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ABSTRACT Local intracellular Ca21 signals result from Ca21 flux into the cytosol through individual channels or clusters of
channels. To gain a mechanistic understanding of these events we need to know the magnitude and spatial distribution of the
underlying Ca21 flux. However, this is difficult to infer from fluorescence Ca21 images because the distribution of Ca21-bound
dye is affected by poorly characterized processes including diffusion of Ca21 ions, their binding to mobile and immobile buffers,
and sequestration by Ca21 pumps. Several methods have previously been proposed to derive Ca21 flux from fluorescence
images, but all require explicit knowledge or assumptions regarding these processes. We now present a novel algorithm that
requires few assumptions and is largely model-independent. By testing the algorithm with both numerically generated image
data and experimental images of sparklets resulting from Ca21 flux through individual voltage-gated channels, we show that it
satisfactorily reconstructs the magnitude and time course of the underlying Ca21 currents.

INTRODUCTION

The liberation of Ca21 ions from intracellular stores into the

cytosol is used as a signaling mechanism by virtually all cell

types to regulate different functions. Recent advances in

imaging techniques—including enhanced fluorescent Ca21

indicators and confocal imaging systems with improved

temporal (1 ms) and spatial (;0.5 mm) resolution (Pawley,

1995)—provide a powerful tool to study these signals. They

have revealed the existence of a wide range of events

involving the release from single channels, clusters of

channels, and global waves (Cheng et al., 1993; Yao et al.,

1995). A complete description of these signals requires

a detailed knowledge of the magnitude and kinetics of the

underlying Ca21 flux or current. These cannot readily be

inferred from fluorescence Ca21 images. In the first place,

the images reflect Ca21 ions bound to the fluorescent indi-

cator. Secondly, but more difficult to solve, Ca21 ions do not

diffuse freely upon release: endogenous buffers and pumps

affect their spatiotemporal dynamics in ways that are hard to

determine.

Various methods for estimating Ca21 release fluxes have

been presented in the literature, especially in the case of

sparks in cardiac, skeletal, and smooth muscle. As described

in Rios and Brum (2002), they can be classified in two

categories:

1. Forward calculations, in which a model of intracellular

Ca21 dynamics is numerically simulated, and the fluo-

rescent image that such a model produces is compared

to the experimental observation (see, e.g., Smith et al.,

1998; Baylor et al., 2002; Izu et al., 2001).

2. Backward calculations, in which, starting from a given

image, the underlying Ca21 current is computed (see,

e.g., Blatter et al., 1997; Rios et al., 1999; Rios and

Brum, 2002; Soeller and Cannell, 2002).

Regardless of the approach, all of these methods require

a working model of cytosolic Ca21 dynamics. Moreover,

quantitative data including the kinetics and concentrations of

endogenous buffers and pumps are needed (Smith et al.,

1998; Izu et al., 2001; Rios and Brum, 2002; Soeller and

Cannell, 2002; Blatter et al., 1997; Lukyanenko et al., 1998;

Rios et al., 1999), and have been obtained either from

experimental studies or by adjustment of parameters within

the model to provide the best agreement with the

observations (Blatter et al., 1997; Timmer et al., 1998). In

most cell types, however, knowledge of their intracellular

Ca21 buffers is much less complete than in well-character-

ized muscle cells, so that these approaches are not generally

applicable.

We propose here a novel, model-independent algorithm to

obtain Ca21 release fluxes from intracellular fluorescence

images, which is particularly suitable for images obtained by

optical single ion channel experiments. The method is

applicable when Ca21 release is clearly localized in space

and time. It only needs a priori information on the kinetics

and diffusion parameters of the dye and relies on geometric

assumptions that allow us to extrapolate line-scan informa-

tion into information on the whole space. It does not need,

however, any a priori information on the endogenous

buffers, pumps, or leaks present in the experimental system.

The underlying concept is that the spatiotemporal series of

the Ca21 concentration inherently carries information of

how the various processes at work affect its evolution, an
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idea that is drawn from the theory of time-series analysis

(Packard et al., 1980; Mindlin et al., 1990, 1998; Gouesbet,

1992). In this article we present a detailed description of the

algorithm, and verify its accuracy by testing it with both

numerically generated images and experimental confocal

fluorescence images of Ca21 flux through single voltage-

gated channels expressed in Xenopus oocytes.

METHODS

The algorithm: basic assumptions

Fluorescence images provide information on the distribution of Ca21-bound

dye, [CaB]. Given that we are interested in images obtained in oocytes, we

assume that the dye only reacts with Ca21 according to the kinetic scheme

Ca
21 1B �kon

koff

CaB; (1)

where kon and koff are the kinetic rate constants from which the dissociation

constant, Kd [ koff/kon, is obtained. We assume that the dye, B, is initially

distributed uniformly in space, that there are no dye sources or sinks during

the time course of the experiment, and that its diffusion coefficient is not

changed when Ca21 binds to it. Then, the total dye concentration, [B]T ¼
[B] 1 [CaB], remains equal to its uniform (known) initial value at any

given time and spatial point. Thus, the evolution of [CaB] is given by

@½CaB�
@t

¼ �R1DB=
2½CaB�; (2)

where DB is the dye diffusion coefficient and R is the reaction term,

R ¼ �kon½Ca21�ð½B�T � ½CaB�Þ1 koff ½CaB�: (3)

We can compute the time and spatial derivatives of [CaB] from the

experimental records. In this section we will assume that they can be

computed with perfect accuracy and discuss their errors later. Now, line-scan

images only contain data along one spatial dimension, x. We then assume

that the release of Ca21 has spherical symmetry (this is satisfied, in

particular, if the release occurs over a very small region that can be treated as

a point), and that there is nothing else around that can break this symmetry.

With these assumptions, the solution always has spherical symmetry (i.e., it

only depends on time and the distance, r, from the site of release). If the line-

scan goes through the center of the release region, we can compute =2[CaB]

using only the information along the direction, x. We analyze later what

happens when the line-scan does not go exactly through the center of the

release site. Calculating =2[CaB] and @[CaB]/@t we can obtain from Eq. 2

the value of R at every spatial point and time. Using Eq. 3, we can then

obtain a spatiotemporal series of the variable of interest, [Ca21]. Up to this

point, our method is similar to previous ones (Blatter et al., 1997). It is also

similar to the method proposed recently in Soeller and Cannell (2002),

although it differs in the fact that here we assume that the dye only binds to

Ca21.

Upon its release Ca21 diffuses, reacts with buffers, and is recaptured by

different pumps. Of all these processes, we want to single out three—two for

which we know some details, the reaction with the dye and diffusion; and the

other that we want to compute, the Ca21 source, QCa. In this way we write

the evolution equation for Ca21 as

@½Ca21�
@t

¼ R1DCa=
2½Ca21�1M1QCa; (4)

where DCa is the free diffusion coefficient of Ca21 (;220 mm2/s, Allbritton

et al., 1992) and the term M represents the sum of all the processes whose

details are poorly known in each experiment, which usually depend on the

peculiarities of the cell that is being observed. If we had a complete model of

the intracellular Ca21 dynamics, then we would be able to write an

expression for M, which would depend on other variables, such as the

concentrations of the endogenous Ca21 buffers and of the pumps (this is

what is done in Blatter et al., 1997; Rios and Brum, 2002; Rios et al., 1999;

Soeller and Cannell, 2002). Therefore, Eq. 4 would have to be solved

coupled to evolution equations for these other variables (or, equivalently, as

done in Blatter et al., 1997; Rios and Brum, 2002; Rios et al., 1999; Soeller

and Cannell, 2002, once [Ca21] is known as a function of space and time, the

evolution equations for these other variables could be integrated, provided

that we knew all the kinetic parameters and initial concentrations that,

together with [Ca21], determine their evolution). Unfortunately, when the

information about the buffers, pumps, or leaks in the experimental condition

is insufficient, it is not possible to write an accurate expression forMwithout

introducing ad hoc assumptions. Even when this can be done, the model

validation itself can be a difficult (if not impossible) task and usually, the

model lacks universality.

As shown in Appendix 1, all the dependence ofM(r, t) on variables other

than [Ca21] can be recast in terms of the values of [Ca21] at (r, t) and at other

spatial points and previous times, (r9, t9). Due to the dissipative and diffusive
nature of the processes involved in M, the dependence with [Ca21](r9, t9)
becomes weaker as (r9, t9) gets further away from (r, t). Performing a series

expansion around (r, t), we can rewrite M in terms of [Ca21](r, t) and space

and time derivatives of [Ca21] of relatively low order. The distinguishing

feature of our method is the assumption that M can be approximated by this

type of ansatz and that its functional dependence can readily be determined

from the data. Namely, we assume that M can be written as

M ¼ g
@½Ca21�

@t
1 f=

2½Ca21�1 hj=½Ca21�j2 1 k; (5)

where g, f, h, and k are unknown functions of the free Ca21 concentration,

[Ca21], to be determined by the algorithm.We see from Eq. 5 that there is no

term of the form v � =[Ca21] (a term proportional to a first derivative with

respect to the spatial coordinates). This is so because there is no privileged

direction in the problem due to the assumption of the spherical symmetry.

Thus, we have gone to second order in space, keeping those terms that

respect the spherical symmetry.

Even if we insert Eq. 5 in Eq. 4, Eq. 4 still has the unknown that we want

to determine: the Ca21 source,QCa. The fact that Ca
21 release is localized in

space and time implies that QCa vanishes away from the source and

everywhere in space when Ca21 release ceases. Thus, there are points of the

experimental record where QCa ¼ 0 andM is then the only unknown term of

Eq. 4. Using the ansatz (Eq. 5), we can obtain numerical approximations to

the unknown functions g, f, h, and k from the points of the record where

QCa ¼ 0. Once we have these functions, we then know M as a function of

[Ca21] and its derivatives. Therefore, the only unknown of Eq. 4 is now Qca.

So, computing the various space and time derivatives that are needed at

the points where QCa 6¼ 0, we can obtain Qca from Eq. 4 simply by doing

QCa ¼ � R � DCa=
2[Ca21] � M 1 @[Ca21]/@t. Implicit in this method is

the assumption that the way in which the other processes affect the

spatiotemporal behavior of [Ca21] can be written uniformly throughout the

cytosol as a function of [Ca21] and its derivatives. This is equivalent to say

that the distribution of pumps and the total buffer concentrations are uniform

in the cytosol. These assumptions are always present in the backward

methods used to obtain the Ca21 current from fluorescent images.

The algorithm: numerical implementation

We now describe the algorithm we have developed following the ideas

outlined in the previous section. It has six main steps. Fig. 1 shows an

overview of the procedure. The images of Fig. 1 correspond to numerically

generated experiments obtained by simulating Eqs. 15–17 with a source

of the form (Eq. 19), with Rf ¼ 0.15 mm, ts ¼ 3 ms, and td ¼ 10 ms.

The experiment on the top has I ¼ 0.1 pA and the one on the bottom

I ¼ 0.3 pA.
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Step 1: obtaining [CaB] from fluorescence data

We assume that there is a linear relation between the fluorescence, F, and
[CaB] of the form

½CaB�ðxj; tkÞ ¼ ½B�T
Fðxj; tkÞ
Fmin

� 1

Fmax

Fmin

� 1

; (6)

with F(xj, tk) the fluorescence at pixel (j, k), of coordinates xj ¼ jDx and tk ¼
kDt, where Dx and Dt are the spatial and temporal resolutions of the

experiment, respectively, and the spatial coordinate x is the distance along

the line-scan. Fmin and Fmax are the minimum and maximum values of the

fluorescence corresponding to Ca21-free and Ca21-saturated dye. The ratio

Fmax/Fmin can be determined, a priori, for each experimental condition. The

meaningful information is contained in all the data points with either x. 0 or

x , 0, given that the point x ¼ 0 coincides with the center of the source.

