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ABSTRACT
We present results from numerical simulations of an externally driven two-dimensional magnetohydro-

dynamic system over extended periods of time, used to model the dynamics of a transverse section of a
solar coronal loop. A stationary forcing was imposed to model the photospheric motions at the loop
footpoints. After several photospheric turnover times, a turbulent stationary regime is reached that has
an energy dissipation rate consistent with the heating requirements of coronal loops. The turbulent
velocities obtained in our simulations are consistent with those derived from the nonthermal broadening
of coronal spectral lines. We also show the development of small scales in the spatial distribution of
electric currents, which are responsible for most of the energy dissipation. The energy dissipation rate as
a function of time displays an intermittent behavior, in the form of impulsive events, that is a direct
consequence of the strong nonlinearity of the system. We associate these impulsive events of magnetic
energy dissipation with the so-called nanoÑares. A statistical analysis of these events yields a power-law
distribution as a function of their energies with a negative slope of 1.5, consistent with those obtained for
Ñare energy distributions reported from X-ray observations. A simple model of dissipative structures,
based on KraichnanÏs theory for MHD turbulence, is also presented.
Subject headings : MHD È Sun: corona È Sun: Ñares È turbulence

1. INTRODUCTION

Various scenarios for the heating of coronal loops in
active regions have been proposed, most of which have in
common the formation and dissipation of highly structured
electric currents. The spontaneous formation of tangential
discontinuities (Parker the development of an1972, 1983),
energy cascade driven by random footpoint motions on a
force-free conÐguration Ballegooijen or the(van 1986),
direct energy cascade associated with a fully turbulent mag-
netohydrodynamic (MHD) regime & Priest(Heyvaerts

& Ferro Fonta� n are a few examples.1992 ; Go� mez 1992)
The main conclusion is that the formation of small scales in
the spatial distribution of electric currents is necessary to
enhance magnetic energy dissipation and therefore provide
sufficient heating to the plasma conÐned in these loops.

The dynamics of a coronal loop driven by footpoint
motions can be described by MHD equations. Since the
kinetic (R) and magnetic (S) Reynolds numbers in coronal
active regions are extremely large (RD S D 1010h12), we
expect footpoint motions to drive the loop into a strongly
turbulent MHD regime. Footpoint motions, whose length
scales are usually much smaller than the loop length, will
cause the coronal plasma to move in planes perpendicular
to the axial magnetic Ðeld, generating small transverse com-
ponents of the magnetic and velocity Ðelds. The nonlinear
dynamics of these Ðelds can be adequately described using
two-dimensional MHD equations. In this paper we present
numerical integrations of these equations, considering the
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driving action of footpoint motions on a generic transverse
section of a loop. In we model this coupling, and in° 2 ° 3
we describe the numerical technique used for the integra-
tion of the two-dimensional MHD equations. In we° 4
report the energy dissipation rate and turbulent or excess
velocity that we obtain, and describe the temporal series of
magnetic and kinetic energies. The energy power spectra
computed from our simulations are shown in The° 5.
spatial structures developed by this system, such as the for-
mation of small scales in the distribution of electric currents,
are presented in ° 6.

In we perform a statistical analysis of the dissipation° 7
events and study the correlations between di†erent vari-
ables. In we discuss some of the implications of our° 8
results. For instance, in we present a simple model for° 8.1
the dissipative structures of a turbulent MHD system, and
compare the predictions arising from this model with the
results obtained from our simulations. In we discuss° 8.2
the relevance of heating theories for the thermal balance of
active regions, which is globally characterized by the scaling
laws. Di†erent theories give rise to di†erent relationships
between parameters of the active region loops, such as the
pressure, temperature, magnetic intensity, and length. The
possible connection between the dissipation events studied
in this paper and the much larger ones involved in solar
Ñares is discussed in Finally, in we summarize the° 8.3. ° 9
main conclusions of this paper.

2. EQUATIONS FOR TWO-DIMENSIONAL

MAGNETOHYDRODYNAMICS

The dynamics of a coronal loop with a uniform magnetic
Ðeld length L , and transverse section (2nl)] (2nl)B \ B0 z,
can be modeled by the reduced magnetohydrodynamic
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(RMHD) equations (Strauss 1976)

L
t
a \ vA L

z
t] [t, a]] g+2a , (1)

L
t
w\ vA L

z
j ] [t, w][ [a, j]] l+2w , (2)

where is the Alfve� n speed, l is the kine-vA \ B0/(4no)1@2
matic viscosity, g is the plasma resistivity, t is the stream
function, and a is the vector potential. The Ñuid vorticity is
w\ [+2t, j \ [+2a is the electric current density, and
[u, v]\ z Æ $u Â $v. For given horizontal photospheric
motions applied at the footpoints (plates z\ 0 and z\ L ),
transverse velocity and magnetic Ðeld components develop
in the interior of the loop, given by and¿\ $ Â (zt)
b \ $ Â (za).

