A Freeness Theorem for Nichols Algebras ${ }^{1}$

Matías Graña
Departamento de Matemática, FCEyN, Pab. I, (1428) Ciudad Universitaria, Buenos Aires, Argentina
E-mail: matiasg@dm.uba.ar
Communicated by Susan Montgomery

Received September 28, 1999

We prove a freeness result for Nichols algebras over certain Nichols subalgebras. This result allows us in particular to classify pointed Hopf algebras of prime and prime squared index. © 2000 Academic Press

1. INTRODUCTION AND NOTATION

1.1. Introduction

Let V be a vector space and let $c \in \operatorname{End}(V \otimes V)$ be a solution of the braid equation

$$
\begin{aligned}
& (c \otimes \mathrm{id})(\mathrm{id} \otimes c)(c \otimes \mathrm{id}) \\
& \quad=(\mathrm{id} \otimes c)(c \otimes \mathrm{id})(\mathrm{id} \otimes c) \in \operatorname{End}(V \otimes V \otimes V)
\end{aligned}
$$

Let $A V$ and $C V$ be, respectively, the tensor algebra and tensor coalgebra of V; they are both braided bialgebras. There exists a unique bialgebra map $\mathbf{S}: A V \rightarrow C V$ extending the identity id: $V \rightarrow V$ in degree one. The image $\mathfrak{B}(V):=\operatorname{Im}(\mathbf{S}) \subset C V$ is a braided bialgebra usually called a quantum symmetric algebra. If c is rigid (see Definition 1.3.1 below), then we say that $\mathfrak{B}(V)$ is a Nichols algebra. In such case it is known that $\mathfrak{B}(V)$ is a braided Hopf algebra in a rigid braided category.

In this article we consider a rigid solution (V, c) of the braid equation and a subspace $W \subset V$ such that $c(W \otimes W)=W \otimes W$. We identify the quantum symmetric algebra $\mathfrak{B}(W)$ with a subalgebra of $\mathfrak{B}(V)$. Under

[^0]certain additional hypotheses it is a Nichols algebra, possibly in a different rigid braided category. Assume further that $\mathfrak{B}(W)$ is finite dimensional. Our main result, Theorem 3.8, shows then that $\mathfrak{B}(V)$ is free over $\mathfrak{B}(W)$. More precisely, we describe a graded subalgebra K of $\mathfrak{B}(V)$ (which is also a left coideal) such that $\mathfrak{B}(V) \simeq K \otimes \mathfrak{B}(W)$ as $(K, \mathfrak{B}(W)$)bimodules. Consequently, $\quad P_{\mathfrak{B}(V)}(t)=P_{K}(t) P_{\mathfrak{B}(W)}(t)$ (where $P_{A}(t)=$ $\sum_{i} \operatorname{dim} A_{i} t^{i}$ is the Hilbert polynomial of $A=\oplus_{i} A_{i}$) and in particular the dimension of $\mathfrak{B}(W)$ divides that of $\mathfrak{B}(V)$. Moreover, assume that there is a decomposition $V=\oplus_{i} V_{i}$ such that $c\left(V_{i} \otimes V_{j}\right)=V_{j} \otimes V_{i}$ for all i, j and that there exists for each i a (possibly trivial) subspace $W_{i} \subseteq V_{i}$ verifying the hypotheses of the first part. Then $\prod_{i} P_{\mathfrak{B}\left(W_{i}\right)}(t)$ divides $P_{\mathfrak{B}(V)}(t)$.

It was recently proved independently by Scharfschwerdt [Sf] and Takeuchi [T3] that the Nichols-Zoeller theorem [NZ] holds in Yetter-Drinfeld categories. In general, however, our algebras $\mathfrak{B}(V), \mathfrak{B}(W)$ lie in different braided categories, and their result does not apply in the present situation (moreover, our result applies also to the case when $\mathfrak{B}(V)$ is infinite dimensional). We prove 3.8 using algebras of quantum differential operators $\mathscr{A} V \hookrightarrow \operatorname{End}(\mathfrak{B}(V))^{\text {op }}$. To this end, we generalize the definition for the "abelian case" given, for instance, in [FG] (this algebra was considered also by Kashiwara and Lusztig). The author was not able to find this general notion in the literature.

As an application of our main result we classify, in 4.1 and 4.2 , pointed Hopf algebras of index p and p^{2} (p a prime number). This classification generalizes results from [D, AS2]. Here, for a pointed Hopf algebra A we define the index as the ratio $\operatorname{dim} A / \# G(A)=:[A: G(A)]$, where $G(A)$ is the group of group-likes of A.

