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ABSTRACT

The formation of coherent structures in turbulence is a signature of a developing cascade and therefore might
be observable by analyzing inner heliospheric solar wind turbulence. To test this idea, data from the Helios 2
mission, for six streams of solar wind at different heliocentric distances and of different velocities, were subjected
to statistical analysis using the partial variance of increments (PVI) approach. We see a clear increase of the PVI
distribution function versus solar wind age for higher PVI cutoff, indicating development of non-Gaussian coherent
structures. The plausibility of this interpretation is confirmed by a similar behavior observed in two-dimensional
magnetohydrodynamics simulation data at corresponding dimensionless nonlinear times.
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1. INTRODUCTION

The formation of coherent structures that are characterized
by non-Gaussian statistics at small scales is a well-known
feature of fully developed turbulence in both hydrodynamics
(Sreenivasan & Antonia 1997) and magnetohydrodynamics
(MHD; Biskamp & Müller 2000). Simulations indicate that
these structures form rapidly in the development of a cascade
and are driven by ideal nonlinear dynamics (Frisch et al. 1983;
Wan et al. 2009). Here, we explore the dynamical development
of solar wind turbulence observed in the inner heliosphere to
understand whether statistical signatures of the development of
intermittency are present. To this end, we will examine the radial
development of statistical measures of non-Gaussianity using
Helios 2 data and compare the results with MHD simulation data
designed to evolve over a number of nonlinear timescales that
is similar to estimates of the nonlinear aging in the solar wind
within the observed range of distances. Indeed the evidence will
suggest that there is comparable development of intermittency
in the two cases.

The evolution of solar wind fluctuations in the inner helio-
sphere (within 1 AU = Astronomical Unit) is well documented
(Bavassano et al. 1982; Tu et al. 1984; Bruno et al. 1985;
Roberts et al. 1987; Tu 1988; Tu & Marsch 1995; Bruno &
Carbone 2005), but due to the complexity of the plasma physics
involved and the variability of the solar sources, this remains
an active area of research. Inner heliospheric MHD scale ve-
locity and magnetic field fluctuations are broadband and at
periods of less than a few hours are typically correlated with
one another in the sense of outward traveling Alfvén waves
(Belcher & Davis 1971). A range of power-law spectra is ob-
served, with the low-frequency cutoff migrating toward lower
frequencies with increasing distance (Bavassano et al. 1982).
A familiar interpretation is that the presence of the observed
power-law “Kolmogorov” spectra is indicative of dynamically
generated local correlations and an active in situ turbulence cas-
cade (Tu et al. 1984; Tu 1988). This conclusion is favored by the
migration of the increase in scale of the break point, interpreted

as further evidence of in situ nonlinear evolution (Tu et al. 1984;
Matthaeus & Goldstein 1986). In addition, the correlation of ve-
locity and magnetic field correlations (“Alfvénicity”) decreases
on average with increasing heliocentric distance (Bruno et al.
1985; Roberts et al. 1987). The decrease in Alfvénicity can be
similarly interpreted as due to driving of the cascade by large-
scale shear, an effect also observed in turbulence simulations
(Roberts et al. 1992). A two-component incompressible fluctu-
ation model also explains the observed decrease in Alfvénicity
and the ratio between the energies of velocity and magnetic
fluctuations (Tu & Marsch 1993). Other properties, such as the
degree of non-equipartition of velocity and magnetic field tur-
bulence energy, also evolve with increasing distance toward a
state that appears to be more consistent with fully developed
turbulence (Marsch & Tu 1990). Concomitantly, there is also an
observed heating (Coleman 1968; Tu 1988; Breech et al. 2008)
that apparently is also consistent with an explanation due to a
turbulence cascade that leads to enhanced dissipation.

The various lines of reasoning alluded to above point to
the presence of evolving MHD scale turbulence in the inner
heliosphere. The development of the spectral break between f −1

and f −5/3 frequency regions, and the evolution of the Alfvén
ratio and the cross-helicity, are some of the features that suggest
early stages of evolution of turbulence from an initial highly
Alfvénic state close to the Sun.

There are, however, some aspects of the evolution of inter-
planetary plasma fluctuations that remain poorly understood or
are controversial.

