperature around T as 

At^T) = 1.08 km s"1 ^ <5pmax, (4.8) 
1b 

where a factor of 2 has been applied to equation (4.7) to 
account for the upside and downside flow directions, and 
where <5pmax is the amplitude of <5p(i). 

v. DISCUSSION 
We note the relatively low value of our base temperature (see 

eq. [4.6c]), which is about a factor of 1.5 below its typical 
range. This fact reflects the fictitious equilibrium model that we 
have used to match the coronal isolated loop solution with the 
chromospheric one in a simple expression. This kind of over- 
simplification when modeling the chromosphere-corona inter- 
face has been widely applied (Peres et al 1982; An et al. 1983; 
Klimchuk, Antiochos, and Mariska 1987) and shown a lack of 
detailed knowledge of the true behavior of this thin region of 
the solar atmosphere. The chromospheric heating mechanism 
as well as its radiative behavior still remains unclear 
(McClymont and Canfield 1983; Athay 1986). Moreover, 
Shoub (1983) has shown that kinetic effects are likely to be 
relevant in this region. Further investigation of this subject is 

where 

dr<5p= 1 - (1 +<5p)2(l +<5T)\ 

K0Tl12 

EL2 

(5.1a) 

(5.1b) 

(5.2) 

and the factor/(0 < / < 1) is the fraction of downward conduc- 
tive flux which is effective in evaporating chromospheric 
material. We find two main differences with respect to our 
equations (3.13). The first is that equation (5.1) looks like the 
asymptotic limit h = 0 and 0 -> 0 of equation (3.13). This is an 
expected result, since Kuin and Martens do not include 
chromospheric plasma in their model. The second difference 
arises because of the different location of the chromosphere- 
corona interface (z = L) in both models. This fact is reflected in 
the different expressions of the a coefficients and also in the 
denominator (1 -}- <5T) in equation (5.1a), which according to 
our model, should be (1 + ôTb) (see eqs. [3.12b] and [3.13a]). 
Matching both coefficients 

a =/«km » (5.3) 

we obtain, evaluating at the critical point, 

, 3 e 0^/2 
* 5 e — 1 h* = 4.6 , (5.4) 

which is a number larger than 1, in contradiction with the 
definition of Kuin and Martens (1982). We agree with Craig 
and Schulkes (1985) in the fact that there is no need for/ to be 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
90

A
pJ

. 
. .

35
2.

 .
31

8G
 

324 GÓMEZ, SICARDI SCHIFINO, AND FERRO FONTÁN Yol. 352 

defined within the range [0, 1], since it is theoretically possible 
for the corona to extract more energy as enthalpy from the 
chromosphere than the energy delivered as excess conductive 
flux. We note also that according to expression (5.2) and to the 
scaling laws, the aKM coefficient is independent of the heating 
rate, and thus the coronal heating does not control the stability 
or instability as it does in our model. 

We now consider some possible observational consequences 
of the limit cycle behavior. As has been stated in the previous 
section (see also Kuin and Martens 1982), due to the extremely 
low conductivity transverse to the magnetic field, a coronal 
loop can be considered as a set of magnetic plasma columns, 
each undergoing a cyclic thermal evolution with a unique 
period but with their phases randomly distributed. Thus, in this 
case, a coronal loop should not be considered as a thermal 
structure but as a superposition of thermal structures whose 
mean temperature corresponds to the one predicted by the 
scaling laws. For this reason, observations taken with low- 
resolution soft X-ray detectors may not distinguish between 
static and limit cycle equilibria. But the fluid velocities 
involved in the cyclic evaporation-condensation mechanism 
should produce observable Doppler shifts of spectral lines. The 
nonthermal broadening of spectral lines formed in the lower 
transition region has been observed and studied by several 
authors (Cheng, Doschek, and Feldman 1976; Feldman and 
Doschek 1977, and references therein). We suggest that the 
limit cycle behavior can naturally explain this broadening. To 
show this, we have derived an estimate for the fluid velocity 
at the base-corona interface (eq. [4.7]). The superposition of 
those phase-unrelated Doppler shifts should result in a 
broadening of the line whose width becomes univocally related 
to the amplitude of the limit cycle and consequently to the 
heating rate (see eq. [4.8]). In Figure 6, we compare the 
velocity-temperature correlation found by Cheng, Doschek, 
and Feldman (1976), measuring Doppler widths of lines 
formed at different depths with our theoretical relation (4.8) 
evaluated at different values of the control parameter E/E*. 
The detailed calculation of the amplitude of the cycle (^pmax) as 
a function of the parameter EL2 used to compute Ai;(T) in 
equation (4.8) is shown in Paper II. The approximately linear 
relationship shown by the observational results in Figure 6 
supports our hypothesis of steady mass flow through the base 
(Snb = 0). 

