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We prove a freeness result for Nichols algebras over certain Nichols subalgebras.
This result allows us in particular to classify pointed Hopf algebras of prime and
prime squared index.  © 2000 Academic Press

1. INTRODUCTION AND NOTATION

1.1. Introduction

Let V' be a vector space and let ¢ € End(VV ® V) be a solution of the
braid equation

(c ®id)(id ® ¢)(c ® id)
=(id®c)(c®id)(id®c) €End(Ve V& V).

Let AV and CV be, respectively, the tensor algebra and tensor coalgebra
of V; they are both braided bialgebras. There exists a unique bialgebra
map S: AV — CV extending the identity id: V' — V' in degree one. The
image B(V) = Im(S) € CV is a braided bialgebra usually called a quan-
tum symmetric algebra. If ¢ is rigid (see Definition 1.3.1 below), then we say
that B(V) is a Nichols algebra. In such case it is known that B(V) is a
braided Hopf algebra in a rigid braided category.

In this article we consider a rigid solution (V, ¢) of the braid equation
and a subspace W C V such that ¢c(W ® W) = W ® W. We identify the
quantum symmetric algebra B(W) with a subalgebra of B(}/). Under
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certain additional hypotheses it is a Nichols algebra, possibly in a
different rigid braided category. Assume further that B(W) is finite
dimensional. Our main result, Theorem 3.8, shows then that B(V) is free
over B(W). More precisely, we describe a graded subalgebra K of B(V)
(which is also a left coideal) such that B(V) = K ® B(W) as (K, B(W))-
bimodules. Consequently, Py (t) = Pi(t) Py (t) (wWhere Py (1) =
Y, dim A;t" is the Hilbert polynomial of 4 = @, 4,) and in particular the
dimension of B(W) divides that of B(}). Moreover, assume that there is
a decomposition V' = &,V such that c(V; ® V)) =V, ® V, for all i, and

that there exists for each i a (possibly trivial) subspace W, C V; verifying
the hypotheses of the first part. Then I'T, Py (¢) divides Py (2).

It was recently proved independently by Scharfschwerdt [Sf] and Takeuchi
[T3] that the Nichols—Zoeller theorem [NZ] holds in Yetter—Drinfeld
categories. In general, however, our algebras B(V), B(W) lie in different
braided categories, and their result does not apply in the present situation
(moreover, our result applies also to the case when B(V) is infinite
dimensional). We prove 3.8 using algebras of quantum differential operators
&V — End(B(V))°P. To this end, we generalize the definition for the
“abelian case” given, for instance, in [FG] (this algebra was considered also
by Kashiwara and Lusztig). The author was not able to find this general
notion in the literature.

As an application of our main result we classify, in 4.1 and 4.2, pointed
Hopf algebras of index p and p? (p a prime number). This classification
generalizes results from [D, AS2]. Here, for a pointed Hopf algebra 4 we
define the index as the ratio dim A /#G(A) = [ A : G(A)], where G(A) is
the group of group-likes of A.

The results of this article can be combined with a parameterization of
Nichols algebras of ranks 3 and 4 in ;122 (I a finite group) in order to
give a classification of Nichols algebras of dimension < 32. This, together
with the “lifting procedure” of [AS1], is a first step for the classification of
pointed Hopf algebras of index < 32. These and related problems are
considered in [G2].

The article is organized as follows: in Section 2 we state and prove some
first results on quantum symmetric algebras and Nichols algebras. For
VE:EE 79, we define the subspaces that will play the role of W in the
applications and study the behavior of the braiding with respect to these
subspaces. We also prove in Section 2 a generalization of [AS1, 3.4, 3.5] for
general abelian braided categories. Section 3 is devoted to algebras of
quantum differential operators and to the main result. Finally, in Section 4
we classify all pointed Hopf algebras of prime index and all pointed Hopf
algebras of prime squared index.
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1.3. Notation. We refer to [Mo] for notation on Hopf algebras. We fix
k as an algebraically closed field of characteristic 0. All vector spaces,
algebras, tensor products, and homs are considered over k unless explicitly
stated. For comultiplication we use Sweedler’s notation without the sum-
mation symbol (A(z) = z;, ® z()).

It is worth noting that most of the results of this article (in particular,
the main Theorem 3.8) are true in positive characteristic (with the same
proofs). The results in Section 4 also hold, assuming char k does not divide
dim A.

We call a braided pair (BP) a pair (V, ¢), where V' is a vector space and
c: VeV —-V®Visa (bijective) solution of the braid equation. Through-
out, V' shall be finite dimensional. It is well known that there exists a
braided category containing V” as an object and such that ¢ coincides with
the braiding in the category, a construction due to [Ly] (see also [H, Sn]).
Moreover, this category is abelian and has countable direct sums. Explic-
itly, one can take the category of comodules over the FRT bialgebra
generated by (V, ¢) (see for instance [AA]).

When working in a non-symmetric braided category, one must distin-
guish between right and left duals. Since it is more convenient for our
purposes, we shall use right duals, and hence consider evaluation and
coevaluation maps as

e:Ver* -k, b:k->TV*eV.

Let f: X® Y - Y ® X be a map of finite dimensional vector spaces. It is
customary to denote by f " Y®X* > X* ®Y the morphism defined by

((idex),f'(y®a))=(f(x®y),(a®id),

where we use the pairing {(a ® b),(B ® a)) = {a, a){b, B).

DEeFINITION 1.3.1 [Ly, Gul. Let (V, ¢) be a braided pair such that V is
finite dimensional. We say that c¢ is rigid (or that (V, ¢) is an RBP) if ¢

an isomorphism (it is proved in [LS] that this is equivalent to (1) belng
an isomorphism).



