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ABSTRACT

The first direct numerical simulations of turbulent Hall dynamos are presented. The evolution of an
initially weak and small-scale magnetic field in a system maintained in a stationary regime of hydrodynamic
turbulence (by a stirring force at a macroscopic scale) is studied to explore the conditions for exponential
growth of the magnetic energy. The Hall current is shown to have a profound effect on turbulent dynamo
action; it can strongly enhance or suppress the generation of the large-scale magnetic energy depending on
the relative values of the length scales of the system.

Subject headings: galaxies: magnetic fields — ISM: magnetic fields — magnetic fields — MHD —
stars: magnetic fields

1. INTRODUCTION

Dynamo activity in astrophysical environments has been
historically described within the powerful but restricted
framework of one-fluid magnetohydrodynamics (MHD).
When the flow fields are sufficiently intense as to strongly
affect or even dominate the plasma dynamics, the canonical
MHD framework cannot be expected to deliver, because
it does not quite distinguish the relative motions between
different species.

This major shortcoming is readily rectified by including
the Hall term in the generalized Ohm’s law:

E ¼ � u� B

c
þ j � B

cne
þ 4��

c2
j ; ð1Þ

where n is the electron density, e is the electron charge, c is
the speed of light, and � is the electric resistivity. The Hall
effect, represented by the j � B term, is one of the more
important manifestations of the velocity difference between
species. For a two-species quasi-neutral electron-ion
plasma, the current j is indeed a direct measure of the rela-
tive electron-ion velocity. Inclusion of the Hall term leads to
the so-called Hall-MHD equations, which display, among
other properties, the freezing of the magnetic field to the
electron flow (in the nondissipative limit) rather than to the
bulk velocity field.

The astrophysical systems in which the Hall effect might
be important are relatively well known. It has a profound
influence, for instance, on the magnetic field dynamics in
dense molecular clouds (Wardle & Ng 1999), and in accre-
tion disks (especially in protostellar disks) it strongly affects
the Balbus-Hawley magnetorotational instability (Wardle
1999; Balbus & Terquem 2001). Norman & Heyvaerts
(1985) also noted that the Hall effect may become significant
during star formation, and its relevance to compact objects
such as white dwarfs and neutron stars (Urpin & Yakovlev

1980; Shalybkov & Urpin 1997; Potekhin 1999) has also
been discussed. In addition, it can play a crucial role in the
generation and evolution of magnetic fields in the early
universe (Tajima et al. 1992).

To assess the relevance of the Hall term in these scenarios,
we follow Balbus & Terquem (2001) and denote the terms
on the right-hand side of Ohm’s law (eq. [1]) from left to
right as I (inductive), O (ohmic), and H (Hall). We assume
charge neutrality and compare these terms by defining the
ratios

H

O
¼ !e

�e
; ð2Þ

H

I
¼ !e

�eRem
: ð3Þ

Here, Rem ¼ UAL=� is the magnetic Reynolds number,
UA ¼ B= 4��ð Þ1=2 is a characteristic Alfvénic speed, � is the
mass density, and L is a characteristic length. The electron
cyclotron frequency !e and the collision frequency �e are
given by

!e ¼
eB

mc
; ð4Þ

�e ¼
4�e2n�

mc2
; ð5Þ

where m is the electron mass. In a protostellar disk, consid-
ering a density of neutrals nN � 1013 cm�3, a mass density
� ¼ 2:33nNmp (mp: proton mass), equipartition between
magnetic and thermal energyUA � 0:429kTm�1

p (T: temper-
ature; k: Boltzmann constant), and � ¼ 234nNn�1T1=2 cm2

s�1 (Balbus & Terquem 2001) yieldsH=O � 102. Therefore,
the Hall effect is more important than ohmic losses andmust
be relevant in this scenario. Considering a characteristic
length of 1 AU and n � 105 cm�3 (Shu et al. 1994), we
obtain H=I � 10�4. In a dwarf nova disk, if T � 1500 K,
nN � 1016 cm�3, and L � 1010 cm, then H=I � 1 (Sano &
Stone 2002) and can be even larger in some regions of proto-
planetary disks. Finally, in the crust of a neutron star with
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B � 1012 G, we find H=O � 103 (Hollerbach & Rüdiger
2002). We come back to the relevance of these numbers
in x 6.