A feature that is often studied but incompletely understood
is the intermittency or small-scale non-Gaussianity of turbulent
fluctuations. It is well known from studies of hydrodynamics and
MHD that strong “fully developed” turbulence is characterized
by the appearance of small-scale coherent structures that are
responsible for the observed intermittency of the small-scale
fluctuations (Sreenivasan & Antonia 1997; Anselmet et al.
1984). These structures play a special and important role in
turbulence theory because they are sites of enhanced dissipation,
and therefore their non-Gaussian statistics are related to the
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intermittent nonuniform distribution of the dissipation. The
conjectured statistical relationship between the statistics of
dissipation and the statistics of small-scale fluctuations is known
as the refined similarity hypothesis, which although unproven,
provides theoretical underpinning to studies of multifractals and
other scaling behavior. Such non-Gaussian distributions and
characteristic scalings are also observed in MHD and in the
solar wind (Biskamp & Müller 2000; Burlaga 1991; Marsch &
Tu 1994; Carbone 1994; Horbury & Balogh 1997; Sorriso-Valvo
et al. 1999; Bruno & Carbone 2005). The observed scalings are
faithful enough to the standard expectations to bolster the view
that the solar wind is an intermittent turbulent medium, but is it
an active turbulent medium?

One way to address this issue is to try to answer the following
question: Do the statistical signatures of coherent structures
evolve with heliocentric distance in the inner heliosphere, in
analogy to the evolution of the break point, the Alfvénicity,
and the Alfvén ratio? Better understanding of this issue may
provide insight into the origin of solar wind fluctuations and the
relationship between the coronal and interplanetary plasmas,
as we will discuss further below. This is the question that we
address in the present paper.

Before proceeding with our analysis it is important to recog-
nize a related study by Bruno et al. (2003) which investigated
the radial evolution of magnetic field intermittency in the inner
heliosphere using Helios data. This has much in common with
the study reported below, but both the analysis approach and the
theoretical perspective differ. Bruno et al. (2003) examine the
flatness, i.e., the normalized fourth-order moment, of the prob-
ability distribution functions. They found a different behavior
for slow and fast wind intermittency. Even though slow wind is
more intermittent than fast wind, it does not show a strong ra-
dial dependence, while fast wind intermittency clearly increases
with heliocentric distance. The same authors have interpreted
this trend considering the different roles played by coherent ad-
vected structures and by propagating stochastic Alfvénic fluctu-
ations in fast and slow winds at different heliocentric distances.
As a matter of fact, in fast wind the Alfvénic contribution, which
tends to decrease intermittency because of its stochastic nature,
is depleted as the wind expands. (We recall that this depletion
of Alfvénicity has been attributed to turbulence (Roberts et al.
1992) as discussed above.) On the other hand, advected struc-
tures tend to increase intermittency because of their coherent
nature while their contribution becomes more important with
increasing heliocentric distance. Slow wind does not show the
same behavior since for this type of wind; Alfvénic fluctuations
have a less dominant role.

The study by Bruno et al. (2003) represents the “standard”
way of analyzing solar wind data, separating fast and slow
wind intervals under the assumption that they are fundamentally
different. However, it remains of interest to identify potentially
similar physics in the evolution of the two types. For example, it
has been reported by Kasper et al. (2008) that “collisional age”
organizes well the data from all types of intervals with regard to
kinetic properties.

Our results are consistent with Bruno et al.’s (2003) results.
However, the interpretation will be somewhat different because
we will attribute the differing behaviors in various samples of
solar wind turbulence to the role played by the turbulence age
(Matthaeus et al. 1998), measured in characteristic nonlinear
times, in an attempt to find analogous similarities in the
evolution of parameters that measure evolution of coherent
structures. We discuss this further at the end of the paper. We

will also argue that both our results and those of Bruno et al.
(2003) strongly favor the interpretation that the solar wind MHD
scale cascade is active and not passive as sometimes suggested
(Borovsky 2008). The present results also raise some interesting
questions regarding the initial-boundary data for solar wind
fluctuations.

Our approach in demonstrating these conclusions will con-
sist of an observational component in which we make use of a
variation of the methods based on the moments of the proba-
bility distribution functions (PDFs) of magnetic increments. We
make use of the partial variance of increments (PVI) method
(Greco et al. 2008). Instead of employing this diagnostic only
to identify events above a certain threshold, we introduce an
alternative strategy based on the computation of the cumula-
tive probability of finding the PVI statistics above a specified
threshold. This can be interpreted as the fractional volume oc-
cupied by quasi-discontinuous coherent structures. The higher
the cumulative probability, the greater is the density of strong
discontinuities present. The second novel feature of this study
is that we also employ the same methodology in the analysis of
MHD turbulence simulation data. By comparing the evolution
of cumulative PVI event probability in observations and in simu-
lations at similar estimated nonlinear times, we can evaluate the
possibility that the evolution of the intermittency is associated
with aging of the turbulence.

Before presenting the main results in Section 3, in the next
section we describe the data analysis procedure and the MHD
simulation. In Section 4, we summarize the findings and discuss
implications for understanding the dynamics of solar wind
turbulence in the inner heliosphere.

