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ABSTRACT

A theoretical mean field closure for Hall magnetohydrodynamics (Hall-MHD) is developed to investigate
magnetic field generation through dynamo processes in low electron density astrophysical systems. We show
that by modifying the dynamics of microscopic flows, the Hall currents could have a profound impact on the
generation of macroscopic magnetic fields. As an illustrative example, we show how dynamo waves are modi-
fied by the inclusion of Hall currents. By dropping the usual assumption of a correlation time � for the micro-
scopic dynamics in the mean field dynamos, we find qualitative changes in the growth rate of dynamomodes.

Subject headings: magnetic fields — MHD

1. INTRODUCTION

The standard one-fluid MHD approximation for study-
ing the dynamo activity in astrophysical environments may
seriously break down when the kinetic terms contained in
the generalized Ohm’s law are not negligible. Perhaps the
most important of these is the Hall effect (Priest & Forbes
2000) contained in the right-hand side of Ohm’s law for an
ideal plasma,

E þ u � B ¼ 1

ne
j � B ; ð1Þ

where n is the particle density, e is the electron charge, and
E, u,B, and j are respectively the electric, velocity, magnetic,
and current density vector fields. The Hall current becomes
significant when the characteristic length scale L0 of the sys-
tem is comparable to the Hall scale

LH ¼ c

!pi

vA
V0

; ð2Þ

where c is the speed of light, vA is the Alfvén speed, V0 is the
characteristic speed of the flow, and !pi is the ion plasma
frequency.

The scales LH and L0 may become comparable in a num-
ber of qualitatively different plasmas. For instance, the Hall
scale tends to increase (to approach the macroscopic scale)
for low-density fully ionized plasmas or for plasmas with a
low degree of ionization (LH scales inversely with charged
particle density). It also increases for plasmas in very strong
magnetic fields because it is proportional to the Alfvén
speed.

Among the astrophysical systems in which Hall effects
may be relevant are certain regions of the interstellar
medium where the plasma has appropriate characteristic
lengths and densities (see, for instance, Spangler 1999).
Because LH depends on the mass of the charge carriers, the
Hall effect is likely to have a profound influence on the

magnetic field dynamics in dense molecular clouds, where
relatively massive charged grains form a dynamical plasma
component (Wardle & Ng 1999). The Hall effect is also
known to strongly affect the Balbus-Hawley magnetorota-
tional instability in weakly ionized accretion disks (Wardle
1999; Balbus & Terquem 2001; Sano & Stone 2002).
Norman & Heyvaerts (1985) also noted that the Hall effect
may become significant during star formation. Its relevance
in compact objects such as white dwarfs and neutron stars is
due to the strong magnetic fields observed in these objects
(Urpin & Yakovlev 1980; Shalybkov & Urpin 1997;
Potekhin 1999). Because of the tiny scales involved, the Hall
effect is also relevant in the unsolved problem of the origin
and evolution of magnetic fields in the early universe
(Tajima et al. 1992).

Notwithstanding this widespread recognition that the
Hall effect may be highly relevant, it has not been included
in most studies of magnetic field generation by dynamo
action. Some exceptions are the studies by Heintzmann
(1983) and Galanti, Kleeorin, & Rogachevskii (1994)
focused on particular geometries and showing either sup-
pression or enhancement of dynamo action depending on
external parameters. In addition, Ji (1999) includes the Hall
current in an analysis of the effect of turbulent dynamos on
magnetic helicity generation, while Mirnov, Hegna, &
Prager (2002) point out the role of the Hall current in
enhancing dynamo action in a reversed-field pinch configu-
ration. Finally, de Paor (2001) considers the Hall effect in a
simple model of a self-excited dynamo for the Earth’s
magnetic field.