In spite of this widespread appreciation that the Hall
effect may be highly relevant, it has not been included in
most studies devoted to the production of the macroscopic
magnetic fields observed in such objects. A few exceptions
are studies by Heintzmann (1983) and Galanti, Kleeorin, &
Rogachevskii (1994), focused on particular geometries and
showing either suppression or enhancement of dynamo
action depending on external parameters, an analysis of the
effect of turbulent dynamo action on magnetic helicity gen-
eration (Ji 1999), and a recent general closure proposed to
compute the contribution of the Hall term to the �-effect
(Mininni, Gómez, & Mahajan 2002). Preliminary results
from the latter study show that both large suppression or
enhancement of dynamo action (as compared to standard
MHD) are possible, depending on parameters that describe
the state of the system. It was also found that saturation in
Hall dynamos might be reached by a mechanism different
from the standard Alfvénic suppression.

In the present work, we present preliminary results of a
numerical simulation of Hall MHD to study dynamos with
strong kinetic helical forcing. To the best of our knowledge,
these are the first numerical simulations showing turbulent
dynamo action in this broader framework.

When the Hall term is switched off, we reproduce the
results obtained by other authors (Meneguzzi, Frisch, &
Pouquet 1981; Cattaneo &Hughes 1996; Brandenburg 2001
and references therein). We use the term ‘‘Hall-MHD
dynamo ’’ to distinguish the new dynamo from the standard
classical MHD dynamo. In our simulation, following the
previous authors (Meneguzzi et al. 1981; Brandenburg
2001), we generate and maintain a stationary background
of hydrodynamic turbulence by applying an external force
operating at a macroscopic scale Lforce. In this setting we
introduce a very weak ‘‘ seed ’’ magnetic field at a micro-
scopic scale Lseed and study its temporal evolution, paying
particular attention to solutions with exponential growth of
the magnetic energy and other relevant aspects associated
with dynamo activity. From an inspection of Ohm’s law
(see eq. [3]), it follows that the Hall term becomes nonnegli-
gible with respect to the induction term at length scales of
the order of the collisionless ion skin depth, which we can
denote in a fully ionized plasma as LHall ¼ c=!pi (c: speed of
light; !pi: ion plasma frequency). For the problem at hand,
three distinct dynamo regimes emerge: (1) When the Hall
length scale LHall falls within the forcing and seed length
scales (i.e., Lseed � LHall � Lforce), the system finds itself in
the ‘‘ Hall-enhanced ’’ regime with a dramatic enhancement
of dynamo activity. (2) The range LHall > Lforce, on the
other hand, defines the ‘‘Hall-suppressed ’’ regime, with an
important reduction in dynamo action (compared to the
MHD case). (3) For LHall < Lseed, as LHall approaches the
dissipation scale, the Hall effect becomes gradually negli-
gible, and we asymptotically recover the standard MHD
dynamo.

In x 2 we briefly introduce the Hall-MHD equations and
describe their relevant properties. A description of the
numerical code developed to integrate these equations is
given in x 3. In x 4 we benchmark the code by comparing our
results (with the Hall term switched off) with the results
from previous studies. The effects of the Hall term at differ-
ent values of the Hall length LHall are reported and high-

lighted in x 5. Finally, in x 6 we summarize the conclusions
of the present preliminary study.

2. THE HALL-MHD SYSTEM

Incompressible Hall-MHD is described by modified
induction and the Navier-Stokes equation:

@B

@t
¼

D

� U � �

D

� Bð Þ� B½ � þ �r2B ; ð6Þ
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@t
¼ � U x

D
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D
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2

� �
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with the additional constraints

D

xU ¼

D

xB ¼ 0. The
velocity and magnetic fields are expressed in units of a char-
acteristic speed U0, � measures the relative strength of the
Hall effect, � is the magnetic diffusivity, and � is the kine-
matic viscosity. Note that, considering the characteristic
speed U0 and the characteristic Alfvénic speed UA, � can be
written as

� ¼ LHall

L0
; ð8Þ

where L0 is a characteristic length scale (the size of the box
in our simulations: L0 ¼ 1), and

LHall ¼
c

!pi

UA

U0
ð9Þ

is the Hall length scale. In particular, we are free to choose
U0 ¼ UA as our characteristic velocity reducing LHall to the
ion skin depth. Equation (9) is valid in a fully ionized
plasma. We work under this assumption without loss of
generality; in the general case, the values of LHall and �must
be obtained from equations (2) and (3).