2. MAGNETIC FIELD DATA

The only available data set that can address the questions
raised above is data from the Helios mission. The present
data analysis is based on 6 s averages of the magnetic field
recorded by the Rome/GSFC magnetometer on Helios 2 during
its primary mission to the Sun in 1976.

The data set consists of fast and slow solar wind time periods
at different heliocentric distances. In particular, the fast solar
wind intervals correspond to the same corotating stream at three
different heliocentric distances, during three successive solar
rotations (Bavassano et al. 1982). For each stream we selected
a time interval within the trailing edge and a slow wind interval
ahead of it. The length of each period is about 2 days. Gaps
found within were linearly interpolated. However, gaps do not
exceed 10% of each period. The selected intervals, the relative
average heliocentric distance, and the average solar wind speed
are reported in Table 1.

Bavassano et al. (1982) computed the power spectra of the
three fast streams we are studying in this paper, showing that
they are characterized by two distinct spectral slopes: an approx-
imately −1 range in the low frequencies and an approximately
Kolmogorov-like −5/3 spectrum at higher frequencies. The two
regimes are separated by a frequency “break point” that moves
to lower frequencies as the wind expands (Bavassano & Smith
1986; Klein et al. 1992; Bruno & Carbone 2005). The shift to
lower frequencies, during the wind expansion, is consistent with
the growth of the correlation length observed in the inner he-
liosphere (Bruno & Dobrowolny 1986) and the corresponding
contraction of the 1/f range due to dynamical generation of
correlations (Matthaeus & Goldstein 1986). Slow wind power
spectra, on the contrary, are characterized by a single power law
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Table 1
Selected Time Intervals for Helios 2

Time Interval R U tconv No. of Points
(ddd:hh–ddd:hh) (AU) (km s−1) (hr)

49:14–51:14 0.88 643 57 28800
75:12–77:12 0.65 630 43 28800
105:12–107:12 0.29 729 16.6 28800

46:00–48:00 0.90 433 86.6 28794
72:00–74:00 0.69 412 70.8 27943
99:12–101:12 0.34 405 30.9 28800

Notes. Time interval, heliocentric distance R, average solar wind speed U, the
solar wind convective age tconv, and number of analyzed data points are shown
from left to right.

with a Kolmogorov-like slope covering the whole frequency
range at the three heliocentric distances considered here.

The behavior of the power spectra, correlation lengths, and
intermittency of the magnetic field fluctuations have been con-
firmed by a recent study by D’Amicis et al. (2010) on the radial
evolution of turbulence of the same fast wind plasma sample
observed at two heliocentric distances during a radial alignment
that occurred between Earth and Ulysses at the end of 2007
August. A familiar interpretation (e.g., Matthaeus & Goldstein
1986) of this evolution is the growth of the correlation scale due
to dynamical involvement of larger structures that is expected
in evolving turbulence. Conversely, the very low frequency 1/f
spectrum, in this interpretation, is viewed as being generated in
the sub-Alfvénic corona and thus representing the time depen-
dence of the sources of the solar wind.

3. STATISTICAL ANALYSIS

To identify coherent structures through rapid changes in the
magnetic field components, we examine the increments

Δb(s, Δs) = b(s + Δs) − b(s), (1)

where b is the magnetic field vector. The one-dimensional
(1D) coordinate along the spacecraft trajectory is s, which is
a time coordinate. Using the Taylor hypothesis, the time signal
is converted to a spatial signal using the average velocity of the
flow. The spatial separation or lag is Δs.

For this analysis we choose a time lag of 6 s for the fast streams
and 12 s for the slow streams. These time lags are sufficiently
small (consistent with the resolution of the samples) to sample
the very intermittent structures (almost at the end of the inertial
range).

Employing only the sequence of magnetic increments, we
compute the normalized magnitude

PVI = |Δb(s, Δs)|√〈|Δb(s, Δs)|2〉
, (2)

where 〈·〉 denotes a spatial average over the entire data set
(2 days), and Δs is the spatial lag in Equation (1). The square of
the above quantity has been called the PVI (Greco et al. 2008)
and the method abbreviated as the PVI method. The performance
of the PVI to identify discontinuities has been shown to be
comparable to standard methods (e.g., Tsurutani & Smith 1979)
in both MHD simulations and solar wind observations (Greco
et al. 2008, 2009a). Note that by construction 〈PVI2〉 = 1,
while 〈PVI4〉 is related to the kurtosis of the magnetic field

Table 2
Physical Quantities Characterizing the Selected Time Intervals for Helios 2

tconv Correlation Time Z σc f tNL τ

(hr) (s) (km s−1) (s)