The results of this article can be combined with a parameterization of Nichols algebras of ranks 3 and $4 \mathbf{i n}_{\mathbf{k} \Gamma}^{\mathbf{k} \Gamma} \mathscr{Y} \mathscr{D}$ (Γ a finite group) in order to give a classification of Nichols algebras of dimension <32. This, together with the "lifting procedure" of [AS1], is a first step for the classification of pointed Hopf algebras of index <32. These and related problems are considered in [G2].

The article is organized as follows: in Section 2 we state and prove some first results on quantum symmetric algebras and Nichols algebras. For
 applications and study the behavior of the braiding with respect to these subspaces. We also prove in Section 2 a generalization of [AS1, 3.4, 3.5] for general abelian braided categories. Section 3 is devoted to algebras of quantum differential operators and to the main result. Finally, in Section 4 we classify all pointed Hopf algebras of prime index and all pointed Hopf algebras of prime squared index.

1.2. Acknowledgments

I thank N. Andruskiewitsch for his careful reading of the material and for the important suggestions he made. His contribution improved and made more clear the presentation of this work. I also thank him for the statement of 2.2. I thank also the referee, who in particular pointed out the Remark 2.14, reducing the proof of 3.5 .
1.3. Notation. We refer to [Mo] for notation on Hopf algebras. We fix \mathbf{k} as an algebraically closed field of characteristic 0 . All vector spaces, algebras, tensor products, and homs are considered over \mathbf{k} unless explicitly stated. For comultiplication we use Sweedler's notation without the summation symbol $\left(\Delta(z)=z_{(1)} \otimes z_{(2)}\right)$.

It is worth noting that most of the results of this article (in particular, the main Theorem 3.8) are true in positive characteristic (with the same proofs). The results in Section 4 also hold, assuming char \mathbf{k} does not divide $\operatorname{dim} A$.

We call a braided pair (BP) a pair (V, c), where V is a vector space and $c: V \otimes V \rightarrow V \otimes V$ is a (bijective) solution of the braid equation. Throughout, V shall be finite dimensional. It is well known that there exists a braided category containing V as an object and such that c coincides with the braiding in the category, a construction due to [Ly] (see also [H, Sn]). Moreover, this category is abelian and has countable direct sums. Explicitly, one can take the category of comodules over the FRT bialgebra generated by (V, c) (see for instance [AA]).

When working in a non-symmetric braided category, one must distinguish between right and left duals. Since it is more convenient for our purposes, we shall use right duals, and hence consider evaluation and coevaluation maps as

$$
e: V \otimes V^{*} \rightarrow \mathbf{k}, \quad b: \mathbf{k} \rightarrow V^{*} \otimes V
$$

Let $f: X \otimes Y \rightarrow Y \otimes X$ be a map of finite dimensional vector spaces. It is customary to denote by $f^{b}: Y \otimes X^{*} \rightarrow X^{*} \otimes Y$ the morphism defined by

$$
\left\langle(\mathrm{id} \otimes x), f^{b}(y \otimes \alpha)\right\rangle=\langle f(x \otimes y),(\alpha \otimes \mathrm{id})\rangle,
$$

where we use the pairing $\langle(a \otimes b),(\beta \otimes \alpha)\rangle=\langle a, \alpha\rangle\langle b, \beta\rangle$.
Definition 1.3.1 [Ly, Gu]. Let (V, c) be a braided pair such that V is finite dimensional. We say that c is rigid (or that (V, c) is an RBP) if c^{b} is an isomorphism (it is proved in [LS] that this is equivalent to $\left(c^{-1}\right)^{b}$ being an isomorphism).

When (V, c) is an RBP, we have isomorphisms

$$
\begin{aligned}
c_{V, V^{*}} & =\left(c^{-1}\right)^{b}: V \otimes V^{*} \rightarrow V^{*} \otimes V, \\
c_{V^{*}, V} & =\left(c^{b}\right)^{-1}: V^{*} \otimes V \rightarrow V \otimes V^{*}, \\
c_{V^{*}, V^{*}} & =c^{*}: V^{*} \otimes V^{*} \rightarrow V^{*} \otimes V^{*},
\end{aligned}
$$

where we use the pairing above for the definition of c^{*}. Furthermore, in this case both V and V^{*} can be considered to be objects of one and the same braided category, and the evaluation and coevaluation maps e : $V \otimes V^{*} \rightarrow \mathbf{k}$ and $b: \mathbf{k} \rightarrow V^{*} \otimes V$ are maps in the category. Hence, the condition on c to be rigid is equivalent to the condition on V to lie in a rigid braided category.