238 MATIAS GRANA
When (V, ¢) is an RBP, we have isomorphisms
ey =(c ) VeVE Vi,

-1
cpey=(c") VEOVSVeVE,
Cpyeyr = VF@V* > V* @ V¥,

where we use the pairing above for the definition of ¢*. Furthermore, in
this case both V" and * can be considered to be objects of one and the
same braided category, and the evaluation and coevaluation maps e:
Ve V* - kand b: k - V* ® I/ are maps in the category. Hence, the
condition on ¢ to be rigid is equivalent to the condition on V' to lie in a
rigid braided category.

Let (I, ¢) be a BP. Since ¢ is a solution of the braid equation, the Artin
braid group B, acts on J/®" giving braidings

CVEi,V®f: V®i ® V®j i V®j ® V®i.

Let TV be the tensor space TV = @ V°". This makes (TV,c) into a
braided pair. If (VV,¢) is an RBP then c¢ gives an action of B, on
T"(V & V*) and (T(V & V*),c) becomes a BP.

Let (VV,c) be a BP. We denote, respectively, by AV,CV the tensor
algebra and the tensor coalgebra of V. As vector spaces, they coincide with
TV. The multiplication components of A} are simply the identity maps
m; ; =id: AV ® A’V - A™/V. Dually, the comultiplication components
of CV are the identity maps A, ; =id: C"/V - C'V ® C'V. Both AV
and CV are graded braided Hopf algebras. We denote the comultiplication
components of 4} and the multiplication components of CV' by

S ANV > AV e AV,
T, ;: C'Ve V- CHy

(they are given by (i, j)-shuffles, we refer for instance to [AG] for the
details). There exists a unique (graded) map of Hopf algebras S := AV —
CV such that S|, =id: V' — V. We denote by S”" the restriction of this
map to A"V.

DEFINITION 1.3.2.  Let (V, ¢) be a BP. We say that the image S(AV) C
CV is a quantum symmetric algebra, or QSA. It is a braided graded Hopf
algebra and is determined by V. We denote it by B(1). We denote also by
B(}') the homogeneous component of degree i, i.e., B(V) = & B(V).
Notice that B(V) = TV /ker(S).
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DEeFINITION 1.33. If (V,¢) is an RBP, then the quantum symmetric
algebra generated by V' will be called a Nichols algebra and will also be
denoted by B(}). In this case, since V' belongs to a rigid braided category,
then V* also does, and in particular it makes sense to consider B(V*),
which is also a Nichols algebra.

Nichols algebras have some important properties that distinguish them
from the general concept of QSA: they have a dual braided Hopf algebra
(and in particular have non-zero spaces of integrals when they are finite
dimensional). Moreover, finite dimensional Nichols algebras satisfy a Poin-
caré duality.

Let (V, ¢) be a BP. It is easy to see that the braiding commutes with the
maps S”" (that is, (8" ® id)cy pen = cp poi(id ® S")), whence ¢ gives a
braiding cy): B() @ B(V) - B() @ B(V), and (B(V), cy(y)) be-
comes a braided pair.

For a root of unity g, we denote by N(q) its order if g = 1. If ¢ =1
then we define N(g) = . We recall the definition of g-numbers: for
n,m <€ N, n > m, define

q" — 1
(n)g = p— =l+q+q*+ +q""

(n)q

S ()i —m)y

Let H be a Hopf algebra with bijective antipode. We denote by }
the category of (left-left) Yetter—Drinfeld modules over H of arbitrary
dimension. It is a braided category. The full subcategory of finite dimen-
sional Yetter—Drinfeld modules is furthermore rigid. For an object IV €
Z 79, we shall denote by 6: V- H ® IV the H-coaction and by —:
H ® V — V the H-action. We sometimes denote the action by hA(v) =
h — .

(=TT, (3),

2. FIRST RESULTS ON NICHOLS ALGEBRAS

DEFINITION 2.1.  Let (V,c) be a BP, V= &, V;. We say that this direct
sum is a decomposition of (V, ¢) (and that (V, ¢) is decomposable) if c|, o v
V;® V; —> V; ® V.. In this case we denote by b;; the restriction b;; = cly,sv,-
It is straightforward to see that if (/,¢) is an RBP and V'= @,V is a
decomposition of V" as a BP, then this decomposition induces a decompo-
sition of V* = @, 1;* and taking the corresponding restrictions ¢; = b;; of
¢ then each (V}, ¢;) becomes an RBP.
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If T is a finite group, H = kI, and VV € %9, then V can be decom-
posed as V' = &, M(g,, p;), where p;: I, — Aut(Y)) is an irreducible repre-
sentation of the centralizer T, of g; (the definition of M(g, p) is given in
2.15 below). However, sometimes it is possible to further decompose some
of the summands, or to give a different decomposition. These decomposi-
tions usually fail to lie in j; ZZ, but since (V, ¢) is an RBP any decomposi-
tion gives a direct sum of RBPs. For instance, it is proved in [AG,
Proposition 3.1.11] that if V' is two-dimensional then it can be decomposed
as a sum of two one-dimensional subspaces. We say that (V, ¢) comes from
the abelian case if V' can be decomposed as a sum of one-dimensional
subspaces.

When V' = &,V is a decomposition of (V, ¢), then the knowledge of the
QSAs generated by the V;’s gives information on the QSA generated by V.
The next result, which is a generalization of [AS1, Lemma 3.4 and
Proposition 3.5] for the non-abelian case, gives a first relation between
B(V) and the B(V))’s.

THEOREM 2.2. Let (V,c¢) be a braided pair and suppose it is decompos-
able as V= @ |V, such that B(V,) is finite dimensional Vi. Then

dim B() > [T, dim BV,). Furthermore, the equality holds if and only if
b =b;' Vi#+].