57 780 36 0.76 0.6 8346 27
43 440 38 0.82 0.51 3708 33
16.6 205 72 0.84 0.48 996 0.6

86.6 1960 23 0.2 0.97 35875 9.6
70.8 15990 30 0.42 0.885 197157 1.09
30.9 1515 36 0.37 0.9 15377 1.3

Note. Solar wind convective age tconv, correlation times, turbulence amplitudes
Z, cross-helicity σc , f, the nonlinear times tNL, and the dimensionless ages τ of
analyzed data set are shown from left to right.

component increments. Furthermore, the powers of 〈PVI〉 scale
in a manner that are connected with familiar diagnostics of
intermittency (Horbury et al. 1997). An example of the PVI
time series computed for four of the six streams is shown
in Figure 1, where the sampling time t is normalized to the
magnetic field correlation time computed for each stream (see
Section 4 for a description of the computation of the magnetic
field correlation times and Table 2 for their typical values).
Here, we analyze the statistical distribution of Equation (2),
computing the probability distribution functions for all six
streams, as displayed in Figure 2. All the PVI distributions have
a probability density that increases at smaller values toward an
enhancement for the intermediate value bins, and then drop for
the largest value bins.

There are several features to be noted in the distributions of
PVI. First, the slow streams have a larger probability for high
PVI values than do the fast streams. This means, in the usual
interpretation, that the slow wind is more intermittent (Bruno
et al. 2003) in that it contains a greater concentration of coherent
structures. Moreover, it is apparent, by examination of the tails
of the distributions in the inset of Figure 2, that slow wind
does not show a clear radial dependence, while fast wind does.
This confirms the results of Bruno et al. (2003) and also Tu
et al. (1996); however, in the following section, we develop an
alternative interpretation.

To proceed with the analysis, we further describe the nature
and occurrence of the PVI “events” that make up the tails of
the PVI distributions. In particular, imposing a threshold θ on
Equation (2), a collection of these events, which are in effect
discontinuities or coherent structures, can be identified along
the path in s. We select portions of the trajectory in which the
condition

PVI > θ (3)

is satisfied. To better understand the physical meaning of the
threshold θ , we recall that the probability distribution of the
PVI statistic derived from a non-Gaussian turbulent signal is
empirically found to strongly deviate from the PDF of PVI
computed from a Gaussian signal, for values of PVI greater than
about 3 (Greco et al. 2008, 2009a). As PVI increases to values
of 4 or more, the recorded “events” are extremely likely to be
associated with coherent structures and therefore inconsistent
with a signal having random phases. Thus, as θ is increased,
stronger and rarer events are identified, associated with highly
non-Gaussian coherent structures.

A previous analysis of solar wind ACE data (Greco et al.
2009b) has verified that power laws describe the distribution of
waiting times (inter-arrival times) (WTs) between PVI events,
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Figure 1. Time series of PVI computed for some of the six streams from solar wind. Time is normalized to the correlation time of the magnetic fluctuations. Here we
show only a fraction of the whole time interval.

(A color version of this figure is available in the online journal.)
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the tails of the distributions. The error bars are of the same order of the point
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(A color version of this figure is available in the online journal.)

for periods up to 1000–3000 s (∼50 minutes), which is of the
order of the correlation time of magnetic fluctuations in the solar
wind. The scaling exponent inferred from a linear fit was −1.23.
Here, we computed the distribution of WTs for the slow stream at
0.9 AU. As in previous works, the distribution shown in Figure 3
is well fit by a power law for periods up to ∼1000–3000 s. Here,
the scaling exponent inferred from a linear fit is −2.3.

The difference between the values of the two power-law
indices maybe due to the fact that for Helios we considered
slow wind at 0.9 AU and time separation of 12 s. For ACE it was
“mixed” wind at 1 AU and the time separation was 4 minutes.
Indeed when we considered different time separations for PVI
(e.g., up to 10 minutes), we got shallower indices for PDF(WTs)
(not shown). This is very interesting, but indeed represents a
separate study.
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Figure 3. Distributions of waiting times between discontinuities detected in
slow solar wind (squares) by Helios 2 at R = 0.9 AU. The line is the power-law
fit ax−b . The value of the scaling exponent is b = −2.3 ± 0.1.

Previously, some authors (Carbone et al. 2003), using the
same stream, have shown a very similar power law for events
identified with somewhat different methods, extending in the
same range of time separations, with a scaling exponent of
−2.18. In that case, the presence of those structures has been
shown by using a wavelet procedure (Veltri & Mangeney 1999;
Bruno et al. 2001).