In a previous paper on the subject (Mininni, Gómez, &
Mahajan 2002), it was shown that the Hall-modified �-
coefficient could be both qualitatively and quantitatively
different from the one predicted by the standard mean field
theory (Krause & Rädler 1980); it could be larger or
smaller depending on the system. The Hall dynamics tend to
modify another standard result of the mean field theory,
namely, that the �-effect derived by Pouquet et al. (1976)
shuts off when pure Alfvénic states are reached (Gruzinov
& Diamond 1994). We find that the new �-effect is generally
not quenched by Alfvénic states, suggesting that the

1 Also at the Instituto de Astronomı́a y Fı́sica del Espacio, Ciudad
Universitaria, 1428 Buenos Aires, Argentina.

The Astrophysical Journal, 584:1120–1126, 2003 February 20

# 2003. The American Astronomical Society. All rights reserved. Printed in U.S.A.

1120



saturation of a Hall dynamo is likely to be quite different
from that of a regular kinematic dynamo. In summary,
there seems to be a clear-cut indication that the impact of
the Hall effect on dynamo activity in low electron density
plasmas must be seriously explored.

In xx 2 and 3 of the present paper we develop a closure
model for the Hall-MHD or two-fluid equations with the
explicit purpose of deriving the effect of small-scale flows on
the dynamics of large-scale flows and magnetic fields. Our
closure scheme goes beyond the usual treatment in standard
mean field theory (Krause & Rädler 1980), which associates
a well-defined correlation time � with small-scale motions.
It is worth noting that this more general approach remains
valid, regardless of whether the Hall effect is important or
not. The generalization is shown in x 6, while in x 5 we
present the Hall-modified results for the standard approxi-
mation. In x 7 we calculate explicit expressions for dynamo
action for a particular model of the microscopic flows,
namely, the Arnold-Beltrami-Childress (ABC) flows.
Dynamo waves have been traditionally used as a first exer-
cise to show the linear characteristics of dynamo theories in
astrophysical scenarios. Although most astrophysical dyna-
mos are expected to operate in nonlinear regimes, it is none-
theless instructive to study the impact of the Hall effect in
dynamo waves. A particular application of our closure
model to study dynamo waves is therefore shown in x 8.
Finally, in x 9 we present the main conclusions of the present
paper.

2. THE HALL-MHD EQUATIONS

The ideal and incompressible Hall-MHD description of
plasmas is described by the normalized set of the modified
induction and Euler equations:

@B

@t
¼

D

� U �

D

� Bð Þ � B½ � ; ð3Þ

@U

@t
¼ U �

D

� Uð Þ þ

D

� Bð Þ � B �

D

PþU2

2

� �
; ð4Þ

where the velocity andmagnetic fields are scaled to a charac-
teristic speed V0 and lengths are in units of the Hall length
LH (i.e., L0 ¼ LH) defined in equation (2). These equations
display, among other properties, the freezing of the mag-
netic field to the electron flow,

Ue ¼ U �

D

� B ; ð5Þ

rather than to the bulk velocity field U . Since the Hall term,
in some sense, is a measure of this difference, these two
velocities can be quite different. Consequently, the Hall term
is likely to exert a major influence on the generation of the
magnetic field through dynamo activity. We are therefore
interested in finding out whether this system is able to gener-
ate a macroscale magnetic field from an initial microscale
configuration, consisting of a small seed magnetic field
along with a substantial velocity field.

3. THE CLOSURE MODEL

Our closure, although differently motivated, has features
in common with the RSA (reduced smoothing approxima-
tion) recently proposed in Blackman & Field (1999; Field,
Blackman, & Chou 1999 as well). These closure schemes are

much better suited to deal with systems for which the Rey-
nolds number or the Strouhal number is not constrained to
be much smaller than unity as compared to the first-order
smoothing approximation, the standard closure scheme of
the traditional mean field dynamo theories.

Just as in Blackman & Field (1999), we assume the initial
state to consist of only small-scale fields u0 and b0, which
solve equations (3) and (4). In x 7 we propose and discuss a
particular set of solutions, but for now, let us perturb the
system about a general microscale state:

B ¼ B þ bþ b0 ; ð6Þ

U ¼ U þ uþ u0 ; ð7Þ

where the overbar denotes spatially or statistically averaged
large-scale perturbations. Therefore, from equation (5) we
can also write the electron flow as