It is important to note that the existence of limit cycles 
provides a unified description of both a dynamic transition 
region (evidenced by anomalous Doppler widening) and a 
globally static corona (as results from soft X-ray observations 
and their comparison with scaling laws). Moreover, for suffi- 
ciently low amplitude limit cycles (such as those under con- 
sideration here), this dynamic attractor could hardly be 
distinguished from the static solution in time-dependent 
numerical computations (like Craig, Robb, and Rollo 1982). 

Craig and McClymont (1987) also derive a set of ordinary 
differential equations that describe the global behavior of the 
corona. They conclude that the interaction with the upper 
chromosphere is essential for stabilizing the thermal evolution 
of coronal loops. However, because they place the z = L level 
far below the conductively influenced region, they do not 
obtain limit cycle behavior, because it has been swept in their 
spatial average. 

Another interesting result we want to discuss is the expres- 
sion (4.6a) for the critical heating rate value which depends on 
L as L~2. If the heating mechanism invoked is Joule dissi- 

Fig. 6.—Dots with their corresponding error bars are from Cheng, 
Doschek, and Feldman (1976). The full line is our theoretical best fit and 
corresponds to EL2 = 0.6(£L2)+ (see Paper II). 

pation of magnetic stresses excited by photospheric convection 
(cf. Parker 1981a, b; 1983a, h; see also Sturrock and Uchida 
1981 ; Gómez and Ferro Fontán 1988), the heating rate is 

E = 
u2

ptpB
2 

4nL2 (5-5) 

where up and tp are the typical velocity and turnover time of 
the photospheric eddies associated with granulation, while B0 
is the magnetic field along the loop. Thus, looking at relations 
(4.6a) and (5.5), we see that the stability or instability of the 
system does not depend on the length of the loop but on the 
intensity of photospheric convection and magnetic field of the 
loop, 

< 1*5 , (5.6) 

where up5 is the photospheric velocity field in 105 cm, tp3 is the 
eddy turnover time in 103 s, and B2 is the magnetic field in 102 

G. Under the hypothesis of approximately constant photo- 
spheric activity throughout the solar surface, the above result 
implies that limit cycles should preferably exist in loops of 
arbitrary length, but with a relatively low magnetic field. This 
theoretical conclusion appears to be in close agreement with 
the reduced nonthermal broadening reported by Feldman and 
Doschek (1977) of about 10 km s_1 in quiescent prominences 
and sunspots. But the excess widths of lines formed in these 
magnetically active regions, however small, remains unex- 
plained. Because of the uncertainties involved in our estimates, 
we cannot rule out the existence of other broadening mecha- 
nisms. Since the relaxation time to equilibrium becomes too 
large near the bifurcation point (Re [A] -► 0 in eq. [4.4]), we 
speculate that the ensemble of transients caused by random 
perturbations can give an extra broadening of the lines on both 
sides of the bifurcation point, that is, on both quiet-sun and 
active regions. 
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The detailed calculation of the amplitude of the limit cycle, 
as well as the relaxation time of this dynamical equilibrium 
state, will be developed in Paper II, both analytically 
(following a perturbative method valid in the neighborhood of 
the critical point) and numerically (solving the eq. [3.13] for 
arbitrary values of E). 

We gratefully acknowledge M. Machado for very useful 
comments and suggestions. This work was supported by the 
Consejo Nacional de Investigaciones Científicas y Técnicas 
(CONICET, Argentina) under Grant 9069/03, and one of us 
(D. G.) has been honored with a fellowship of this institution. 

APPENDIX 

ESTIMATE OF THE BASE THICKNESS 

We express the equilibrium temperature near the base (z ^ L) as 

where/(z) must satisfy the equilibrium equation 

T(z) = Tobll +/(z)] , (Al) 

+f)5,2dfJl = ~1 ’ 

and the boundary conditions 

Z = (L- z\ (A2) 

/(0) = 0 = di /(0). (A3) 

The only solution of equation (A2) under conditions (A3) for y* = 0 is /(ç) = 0. For 0 < y* <? 1, we can assume / = y*/’i + 
(y*)2/2 + • • •, and keeping terms up to the first order in y*, we find 

S((fi~fi=yb1 , (A4) 

thus 

fi = y^Hcosh £ - 1). (A5) 

This solution increases approximately exponentially with We define the e-rising length scale as 

l+/(í*) = e = 2.718..., (A6) 

and thus we find from equation (A5) 

,S,n[2 + ^]. 