Thus, there is redundant information if the spherical symmetry assumption is

correct. We then average the information at each point x . 0 with the

information from the corresponding negative value (x , 0) and work with

a half-signal image.

Fig. 1 A shows the spatiotemporal evolution of the fluorescence, as

typically obtained in line-scan images, for the two numerical experiments.

Fig.1 B displays the distribution, [CaB], computed from Eq. 6 using the

fluorescent distribution of Fig. 1 A after taking the average of F at plus and

minus x, for each x. We use a pseudo-color scale to quantify concentration

values: red corresponds to the highest concentration whereas blue corre-

sponds to the basal one.

Step 2: obtaining the free calcium concentration

Once having [CaB], we obtain the reaction term R from Eq. 2,

R ¼ DB=
2½CaB� � @½CaB�

@t
: (7)

[Ca21](r, t) is computed using Eqs. 3 and 7,

FIGURE 1 Outline of the main steps in-

volved in the flux reconstruction algorithm.

(A) Space-time plot of the fluorescence

distribution of the two (numerically gener-

ated) experiments with which we are going to

work. Both experiments are needed for the

application of the algorithm but the calcium

release flux will only be determined for the

one on the top. (B) [CaB] is shown on the

same space-time plot as in A. [CaB] is

obtained from the fluorescence data using

Eq. 6. (C) [Ca21] is shown on the space-time

plot of A. [Ca21] is obtained from [CaB]

using Eq. 8. (D) Same figure as in C but with

a grid superimposed onto the regions where

we assume that QCa ¼ 0. For illustration

purposes, the grid that is drawn is much more

sparse than the one that we actually use for

our calculations (which would be undistin-

guishable on the scale of the figure). We

compute M at each point in the gridded

regions using Eq. 9. (E) In Step 4, the values

of [Ca21] are binned according to Eq. 10 (in

the example we use N ¼ 50). We show in the

figure the number of data points, (ri, ti), in the

gridded regions of D as a function of Ci. At

least four data points are necessary for eachCi

to apply the method. (F) The functions g

(dimensionless), f (in units of mm2/s), h (in

units of mm2/(mM/s)), and k (in units of mM/

s), as a function of [Ca21], obtained by

interpolating the solution of the overdeter-

mined system of the expressions in Eq. 11.

Circles correspond to the solutions that

minimize the merit function (Eq. 35) at each

binned [Ca21] value (see Appendix 2). The

smooth curves correspond to fits to the circles

using fifth-degree polynomials. Knowing the

smooth functions, we have an expression for

M as a function of [Ca21] and its derivatives

via Eq. 5, for all the values of [Ca21] that the

experiment on the top of A attains. Inserting

this expression in Eq. 4, we obtain the source

distribution, QCa, in space and time for this

experiment as shown in G.

An Algorithm to Derive Calcium Fluxes 2405

Biophysical Journal 88(4) 2403–2421



½Ca21� ¼ koff ½CaB� � R

konð½B�T � ½CaB�Þ: (8)

Notice that Eq. 8 contains a term of the form [B]T � [CaB] in the

denominator. Therefore, the method will work provided that this term is

away from zero, a condition that is met when the dye is not saturated. That is

exactly the condition under which imaging experiments are done: dye

saturation is avoided to follow [Ca21] changes as closely as possible (e.g.,

compare the maximum value of [CaB] in Figs. 1 and 7 with the total dye

concentration, [B]T ¼ 40 mM). Also notice that obtaining R and [Ca21]

involves taking numerical derivatives with respect to time and space. As

numerical differentiation is very sensitive to noise in the input data, filters

might be used to minimize noise amplification. As explained before, for the

calculation of the Laplacian we assume spherical symmetry around the

center of the source.

Step 3: obtaining M away from the source

Using Eq. 4, M(r, t) is determined locally in regions away from the Ca21

source, i.e., whereQCa¼ 0. The gridded region shown in Fig. 1D represents

the region where we assume that no source is present. Thus, for the data

points within this zone we have

M ¼ @½Ca21�
@t

� R� DCa=
2½Ca21�: (9)

In the case of Fig. 1 we know that the Ca21 source spreads over a region

of radius 0.15 mm; it turns on at t ¼ 3 ms and lasts for 10 ms. However, for

experimental data, mild a priori assumptions about the spatiotemporal

distribution of the release source must be made at this point, since the precise

morphology of the source is not generally known. In these cases, we discard

a region of the spatiotemporal record that overestimates the typical source

size and duration, trying to keep enough data points in the gridded regions

with concentrations different from basal. If there are Ntot data points within

the gridded regions, we have Ntot equalities of the form (Eq. 9) from

which we can obtain M as a function of (r, t) for values of r and t such that

QCa(r, t) ¼ 0. As explained in the next step, Ntot needs to be relatively large

for the algorithm to work.

Step 4: binning the values of [Ca21] attained during a
series of experiments

The previous step providesM as a function of (r, t) for values of r and t such
that QCa(r, t) ¼ 0. However, we want M as a function of [Ca21] and its

derivatives so that we can use Eq. 5, the ansatz, to determine the four

unknown functions of [Ca21], f, g, h, and k. To this end, we compute the

minimum, [Ca21]min, and maximum, [Ca21]max, values of [Ca
21], attained

in regions with QCa¼ 0 by the whole set of experiments that we are going to

use (all data points in the gridded regions of Fig. 1 D). Then, we bin the

interval [[Ca21]min, [Ca
21]max] in a finite set of values. Thus, we define

a vector of free Ca21 concentration values as

Ci ¼ ½Ca21�min 1DC; 1 # i # n; (10)

where DC [ ([Ca21]max – [Ca21]min)/n and n is the number of bins of

[Ca21] values that we will consider. We then determine all the points, zj,

k(Ci) [ (rj, tk)(Ci), in the gridded regions of the images such that Ci #

[Ca21](rj, tk)(Ci), Ci11. Clearly, there is more than one data point, zj, k(Ci),

for each value of Ci. This is illustrated in Fig. 1 E where we plot the total

number of grid points, N (coming from all the experiments that are being

used), whose [Ca21] value is contained in the bin of concentration, C. As C

increases, N decreases significantly. In particular, N(C) $ 4, to be able to

apply the algorithm. Therefore, all values of C such that N(C) , 4 are

discarded. The arrow in Fig. 1 E indicates this cutoff and the inset shows

a zoom of the figure around the cutoff value in this example. As described

later in further detail, the value of DC must be chosen so as to guarantee the

applicability of the algorithm for a sensible range of [Ca21] values.

Step 5: obtaining the functions g, f, h, and k

The binning of [Ca21] reduces the functions f, g, h, and k to vectors defined

as fi ¼ f(Ci), gi ¼ g(Ci), hi ¼ h(Ci), and ki ¼ k(Ci), 1# i# n. Therefore, we
now seek approximations to these vectors. For each value of Ci, we have as

many binned versions of Eq. 5 of the form

Mðzj;kðCiÞÞ ¼ gi

@½Ca21�
@t

jzj;kðCiÞ 1 fi=
2½Ca21�jzj;kðCiÞ

1 hij=½Ca21�j2zj;kðCiÞ 1 ki; (11)

as data points zj, k(Ci). The only unknowns in Eq. 11 are fi, gi, hi, and ki, 1# i

# n. Thus, to determine their values, we need at least four data points, zj,

k(Ci) for each i, 1 # i # n. This imposes some constraints on the allowed

values of DC. We choose DC so that the system (Eq. 11) is overdetermined

(the number of data points, zj, k(Ci)$ 4, for every i). In this way, fi, gi, hi, and

ki may be found using standard minimization or singular value de-

composition techniques (see Appendix 2). Once gi, fi, hi, and ki are found,

a global fitting of each function dependence on [Ca21] is performed (Fig. 1

F). To this end, we use a feedforward neural network which provides

a nonlinear curve fitting in terms of hyperbolic tangents. This allows us to

interpolate the value ofM at any Ca21 concentration within the range [Cmin,

Cmax]. As explained in Results, below, when working with real experimental

records, only a small proportion of the records has [Ca21] values that lie

beyond Cmax and are used only for the estimation of the functions f, g, h,

and k.

Step 6: calcium release reconstruction

Finally, once the functions g, f, h, and k are known, M can be computed at

any spatial point and time using Eq. 5, even where and while there is release,

since both [Ca21] and its space and time derivatives are known at every data

point, (r, t). Now, in a given experiment, [Ca21] will be larger in the region

with QCa 6¼ 0 than in the region where there is no source. However, the

collection ofM values as a function of [Ca21] and its derivatives is obtained

in the region withQCa¼ 0. If we use the data from one experiment with only

one release event, we will not have direct information on the values ofM for

the larger [Ca21] values that occur in the region with QCa 6¼ 0. One

possibility to overcome this difficulty is to extrapolate the functions, f, g, h,

and k, to obtain estimates of their values for these larger [Ca21], using the

expressions obtained for the lower concentrations. The other possibility is to

determine these functions using various spatiotemporal regions, coming

either from around different release sites or from different experiments done

on the same cell (as illustrated in Fig. 1 A, where the upper image
corresponds to a low influx Ca21 current and the bottom image to a higher

current one). In this way, the information that comes from the region around

the site with the largest release will be used only to determine g, f, h, and k.

The algorithm will then be applied to obtain the release flux from the regions

with smaller release. We mainly follow this last approach. In this way, we

cannot obtain an estimate of what the underlying Ca21 current is at the site of

largest release. As discussed in Appendix 2, we obtained better current

estimates setting f¼ g¼ h¼ 0 from the beginning and using only k 6¼ 0. All

figures shown in the article, with the exception of Fig. 1, were done in this

way.

Once we haveM at every (r, t) for a particular experiment we can go back

to Eq. 4 and solve for QCa,

QCa ¼ @½Ca21�
@t

� R� DCa=
2½Ca21� �M: (12)
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Eq. 12 gives the source distribution in space and time in units of concen-

tration per unit time, e.g., mM/s (Fig. 1 G). Integrating QCa over the volume

where it is non-negligible we can also obtain the number of Ca21 ions that

enter the region per unit time which, in turn, can be expressed as an electrical

current, I, using the known information on the ion’s charge. If QCa(r, t) is in

mM/s, then the current could be obtained, in pA, as

IðtÞ ¼ g

Z rsource

0

QCaðr; tÞ4pr2dr; (13)

where g ¼ 1.92 3 10�4 pC/mm3 and we choose rsource(t) so thatZ ð11zÞrsource

rsource

QCaðr; tÞr2dr # k

Z rsource

0

QCaðr; tÞr2dr; (14)

with z ¼ 0.5, and k ¼ 0.3.

