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ABSTRACT

Active region coronal loops are widely believed to be heated by ohmic dissipation of field-aligned electric
currents. These currents are driven by turbulent photospheric motions which twist and shear the magnetic
footpoints of loops. Fine-scale structure in the corona is required in order to dissipate the currents rapidly
enough to account for coronal heating. A long-standing controversy surrounds the question: is the fine-scale
filamentation the result of magnetohydrodynamic (MHD) instabilities, or of dynamical nonequilibrium, or is it
merely the direct product of the turbulent footpoint motions themselves? We present a simple model for the
evolution of the coronal magnetic field, with no fine-scale structure in the imposed footpoint motions. The
model consists of a three-mode truncation of the “reduced” MHD equations. One mode is driven by a sta-
tionary velocity field at the footpoints; the other two modes, of different spatial frequencies, are amplified
through interaction with the driven mode. After approximately one photospheric turnover time, the coronal
field loses equilibrium, and evolves rapidly to a new configuration, transferring energy to the two nondriven
modes. The timescale of rapid nonequilibrium evolution is (t, 7,)!/?, where 7, is the Alfvén transit time along
the loop and 7, is the photospheric turnover time. Regarding this simple model as a building block of a much
more complex process, we see that dynamical nonequilibrium should be able to produce a cascade of free
energy to fine spatial scales where it can be dissipated rapidly enough to account for coronal heating, as

envisioned by Parker.

Subject headings: instabilities — MHD — Sun: corona — Sun: magnetic fields

1. INTRODUCTION

Soft X-ray observations of the solar corona performed over
the last few decades consistently reveal a highly structured
brightness distribution, which is believed to be a consequence
of the presence of magnetic fields confining the X-ray emitting
plasma and governing its dynamics (Vaiana & Rosner 1978).
More recently, the Normal Incidence X-ray Telescope (NIXT)
has yielded subarcsecond images of the solar corona in a series
of successful rocket flights. These observations show coronal
loops with a highly filamentary internal structure, down to the
resolution limit of the instrument (Golub et al. 1990).

The source of energy for coronal heating almost certainly
lies in photospheric convective motions: the question is how is
the energy transferred. Both acoustic coupling through the
generation and dissipation of shock waves, and the transfer of
energy by magnetic stresses, have been investigated in numer-
ous studies. The fact that the strongest heating is found in
active regions suggests a coupling between convective motions
and the magnetic field, although it could be argued that the
role of the magnetic field is solely to contain the high-pressure
heated gas. Even though the subphotospheric velocity field
apparently provides enough input to compensate for the con-
ductive and radiative losses of the coronal plasma, the precise
dissipation mechanism is still uncertain. The most natural can-
didate is Joule dissipation, but the typical timescale to dissipate
coronal magnetic stresses on the length scale of the driving
photospheric granule motions is exceedingly long. Therefore,
most of the current theories of coronal heating deal with differ-
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ent mechanisms to speed up Joule dissipation (see Narain &
Ulmschneider 1990 or Gomez 1990 for recent reviews).

The formation of small-scale current-carrying structures in
coronal loops is necessary to enhance magnetic energy dissi-
pation to provide for the heating of the confined plasma.
Parker (1972, 1983) proposes that footpoint motions of
coronal loops continuously drive the magnetic field into states
of dynamical nonequilibrium in which tangential discontin-
uities spontaneously form. Parker asserts that the magnetic
reconnection taking place in this stochastic distribution of
current sheets both enhances the ohmic dissipation of magnetic
energy and simplifies the stressed magnetic structures
(topological dissipation). Van Ballegooijen (1986) presented a
quasi-static force-free model displaying the development of an
energy cascade from large to small length scales as a result of
random motions imposed at the photospheric boundaries.
Mikic, Schnack, & van Hoven (1989) solve the time-dependent
magnetohydrodynamic (MHD) equations with viscosity, fol-
lowing a sequence of excitation-relaxation steps. They find that
the system relaxes to equilibria which agree with those com-
puted by van Ballegooijen and confirm the presence of an
energy cascade process. More recently, Longcope & Sudan
(1992) reported that the quasi-static evolution of coronal loops
driven by slow footpoint motions are likely to undergo sudden
“losses of equilibrium,” at which time the system departs from
a force-free configuration and evolves in a rather dynamic
fashion. Furthermore, they show the formation of highly struc-
tured electric currents associated with the development of these
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quasi-static crises. It is interesting to note that in spite of the
obvious differences between these models, they share in
common the development of small-scale dissipative structures
as a way to enhance Joule dissipation.