According to the relationship (A2) between the variables z and <^, we can derive the following expression for the base thickness: 

y,E ) 
u = 

(Al) 

(A8) 
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ABSTRACT 
In a previous paper, we have modeled the coupling between corona and chromosphere and derived a non- 

linear set of equations, where the global stability properties of the coronal plasma can be studied. The linear 
stability analysis indicates that the static equilibrium is stable unless the heating rate falls below a certain 
critical value. 

In the present paper, we study the nonlinear evolution of our equations both analytically and numerically. 
Applying a perturbative technique around the critical point, we find that a subcritical Hopf bifurcation takes 
place. The numerical integration of the equations agrees satisfactorily with the analytical results when they are 
compared close to the bifurcation. The nonthermal Doppler widths of EUV lines forming in the transition 
region can be explained by the existence of relatively low amplitude limit cycles. 
Subject headings: hydromagnetics — Sun: chromosphere — Sun: corona 

I. INTRODUCTION 

Since the hot plasma confined in coronal loops is observed 
emitting in soft X-rays during time scales much longer than 
their typical radiative cooling time, it seems clear that a stable 
thermal equilibrium must exist. Static solutions for the energy 
balance have been derived (Rosner, Tucker, and Vaiana 1978; 
Craig, McClymont, and Underwood 1978; Vesecky, Anti- 
ochos, and Underwood 1979), and the linear stability of these 
equilibria have been investigated in several papers (Antiochos 
1979; Hood and Priest 1980; Chiuderi, Einaudi, and Torricelli- 
Ciamponi 1981; Craig and McClymont 1981). The contradic- 
tory results of some stability studies evidenced the crucial role 
of the corona-chromosphere interaction on the coronal stabil- 
ity (McClymont and Craig 1985a, b; Antiochos et al. 1985). 

Much has been investigated about chromospheric evapo- 
ration (Doschek et al. 1986), and references therein) as a stabili- 
zing effect during solar flares. It seems reasonable to assume 
that this mechanism also operates in nonflaring regions as a 
response to coronal perturbations. Moreover, Craig and 
McClymont (1987) had recently shown that this mechanism is 
essential in stabilizing the thermal evolution of coronal loops. 
Kuin and Martens (1982) developed an interesting model in 
which the evaporation-condensation mechanism is shown to 
stabilize the linearly unstable evolutions. There was a free 
parameter in their model (control parameter), defined as an 
efficiency of the chromosphere-corona coupling, whose 
reduction below a critical value implies the instability of the 
static solution and the emergence of a stable limit cycle. A 
criticism can be made at this point, because this efficiency is a 
completely free parameter and no attempt has been made to 
estimate its typical values, it may well be possible that the 
typical range of variation lies within the zone, where the static 
solution is stable (Craig and Schulkes 1985). 

In a previous paper (Gómez, Sicardi Schifino, and Ferro 
Fontán 1990, hereafter Paper I) we derived from the hydrody- 
namic equations a simplified model described through two 

ordinary nonlinear equations that predict the evolution of 
mean coronal pressure and density: 

d,ôn=rU {a0T+^[1 -(1+- (Ua> 

d,6p= 1 -(1 + <5p)2(l + ÔTY 

+ f ßhll - (1 + <w>+2] + f «6ÔT , (1.1b) 
3 3e 

where 

ST = (ôp - ôn)/(l -h Sn), 

3 g XqT^2T2 

“ 5 e - 1 EL2h 

(1.2a) 

3 e 1 
5 e — 1 1 — y* ’ 

(1.2b) 

i is a dimensionless time (in units of 3P0/2E), h = Lb/L, and 
6 = T0b/T0 are dimensionless functions of E (of order 1), and 
y and yb are exponents of the radiative loss function at coronal 
and chromospheric temperatures respectively. The parameter 
y* measures an assumed spatial discontinuity in the heating 
rate (y* = [Eb — E\¡Eb, where Eb is heating rate at the base). 
We denote by Sn, Sp, and ST the relative departures from 
the static equilibrium of density, pressure, and temperature 
respectively, E is the coronal heating rate, L is the half-length 
of the loop, and Lb is the width of the base (column of the 
upper chromosphere which effectively interacts with the 
corona). K0 is the conductivity coefficient of Spitzer (1962) and 
T0, T0b, and P0 are the equilibrium coronal temperature, 
chromospheric temperature, and pressure, respectively. The 
coupling to the chromosphere was properly modeled and the 
coronal heating rate acts as the control parameter of the 
model. We have shown through a linear stability analysis of 
these equations that below a critical heating rate of 1.4 x 10" 3 

ergs cm-3 s-1 (for a typical loop of half-length 3 x 109 cm), 
and y* = 0.05, the static equilibrium becomes unstable, spiral- 
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ing out of this solution with a period of about 30 minutes. No 
qualitative changes appear when the free parameter y* is 
varied in the range 0 < y* 1. 