Numerical simulations

Most of the numerical simulations that we use to test the accuracy of the

reconstruction method correspond to a model with Ca21, dye, and one extra

buffer. The dye, B, and the extra buffer, E, react with Ca21 according to

a kinetic scheme like the one in Eq. 27 with reaction rates of kBon, k
B
off and k

E
on,

kEoff , respectively. Assuming that both the dye and the buffer are initially

uniformly distributed in space and that the Ca21 bound and the free cor-

responding buffer diffuse at equal rates, then the evolution equations are

@½Ca21�
@t

¼� k
B

on½Ca21�ð½B�T � ½CaB�Þ1 k
B

off ½CaB�
� k

E

on½Ca21�ð½E�T � ½CaE�Þ1 k
E

off ½CaE�
1DCa=

2½Ca21�1QCa 1 quptake; (15)

@½CaB�
@t

¼ k
B

on½Ca21�ð½B�T � ½CaB�Þ � k
B

off ½CaB�
1DCaB=

2½CaB�; (16)

@½CaE�
@t

¼ kEon½Ca21�ð½E�T � ½CaE�Þ � kEoff ½CaE�
1DCaE=

2½CaE�; (17)

where [B]T and [E]T are the dye and buffer total concentrations, DCa, DCaB,

and DCaE are the diffusion coefficients of free Ca21, dye, and extra buffer,

respectively, and quptake represents the Ca21 uptake, which is given by

(Soeller and Cannell, 2002)

quptake ¼ k1½Ca21�m
k
m

2 1 ½Ca21�m: (18)

All parameters of the model are listed in Table 1 (the parameters of the

dye B correspond to those of fluo-4 dextran, and the buffer E to those of

EGTA). For some numerical experiments we take k1 ¼ 0. The set of

expressions in Eqs. 15–17 is not a realistic model of Ca21 dynamics inside

a cell, but is useful to test the performance of the algorithm. For the Ca21

release term, QCa, we assume that it is different from zero on a sphere of

radius Rf (0.15 mm # Rf # 1.0 mm). The Ca21 release time course is either

a square step

QCa ¼ aI; if r,Rf and ts , t, ts 1 td;
0 otherwise;

�
(19)

or a step with an exponential tail,

QCa ¼
aI; if r,Rf and ts, t, ts1 td;

aI exp �t�ðts1 tdÞ
t

� �
if r,Rf and t. ts1 td;

0 otherwise;

8><
>:

(20)

where a ¼ 5:2 3 103mM mm3=ð4=3pR3
f pCÞ, so thatQca is in mM/s and I in

pA. All these simulations were started from a uniform equilibrium

distribution of all species at a resting Ca21 concentration of 50 nM. The

model equations were solved numerically using a finite difference scheme

on a spherically symmetric grid, with spatial and temporal steps of 0.01 mm

and 10�7 s, respectively.

For ideal conditions, the (numerically generated) fluorescence records

were not blurred and represented an in-focus recording through the center of

the release site. In a real experiment, each point of an image contains light

coming from a region whose typical lengths, measured as full width at half-

maximum, are Dxy ;300 nm along the focal plane and Dz ;500–700 nm in

the direction perpendicular to the focal plane, z. On the other hand, the data

acquisition system imposes limits on how often the data can be recorded: the

spatial separation between two successive experimental points is ;150 nm.

To study the influence of the microscope finite resolution and of the data

collecting process, a coarse-graining procedure was applied to the numeri-

cally simulated signals. Namely, we computed a coarse-grained fluores-

cence, F, from the well-resolved numerically computed one, F, at spatial
points separated by d ¼ 150 nm along the scanning line, (xk ¼ k d, y ¼ 0,

z ¼ 0), by convoluting F with a Gaussian,

Fðxk; 0; 0; tÞ ¼ 1

ð2pÞ3=2s2

xysx

Z
dx dy dzFðx; y; z; tÞ

3exp � ðx � xkÞ2 1 y
2

2s
2

xy

1
z
2

2s
2

z

 !" #
; (21)

where sw ¼ Dw=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið8 lnð2ÞÞp

(w ¼ xy, z). In some cases, to analyze the

effects of the blurring process by itself, we applied Eq. 21 to each data point

of the simulation (i.e., using d equal to the spatial resolution of the

simulation instead of 150 nm). In certain cases, we also applied a deblurring

procedure to the blurred data using the inverse of Eq. 21. We also analyzed

the effect of noise of realistic amplitude on the application of the algorithm

to numerical simulations. Namely, numerical simulations were performed as

described before. The resulting data were subsequently blurred according to

Eq. 21, keeping points with the space (d ¼ 0.15 mm) and time (Dt ¼ 8 ms)

resolutions of the experiments. Noise with normal distribution of standard

deviation 0.12 in units of the rescaled fluorescence (see Eq. 25) was then

added to the blurred data. This amount of noise is similar to the one observed

in the experimental records that we analyze in this article.

TABLE 1 Parameters used in the simulations with dye and one

extra buffer

Biophysical parameters Computational parameters

DCa 220 mm2/s Dr 0.01 mm

DCaB 50 mm2/s Dt 10�7s

DCaE 113 mm2/s Rf 0.15–1.0 mm

[Ca21]rest 0.05 mM td 1–15 100�3 s

[B]T 40 mM

[E]T 1000 mM

kon
B 100.0 mM�1 s�1

koff
B 400.0 s�1

kon
E 1.5 mM�1 s�1

koff
E 0.3 s�1

k1 200 mMs�1

k2 0.184 mM

m 3.9
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The assumption that the signal has spherical symmetry and that the

scanning line, x, corresponds to a radial direction, holds only if the scanning

line goes through the center of the release site. Although experimentally the

focal plane is adjusted so that the release site belongs to it, there are always

small errors and a certain offset, do, can be expected. To study how the

algorithm performs if the scanning line does not go through the center of the

release site, we took the results of the (spherically symmetric) simulations at

a chosen distance or offset, do, from the center of the source to represent

out-of-focus data. We then applied the algorithm to these out-of-focus

numerically generated data.

Finally, we also performed some tests on a more realistic model of

intracellular Ca21 dynamics, more specifically, on a modified version of the

model presented in Baylor et al. (2002) to describe Ca21 sparks in frog

skeletal muscle. The modifications we introduced are related to the way we

deal with the dye and with the Ca21 pump. First, we assume that the dye

only binds Ca21. As it currently stands, our method cannot handle situations

in which significant amounts of dye bind to proteins and fluoresce. Second,

we use Eq. 18 for the Ca21 uptake into internal stores (Soeller and Cannell,

2002). Other than that, we keep all the reactions considered in Baylor et al.

(2002), as described in Table 2, and use a source of the form (Eq. 19) with

Rf ¼ 0.15 mm, td ¼ 10 ms, and different values of I. The main goal of

these simulations is to test the performance of the algorithm when several

buffers of various kinetics are present and this modified model serves for

this purpose.

Tests performed on the algorithm

In the cases of numerically simulated images the results of the algorithm can

be readily compared with information that is available from the simulations.

In particular, we compare the time course of the total current, I(t), obtained
from Eq. 13 and the time average of its magnitude,

I [
1

td

Z ts1td

ts

dt IðtÞ; (22)

using the source predicted by the algorithm and the one used in the simu-

lation. In the case of sources of the form (Eq. 19), we also compute the time

average

Qca [
1

td

Z ts1td

ts

dt QCaðr; tÞ; (23)

using the source obtained with the algorithm and the one used in the simu-

lation. This provides information on how well the algorithm determines the

spatial spread of the source.

Experiments

Experiments were performed on defolliculated Xenopus laevis oocytes

expressing N-type voltage-activated Ca21 channel from a1B–d and b3-

subunits as previously described in Demuro and Parker (2003). Briefly, 2–4

days after mRNA injection, oocytes were injected with fluo-4 dextran (final

intracellular concentration 40 mM) and 1 h later were placed in a chamber

bathed in Ringer’s solution including 6 mM calcium. Fluorescence signal

was detected through a confocal pinhole providing lateral and axial

resolutions of;300 and 500 nm, respectively. Experiments were performed

in line-scan mode (0.15 mm/pixel; 8 ms/line) and near-membrane images

were constructed and analyzed using routines written in the IDL pro-

gramming language. Membrane voltage was normally clamped at �60 mV

using a conventional two-electrode voltage-clamp technique, and transient

Ca21 signals were evoked by stepping the oocyte membrane to more

positive voltage than �25 mV. Strong polarization up to 130 mV evoked

spatially homogeneous fluorescence signals that progressively become more

localized and stepwise during weaker voltage steps approaching �25 mV.

On the evidences presented in Demuro and Parker (2003) we consider these

pulsatile signals to rise from Ca21 influx through a single N-type Ca21

channel and refer to them as sparklets.

All data presented here were obtained using fluo-4 dextran as the Ca21

indicator. This low affinity dye showed a low fluorescence signal at basal

cytosolic free [Ca21] and a large increase in fluorescence signal in the

presence of high Ca21 concentration, such that local fluorescence signals

(DF/F) of fivefold or greater could be produced. The parameters we consid-

ered for fluo-4 dextran (low affinity, Kd ;4 mM) are: Fmax/Fmin ;20 in the

oocyte, kon ¼ 100 mM�1 s�1, and koff ¼ 400 s�1, whereas D ¼ 50 mm2 s�1.

Dye concentration in the oocyte was ;40 mM and resting Ca21

concentration was considered to be [Ca21]rest � 50 nM.

Processing of experimental signals

In the case of the experimental signals, the starting point (unless otherwise

noted) is the smoothed-out fluorescent distribution that is obtained by

averaging the raw one at each point of the space-time data file with its eight

adjacent neighbors. We then compute the (theoretical) average basal fluo-

rescence, Fb, inverting Eq. 6, using the basal concentration [CaB]b ¼
[Ca21]b[BT]/(Kd1[Ca21]b) that corresponds to [Ca21]b ¼ 50 nM, Kd ¼ 4

mM, and [BT] ¼ 40 mM. This gives

Fb

Fmin

¼ 1:23: (24)

We then compute the mean resting fluorescence at position xj on the scan

line, FrestðxjÞ, as the time average of the fluorescence value at spatial point, xj,
before there is Ca21 release. In the absence of inhomogeneities, and assuming

that [Ca21]b¼ 50 nM before there is Ca21 release, it should be Fb ¼ FrestðxjÞ
and this should be independent of (xj); i.e., FrestðxjÞ ¼ ÆFrestæ ¼ Fb. In any

real experiment, this equality is only approximate. Thus, inserting

Fb=FrestðxjÞ � 1 in Eq. 24, we obtain

Fðxj; tkÞ
Fmin

� Fðxj; tkÞ
FrestðxjÞ

Fb

Fmin

¼ 1:23
Fðxj; tkÞ
FrestðxjÞ : (25)

We use this approximation to compute [CaB] from Eq. 6. The ratio

Fðxj; tkÞ=FrestðxjÞ in Eq. 25 is the rescaled fluorescence, F/F0, which we

display in the plots of the experimental signals.

To test to what extent the results of the algorithm are affected by the

presence of noise, we smoothed out the experimental images even further

using a nonlinear function fitting obtained with a feedforward neural

network of the MATLAB Neural Network Toolbox (The MathWorks,

Natick, MA). The parameters of the fitting, which can be written in terms of

hyperbolic tangents, minimize the mean-square error between the smooth

function and the data points. We compared the results obtained starting from

these smoother images with those obtained starting from an image in which

TABLE 2 Parameters and reactions of the model with

various buffers

Constituent Resting concentration Diffusion constant

Free[Ca21] 0.05 mM 319 mm2/s

Free[Mg21] 1000 mM —

ATP 8000 mM 149 mm2/s

Troponin 360 mM 0

Parvalbumin 1500 mM 15.9 mm2/s

B 40–1000 mM 50 mm2/s

Reaction Forward rate Reverse rate KD

Ca21 1 ATP�CaATP 15.6 mM�1 s�1 34467 s�1 2200 mM

Ca21 1 B�CaB 100 mM�1 s�1 400 s�1 4 mM

Ca21 1 Parv�CaParv 47.9 mM�1 s�1 0.574 s�1 0.012 mM

Mg21 1 Parv�MgParv 0.379 mM�1 s�1 3.45 s�1 91 mM

Ca21 1 Trop�CaTrop 101.7 mM�1 s�1 132 s�1 1.3 mM
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only the eight-neighboring preprocessing had been done. We show that

comparison in Results, below.