The formation of new spatial structure is a manifestation of
the nonlinear behavior of the dynamics of coronal loops. In the
present paper, we analyze in detail the generation of new
spatial patterns in a coronal loop driven by footpoint motions.
We restrict our analysis to a very simple model of a coronal
loop, which nonetheless shows the development of nonlinear
rapid transients leading to the growth of new patterns inside
the corona. We use a truncated version of the reduced MHD
(RMHD) equations, consisting of a resonant triad of three
Fourier modes. One of the modes is externally driven by a
stationary pattern of footpoint motions. This single Fourier
mode pattern is intended to simulate granular photospheric
motions. The initial effect of this driving action is simply to
bend the loop field lines, following the spatial pattern imposed
at the photospheric boundaries. However, on timescales on the
order of one photospheric turnover time, this structure is
found to undergo a loss of equilibrium, leading very efficiently
to the development of new spatial structure, described in our
simple model by the superposition of three Fourier modes, two
of which have received no contribution from the flow motions
imposed at the photospheric ends. The rapid “nonequi-
librium” evolution involves a net energy transfer from the
externally driven mode to the two new modes. An appreciable
fraction of the total energy in the system remains in the new
modes when a new quasi-steady state is reached. Once the
three modes share comparable amounts of energy, each of
them is free to interact with new triads, and therefore the three-
mode truncation becomes invalid.

Because of the simplicity of our model, we do not expect our
results to be directly comparable to observations of the
dynamics of coronal loops. The aim of the present paper is
rather to point out the existence and efficiency of these nonlin-
ear interactions in generating new spatial structure in the inte-
rior of coronal loops, regarding them as building blocks of a
much more complex dynamical process. In § 2 we introduce the
RMHD equations to be used in our analysis, and in § 3 we
describe the truncation to three Fourier modes. In § 4 we
assume that the footpoint motions are sufficiently slow to
allow the system to evolve through a sequence of quasi-static,
force-free equilibria. We find that after timescales of the order
of the turnover time, this equilibrium is suddenly lost and the
system enters a more dynamic stage. As detailed in § 5, the
linear regime of this dynamic stage, after the force-free equi-
librium is lost, is governed by a timescale which is the geomet-
ric average between the turnover time and the Alfvén time
(travel time of an Alfvén wave through the loop). In § 5 we also
present the results of a numerical integration of the truncated
RMHD equations. The main features of this nonlinear
dynamical system are summarized in § 6. Finally, in § 7 we
discuss the possible implications of these results for the coronal
heating problem.

2. REDUCED MAGNETOHYDRODYNAMIC EQUATIONS

We consider a coronal loop of length L with a cross section
D x D. We discard toroidal effects because D < L. The main
magnetic field is assumed to be uniform and parallel to the axis
of the loop, B, = B, 2. The planes z = 0 and z = L correspond
to the loop footpoints at the solar photosphere. Assuming that
the size scale of footpoint motions is much smaller than L, then

we are able to use the “reduced MHD” (RMHD) approx-
imation (Strauss 1976), in which the plasma moves incompress-
ibly in planes perpendicular to the axial field B,, and the
transverse component of the magnetic field is small compared
to B,. We also assume that the gas pressure is much smaller
than the magnetic pressure in the coronal part of the loop, and
rises discontinuously to a large value at the photospheric
plates. This disparity between the photospheric and coronal
plasmas, combined with their very high electric conductivities,
allow photospheric convective motions to easily drive mag-
netic stresses in the corona (Parker 1972).

For consistency with the RMHD approximation, we take
the motions in the photospheric endplates to be incompress-
ible. The photospheric motions generate transverse com-
ponents of velocity () and magnetic field (b) in the corona.
Expressing the magnetic field strength in terms of the Alfvén
velocity [B — B/(4np)*/?; p is the constant density], we have

B=v,Z+b(x,y,2,t), b-2=0, (1)
u-3=0, 2
where v, = By(4np)~'/? is the Alfvén velocity of the plasma (p:
mass density). Since both & and # are two-dimensional and

divergence-free fields, they can be represented by scalar poten-
tials

u=ux,y,zt),
1/2

b=V x(af)=Va(x, y, z, 1) x £, ©)
u=Vx(pd)=Voxyz1t)x%t. @)

Hereafter, the operator V is reserved to indicate derivatives in
the (x, y) plane, while derivatives along the z-direction are
written explicitly.