Proof. Let {v},...,v}} be a set of homogeneous vectors of T(V,) such
that the set

{Sdfl(u}),...,Sdf”(viNf)>
is a basis of B(V;), where d¥ is the degree of vf. The set
Z={vfre--eureT(V)e -oT(V,)|1<k <N}

is linearly independent in 7'(J') and has (I'T; dim ®B(V})) elements. Note
that the set

{S"lkll){<l ® - ® Sk |1 <k, < N}

is also linearly independent. It is enough for the first part to prove that %
remains linearly independent after applying S to it. Then, suppose that a

linear combination £A,  , vf' ® -+ ® v;» lies in ker S. Now, the space

T(V) can be decomposed in homogeneous components with respect of the
I’s and the hypothesis made on ¢ (namely, that ¢ behaves well with the
decomposition V' = @, V;) guarantees that ¢ is a homogeneous morphism.
Hence, the linear combination of above can be treated for each homoge-
neous component, and we consequently may suppose that there exist
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d,...,d, such that A\,
m=d, + - +d,.
Now, by (2.8), for m =i + j we have

,,,,,, v, =0 if dft#d, for some i Let
(S'®8/)e8, , =8" =T, °(S' ®S/).

This implies that

0= Sm(Z/\k1 ,,,,, WU ® e ® Urlf”)

e dn(sd' ® - ® Sd”)(Z/\kl ..... k

= T s e esh)(La,

-1
x"€Shg .,

Il
=

knufl ® -+ ® U,’f"), (2.3)

......

where Sh,  , ©S™ is the shuffle. Furthermore, the homogeneous

component with degrees (d,, ..., d,) of CV can be decomposed as a direct
sum taking all the possible orders for d; tensorands of V. Explicitly, let

Zy o ={r (L omy > (L n) | #(F(0) =d; V1 <i < n).
The decomposition just stated is nothing but

(the (d,,...,d,) component of CV")

= & Vy®Vyy® = ®V,,= @ V.