Ue ¼ U
e þ ue þ u0;e ; ð8Þ

where U
e ¼ U �

D

� B is the large-scale electron flow,
ue ¼ u�

D

� b, and u0;e ¼ u0 �

D

� b0. Note that uþ u0,
ue þ u0;e, and bþ b0 are small-scale perturbations. While b0

is the small-scale magnetic field in the absence of B, b is the
perturbation when B is present, and therefore it does not
need to be isotropic. All small-scale fields have zero aver-
ages, while their products in general do not. Substituting the
expansions given by equations (6) and (7) into equations (3)
and (4), using the equation for b0, and taking averages, we
find that the evolution of the large-scale fields is determined
by

@B

@t
¼

D

� U �

D

� B
� �

� B
� �

þ @B

@t

� �turb

; ð9Þ

@U

@t
¼ U �

D

� U
� �

þ

D

� B
� �

� B

�

D

PþU
2

2

 !
þ @U

@t

� �turb

; ð10Þ

where

@B

@t

� �turb

¼

D

� u0;e � bþ ue � b0
� �� �

; ð11Þ

@U

@t

� �turb

¼
D
u �

D

� u0
� �

þ u0 �

D

� uð Þ þ

D

� bð Þ � b0

þ

D

� b0
� �

� b�

D

u0 x u
� �E

: ð12Þ

Equations (9) and (10) show that the large-scale fields are
driven not only by the Hall-MHD dynamics contained in
equations (3) and (4) but also by extra terms reflecting the
interaction with small-scale fields. The superscript ‘‘ turb ’’
is used to describe the appropriate averages of bilinear
short-scale quantities formed by the interaction of the per-
turbation with the initial fields. The last term in the induc-
tion equation (eq. [9]) can be interpreted as the curl of the
electromotive force E ¼ hu0;e � bþ ue � b0i (see eq. [11])
generated by the microscale fields, while the last term in the
Navier-Stokes equation (eq. [10]) can be regarded as the net
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effective force exerted by the microscale fields on the macro-
scopic flow (see eq. [12]). The expression given in equation
(11) is to be compared and contrasted with the standard
prediction in the mean field theory, namely,

E ¼ u � bh i ¼ �B � �

D

� B : ð13Þ

One immediately notes that the flow velocity of the standard
result is replaced by the electron velocity. This is related to
the fact that in Hall-MHD, the field lines are dragged by the
electron flow and not by the hydrodynamic flow. The
stretching and folding of magnetic field lines in Hall-MHD
is a consequence of their advection by the electron velocity
field. Therefore, this approximation is expected to be useful
in environments where the freezing of field lines to the bulk
fluid breaks down because of weak ionization, such as in
protostellar disks (Wardle & Ng 1999). Following the
approach of the mean field theories (Krause & Rädler
1980), we now derive quantitative expressions for the scalar
quantities � and � in terms of the microscopic fields.

We must inform the reader that the quadratic terms in b
and u were dropped in equations (11) and (12), as is usually
done in mean field theories. Although this is a widespread
practice, these terms may not be negligible if the short-scale
perturbations grow to finite amplitudes. We plan to study
their role in future numerical work.

Subtracting equation (9) from the general induction
equation (3) and remembering that u0 and b0 are solutions
of the Hall-MHD equations, we obtain the equation for the
small-scale perturbed magnetic field b:

@b

@t
¼ B x

D� �
u0;e � U x

D� �
b0 : ð14Þ

In a similar manner, we can obtain the perturbed Euler
equation:

@u

@t
¼

D

� b0
� �

� B � U x

D� �
u0 �

D

p : ð15Þ

Concentrating first on computing an expression for � (see
eq. [13]), we drop terms involving spatial derivatives of the
mean fields, which would only contribute to the �-coeffi-
cient. From the divergence of equation (15) and the assumed
incompressibility of the flow, we obtain

p ¼ �b0 xB ð16Þ

for the small-scale pressure perturbation. Substituting this
expression into equation (15) yields

@u

@t
¼ B x

D� �
b0 � U x

D� �
u0 : ð17Þ

Equations (14) and (17) describe the dynamics of the ani-
sotropic part of the small-scale fields u and b. For given
expressions of their isotropic counterparts u0 and b0, equa-
tions (14), (17), (9), and (10) are the set of partial differential
equations that describe our mean field Hall-MHD model.
These equations can be regarded as a closure model of the
Hall-MHD equations, which are more general than the kin-
ematic mean field models in two respects: (1) it is a closure
of the full set of equations, since the feedback of the micro-
scale is consistently considered on the evolution of both B
and U , and (2) the potential role of the Hall current
(especially in the dynamics of the microscale) is properly
considered.