The magnetohydrodynamic (MHD) equations for the poten-
tials ¢ and a under the assumptions listed above, are

0,a=0,0,0 + [, d] + nV?a, )
0,0 =0,0,j + [0, ®] — [a,j] + W30, ©6)

where
w=-V¥, j=-Va, )]

and the Poisson brackets are defined as
[4,B]=%2-VAXxVB=0,A0,B—0,A0,B. 8)

These equations are usually referred to as the reduced MHD
equations (Strauss 1976). Equation (5) describes the advection
of the potential a, and equation (6) corresponds to the evolu-
tion of vorticity. As boundary conditions for the coronal loop,
we choose: periodic boundary conditions on the (x, y) plane,
and prescribed velocity fields at both photospheric plates,
Qi=0)% ¥, t) and @ p)(x, y, t). The terms v, 0, represent the
dynamic coupling between neighboring z = constant planes.
The role of these terms is therefore essential to transfer energy
from the footpoints into the coronal part of the loop. The V2
terms in equations (5)—(6) represent dissipative effects, the con-
stants n and v being the resistivity and viscosity coefficients,
respectively. For a typical coronal plasma these coefficients are
extremely small and therefore for the truncated system, where
only large scales are involved, the dissipative terms can safely
be neglected. The nonlinear terms in these equations are rep-
resented by the Poisson brackets. Their role in the dynamic
evolution of the system is to couple its normal modes, in such a
way that energy (and other ideal invariants) can be transferred
between them. In the next section we consider a truncation of
three Fourier modes of the reduced MHD equations, and show
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how their nonlinear interaction can efficiently excite new
modes in the corona which are not being externally driven
from the photosphere.

3. TRUNCATED SYSTEM OF THREE FOURIER MODES

Let us consider the case of stationary footpoint motions. In
this case, the functions ¢ -, and ¢ -, are independent of
time. Since we are assuming periodic boundary conditions in
the transverse directions of equations (5)—(8), the correspond-
ing normal modes are spatial Fourier modes whose amplitudes
depend on height and time,

ax, y, z, 1) = ) ayfz, )e**, a_, =af, ©®
k

ox, y, 2, 1) = ;%(z, 0e**, @_=of. (10)
If no-slip boundary conditions are enforced at z =0, L, the

amplitudes g, and ¢, can be expressed as a linear combination
of two different types of solutions: DC-type solutions

P pulz=0+7 [ode=L)— oz =01, (1)

aP ~ Ti [osz = L) — oz =0)] , (12)

and AC-type solutions,

e~ Y C;sin <7IL£> cos <n—t> , (13)

1=1 Ta

AC & nlz\ . (mt

ap€~ Y C,cos 7 )sinl ) 14
1=1 TA

The possibility of pumping traveling Alfvén waves is not
present in our analysis, because we are considering stationary
footpoint motions. DC-type solutions (¢P€, ab®) can only be
excited by footpoint motions which contain the mode & in their
convective pattern [@(z = L) #0]. On the other hand,
AC-type solutions correspond to stationary Alfvén waves, with
velocity nodes at z =0, L. The amplitude C, is completely
unrelated to footpoint motions and can only arise from nonlin-
ear interaction with other Fourier modes. The main goal of
this paper is to show that nonlinear mode coupling is indeed
an efficient mechanism for exciting new modes (and therefore
generating magnetic structure) in the corona.

To analyze the nonlinear coupling between modes in detail,
we concentrate on a truncated version of the real problem: a
set of three Fourier modes. Because of the quadratic form of all
nonlinear terms in equations (5)—(6), each Fourier mode k,
couples with pairs of modes &, k, satisfying the rule k, = k,
+ k,. Resonantly coupled triads are the dominant nonlinear
interaction in many physical systems displaying quadratic
nonlinearities, and therefore a number of approximate models
have been developed to predict the effects of these interactions
(see, for instance Segur 1984 and Zakharov et al. 1992). The
dynamic equations for the amplitudes ¢, a,; of Fourier modes
in a triad (k,, k4, k,), can readily be derived from the general
equations (5)—(6). More specifically, we represent the scalar
fields as

w(X, Y, z, t) = l//()(za t) Cos (27tk0x x) Cos (znkOy Y)
+ Y4(z, t) cos (2mk,, x) cos (2nk;, y)
+ Y 5(z, t) sin (2nk,, X) sin 27k, ),  (15)
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where y is either ¢ or a, and the y(i = 0, 1, 2) are real valued
amplitudes. This expresion corresponds to an expansion in
terms of even functions on the plane (x, y), whose wavenumber
labels satisfy the rule k, = k, + k,. Under this approximation,
all other nonlinear interactions are neglected. The dynamic
equations for the three-mode system can be written in a
compact form (Longcope & Sudan 1991) by defining the
vectors @ = (@, ¢4, ¢;)and A = (ay, a;, a,); then