f€Zy,.. ,a, d d d f€zy,....a, d

It is clear that there exists a bijection y: (Sh,
that for x € (Sh,
Hence (2.3) implies, for each x € (Sh,,

~~~~~~~~~~~~~~

dn)*1 the image of s(xX)lypeng .. epen lies in V, .
)" that

.....

0=s(x)(8"® - ®8") (LA,

------

but since s(x) is an isomorphism for each x € S, this implies that

0=(81® - ®8") (XA, ,of e ®uv)

,,,,,,

,,,,, (ST0k @ e @ Sk,
which in turn implies that A,
part.

For the second part, suppose there exist i, j, i # j such that b;b;; # id,
and let v € V,, w € V; such that b;b;(v ® w) # (v ® w). Consider the
element z € T(V) given by z = (id — b; v ® w). Since the linear span of

r, = 0 Vky,...,k,. This proves the first

.....
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the set S(#) = {S(y), y €%} is a subspace of B(V) with dimension
[T, dim B(V)), it is sufficient to prove that S(z) does not lie in this linear
span. Note that since deg z = 2, S(z) = (id + ¢)(z). Suppose that

S(z) = S(Z)\kI ’’’’’ WU ® e ® v,’f)

Looking at the homogeneous components, we must have A, . =0 if
(df',...,d}) # e; + e, where ¢, = (0,...,0,1,0,... 0) with the 1 in the
[-coordinate. In other words, if i <j there exist uy,...,u; € V,, u},..., u)
€V, and Ay,..., A; € k such that

S(z) = S(;/\tu, ® u't)

(if i > j we have S(z) = S(X, \,u, ® u,) and it is analogous). Now, since
z=(0—c)v ®w)and S(z) = (1 + ¢)(z), we have

(1=c*)(vew)=(1+ c)(;/\,ut ® u’t),

but the component in V; ® V; in the left hand side vanishes, and hence we
have c(X, )\,u, ® u,) = 0. Since ¢ is an isomorphism, we must have
Y, Au, ® u; = 0, but this implies that the V; ® V; component in the right
hand 51de Vamshes whence c¢*(v ® w) = (U ® w) a contradiction.

It only remains to prove that if b;;b; = id Vi # j then S(%) is a basis of

B(V). This is the same as saying that % generates T(}') modulo ker S.
Let {w/,...,wM} be a basis of V. Let

o — r e rVn e
gé’—{wal'éb ®@w,meN,1<r, <M, and a; <a, < sam}.

Since, modulo ker(S), the elements of % are linear combinations of
the elements of .%, it remains to prove that % generates T()) modulo
ker(S). To see this, it suffices to prove that if i <j and 1 <r, <M,
1 <r; <M, then w// ® w/" can be expressed in terms of elements in B.
Let z =1 — )W/ ® w, ) Since b;;b;; = id, we have S(z) = (1 + c)(z) =
0, which gives the relatlon

w/i ® wi = b,(w)) ® w/') modker(S).

Now, b (w iewi)eV,eV, o and it can be written as a linear combina-
tion of elements inz. 1

From now on, we concentrate on Nichols algebras. Let (V,¢) be an
RBP. Since V' and V* belong to a braided category %, we have that V®"
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and (JV*)®™ also belong to &, and it is easy to see that the map S:
AV — CV is a map in the category, whence both B(}) and B(V*) lie in
¢, and in particular they lie in one and the same braided category.

We shall use the bilinear form (|): 7"V ® T"V* — Kk given by

(2122 Zn|wlw2 Wn) = ]._[ <Zz7 n+l l> = <Zl’wn>”'<zn’wl>7
1<i<n
(2.4)
where (z,,zy,...,2, €V, w;,W,,...,w, € V¥), and (-, ) is the evalua-

tion map. We define also (z|w) =0 if ze T"(V), w € T"(V*), and
n # m. It is easy to see that ¢y« ,« is the transpose of ¢}, ;,, when one
identifies (V ® V)* = VV* ® V* with this form. Furthermore, as proved in
[AG, Proposition 3.2.20], this bilinear form satisfies for z € T"(V), w €
T"(V*),

(S"z|w) = (z|S"w), (2.5)

from where S”: T"V* — T"V* is the transpose of S$": T"V — T"V with
respect to the pairing (|). We thus have proved:

LEMMA 2.6. Let (V,c) be an RBP. Then B"(V*) = (B"(V))* for all
n>=0. If BWV) is finite dimensional then BV*) = (BWV)* and
(%(V), C‘B(V),\B(V)) iS an RBP I

DEFINITION 2.7. Let (V,¢) be an RBP. For y € I'*, we denote by 4,
the operator

9, = (id ® y)o AL Bi(V) - B 1(V).

If B={x,...,x,}is a basis of V, let {al, ..., d,} be the basis of V* dual
to B. We denote also by d;, j = 1,...,n, the operator 9, We warn that for

the case V € 72, usually these are not morphisms i in Ty,
Because of the coassociativity of AV, we have for i,,i,,i; € N
(S;,;, ®id)S =S, ,,=(des, ,)S

i1+iy, iz iq,0n,i3

(2.8)

i, iy +iz?
which has the following consequence:

PrRoPOSITION 2.9. Let (V,c) be an RBP. Consider the map d: V* —
End B(V) given in 2.7, and denote by 3: T(V*) — (End BV )P the
(unique) algebra map extending d to the tensor algebra. Then ¢ factors
through B(V'*) as

G=T(V*) > B(V*) S (End B(V))™.
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Proof. We use the bilinear form (|) of 2.4. Notice that if z € T"(}),
ZeT™V),weT"V*),w e T"(V*), then
(z-2'|w-w)=(Z|w)(z|w). (2.10)

For w € T"(V*), z € T™(V) we take the pairing z ® w — (S"z|w). By
definition this pairing gives a functional w € ({8(}V))*, and we define the
operator h(w) € End B(V) by h(w)x) =w — x, ie, h(w)x) =
x1Ww(x ). In other words, if z € T™(V) then S(z) € B (V) and we have,
using (2.5),

h(w)(S(z)) = S(z(l))w(S(z(z))) = (S(Z(l)))(Z(Z) | S"W)
=(S"""® (:|S"W))S,,_,..(2). (2.11)

We prove now that & = 4. In degree 1 this is just the definition of &, so
it is enough to prove that £ is multiplicative. Let w, € T"(V*) for i = 1,2
and z € T"*"2"3()). Then

(A(w1) “op h(w2))(P2)
= h(w,)(pza))wi(20)) = PZaywa(20))Wi(23))
= 8"(z0)) (20 | 8" w2 ) (25| 8"wy) by (2.11)
= (S @w,®w)(id® S ®8")(S,, , .(2))
= (8" ®w;-wy)(id ® §"*™")(S, .., (2))  by(2.10)
= (8" ® 8™ (wy - wy))(S,, nyin,Z)
= h(w, - wy)(pz) by (2.11).

The factorizability through B(V*) is now a consequence of (2.11). The