4. DOUBLE-BELTRAMI EQUILIBRIA

The isotropic part of the small-scale flows (i.e., u0 and b0

in eqs. [14]–[17]) is now modeled by a class of equilibrium
solutions of the Hall-MHD equations derivable from a con-
strained two-fluid variational principle. The solutions are
called double-Beltrami states (Mahajan & Yoshida 1998;
Yoshida & Mahajan 2002) and are described by the pair of
Beltrami conditions

u0 �

D

� b0 ¼ b0

a
;

b0 þ

D

� u0 ¼ du0 ; ð18Þ

expressing rather basic physical laws: (1) the inertialess elec-
trons followmagnetic lines, and (2) ions follow the field lines
modified by their vorticity. The parameters a and dmeasure
the magnetic and generalized helicity and for slowly evolv-
ing systems are constants of motion labeling the state
(Mahajan et al. 2001; Mininni et al. 2002). These equilibria
treat velocity and magnetic fields on an equal footing. In
addition, they do not require any exact symmetry (as Grad-
Shafranov equilibria do) or negligible U and

D

P, as Taylor
states do.

Double-Beltrami conditions (i.e., eq. [19]) are always
accompanied by the Bernoulli condition:

D

p0 þ
u20
2

� �
¼ 0 ; ð19Þ

where p0 is the equilibrium pressure. The general solution of
equation (19) can be constructed from a linear combination
of two single-Beltrami fields,

D

� b0 ¼ �b0 ; ð20Þ

with the inverse length scales � determined by

�� ¼ � r

2
�

ffiffiffiffiffiffiffiffiffiffiffiffi
r2

4
� s

s
; ð21Þ

where r ¼ 1=a� d and s ¼ 1� d=a. For dynamo applica-
tions, we are interested in the situation in which the two
scales are widely separated. The long scale is associated with
the macroscopic scale of the system , Lmacro, while the
shorter scales are associated with the turbulence. In our
units (i.e., L0 ¼ LH), the root of equation (21) correspond-
ing to the microscale is � � 1 (��1 is the short scale), while
the other root satisfies

�macro �
LH

Lmacro
� �5 1 : ð22Þ

To reflect vanishingly small large-scale velocity and mag-
netic fields, the initial fields are assumed to be purely small
scale, given by

D

� b0 ¼ �b0 ; ð23Þ

u0 ¼ �þ 1

a

� �
b0 : ð24Þ

For the present analysis we are explicitly assuming that the
magnetic seed is located at the Hall scale (� � 1), although
other regimes (i.e., � 6¼ 1) can also be explored. The parame-
ter � defined in equation (22) therefore controls the degree
of scale separation. Note that this assumption (i.e., the Hall
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effect being dominant at small scales) is useful in astrophysi-
cal environments where the Hall length is expected to be
small compared to the largest scales of the system (such as
accretion disks). However, this approximation might break
down in compact objects, since in these scenarios magnetic
fields can be huge, and therefore LH can be comparable even
to the size of the object (Shalybkov &Urpin 1997).

In what follows, we use these relationships to express u0

and u0;e in terms of b0.

5. ASSUMPTION OF A CORRELATION TIME

One of the standard assumptions in mean field theory
(Krause &Rädler 1980) is the existence of a correlation time
� for turbulent small-scale motions, which is much shorter
than the typical timescale for large-scale motions. This
assumption (hereafter a �-closure) allows us to approximate
equations (14)–(17) by

b ’ � B x

D� �
u0;e � U x

D� �
b0

� �
; ð25Þ

u ’ � B x

D� �
b0 � U x

D� �
u0

� �
; ð26Þ

which converts equations (11) and (12) to

@B

@t

� �turb

¼ � 1� �

a
� 1

a2

� �

D

� B x

D� �
b0 � b0

� �� �
; ð27Þ

@U

@t

� �turb

¼



D

� b� �bð Þ � b0

� �þ 1

a

� �
D

� u� �uð Þ � b0

� �þ 1

a

� �
D

u x b0
� ��

; ð28Þ

where equations (23) and (24) have been used. Note that the
right-hand sides in equations (27) and (28) are linear in the
large-scale fields B and U with the corresponding coeffi-
cients as statistical averages of quadratic quantities in the
microscale states. More specifically (using the Einstein sum-
mation convention),