Let (V, c) be a BP. Since c is a solution of the braid equation, the Artin braid group \mathbb{B}_{n} acts on $V^{\otimes n}$ giving braidings

$$
c_{V^{\otimes i}, V^{\otimes j}}: V^{\otimes i} \otimes V^{\otimes j} \rightarrow V^{\otimes j} \otimes V^{\otimes i} .
$$

Let $T V$ be the tensor space $T V=\oplus_{n} V^{\otimes n}$. This makes ($T V, c$) into a braided pair. If (V, c) is an RBP then c gives an action of \mathbb{B}_{n} on $T^{n}\left(V \oplus V^{*}\right)$ and $\left(T\left(V \oplus V^{*}\right), c\right)$ becomes a BP.

Let (V, c) be a BP. We denote, respectively, by $A V, C V$ the tensor algebra and the tensor coalgebra of V. As vector spaces, they coincide with $T V$. The multiplication components of $A V$ are simply the identity maps $m_{i, j}=$ id: $A^{i} V \otimes A^{j} V \rightarrow A^{i+j} V$. Dually, the comultiplication components of $C V$ are the identity maps $\Delta_{i, j}=$ id: $C^{i+j} V \rightarrow C^{i} V \otimes C^{j} V$. Both $A V$ and $C V$ are graded braided Hopf algebras. We denote the comultiplication components of $A V$ and the multiplication components of $C V$ by

$$
\begin{aligned}
& \mathbf{s}_{i, j}: A^{i+j} V \rightarrow A^{i} V \otimes A^{j} V, \\
& \mathbf{T}_{i, j}: C^{i} V \otimes C^{j} V \rightarrow C^{i+j} V
\end{aligned}
$$

(they are given by (i, j)-shuffles, we refer for instance to [AG] for the details). There exists a unique (graded) map of Hopf algebras $\mathbf{S}:=A V \rightarrow$ $C V$ such that $\left.\mathbf{S}\right|_{V}=$ id: $V \rightarrow V$. We denote by \mathbf{S}^{n} the restriction of this map to $A^{n} V$.

Definition 1.3.2. Let (V, c) be a BP. We say that the image $\mathbf{S}(A V) \subseteq$ $C V$ is a quantum symmetric algebra, or QSA. It is a braided graded Hopf algebra and is determined by V. We denote it by $\mathfrak{B}(V)$. We denote also by $\mathfrak{B}^{i}(V)$ the homogeneous component of degree i, i.e., $\mathfrak{B}(V)=\oplus_{i} \mathfrak{B}^{i}(V)$. Notice that $\mathfrak{B}(V) \simeq T V / \operatorname{ker}(\mathbf{S})$.

Definition 1.3.3. If (V, c) is an RBP, then the quantum symmetric algebra generated by V will be called a Nichols algebra and will also be denoted by $\mathfrak{B}(V)$. In this case, since V belongs to a rigid braided category, then V^{*} also does, and in particular it makes sense to consider $\mathfrak{B}\left(V^{*}\right)$, which is also a Nichols algebra.

Nichols algebras have some important properties that distinguish them from the general concept of QSA: they have a dual braided Hopf algebra (and in particular have non-zero spaces of integrals when they are finite dimensional). Moreover, finite dimensional Nichols algebras satisfy a Poincaré duality.

Let (V, c) be a BP. It is easy to see that the braiding commutes with the maps \mathbf{S}^{n} (that is, $\left(\mathbf{S}^{n} \otimes \mathrm{id}\right) c_{V, V^{\otimes n}}=c_{V, V^{\otimes n}}\left(\mathrm{id} \otimes \mathbf{S}^{n}\right)$, whence c gives a braiding $c_{\mathfrak{B}(V)}: \mathfrak{B}(V) \otimes \mathfrak{B}(V) \rightarrow \mathfrak{B}(V) \otimes \mathfrak{B}(V)$, and $\left(\mathfrak{B}(V), c_{\mathfrak{B}(V)}\right)$ becomes a braided pair.

For a root of unity q, we denote by $N(q)$ its order if $q \neq 1$. If $q=1$ then we define $N(q)=\infty$. We recall the definition of q-numbers: for $n, m \in \mathbb{N}, n \geq m$, define

$$
\begin{gathered}
(n)_{q}=\frac{q^{n}-1}{q-1}=1+q+q^{2}+\cdots+q^{n-1} \\
(n)_{q}^{!}=\prod_{i=1}^{n}(i)_{q} \quad\binom{n}{m}_{q}=\frac{(n)_{q}^{!}}{(m)_{q}^{!}(n-m)_{q}^{!}}
\end{gathered}
$$

Let H be a Hopf algebra with bijective antipode. We denote by ${ }_{H}^{H} \mathscr{Y} \mathscr{D}$ the category of (left-left) Yetter-Drinfeld modules over H of arbitrary dimension. It is a braided category. The full subcategory of finite dimensional Yetter-Drinfeld modules is furthermore rigid. For an object $V \in$ ${ }_{H}^{H} \mathscr{Y} \mathscr{D}$, we shall denote by $\delta: V \rightarrow H \otimes V$ the H-coaction and by \rightharpoonup : $H \otimes V \rightarrow V$ the H-action. We sometimes denote the action by $h(v):=$ $h \rightharpoonup v$.