This system has three well-known ideal (� ¼ � ¼ 0) quad-
ratic invariants:

E ¼ 1
2

Z
U2 þ B2
� �

dV ; ð10Þ

Hm ¼ 1
2

Z
A xB dV ; ð11Þ

K ¼ 1
2

Z
B þ �xð Þ x Aþ �Uð Þ dV ; ð12Þ

where E is the energy, Hm is the magnetic helicity, and K is
the hybrid helicity, which replaces the cross-helicity from
magnetohydrodynamics. Here A is the vector potential,
defined by B ¼

D

� A. Conservation of these ideal invari-
ants during the evolution of the system provides a check on
the simulation.

We have already delineated three distinct Hall dynamo
regimes defined by the relative values of the four basic scales
of the system, the macroscopic scale Lforce for the external
driver, the microscopic scale Lseed associated with the seed
magnetic field, the dissipation scale, and the Hall length
LHall. A fourth regime could be added in which both Lforce

and Lseed are smaller than LHall and in which the Hall effect
should be important at all relevant scales. For instance, in
Mininni, Gómez, & Mahajan (2003), we studied the change
in dynamo waves for Lforce4Lseed � LHall.

Before embarking on the simulation path, it is instructive
to discuss aspects of the semianalytical work of Mininni et
al. (2003). It was shown that the expression for the �-effect
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in the presence of the Hall effect is modified according to

� ¼ �

3

�
� ue0 x

D

� ue0
� �

þ b0 x

D

� b0h i

� � b0 x

D

�

D

� ue0
� ��

; ð13Þ

where ue � u� �

D

� b is the small-scale electron flow veloc-
ity, and u0 and b0 are respectively the small-scale velocity
and magnetic fields. The coefficient � is a typical correlation
time for the turbulent small-scale motions. This general
expression (eq. [13]) differs from the classical result in two
ways: it replaces the kinetic helicity (of the bulk motion) by
the helicity of the electron flow and contains an extra term
due to the Hall current in the microscale. A nontrivial con-
sequence of the latter is that while the original �-coefficient
of Pouquet, Frisch, & Leorat (1976) is 0 for a pure Alfvénic
state u ¼ �b (Gruzinov & Diamond 1994), the one corre-
sponding to equation (13) is not. Note that this expression is
highly nonlinear in the magnetic field and the electric cur-
rent, since the electron flow velocity is strongly affected dur-
ing the growth of the magnetic field. The expression is also
nonlinear in the amplitude of the Hall effect (�), since ue0 is
linear in �. Therefore, the expression in equation (13) is
quadratic in �, and the dependence of the efficiency of the �-
effect on the amplitude of the Hall effect is not necessarily
monotonic.

Since the classical �-effect is dominated by kinetic helic-
ity, many MHD simulations were done by imposing helical
forcing in the Navier-Stokes equation (Meneguzzi et al.
1981; Brandenburg 2001). On the other hand, the Hall-
MHD �-effect is expected to be dominated by the electronic
kinetic helicity (see eq. [13]), which can be quite different
from the kinetic helicity. In the present work we use helical
kinetic forcing for a comparison between classical MHD
andHall-MHD dynamo actions.

3. THE CODE

We integrated the Hall-MHD system (eq. [7]) in a cubic
box with periodic boundary conditions. Spatial derivatives
were computed using a pseudospectral scheme (Orzag &
Patterson 1972), with the two-thirds rule to control aliasing
truncation errors. The equations were evolved in time using
a Runge-Kutta method of order 2. The total pressure
(Pþ B2=2) was computed in a self-consistent fashion at
each time step to ensure the incompressibility conditionD

xU ¼ 0 (Canuto et al. 1988). To satisfy the divergence-
free condition for the magnetic field, the induction equation
was replaced by an equation for the vector potential:

@A

@t
¼ U � �

D

� Bð Þ� B �

D

�þ �r2A ; ð14Þ

where �was computed at each time step to satisfy

D

xA ¼ 0.
This particular choice of gauge (which does not imply any
loss of generality in the solutions for B) was found to
improve the stability of the code in runs dominated by the
Hall effect.