@B

@t

� �turb

i

¼ � 1� �

a
� 1

a2

� �
CinBn þ Aijn@jBn

� �
; ð29Þ

@U

@t

� �turb

i

¼ �

 
� �þ 1

a

� �
Din Bn � �þ 1

a

� �
Un

� 


� En@i
1

a
Bn �Un

� �

þ Fikn@k �Bn þ �þ 1

a

� �2

�1

" #
Un

( )!
; ð30Þ

where the corresponding coefficients are

Aijn ¼ b0j @nb
0
i � b0i @nb

0
j

� �
;

Cin ¼ b0j @
2
jnb

0
i � @nb

0
j @jb

0
i

� �
;

Din ¼ @2
in

b20
2

� �
 �
; En ¼ @2

n

b20
2

� �
 �
;

Fikn ¼ b0k@nb
0
i

� �
: ð31Þ

Once the set of stationary equilibria b0ðxÞ are chosen, the
coefficients in equations (31) can be computed, and equa-
tions (29) and (30) then close equations (9) and (10).

6. GENERAL APPROACH

The assumption of the existence of a finite correlation
time allowed us to replace time derivatives inside averages
in x 5. However, this hypothesis (although commonly made
in mean field theory) has no theoretical, experimental, or
numerical justification. In this section we present an alterna-
tive approach to this problem. The expressions on the right-
hand side of equations (11) and (12) are linear in both the
isotropic (b0, u0) and anisotropic (b, u) parts of the small-
scale fields. Since we are assuming the isotropic part of the
fields to correspond to double-Beltrami stationary flows, an
extra derivative on equations (11) and (12) simply yields
expressions that are now linear in b0, u0, @b=@t, and @u=@t.
The general expressions for @b=@t and @u=@t are already
given by equations (14) and (17). A more general closure,
not requiring a correlation time � , then follows. The new
closure conditions are

@2B

@t2

� �turb

i

¼ 1� �

a
� 1

a2

� �
CinBn þ Aijn@jBn

� �
; ð32Þ

@2U

@t2

� �turb

i

¼
 

� �þ 1

a

� �
Din Bn � �þ 1

a

� �
Un

� 


� En@i
1

a
Bn �Un

� �

þ Fikn@k �Bn þ �þ 1

a

� �2

�1

" #
Un

( )!
; ð33Þ

where all coefficients are given by equations (31). The price
paid for this generality is the appearance of higher order
derivatives (second-order derivatives on the left-hand sides
of eqs. [32] and [33]) in the closure conditions. Note also that
these expressions rely on the assumption of double-Beltrami
equilibria, which determine the morphology of the magnetic
seed. Below we explore the limits of validity of the ‘‘ correla-
tion time ’’ assumption in the propagation of dynamo
waves.

7. MICROSCOPIC STATES: ABC FLOWS

Let us complete the calculation using an explicit represen-
tation of the double-Beltrami flows; the small-scale fields
are taken to be isotropic ABC flows, which are helical
Beltrami states given by

b0 ¼ b0f cosð�yÞ þ sinð�zÞ½ �x̂xþ cosð�zÞ þ sinð�xÞ½ �ŷy
þ cosð�xÞ þ sinð�yÞ½ �ẑzg : ð34Þ

By straightforward computations, we find the coefficients
listed in equations (31) to be

Aikn ¼ 2Fikn; Cin ¼ 0 ;

Din ¼ 0; En ¼ 0 ;

Fikn ¼
b20
2

�kþ1;i�1�n;i�1 � �k�1;iþ1�n;iþ1

� �
; ð35Þ
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converting our closure conditions to the coupled set

@2B

@t2

� �turb

¼ b20 1� �

a
� 1

a2

� �

D

� B ; ð36Þ

@2U

@t2

� �turb

¼ b20
2

�þ 1

a

� �2

�1

" #

D

� U � b20
2
�

D

� B : ð37Þ

Closure equations (36) and (37) express the evolution of
large-scale flows and magnetic fields driven by microscale
dynamics. In particular, equation (36) is a generalized
version of the �-effect, since we are not assuming any corre-
lation time. The standard �-effect can be recovered by
assuming a correlation time � , reducing equation (36) to