4. INTERMITTENT PROPERTIES VERSUS
THE SOLAR WIND AGE

MHD scale fluctuations have been seen at all distances at
which spacecraft have visited. Therefore, a reasonable supposi-
tion is that these fluctuations at least in part originate lower in
the solar atmosphere, entering the super-Alfvénic wind in the
trans-Alfvénic critical region (probably) near 15–25 Rs. Along
with subsequent expansion and evolution (Tu et al. 1984), the
fluctuations are most likely also driven, in the inner heliosphere,
by shear at stream interfaces (Roberts et al. 1992; Zank et al.
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1996) and by other transients. Transport theories that incorpo-
rate these ongoing dynamical effects have been reasonably suc-
cessful in explaining observations ranging from Helios in the
inner heliosphere, to Voyager and Pioneer beyond 50 AU (Tu
1988; Smith et al. 2001; Breech et al. 2008). One of the lessons
learned by these kinds of studies is that the fast wind “ages”
more slowly with heliocentric distance due to smaller convec-
tion times (Matthaeus et al. 1998); nevertheless, the same basic
physics operates in both fast and slow winds, although with
apparently differing initial/boundary data and with somewhat
different sets of parameters (Matthaeus et al. 2004; Breech et al.
2005, 2008; Ng et al. 2010). Given this background, it seems
reasonable to examine whether the intermittency properties ob-
served in solar wind turbulence are also developing dynamically,
along with energy densities, cross-helicities, correlation lengths,
and other parameters that are apparently developing and aging
with intrinsic turbulence and expansion timescales.

In this regard, using the heliocentric distance R and the
average bulk speed U shown in the second and third columns
of Table 1, we calculate for the six streams analyzed here the
estimated convective “age” tconv = R/U . This very elementary
solar wind age, in terms of clock time since leaving the Sun, is
displayed in the fourth column of the same table. We note that
the ages differ by up to factor of five, so there is ample possibility
that dynamical aging may influence the intermittency properties
as seen in the PVI distributions in Figure 2.

At this point, it is interesting to see if the tails of the PVI
distributions, shown in Figure 2, develop systematically with
increasing heliocentric distance in the Helios 2 observations.
We calculated the PVI distribution function integrated over all
values > θ , that is, the total probability that a signal is observed
at any value greater than the cutoff. The time history of this
quantity is displayed in Figure 4, with θ = 3, 4, 5, 6.

The plots, especially for higher cutoff, show a clear trend
upward with age. This may indicate that the turbulence is
developing stronger intermittent events as the wind ages while
propagating away from the Sun.

5. SIMULATION

The convection time and Alfvén crossing times are both
reasonable time units for solar wind evolution, although they
measure different effects. Still other possibilities exist, such

as the “collisional age” that appears to order the development
and saturation of kinetic effects (Kasper et al. 2008). In spite
of their distinct physical origins, these timescales do not
evolve very differently within the range of Helios orbits, and
so it may be a matter of some subtlety to distinguish their
relative prominence. Physical reasoning provides guidance
in suggesting for example that evolution of large structures
is most sensitive to expansion, while distribution functions
have a greater sensitivity to collisional aging. Similarly, it
is reasonable to suppose that the turbulence dynamics itself,
already known to explain many features of the evolution of
the fluctuations at the MHD scales (<0.01 AU), are likely
to be responsible for dynamical changes in the degree of
intermittency. A straightforward way to examine the plausibility
of this is to examine whether turbulence observed in numerical
simulations exhibits development of intermittency in a way
similar to what is seen in the above solar wind observations.

To this end, we examined data from an MHD turbulence
simulation that starts with random phases and therefore initially
lacks non-Gaussian inertial range coherent structures. Following
this evolution, we examined the time history of the same
quantities that we have calculated above.

In particular, the simulation solves the two-dimensional (2D)
incompressible MHD equations written in terms of the magnetic
potential a(x,y) and a single component of vorticity ω(x, y), with
uniform mass density ρ = 1. The velocity field v is solenoidal,
∇ · v = 0, the magnetic field is b = ∇a × ẑ, and the electric
current density is j=−∇2a. The velocity v = ∇φ × ẑ can be
written in terms of a stream function φ, related to the vorticity
by ω = −∇2φ. The equations are written in familiar Alfvén
units with lengths scaled to L0, a typical large-scale length.
All quantities are in a set of dimensionless units defined by
scaling velocities and magnetic fields to the root-mean-square
Alfvén speed CA, while time is scaled to L0/CA. The constant
coefficients Rμ and Rν are reciprocals of kinematic viscosity
and resistivity, respectively, and represent magnetic and kinetic
Reynolds numbers at scale L0 (for more details, see Servidio
et al. 2010). The equations are solved in doubly periodic (x, y)
Cartesian geometry in a box of side 2πL0. In this work, we show
results from a run with 40962 grid points and Rν = Rμ = 1700.
In the Fourier pseudospectral representation, the fluctuations
are confined initially in the shell 4 � k � 10, where the
wavenumber k is in units of 1/L0. Mean values such as energy
per unit mass, E = 1/2〈|v|2 +|b|2〉, are expressed in terms of 〈·〉,
which denotes a spatial average. Random phases are employed
for the initial Fourier coefficients, which are therefore initially
uncorrelated. Initial velocity and magnetic field fluctuations are
equipartitioned.