2. FIRST RESULTS ON NICHOLS ALGEBRAS

Definition 2.1. Let (V, c) be a BP, $V=\oplus_{i} V_{i}$. We say that this direct sum is a decomposition of (V, c) (and that (V, c) is decomposable) if $\left.c\right|_{V_{i} \otimes V_{j}}$: $V_{i} \otimes V_{j} \rightarrow V_{j} \otimes V_{i}$. In this case we denote by $b_{i j}$ the restriction $b_{i j}=\left.c\right|_{V_{i} \otimes V_{j}}$. It is straightforward to see that if (V, c) is an RBP and $V=\oplus_{i} V_{i}$ is a decomposition of V as a BP, then this decomposition induces a decomposition of $V^{*}=\oplus_{i} V_{i}^{*}$ and taking the corresponding restrictions $c_{i}=b_{i i}$ of c then each $\left(V_{i}, c_{i}\right)$ becomes an RBP.

If Γ is a finite group, $H=\mathbf{k} \Gamma$, and $V \in{ }_{H}^{H} \mathscr{Y} \mathscr{D}$, then V can be decomposed as $V=\oplus_{i} M\left(g_{i}, \rho_{i}\right)$, where $\rho_{i}: \Gamma_{g_{i}} \rightarrow \operatorname{Aut}\left(Y_{i}\right)$ is an irreducible representation of the centralizer $\Gamma_{g_{i}}$ of g_{i} (the definition of $M(g, \rho)$ is given in 2.15 below). However, sometimes it is possible to further decompose some of the summands, or to give a different decomposition. These decompositions usually fail to lie in ${ }_{H}^{H} \mathscr{Y} \mathscr{D}$, but since (V, c) is an RBP any decomposition gives a direct sum of RBPs. For instance, it is proved in [AG, Proposition 3.1.11] that if V is two-dimensional then it can be decomposed as a sum of two one-dimensional subspaces. We say that (V, c) comes from the abelian case if V can be decomposed as a sum of one-dimensional subspaces.

When $V=\oplus_{i} V_{i}$ is a decomposition of (V, c), then the knowledge of the QSAs generated by the V_{i} 's gives information on the QSA generated by V. The next result, which is a generalization of [AS1, Lemma 3.4 and Proposition 3.5] for the non-abelian case, gives a first relation between $\mathfrak{B}(V)$ and the $\mathfrak{B}\left(V_{i}\right)$'s.

Theorem 2.2. Let (V, c) be a braided pair and suppose it is decomposable as $V=\oplus_{i=1}^{n} V_{i}$ such that $\mathfrak{B}\left(V_{i}\right)$ is finite dimensional $\forall i$. Then $\operatorname{dim} \mathfrak{B}(V) \geq \prod_{i=1}^{n} \operatorname{dim} \mathfrak{B}\left(V_{i}\right)$. Furthermore, the equality holds if and only if $b_{i j}=b_{j i}^{-1} \forall i \neq j$.

Proof. Let $\left\{v_{i}^{1}, \ldots, v_{i}^{N_{i}}\right\}$ be a set of homogeneous vectors of $T\left(V_{i}\right)$ such that the set

$$
\left\{\mathbf{S}^{d_{i}^{1}}\left(v_{i}^{1}\right), \ldots, \mathbf{S}^{d_{i}^{N_{i}}}\left(v_{i}^{N_{i}}\right)\right\}
$$

is a basis of $\mathfrak{B}\left(V_{i}\right)$, where d_{i}^{k} is the degree of v_{i}^{k}. The set

$$
\mathscr{B}=\left\{v_{1}^{k_{1}} \otimes \cdots \otimes v_{n}^{k_{n}} \in T\left(V_{1}\right) \otimes \cdots \otimes T\left(V_{n}\right) \mid 1 \leq k_{i} \leq N_{i}\right\}
$$

is linearly independent in $T(V)$ and has $\left(\Pi_{i} \operatorname{dim} \mathfrak{B}\left(V_{i}\right)\right)$ elements. Note that the set

$$
\left\{\mathbf{S}^{d_{1}^{k_{1}}} v_{1}^{k_{1}} \otimes \cdots \otimes \mathbf{S}^{d_{n}^{k_{n}}} v_{n}^{k_{n}} \mid 1 \leq k_{i} \leq N_{i}\right\}
$$