0,A=0,D+Px A4, (16)
0,R=0,J+DPxQ2—-AxJ, 17)

where
Q=Ld, J=LA (18)

correspond to the amplitudes of vorticity and electric current,
and

k2 0 0
L=|o & o]. (19)
0 0 Kk

The quantities displayed in equations (16)—(19) are dimen-
sionless. Time is in units of t, = L/v,, the position z along the
loop is in units of L, the transverse scales are in units of the
granule size | = D/N, (D: loop width, N, : integer), and the
scalar fields @ and A are in units of 2/(n?yt,). The constant
y=(Z -k, x k,) is related to the geometric structure of the
triad. We must complement equations (16)—(17) with an ade-
quate set of initial and boundary conditions. In § 5 we solve
these equations for the following boundary conditions:

(p0,1,2(0’ t) = 0 ’ (20)
@o(l, t) = po =constant, ¢, ,(1,t)=0, (21)
while the initial conditions are

(Po(z, 0) =@o2Z, (01.2(2’ 0) ~0 ’ (22)
ao,1,,~0. (23)

The underlying idea for this choice is to simulate the external
driving of just one mode (k,) by a stationary photospheric
motion, and see whether any excitation of modes k,, k,, takes
place as a result of their nonlinear coupling.

4. FORCE-FREE SOLUTIONS AND LOSS OF EQUILIBRIUM

The expression describing static (¢ = 0) ideal (v = 0) equi-
libria in equation (6) corresponds to the requirement that the
Lorentz force is curl-free [V x (J x B) = 0], which comprises
force-free equilibria (J x B = 0) as particular cases. However,
hereafter we will simply use term “force-free” when referring
to these equilibria. Since photospheric motions typically occur
on timescales 1, = l/u, ~ 103 s, much longer than the Alfvén
time 7, = L/v, & 10 s, coronal loops are likely to be close to a
force-free equilibrium. More specifically, coronal loops are
often assumed to follow a continuous sequence of force-free
equilibria at the slow timescale 7, (van Ballegooijen 1985;
Longcope & Sudan 1992). Under this additional assumption,
equations (16)—(17) for our truncated system of three modes
become

0, A=0,0+®xA, (24)
0=0,J—AxJ. (25)
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Equation (25) describes the aforementioned equilibrium and
is formally analogous to the two-dimensional Euler equation
for an inviscid flow, where z plays the role of time and J is the
vorticity. Equation (24) describes the advection of the magnetic
field by the plasma and hence the evolution of the system as it
slowly and continuously changes from one force-free equi-
librium to the next.

The implicit assumption here is that there is always a neigh-
boring force-free equilibrium available, so that the system can
evolve without leaving the force-free manifold that is embed-
ded in the space of solutions of the general equations (16)—(17).
However, the failure of the RMHD equations to quasi-
statically follow force-free equilibria under certain circum-
stances has recently been reported by Longcope & Sudan
(1992). When this “loss of equilibrium” occurs, the system
seeks to relax to a new equilibrium branch at the fast 7, time-
scale, which is completely absent in the evolution described by
equations (24)—(25). Below we show how this loss of equi-
librium takes place in the three-mode system.

We assume that the triad is dominated by the externally
driven mode k,, which as a result displays a DC-type solution
(see egs. [11]-[12]). After linearizing equation (25) we obtain

A\ 0 r\[A
o(3)- el SR) e

where r; = (k2 — k2)/k? and r, = (k3 — k?)/k2 are constant
coefficients. The corresponding solutions are

AI(Z, t) — _rl(CeAzt + CrefAzt) , (27)
AZ(Z’ t) =/ rer(CeAz' - C,e_Az‘) ’ (28)

where A = ¢@,(r;r,)"? and the coefficients C(t) and C'(f) are

‘arbitrary functions of time, to be determined after substituting

equations (27)—(28) into the linearized version of equation (24),
01 Py

0 t

[ e 3 0))5)
_ 0 1—-r\[A4, A,
""’°z<—1—r2 0 )(A:)*(ﬁz > @

where A4, , are equivalent to expressions (27)—(28), but with
coefficients C, C'. Hereafter the upper dot indicates time deriv-
ative. The general solution to the inhomogeneous equation (29)
is

i i V4
912,1) = (Delwo + Do) 4 £ 4,

ry+1 A, .
— | —= -4 30
@ +r1"2)(00t< t 2)» GO

. . z
@5(z, t) = —i(De'***" — D'e™"%0%") 4 p A,

,— 1 A, N
(1 + rxrz)(Po ( Al) - G

By enforcing no-slip boundary conditions on ¢,, ¢, at both
z = 0and z = 1, we obtain four ODEs to determine C, C’, D, D’
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as a function of time. From ¢, ,(0, ¢) = 0 we obtain