injectivity of ¢ follows immediately from the non-degeneracy of (|). |

As a first consequence of this result, we have

COROLLARY 2.12. Let 9, € V* be such that c(d, ® 9,) = qd, ® d,,
where q # 1 is a root of unity of order N. Then (d,)N = 0 as an operator

of BO). 1

DEFINITION 2.13. We shall denote by [ , ]the action given by J; i.e., for
S"z € B"(V), S"w € B"(V*) (n = m),

[S"z,8™w] = 8"""(z4))(8"zp) W) € B"""(V).

We characterize now the RBPs (V, ¢) arising in Yetter—Drinfeld cate-
gories over group algebras. The following remark is due to the referee.
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Remark 2.14. Let V' be a finite dimensional module in ',:? 279, where I'
is a group. As a kI'-comodule, V' can be decomposed as V' = @, _ V%,

where 8(x) = g ® x Vx € V8. Then, for x € V&, y € VV we have c(x ® y)
=g—y®x eV ®x. Thus V has a basis {x,,..., x,} such that c(x; ® V)
=V ® x;. Conversely, let (J, ¢) be a BP with a basis {x,..., x,} such that
c(x;® V) =V®ux,. Let g, € Aut(}) be defined by

c(x;8y) =g(y) ®x;,

and let T' be the subgroup of Aut(}) generated by {g,..., g,}. Then V' is
an object of {1 L %9. In particular, it is an RBP.

Proof. The comodule structure is determined by 6(x;) = g; ® x,. The
module structure is given by g; — y = g,(y). We must prove the YD-com-
patibility condition between — and &, which reads as 8§(g —y) =
Y18 ' ® ) With g € T, 8(y) =y, ® y,. It is sufficient to prove it
for y = x; and g = g;, which is equivalent to prove that g,(x,) € yess
Let g;x; = Xyc,x,. The braid equation applied to x; ® x; ® y implies that

Ygi&(y) ®cx, ®x; = Y ggi(y) ® ¢px; ®x;,
k k

which tells that ¢, = 0 if g;g, # g,8;- |1

Remark 2.15. Let Ve X %2, with T a finite group. Then V =
® M(g,, p), where p;: T, — Aut(Y)) is an irreducible representation of
I, , and
8’

M(g;, p) = Indi» pi =kl & Y,

with comodule structure 8(h ® y) = hg;h ™' ® (h ® y). Let {x},..., x] } be
a basis of Y,, and let {hj,...,h{} be a set of representatives of left
coclasses in T'/T,. Then M(g,, p;) has basis {z}, = hj®x}, 1 <j <s,
1 <1 <r}, and consequently {2}, ;, is a basis of V. Let {9}}, ;, be the
dual basis. Let ¢ = hjg;(hj)~" (thus, the conjugacy class of g; is {t], ..., £},
and note that 8(zj) =t} ® zj,. Let W' = span{z}>, | (i, j, D) # (i, j,,1,)}.
Then W, is a kI-submodule of V. For further use, we compute

(ld ® l?]llll) (Z;zzlz ® Z]sls) = (ld ® (9]11111)( ]lz2 -z 3313 ®z zlz)

T i1 s 5i3
6‘1>‘2611a126[1’12(t11 21313)'

Moreover,

((2/1',1 ® id)c(z’:' ® Zzlz) = o

i s 5ia =8 . gt —~ i iy
Jih ]11|(t11 2212)21111 811312(9]11(1‘]1 2217)2]111'

(2.16)
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Now, we have &(t1 —z1, ) = (¢)11)(t/)") ® 1} — 2/, , whence (2.16)
vanishes if ¢/1/1(¢/)"! # ¢]1, i.e., if #]1 # t]1, but for the definition of ¢/ and
h; this is el:qgivalent to j, # j,- Moreover, for y €Y, = (h ®y) =
hig,(h)"'h} ® y = hit ® p,(g;Ny) = q; h}! ®y, from where (2.16) van-
ishes if [, # [,. Then, we have proved

i

e c(z);® z},)‘= 9,2}, ® zjj,
o o(z; ® W) =W ® zj,
. 8(%}’) ckl'® j}l.
We close this section with a useful bound for dimension of Nichols
algebras:

LeEMMA 2.17. Let V € ',:E 2, with T finite, and let V be finite dimen-
sional. Then by 2.15, we have a basis {x,, ..., x,} of Vsuch that c(x; ® V') =
V ® x; and c(x; ® x;) = q;x; ® x;, with q; a root of unity. Let N; = N(g,).
Then TT;N; < dim(*B(V)).

Proof. Let{d,,..., d,} be the basis of V* dual to {x,,..., x,}. Note first
that xi~! # 0 because B(kx;) = B(V), or simply by direct computation,
since 9,(x)) = (j), x/~" and thence (3,)(x/) = (j), , which is nonzero if
j < N, (we use the Leibniz rule to make the computations; see 3.5 below).
We prove now that the set {x{! - xJ» |0 < j, < Nj} is linearly independent.
We do it by induction: suppose that the subset with j, = 0 for m > m, is
Li. and consider a linear combination

. o oxh Jmg =
Z' ah sssss Imoxl meO

Jise-es ]mu
Applying (g,, YN~! we get

o
! J J
. — 1 mo—1 =
Z T Imy—1 Nm0—1( mg 1)%’0)&'1 xmoo— 0’

from where the coefficients «; N
Leees Img—1Nmy—1

(4,2, and get that the coefficients «; g1 Ny, —2 Vanish. Proceed-

ing in this way, we see that all the coefficients @ = 0, and the
. . ey e b mo
inductive thesis follows. |

COROLLARY 2.18. If V = @ M(g;, p) € v %% (T a finite group) and
d; = dim M(gj, pj), q; = pj(gj), N, = N(qj), then l_[_,-def < dim(B(0)). 1

vanish. We can apply then
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3. MAIN RESULT

DEFINITION 3.1.  We say that a finite dimensional braided Hopf algebra
(R, c) is rigid if R is a Hopf algebra in a rigid braided category. This is
equivalent to (R,c) being an RBP and the structure morphisms of R
commuting with the braiding. In particular replacing P by R and by R*
we have

cp r(id ® mp) = (my ® id)cp ror): POR®R >R P,

(cr.p) '(id ® mp) = (mp ® id)(cror).p) :PO®R®R—>R®P,

and analogous equalities for A, u, ¢,.%.

For rigid braided Hopf algebras, most of the “classic” results on finite
dimensional Hopf algebras can be stated mutatis mutandis in a braided
sense, and we refer to [T2] for this. We shall use the existence of a
non-zero integral (in R and R*) and the non-degenerate bilinear form
given by it.

DErINITION 3.2. Let (I, c¢) be an RBP such that ®B(})) is finite dimen-
sional. We have seen that B(V*) = (B(V))* and that (B(V'), cyy) is an
RBP. It is straightforward to see by the definitions of the structure
morphisms in B(}) that it is a rigid braided Hopf algebra. Then B(}') has