The RMHD equations can be regarded as describing a
set of two-dimensional MHD systems stacked along the
loop axis and interacting among themselves through the

terms (see, e.g., & van Hoven For sim-vA L
z

Hendrix 1996).
plicity, hereafter we study the evolution of a generic two-
dimensional slice of a loop. We therefore model the vA L

zterms given in equations as external forces. To this(1)È(2)
end, we assume the vector potential to be independent of z
and the stream function to interpolate linearly between
t(z\ 0) \ 0 and t(z\ L )\ (, where ((x, y, t) is the
stream function for the photospheric velocity Ðeld. These
assumptions yield (in andvA L

z
t\ vA(/L eq. [1]) vA L

z
j \

(in These approximate expressions correspond to0 eq. [2]).
an idealized scenario in which the magnetic stress distrib-
utes uniformly throughout the loop. The two-dimensional
equations for a generic transverse slice of a loop become

L
t
a \ [t, a]] g+2a ] f , (3)

L
t
w\ [t, w][ [a, j]] l+2w , (4)

where the external forcing f relates to the photospheric
motions through This forcing can also be inter-f\ (vA/L )(.
preted as an electric Ðeld generated by an electrostatic
potential di†erence between the two photospheric plates
(z\ 0 and z\ L ). We choose a forcing term that is narrow-
band in wavenumber space and stationary in time, as
described in the next section. A comparable approach was
used by et al. although with slight di†er-Einaudi (1996),
ences in the forcing term (see also Velli, &Georgoulis,
Einaudi 1998).

3. DESCRIPTION OF THE SIMULATIONS

We performed numerical simulations of equations (3)È(4)
on a square box of size 2n ] 2n, assuming periodic bound-
ary conditions. The magnetic vector potential and the
stream function are expanded in Fourier series. To be able
to perform long-time integrations, we worked with a
moderate-resolution version of the code, with 192] 192
grid points (in & Go� mez we presented pre-Dmitruk 1997,
liminary results with 96] 96 resolution). The code is of a
pseudospectral type, with 2/3 dealiasing et al.(Canuto

The spectral equations for the time evolution of the1988).
system are :

L
t
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, (5)
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k
[ lk2w

k
. (6)

For the nonlinear terms, we Ðrst compute the spatial deriv-
atives in k-space. Next, we perform inverse FFTs and
obtain the products required for the Poisson brackets in
real space. Finally, we perform direct FFTs to obtain the
Poisson brackets in k-space. To eliminate the aliasing in the

transform operations, we make zero the Fourier com-
ponents of modes with k [ N/3, where N is the number of
grid points in each direction. The temporal integration
scheme is a Ðfth-order predictor/corrector, in order to
achieve an almost exact energy balance over our extended
time simulations (about 250 turnover times).

We model the external forcing in asequation (5)

f
k
\
G f0
0

if 3 \ kl \ 4 ,
elsewhere ,

(7)

with to simulate the action of photosphericf0\ constant,
granular motions on the loop Ðeld lines. We chose a nar-
rowband and nonrandom forcing to ensure that the broad-
band energy spectra and the signatures of intermittency
that we obtained (see below) are exclusively determined by
the nonlinear nature of the MHD equations.

We turn equations into a dimensionless version,(3)È(4)
choosing l and L as the units for transverse and longitudinal
distances, respectively. We choose as the unit forv0 \ f 01@2velocities, since the Ðeld intensities are determined by the
forcing strength. Since and we havef0\ vA(/L vph\ (/l,

where is a typical photospheric velocity.f0\ vA vph(l/L ), vphThe dimensionless dissipation coefficients are l0\ l/(lf 01@2)and g0\ g/(lf 01@2).
4. ENERGY DISSIPATION RATE

To restore the dimensions to our numerical results, we
used typical values for the solar corona : L D 5 ] 109 cm,
l D 108 cm, cm s~1, G, and n D 5 ] 109vph D 105 B0 D 100
cm~3. In addition, the values for the dissipation coefficients
allowed by our moderate-resolution code are l0\ g0\ 7
] 10~3.

shows magnetic and kinetic energy versus time.Figure 1
After about Ðve photospheric turnover times (qph\ l/vph^
103 s), a statistically steady state is reached. The behavior of
both time series is highly intermittent despite the fact that
the forcing is constant and coherent. Intermittent signals
display activity during only a fraction of the time, which
decreases with the scale under consideration. To quantify
the degree of intermittency in a time series S(t) (where S(t)
can be any relevant physical quantity, such as the magnetic
or kinetic energy or the dissipation rate), we adopt the
method described by We compute a high-Frisch (1996).
pass Ðltered version of S(t),