Our global description of coronal loops through spatially 
averaged quantities is justified by the effect of thermal conduc- 
tivity in smoothening small-scale perturbations (see also Craig 
and McClymont 1987). Moreover, in a recent paper, Pakkert, 
Martens, and Verhulst (1987) show that limit cycles seem to be 
contained among the solutions of the full set of hydrodynamic 
equations. 

As is well known, there are no general methods for solving 
nonlinear equations. However, much progress has been made 
during the last few years, and many applications of nonlinear 
methods to astrophysical problems have been developed (see 
Martens 1984 for a review). In this paper, we study the nonlin- 
ear stability of equation (1.1) both analytically and numeri- 
cally. The aim of this study is to search for new equilibrium 
branches capable of attracting the linearly unstable evolutions. 
The analytical work was performed following a perturbative 
expansion of the equations around the critical point in powers 
of a small parameter defined as the limit cycle amplitude. We 
developed equation (1.1) up to fifth order and found that a 
subcritical Hopf bifurcation takes place at the critical heating 
rate. In § Ha, we detail the general method employed, and in 
§ lib, we apply it to the problem under study. The perturbative 
method has been adapted so that not only the new equilibrium 
branches can be found, but also the relaxation of the system to 
the stable ones. In § III, we describe the results of the numerical 
integration of equation (1.1), and in § IV, we discuss how our 
analytic and numerical results compare and how our model 
compares with that of Kuin and Martens (1982). Finally, we 
attempt the explanation of some observed features through the 
existence of limit cycle solutions. 

II. PERTURBATIVE ANALYSIS 

a) General Method 
We shall describe now the perturbative technique applied to 

obtain the asymptotic solution of a set of nonlinear equations 
near a bifurcation point. While this method has been essen- 
tially based on looss and Joseph (1980), we have generalized it 
in order to obtain not only the equilibrium branches but also 
the nonlinear relaxation toward the stable ones. 

Given a problem that can be described by a two- 
dimensional vector field u which evolves in time according to 

dtui = ^i{u,E), (2.1) 

where £ is a control parameter, the static equilibria are those 
uq(E) which solve 

Plu^El £] = 0 . (2.2) 

Performing a linearization of equation (2.1) around u0{E\ the 
stability of these equilibria for each value of E can be found. 
Whenever the sign of the real part of one of the eigenvalues of 
the matrix ^^¿(iioCF], E) becomes positive, the equilibrium 
u0(E) turns unstable. If the pair of eigenvalues is complex con- 
jugate, a Hopf bifurcation arises for each £* where the real 
part of the eigenvalues changes its sign. Hereafter, we shall 
restrict ourselves to the study of this type of bifurcation. As 
usual, we write down equation (2.1) in local form: 

dt^i = ^r
l#, V) , (2.3a) 

where the new vector field is 

^ = i# — u0(E), (2.3b) 

and the control parameter is replaced by 

fi = (£* — E)/E* . (2.3c) 

Since we are interested in a search of new equilibria close to 
ii0(£), we can work with the first terms of the Taylor expansion 
of the function ^ around ij/i = 0 (i = 1,2). Thus, 

Wi = Z 3 £]«/',-, ... ^ , (2.4) 
fl = 1 "" 

where the sum convention for the jk— 1,2 has been applied. As 
we will see below, we must retain in our model equation (1.1) 
up to the fifth-order term to get a new stable (however 
nonstatic) equilibrium in the linearly unstable cases. 

As we have stated earlier (see also Paper I, § IV), the eigen- 
values of Lij = are complex conjugate 

A = ^ + if? = Gi±i- 

+ íJl,, l22 - Li2l21 - Í5üJ_G2! (25) 

At the bifurcation point (E = £*), the trace of L changes sign 
(for E < E*, the trace becomes positive, implying instability) 
while the determinant remains positive. The eigenvectors are 

and 
L * Ç = 2 • Ç , (2.6) 

LT-£=l*Ç, (2.7) 

where Z,r is the adjoint of L and £ is the eigenvector of the 
adjoint problem. These eigenvectors satisfy the following 
orthonormal relations : 

= 1 , (2.8a) 

U* = 0, (2.8b) 

and they can be expressed in terms of the L components 
(evaluated at the critical point) as 

c = i \L-Ln 
1 + (2 — Ln)/( —Li2 L2i)

