Note

Self-clique Helly circular-arc graphs

Flavia Bonomo

Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina

Received 1 July 2005; received in revised form 25 December 2005; accepted 25 January 2006

Abstract

A clique in a graph is a complete subgraph maximal under inclusion. The clique graph of a graph is the intersection graph of its cliques. A graph is self-clique when it is isomorphic to its clique graph. A circular-arc graph is the intersection graph of a family of arcs of a circle. A Helly circular-arc graph is a circular-arc graph admitting a model whose arcs satisfy the Helly property. In this note, we describe all the self-clique Helly circular-arc graphs.

© 2006 Elsevier B.V. All rights reserved.

Keywords: Helly circular-arc graphs; Self-clique graphs

1. Introduction

Consider a finite family of non-empty sets. The intersection graph of this family is obtained by representing each set by a vertex, two vertices being connected by an edge if and only if the corresponding sets intersect.

A clique in a graph is a complete subgraph maximal under inclusion. The clique graph $K(G)$ of G is the intersection graph of the cliques of G. The jth iterated clique graph of G, $K^j(G)$, is defined by $K^1(G) = K(G)$ and $K^j(G) = K(K^{j-1}(G))$, $j \geq 2$.

A graph G is self-clique when $K(G) \cong G$, i.e., G is isomorphic to its clique graph. More generally, for $t \geq 1$, a graph G is t-self-clique if $K^j(G) \cong G$ and $K^j(G) \not\cong G$ for $1 \leq j < t$. A graph G is clique-convergent if $K^t(G)$ is the one-vertex graph for some $t \geq 1$.

A circular-arc graph is the intersection graph of a family of arcs of a circle. (Without loss of generality, we can assume that the arcs are open.) Basic background in circular-arc graphs can be found in [9]. A family of sets S is said to satisfy the Helly property if every subfamily of it, consisting of pairwise intersecting sets, has a common element. A Helly circular-arc (HCA) graph is a circular-arc graph admitting a model whose arcs satisfy the Helly property. A circular-arc model of a graph is proper if no arc is included in another. A proper circular-arc (PCA) graph is a circular-arc graph admitting a proper model. A graph is clique-Helly (CH) if its cliques satisfy the Helly property, and it is hereditary clique-Helly (HCH) if H is clique-Helly for every induced subgraph H of G.

Clique graphs of Helly circular-arc graphs are characterized in [7]. It is proved that they are a proper subclass of PCA \cap HCA \cap CH.
A graph is chordal when every cycle of length at least four has a chord. A common subclass of chordal graphs and circular-arc graphs are interval graphs. An interval graph is the intersection graph of a family of intervals in the real line.

Self-clique graphs were studied in [1,2,4,6,8,11–13], but no good general characterization of them is known. However, self-clique and 2-self-clique graphs are characterized for some classes of graphs, like triangle-free graphs [8], graphs with all cliques but one of size 2 [6], clique-Helly graphs [4,8,12] and hereditary clique-Helly graphs [13].

For $v \in V(G)$, denote by $N(v)$ the set of neighbors of v. Let $N[v] = \{v\} \cup N(v)$. The vertex v is dominated by vertex w if $N[v] \subseteq N[w]$. In [8] it is proved that a clique-Helly graph G is t-self-clique (for some t) if and only if it has no dominated vertices, and in that case $t \leq 2$.

For some classes of graphs, it can be proved that there are no self-clique graphs. For example, in [3,5] it is proved that every connected chordal graph is clique-convergent. So there are no chordal t-self-clique graphs with at least one edge.

In this note, we give an explicit characterization of self-clique graphs for the class of Helly circular-arc graphs.

2. Characterization

Given a graph G and $k \geq 0$, the graph G^k has the same vertex set of G, two vertices being adjacent in G^k if their distance in G is at most k. Denote by C_n the chordless cycle on n vertices.

Graphs C_n^k, with $n > 3k$, are Helly circular-arc graphs (some examples can be seen in Fig. 1). Besides, in [10] it is proved that graphs C_n^k, with $n > 3k$ are self-clique graphs.

Theorem 1. Let G be a HCA graph with n vertices. Then the following are equivalent:

(i) G is t-self-clique for some $t \geq 1$.
(ii) G is self-clique.
(iii) G is isomorphic to C_n^k for some $k \geq 0$ such that $3k < n$.

Proof. (iii) \Rightarrow (ii): It is proved in [10].

(ii) \Rightarrow (i): It is clear.

(i) \Rightarrow (iii): Let G be a HCA graph with n vertices. If G has no edges, then it is isomorphic to C_n^0. So, suppose that G is t-self-clique for some $t \geq 1$ and it has at least one edge. Then every circular-arc model of G covers the circle, otherwise G would be an interval graph, and there are no chordal t-self-clique graphs with at least one edge.

The graph $K(G)$ is clique-Helly [7], and since clique-Helly is a fixed class under the clique operator K [8,3], then $G \cong K^t(G)$ is clique-Helly and then it is either self-clique or 2-self-clique and it has no dominated vertices [8]. As a consequence of this, every circular-arc model of G is proper, and, in particular, G has a circular-arc model which is both Helly and proper.

In a Helly circular-arc model of G, for every clique there is a point of the circle that belongs to the arcs corresponding to the vertices in the clique, and to no others. We call such a point an anchor of the clique (note that an anchor may not be unique). If there are two arcs covering the circle, their corresponding vertices are adjacent and belong to a clique M. Every other clique contains at least one of those vertices, so M intersects all the cliques of G, and then $K^2(G)$ is complete and G is clique-convergent, so G cannot be t-self-clique because it contains at least one edge. Therefore no two arcs cover the circle, and, as it is a Helly model, no three arcs cover the circle.

Fig. 1. From left to right, graphs C_{11}^0, C_{11}^1 and C_{11}^2 with their corresponding Helly circular-arc model.
Traversing an arc A_i clockwise, its endpoints can be identified as a head a_i and a tail b_i. Without loss of generality (see [9, Exercise 8.14]), we can consider that the endpoints of the arcs are $2n$ distinct points of the circle, and we can choose the anchors for the distinct cliques of G in the interior of the $2n$ circular intervals determined by those $2n$ points. In each of these intervals there are anchors of at most one clique, and, in fact, only the intervals of type a_i, b_j (clockwise) can contain anchors. So G has $r \leq n$ cliques, and, as this argument can be applied to $K(G)$ because it is a HCA graph [7], $K^2(G)$ has at most r vertices, so $r = n$. Therefore, heads and tails are alternating, and since the model is proper the clockwise order of the heads must be the same as the clockwise order of the tails. Thus G is uniquely determined by the number k of heads in the interior of the arc A_1, and therefore G is isomorphic to C_n^k. Finally, since no three of the arcs cover the circle, it follows that $3k < n$. □

Acknowledgments

I would like to thank Guillermo Durán and the two anonymous referees for their suggestions, which contributed to improve this note.

References