We present results from six different runs, with
64� 64� 64 spatial grid points and � ¼ 0, 0.066, 0.1, 0.2,
0.5, and 1. All runs were made with magnetic Prandtl
number Pr m ¼ 1 (� ¼ � ¼ 0:05).

The Navier-Stokes equation was subjected to a stationary
helical forcing F (namely, an ABC flow with

A ¼ B ¼ C ¼ 1),

F ¼ F0f cosðkforceyÞ þ sinðkforcezÞ½ �x̂x
þ sinðkforcexÞ þ cosðkforcezÞ½ �ŷy
þ cosðkforcexÞ þ sinðkforceyÞ½ �ẑzg ; ð15Þ

centered at kforce ¼ 3. Therefore, the helicity density of the
external force satisfies

F x

D

� F ¼ kforce Fj j2 : ð16Þ

First, a hydrodynamic simulation was conducted to reach
a turbulent stationary state. Initially, the velocity was taken
to be 0 (u ¼ 0), and a nonhelical small magnetic seed was
introduced, with Em � 10�5Ek (where Ek ¼ U2h i=2 and
Em ¼ B2h i=2 are respectively the kinetic and magnetic
energy). The initial magnetic seed was generated by a 	-
correlated vector potential centered at kseed ¼ 13, which
yields a magnetic energy spectrum EmðkÞ � k4. The mag-
netic helicity of the initial seed was chosen to be 0. The run
was continued with the same helical forcing in the Navier-
Stokes equation, to study the growth of the magnetic energy
due to dynamo action. For a meaningful comparison, all
the runs were carried out with the same Reynolds numbers,
the same initial kinetic energy, and the same magnetic seed.

4. RESULTS FOR MHD DYNAMOS

In Figure 1 we show the magnetic and kinetic energy as
a function of time for a pure MHD run (� ¼ 0). The
kinetic helicity Hk ¼ hU x

D

� Ui, the magnetic helicity
Hm ¼ hA xBi, and the current helicity Hj ¼ hB x Ji (where
J ¼

D
� B) are displayed in Figure 2. Note that during the

dynamo process, the magnetic helicity is generated with a
sign opposite to that of the kinetic helicity, which therefore
has the same sign as the classical �-coefficient. On the other
hand, the helicity associated with the current grows with the
same sign as the kinetic helicity.

The primary reason for the generation of magnetic
helicity lies in the conservation of magnetic helicity coupled
with the dissipative events needed for the dynamo to work.
Since the external ‘‘ forcing ’’ is restricted to the Navier-
Stokes equation, the net magnetic helicity is conserved,
except for magnetic diffusion at small scales:

dHm

dt
¼ �2�

Z
J xB d3x : ð17Þ

Fig. 1.—Magnetic energy Em and kinetic energy Ek as a function of time
(� ¼ 0).
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However, at large scales the �-effect can change the helicity
of the mean field (Seehafer 1996). For the mean magnetic
helicity we obtain

dHm

dt
¼ 2

Z
��BB2 � �eff�JJ x �BB
� �

d3x ; ð18Þ

where the overbar denotes the mean field and �eff is the mag-
netic diffusivity � plus the turbulent diffusivity. Equation
(18) represents a transfer of magnetic helicity from small
scales to large scales. The mean field helicity has the same
sign as the �-coefficient; our results (see Fig. 2) are in good
agreement with this relation. Note, however, that this rela-
tion could be affected by turbulent diffusivity.

Since the net magnetic helicity is conserved, and the origi-
nal helicity is 0, where does this mean (large scale) helicity
come from? The pathway is rather straightforward: First,
the �-effect creates equal but opposite amounts of magnetic
helicity in the micro- and macroscales. Then, the dissipation
(diffusion) preferentially destroys the short-scale magnetic
helicity in reconnection events, leaving a net helicity of
opposite sign at large scales (Brandenburg 2001). This effect
is expected to decrease as the magnetic Reynolds number
Rem increases.