is also linearly independent. It is enough for the first part to prove that \mathscr{B} remains linearly independent after applying \mathbf{S} to it. Then, suppose that a linear combination $\sum \lambda_{k_{1}, \ldots, k_{n}} v_{1}^{k_{1}} \otimes \cdots \otimes v_{n}^{k_{n}}$ lies in $\operatorname{ker} \mathbf{S}$. Now, the space $T(V)$ can be decomposed in homogeneous components with respect of the V_{i} 's and the hypothesis made on c (namely, that c behaves well with the decomposition $V=\oplus_{i} V_{i}$) guarantees that c is a homogeneous morphism. Hence, the linear combination of above can be treated for each homogeneous component, and we consequently may suppose that there exist
d_{1}, \ldots, d_{n} such that $\lambda_{k_{1}, \ldots, k_{n}}=0$ if $d_{i}^{k_{i}} \neq d_{i}$ for some i. Let $m=d_{1}+\cdots+d_{n}$.

Now, by (2.8), for $m=i+j$ we have

$$
\left(\mathbf{S}^{i} \otimes \mathbf{S}^{j}\right) \circ \mathbf{S}_{i, j}=\mathbf{S}^{m}=\mathbf{T}_{i, j} \circ\left(\mathbf{S}^{i} \otimes \mathbf{S}^{j}\right) .
$$

This implies that

$$
\begin{align*}
0 & =\mathbf{S}^{m}\left(\sum \lambda_{k_{1}, \ldots, k_{n}} v_{1}^{k_{1}} \otimes \cdots \otimes v_{n}^{k_{n}}\right) \\
& =\mathbf{T}_{d_{1}, \ldots, d_{n}}\left(\mathbf{S}^{d_{1}} \otimes \cdots \otimes \mathbf{S}^{d_{n}}\right)\left(\sum \lambda_{k_{1}, \ldots, k_{n}} v_{1}^{k_{1}} \otimes \cdots \otimes v_{n}^{k_{n}}\right) \\
& =\sum_{x^{-1} \in S h_{d_{1}, \ldots, d_{n}}} s(x)\left(\mathbf{S}^{d_{1}} \otimes \cdots \otimes \mathbf{S}^{d_{n}}\right)\left(\sum \lambda_{k_{1}, \ldots, k_{n}} v_{1}^{k_{1}} \otimes \cdots \otimes v_{n}^{k_{n}}\right), \tag{2.3}
\end{align*}
$$

where $S h_{d_{1}, \ldots, d_{n}} \subset \mathbb{S}^{m}$ is the shuffle. Furthermore, the homogeneous component with degrees $\left(d_{1}, \ldots, d_{n}\right)$ of $C V$ can be decomposed as a direct sum taking all the possible orders for d_{i} tensorands of V_{i}. Explicitly, let

$$
Z_{d_{1}, \ldots, d_{n}}=\left\{f:\{1, \ldots, m\} \rightarrow\{1, \ldots, n\} \mid \#\left(f^{-1}(i)\right)=d_{i} \forall 1 \leq i \leq n\right\} .
$$

The decomposition just stated is nothing but

$$
\begin{aligned}
& \text { (the } \left.\left(d_{1}, \ldots, d_{n}\right) \text { component of } C V\right) \\
& \qquad=\underset{f \in Z_{d_{1}, \ldots, d_{n}}}{\oplus} V_{f(1)} \otimes V_{f(2)} \otimes \cdots \otimes V_{f(m)}=\underset{f \in Z_{d_{1}, \ldots, d_{n}}}{\oplus} V_{f} .
\end{aligned}
$$

It is clear that there exists a bijection $\gamma:\left(S h_{d_{1}, \ldots, d_{n}}\right)^{-1} \rightarrow Z_{d_{1}, \ldots, d_{n}}$ such that for $x \in\left(S h_{d_{1}, \ldots, d_{n}}\right)^{-1}$ the image of $\left.s(x)\right|_{V_{1}^{\otimes} d_{1} \otimes \cdots \otimes V_{n}^{\otimes d_{n}}}$ lies in $V_{\gamma(x)}$. Hence (2.3) implies, for each $x \in\left(S h_{d_{1}, \ldots, d_{n}}\right)^{-1}$, that

$$
0=s(x)\left(\mathbf{S}^{d_{1}} \otimes \cdots \otimes \mathbf{S}^{d_{n}}\right)\left(\sum \lambda_{k_{1}, \ldots, k_{n}} v_{1}^{k_{1}} \otimes \cdots \otimes v_{n}^{k_{n}}\right)
$$