Error estimation

To estimate the error involved in Eq. 25, we compute the average resting

fluorescence over all the pixels of the image, Npixels, before Ca21 release,

ÆFrestæ[+
j
+

k
ðFðxj; tkÞ=NpixelsÞ, and its standard deviation, sF ¼ ð+

j
+

k

ðFðxj; tkÞ � ÆFrestæÞ2=NpixelsÞ1=2. We assume that ÆFrestæ¼ Fb. We then

assume that the standard deviation of the basal fluorescence level, at any

given point (before Ca21 release), is given by sF ¼ sF=
ffiffiffiffiffiffiffiffiffiffiffiffi
Npixels

p
. Therefore,

we assume that the error of approximating Fðxj; tkÞ=Fmin by Eq. 25 is

Fðxj; tkÞ =FrestðxjÞsF=Fmin. Furthermore, the measurement of the fluores-

cence itself always carries an error, DF. Taking these two sources of error

into account and using Eqs. 24, 6, and Fb ¼ ÆFrestæ, these errors translate into
an error in [CaB] given by

D½CaB� ¼ 1:23½B�T
Fmax

Fmin

� 1

Fðxj; tkÞ
FrestðxjÞ

sF

ÆFrestæ
1

DF

Frest

� �
: (26)

For the experimental signals, we assume that the photon counting process

is a Poisson process, so that the square of the standard deviation and the

mean number of photons counted for an event of a given size are the same.

Thus, we assume that DF=
ffiffiffi
F

p ¼ sF=
ffiffiffiffiffiffiffiffi
Frest

p
. Equation 26 with DF ¼

sF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F=Frest

p
is the starting point for the error calculations in the case of the

experimental signals. In the case of the noisy numerical simulations in which

the normally distributed noise is added directly to the (blurred) [CaB]
distribution, we use Eq. 26 with DF=Frest ¼ 0:12 and sF ¼ 0. In the case of

the noiseless numerical simulations we assume that [CaB] has no errors.

Once [CaB] is known, the next step of the algorithm requires the

calculation of time and space derivatives. To calculate the first derivative of

a function,F, at time ti, we take a total of three data points,F(ti–1),F(ti), and

F(ti11) and compute the slope of the straight line that gives the best fit to

those three data points using least squares. In this way we also obtain an

error associated to the derivative. Space and higher derivatives are computed

similarly. These errors are then propagated so as to obtain the errors of all the

quantities of interest. The fitting procedure in Step 5 of the algorithm

introduces new errors. As explained in Appendix 2, this fitting is done by

minimizing, for every binned Ca21 concentration value, Ci—the sum of the

square of the difference between the left- and right-hand sides of Eq. 11. As

a result of this process, the errors in gi, fi, hi, and ki are determined in

a standard way (see Appendix 2). These errors are then propagated so as to

obtain an error in M which then propagates into an error for QCa and,

consequently, for the current that the algorithm gives.

Kinetic data obtained from the
experimental records

The experimental records provide a visualization of Ca21 release upon

individual channel openings. Thus, given the time series of the reconstructed

current, I, it is possible to obtain some kinetic information, such as the mean

rising, open, and closing times of the channel. In this article we focus on the

open time, to, which, for each event, we compute as to ¼ t2 – t1 where I(t2)¼
I(t1) ¼ max I/2, with max I as the maximum value attained by the current

during the event of interest. For comparison, we also compute it using the

time series of the fluorescence averaged over a 0.45-mm region around the

center of the release, as done in Demuro and Parker (2003).

RESULTS

Numerical tests of the reconstruction algorithm

We show here the results of applying the algorithm to

numerically simulated images for which we know all the

details, so that we can compare the estimates that the algo-

rithm gives with the actual values used in the simulations.

In particular, we investigate how well the algorithm can

determine the source size and geometry, the time course of

Ca21 release, and the total current. The numerical simulations

were performed with the resolutions listed in Table 1. How-

ever, only points separated by 10�4 s in time were kept for

the images and the reconstruction, unless otherwise noted.

Steplike single source

The first set of tests corresponds to simulations of Eqs. 15–17

with Ca21 release of the form in Eq. 19. One such example is

the one displayed in Fig. 1, for which Rf 5 0.15 mm, ts 5 3

ms, and td 5 10 ms. We can observe in Fig. 1 G that the

algorithm determines the spatial distribution of the Ca21

source and its temporal time course quite well: the source

fades away for radii greater than 0.15 mm and times larger

than 13 ms. We can also observe that the fitted functions f, g,
and h are relatively small for large enough [Ca21], and that

the individual values, fi, hi and gi, obtained for each binned

[Ca21] value are widely dispersed around the mean that the

global fitting provides. For this reason, we tested the

performance of the algorithm when we set f, g, and h
exactly equal to zero obtaining current estimates that were

20% better (see Appendix 2). All the figures that we

subsequently show in this article have been obtained in this

way.

We show in Fig. 2 a plot of the magnitude of the

reconstructed current obtained via Eqs. 13 and 22 as a function

of the one used in the simulations, I, for simulations donewith

Rf 5 0.15 mm, ts 5 3 ms, and td 5 10 ms. The slope of the

linear fitting is 0.96 6 0.04. This figure was done using

simulations with I up to 3.9 pA.

We analyze now the algorithm’s ability to distinguish

between different source radii and step durations. To this

end, we performed simulations with various source radii or

FIGURE 2 Application of the algorithm to data generated by numerical

integration of Eqs. 15–17 with Eq. 19 as a source. The currents obtained with

the algorithm are shown as a function of the ones used in the simulations.

The best linear fit to these data of slope 0.96 6 0.04 (dotted line) and the

identity function are also plotted (solid line).
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release duration and applied Step 6 to obtain QCa, using the

functions, g, f, h, and k obtained for similar simulations but

with fixed Rf 5 0.15 mm and td 5 10 ms. We show in Fig. 3

A the current obtained with the algorithm and the one used in

the simulations that were done with I5 1 pA, Rf 5 0.15 mm,

and three values of td. We observe that the algorithm captures

very neatly the times at which the current is turned on

(upward arrow) and off (downward arrow), providing

a correct estimate of the release current. Similarly, we

show in Fig. 3 B the ratio between the time average of the

source obtained with the algorithm and the source amplitude

used in the simulations that were done with td 5 10 ms and

three values of I and Rf keeping constant the magnitude of

QCa. We observe that the algorithm recognizes different

source sizes and estimates their radii correctly. This test

gives also a validation of our hypothesis that the functions g,
f, h, and k do not depend on the source parameters, but only

on the conditions of the environment surrounding the source.

Single source with exponential decay

The second set of tests corresponds to simulations of Eqs.

15–17 with Ca21 release of the form in Eq. 20, quptake 5 0,

Rf 5 0.15 mm, td 5 5 ms, I51 pA, and t 5 2 ms. The aim

here is to check how well the algorithm captures the temporal

behavior of the source when it does not turn off abruptly. We

show in Fig. 3 C the current used in the simulations (solid
line) and the one obtained with the algorithm (dotted line).
We observe that the algorithm does detect the exponential

decay of the release estimating its time constant with ,1%

error, as shown in Fig. 3 D.

Steplike multi-opening source

We study now whether the algorithm can distinguish

successive openings and closings of a single spherical

source. Fig. 4 A shows the Ca21 bound dye distribution from

a simulation of Eqs. 15–17 with Ca21 release of Eq. 19, with

Rf 5 0.15 mm, I 5 1 pA but where the source opens and

closes three times with pulse durations of 1, 2.5, and 1 ms,

respectively. Between a closing and the successive opening

no activity is present. In this case, only data points with r .
0.15 mm (at all times) were used to implement Steps 4 and 5

of the algorithm. Fig. 4 B shows the reconstructed source

where it can be seen how well the algorithm distinguishes

between active and inactive regions. The algorithm also

recognizes the three successive openings as well as the pulse

durations, as can be observed in Fig. 4 C, where the current
obtained with the algorithm (dotted line) is compared with

the one used in the simulation (solid line). As is apparent

from the figure, the current magnitude is estimated with the

same accuracy regardless of the duration of the release event.

Effects of defocusing and optical blurring

We show in Fig. 5 A the results obtained when we apply the

algorithm to out-of-focus numerically generated data (data

with an offset, do). The simulations are done with the same

parameters as in Fig. 2. (Circles correspond to in-focus results,
do 5 0, slope 5 0.96 6 0.04; squares to do 5 0.0707 mm,

slope5 0.816 0.04; diamonds to do 5 0.1118 mm, slope5
0.716 0.04; and asterisks to do 5 0.1414 mm, slope5 0.50

6 0.03. The solid line is the identity function, Ialgorithm 5
Isimulation.) As expected, the reconstructed current becomes

smaller as do increases. However, this trend is mitigated

when a realistic blurring is added (using Eq. 21 with Dxy 5
0.3 mm, Dz 5 0.7 mm, and d5 0.01 mm). We show in Fig. 5

B a comparison of the curves we obtain with no defocusing

or blurring (circles); with realistic blurring only (squares);
with blurring and defocusing with do 5 0.1414 mm
(triangles); and with only defocusing with do 5 0.1414

mm (asterisks). The slopes in this case are 0.96, 0.85, 0.71,

and 0.50, respectively. When we work with real images that

are generated by highly localized sources, we can address the

problem of having some offset by preanalyzing the

FIGURE 3 Algorithm’s ability to distinguish different source parameters.

The simulated data correspond to Eq. 19 (A and B), or to Eq. 20, with Rf ¼
0.15 mm, td ¼ 5 ms, t ¼ 2 ms, and k1 ¼ 0 (C and D). (A) Currents as

a function of time, obtained with the algorithm (thick dashed, dash-dotted,

and solid lines) and used in the simulations (thin dashed lines). Simulations

done with I¼ 1 pA, Rf¼ 0.15mm, and ts¼ 1 ms (indicated by an up-arrow),

and td ¼ 5, 10, and 15 ms, respectively (indicated by down-arrows). (B)

Ratio between the time average of the source obtained with the algorithm,

QCa, and the source amplitude used in the simulation, as a function of space.

Simulations done with td¼ 10 ms and I¼ 0.1 pA and Rf ¼ 0.15 mm; I¼ 3.7

pA and Rf ¼ 0.5 mm; and I ¼ 29.6 pA and Rf ¼ 1 mm, respectively (source

radii indicated by thin dotted lines). (C) Current used in the simulation (solid
line) and obtained with the algorithm (dotted line), as a function of time, for

a case with exponential decay and I ¼ 1 pA. (D) Ratio between the decay

time constants obtained with the algorithm and those used in the simulations

as a function of I.
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distribution of [Ca21]. The stationary solution of the

diffusion equation for [Ca21] in the presence of a point

source of current, I, located at the origin, is given by [Ca21]s
5414ðI=DCarÞðmMmm3=pCÞ. If we take a line-scan of this

solution along the x direction with no offset, then the distribu-
tion [Ca21]s(x) for y 5 0 5 z is highly localized around x 5
0. If we take the line-scan with an offset do [

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 1 z2

p
, the

half-width of [Ca21]s(x) is
ffiffiffi
3

p
do. Thus, if we are trying to

reconstruct sources that are contained within one pixel of the

image, then whenever we obtain a distribution of [Ca21]

whose half-width is larger than two pixels, we can conclude

that the offset is larger than the pixel size. Thus, we can use

this preprocessing to either put some bounds on the offset or

to discard certain images.

FIGURE 4 Algorithm’s ability to recog-

nize successive openings and closings of

the source. The simulated data correspond

to Eq. 19, with Rf¼ 0.15 mm, I¼ 1 pA, and

ts¼ 0, td¼ 1 ms; ts¼ 1.5 ms, td¼ 2.5 ms; ts
¼ 5 ms; and td ¼ 1 ms, respectively. (A)

Distribution of calcium bound dye from the

simulation. (B) Reconstructed source. (C)
Currents used in the simulations (solid line)

and reconstructed ones (dotted line), as a

function of time.