S
wc(t)\

P
@w @;wc

dweiwtSŒ
w

, (8)

where is the Fourier transform of S(t) and is the ÐlterSŒ
w

w
cfrequency. The Ñatness of the Ðltered signal is deÐned as

F(w
c
) \ SS

wc
4 (t)T

SS
wc
2 (t)T2 . (9)

The characteristic feature of intermittent signals is that
their associated Ñatness (as deÐned in growseq. [9])
without bound with the Ðlter frequency. This is indeed the
case for our time series of total energy and dissipation rates,
up to the numerical resolution of the Ðlter frequency. The
Ñatness is a measure of the departure from Gauss-F(w

c
)

ianity of the signal S(t) for a Gaussian[F(w
c
) \ const. \ 3

signal, since the Ðltering process is a linear operation, which
therefore does not alter its Gaussian character].

This kind of behavior is usually called internal inter-
mittency, to emphasize the fact that the rapid Ñuctuations
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FIG. 1.ÈTotal magnetic and kinetic energies as functions of time. Only the Ðrst 10% of the simulation is displayed, to show the details of these time series.

are not induced by an external random forcing. The forcing
used by et al. also displays a slow timeGeorgoulis (1998)
variation, but they introduced randomness in space by
changing the places of the forcing vortices. Notwithstand-
ing, many of their results are qualitatively consistent with
the ones presented here, since spatial randomness is not an
essential feature for the behavior of the average quantities.

also shows that the kinetic energy alwaysFigure 1
remains at a small fraction of the magnetic energy in the
stationary regime.

The energy dissipation rate is also a strongly intermittent
quantity, as shown in For turbulent systems atFigure 2.
large Reynolds numbers, the dissipation rate in the station-

ary regime is expected to be independent of the Reynolds
number Re For the rather moderate(Kolmogorov 1941).
Reynolds number simulations reported here, a weak
(monotonically increasing) dependence of the dissipation
rate with Re can be expected (see also et al.Einaudi 1996).
However, comparing our results for a 96 ] 96 resolution
with those presented here (192 ] 192), the increase in the
heating rate is rather small (see & Go� mez InDmitruk 1997).
addition, the dissipation rate is not completely independent
of the spatial dependence of the forcing term. For instance,
in our simulation only Fourier modes satisfying the ring
condition 3 \ kl \ 4 are externally driven. If we also drive
the modes k \ l~1(^3, 0), k \ l~1(^4, 0), k \ l~1(0, ^3),

FIG. 2.ÈTime evolution of the energy dissipation rate. The interval from t \ 15 ] 103 s to t \ 37 ] 103 s is displayed, corresponding to the stationary
regime.
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FIG. 3a FIG. 3b

FIG. 3.ÈEnergy spectra at ten di†erent times (separated by *t \ 50 s) in the stationary turbulent regime. (a) Total energy ; (b) magnetic (solid lines) and
kinetic (dot-dashed lines) energies. The dashed line correspond to a Kraichnan spectrum, E

k
D k~3@2.

and k \ l~1(0, ^4), lying at the border of the ring, then the
dissipation rate is larger and the behavior of the time series
seems less intermittent. Since these modes correspond to
purely one-dimensional spatial patterns, thus departing
from the assumed isotropy for the photospheric velocity
Ðeld, we exclude them from the forcing.

The total dissipation rate is given by

v^ 1.7] 1024 ergs s~1
A B0
100 G

B3@2A vph
105 cm s~1

B3@2

]
A l
108 cm

B5@2A n
5 ] 109 cm~3

B1@4A L
5 ] 109 cm

B~1@2
,

(10)

where we have also indicated the scaling with the relevant
parameters of the problem. Using an Alfve� n time qA \ L /vAand a photospheric time we can rewrite the dis-qph\ l/vph,sipation rate as

vD B02 vph2 l2L ~1JqAqph . (11)

The relevance of this functional dependence of the heating
rate upon the physical and geometrical parameters of the
system will be discussed in ° 8.2.

We can transform the heating rate into an energy inÑux
from the photosphere by simply dividing by twice the trans-
verse area (because we have two boundaries), i.e., F\ v/
[2(2nl)2]. Note that the energy balance between the
photospheric inÑux and Joule (and viscous) dissipation is a
dynamic process. However, once the stationary turbulent
regime is reached, the time averages of these energy rates
(over timescales on the order of or larger than i.e., disre-qph,garding the intermittency structure) are equal.

shows the quantitative value of the energyEquation (12)
inÑux as well as the explicit dependence with the relevant
parameters of the problem,

F\ 2.1] 106 ergs cm~2 s~1
A n
5 ] 109 cm~3

B1@4

]
A B0
100 G

B3@2A vph
105 cm s~1

B3@2C l/(108 cm)
L /(5 ] 109 cm)

D1@2
.