1^2 \ L12 

1 

^ 
L2i 

Given that Ç and Ç* are independent eigenvectors, any real 
vector can be decomposed as 

= aWC.- + a*m . (2.10) 

1 + (2 + Lu)/( —Li2^2i)1/2 

In a completely general way, we can substitute equation (2.10) 
into equation (2.4) and use the orthonormal relations (2.8) to 
obtain an evolution equation for the amplitude a(t): 

where 

Z Z oi'V-V)* (2.11) 

< = ^ • (2.12) 
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We shall now look for small-amplitude limit cycle solutions in 
the neighborhood of the bifurcation point. Thus, we expand 
variables and control parameter in powers of a small param- 
eter 6 : 

written formally as 

dk = r<2*> _ ¿ ra*>| A12; j (2 20a) 
A J=i 

a(i) = A(t) £ ak(s)ek, s = co(e)i, (2.13a) 

co(e) = a>0 + fJco2k€
2k, (2.13b) 

k=l 
00 

d,A= ZA'^e2“ , (2.13c) 
k=l 

00 
M«) = Z ß2ktlk » (2.13d) 

fc=l 
and we define e as the amplitude of the limit cycle 

If2" 
€ = 27ltJ àsé?ISa = M- (2.14) 

Notice that A(t) is a slowly varying function of t(dt A oc e2) and 
thus the time integral in equation (2.14) can be performed 
assuming A = constant. Moreover, A is defined so that A -► 1 
for i —► oo, recovering at that limit the expressions of looss and 
Joseph (1980). We note also that for Hopf bifurcations co, dtA 
and fi are even functions of e (see eqs. [2.13b]-[2.13d]) as has 
been rigorously proved (Hassard, Kazarinoff, and Wan 1981). 

Equation (2.11) transforms into an equality between poly- 
nomials in 6, and thus it must hold at any order in €. To first 
order, 

(o0dsa1=iri*ai , (2.15) 

where hereinafter the subscript “ * ” means that the function is 
evaluated at the bifurcation point. We choose cd0 = and 
thus 

= a10e
is . (2.16) 

According to equation (2.14), we have [ö1] = fl10 = l. To 
second order, 

co0A(dsa2 — ia2) = a^A2^ + 2(ri2)\ A \2 + afXA*^)2 . 

where 

r(2fc> = ¿ r(¿fc), (2.20b) 

because of the condition A 1 for i —► go. The explicit expres- 
sion for the coefficients Fj2) and Fj4) is shown in the Appendix. 

The evolution equation for the slowly varying amplitude A 
is thus 

d,A = f r<2k>e2kA - f i riÿ'l A \2J€2kA , (2.21) 
k= 1 ft=l J=1 

and it is readily verified that 

£ T(2k)€2k = ¿ — iœ = ç + i(rj — co) . (2.22) 
k= 1 

It is also straightforward to construct a function to analyze the 
stability to the limit cycle solution. Decomposing the F’s and A 
as 

p2f = Ÿ2f + ¡y'if», (2.23a) 

A =\A\ e'* , (2.23b) 

and taking the real part of equation (2.21), we obtain 

d, MI = ÍMI - f ¿ y«2f IA |2J'+ k*2k . (2.24) 
fc=l 

We can write down this equation in the form 

d,\A\=- 
ÔS 
ê\A\ 

where 

^(1 A\) = —t:\A l2 + £ Zy(
2f 

k=1 j=l 

|^|2-'+2 

2j + 2 

(2.25) 

(2.26) 

(2.17) 

The condition (2.14) is automatically satisfied by equation 
(2.17). Notice that for any k > 1, condition (2.14) reads [afc] = 
0 and implies that equations of the type of (2.17) can be solved 
whenever the right-hand side has no terms proportional to els. 
This solvability condition, also known as the Fredholm alter- 
native, when applied to the different orders in €, will provide 
equations from which a>2k, A'2k, and fi2k can be obtained. Fol- 
lowing to higher orders in €, we find 

k/2 
co0A(dsak-iak)= £ A<‘j(A,AV°\ (2-18) 

j=~k¡2 

where the solvability condition implies A(
1
k) = 0. The expres- 

sions of the Ajfc)’s up to k = 4 are given in the Appendix. Equa- 
tion (2.18) can be readily solved, obtaining 

k/2 o2iis 

^ = —, I ^}{A,A*}^— (2.19) iœ0/i j= —k/2 AJ 1 

For even values of k, the condition A(k) = 0 is automatically 
satisfied, while for odd values, the solvability condition can be 

is a generalized potential in the sense that the equilibria of the 
system correspond to the extrema of this function being the 
minima of the stable ones (Haken 1983). This is so because 
equation (2.25) implies dtS <0for all values of | A |. 