The peak of the turbulent activity and of the mean-square
current density is around t = 0.4–0.5. At this time and with the
above parameters, the magnetic turbulence correlation length is
λC = 1.8×10−1, and the dissipation length is λd = 4.6×10−3.
When the turbulence is fully developed, coherent structures
appear. The large-scale structures can be identified as magnetic
islands that have different size and energy. The dynamics is
such that between the islands the perpendicular (out-of-plane)
component of the electric current density j becomes very large.
These often very thin current structures are the small-scale
dynamically produced magnetic structures that are characteristic
of 2D MHD (these are generally not present in random-phase
initial data).

To simulate a data set that is analogous to the spacecraft
measurements of the magnetic field along a selected trajectory,
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Figure 5. PVI series computed for four instants from the 2D simulation. Space is
normalized to the correlation scale λC = 1.8×10−1 of the magnetic fluctuations.

(A color version of this figure is available in the online journal.)

we adopt the same technique used by Greco et al. (2008), but
here arranged for the 2D case. We interpolate the data along
the selected path through the simulation box, and on these data
we compute the PVI series from Equation (2). This permits
identification of the current sheets or discontinuities using the
PVI method in Equation (3).

Figure 5 shows the PVI series for four snapshots of the simu-
lation. Time t is just the “simulation time,” computed as L0/VA,
where VA ∼ 1 is the Alfvén speed (Brms is about 1). Here, we
choose the increment lag to be Δs = 0.425 × 10−2λC , which
is, as in the solar wind case, of the same order of λd . From the
figure, it is apparent that the PVI time series become more bursty
as time passes, up to t = 0.4–0.5, suggesting the presence of
sharp gradients in the magnetic field, and localized coherent
structures that represent the spatial intermittency of turbulence
(Matthaeus & Montgomery 1980; Carbone et al. 1990). Since
this is a decaying run, the turbulence amplitude decreases about
40% of what it was initially. Indeed, the plot on the bottom
shows smaller peaks than the previous times.

The same analysis that was carried out for the solar wind data
is also carried out for the simulation data: for several choices of
thresholds PVI > θ , the fraction of the PVI distribution falling
above the threshold θ is computed.

6. COMPARISON BETWEEN SOLAR WIND
AND SIMULATION DATA

At this point we examine whether turbulence observed in nu-
merical simulations exhibits development of intermittency in a
way similar to what is seen in the above solar wind observations.
To provide potentially more meaningful comparisons between
solar wind and simulation cases, we need to normalize the time
of the simulation and the age of solar wind to a suitable time
that quantifies the strength of turbulence in both cases. Thus, if
we consider the solar wind and an MHD turbulence simulation
as different samples of a decaying homogeneous turbulence, we
looks at the two systems when the same fraction of initial en-
ergy remains. Such turbulence is of equal “age.” This convention
is familiar in numerical simulations when comparing undriven
dissipative runs having different Reynolds’ numbers.

The solar wind age at the position r and relative to a reference
position r0 has been defined in Section 4 as the convective time,

here given in its integral form

t(r) =
∫ r

r0

dr

U
, (4)

where U is the constant convection velocity.
As in Matthaeus et al. (1998) the strength of turbulence

can be quantified by the identification of a rate of turbulent
evolution. This provides a natural definition of “aging” of the
turbulence. A natural clock to measure this “aging” could be
the timescale associated with the energy decay in homogeneous
MHD turbulence. In the Karman–Taylor approach for modeling
the evolution of solar wind turbulence (Matthaeus et al. 1998),
the decay timescale becomes the “eddy turnover” time or
nonlinear time tNL = λC/Z, where λC is the correlation scale
of the magnetic fluctuations and Z2 = u2 + b2 (u and b are the
velocity and magnetic fluctuations, respectively) is the Elsasser
amplitude associated with the incompressible turbulent energy
(in the case of low or zero cross-helicity). In this part of the
analysis, 81 s averages of magnetic field and velocity have been
used.