After an initial stage with exponential growth (which can
be considered a kinematic dynamo stage), the magnetic
energy saturates and reaches equipartition with the kinetic
energy (see Fig. 1). Figure 3 shows the kinetic and magnetic
spectra at different times. Note that during the first few time
steps, the original k4 power spectrum of the initial seed (cor-
responding to a 	-correlated vector potential in kseed ¼ 13)
is significantly deformed until the magnetic energy is almost
equally distributed at all length scales. Then, the spectrum
starts to grow at all scales at almost the same rate. This
result is in good agreement with previous simulations and
theoretical predictions of MHD dynamo action (Kazantsev
1968; Brandenburg 2001). Finally, the magnetic energy in
each scale reaches equipartition with the kinetic energy,
with some regions where the magnetic energy is even
somewhat larger than the kinetic energy.

The resulting emergence of a large-scale field can be
clearly seen both in the spectrum and also in slices of the
cube at different times, showing the density of the magnetic
field intensity (Fig. 4).

5. RESULTS FROM HALL-MHD DYNAMOS

To quantitatively assess the role of the Hall effect on
dynamo action, we display results from six runs with differ-
ent values of the parameter �: the MHD run (� ¼ 0) and five
Hall-MHD runs with � ¼ 0:066, 0.1, 0.2, 0.5, and 1. The
Hall inverse length scale for these runs is measured by
kHall ¼ 15, 10, 5, 2, and 1, respectively. All length scales
smaller than the Hall scale are expected to be strongly
affected by the Hall effect. The magnetic seed is initially
located at kseed ¼ 13, and the Kolmogorov dissipation scale
[k� ¼ ðh!2i=�2Þ1=4] in all runs is k� � 20. Note that these
values of � show three different possible scenarios in a turbu-
lent dynamo: (1) the MHD dynamo, (2) a Hall-dominated
microscale dynamo, where the effect is relevant in only a
fraction of the scales involved (0 < � < 1), and (3) the mas-
sive Hall-MHD dynamo, where the Hall effect is relevant at
all length scales (� � 1).

Figure 5 shows the kinetic and magnetic energy as a func-
tion of time for the MHD run and two different Hall-MHD
runs with � ¼ 0:5 and 1. For early times, the evolution of
magnetic energy in MHD and Hall-MHD systems is simi-
lar. The exponential growth of the magnetic energy in the
three runs has the same rate. However, this exponential
stage saturates faster in the Hall-MHD runs. As a result,
equipartition is not reached in these runs. This result is in
good agreement with equation (13), which predicts a change
in the growth rate as the magnetic field grows.

Figure 6 shows the same results for runs with � ¼ 0:066
and 0.1. Note that for these values, the system does reach
equipartition between its kinetic and magnetic energies.
Moreover, for � ¼ 0:1, the magnetic energy saturates at a
value that is approximately 80% bigger than the MHD
value; the saturation energy is about 100% bigger for
� ¼ 0:2. On the other hand, for � ¼ 0:066, the magnetic
energy is rather close to the MHD run. In this case,
kHall ¼ 15 is smaller than kseed and closer to the dissipation
scale k�. It is not surprising, therefore, that as � goes to 0, the
Hall-MHD results converge to the classical MHD dynamo.

When equipartition is finally attained, the sum of the
magnetic and the kinetic energy is not always equal to the

Fig. 3.—Mean kinetic energy spectrum (thick line) and magnetic energy
spectrum at different times (� ¼ 0). The Kolmogorov slope is shown only as
a reference.

Fig. 2.—Kinetic helicity Hk, current helicity Hj, and magnetic helicity
�Hm (� ¼ 0).
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initial kinetic energy. This is related to the fact that when
the magnetic seed is introduced, a new channel for energy
dissipation (namely, Joule dissipation) arises:

dE

dt
¼ �2��� �

Z
J2 d3x ; ð19Þ

where � is the enstrophy. It is found that the final energy
reached for some of the Hall-MHD runs is larger than the
value obtained for the MHD run, revealing that Hall-MHD
dynamos can be more efficient (in the sense that they gener-
ate more magnetic energy) and at the same time reach equi-
partition. For this argument to be valid, the mean value of
the current must decrease as � increases, as is shown below.

Fig. 6.—Magnetic (bottom curves) and kinetic (top curves) energy as a
function of time for three different runs with � ¼ 0, 0.1, and 0.066. When
� ¼ 0:1, the magnetic energy is 80% bigger than in theMHD case.