a one-dimensional space of integrals, which is easily seen to be homoge-
neous. We denote by top(}') the degree of the integral of B(V). We
further denote by Ay ;) a non-zero integral of B(}).

The non-degenerate bilinear form gives the Poincaré duality found by
Nichols (see, e.g., [AG, Proposition 3.2.2]), namely, that dim B‘(}) =
dim BPI~i(V); in particular, dim B°PY)(}) = 1 and BPV*(V) = 0
Vi > 0.

The following lemma, which we have mostly proved, is an addendum to
this duality.

LEMMA 3.3. Let (V,c) be an RBP.

1. B"(V*) = (B"(V)* via the foom [ , ] of 2.13.

2. If BWV) is finite dimensional and n < top(V), then [Ay ),
%top(V)—n(V*)] — %H(V)

Proof. (1) This is part of the content of 2.6, once we see the definition
of [, ]

(2) If D € BP7"(*) is such that [Ay,), D] = 0, we can take

D' € B"(V*) such that Ayys =DD', and then [Ayy), Ayys]=
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[[A%(V), D], D'] = 0, which contradicts 1. Then we have a monomorphism

Brort=n(}#) — B(}). Since by 1 and the Poincaré duality both spaces
have the same dimension, we are done. ||

DEFINITION 3.4. Let (V, ¢) be an RBP and consider the map ¢: B(V*)
— End B()°P of 2.9. Given x € B(V), we denote also by x the map in
End B()) given by right multiplication by x. We have hence 8(}') and
B(*) acting on B(V). We define the quantum differential operators
algebra &/V as the subalgebra of End B(V)°P generated by B(}) and
B*).

When V € {19, it can be given a nice basis of V.
LEMMA 3.5. Let V € KL% D be finite dimensional.

1. Let {x,...,x,} be a basis of V such that 6(x;)) =g, ® x;. Let
{9,,...,3,} be the basis of V* dual to {x,, ..., x,}. Then &/V can be presented
with generators {9, ..., d,, X, ..., x,} and relations

e kerS™: TV — B(V), m = 0, i.e., the relations in B),
o kerS™: TV* - B(V'*), m = 0, i.e., the relations in B(V*), and
o x;d; =8, +dg(x) for 1 <i,j<n.

Furthermore, for m > 0 take {z[",...,z7'} a basis of B"(V), and let

{wi's...,w]'} be the dual basis of B™(V*) (given by the duality in 3.3).
Then the set

{wizlli,j=0, 1<k<d, 1=<l<d}]

is a basis of V.

2. Suppose W CV is a kl'-subcomodule which is 1'-stable, where
I C T is the smallest subgroup such that (W) C kI" ® W. Then c(W ® W)
=W ® W, the pair (W,cy = cylwew) is an RBP, and it makes sense to
consider B(W). Suppose furthermore that V=W & W', where W' is a
kI'-subcomodule and a kI"'-submodule. Let W* — V* be the map given by
the identification W* = (W')* . Then there is a monomorphism of algebras

AW > IV,
induced by W = V and W* < V'*,

Before giving the proof, we note that if T' is finite, 2.15 tells that the
conditions of the second part are fulfilled taking, for i, j,/ fixed, W =

ri

span{zj;} and W’ = Wj;'.

Proof. (1) The relations in B(}) hold in &V because it acts by the
regular representation. The relations in B(F*) hold in &V because of
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2.9. Of course, AV, CV, and B(V) lie in ﬁf 279, whence we may consider
g; acting on Aut(®B(V)). It is immediate to see from the definition that the
derivations d; verify the Leibniz rule

d;(ab) = d;(a)g;(b) + ad;(b),

which implies at once the last set of relations taking b = x;.

Thus, if B is the algebra defined with generators {d,,..., d,, X,..., X,,}
and the stated relations, we have a surjection B - .&/V. Moreover, the last
set of relations implies that any monomial in B can be written in the form
Y,a,b,, where the a,’s are generated by the J;’s and the b,’s are generated
by the x,’s. Now, the first and second set of relations imply that we can
choose a, and b, to be, respectively, in the sets {w}} and {z/}. The last
thing to be proved is the linear independence of the set {w} z/}. Since &V
is generated by {x;} and {J;}, which act on B(}V) in a graded way, then &1
is a graded algebra with degrees given by deg(x;) = 1 and deg(d,) = —1,
and then it is enough to prove the linear independence of the subsets with
the same degree. Let then

T = Z aijklwliczlj =0,
—it+j=n
k1
and suppose some of the a;;, # 0. We take m = min{i | 3j, k, [ s.t. a;;; #
0} and let

- P
T = Z Qi Wi 2] -
j=n+m,i=m
k1

Since T and T — T act trivially on 8" (V) then T also does. Thus, for any
k' we have

0= 7:(Zl?}) = |:Zlir/l7 EWJT} Zam,n+m,k,lzln+m
k /

— n+m
- Zam,n+m,k’,lzl >
!

but then the linear independence of the set {z/*™}, implies that
a = 0 Vk, [, which contradicts the definition of m.

m,n+m,k,l —

(2) The pair (W, c,) is an RBP thanks to 2.14. Let {x,,..., x,,} be a
basis of W such that 8(x;) = g; ® x;. We consider {4,,..., d,} the dual
basis of W* and extend it by ;[ = 0 (i.e.,, W* < V* as W* = (W')*).
The condition on W' to be a kI'-subcomodule implies that in /1" we have
x;d; = 8, + d;g(x,)) for 1 <i,j <m. The condition on W' to be a kI"-
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submodule implies that c,«(W* ® W*) = W* ® W*, and it is easy to see
that the restriction ¢y «|w+gw+ coincides with cy,«, the braiding given by
considering W* as an object of k1.2’@. Thus,

ker(8": (W*)®" — (W*)°")
= ker(8": (V*)*" = (V*)*") n (W*)°".
Since clearly
ker(S": W®" - W®") = ker(S": V" - V") n We",

by the first part this gives a well defined morphism of algebras W — oV
We must prove that this map is injective, but this is also a consequence of
the first part, for if we take {z,} a basis of B(W) and {w;} a basis of
BW*) then the set {w;z;} is a basis of &/, and it is linearly independent
in &V (completing the bases to bases of B()) and B(V*)). The assertion