@B

@t

� �turb

¼ �

D

� B ; ð38Þ

where

� ¼ ��0 ¼ �b20 1� �

a
� 1

a2

� �
: ð39Þ

The properties of this expression of the coefficient � and
its comparison with results arising from other mean field
models have been explored elsewhere (Mininni et al. 2002).
Note that these closure conditions (i.e., eqs. [36] and [37]) go
beyond the framework of a kinematic dynamo model and
correspond to a full Hall-MHD dynamo.

We can also compute the coefficient � defined in equation
(13) by following the procedure used for evaluating �.
Retaining first-order spatial derivatives of B in equations
(14) and (15), we obtain

� ¼ ��0 ¼
�b20
3

1þ �þ 1

a

� �2
" #

: ð40Þ

The role of � in equation (9) is to provide an enhanced
magnetic diffusivity. It has, for instance, an important
impact on the dispersion relationship of dynamo waves, as
shown in x 8.

8. HALL EFFECT ON DYNAMO WAVES

Just as an illustrative example of how the Hall term might
affect dynamo activity, let us apply our closure model
(eqs. [9], [10], [32], and [33]) to determine the dispersion rela-
tionship of dynamo waves. Although the linear approxima-
tion used in this section is expected to break down in
astrophysical dynamos, studying the properties of dynamo
waves is still useful for assessing the role of the Hall effect in
the generation of magnetic fields. To this end, we consider a
slab geometry for the macroscopic field (following Zweibel
1988), i.e.,

U ¼ x̂x�y ; ð41Þ

representing the �-effect in Cartesian geometry. In our
dimensionless version, � ¼ 1. We perturb this shear flow
with a large-scale magnetic field:

B ¼ x̂xBxðz; tÞ þ ŷyByðz; tÞ : ð42Þ

Assuming

Bðz; tÞ � expðptþ ikzÞ ; ð43Þ

the linearized equation (9) yields

pþ �0k2
ik�0

p
� 1

ik�0

p
pþ �0k2

0
BB@

1
CCA Bx

By

� �
¼ 0 ; ð44Þ

where �0 is defined in equation (39). The corresponding
dispersion relationship is

pþ �0k
2

� �2¼ k�0

p

� �2

þ ik�0

p
; ð45Þ

which is a fourth-order polynomial in p. Out of the four
roots of equation (45), only one of them has ReðpÞ > 0,
which therefore corresponds to spontaneously growing
dynamo waves. Both the growth rate and frequency of this
unstable branch are plotted in Figure 1 as a function of the
wavenumber.

In Figure 1 (top) we show the growth rate [i.e., ReðpÞ] as a
function of wavenumber. The coefficients �0 and �0 in

Fig. 1.—(a) Growth rate vs. wavenumber for dynamo waves for
� ¼ 10�1, 10�2, . . ., 10�6, starting from the top. (b) Same as (a), but for the
frequency of dynamowaves. In all these cases b20 ¼ 1.
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equation (45) depend on two free parameters: (1) the scale
separation given by � (see eq. [22]) and (2) the intensity of
the microscopic ABC equilibrium measured by b20 (see eq.
[34]). This figure shows that this dynamo mode is unstable
at all wavenumbers. Note that in this approximation, the
Hall scale coincides with the microscale, LH � L0. As the
scale separation increases (i.e., � ! 0), Lmacro4L0 � LH,
and therefore the growth rate is reduced. Both the maxi-
mum growth rate and the wavenumber at which this maxi-
mum is attained scale as

ffiffi
�

p
. Figure 1 (bottom) shows the

time frequency [i.e., ImðpÞ] for this mode as a function of
wavenumber.

Figure 2 shows the effect of changing the equilibrium
intensity b20 on both the growth rate (Fig. 2 [top]) and the fre-
quency (Fig. 2 [bottom]). While the most unstable wavenum-
ber scales as 1=b

1=2
0 , the maximum growth rate scales as b

1=2
0 .