b) Application to the Model Equations 
For the case of equation (1.1), the vector field ÿ and the 

control parameter p can be defined as 

ij/^ôn, \¡/2 = ôp, (2.27) 

P = (E*~ £)/£* , (2.28) 

so that the static equilibrium is linearly unstable for p > 0. 
In order to find new stable solutions of equation (1.1), it was 

necessary to expand these equations up to fifth order, as will be 
seen below. The first nontrivial solvability condition appears at 
order €3, where expression (2.20a) reads 

— = r(2) - r(
2
2)| a i2, (2.29) 

A 
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where 

r<2) = /î2ôma - i(o2, 

r(2) = 2ffo Vi2) — 41 g*2* I2 — (2/3) 1 (7(
2
2)12 _ 3ff(3) 

(2.30) 

(2.31) 

as has also been written in the Appendix. Imposing the condi- 
tion (2.20b), we can obtain numerical values for fi2 and co2 : 

fi2 = — 5.1 , co2 = —17.4 , (2.32) 
and also 

yi2) = y™ = -0.29 . (2.33) 

On one side, the fact that n2 <0 implies that a new equi- 
librium branch ¡i = fi2e

2 appears for negative values of the 
control parameter. On the other hand, looking at equation 
(2.26) we realize that the generalized potential at order e3 

results in 

-Çe2M|2(l-iM|2). (2.34) 

This function has two extrema: a minimum at | ,41 =0 indicat- 
ing that the static equilibrium is stable, and a maximum at 
IAI = 1 showing that the new equilibrium branch is unstable. 
This kind of behavior is typical of the subcritical bifurcations 
(see Fig. lb) as opposed to the supercritical bifurcations (Fig. 
la), where a new stable branch appears just when the static 
equilibrium turns unstable. 

At order €5, the condition A(
1
5) = 0 reads 

^ = r<4> - r<2
4)| a\2 - r*4'\a\4 , (2.35) 

/L 

Fig. 1.—(a) Supercritical Hopf bifurcation, (b) Subcritical Hopf bifurcation 
perturbatively derived from our equations. Dotted lines represent unstable 
equilibria. 

0.5 

ôp 

0. 

-0.5 

Fig. 2.—Limit cycles (labeled by the corresponding value of n) obtained 
through numerical integration of our equations. 

-0.5 0. , 0.5 
on 

where the expression for F(4), F(
2
4), and Tÿ0 is shown in the 

Appendix. The S function up to fifth order is 

S(| A\)= -j[yi2)e2 + y(4)e4]| A \2 

+ ¿[y(
2
2)€2 + y(4)64]|v4|4 + ¿y^e4\A\6 , (2.36) 

where 

//>= -7.9, y^= 131.7. (2.37) 

The new equilibrium branch is described now by /z = /z2 e2 

+ /¿4 64, where 

/z4 = 2197.6 , (2.38) 

by application of condition (2.20b). Since S(\ >11) is a function of 
€ and in turn e = €(/z), the stability of the new equilibria can 
change as the control parameter jU is varied. The results of the 
stability analysis are shown in Figure lb, where the dotted line 
indicates unstable equilibria. Using the definitions (2.10) and 
(2.13a) and the solutions (2.19) for k <4, the trajectory of the 
system in the (ôn, ôp) plane can be constructed. We have veri- 
fied that these trajectories compare fairly well with our numeri- 
cal trajectories (like those shown in Fig. 2) provided the 
parameter p is sufficiently close to the bifurcation point (p = 0). 
For /z > 0.2, the pertubative trajectories become too small 
compared with those derived numerically. 

We can study how the relaxation time depends on the 
control parameter p by analytically integrating equation (2.24) 
for k < 4. In Figure 3, we show | A(t) \ for different values of p, 
normalizing in each case to the corresponding <5pmax for the 
sake of comparison with numerical results (dots in Fig. 3). 

III. NUMERICAL RESULTS 

We have solved equations (1.1) and (1.1b) numerically using 
a fourth-order Runge Kutta method, for different values of p 
and initial conditions. In figure 2, we plotted the limit cycle 
solutions, each one labeled by the corresponding value of p. 

To test the relaxation toward the limit cycles shown in 
Figure 2, we computed each crossing of the trajectory with the 
ôn = 0, ôp > 0 semiaxis both from initial conditions outside 
and inside the attractor, as can be seen in Figure 3 (dots). The 
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Fig. 3.—Relaxation toward the stable limit cycles for different values of the 
control parameter fi (see label). Continuous lines correspond to the analytic 
evolution of A(t) normalized (with <5pmax), while dots indicate the successive 
crossings of the trajectory through the positive part of the ôp axis. The tempo- 
ral separation between dots coincides with the limit cycle period. 

temporal separation between dots in Figure 3 asymptotically 
approaches the period of the corresponding limit cycle. 