but since $s(x)$ is an isomorphism for each $x \in \mathbb{S}_{n}$, this implies that

$$
\begin{aligned}
0 & =\left(\mathbf{S}^{d_{1}} \otimes \cdots \otimes \mathbf{S}^{d_{n}}\right)\left(\sum \lambda_{k_{1}, \ldots, k_{n}}^{k_{1}^{k_{1}}} \otimes \cdots \otimes v_{n}^{k_{n}}\right) \\
& =\sum \lambda_{k_{1}, \ldots, k_{n}}\left(\mathbf{S}^{d_{1}} v_{1}^{k_{1}} \otimes \cdots \otimes \mathbf{S}^{d_{n}} v_{n}^{k_{n}}\right),
\end{aligned}
$$

which in turn implies that $\lambda_{k_{1}, \ldots, k_{n}}=0 \forall k_{1}, \ldots, k_{n}$. This proves the first part.

For the second part, suppose there exist $i, j, i \neq j$ such that $b_{j i} b_{i j} \neq \mathrm{id}$, and let $v \in V_{i}, w \in V_{j}$ such that $b_{j i} b_{i j}(v \otimes w) \neq(v \otimes w)$. Consider the element $z \in T(V)$ given by $z=\left(\operatorname{id}-b_{i j}\right)(v \otimes w)$. Since the linear span of
the set $\mathbf{S}(\mathscr{B})=\{\mathbf{S}(y), y \in \mathscr{B}\}$ is a subspace of $\mathfrak{B}(V)$ with dimension $\Pi_{l} \operatorname{dim} \mathfrak{B}\left(V_{l}\right)$, it is sufficient to prove that $\mathbf{S}(z)$ does not lie in this linear span. Note that since $\operatorname{deg} z=2, \mathbf{S}(z)=(\mathrm{id}+c)(z)$. Suppose that

$$
\mathbf{S}(z)=\mathbf{S}\left(\sum \lambda_{k_{1}, \ldots, k_{n}} v_{1}^{k_{1}} \otimes \cdots \otimes v_{n}^{k_{n}}\right) .
$$

Looking at the homogeneous components, we must have $\lambda_{k_{1}, \ldots, k_{n}}=0$ if $\left(d_{1}^{k_{1}}, \ldots, d_{n}^{k_{n}}\right) \neq e_{i}+e_{j}$, where $e_{l}=(0, \ldots, 0,1,0, \ldots, 0)$ with the 1 in the l-coordinate. In other words, if $i<j$ there exist $u_{1}, \ldots, u_{s} \in V_{i}, u_{1}^{\prime}, \ldots, u_{s}^{\prime}$ $\in V_{j}$, and $\lambda_{1}, \ldots, \lambda_{s} \in \mathbf{k}$ such that

$$
\mathbf{S}(z)=\mathbf{S}\left(\sum_{t} \lambda_{t} u_{t} \otimes u_{t}^{\prime}\right)
$$

(if $i>j$ we have $\mathbf{S}(z)=\mathbf{S}\left(\sum_{t} \lambda_{t} u_{t}^{\prime} \otimes u_{t}\right)$ and it is analogous). Now, since $z=(1-c)(v \otimes w)$ and $\mathbf{S}(z)=(1+c)(z)$, we have

$$
\left(1-c^{2}\right)(v \otimes w)=(1+c)\left(\sum_{t} \lambda_{t} u_{t} \otimes u_{t}^{\prime}\right),
$$

but the component in $V_{j} \otimes V_{i}$ in the left hand side vanishes, and hence we have $c\left(\sum_{t} \lambda_{t} u_{t} \otimes u_{t}^{\prime}\right)=0$. Since c is an isomorphism, we must have $\sum_{t} \lambda_{t} u_{t} \otimes u_{t}^{\prime}=0$, but this implies that the $V_{i} \otimes V_{j}$ component in the right hand side vanishes, whence $c^{2}(v \otimes w)=(v \otimes w)$, a contradiction.