FIGURE 5 Effects of defocusing, blurring, finite space and time resolution, and noise on the reconstructed current. The simulations correspond to Eq. 19,

with Rf ¼ 0.15 mm, td ¼ 10 ms (except for G and H, where td ¼ 100 ms), and different values of I. The optical blurring was simulated using Eq. 21 with

different values of Dxy and Dz. Only the simulations in G and H have added noise. (A) Effects of defocusing without blurring. The offsets are do ¼ 0 (circles),

do ¼ 0.0707 mm (squares), do ¼ 0.1118 mm (diamonds), and do ¼ 0.1414 mm (asterisks). The solid line is the expected value for the current. (B) Effects

of blurring and defocusing combined. Results with no defocusing or blurring (circles), with realistic blurring only (squares), with blurring and defocusing of

do ¼ 0.1414 mm (triangles), and with only defocusing of do ¼ 0.1414 mm (asterisks). (C and D) Effects of blurring and spatial resolution without defocusing.

Results with zero blurring (circles), with Dxy ¼ 0.3 mm, Dz ¼ 0.7 mm (squares), and with Dxy ¼ 0.5 mm, Dz ¼ 0.9 mm (diamonds). In C all the data points

of the simulation were used, whereas only points separated by 0.15 mm were used in D. The slopes of the best linear fits are 0.96 (circles), 0.85 (squares),

0.78 (diamonds) in C and 0.76 (circles), 0.56 (squares), 0.48 (diamonds) in D. (E) Time-average of the source used in a simulation as a function of the line-

scan coordinate (thin solid line), and corresponding ones obtained by applying the algorithm to the simulated data after it had been blurred using Eq. 21 with

d ¼ 0.15 mm (thick solid line), and after it had been subsequently deblurred by application of the inverse of Eq. 21 (dashed line). (F) Similar to E, but for

QCa(x ¼ 0) as a function of time. (G) Effects of noise and finite temporal resolution on the magnitude of the reconstructed current. Comparison of results

with realistic blurring, finite space and time resolutions without noise (circles) and with noise (diamonds). The solid line is the expected value for the current.

(H) Effects of noise and finite temporal resolution on the time course of the reconstructed current. Reconstructed currents (solid lines) and profiles used in the

simulations (dashed lines) for an example with 0.1 pA (upper panel) and one with 0.3 pA (lower panel).
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We show in Fig. 5, C–F, the effects of the optical blurring
and of the finite space resolution when there is no offset. The

simulations are done as before, but are subsequently blurred

according to Eq. 21. In the applications of Fig. 5 C we keep

all points of the simulation (xk with d 5 0.01 mm in Eq. 21),

and in the rest, we keep points every 0.15 mm, to mimic the

spatial resolution of the experimental acquisition system.

Since fewer data points are available when d 5 0.15 mm,

only a subset of the currents reconstructed in C can be

reconstructed in D. In Fig. 5, C and D, the reconstruction

algorithm is applied directly to the blurred data with no

previous deblurring. (Circles correspond to clean data;

squares to Dxy 5 0.3 mm, Dz 5 0.7 mm, i.e., the expected

blurring in the real experiments; and diamonds to Dxy 5 0.5

mm, Dz 5 0.9 mm.) In all cases the relationship between the

reconstructed and the actual current is approximately linear

with slopes of 0.96 and 0.76 (circles), 0.85 and 0.56

(squares), and 0.78 and 0.48 (diamonds), in C and D,
respectively. In the case of the realistic blurring we also

applied the algorithm after having applied a deblurring

procedure obtaining a linear relationship of slope 0.99 for

d 5 0.01 mm and 0.73 for d 5 0.15 mm (data not shown).

Thus, the realistic blurring changes the slope only slightly

(from 0.96 to 0.85) if the high resolution of the numerical

simulation is kept. The slope changes by ;30% when only

data with the expected resolution of a real experiment is kept

(d ;0.15 mm) and the algorithm is applied directly to the

blurred data. However, by a previous deblurring of the data,

we obtain a slope that differs by only 4% from the one

obtained using the high-resolution clean data. In the case of

the experimental signals, we do not apply any deblurring

procedure since that introduces too much noise and, as

shown in Fig. 5 B, if there is an offset, working with the

blurred image could give better estimates of the current.

We show in Fig. 5 E the time average of the source used in

the simulation (dotted line), and the ones obtained by

applying the algorithm to the simulated clean data with d 5
0.15 mm (thin solid line), to the simulated data after it had

been blurred using Eq. 21 with d 5 0.15 mm (thick solid
line), and to the same data but after it had been deblurred by

application of the inverse of Eq. 21 (dashed line). We also

applied the algorithm to previously deblurred data, keeping

all the data points of the simulation, obtaining a source that is

indistinguishable from the one obtained using clean data

(data not shown). We then conclude that the difference

between the source obtained from clean data (thin solid line)
and the one obtained from blurred-deblurred data (dashed
line) is a consequence of the 0.15 mm space resolution. Fig. 5

F is similar to E, except for QCa being at the center of the

release region (x 5 0) as a function of time. The dotted line

corresponds to the simulated source and the thin solid line to

the one obtained by applying the algorithm to the clean

simulated data. We observe in Fig. 5 F that the algorithm

slightly overestimates the value ofQCa(x5 0), but that this is

compensated by an underestimation in other spatial points.

We can also observe that the spatial distribution of the source

is the feature that differs the most between the reconstructed

source and the one used in the simulation. The temporal

profile, on the other hand, including both the times at which

the source is turned on and off, are very well captured by the

reconstruction algorithm in all cases.

Effects of noise and finite time resolution

Fig. 5, G–H, shows the effects of noise and finite time

resolution when there is realistic blurring and no offset. The

simulations are done as in Fig. 5, C–F, blurring the simulated

data with Dxy 5 0.3 mm, Dz 5 0.7 mm, and keeping points

every 0.15 mm in space and every 8 ms in time. The noisy

data correspond to the addition of normally distributed noise

to the blurred fluorescence, as explained in Methods, above.

We show in Fig. 5 G the magnitude of the reconstructed

currents as a function of the ones used in the simulations

when the algorithm is applied to noiseless (circles) and to

noisy (diamonds) data. The slopes are 1.05 6 0.08 and

1.02 6 0.18, respectively. The solid line is the identity

function. As can be seen, there are no significant differences

in the magnitude of the reconstructed currents for the

noiseless and noisy cases. It must be noted that the current

estimation is improved with respect to that of Fig. 5 D
because the criterion given by Eq. 14 prescribes a larger

value of rsource(t) for the data with 8-ms time-resolution. Fig.

5 H shows two examples in which the magnitude and time

course of the currents obtained with the algorithm when

applied to the noisy data (solid lines) can be compared with

the ones used in the simulations (dashed lines). The release
events can be distinguished in both cases, although the

uniform noise level that we have added, which is relatively

large in the regions with low [Ca21], smears some of the

release events in the case with 0.1 pA.

Effects of the presence of endogenous buffers with
different kinetics

We study now the performance of the algorithm when

applied to a model with several endogenous buffers of

different kinetics. We use the model of Baylor et al. (2002)

with the modifications described in Methods, above, and the

parameters of Table 2, with [Ca21]basal 5 0.05 mM always,

regardless of the total amount of dye used. This is a model

with very large amounts of ATP and Parvalbumin, which

results in a fast capture of Ca21. In all cases, the algorithm is

able to determine the duration and spatial spread of the

source as accurately as in the cases illustrated in Fig. 3 (data

not shown). However, due to the effective Ca21 buffering by

ATP and Parvalbumin, the Ca21 current can be more or less

underestimated, depending on the dye concentration. We

show in Fig. 6 a plot of the currents that the algorithm gives

as a function of the ones used in the simulations for different

values of the total dye concentration. We observe that, for
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a total dye concentration, [B]T 5 40 mM, the estimated

current is 67% of the simulated one (solid squares) and for

[B]T 5 1 mM (asterisks), the current is 74% of the simulated

one. If [B]T is not large enough, the dye cannot compete with

all the buffers and it is unable to sense the fast [Ca21]

changes that follow release. Since the algorithm relies on

information that can be extracted from [CaB], the released

current is underestimated. However, if the [Ca21] concen-

tration dynamics can be described correctly by Eq. 4 with M
given by the ansatz (Eq. 5), then the form of the functions f,
g, h, and k should be independent of the properties of the dye
(including its total concentration) and of the release, QCa.

However, when the dye cannot sense the fast variations of

[Ca21], the functions f, g, h, and k obtained from its

corresponding [CaB] are not determined correctly and do

change with these properties. This results in a poorer

determination of the [Ca21] current, for which a correction

factor could be estimated by analyzing the change of the

functions f, g, h, and k with properties from which they

should be independent. If the functions are correctly

determined, we expect the algorithm to give a relatively

good estimate of the [Ca21] current. To check this, we used

the functions obtained for [B]T 5 1 mM to analyze the

simulations done with other values of [B]T. Namely, we

applied Steps 1–5 of the algorithm to the set of numerically

simulated images generated with [B]T 5 1 mM and

determined the function k (we set f 5 g 5 h 5 0). We

then used this function to approximate M (Eq. 5) and, using

this expression for M, we applied Step 6 of the algorithm to

the numerically simulated images generated with [B]T 5 40

mM. We show in Fig. 6 the currents we obtain in this way as

a function of the ones used in the ([B]T 5 40 mM)

simulations (open squares), which can be fitted by a linear

relation of slope 0.74. The improvement in the current value

determination (from 67 to 74% of the actual one) means that

the ansatz (Eq. 5) may capture the dynamics of the poorly

known processes, even in the presence of various buffers

of different kinetics, but that the functions that define it can

only be determined with the necessary accuracy if the dye

concentration is large enough to sense the fastest [Ca21]

changes.

Flux reconstruction of experimental
calcium signals

We now describe the results of applying the algorithm to

experimental Ca21 signals (i.e., sparklets) obtained by

averaging over eight neighbors of the spatiotemporal record,

as described in Methods, above. Fig. 7 A illustrates sparklets

arising autonomously at a localized site in response to a weak

(–20 mV) depolarization that gives a low probability of

channel opening (Demuro and Parker, 2003). The box

indicates the region of the image whose analysis we describe

in detail in the rest of the figure. We performed Steps 1–5 of

the reconstruction algorithm on images containing 20 spark-

lets. We used the spatial (0.15 mm) and temporal (8 ms)

resolution of the microscope and obtained QCa (Step 6) for

17 of them. The maximum [Ca21] of the three records for

which QCa could not be obtained were 7.01 mM, 10.79 mM,

and 18.58 mM, whereas the maximum [Ca21] value over the

rest of the records was 5.25 mM and the functions f, g, h, and
k could be determined up to [Ca21] ¼ 6.2 mM. We could

have determined the functions up to this [Ca21] value even if

we had not used the record that reached [Ca21]¼ 18.58 mM.