R (~ . C—C\ iR, c+C
p=u (¢ CZC)_ R (oo CECY)
200t t ) 200t t

(32
R, (. . C=C\ i :
=1 (o) R (o CHC)
200t t 200t t
(33)

where R, = (r,r))"*(r; + 1)/(1 + ryry) and R, =r(r, — 1)/
(1 + ryry). Using ¢, 5(1,t) = 0, and substituting equations (32)
and (33) in (30) and (31), we obtain

¢ [ C
ME)-u(S) e

M(t) — [xll x12] , (35)
ol

X21 X322

where

where x;; = Ry cos (9o t) + R, sin (pgt) — R, e, x,, = —R,

cos (@o?) + R, sin (pyt) + Rye™™, X21 = Ry sin (¢ot) — R,

cos (pot) + R, e™, and x,, = —R, sin (pyt) — R, cos (¢, t)
At — At

+ R,e ™, and
1
. (36
Jrir, et ,/rlrze"“> (36)

The matrices M and M’ are regular at ¢t = 0. For any given
choice C(0) = C,, C'(0) = Cj, of the initial conditions, equation
(34) can be integrated and equations (27)-(28) and (30)-(31)
can be used to construct a particular force-free solution,
labeled by the pair (Cy, Cy). However, all of these solutions
break down at a time t = 7, where the matrix M(f) becomes
singular (i.e., det [M(z,)] = 0). We associate this breakdown of
the force-free solutions with a loss of equilibrium, in the sense
that the coefficients C and C’ diverge on a timescale At ~ 0
around t = 7,. When this happens, the force-free approx-
imation is no longer valid (eqs. [24]-[25]) and the full equa-
tions (16)—(17) must be considered, bringing the fast time scale
74 back into play.

Since A is proportional to ¢,, M is a function of ¢4t only
(pot = t/1,), implying that the loss of equilibrium occurs when
the field has been “wound up” by a certain amount, indepen-
dent of the timescales 7, and 7,,.

M(t) = M(t ! (

5. THREE-MODE NONEQUILIBRIUM

5.1. Linear Regime

Once force-free equilibrium is lost (see previous section), we
expect the system to undergo some sort of unstable evolution,
seeking a new equilibrium configuration. Starting from equa-
tions (16)—(17), we estimate a rise time which describes the
global long time evolution of the new modes k, and k,. As in
the previous section, we assume the truncated system to be
initially dominated by the k, mode, whose potentials are thus
simply @z, t) = @oz and aq(z, t) = ¢ot. We linearize equa-
tions (16)—(17), keeping terms up to first order in (4,, 4,),
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(@1, @), to obtain
4 ¢ 0 1 (51 A,
() =a(2)+ (L ofee(%)- ()]
t(Az 0, -1 0 ®o @y ®o 4,
(37)

¢\ _ Ay 0 r Ay (1
at(‘Pz) B az<1‘12> * ("2 0>[¢0 t<A2> — P z(‘l’z):l .
(3%)

For times longer than the Alfvén timescale (¢ > 1), the leading
terms on the right-hand sides of equations (37)—(38) are those
proportional to ¢,t. Neglecting the remaining terms, equa-
tions (37)—(38) can readily be integrated and a global rise time
can be estimated. The potentials for the new modes (k,, k,)
evolve like

l//(t) ~ exp (%r(/’o tz) s '/’ = (p1,29 a1,2 ) (39)
where the real parts of
Tf=+-r, Ti=2r, (40)

define the (dimensionless) nonequilibrium evolution rates.

In dimensional form, equations (39)—(40) estimate a non-
equilibrium rise time which scales like 7,5, & (t57,)"/*> multi-
plied by a constant coefficient which depends on the triad (i.e.,
on r, and r,). This means that, globally, modes k, and k, grow
on a timescale which is intermediate between the fast (z,) and
slow (t,) timescales of the problem. Therefore, our original
assumption of concentrating on the long-term evolution
(t > 7,) seems justified.