It only remains to prove that if $b_{i j} b_{j i}=\operatorname{id} \forall i \neq j$ then $\mathbf{S}(\mathscr{B})$ is a basis of $\mathfrak{B}(V)$. This is the same as saying that \mathscr{B} generates $T(V)$ modulo $\operatorname{ker} \mathbf{S}$. Let $\left\{w_{i}^{1}, \ldots, w_{i}^{M_{i}}\right\}$ be a basis of V_{i}. Let

$$
\tilde{\mathscr{B}}=\left\{w_{a_{1}}^{r_{1}} \otimes \cdots \otimes w_{a_{m}}^{r_{m}} \mid m \in \mathbb{N}, 1 \leq r_{t} \leq M_{a_{t}} \text { and } a_{1} \leq a_{2} \leq \cdots \leq a_{m}\right\} .
$$

Since, modulo $\operatorname{ker}(\mathbf{S})$, the elements of $\tilde{\mathscr{B}}$ are linear combinations of the elements of \mathscr{B}, it remains to prove that $\tilde{\mathscr{B}}$ generates $T(V)$ modulo $\operatorname{ker}(\mathbf{S})$. To see this, it suffices to prove that if $i<j$ and $1 \leq r_{i} \leq M_{i}$, $1 \leq r_{j} \leq M_{j}$, then $w_{j}^{r_{j}} \otimes w_{i}^{r_{i}}$ can be expressed in terms of elements in $\tilde{\mathscr{B}}$. Let $z=(1-c)\left(w_{j}^{r_{j}} \otimes w_{i}^{r_{i}}\right)$. Since $b_{i j} b_{j i}=\mathrm{id}$, we have $\mathbf{S}(z)=(1+c)(z)=$ 0 , which gives the relation

$$
w_{j}^{r_{j}} \otimes w_{i}^{r_{i}}=b_{j i}\left(w_{j}^{r_{j}} \otimes w_{i}^{r_{i}}\right) \bmod \operatorname{ker}(\mathbf{S}) .
$$

Now, $b_{j i}\left(w_{j}^{r_{j}} \otimes w_{i}^{r_{i}}\right) \in V_{i} \otimes V_{j}$, and it can be written as a linear combination of elements in $\tilde{\mathscr{B}}$.

From now on, we concentrate on Nichols algebras. Let (V, c) be an RBP. Since V and V^{*} belong to a braided category \mathscr{C}, we have that $V^{\otimes n}$
and $\left(V^{*}\right)^{\otimes m}$ also belong to \mathscr{C}, and it is easy to see that the map \mathbf{S} : $A V \rightarrow C V$ is a map in the category, whence both $\mathfrak{B}(V)$ and $\mathfrak{B}\left(V^{*}\right)$ lie in \mathscr{C}, and in particular they lie in one and the same braided category.

We shall use the bilinear form (\mid): $T^{n} V \otimes T^{n} V^{*} \rightarrow \mathbf{k}$ given by

$$
\begin{equation*}
\left(z_{1} z_{2} \cdots z_{n} \mid w_{1} w_{2} \cdots w_{n}\right)=\prod_{1 \leq i \leq n}\left\langle z_{i}, w_{n+1-i}\right\rangle=\left\langle z_{1}, w_{n}\right\rangle \cdots\left\langle z_{n}, w_{1}\right\rangle, \tag{2.4}
\end{equation*}
$$

where $\left(z_{1}, z_{2}, \ldots, z_{n} \in V, w_{1}, w_{2}, \ldots, w_{n} \in V^{*}\right)$, and $\langle\cdot, \cdot\rangle$ is the evaluation map. We define also $(z \mid w)=0$ if $z \in T^{n}(V), w \in T^{m}\left(V^{*}\right)$, and $n \neq m$. It is easy to see that $c_{V^{*}, V^{*}}$ is the transpose of $c_{V, V}$ when one identifies $(V \otimes V)^{*} \simeq V^{*} \otimes V^{*}$ with this form. Furthermore, as proved in [AG, Proposition 3.2.20], this bilinear form satisfies for $z \in T^{n}(V), w \in$ $T^{n}\left(V^{*}\right)$,

$$
\begin{equation*}
\left(\mathbf{S}^{n} z \mid w\right)=\left(z \mid \mathbf{S}^{n} w\right) \tag{2.5}
\end{equation*}
$$

from where $\mathbf{S}^{n}: T^{n} V^{*} \rightarrow T^{n} V^{*}$ is the transpose of $\mathbf{S}^{n}: T^{n} V \rightarrow T^{n} V$ with respect to the pairing (\mid). We thus have proved:

Lemma 2.6. Let (V, c) be an $R B P$. Then $\mathfrak{B}^{n}\left(V^{*}\right) \simeq\left(\mathfrak{B}^{n}(V)\right)^{*}$ for all $n \geq 0$. If $\mathfrak{B}(V)$ is finite dimensional then $\mathfrak{B}\left(V^{*}\right) \simeq(\mathfrak{B}(V))^{*}$ and $\left(\mathfrak{B}(V), c_{\mathfrak{B}(V), \mathfrak{B}(V)}\right)$ is an RBP.