(12)

This energy Ñux compares quite favorably with the
heating requirements for active regions, which span the

range F\ 3 ] 105È107 ergs cm~2 s~1 & Noyes(Withbroe
1977).

From our simulations we can also obtain the ““ excess ÏÏ
velocity associated with the observed line broadening of a
number of X-ray spectral lines in solar active regions (Seely
et al. see also & Strong We estimate this1997 ; Saba 1991).
velocity as the root mean square value of the turbulent
velocity Ðeld, which is proportional to the square root of the
kinetic energy :

vexcess \
C 2EK

n(2nl)2L
D1@2

. (13)

The value from our simulation and the explicit depen-
dence with the parameters of the problem is

vexcess \ 16 km s~1
C B0/(100 G)
n/(5 ] 109 cm~3)

D1@2

]
A vph
105 cm s~1

B1@2C l/(108 cm)
L /(5 ] 109 cm)

D1@2
. (14)

This turbulent velocity is within the range of nonthermal
line broadenings of ultraviolet spectral lines as measured by

Doschek, & Feldman (10È25 km s~1) andCheng, (1979)
from SUMER data by et al. (22 km s~1). TheseSeely (1997)
turbulent velocities, which presumably correspond to rela-
tively cool and low-lying loops, are noticeably smaller than
those derived from SMM data by & StrongSaba (1991)
(50È60 km s~1). The & Strong turbulent veloci-Saba (1991)
ties probably correspond to hotter and larger active
regions, with a magnetic topology much richer than the one
implied by the RMHD equations used for the present simu-
lations. Also note that our heating rate (see is still aeq. [12])
factor of 5 smaller than the energy requirements for the
hottest active regions. As discussed by et al.Georgoulis

it is likely that in order to heat the largest active(1998),
regions, full three-dimensional models are required.

5. ENERGY POWER SPECTRA

In spite of the narrow forcing and even though the veloc-
ity and magnetic Ðelds are initially zero, nonlinear terms
quickly populate all the modes across the spectrum. The
total energy (magnetic plus kinetic) power spectrum is
plotted in The spectra correspond to di†erentFigure 3a.
times in the stationary turbulent regime. The dashed line
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FIG. 4.È(a) Magnetic Ðeld arrows overlaid on a halftone of the electric
current density at t \ 11 ] 103 s. (b) Velocity Ðeld arrows overlaid on a
halftone of vorticity.

corresponds to a Kraichnan spectrum In turb-(E
k
D k~3@2).

ulent regimes, the e†ect of nonlinearities is to redistribute
excitations in Fourier space in a virtually stochastic fashion.
Since dissipative e†ects are only nonnegligible at very large
wavenumbers, a net Ñow of excitations toward large wave-
numbers is established to compensate for the dissipation.
Energy is therefore injected into the system at low wave-
numbers, cascades toward large wavenumbers in the so-
called inertial range, and is efficiently quenched in the
dissipative range. The Kraichnan spectrum is expected to be

FIG. 5.ÈZones of intense magnetic dissipation. White regions corre-
spond to zones that concentrate 60% of the total dissipation, at time
t \ 11 ] 103 s.

satisÐed at the inertial range, where the role of external
forcing and dissipation are negligible. For moderate-
resolution simulations like the one presented here, the iner-
tial range is rather limited, gradually entering into the
dissipative range at k [ 10, as shown in Figure 3.

In we plot the magnetic and kinetic spectra,Figure 3b
showing that the spectra become close to equipartition

when approaching the dissipative range (large k).(E
k
MD E

k
K)

Nonetheless, note that the total kinetic energy (i.e., inte-
grated over wavenumbers) remains much smaller than the
total magnetic energy, as evidenced by Figure 1.