In the following subsection we numerically integrate the
nonlinear equations (16)—(17) and confirm that the scaling for
the rise time is indeed correct. We also analyze the saturation
of the phase of rapid nonequilibrium evolution.

5.2. Nonlinear Saturation

We integrated equations (16)-(17) numerically, with the
boundary and initial conditions corresponding to the situation
of externally driving one single Fourier mode through the sta-
tionary motion of one of the footpoints (eqs. [20]-[23]). The
equations were advanced in time using a second-order implicit

GOMEZ, DELUCA, & McCLYMONT
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method, with a staggered z-grid for potentials @ and A.
Boundary conditions for the velocity potential & were
enforced at z = 0 and z = L (eqs. [20]-[21]).

We tested the accuracy of the code by checking the conser-
vation of the ideal invariants (energy, squared vector potential,
and cross-helicity; see Gomez 1990 for a detailed description of
these conservation laws). We find that these conservation laws
are satisfied with an accuracy better than 99%.

So far we have not specified any particular triad, or set of
three modes. In order to see which triads are more efficient in
transferring energy from the externally driven mode k,, to the
new modes k, and k,, we integrated equations (16)—(17) for an
array of triads in the range 0 < k,, < 2k, and 0 < k,, < k,,
where k, = (ko, 0) and k, = ky + k,. In Figure 1 we show the
fraction of the total energy stored in the new modes as a func-
tion of triad. The triad for which this ratio is maximum is
k, = (1.2ky, 0.9k,). Hereafter all our results correspond to this
particular triad. However, it is important to note that the
maximum in Figure 1 is quite broad, and therefore a whole set
of triads will get efficiently excited and saturate at about the
same level. What this means is that before nonlinear saturation
occurs, the three-mode truncation is no longer a good approx-
imation, since by then many modes will be simultaneously
absorbing energy from the externally driven mode and they
will start interacting with one another.

In Figure 2 we show the total energy of the triad as a func-
tion of time, and the energy in the undriven modes as well.
Time is in units of the photospheric turnover time. Before
equilibrium is lost, most of the energy is stored as magnetic
energy of the externally driven mode, increasing in time like
W ~ t2. In the linear stage, the energy of the new modes rises
rather steeply, like W, |, ~ exp [(t/7,:s.)*]- In Figure 2 we have
plotted In (W) versus t2 so that this part of the curve looks like
a straight line, with a slope ~1,;2. We performed several runs
with different values of 7, and 7, and confirmed that t,,
indeed scales like 7, & (15 7,)"/%, as predicted in the previous
subsection. For the run displayed in Figure 2 we used 7,/7, =
0.1.

In Figure 3 we show how the energy in each model distrib-
utes into kinetic and magnetic components. We see that the
externally driven mode remains magnetically dominated,
before and after the rapid transient. Mode k,, however,
becomes an essentially kinetic mode.

1.0 T T

0.8

0.6

K2)//K0

0.4

0.2

llllllll!ll'll!llll

0.0 L

20 %

Jlllllllllllllllll

L 1

0.0 0.5

1.0 1.5 2.0

KZx/KO

FiG. 1.—Fraction of the total energy stored in the new modes after the saturation of growth as a function of (k,,, k,,). The externally driven mode in this diagram

is located at (1, 0).
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Fi1G. 2.—Total energy (thin line) and energy in the new modes (thick line) as a function of time for the most rapidly growing triad. The dotted line shows the law

W = t%, corresponding to total energy in the absence of nonequilibrium.
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F1G. 3.—Kinetic (thin line) and total energy (thick line) per mode as a func-
tion of time. The total energy of the triad (dotted line) is shown for reference.
(a) In mode k; (b) in mode k, ; (c) in mode k,.

Figure 4 shows how the magnetic energy per unit length
W, = 4 - J depends on z, at different times. From equation
(25) we readily derive that for a force-free configuration, the
total magnetic energy is independent of z. Therefore a horizon-
tal line in Figure 4 (0, W ~ 0) is a sufficient condition for the
system to be in a force-free equilibrium. We can see that this is
the case before equilibrium is lost. However, during the satura-
tion stages and after, the system is far from a force-free configu-
ration. We note that the absence of dissipation effects in our
analysis keeps the system from relaxing to a new equilibrium.
The tendency of the truncated system to store an appreciable
fraction of its total energy as kinetic energy will probably
diminish if more modes are added.