follows. |

EXAMPLE 3.6. If V= kx and c¢(x ® x) = gx ® x, let d € V'* such that
d(x) = 1. Then &V has basis {9'x’ |0 < i,j < N(g)}, and it can be seen
by induction that the relation xd = g dx + 1 implies that for i, j > 0 we
have

X9l =Y (;)q(/) (1)} qU=D=Dgi=lxi=1,
q

>0 !

Remark 3.7. Let V € k. %2. We note that the relations in &V imply
that if ¢ € V* is such that d|y» = 0 Vh # g and z € B(V), then zd =
[z, ] + dg(z) in &V. Thus, if w € B(*), we have

w = [z,w]
+ terms beginning with elements of positive degree in B (V*).
Now, for a finite dimensional graded space 4 = @ 4; we denote the

Hilbert polynomial P,(t) = X7_,dim(A4,)t". We are in position to prove
the main theorem.

THEOREM 3.8. Let V € X\.% T be finite dimensional.

1. Suppose there exists W as in 3.5, part 2 such that B(W) is finite
dimensional. Take the basis {x,, ..., x,,} of W and the dual basis {3, ..., d,}
of W* C V* (extend them to V by 9,y = 0 Yi). Consider then the d,'s as
operators on B(V') and let K = N, ker(d,). Then BV) = K @ B(W) as
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right B(W)-modules and as left K-modules. In particular,

Py (1) = Pe(t) Py (1),

and thus dim B(W) divides dim B(V).

2. Suppose that B(V) is finite dimensionaland V=V, & - & V, isa
decomposition of (V, c) (that is, c(V; ® Vj) =V, ® V). Foreach 1 <i < 0,
let W, C V; be a (possibly zero) subspace of V; as in 3.5, part 2; i.e., for each
i, W, is a kI';-comodule for " C T" a subgroup, it is kI}-stable, and there
exists W) € V a kI'-subcomodule and a kI'!-submodule such that V = W, &
W!. Thus, if P(t) is the Hilbert polynomial of B(W,), then the product

?_P(t) divides Py, (t) and the quotient lies in Z[t]. In particular,
9, dim BW,) divides dim B(V).

Proof. (1) Since B(W) is finite dimensional, we can fix Ay, and
A g+, integrals such that

[Asary, Asors] = 1.

Let {z,,...,z,} be a basis of homogeneous elements of B(W), and let
{2,,...,Z,} be the dual basis with respect to the Poincaré duality, i.e.,
[2,2j,Ayw+)] = §;;. Let p; €W be defined by p; = z;A g+ Z;. Now, by

3.7, we have that if z € B(W) and w € B(W*) then
A’B(W*)Zw = A%(W*)[Z,W].

Thus, by definition we have p;p; = §;;p;, i.e., the p;’s are mutually orthog-
onal idempotents. Furthermore, let z € B(W), z = ¥, a;Z,. Then

(Zpi)(z) = Zaj[2j2i7A%(W*)]Z~i = Z0‘1'5/' =2
i i,j J

whence X;p;, = 1. Because of the immersion &/W — .V, the equality
Y;p; = 1 also holds in &/V. Now, since the image of A g+, lies in K, we
have that

BV) = LB(V)zA g2 € LKE,.
This tells that the canonical map u: K ® B(W) — B(V) given by multi-

plication is surjective. We shall prove that the sum is direct and that w
restricted to K ® Z; is injective Vi, which completes the proof. To see this,
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if 0 = X,k;z; with k; € K, then for each j we have
0= Pj( Zkifz‘)
i
= Zk[Zisz%(W*)Zj
12
= Lhi([27 M|
12

+ terms beginning with elements of positive degree in B (W* ))Zj

= kaj.

This proves that the sum is direct. Now, if kK € K and, for some i, kz; = 0,
then let d be the degree of %, and let w; be an element in B4(W*), such
that [Z,,w;] = 1. We have

0=kzw, =k[Z;,w]
+k (terms beginning with elements of positive degree in B (W*))
=k,

which implies the injectivity of pu.

2. Consider in B(}) the multi-degree given by the decomposition
V' = @&V, The condition on the V}’s implies that the map S" is (mul-
ti-)graded for each n, whence we can take the Hilbert polynomial of B(}))
inZ[t,...,t] ie.,

Py (ths o ty) = A Y A dim Bl (V) -t

(Br--0(}) the homogeneous component of degree (iy,...,i,). If K, C
B(V) is the intersection of the kernels of ¢ for all 9 € W;*, then we can
take also the Hilbert polynomial of K; in Z[t,,...,t,] since the elements in
W act in an homogeneous way. By the first part, we have that Py, =
Py Py, Where Py, € Z[t;]. Thus, for each i the polynomial Py,
divides Py ), and since these polynomials are coprime, their product also
divides Py ;). Moreover, since the product is a monic polynomial (because
dim BPY) (W) = 1) the quotient lies in Z[t,,...,t,]. The result follows
taking t, = - =t,=¢t. |

Remark 3.9. In the situation of the first part of the theorem, the
Leibniz rule tells immediately that K is a subalgebra of B(}). It is in



FREENESS THEOREM FOR NICHOLS ALGEBRAS 253

general not a coalgebra, but with the help of (2.8) it is easy to see that it is
a left coideal. The fact that the morphism K ® B(W) — B(V) is the
multiplication of B(V') shows that they are isomorphic as (K, B(W))-bi-
modules.

Remark 3.10. Let V= & M(g, p) be a module in }.ZZ, with T
finite. Let z =z € M(g, p) be as in 2.15. Then c(z ®z) =qz ® z,
where g = p/(g,). By the first part of Theorem 3.8 (taking W’ = W;'), we
have that N(q) divides dim B(}"). Furthermore, a basis of B(}) is given
by {yaz” |0 < b < N(g)}, where {y,} is a basis of ker (9]-",.

Taking one element zj, in each M(g,, p) and ¢, = p(g,), N; = N(q,),
by the second part of Theorem 3.8 (W, being the subspace generated by
z!, and W/ = W};) we have that I1,N, divides dim B(}).

Remark 3.11. We notice the difference between this result, 2.2 and
2.17. Let T be finite, and let V € k. %2 be finite dimensional, V =
® M(g;, p) = ®V. Let d; = dim(}V), ¢; = p{g;), N; = N(g,), and D, =
dim(*B(V})). Then by 2.2 we have dim(*B(}V)) > T1, D, and by 2.17 we have
D, > Nf. Finally, 3.8 tells that if dim(8(}))) is finite, then it can be
divided by I, N,.