6. DISSIPATIVE STRUCTURES

shows the spatial distribution of electricFigure 4a
current density for Intense positive currents aret \ 22qph.shown by white regions, while intense negative current con-
centrations are indicated in black. The magnetic Ðeld is
shown by arrows. This picture is a typical example of a
strongly turbulent regime, with current concentrations of
both O and X types. At the left center of the box there is a
typical current sheet, of the type that result after the col-
lapse of an X-type point. Moreover, the velocity Ðeld and
vorticity displayed in conÐrm the standardFigure 4b
picture of magnetic reconnection in current sheets, with Alf-
ve� nic jets emerging at the sides of the sheet and a quadru-
polar distribution of vorticity. At the same time, Figures 4a
and show that in turbulent regimes there is also a rich4b
variety of dissipative structure of di†erent morphologies
and degrees of complexity, in addition to the highly sym-
metric current sheet that we have just described. Figure 5
shows the spatial distribution and morphology of the most
intense dissipative structures. The dissipation rate inside
these structures is 60% of the total, although the Ðlling
factor is only 6%. This highly inhomogeneous distribution
of energy dissipation is a manifestation of the spatial inter-
mittency that is characteristic of turbulent regimes.
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The thickness of current sheets is determined by the mag-
netic Reynolds number. In numerical simulations of turbu-
lent regimes, the Reynolds number is usually made as large
as possible, so that the sheet thickness (which is the smallest
feature expected in these simulations) is just marginally
resolved. The widths of these current sheets, on the other
hand, are determined by the dynamics, and therefore a
broad distribution of widths can be observed.

7. DISTRIBUTION OF EVENTS

proposed that the energy dissipation of theParker (1988)
stressed magnetic structures takes place in a large number
of small events, which he termed ““ nanoÑares.ÏÏ The super-
position of a large number of such events would give the
global appearance of a spatially homogeneous and station-
ary heating process. From a turbulent scenario, it seems
quite natural to relate this spiky (both in space and time)
heating to the internal intermittency present in all turbulent
regimes.

We therefore associate the peaks of energy dissipation
displayed in with the so-called nanoÑares. We esti-Figure 2
mate the occurrence rate for these nanoevents, i.e., the
number of events per unit energy and time P(E) \ dN/dE,
so that

R\
P
Emin

Emax
dEP(E) (15)

is the total number of events per unit time and

v\
P
Emin

Emax
dEEP(E) (16)

is the total heating rate (in ergs s~1) contributed by all
events in the energy range A simple inspection[Emin ; Emax].of the v(t) time series shown in indicates that theseFigure 2
events are in a highly concentrated or piled-up regime, i.e.,
that their event rate R multiplied by their typical duration
is much larger than unity. In this regime, many dissipation
events are going o† simultaneously at any given time. It is
therefore impossible to perform a statistics of events, since
we are unable to separate them.

As a way out to this difficulty, we deÐne an event in the
following fashion : Ðrst we set a threshold heating rate onv0the time series displayed in on the order of its timeFigure 2,
average ; ““ events ÏÏ are then excesses of dissipation that start
when v(t) surpasses and Ðnish when v(t) returns belowv0 v0.Once a particular threshold is set, we perform a statistical
analysis of the events, keeping track of their peak values,
durations, and total energy content. The implicit assump-
tion behind our working deÐnition is that the small fraction
of events that emerge over the threshold are statistically
representative of the whole set.

The occurrence rate as a function of energy (see Fig. 6a)
displays a power-law behavior,

P(E)\ AE~1.5B0.2 , (17)

in the energy range spanning ergs toEmin^ 1025 Emax^ 2
] 1026 ergs.

We also computed the distribution of events as a function
of peak Ñuxes, which is a power law with slope a

P
\ 1.7

^ 0.3, as shown in The slope we obtained isFigure 6b.
consistent with the one derived by Aschwanden, &Crosby,
Dennis (1.68) from X-ray events and somewhat Ñatter(1993)
than those reported by (1.8). The distribu-Hudson (1991)

FIG. 6.ÈOccurrence rates of events as a function of (a) their energy, (b)
their peak dissipation rate, and (c) their duration. Error bars indicate the
statistical errors (square root of the number of counts) in each bin.

tion of events as a function of their duration is shown in
displaying a slope ofFigure 6c, aq \ 1.9^ 0.2.

The error in the power-law indexes involve both the sta-
tistical error in each bin (see error bars in and theFig. 6)
error corresponding to the best Ðt to the data. The error
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FIG. 7.ÈCorrelations between parameters of events : (a) energy vs.
duration ; (b) duration vs. peak dissipation rate.

arising from di†erent choices for the threshold (whichv0varies within a range such that the total number of events is
maximum) is always smaller than the error sources men-
tioned above. A more technical procedure for choosing a
threshold, which introduces a Ðtted s2 distribution to elimi-
nate the noise, has been used in et al.Georgoulis (1998).
This Ðtted threshold is slightly higher than the average
value of the series.