Fig. 4.—Slices of Brms ¼ ðEmÞ1=2 at different times (� ¼ 0)

Fig. 5.—Magnetic (bottom curves) and kinetic (top curves) energy as a
function of time for three different runs with � ¼ 1, 0.5, and 0. When � ¼ 1,
the magnetic energy is 1 order of magnitude smaller than the MHD case.
Some lines were not drawn up to the same time for clarity.
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Figure 7 shows the kinetic and magnetic energy spectra at
different times for � ¼ 1. During the first few steps, the evo-
lution is similar to the MHD run, with the entire magnetic
spectrum growing at almost the same rate. There is a differ-
ence, however, in that the large-scale magnetic field is
slightly larger than the MHD counterpart. Finally, the
magnetic energy saturates at a smaller value than the
one expected for equipartition. It is worth noting that
the saturation is reached at all scales with almost the same
Em=Ek ratio. Figure 8 shows the evolution of the magnetic
field intensity in slices of the cube for this run.

Figure 9 shows the kinetic and magnetic energy spectra
for different times for the run with � ¼ 0:1. Here the equipar-
tition is reached at intermediate scales; there are regions (at
both large and small scales) where the magnetic energy is
even somewhat larger than the kinetic energy. Note that the
spectrum obtained is similar to the MHD spectrum at large
and small scales. However, the shape of the spectrum is
slightly different at intermediate scales. The emergence of a
large-scale field can also be clearly seen in Figure 10, which
shows the evolution of magnetic field intensity in slices of
the cube.

Fig. 7.—Mean kinetic energy spectrum (thick line) and magnetic energy
spectrum at different times (� ¼ 1).

Fig. 8.—Slices ofBrms at different times (� ¼ 1)
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In Figure 11 we plot hJ2i as a function of time for three
different runs. Note that as the Hall term (�) increases, J
decreases. In addition, J has a finer structure as � increases.
Therefore, the magnetic dissipation scale [k� ¼ ðhJ2i=�2Þ1=4]
is smaller as � increases, and dissipation should be expected
to take place at larger scales. In addition, the electronic
kinetic energy decreases as the Hall term becomes larger
(see Fig. 12). In all Hall-MHD runs, the electronic kinetic
helicity decreases when the magnetic energy increases. In
addition, note that the electronic kinetic helicity changes
sign at about the same time the magnetic field saturates.
This simultaneity between the sign reversal in the electronic
kinetic helicity and the saturation of the magnetic field was
observed in all Hall-MHD runs that did not reach equiparti-
tion (Fig. 13). In all these figures, the behavior of a typical
stationary turbulent regime can be observed, corresponding
to the asymptotic relaxation to constant values for these
global (i.e., spatially integrated) physical quantities. The
presence of spikes superposed on these values can also be
observed, which is a consequence of the intermittent behav-
ior of turbulent systems.

Fig. 9.—Mean kinetic energy spectrum (thick line) and magnetic energy
spectrum at different times (� ¼ 0:1).

Fig. 10.—Slices ofBrms at different times (� ¼ 0:1)
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The Hall effect seems to inhibit the creation of net mag-
netic helicity by the dynamo process, as can be seen from
Figure 14. We saw earlier that the MHD dynamo is an effi-
cient generator of magnetic helicity with hA xBi=
hB2i � �0:4. Most of this magnetic helicity is concentrated
at large scales. However, in the presence of the Hall effect,
the net magnetic helicity oscillates with hA xBi=
hB2i < �0:05 for the runs with both � ¼ 0:5 and 1. Even
when the Hall effect is marginal and acts only close to the
dissipation scales (� ¼ 0:066), the generation of mean mag-
netic helicity decreases by a factor of 2. This strong differ-
ence in the evolution of the magnetic helicity between the
MHD and the Hall-MHD dynamos is in good agreement
with previous theoretical results (Ji 1999), which predict
that MHD turbulent dynamo action converts magnetic
helicity from the turbulent field to the mean field, but in
the presence of the Hall effect, the magnetic helicity is
only transported across space.