We warn that it is not in general true that dim(*8(}/)) is divisible by
[1,N/. For instance taking V' with basis {x,, x,, x,} and braiding c(x; ®
x;) = —x_,_; ® x,; (we take the subindices in Z/3), then d = 3 and N = 2,
but dim(*B(V)) = 12 (it is computed in [MS]; see also [AG].

This example shows also why 3.8 is not a consequence of a braided
version of the Nichols—Zoeller theorem. Taking W = span(x,), we have
cVe W)z (We V), and in particular ¢(B(V) @ BW)) ¢ (BW) ®
B), from where B(W) is not a categorical braided Hopf subalgebra of
B(V) in the sense of [T 3], which is one of the hypotheses of Nichols—Zoeller
theorem for braided Hopf algebras.

4. APPLICATIONS

As a consequence of the main theorem, we have a generalization of [D]
and [AS2, Lemma 7.4]:

COROLLARY 4.1. Let A be a finite dimensional pointed Hopf algebra, let
' = G(A) be its group of group-like elements, and let [ A : T'] be the index of

Tin A. If [A:T] = p is a prime number, then there exists g € Z(I'), y € I
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a character, and A € {0, 1} such that
e x(g) is a primitive pth root of unity,
e A=0if x?#1orgf=1,

and the algebra A is isomorphic to the algebra generated by G(A) plus an
element x with relations

xP=Ag"—1),
hx = x(h)xh.

The coalgebra structure is given by A(x) =g ® x +x ® 1.

Proof. With the lifting procedure (see [AS1]) applied to A4, we get R a

coradically graded Hopf algebra in |1 %2 of dimension p. Let R’ be the
subalgebra generated by R(1). By the Nichols—Zoeller theorem [NZ],
R =R, and thus R is a Nichols algebra. Take x a non-zero element in
R(1). The algebra generated by x in R is isomorphic to k[ x]/x’, but by 3.8
and 3.10 we must have ¢ = p, and then R = k[x]/x?. The equality x? =
Mg? — 1) is a straightforward computation of the lifting procedure, as
done for instance in [G1]. |

COROLLARY 4.2. Let A be a pointed Hopf algebra, let T = G(A) be its
group of group-like elements, and let [A:T] be the index of T in A. If
[A:T1=p? is a square prime, then either

1. The situation is the same as in 4.1, replacing each occurrence of “p”
by “p2'”

2. There exist two elements g, 8, € Z(I'), two characters x,, x, € I,
and Ay, Ay, Ay € k such that

e x;(g;) are pth roots of unity,

* xi(&)xx(g) =1,
e M, =00G=12if x? #1orgf=1,

e My=0if yyxo*1lorg,g, =1,

and the algebra A is isomorphic to the algebra generated by T'(A) plus two
elements x,, x, with relations

xf = /\i(gip - 1), i=1,2, X%, = X2(81) %% = A5(818, — 1),
hx; = x,(h)x;h.

The coalgebra structure is given by

A(x;)) =g ®x; +x,® 1.
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3. p =2, there exists an element g € Z(I') and p an irreducible
representation of T of degree 2 such that p(g) = —id; there exists a T-in-
variant quadratic form A: span{x,, x,} — k such that A = 0 if g* = 1, and
the algebra A is isomorphic to the algebra generated by T plus two elements
X, X, with relations

ekt = p(h)(x)

e )\(x)(gz ) forx € span{x,, x,}.

The coalgebra structure is given by A(x) =g ®x +x ® 1, or

4. There exists an element g € Z(T') with [T : Fg] =2, and A may be
presented as an extension

k—>B—->A->Kk(I'/H) - Kk, (4.3)

where H is the subgroup of T generated by &, and B fits into the case 2.

Proof. Take R and R as in the proof of 4.1. Then the dimension of R’
may be p or p?. If it were equal to p, then 3.8 tells that the rank of R’ is 1,
and thus by [AS1, Theorem 3.2] R = R’, a contradiction. Then R = R’ =
B(V), and R is a Nichols algebra. If dim V' = 1, then V' = M(g, x) and we
are in case 1. If dim V' = 2, then either V = M(g,, x,) ® M(g,, x,) and we
are in case 2, V' = M(g, p) with deg p = 2 and we are in case 3 (p(g) =
—id is an equivalent condition for B(}) to be p*-dimensional; because of
2.2, the condition on A to be T-invariant follows computing Ax*h~1'), or
V = M(g, p) with [T": Fg] = 2, and then by [AG, Lemma 3.1.9] R#KT is an
extension as 4.3 and we are in case 4. The rank of R is necessarily < 2
because of 2.17. |

As a last application of 3.8, we classify Nichols algebras of dimension p?
that arise in Yetter—Drinfeld categories over finite groups. Together with
the lifting procedure of [AS1], this is a first step in order to classify finite
dimensional pointed Hopf algebras of index p°.

Then let V € EL.%Z be such that dim B(V) = p3. By 2.17 and 3.8, we
have dim V' < 3. It can be proved (see [G2)]) that if (V,¢) does not come
from the abelian case then dim B(V) > p°.

If dimV = 3, B(V) is a QLS because of 2.2 and 3.8; i.e., V' has a basis
{x, x,, x5} such that the set {x{"x}2x5*|0 < n; < p} is a basis of B(V).

If dim V' = 2 then ¢ has a matrix

91 4912
42 42
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where the ¢,;’s are either p-roots or proots of unity. If one of them has
order p?, say ¢, then N(g,;) =p and B() is a QLS. If N(q,,) =
N(q,,) = p then by the results in [G2] we have two possibilities:

1. p=2and q,9, # 1. Furthermore, for B(}) to be eight dimen-
sional, ¢,,¢,; = —1. The algebra B(}) is of type A,.

2. p>2and q,9,9,, = 1. Interchanging q,, with g,, we see that
4129191, = 1, whence g, = ¢,, and B(V) is of type A4,.

Thus we reach in both cases the same situation. The algebra B(}) has a
PBW basis given by {x]"1z"x72|0 < my,m,,n < p}, z = X,X; — @y X, X;.

The last case is dim V' = 1. We have simply {x} a basis of ¥ such that
c(x ® x) = gx ® x, N(¢) = p°. Thus BWV) = K[x]/(x"").
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