Other important results from this statistical analysis are
the correlations between the di†erent parameters of these

events. In there is a scatter plot of energy releasedFigure 7a
versus event duration. The data can be Ðtted by a power law

where This result is consistentED qcEq, c
Eq \ 2.02^ 0.02.

with the correlation reported by Petrosian, & McTier-Lee,
nan from hard X-ray observations. The duration(1993)
versus peak correlation is plotted in which can beFigure 7b,
Ðtted by where These two corre-qD PcqP, cqP \ 1.12 ^ 0.03.
lation indexes agree with the approximate relationship

cqP D c
Eq [ 1 , (18)

which should be exact if the dimensional relationship
ED qP holds. Moreover, if these correlations are signiÐ-
cant, then the di†erent power-law indexes and(a

E
, a

P
, aq)should be mutually related through

aq \ c
Eq aE[ c

Eq ] 1 , (19)

a
P
\ c

Eq aE[ 1
c
Eq [ 1

. (20)

Using and in we obtaina
E
\ 1.5 c

Eq ^ 2 equation (19),
in good agreement with the observed value ofaq^ 2, aq\1.9^ 0.2. In addition, the predicted value for froma

Pis which approximately agrees withequation (20) a
P
^ 2,

the observed value of a
P
\ 1.7 ^ 0.3.

8. DISCUSSION

8.1. A Simple Model for Turbulent Dissipation
In this section we summarize the main ideas of a model

for turbulent dissipation that is an extension of the one
sketched in & Welter for decaying two-Biskamp (1989)
dimensional MHD turbulence. A detailed version can be
found in & Go� mezDmitruk (1998).

We make the simplifying assumption that all the energy
dissipation takes place inside current sheets of variable
width j and Ðxed thickness which is the dissipationl

d
,

length scale for this turbulent regime. The current sheets are
formed between vortices of size j, and therefore their width
is also j, which we assume as a free variable in order to
perform a statistical analysis of dissipation events. We also
assume that the energy spectrum follows a Kraichnan
power spectrum, i.e., (see, e.g., & WelterBiskamp 1989)

E(k) \ (vvA)1@2k~3@2 , (21)

where v is the dissipation rate and is the total magneticvA2energy per unit of mass,

vA2 \
P
1@LM

1@ld
dkE(k)^ (vL

M
)2@3 (22)

and

L
M

\ 2nl, l
d
\
Ag2vA

v
B1@3 \ L

M
R~2@3 , (23)

where From this spectrum, we can obtain aR\ (vA L
M
)/g.

typical Ðeld (in units of velocity) in a vortex of size j as

bj2\
P
1@j

1@ld
dkE(k) ^ (vvA j)1@2 , (24)

so this is the typical Ðeld at the sides of a current sheet of
width j. In the present model, we assume a hierarchy of
dissipative structures labeled by their values of j, which are
spatially distributed in such a way that their average
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separation is also on the order of j. The dissipation rate
contributed by all the structures of width j is therefore
given by

vj \ l
d
j

j2 g
Abj

l
d

B2\ v
R1@3

A j
L
M

B~1@2
, (25)

since is the area Ðlling factor of current sheets of(l
d
j/j2)

width j, and the current density is approximately jjD bj/ld.The lifetime of these current sheets is determined by the
nonlinear timescale in which the vortices of size j break
down and transfer their energy to smaller vortices as part of
the turbulent cascade. This timescale is much shorter than
the dissipation time of the current sheets, thus implying that
two interacting vortices break down long before their
energy is fully dissipated in the current sheet formed in
between. The nonlinear timescale, following the Kraichnan
model of MHD turbulence, is

qj\ j
bj

j/bj
j/vA

\ vA2
v
A j
L
M

B1@2
. (26)

In this stationary turbulent regime, the number of ongoing
dissipation events of width j per unit time is

Nj \
AL

M
j
B2 1

qj
\ v

vA2
A j
L
M

B~5@2
. (27)

The energy dissipated in a single structure (current sheet)
of size j is then

Ej\ vj
Nj

\ vA2
R1@3

Aj
L
B2

. (28)

Combining equations and we derive the dis-(27) (28),
tribution of events as

P(E) \ dNj
dEj

\ vR1@3
vA4

AR1@3E
vA2
B~9@4

D E~aE , (29)

where which readily satisÐesa
E
\ 9/4 \ 2.25,

v\
P
Emin

Emax
dEEP(E) , (30)

where andEmin\ Ej/ld
\ vA2/R5@3 Emax\ Ej/L

\ vA2/R1@3.
Therefore, according to this very simple model, the slope

of the distribution of events is larger than 2, implying that
small events dominate the heating process. There are
several possible causes for this disagreement with the slope
obtained from our simulation. (1) The theoretical model
assumes that all the energy dissipation takes place in sheet
structures formed by the coalescence of two vortices.
Although our simulation shows that a fair fraction of the
energy dissipation takes place in such structures, it is also
clear that other structures, such as O-points, also contribute
to the dissipation. (2) We assume that all current sheets have
thickness which is likely to be an oversimpliÐcation.l