This shows that the maximum [Ca21] value of the records for

which the current can be inferred are of the order of half the

maximum value of those that are only used for the

determination of the functions f, g, h, and k. This implies

that this feature of the algorithm is not too restrictive, since

larger fluctuations in peak fluorescence have been observed

both in cardiac sparks (Izu et al., 2001) and in oocyte puffs

(Sun et al., 1998). In our application, the number of records

for which QCa cannot be determined is a small proportion of

the total number of records used. There are other limitations

imposed by the experimental setup. The spatial extent of the

source cannot be resolved since the pore size of an N-type

Ca21 channel is smaller than 1 nm (Hille, 2001) and the

spatial resolution of the experiment is ;150 nm. Regarding

possible offsets, we preanalyzed the [Ca21] distribution

for the images and determined that in most of them the

half-width of [Ca21] was two pixels, with a few in which it

was three. Taking into account that the optical blurring can

enlarge the apparent source size by one pixel (given that the

pixel size,;0.15 mm, is of the order of half the full-width of

the blurring box, i.e., Dxy ;0.3 mm) we think that, if there is

FIGURE 6 Application of the algorithm to numerical simulations of the

model of Table 2, with Eq. 19 as its source, with Rf ¼ 0.15 mm, td ¼ 10 ms,

and various values of I. The reconstructed currents are shown as a function

of those used in the simulations for cases with [B]T ¼ 40 mM (squares) and
[B]T ¼ 1000 mM (asterisks). Solid squares correspond to applying the

algorithm using the function k determined from the simulations with [B]T ¼
40 mM and open squares to using the function determined from the

simulations with [B]T ¼ 1 mM. The best linear fits to these data of slopes

0.67 and 0.74 (dotted lines) and the identity function are also plotted (solid

line). For clarity, the errors of the currents (;15%) are not shown.
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any offset during the acquisition process, then it is not much

larger than the pixel size. Fig. 7, B and C, display the

spatiotemporal distribution of the Ca21-bound dye complex,

[CaB], and of the term�M, determined by the algorithm,

respectively. Fig. 7 D contains the curve M ¼ k([Ca21]) and
its smooth fitting and Fig. 7 E shows the reconstructed

source, QCa. Comparing Fig. 7, C and E, we observe that�M
is ;25% of the source term, QCa, at least in the regions

where QCa is non-negligible. Using the smooth fitting shown

in Fig. 7 D and a simplified, piecewise constant (in space and

time), QCa, chosen so as to give a similar mean current as the

one given by the algorithm (see Fig. 7 F), we performed

a forward integration of Eq. 4. The spatiotemporal

distribution of the Ca21-bound dye complex, [CaB]s,
obtained in this way is shown in Fig. 7 G. Even though

the forward integration does not have any added noise and

the simplified version of the Ca21 source is limited by the

time and space resolution of the experimental record (see

Fig. 7 F), the [CaB]s distribution compares reasonably well

with the one obtained directly from the experimental record,

[CaB], both in magnitude and in time and space behavior.

The full width at half-maximum of both distributions differ

by ;10 ms when looking at the time spread, and by ;0.2

mm when looking at the spatial spread. Both differences are

very close to the time (8 ms) and space (0.15 mm) resolutions

of the experimental records (and are ,30% of the experi-

mental full widths). The differences in the maximum values

attained, on the other hand, are ;14% and ;6% for each of

the release events depicted in Fig. 7.

Fig. 7 H displays the temporal profile of the fluorescence

averaged over a 0.45-mm region (three pixels) centered

around the point of release (dashed line) and of the

reconstructed current, I, obtained from QCa by volume

integration (Eq. 13) over a semispherical region of radius

r;0.225 mm (solid line). For comparative purposes, the way

the dashed curve is computed is similar to the way the data

are processed in Demuro and Parker (2003)—i.e., as a plain

average of the three points. The maximum current obtained

with our algorithm along the time course of each event is

within the values that are expected by extrapolation of the

patch-clamp data obtained using Ba21 instead of Ca21 as the

carrier (Demuro and Parker, 2003). In fact, by application of

the algorithm to the 17 sparklets studied we obtain a mean

current I ¼ (0.139 6 0.012) pA with a standard deviation of

0.040 pA. Given our previous results, this mean value could

be a lower bound of the actual current, depending on the

accuracy with which the functions f, g, h, and k can be

determined. The effect of offset on this value should not be

as acute as in Fig. 5, because the mean is an average over 17

events, most likely, with different offsets and, in several

FIGURE 7 Experimental sparklets. (A) Line-scan image illustrating single channel events (sparklets) that arise in response to a 3-s-long depolarizing pulse.

(B) Spatiotemporal spreading of the calcium-bound dye for the events in the box indicated in A. The scale bars in B are also valid for C, E, and G. (C)
Spatiotemporal, M. (D) The curve M ¼ k([Ca21]) and its smooth fitting. (E) Source obtained by the algorithm. (F) Temporal profiles of the reconstructed

current that the algorithm predicts obtained by volume integration (Eq. 13) over a semispherical region of radius r ;0.225 mm (solid line) and of the one

derived from the simplified, piecewise constant source, QCa, used in the forward integration of the evolution equations (dashed line). (G) Spatiotemporal

distribution of the Ca21-bound dye complex, [CaB]s, obtained by numerical integration of Eq. 4 withM(Ca21) given by the smooth curve shown in D and the

simplified source from which the dashed curve of F is obtained. (H) Temporal profile of the reconstructed current (solid line) and of the measured fluorescence

averaged over a 0.45-mm region around the center of release (dashed line). For clarity, the error of the reconstructed current (;27%) is not shown.
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cases, with an offset that is contained in the same pixel as the

center of release. If we correct it by the factor we obtain in

the case with blurring and an ;0.14-mm offset, this current

estimate becomes 0.2 pA, of the order of the upper bound of

previous estimations (Demuro and Parker, 2003). This,

together with the results of the forward integration shown in

Fig. 7 G, is an indication that, in this case, the ansatz (Eq. 5)

is correctly determined from the data. To check this

assertion, we also reanalyzed all the records using the func-

tion k determined by applying Steps 1–5 of the algorithm

(setting g ¼ f ¼ h ¼ 0) to two subsets of the experimental

images, each one containing events of different duration.

Neither the functions nor the estimated current changed

significantly (we obtained I ¼ (0.130 6 0.012) pA and I ¼
(0.135 6 0.010) pA using each subset). Regarding the

temporal profile of the current, although we do not obtain

a perfectly square shape, we can observe in Fig. 7 H that the

timescale of variation of the fluorescence when Ca21 release

starts or ends is (slightly) slower than that of QCa or I. This
sharper time-resolution of the reconstructed current also

allows a better determination of the mean open time of the

channel, which is closer to the value obtained from patch-

clamp experiments. In particular, we show in Fig. 8 a plot of

the open time, to, computed using the time course of the

fluorescence averaged over three pixels (to(F)) as a function
of the one computed using the reconstructed current (to(I)).
We can roughly relate both times linearly with a slope 1.58

6 0.55. As described in Demuro and Parker (2003), the

events that can be observed with this optical technique are

contained in the tail of the distribution of open times (i.e.,

very brief events are unobservable). By doing statistics over

many events it is still possible to adjust the observations by

an exponential distribution that gives information on the

mean open time of the whole population of events (Demuro

and Parker, 2003). We cannot perform such statistical

analysis directly on our data because we do not have

a sufficient number of events. However, by using the linear

relationship to(F) ;1.58 to(I), we can transform the mean

open time, to(F), obtained in Demuro and Parker (2003) into

a mean open time for the current. We obtain to(I) � (17.8 6
6.2) ms, which is closer to the one obtained with patch-clamp

experiments, to ¼ 11.5 ms (Demuro and Parker, 2003).

The results displayed in Figs. 7 and 8 were obtained

starting from records in which the acquired data had been

averaged over eight adjacent neighbors. This smoothing

procedure is very mild and the image remains quite noisy. To

put bounds to the errors that the noise introduces when the

algorithm is applied to real experimental data, we have

applied a second (stronger) smoothing procedure to the

records before applying the algorithm, as explained in

Methods, above. We show in Fig. 9 A the temporal profiles

of the fluorescence for the noisy (thin lines) and the smooth

(thick lines) records, and in Fig. 9 B those of the currents

obtained by applying the algorithm to both types of records.

We show in Fig. 9 C the maximum current obtained using

the smooth records (max(Is)) as a function of the maximum

values obtained using the noisy ones (max(In)), for 14 of the

experimental records. There is a linear relationship between

these two quantities of slope 1.06 and ordinate�0.01.

Furthermore, if we associate to each point of the smooth

record an error given by the absolute value of the difference

with respect to the corresponding value in the noisy record and

propagate this error as explained in Appendix 1, we obtain an

error,DIs, in the smooth current, Is, such that the noisy current,
In, satisfies Is – DIs # In # Is 1 DIs at every time. This

confirms the conclusions of Fig. 7 showing that the algorithm

is stable against noise.We can also observe in Fig. 7,A–B, that
relatively rapid temporal changes of the noisy signal translate

into brief closing and opening events if we work with the

noisy signal, and disappear whenworkingwith the smoothed-

out one. This is not a particular problem of the algorithm, but

is common to analyzing any type of noisy record. A special

treatment is needed to distinguish between real opening

events and fluctuations when the openings are very brief, and

this goes beyond the scope of this article.

DISCUSSION

Summary

We present a novel algorithm that reconstructs, using

a minimum number of assumptions, the Ca21 fluxes

underlying line-scan fluorescence images of local cytosolic

Ca21 transients (e.g., sparklets and puffs). The algorithm

belongs to the backward-calculation class, in which the

underlying Ca21 current is inferred from the fluorescent

image (Blatter et al., 1997; Rios et al., 1999; Rios and Brum,

2002; Soeller and Cannell, 2002). Most previous implemen-

tations of this method explicitly include known binding

parameters for cytoplasmic Ca21, although in some cases

FIGURE 8 Open time obtained from the time series of the fluorescence as

a function of the one obtained using the reconstructed current for all the

events whose current we could determine using the algorithm. The relation-

ship is approximately linear, with slope 1.58.
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(Blatter et al., 1997) certain parameters are adjusted to

provide the best agreement with the observations. However,

in all cases, a defined model of the intracellular Ca21

dynamics has always been required. The main contribution

of our algorithm is the lack of requirement of a detailed

explicit model for this dynamics. Thus, it can readily be

applied regardless of the cell type. All published studies to

date have been applied to estimate the Ca21 release flux

associated with Ca21 sparks in muscle—a cell type in which

the parameters of Ca21 handling (buffer kinetics, SERCA

pumps, etc.) are well characterized. This is not the case for

most other cell types. In particular, little is known of the

buffers and pumps in Xenopus oocytes, which are a favored

cell system for study of IP3-mediated Ca21 signaling (Yao

et al., 1995). We were thus motivated to develop an algo-

rithm that requires minimal a priori information, and could

therefore be applied to reconstruct the Ca21 flux underlying

IP3-evoked puffs.

The algorithm is based on the hypothesis that the future

dynamics of a single variable can be inferred from its

previous time evolution, even if this evolution is the result of

the interaction with several other variables (Packard et al.,

1980; Mindlin et al., 1990, 1998; Gouesbet, 1992).

Assuming that the effects of endogenous buffers and

sequestration are of relatively short range in space and

time, we use Eq. 5 instead of a detailed kinetic model to

describe their effects. The functions in this ansatz are

determined directly from the experimental images. This is

the main new feature of our approach as compared to

previous methods (Blatter et al., 1997; Rios et al., 1999; Rios

and Brum, 2002; Soeller and Cannell, 2002). We have

recently shown that Eq. 5 correctly describes the spatiotem-

poral dynamics of the Ca21 concentration in the presence of

a dye and a pump, even when the dye is slow and an

adiabatic approximation does not hold (Ventura et al., 2004).

However, as illustrated by some simulations of this article, if

Ca21 sequestration occurs very fast upon release and the dye

is unable to detect those rapid [Ca21] changes, the algorithm

underestimates the Ca21 current. This problem is mitigated

by using some records obtained with a large enough dye

concentration. The algorithm has other assumptions that are

common to most methods presented in the literature. We

assume that the release occurs in a spatially localized region,

that the dye only binds to Ca21 (according to the reaction

scheme, Eq. 27; in Soeller and Cannell, 2002, and Smith

et al., 1998, the interaction of the dye with other species is

also considered), and that the dye and the basal Ca21 are

initially uniformly distributed throughout the cytosol.