For the radiative loss function, we have used the piecewise 
power law given in equation (2.4) of Paper I, which is a match- 
ing between the function given by Peres et al. (1982) for the 
chromosphere with the fit of Craig and McClymont (1986) for 
the transition region and corona. 

It is important to note the quite slow relaxation time of the 
system for control parameter values sufficiently close to the 
critical point. In fact, we can see from equation (2.24) that the 
relaxation time behaves like <^_1 and consequently goes to 
infinity at the bifurcation point. According to this general 
result, we believe that the two stable limit cycles found by 
Craig and Schulkes (1985, see their Fig. 3a) for the Kuin and 
Martens (1982) equations at ^ = 0 might not be real, but a 
consequence of the very slow relaxation at this point. 

In Figure 4, we display the temporal evolution of tem- 
perature perturbation for the limit cycle corresponding to 

0.5. A certain preference of the system to lie in the upper 
part of the cycle can be noticed, as has also been reported by 
Kuin and Martens (1982). We calculated the mean value of 
ôT(t) over one period and obtained 0.16, thus indicating that 
the measured temperature should be 16% above T0, provided 
that this limit cycle solution is operative in a bundle of 
magnetic field lines with their phases evenly distributed (see 
Paper I). 

IV. DISCUSSION 
The aim of this paper has been to complement the results of 

Paper I, performing an analytical (however approximative) 
and numerical integration of equation (1.1). As has been found 
in Paper I, for heating rate values lower than £*, the static 
equilibrium turns unstable. In this paper, we study the charac- 
teristics of the new equilibria which appear at the critical point. 

As a rule, we find that for the same value of the control 
parameter, our limit cycles have amplitudes much smaller than 

those found by Kuin and Martens (1982). The smallness of the 
limit cycles reflects the ability of the upper chromosphere to 
react against instabilities of the coronal plasma and effectively 
saturate them through the evaporation-condensation mecha- 
nism. The relatively low amplitude limit cycles we have 
obtained might not imply observable consequences on the 
temperature and density of the loop. For example, we have 
shown above that for the limit cycle corresponding to = 0.5, 
the measured temperature will be 16% in excess of T0 (due to 
asymmetries of the cycle) and constant in time. This enhance- 
ment may probably fall within the error range of the measure- 
ment. Whether or not larger amplitude oscillatory behavior 
exists cannot be decided from our equations due to our 
assumption of thinness of the conductively influenced region 
(see Paper I). 

The fact that the Hopf bifurcation we found is of the sub- 
critical type (Fig. lb) implies, aside of the cyclic behavior, the 
occurrence of catastrophes when n changes from negative to 
positive and the system lies in the static equilibrium (and also 
when the system is in the limit cycle branch and // is reduced 
below the minimum fi for this branch). However, again due to 
the very low values of fim and em, the observational conse- 
quences of this catastrophe can be completely neglected. More- 
over, if we add white noise terms to equation (1.1) in order to 
somehow take into account the complex interaction of the 
system under study with their surroundings, we realize that the 
very concept of bifurcation point becomes meaningless and 
must be replaced by the notion of bifurcation region (see 
Meunier and Verga 1988 for a detailed description of the 
action of noise on bifurcating solutions). When noise is present, 
the deterministic description of the problem is substituted by a 
probabilistic one. Sufficiently close to the bifurcation point, the 
probabilities of finding the system in the static or in the limit 
cycle equilibria become comparable, where the extension of 
this bifurcation region is determined by the level of noise 
present. An observable consequence of the addition of noise to 
our model could be the extra Doppler widening of EUV lines 
caused by the superposition of transient evaporation- 
condensation processes driven by noise. 

However, assuming the existence of relatively low amplitude 

Fig. 4.—Temporal behavior of temperature for p = 0.5 
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limit cycles (see Fig. 4 of Paper I), we are able to explain the 
nonthermal Doppler widths of EUV lines forming in the tran- 
sition region. Moreover, if we assume that the heating mecha- 
nism is Joule dissipation of magnetic energy continuously 
replenished by subphotospheric convection (see Paper I), we 
can also explain the observed narrowing of these lines in 
certain active regions like quiescent prominences and sunspots 
(Cheng, Doschek, and Feldman 1976; Feldman and Doschek 
1977). This result comes from the fact that E oc (B0/L)2(B0 is 
the magnetic field along the loop and L is its half-length) and 
E* oc L~2. Thus, the condition for the existence of limit cycles 