d
,

Depending on the parameters and boundary conditions
under which current sheets are formed, di†erent regimes of
magnetic reconnection might occur, corresponding to dif-
ferent thicknesses. (3) To associate the lifetime of current
sheets with the nonlinear timescale is also a simpliÐcation,
since other processes might contribute to disrupt the
current sheets once they are formed. (4) It might also be that
our simulations with modest spatial resolution do not
reÑect the statistical properties of dissipative structures in a

large Reynolds number regime. In addition, because of the
characteristics of the simulations presented here, the current
sheets are resolved only marginally. Simulations with
higher resolution might provide a better understanding of
the dynamics of these current sheets, which in turn will help
to generate a more complete theoretical model.

From equations and the correlation between(28) (26),
duration and dissipated energy becomes

E\ vA2
R1@3

Avqj
vA2
B4

D qcEq , (31)

where c
Eq \ 4.

The total event rate is then

R\
P
Emin

Emax
dEP(E) \ vR5@3

vA2
. (32)

To evaluate whether we are in a pile-up regime of dissi-
pation events, we can compare the total event rate R with
the shortest duration events (from eq. [26]) :

qj/ld
\ vA2

v
Al

d
L
B1@2 \ vA2

v
R~1@3 . (33)

We obtain

Rq
ld
\ R4@3 ? 1 . (34)

Therefore, in a fully turbulent regime, the corresponding
dissipation events always pile up.

In summary, from this rather simple model we can derive
the following results : (1) a slope for the distribution of
events, (see (2) a power-law relationshipa

E
\ 2.25 eq. [29]) ;

between total dissipated energy and duration, (seec
Eq \ 4

and (3) a strong pile-up scenario for dissipationeq. [31]) ;
events.

8.2. Heating Rate and Scaling L aws
It is interesting to compare the heating rate scaling

shown in with the one arising fromequation (11) (° 4)
ParkerÏs model in which the energy dissi-(Parker 1972),
pated is assumed to match the energy injected by photo-
spheric motions. When a Ðeld line is tilted by slow motions
at its footpoints, a small transverse magnetic Ðeld com-
ponent b is generated. The small tilt angle for a given Ðeld
line after an elapsed time q is which is in turn of theb/B0,order of Therefore, Assuming thatvph q/L . b ^ B0 vph q/L .
the energy accumulated over the time q completely dissi-
pates, we obtain

vD
L l2b2

q
\ B02 vph2 l2

L
q . (35)

According to footpoint motions pumpParker (1983),
energy into the coronal magnetic Ðeld until the angle
between adjacent Ðeld lines reaches a critical value Ata

*
.

this point, the built-up energy is suddenly released. There-
fore, since the heating rate per unit volumea

*
\ vph q/L ,

scales as

H \ v
l2L D

B02 vph
L

a
*

. (36)
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From our it emerges that q is anequation (11) (° 4),
average between the Alfve� n and photospheric timescales

It is interesting to note that the timescale[q^ (qA qph)1@2].is also the growth time for nonlinear insta-q^ (qA qph)1@2bilities in an RMHD system De Luca, & McCly-(Go� mez,
mont which are responsible for the energy transfer in1993),
k-space. Thus, the heating rate per unit volume, according
to the present model, scales as

H \ v
l2L D

B03@2
L3@2 vph3@2l1@2n1@4 . (37)

The particular dependence of the heating rate of a loop
on its magnetic Ðeld and its length L is important, sinceB0the heating rate in turn relates to the thermodynamic vari-
ables of the loop (such as pressure and temperature)
through the so-called scaling laws Tucker, &(Rosner,
Vaiana The scaling laws are derived assuming a static1978).
balance between a uniform heating rate, thermal conduc-
tion, and (optically thin) radiative losses. In addition, the
gas pressure is assumed to be uniform along the loop, which
is a good approximation for loops with heights smaller than
105 km. The relationships between the heating rate H of a
loop of length L with the thermodynamic variables P
(pressure) and T (temperature) can be quickly derived by
assuming that heating, conductivity, and radiative losses
are all comparable. Therefore,

H D i0
T 7@2
L2 D

AP
T
B2

(0 T ~b , (38)

where is the Spitzer conductivity and is ai0 ((T )^ (0 T ~b
power-law Ðt for the function of radiative losses for tem-
peratures ranging from 106 to 5 ] 106 K. The power index
is b ^ 3/2 in & Klimchuk (b ^ 0.5 inPorter (1995) Rosner
et al. and b ^ 1 in McClymont, & Underwood1978 Craig,