Although the validity of this last assumption is hard to

determine in real experiments, the preprocessing described in

Methods, above, aims at obtaining the image equivalent to

the real one that would have been obtained had the dye and

the basal Ca21 been uniformly distributed.

Verification with synthetic data

When tested with synthetic, noise-free data, the algorithm

accurately reconstructs the kinetics of the Ca21 source both

for stepwise changes in flux that mimic the opening and

closing of a single channel (Figs. 3 A and 5 F) and in

determining the relevant timescale of an exponentially

decaying flux (Fig. 3, C and D). Morphological aspects of

(spherically symmetric) sources can be determined fairly

well too (Fig. 3 B). The symmetry requirement is not an

inherent limitation of the algorithm but results from the

linear-scan method used to obtain the images. The algorithm

is also able to identify multiple openings and closings at a site

(Figs. 4 and 7).

The precision with which the algorithm predicts the total

released current depends on how well the functions g, f, h,
and k that define Eq. 5 can be determined from experiment,

something that can be done quite accurately, under ideal

conditions, if the dye concentration is large enough. But even

when the current magnitude is underestimated, the relation-

ship between the actual and the reconstructed current is

always linear. Application of the algorithm to (in-focus)

numerically generated images obtained with a simple model

with fluo-4 dextran, one extra buffer, and a pump provided

a linear relationship between the actual and the reconstructed

current with a slope that could be very close to 1, depending

FIGURE 9 Comparison of the appli-

cation of the algorithm to noisy records

obtained by an eight-neighbor averaging

of the acquired data and to smoother

records obtained with a nonlinear func-

tion fitting (see Methods). (A) Temporal

profiles of the fluorescence for the noisy

(thin lines) and the smooth (thick lines)
records. (B) Similar to A, but for the

temporal profiles of the current obtained

with the algorithm. (C) Maximum value

of the current obtained by applying

the algorithm to the smooth records,

max(Is), as a function of the maximum

values obtained by applying it to the

noisy records, max(In). We observe

a linear relationship of slope 1.06.
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on the way we performed the optimization procedure.

Namely, we noticed that the values of f, g, and h were

relatively small and some of them highly fluctuating in the

high [Ca21] region (Fig. 1 F). By setting these functions

equal to zero and determining only k we could obtain cleaner
results and current estimates that were 20% better. For this

reason, we decided to present only the results obtained in this

way in all cases (except for Fig. 1). Taking the simulations of

Fig. 2 as a starting point, we observe that the released current

estimate gets worse when we work with an image for which

the line-scan does not go through the center of release but has

a certain offset (Fig. 5 A). The estimate gets better when

blurring and offset are included, because light is collected

from a finite volume rather than a point (Fig. 5 B). The slope
does not decrease too much when only blurring is included,

if the (high) spatial resolution of the simulations is kept (Fig.

5 C), but decreases by 30% when only data with the expected

resolution of a real experiment is kept (d; 0.15 mm) (Fig. 5

D). This effect can be reverted by applying a deblurring

procedure to the blurred data, obtaining a slope that differs

by 7.5% with respect to the one obtained with clean high-

resolution data. If there is an offset, deblurring the data could

give a worse current estimation than applying the algorithm

directly to the blurred image (Fig. 5 B). For these reasons,

we applied the algorithm to real experimental signals with-

out any previous deblurring. In preanalyzing the [Ca21]

distribution, we can put some bounds on the value of the

offset for experimental images in which the Ca21 source is

contained within one pixel. Using this type of analysis,

images can either be discarded or corrected upon estimating

the value of the offset. The problem of offset is inherent to

line-scan recordings, an imaging mode that is commonly

used because of its fast time evolution. However, other

modalities such as total-internal reflection microscopy

(Demuro and Parker, 2004) can provide time-resolved two-

dimensional images, and we are presently implementing the

algorithm for use with such data.

When tested with synthetic data with added noise of

realistic amplitude, the algorithm prescribed currents that

were accurate in amplitude and relatively accurate in time

course (Fig. 5,G andH). It must be pointed out, however, that

opening and closing times are affected if the noise amplitude

is too large and the current is too small, having consequences

on the temporal fidelity of the reconstructed current. This is

a problem that is common to the analysis of very noisy time

series. Amore thorough discussion on how to distinguish true

from false release events in these circumstances goes beyond

the scope of the current study andwill be discussed elsewhere.

The competition between the processes that shape the

cytosolic Ca21 dynamics and the interaction with the dye

affect the determination of the functions that define Eq. 5.

When the dye is unable to sense the fast [Ca21] changes, the

functions are not correctly determined and the released

current is underestimated. This problem is mitigated as the

dye concentration is increased (Fig. 6). Furthermore, if the

functions that define Eq. 5 are determined for sufficiently

large dye concentrations, then they can be used to analyze

records that were obtained with smaller amounts of dye

giving better estimates of the released current (Fig. 6).

Working with larger amounts of dye could limit the set of

experiments that may be subsequently analyzed, since the

maximum [Ca21] values for which the ansatz (Eq. 5) is

determined might become too small. In the simulations of

Fig. 6, however, the maximum current needed to construct

the ansatz and the maximum current that could be inferred

with a 75% accuracy were not too different (3 pA and 1 pA,

respectively). We can address the issue of what a sufficiently

large dye concentration is for each cell type by analyzing

whether the functions f, g, h, and k change significantly with

features from which they should be independent—among

them, the dye concentration or the duration of release. To this

end, it is not necessary to use very large amounts of dye. It is

sufficient to compare the functions obtained with two

sufficiently different dye concentrations. If the functions

remain approximately the same (something that can be

validated using statistical techniques), we can conclude that

the amount of dye is enough to capture the full unknown

dynamics. If they change significantly, then an analysis of

this change (which goes beyond the scope of this article)

could be used to estimate the buffering capacity of the cell

and to improve the current estimation. A similar analysis

could be done in terms of the release duration. In such a case,

the experimental records could be grouped in two sets,

according to the duration of the release. If the reconstructed

functions, f, g, h, and k, are too different for both groups, then
we should conclude that the dye is not following the [Ca21]

dynamics correctly and a larger dye concentration should be

used to improve the determination of the functions f, g, h,
and k. This is the approach we followed in the analysis of the
real sparklets. In any case, even in those cases in which the

determined functions are only good to describe the slow

[Ca21] dynamics, the relationship between the reconstructed

and the actual current is always linear. This remarkable

property implies that the ratios of currents underlying

different events are correctly predicted by the algorithm

under all circumstances and that the calibration to determine

the actual current is needed for only one event.

These results indicate that very detailed models involving

a large number of usually unknown parameters are un-

necessary to reproduce the observed intracellular [Ca21]

dynamics. Although the type of simplified model that we use

in this article (in terms of the Eq. 5) is not good to infer the

details of the processes that are at work in the cell, it is good to

estimateCa21 currents fromfluorescent images, provided that

the ansatz (Eq. 5) can be accurately determined. For validating

reconstruction methods using numerically simulated images,

most backward methods presented in the literature used the

same set of equations for the numerical generation of images

and for the reconstruction algorithm. Minor differences

between both models already affected the estimated current

An Algorithm to Derive Calcium Fluxes 2417

Biophysical Journal 88(4) 2403–2421



(Soeller and Cannell, 2002). The effect of varying the

parameter values of the model on the release calculation

was investigated in Rios et al. (1999). The average current

determined over 157 sparks was 16.9 pA for the default set of

parameter values; it decreased to 8.05 pA if all buffer

concentrations were decreased by one-third, and increased to

26.9 when either the forward reaction rate of dye and Ca21 or

the diffusion coefficient of the dyewere changed by a factor of

3. This shows the importance of developing an algorithmwith

the least a priori information. This is the main contribution of

our approach. Although it is limited by the time resolution of

the experimental records and the amount of dye that is used,

there are ways by which these limitations can be overcome.

Using sufficiently large amounts of dye is one of them.

Application to real sparklets

Application of the algorithm to experimentally recorded

sparklets generated by Ca21 currents through voltage-gated

N-type channels provided a good description of both the

channel kinetics and of the Ca21 current. Using the raw

fluorescence distribution, the mean open time had been

estimated as to � 28 ms in Demuro and Parker (2003). Using

the algorithm we could infer a value to(I) � (17.86 6.2) ms,

which compares much better with the value obtained in

patch-clamp experiments (to ¼ 11.5 ms). The mean Ca21

current obtained with the algorithm (I ¼ (0.139 6 0.012)

pA) and the one that results by applying the correction factor

due to blurring and offset (;0.2 pA) were also within its

estimated upper bound. The single channel current of these

channels had only been measured so far using Ba21 as the

carrier, because Ca21 currents are undetectable with the

patch-clamp technique (Demuro and Parker, 2003; Lee and

Elmslie, 1999). Based on these results the Ca21 current was

expected to be below the noise threshold of 0.2 pA (Demuro

and Parker, 2003). The value obtained by the algorithm is

close enough to this upper bound to assume that the dye is

able to follow the intracellular [Ca21] changes quite closely

in this case. We have further tested the accuracy of the

reconstructed current by forward integration of the dynamic

equation (Eq. 4), using the smooth functional form for M
(Eq. 5) given by the algorithm (Fig. 7 D) and a simplified

version of the reconstructed current (Fig. 7 F), which is

limited by the time and space resolution of the experimental

record. Although the numerical simulation does not have

added noise, the resulting spatiotemporal distribution of the

Ca21-dye complex differs from the one obtained directly

from the experimental record by ,14% in amplitude and by

quantities of the order of the time and space resolution of the

experimental records in the time and spatial spread.

CONCLUSIONS

The algorithm we have presented has several points in

common with other backward methods (Blatter et al., 1997;

Rios et al., 1999; Rios and Brum, 2002; Soeller and Cannell,

2002), sharing with them some of their limitations. In

particular, it requires the computation of space and time

derivatives which are limited by the resolution of the images.

Furthermore, numerical derivatives introduce errors that tend

to amplify the unavoidable noise present in any experimental

signal. However, we have tested the performance of the

algorithm when applied to numerical simulations with added

Gaussian noise, finding that the amplitude of the recon-

structed current is not altered. The time course of the current

is more affected since opening and closing times get smeared

in the presence of high noise, a problem that is shared by all

backward methods. We have been working on a tool of

analysis that allows the distinction of true from false release

events, which we will discuss elsewhere. Regarding the

effect of noise, we obtained extra confidence on the results of

the algorithm by comparing the Ca21-bound dye distribution

determined from the (noisy) real experiments with that

obtained via a noiseless numerical simulation of the effec-

tive dynamic equation prescribed by the algorithm. Both

distributions differ in time and spatial spread by quantities of

the order of the time and space resolution of the experiments

and, in amplitude, by ,15%. We further checked the

robustness of the algorithm against noise by applying a very

strong noise reduction to the experimental images finding

results that remained close to those obtained using the noisy

initial data. An additional problem of our approach is the fact

that the time resolution of the acquisition process imposes

limitations on the timescales that can be resolved, resulting in

an underestimation of the current when the fast processes

cannot be followed. This problem is not a peculiarity of our

algorithm; it is ubiquitous in all imaging techniques, in that

they are limited by the timescales of the dye and its ability to

follow changes in the [Ca21]. The main limitation of our

algorithm is the ability to obtain an estimate of the ansatz

(Eq. 5) that captures the dynamics of the fast unknown

processes, something that can be done if the amount of dye is

large enough. But even if Eq. 5 is determined using images

for which the amount of dye is not large enough, the

algorithm is able to determine the spatial spread and

temporal behavior of the release quite accurately, giving

a linear relationship between reconstructed and actual

currents. This implies that it is necessary to determine the

factor by which the current is underestimated only for one

current value. This could be done by using records with large

enough dye concentrations to obtain the functions in Eq. 5.