By adopting the above model for the energy decay, the solar
wind age (Equation (4)), in terms of nonlinear times tNL (namely
the dimensionless age), is

τ (r) =
∫ r

r0

dr

U

Z(r)

λC(r)
. (5)

Thus, if the spatial variation of the correlation scale and
the turbulent energy density is known, the dynamical age
of the turbulence can be directly calculated. Here we employ
the Karman–Taylor approach for modeling the evolution of
λC and Z (Matthaeus et al. 1998), obtaining the scalings
λC(r) ∼ √

(r) and Z2(r) ∼ 1/r (Matthaeus et al. 1998). Then,
the corresponding MHD timescale, in case of zero cross-helicity,
is tNL(r) = λC(r)/Z(r) ∼ r . However, this simplification is
well satisfied beyond a few astronomical units (AU), but it is
not a reasonable simplification at distances less than 1 AU from
the Sun (Tu et al. 1989). Matthaeus et al. (2004) have shown
that for nonzero cross-helicity σc, along with the equations for
the evolution of λC and Z, a third simplified equation for σc

can be written, which causes a reduction in the effective decay
of the above quantities by a factor f. In turn, the nonlinear
time becomes tNL(r) = f λC(r)/Z(r), where f is a function of
σc and it is defined as (1 − σ 2

c )
1/2

/2[(1 + σc)1/2 + (1 − σc)1/2.
The factor f is a decaying function for σc > 0, and, clearly, if
σc = 0 f = 1.

Therefore, after integrating Equation (5), the age in nonlinear
times observed at position R is

τ (R) = tconv(R)

tNL(R)
ln

R

r0
, (6)

where tconv(R) = R/U .
These forms of the correlation scales and turbulent ampli-

tudes, which come from a simple decaying homogeneous tur-
bulence phenomenology (Matthaeus et al. 1998), are supposed
to be an approximation of how they behave if we could follow a
stream’s evolution, which we cannot do without multiple space-
craft. An alternative phenomenology for turbulent decay (e.g.,
Dobrowonly et al. (1980)) leads to results that can be readily
obtained.

From Helios 2 data, we get the values of λC and Z at each
observation point, R = 0.29, 0.34, 0.65, 0.69, 0.88, 0.9 AU, for
each stream considered.

6



The Astrophysical Journal, 749:105 (9pp), 2012 April 20 Greco et al.

 0.7

 1

 1.3

 0  0.5  1  1.5  2  2.5  3

Z

simulation time t

(a)

 0.16

 0.2

 0.24

 0  0.5  1  1.5  2  2.5  3

λ C

simulation time t

(b)

 0.1

 0.2

 0.3

 0  0.5  1  1.5  2  2.5  3

t N
L

simulation time t

(c)

 0

 5

 10

 15

 0  0.5  1  1.5  2  2.5  3

τ

simulation time t

(d)

Figure 6. Time history of the turbulence amplitude Z (panel (a)), the magnetic field correlation length λC (panel (b)), the nonlinear time tNL (panel (c)), and the
dimensionless age τ (panel (d)) are shown as functions of the simulation time t.

(A color version of this figure is available in the online journal.)

For the computation of the correlation scale, we used that
associated with the 6 s normal component of magnetic fluctua-
tions, because it is less sensitive to sampling of the reversals of
the Parker spiral. We approximate λC as the distance over which
the autocorrelation function falls to 1/e of its peak value at zero
separation.

One way to calculate correlation scales could be that de-
scribed in Matthaeus et al. (1986) in which the original magnetic
field data set is divided into sub-intervals. The sole condition
for including each subinterval in the averages is the degree to
which it represents a weakly time-stationary process. Statistical
quantities such as means, variances, and correlation scales are
obtained as ensemble averages. Effectively, we get the corre-
lation times from the autocorrelation functions. Frozen-in flow
is used to convert correlation times to correlation lengths λC

using the mean solar wind speed in the subintervals. The typical
values of correlation times we get appear to be compatible with
those reported for the magnetic field by various authors, includ-
ing Matthaeus & Goldstein (1982) and Bruno & Dobrowolny
(1986).

For this analysis, the magnetic fluctuations are computed us-
ing 2–3 correlation times, and averaging the results over 2 day
periods. We choose the reference position r0 as the inner bound-
ary of the observations, namely around 0.29 AU (Matthaeus
et al. 1998, 2004). Table 2 summarizes the correlation times,
the turbulence amplitudes Z (computed from 81 s magnetic and
velocity field data), cross-helicity σc (computed from 81 s mag-
netic and velocity field data), the factor f, the nonlinear time tNL,
and the dimensionless age τ for each sample.