In Hall-MHD, equation (18) is still valid. Therefore, the
dynamo process must create equal and opposite amounts of
magnetic helicity at large (with the same sign as the �-
coefficient) and small scales (but with opposite sign). How-
ever, in the presence of the Hall effect, the reconnection
events in the small scale are likely to be faster (Priest & For-
bes 1998) and therefore dissipate less magnetic helicity
(Freedman & Berger 1993). The Hall effect even allows, in
principle, reconnection without dissipation, and for such

processes the total magnetic helicity must be conserved
(Wang, Bhattacharjee, & Ma 2000). This relative excess of
magnetic helicity at small scales (compared to the MHD
case) cascades to larger length scales (Pouquet et al. 1976),
canceling the initial large-scale magnetic helicity of opposite
sign. This process can in principle explain the inefficiency of
the Hall-MHD dynamo in generating magnetic helicity
when compared to theMHD dynamo.

Figure 15 shows the spectrum of magnetic helicity for the
MHD run and a Hall-MHD run with � ¼ 1. In good agree-
ment with equation (18), the magnetic helicity is positive at
small scales and negative at large scales. However, a large
fraction of the small-scale magnetic helicity is destroyed by
dissipation before it can cascade to larger scales. On the
other hand, in the Hall-MHD run the amount of positive
and negative helicity at small and large scales remains
almost equal.

Note that for this cancellation of net helicity, the Hall
effect is not required to act at all scales (as for the runs with
� < 0:5). Even an almost classical MHD dynamo (see, e.g.,
the results when � ¼ 0:066), with reconnection events taking
place at scales such that kinetic effects cannot be neglected,
could substantially decrease the generation of magnetic
helicity by the �-effect. This result might be important in
dynamos where the generation of magnetic helicity is
currently being discussed, such as the solar dynamo and
reconnection events taking place in the solar corona.

Fig. 11.—Plot of J2h i for � ¼ 0, 0.5, and 1

Fig. 12.—Kinetic energy Ek and electronic kinetic energy Ee ¼ hu2ei for
� ¼ 1.

Fig. 13.—Kinetic helicity Hk and electronic kinetic helicity He for
� ¼ 1.

Fig. 14.—Magnetic helicity for � ¼ 0, 0.1, 0.5, and 1
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6. DISCUSSION

We present results of the first numerical simulations of
Hall-MHD turbulent dynamo action. The main theme of
this preliminary effort is to compare and contrast the Hall-
MHD dynamo with the conventional MHD dynamo
operating under the same physical conditions (Reynolds
numbers, initial kinetic energy, and magnetic seed). The
code is tested against available literature to make sure that
when the Hall effect is switched off, previous results (for
example Meneguzzi et al. 1981; Brandenburg 2001) are
readily reproduced. By calculating the magnitude and
nature of the generated magnetic field as the amplitude of
the Hall term is varied, we show that the Hall-MHD
dynamo can be fundamentally different from its classical
MHD counterpart.

The simulations demonstrate that depending on the loca-
tion of the Hall length scale with respect to the forcing
(Lforce), seed (Lseed), and dissipation lengths, the generation
of the magnetic energy can strongly increase or decrease.
While the MHD dynamo reaches equipartition, the final
state of the Hall-MHD dynamo depends on �, the measure
of the strength of the Hall term. Three different regimes can
be distinguished: (1) the new results are only marginally dif-
ferent from MHD, (2) the generation of magnetic energy is
substantially enhanced (Hall-enhanced dynamo), or (3) it is
substantially inhibited (Hall-suppressed dynamo). A nontri-
vial result is that the efficiency of the dynamo does not scale
monotonically with �.

The results pertaining to the changes of dynamo efficiency
with � are summarized in Figure 16, in which the maximum
attained value of the magnetic energy is plotted as a func-
tion of �. The three different regimes of the Hall-MHD
dynamo can be clearly identified. For reference, the maxi-
mum value of the magnetic energy obtained in the MHD
run is also shown. Note that in the Hall-enhanced case, the
maximum magnetic energy can be twice the energy gener-

ated in the MHD case, while in the Hall-suppressed regime,
the energy could drop by 1 order of magnitude. The charac-
teristic inverse length scales (magnetic and kinetic
dissipation wavenumbers, forcing wavenumber, and seed
wavenumber) are also shown for clarity. Note that the gen-
eration of the magnetic field is more efficient than in the
MHD case in the region where Lseed < LHall < Lforce. When
LHall < Lseed and LHall approaches the dissipation scale, the
magnetic energy asymptotically tends to the MHD value.
Finally, when LHall > Lforce the dynamo action becomes less
efficient.