Other possibilities include an analysis of the results obtained

using records with two different dye concentrations or

different release durations. Other experimental limitations

(blurring, finite space resolution, and offset) also lead to

results in which the current is underestimated. More work

should be done in the direction of calibrating the method

(Zou et al., 2004). Another limitation of the algorithm is the

fact it requires more than one event to be implemented and

events with the highest [Ca21] cannot be analyzed. However,
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working with real experiments we have concluded that it is

not necessary that the maximum [Ca21] values of the various

records be too different; therefore, only a small proportion of

the records was used for calibration purposes. Also, the

algorithm can be easily automated: e.g., complete analysis of

a set of 30 events takes ,30 min on a Pentium III PC.

Optical Ca21 imaging provides a relatively noninvasive

tool to study the kinetics of individual voltage- and ligand-

gated ion channel kinetics (Demuro and Parker, 2003; Zou

et al., 2004). However, the temporal and spatial resolution of

fluorescence images using Ca21 indicator dyes are reduced

by factors including Ca21 binding to buffers and the

indicator, dye diffusion, and optical blurring. The algorithm

we present here substantially improves the precision with

which the magnitude, time course, and spatial distribution of

the underlying Ca21 can be estimated, and we show that it

provides a fairly accurate description of both the kinetics and

Ca21 current of N-type voltage-gated Ca21 channels. We

think it can be useful for the analysis of local intracellular

Ca21 signals in various cell types; in particular, for the

analysis of puffs that arise through the concerted opening of

unknown numbers of poorly-characterized IP3 receptors.

APPENDIX 1: MOTIVATION FOR THE CHOICE OF
ANSATZ FOR M

Eq. 4 describes the dynamics of the Ca21 concentration. However, it cannot

be solved by itself. Both R andM depend on other time-dependent variables,

whose time evolution is in turn determined by the [Ca21] distribution.

Whereas R depends on the known spatiotemporal distribution of the dye, M

depends on those of the other buffers and capture mechanisms that are

poorly known. Assuming that the effects of the pumps can be written in

terms of the Ca21 concentration only, G([Ca21]), that the reactions with

each of these other buffers, Bi, are of the form

Ca
21 1Bi �

kon;i

koff;i

CaBi; (27)

that the free and bound forms of the buffers (Bi, and CaBi, respectively)

diffuse at the same rate, DB,i, and that their total concentrations, [B]T,i, are
uniformly distributed, then

M ¼ +
i

ð�kon;i½Ca21 �½Bi�1 koff;ið½B�T;i � ½Bi�ÞÞ1Gð½Ca21 �Þ;

(28)

and Eq. 4 has to be solved coupled to equations of the form

@½Bi�
@t

¼ koff;ið½B�T;i � ½Bi�Þ � kon;i½Ca21 �½Bi�1DB;i=
2½Bi�;

(29)

plus a similar equation for the dye concentration.

Suppose that we know [Ca21] as a function of space and time (in fact, in

the absence of experimental uncertainties, we can obtain it from the

fluorescent image if the dye only reacts with Ca21 as done in Step 2 of the

algorithm). Then, we can solve each expression in Eq. 29 separately to

obtain [Bi](r, t) (given that we know [Bi](t ¼ 0)). So, each value of [Bi](r, t)
is a function of the collection of values, [Ca21], at all spatial points and

previous times, i.e., of {[Ca21](r9, t9) for all r9 and t9# t}. It is easy to write

down this dependence explicitly in the cases in which the buffer does not

diffuse,

½Bi�ðr; tÞ ¼ exp �koff;it � kon;i

Z t

0

½Ca21 �ðr; t9Þdt9
� �

½Bi�ðr; 0Þ

1 koff;i½B�T;i
Z t

0

exp

�
� koff;iðt � t9Þ � kon;i:

3

Z t

t9

½Ca21 �ðr; t$Þdt$
�
dt9; (30)

or when Eq. 29 can be linearized, e.g., if [Ca21][Bi] � [Ca21][B]T, i in

Eq. 29,

½Bi�ðr; tÞ ¼ ½Bi�ðr;0Þ1 ½B�
T;i

3

Z
dr9
Z t

0

dt9ðkoff;i� kon;i½Ca21 �ðr9; t9ÞÞe�koff;iðt�t9Þ

3
e
� ðr�r9Þ2
4DB;iðt�t9Þ

ð4pDB;iðt� t9ÞÞ3=2: (31)

The dependence of [Bi](r, t) with {[Ca21](r9, t9)} means that M(r, t) can
also be written in terms of {[Ca21](r9, t9)}.

Now, the dependence of [Bi](r, t) on {[Ca
21](r9, t9)} has a finite memory

both in space and time: [Bi](r, t) depends more strongly on [Ca21](r9, t9) at
nearby points, r9� r, and closer times, t9� t, than at more distant ones. This

is so because of the dissipative nature of the evolution equations and the

diffusive spatial coupling. It is reflected on the decaying exponentials that

appear in Eqs. 30 and 31, which are maximal for t¼ t9 and r¼ r9. This finite
memory is carried over onto the dependence of M with {[Ca21](r9, t9)}. If
this dependence is only relevant in a small enough neighborhood (both in

space and time), then, using a Taylor expansion, we can write all the values

{[Ca21](r9, t9)} in this neighborhood in terms of [Ca21](r, t) and low order

derivatives in space and time of Ca21 computed at (r, t). This is the

motivation for choosing the ansatz (Eq. 5), which contains terms with the

lowest order derivatives that are compatible with the spherical symmetry of

the problem. As discussed in Ventura et al. (2004), an expression for M of

Eq. 5 can be obtained analytically under the rapid buffering approximation

(Wagner and Keizer, 1994). In that case, the derivation provides analytic

expressions for the functions f, g, h, and k.

APPENDIX 2: DESCRIPTION OF HOW THE
FUNCTIONS F, G, H, AND K AND THEIR
ERRORS ARE OBTAINED

Let us call Ni, the number of data points, zj, k(Ci)[ (rj, tk)(Ci), such that Ci#

[Ca21](rj, tk)(Ci) , Ci11. Let us label the data points, zj, k(Ci), by the

subscript ‘ (i.e., each ‘ is an integer number associated to each data point, zj,

k(Ci); therefore 1# ‘#Ni, for each Ci). Actually, we should use the notation

‘(i), but we drop the i dependence of ‘ to simplify it. Then, following the

notation of Press et al. (1992), we define

y
ðiÞ
‘ [Mðzj;kðCiÞÞ ¼ @½Ca21 �

@t
jzj;kðCiÞ � Rðzj;kðCiÞÞ

� DCa=
2½Ca21 �jzj;kðCiÞ; (32)

a
ðiÞ
1 [ gi; a

ðiÞ
2 [ fi; a

ðiÞ
3 [ hi; a

ðiÞ
4 [ ki; (33)

X
ðiÞ
‘1 [

@½Ca21 �
@t

jzj;kðCiÞ; X
ðiÞ
‘2 [ =

2½Ca21 �jzj;kðCiÞ;

X
ðiÞ
‘3 [ j=½Ca21 �j2zj;kðCiÞ; X

ðiÞ
‘4 ¼ 1: (34)
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Let us call s
ðiÞ
‘ the error of y

ðiÞ
‘ , which can be computed by error prop-

agation of the right-hand side of Eq. 32. Then, we define the merit function

for each Ci value as

x
2

i ¼ +
Ni

‘¼1

yðiÞ‘ � +
4

n¼1

aðiÞ
n X

ðiÞ
‘n

s
ðiÞ
‘

0
BB@

1
CCA

2

: (35)

For each binned [Ca21] concentration value, Ci, the best values of faðiÞn g4n¼1

are those that minimize x2
i . We perform this minimization by means of

a singular value decomposition of the matrix X
ðiÞ
‘n =s

ðiÞ
‘ (Press et al., 1992).

For each n ¼ 1, . . . , 4, we need the set of values, faðiÞn g4n¼1, to approximate

continuous functions, fan½Ca21�g4n¼1 (the functions g, f, h, and k). To

guarantee continuity, we use the value obtained for a
ðiÞ
n as the initial seed to

start the minimization procedure that determines a
ði11Þ
n . To determine the

errors of the values faðiÞn g4n¼1 obtained in this way, we follow Press et al.

(1992). Namely, we define the design matrix, A(i), as the Ni 3 4 matrix

whose elements are given by A
ðiÞ
‘m ¼ X

ðiÞ
‘m=s

ðiÞ
‘ . We call a(i) ¼ (A(i))T � A(i),

which is a square matrix, and c(i) ¼ (a(i))�1, its inverse. Then, the diagonal

elements of c(i) are the variances (squared uncertainties) of the fitted

parameters, faðiÞn g, 1 # n# 4 (Press et al., 1992). Taking the square-root of

these variances we obtain the errors, fDaðiÞn g, 1 # n # 4. Once we have

estimates of faðiÞn g, 1 # n # 4, for each of the binned [Ca21] values, Ci, we

then have an approximation for the values that the functions f, g, h, and k

take on at these binned values (which are a
ðiÞ
2 , a

ðiÞ
1 , a

ðiÞ
3 , and a

ðiÞ
4 ,

respectively). We then seek continuous functions that can take on these

values by fitting the points with a nonlinear curve obtained using

a feedforward neural network. We illustrate here the way we estimate the

error of this interpolation with the function g, and we proceed similarly with

the other functions. For each Ci we define E
ðiÞ
1 ¼ jaðiÞ1 1 Da

ðiÞ
1 �gðCiÞj and

EðiÞ
� ¼ jaðiÞ1 � Da

ðiÞ
1 � gðCiÞj; where g is the smooth [Ca21]-dependent

function that we obtained by fitting the discrete set of points, gi. Then, for

[Ca21] 2 (Ci, Ci11) we define Dg([Ca
21]) [ max {E1, E�}.

The term M that we are trying to determine with this optimization

procedure is mainly given by the reactions with buffers other than the dye

(see Appendix 1). Thus, we expect that a similar ansatz (but with different

functions fR, gR, hR, and kR) will hold for R, the term due to the reaction with

the dye defined in Eq. 3. Therefore, inserting the ansatz for R in Eq. 4 we see

that there is a trivial solution for the ansatz ofM: g ¼ 1 – gR,f ¼ –DCa – fR,h

¼ –hR, and k ¼ –kR. This is not the ansatz we are after since it only holds in
regions with QCa ¼ 0. Thus, there is not a unique solution for our

optimization procedure, and this introduces some difficulties. To study this

problem, we minimized x2
i in Eq. 35, using different tolerances, yet always

obtaining similar results. However, as displayed in Fig. 1 F, we observed

that f, g, and h were relatively small, and that f and g were highly fluctuating

for large [Ca21] values, as if the optimization procedure was converging

to different minima for slightly different [Ca21] values. Furthermore,

the magnitudes of the first three terms (gð@½Ca21�=; Þf=2½Ca21� and

h|=[Ca21]|2) in Eq. 5 are #20% of the magnitude of k. For this reason,

we decided to minimize x2
i , setting f ¼ g ¼ h ¼ 0 and only determining k.

We obtained cleaner results and better current estimates and these are the

results that we show in this article (except for Fig. 1). The ability to fit M by

using only a function of [Ca21] is related to the mathematical properties of

the solutions of the dynamic equations in the presence of localized currents,

but not of the dynamic equations in general. We will discuss the

mathematical properties of these solutions with further detail in another

article.
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