From ParkerÏs scaling see we1978). (H DB02/L ; eq. [36]),
obtain

T D (PL )4@(11`2b)D (B02 L )2@7 , (39)

while for our scaling (seeH D (B0/L )3@2(P/T )1@4 eq. [37]),
we obtain

T D (PL )4@(11`2b)D (B06 L )4@(49~2b) . (40)

Furthermore, if we use the power-law relationship T D Lm
derived by & Klimchuk from observations, wePorter (1995)
can infer a relationship

B0D Lx (41)

from either or Since accordingequation (39) equation (40).
to & Klimchuk the 90% conÐdence intervalPorter (1995)
for m is [0.58¹ m ¹ 0.16, the corresponding interval for the
power index x is (assuming b ^ 3/2 in eq. [40])
[1.3¹ x ¹ 0.1 (although the case x [ 0 seems very
unlikely). From ParkerÏs scaling a similar result is(eq. [39]),
obtained ([1.5¹ x ¹ [0.2). It would certainly be very
interesting to study the correlation between magnetic inten-
sity and loop length directly from observations, to compare
these to the functional dependence given in equation (41).

8.3. Flares and NanoÑares
In & Go� mez we compared ourDmitruk (1997),

occurrence rate versus energy with the one derived by

for transient brightening events observed byShimizu (1995)
SXT on Hinotori and with that derived by et al.Crosby

from SMM data. Not only are the slopes of these(1993)
power-law curves quite comparable (between [1.5 and
[1.6), but their total occurrence rates are also consistent
with a single power law ranging from 1025 to 1033 ergs.

This remarkable correspondence indicates the presence
of a common physical process behind the dissipation events
throughout this extended energy range. The interpretation
of the dissipative corona as a system in a state of self-
organized criticality Bak, Tang, & Wiesenfeld has(see 1988)
been suggested by & Hamilton CellularLu (1991).
automata simulations of Ñares performed by & Ham-Lu
ilton yielded the same power-law behavior for the(1991)
occurrence rate, with a slope of [1.4. Since in all cases the
index of the power law remains smaller than 2, equation (16)
implies that the contribution to energy dissipation in a
given energy range is dominated by the most[Emin ; Emax]energetic events (i.e., According to this result, theE^ Emax).relatively infrequent large-energy events contribute more to
the heating rate than the much more numerous small-
energy events. Therefore, we speculate that the heating rate
of a given active region is to some extent determined by the
magnetic topology of that region. However, it is important
to note that this is just one of the two possible scenarios for
coronal heating. pointed out that this regimeHudson (1991)
(dominated by large events) would reverse if there were a
turn-up of the slope to values larger than 2 toward the
low-energy end. & Trottet recently reportedMercier (1997)
indirect evidence for such a turn-up from type I starburst
observations. et al. presented cellularVlahos (1995)
automata simulations with an anisotropic rule for the redis-
tribution of the magnetic Ðeld, and reported an index of
[3.5 for the peak Ñux distribution. The model presented in

based on KraichnanÏs theory for stationary MHD° 8.1,
turbulence, also yields an index larger than 2. Therefore, it
seems apparent that to elucidate whether large or small
events are dominant, more observational and theoretical
e†orts are required.

9. CONCLUSIONS

In the present paper we simulate the dynamics of a trans-
verse section of a solar coronal loop through an externally
driven two-dimensional MHD code. The relevant results of
this study are as follows.

1. For an external forcing that is narrowband in wave-
number, we Ðnd that the system becomes strongly turbu-
lent, and after about Ðve photospheric turnover times a
stationary turbulent regime is reached.

2. The energy dissipation rate obtained for typical foot-
point velocities is consistent with the power necessary to
heat active region loops (F^ 2.1] 106 ergs cm~2 s~1).

3. The energy dissipation rate displays a highly inter-
mittent behavior, which is a ubiquitous characteristic of
turbulent systems. Temporal intermittency manifests in the
form of discrete-like dissipation events in the time series of
the total energy dissipation rate. Spatial intermittency is
also apparent, since a large fraction of the dissipation at any
given time takes place in a rather small fraction of the
volume.

4. A statistical analysis of dissipation events performed
on a long-term numerical simulation (about 250 turnover
times, which is roughly 3 days in real time) shows a power-
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law event rate, proceeding as dn/dED E~1.5, that is
remarkably consistent with the statistics of Ñare occurrence
derived from observations et al.(Hudson 1991 ; Crosby

et al.1993 ; Lee 1993 ; Shimizu 1995).
5. The peak energy release and duration of events also

follow power-law distributions. Furthermore, all these
quantities are mutually correlated by power-laws.
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