If a characteristic correlation time � is assumed for the
microscale, we recover the well-knownmean field dispersion
relation,

p� þ ��0k
2

� �2¼ k��0ð Þ2þik��0 ; ð46Þ

a quadratic polynomial in p�, but again with only one unsta-
ble branch. This relationship contains two asymptotic
regimes dictated by the term that dominates the right-hand
side: (1) the �2 regime, for k�4� (in our notation it is
� ¼ ��0 and � ¼ ��0), and (2) the �-� regime, for k�5�.

In Figure 3 we compare the dispersion relation arising
from equation (45) and the one arising from a �-closure (see
eq. [46]). According to the �-closure, the region of unstable
modes ranges from k ¼ 0 to kmax (kmax scales with � as
kmax � ��1=3). This is different from the prediction of the
more general closure, according to which all wavenumbers
remain unstable. Furthermore, regardless of the value
chosen for � , both the growth rate and frequency curves
behave fundamentally differently from the prediction given
by the general closure.

9. CONCLUSIONS

In this paper we have conducted a preliminary examina-
tion of the effects of Hall currents on dynamo activity, which

Fig. 2.—(a) Growth rate vs. wavenumber for b20 ¼ 103, 102, 101, 100, and
10�1, starting from the top. (b) Same as (a), but for the corresponding fre-
quency. In all these cases � ¼ 10�3.

Fig. 3.—(a) Growth rate vs. wavenumber for � ¼ 0:1 and b20 ¼ 1. The
thick line corresponds to the general closure given by eq. (45). Thin lines
correspond to a �-closure given by eq. (46) and � ¼ 101, 100, 10�1, and
10�2, starting from the top. (b) Same as (a), but for the corresponding
frequency.
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are neglected inMHDmodels. We have developed a closure
scheme (resembling RSA in MHD) pertinent to a variety of
astrophysical plasmas for which the Reynolds number and/
or the Strouhal number could be arbitrarily large. It is
important to emphasize that our general closure deviates
from the standard practice of invoking the existence of a
particular correlation time � for the microscale dynamics.
This leads to higher order dynamical equations for the evo-
lution of the macroscopic fields. A principal contribution of
the Hall currents is the creation of microscale fields that can
have a strong impact on the dynamics of the macroscopic
fields and flows (see eqs. [9] and [10]).

The main results of the present paper are the general
expressions of our closure model, given in equations (36)
and (37). To obtain specific predictions from this closure for
particular astrophysical problems, we need to integrate the
Hall-MHD macroscopic equations (i.e., eqs. [9] and [10])
with the appropriate physical and geometrical assumptions.
This task is beyond the scope of the present analysis. How-
ever, to illustrate the potential capabilities of this closure
model, we calculated the dispersion relation of dynamo
waves in Cartesian geometry. The linearized equations were
solved to investigate the nature of dynamo waves in the
presence of Hall currents. We found that the spectrum as
well as the growth rates of the dynamo waves are consider-
ably different from their MHD counterparts. We also
showed how the dynamo waves in the general closure model
differ from what they could be in a �-closure model. For
instance, according to the general closure all wavenumbers
remain unstable, while for a �-closure the region of unstable

modes ranges from k ¼ 0 to kmax, where kmax scales inver-
sely with � .

As mentioned in x 1, although there is an extensive list of
astrophysical systems in which the Hall effect is potentially
relevant, theoretical studies about the origin of magnetic
fields in these plasmas usually neglect this effect. We there-
fore believe that a sustained effort is required to overcome
this theoretical deficiency. The present paper is one step in
this direction, which adds to previous studies on Hall dyna-
mos (Heintzmann 1983; Galanti et al. 1994; Mirnov et al.
2002; de Paor 2001; Sano & Stone 2002; Ji 1999; Mininni et
al. 2002).

The preliminary results presented in this paper strongly
suggest that the impact of Hall currents on dynamo action
in low electron density astrophysical plasmas must be care-
fully explored. The detailed study of this and other relevant
issues, such as the nonlinear saturation of dynamo action, is
the subject matter of a forthcoming paper based on numeri-
cal simulations of Hall-mediated dynamos (Mininni,
Gómez, &Mahajan 2003).
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