(E < E*) poses an upper limit for the magnetic field value, 
above which the cyclic solution turns off. 
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APPENDIX 

EXPRESSIONS OF COEFFICIENTS A AND F 

A(-3)3 : 

A(33) : 

A(f >4 : 

A<f >2 

^ - ~ KV/» + 3ar<r(ñ\U*)3 

M3) - ~ KM» + a^Vi2’ + 6K2’]2 - i a i2a* , 

<t(03> + ¿~o {3K2)]2 + , 

1 iT(2) 1 
[2W + 18<x<33K2)* + 3ff<

1
2)A<_3,3 + 6ö22,A(33»*] - ^ K2'42» + 9K2»*]2 + 6ff<2»V»2»} l(A*? , 

\n2dy? - ^ o'A{a*)2 + [k4» - {2<T<2
2»r<2

2) + K3»^2» + n^'K2» + <t<0
2>*] - só^3»^2»* + 

L ®o J IL 6ic0q 

+ 6<t«2>[A<_3> + A<33>*]} + ^ {6ff
(
0

2'*a«2»V2
2» + 41 ff«2» |2<t<2

2> - 2<r<0
2><T<2V2

2» - 4<t‘2>*K2»]2}J | A |2(4*)2 

Aq4’ = 2Fp2 dp a(2) — — ct<2) 

L 
A\2 + \\ 6<t,4> - — [2ff<

1
2)r(

2
2) + a(

0
3W2> + <x<X2>* + 4<t(1

3)<t<
1
2) - <t(3W2) - 4<t(2

3W2)* 
uo0 

(2) 

r\2)[\o(o2) 

3a>o 
- + a(

0
2>A<i> - cr<

2
2»A,3)*] + -K<!K2»]V2

2» - 12<7<0
2)K2>]2 + <t(0

2)* | er(2
2) |2 - 12K2»’]2ff' 

+ 6a<2»| K2,|2+4K2)|2+iK2,|2 

}]' 

A(4) [li2ey0» - J a^A2 + pff»4» - {36o(3)a[2> - Ó^'K» - 3<7(3K2>* - \2a[3W0
2) - 2<t^2)* 

- ScrfAL3? - 6a<2>[A<33> + A(_3»*]} + ¿ {6K2>]2«t<2> - 2ff
(2'* | <t<2> |2 + 4K2»]V2

2»* - 12er™ | a™ |2}|| A \2A2 , 

Ai4’ = 

r<2> 

r<4) 

r<2
4) 

3a>l 

~— [ISffi3»^2» + 2(T<
1
3,(T<

2
2)* + 6o™\y + 3tr(2)A<i,3*] - 

oicoq 9co 

: dp ^ 5 A 2 

: + ¿¿4^ - i(04 , 

ico. 

ri2) = 2(Jo)(7i2) - 411 
.(2) |2 . ■(2/3)1 <7* 
KJOn 

2 {9K2»]3 + K2)|V2
2)* + Ó^2»^2»^2»*}^^4 

(2) |2 
21 -S^3», 

= fK i2<T<o2(122 ^<T<2, - 77 ^2,1 - M2,rß2 d„ a? - ^ K'l* - K' L L O00 J L œ0 J iKK21 - - tf(o2’ 
^0 

\ a? 3 2 iW2^^2 
'}• 
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U4) = -F«4» - 10a«2
5» + — L^AÍ4» - a'^CAÍ4»* + A(4>] - l 42)A,4)2* + 7 U3,A(_3» - <t<2

3>[A<33» + 2A'_3)
1*] - \ ^»AL3»/} 

icoqI 3 4 1 2 J 

+ ^ <t<o4,<t(2
2> + 2<t(iX

2>* + Ua^K’ - 12ff(
2
4V2'‘ - 6<r<4><T<0

2> - - ~ |<t<0
2>^Í)

2>A<_3>1 + ^ <j(2
2'A^ 

+ 2(7<1
2>|^ 42)*A<33) + <7(2)A(3); + ^ <t(2

2>[A(_3>3* + 2A(_3>1]J + 2<T<2
2ß ^»’AL3*, - (t<

1
2)*A<3,

1*J + ítfVoM» 

- 12K2»]2} - 6^1 ^»l2 + 4|<t<2>|2 + ^k<2'|2 + W] + - 12[<t(2)]2 

+ 4ct<
1
2|*<7<

2
2) _ n<T(

0
2>*a[2Y - 2<t

<33)<7(
1
2)V2

2)* J . 

The A’s in the expression of Fit
4) are evaluated at A = 1, and all coefficients are computed at the critical point (E = E*). 
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