The photospheric motion imposed at the upper boundary
is described by ¢(x, y, z = 1) = @, cos (2nk,, x) cos (2nk, y),
which is a stationary flow represented by just one Fourier
mode, ko = [, 1]. The corresponding spatial pattern consists
of square cells of linear size [ ~ kg *. Since the circulation time
is different on different streamlines, we define 7, as the turnover
time of a streamline at half-radius. The fluid in the innermost
streamlines describes more or less circular trajectories with
periods shorter than 7, (~7,/2 toward the center), while the
outermost fluid moves along squarish streamlines with periods
longer than 7, (the period diverges toward the cell walls). Time
in all our figures is in units of the photospheric turnover
time 7,,.

In Figure 5 we display a time sequence of contour plots of
the stream function ¢(x, y, z = %), in a loop section at z = .
The solid-line contours correspond to anti-clockwise motions
and the dotted contours to clockwise flows. For reference, we
overlay the square grid corresponding to the cell walls at the
photosphere. Before nonequilibrium sets in, the stream func-
tion displays the flow pattern imposed in the upper photo-
spheric plate (the lower plate remains at rest). While the rapid
evolution is developing, this pattern distorts more and more.
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correspond to total kinetic energy.

By the time the growth saturates, the spatial pattern is domi-
nated by a new cell structure, which is now a combination of
the three interacting Fourier modes. To see how this pattern
depends on z, in Figure 6 we show a surface of constant stream
function (30% of the maximum) at t = 1.13. Near the center of
the loop, the spatial structure is dominated by the pattern of
elliptic cells shown in Figure 5, but as we move toward the
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upper boundary, it smoothly changes to the pattern of photo-
spheric motions. Since the lower plate corresponds to ¢ = 0,
the surface does not reach this boundary.

As a result of this nonlinear loss of equilibrium, we see the
emergence of new patterns (corresponding to Fourier modes &,
and k,) in the coronal part of both the vector potential and
stream function, which are totally unrelated to the pattern of
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FIG. 5—Time sequence of contour plots of the stream function at loop half-length (z = % plane). The solid-line contours correspond to anti-clockwise motions
(25%, 50%, and 75% of maximum), while the dotted contours correspond to clockwise trajectories. The square grid overlaid on all the plots corresponds to the cell
pattern of photospheric motions.
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F1G. 6.—Surface of constant stream function (30% of maximum) at ¢t = 1.13.
Contour plots of the stream function at the upper boundary are also displayed
for reference.

photospheric flow motions. In the next section we discuss the
implications that loss of equilibrium in coronal loops might
have for the heating of solar active regions.

6. DISCUSSION

Although it is widely believed that the energy necessary to
heat the plasma confined in coronal loops comes from the
dissipation of magnetic stresses, the precise dissipation mecha-
nism is still a matter of debate. Current theories of magnetic
coronal heating can be grouped into two categories: those
proposing dissipation of MHD waves, and those which rely on
the dissipation of DC currents. Wave heating is negligible for a
spatially uniform coronal loop, but the dissipation rate can be
increased considerably in the presence of inhomogeneities in
the magnetic field (Heyvaerts & Priest 1983; see also Similon &
Sudan 1989). On the other hand, the dissipation rate of large-
scale DC currents is also negligible, and therefore the spatial
distribution of electric currents has to be highly structured if
Joule heating is assumed to be the dissipation mechanism
(Parker 1983; van Ballegooijen 1986; Mikic et al. 1989). Either
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way, the development of small-scale spatial structure appears
as a key ingredient in almost any current theory of coronal
heating.

The generation of spatial structure in coronal loops is the
result of nonlinearities in the corresponding dynamic equa-
tions. If we assume for a moment that the dynamics of a
coronal loop can be described by the linearized RMHD equa-
tions, we find that the only spatial patterns that appear in the
coronal part of the loop are those which are present in the
photospheric flow. The role of nonlinearities is to make the
different normal modes of the system to interact with one
another, and eventually excite new modes, which do not
receive direct excitation from the photospheric boundary
motions.

In this paper we study the generation of new spatial struc-
ture, using a very simple model to simulate a coronal loop
driven by footpoint motions. We use a truncated version of
three Fourier modes of the reduced MHD (RMHD) equations,
with only one of these modes being externally driven by a
stationary flow of footpoint motions. The dynamic evolution
of this model can be separated into three different stages:

1. The initial effect of the footpoint motions is simply to
twist the magnetic fieldlines in such a way that they map the
spatial pattern imposed at the photospheric boundaries. This
first stage of the evolution can be described as a sequence of
slowly changing force-free equilibria. The dynamics is com-
pletely dominated by the externally driven mode and the only
relevant timescale is the photospheric turnover time.