The observed dependence of the saturation level of the
dynamo on the strength of the Hall term (�) has important
implications for astrophysics. Since � is determined by the
physical parameters of the astrophysical environment in
which the dynamo operates (such as the masses of the
charge carriers and their densities), the MHD estimates for
the maximum magnetic energy generated by some objects
could be way off the mark, and the inclusion of the Hall
effect becomes crucial. These conclusions are qualitatively
in good agreement with recent theoretical predictions (Min-
inni et al. 2002).

We want to emphasize that current numerical simulations
such as the ones reported here are far away from realistic
Reynolds numbers for astrophysical plasmas. More work
must be carried out to study how the separation between the
relevant scales of the system affects these results. None-
theless, we discuss potential applications of our results to
real astrophysical systems, keeping in mind this important
shortcoming. As shown in x 1, typical values for a

Fig. 15.—Magnetic helicity spectrum for (a) the MHD run and (b) a
Hall-MHD run.

Fig. 16.—Efficiency of Hall-MHD dynamos. The thick lines correspond
to magnetic energy, while the thin lines correspond to wavenumbers k. The
thick dashed line is shown as a reference for the maximum value of mag-
netic energy in theMHD simulation (� ¼ 0), while the thick solid line shows
the maximum value reached by the magnetic energy as a function of � for
several Hall-MHD runs. The dotted line corresponds to the kinetic dissipa-
tion wavenumber k�, and the dashed line shows the magnetic dissipation
wavenumber k�. The long-dashed line shows the wavenumber at which the
initial magnetic field is located (kseed ¼ 13 in all the runs), and the triple-
dot–dashed line shows the forcing wavenumber (kforce ¼ 3 in all the runs).
The dot-dashed line corresponds to the Hall wavenumber (kHall ¼ 1=�).
The shaded area corresponds to the Hall-dominated microscale dynamo,
where kseed > kHall > kforce. The dark shaded area satisfies � ! 0 and
kHall > kseed, and the magnetic energy tends to the MHD value. Finally, in
the white area, � ! 1 and kHall < kforce (massive Hall dynamo).
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protostellar disk (Balbus & Terquem 2001) yield
H=O � 102 and H=I � 10�4. These values imply that the
Hall scale in this case is larger than the dissipation scale by 2
orders of magnitude but smaller than the largest scales of
the system. Therefore, we expect an enhancement of the
dynamo mechanism by the Hall currents. On the other
hand, in some dwarf nova disks and protoplanetary disks,
H=I � 1 or even larger (Sano & Stone 2002). Therefore, an
inhibition of the dynamo is expected for these objects.

The final result of this preliminary study is that although
the generation of a large-scale magnetic field was observed
in all cases, the topological properties of the generated field
could vary. Regardless of suppression or enhancement of

the magnetic energy, the Hall effect in our simulations
always and strongly suppresses the production of net mag-
netic helicity. This result, extremely relevant to helicity-
generation schemes, is in good agreement with previous
theoretical results (Ji 1999).

The research of S. M. M. was supported by US
Department of Energy contract DE-FG03-96ER-54366.
The research of D. O. G. and P. D. M. has been funded
by grant X209/01 from the University of Buenos Aires.
P. D.M. is a fellow of CONICET, and D. O. G. is a member
of the Carrera del Investigador Cientifico of CONICET.

REFERENCES

Balbus, S. A., & Terquem, C. 2001, ApJ, 552, 235
Brandenburg, A. 2001, ApJ, 550, 824
Canuto, C., Hussaini, M. Y., Quarteroni, A., & Zang, T. A. 1988, Spectral
Methods in Fluid Dynamics (Berlin: Springer)

Cattaneo, F., &Hughes, D.W. 1996, Phys. Rev. E, 54, R4532
Freedman, M. H., & Berger, M. A. 1993, Geophys. Astrophys. Fluid Dyn.,
73, 91

Galanti, B., Kleeorin, N., &Rogachevskii, I. 1994, Phys. Plasmas, 1, 3843
Gruzinov, A., &Diamond, P. H. 1994, Phys. Rev. Lett., 72, 1651
Heintzmann, H. 1983, J. Exp. Theor. Phys., 57, 251
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