As presently seen above, we calculate the cross-helicity only
to get a refinement of the global nonlinear time. However, this
should be dominated by low-frequency fluctuations in the energy
range. Therefore, the fact that plasma data (81 s) are not available
at the cadence of the magnetic field data (6 s) does not present
a problem for the computation of the global cross-helicity. This
is however the reason we did not consider analysis in terms of

Elsasser fluctuation variables (Tu et al. 1989), staying instead
with magnetic field fluctuations.

In the simulation case, Equation (5) becomes

τ (t) =
∫ t

t0

dt ′

tNL(t ′)
, (7)

where t ′ is the age and we do not need to know the spatial
variation of the correlation scale and the turbulent energy
density. In Figure 6, the turbulence amplitude Z (in Alfvén units),
the correlation length λC of the magnetic fluctuations (in box
units), the nonlinear time tNL (in t units), and the dimensionless
age τ are shown as a function of the simulation time t. This is
a decaying run, so the energy is low by the end of the run, and
the turbulence amplitude Z decreases by about 40% of what it
was initially.

The time history of the PVI fraction lying above θ for the
Helios 2 data case and the simulation data case, is displayed in
Figure 7, for thresholds θ = 3, 4, 5, 6. This plot shows a very
strong similarity to the behavior of the PVI from Helios 2 and
simulation data. In particular, the graphs corresponding to the
same θ have the same trend. For example, those corresponding to
“PVI > 3” do not show large variations with τ . On the contrary,
the plots corresponding to “PVI > 6” display a rich behavior
in function of the dimensionless age. Clearly, we have much
less points in the solar wind data set, but from the comparison
with the simulation case, we can extrapolate the behavior of
the solar wind and say that the likelihood of finding coherent
structures increases substantially up to 3–4 nonlinear times, then
we can observe a sort of decrease and then a saturation. The clear
similarity between simulation and solar wind results suggests
that the phenomenon we are seeing is the rapid turning-on of
intermittent turbulence in the inner heliosphere, followed by
a saturation in the frequency of occurrence of strong current
sheets, and a subsequent modest decrease due to the turbulence
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(A color version of this figure is available in the online journal.)

strength decay. In any case, a clear development of intermittency
is present as the turbulence ages.

7. DISCUSSION AND CONCLUSIONS

The purpose here has been to quantitatively evaluate the
development of intermittency of the magnetic field fluctuations
in the solar wind. In order to find a sensitive discriminator
of this dynamical effect, our approach has departed from
the standard way of analyzing solar wind data that separates
fast and slow wind intervals under the assumption that they
are fundamentally different. Instead, we add to the growing
evidence (e.g., Kasper et al. 2008; Breech et al. 2008) that there
are physically interesting similarities in their evolution. Here,
both convection time and nonlinear time have been employed to
reveal similarities in the radial development of measures of the
strength of coherent structures.

Integration of the cumulative probability of all values of the
PVI statistic above a given threshold is a way to measure directly
the population of vector increment values that are responsible
for elevated values of higher order moments. Adopting this
approach, we examined the associated weight P (PVI > θ ) as a
function of time, which provides a measure of the initial onset

of intermittency in a simulation that begins from Gaussian fields
containing no coherent structures. Here we have seen that this
development of intermittency in simulation is very similar to
that in P (PVI > θ ) obtained from the analysis of Helios data in
several streams over a range of heliocentric distances and with
varying solar wind speeds.

These results provide insight into how intermittency appears
in solar wind fluctuations. First, the similarity of the initial
increase and the subsequent variations in high PVI values in
time in both solar wind and simulation data suggests that
intermittency is formed in the solar wind through active in
situ dynamics. Second, this observation provides still another
indication that the solar wind is an example of such an active
turbulent medium and is not purely passive as has been sometime
suggested. In particular, the present view is that the coherent
structures are not passively advected but are themselves an
integral part of the turbulent cascade. Finally, the similarity
of the development of high PVI events in the solar wind
and simulation offers the suggestion that the sources of the
solar wind, perhaps near the Alfvénic critical region, may be
incoherent. On the other hand, it would be difficult to imagine
that the turbulence and structures seen in the lower corona
are Gaussian and incoherent. Instead, lower coronal turbulence
appears to be highly intermittent (Dmitruk et al. 1998; Rappazzo
et al. 2010). Therefore, the present suggestion is that the way
in which the solar wind is processed through the trans-Alfvénic
region acts to destroy coherence, which then is dynamically built
up again through nonlinear interactions in the super-Alfvénic
wind. The latter point is more conjectural however and any such
determination will await exploratory missions such as the Solar
Orbiter and Solar Probe.
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