2. On a timescale on the order of one turnover time, the
corona can no longer evolve while remaining close to a quasi-
static equilibrium. After the force-free equilibrium is lost,
the energy of the nondriven modes grows like W,,, ~
exp [(¢/7.i50)*], at the expense of the externally driven mode.
This loss of equilibrium involves the emergence out of the noise
level of new spatial structure in the interior of the loop, rep-
resented in our simple model by the superposition of two new
Fourier modes.

3. The last stage in the evolution corresponds to the satura-
tion of the growth of the new modes. In the results shown in
Figures 2 and 3, the total energy seems to settle at an approx-
imately constant level, implying that the corona stops absorb-
ing energy from the photosphere. However, the three-mode
approximation breaks down before the saturation is complete,
so all we can state with certainty is that the new modes grow to
a significant level before they saturate.

Note that even though we have concentrated our analysis on
the most rapidly growing triad, other triads are simultaneously
undergoing loss of equilibrium, as we show in Figure 1. There-
fore we do not expect our results to be directly comparable to
observations of the dynamics of coronal loops. The aim of the
present paper is rather to point out the existence and efficiency
of such nonequilibrium behavior in generating new spatial
structure in the interior of coronal loops. As predicted by
Parker (1972), loss of force-free equilibrium can be initiated by
photospheric motions, and the resulting dynamic evolution
can efficiently generate finer-scale structure in the corona. The
elementary processes studied here can be regarded as part of a
much more complex dynamical evolution.

7. CONCLUSIONS

If coronal loops are heated by the ohmic dissipation of cur-
rents produced by photospheric convective motions, the for-

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1995ApJ...448..954G

O
I

o)

Lo 14480 0

|'3_|
(={]
L0y
(=]

!

962 GOMEZ, DELUCA, & McCLYMONT

mation of fine-scale structure is necessary to achieve the
dissipation rate required to heat the corona. Such structures
may be formed as a direct consequence of the turbulent nature
of photospheric convection, as a result of magnetohydro-
dynamic instability in the corona, or as a result of “loss of
equilibrium ” which forces dynamic evolution away from a
near force-free state.

We have demonstrated, in a very simple idealized system,
the dynamic loss of equilibrium proposed by Parker (1972) as a
means of dissipation of free magnetic energy. The rapid evolu-
tion away from force-free equilibrium occurs on a timescale
which is the geometric mean of the Alfvén propagation time
along the loop, and the photospheric turn-over time.

The growth of new modes produces finer scale structure, and
a sizable fraction of the energy pumped into the corona by

photospheric motions is transferred to the new modes.
Although the extent of fine-scale structure is severely restricted
in our simple three-mode model, we envision the elementary
processes studied here as part of a much complex dynamical
evolution.

D. G. expresses his gratitude to the organizers and partici-
pants of the Stanford Workshop on Coronal Heating (1992
February), because the basic ideas for the present paper were
born after very fruitful discussions during that meeting. This
work was supported by NSF grants ATM-9311937 and INT-
9302098 to the University of Hawaii, by NSF grant ATM-
9110514 to the Smithsonian Astrophysical Observatory, and
by CONICET grant 3451/92 to IAFE.

REFERENCES

Golub, L., et al. 1990, Nature, 344, 842

Goémez, D. O. 1990, Fund. Cosmic Phys., 14, 131

Heyvaerts, J., & Priest, E. R. 1983, A&A, 137, 63

Longcope, D. W., & Sudan, R. N. 1991, Phys. Fluids, B4, 2277

. 1992, ApJ, 384, 305

Miki¢, Z., Schnack, D. D., & van Hoven, G. 1989, ApJ, 338, 1148
Narain, U., & Ulmschneider, P. 1990, Space Sci. Rev., 54, 377
Parker, E. N. 1972, ApJ, 174, 499

. 1983, ApJ, 264, 642

Similon, P. L., & Sudan, R. N. 1989, ApJ, 336, 442

Segur, H. 1984, Contemporary Mathematics, 28, 281

Strauss, H. R. 1976, Phys. Fluids, 19, 134

van Ballegooijen, A. 1985, ApJ, 298, 421

. 1986, ApJ, 311, 1001

Vaiana, G., & Rosner, R. 1978, ARA&A, 16, 393

Zakharov, V. E,, L'vov, V. S., & Falkovich, G. 1992, Kolmogorov Spectra of
Turbulence, Vol. 1 (Berlin: Springer), 1

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1995ApJ...448..954G