Definition 2.7. Let (V, c) be an RBP. For $y \in V^{*}$, we denote by ∂_{y} the operator

$$
\partial_{y}=(\operatorname{id} \otimes y) \circ \Delta^{i-1,1}: \mathfrak{B}^{i}(V) \rightarrow \mathfrak{B}^{i-1}(V) .
$$

If $B=\left\{x_{1}, \ldots, x_{n}\right\}$ is a basis of V, let $\left\{\partial_{1}, \ldots, \partial_{n}\right\}$ be the basis of V^{*} dual to B. We denote also by $\partial_{j}, j=1, \ldots, n$, the operator $\partial_{\partial_{i}}$. We warn that for the case $V \in{ }_{H}^{H} \mathscr{Y} \mathscr{D}$, usually these are not morphisms in ${ }_{H}^{H} \mathscr{Y} \mathscr{D}$.

Because of the coassociativity of $A V$, we have for $i_{1}, i_{2}, i_{3} \in \mathbb{N}$

$$
\begin{equation*}
\left(\mathbf{S}_{i_{1}, i_{2}} \otimes \mathrm{id}\right) \mathbf{S}_{i_{1}+i_{2}, i_{3}}=\mathbf{S}_{i_{1}, i_{2}, i_{3}}=\left(\mathrm{id} \otimes \mathbf{S}_{i_{2}, i_{3}}\right) \mathbf{S}_{i_{1}, i_{2}+i_{3}}, \tag{2.8}
\end{equation*}
$$

which has the following consequence:
Proposition 2.9. Let (V, c) be an RBP. Consider the map д: $V^{*} \rightarrow$ End $\mathfrak{B}(V)$ given in 2.7, and denote by $\bar{\partial}: T\left(V^{*}\right) \rightarrow(\text { End } \mathfrak{B}(V))^{\text {op }}$ the (unique) algebra map extending ∂ to the tensor algebra. Then $\bar{\partial}$ factors through $\mathfrak{B}\left(V^{*}\right)$ as

$$
\bar{\partial}=T\left(V^{*}\right) \stackrel{\pi}{\rightarrow} \mathfrak{B}\left(V^{*}\right) \stackrel{\iota}{\hookrightarrow}(\operatorname{End} \mathfrak{B}(V))^{\mathrm{op}} .
$$

Proof. We use the bilinear form (|) of 2.4. Notice that if $z \in T^{n}(V)$, $z^{\prime} \in T^{m}(V), w \in T^{n}\left(V^{*}\right), w^{\prime} \in T^{m}\left(V^{*}\right)$, then

$$
\begin{equation*}
\left(z \cdot z^{\prime} \mid w^{\prime} \cdot w\right)=\left(z^{\prime} \mid w^{\prime}\right)(z \mid w) \tag{2.10}
\end{equation*}
$$

For $w \in T^{n}\left(V^{*}\right), z \in T^{m}(V)$ we take the pairing $z \otimes w \mapsto\left(\mathbf{S}^{n} z \mid w\right)$. By definition this pairing gives a functional $w \in(\mathfrak{B}(V))^{*}$, and we define the operator $h(w) \in \operatorname{End} \mathfrak{B}(V)$ by $h(w)(x)=w \rightharpoonup x$, i.e., $h(w)(x)=$ $x_{(1)} w\left(x_{(2)}\right)$. In other words, if $z \in T^{m}(V)$ then $\mathbf{S}(z) \in \mathfrak{B}^{m}(V)$ and we have, using (2.5),

$$
\begin{align*}
h(w)(\mathbf{S}(z)) & =\mathbf{S}\left(z_{(1)}\right) w\left(\mathbf{S}\left(z_{(2)}\right)\right)=\left(\mathbf{S}\left(z_{(1)}\right)\right)\left(z_{(2)} \mid \mathbf{S}^{n} w\right) \\
& =\left(\mathbf{S}^{m-n} \otimes\left(\cdot \mid \mathbf{S}^{n} w\right)\right) \mathbf{S}_{m-n, n}(z) \tag{2.11}
\end{align*}
$$

We prove now that $h=\overline{\bar{\gamma}}$. In degree 1 this is just the definition of h, so it is enough to prove that h is multiplicative. Let $w_{i} \in T^{n_{i}}\left(V^{*}\right)$ for $i=1,2$ and $z \in T^{n_{1}+n_{2}+n_{3}}(V)$. Then

$$
\begin{aligned}
& \left(h\left(w_{1}\right){ }_{\text {op }} h\left(w_{2}\right)\right)(p z) \\
& \quad=h\left(w_{2}\right)\left(p z_{(1)}\right) w_{1}\left(z_{(2)}\right)=p z_{(1)} w_{2}\left(z_{(2)}\right) w_{1}\left(z_{(3)}\right) \\
& \quad=\mathbf{S}^{n_{3}}\left(z_{(1)}\right)\left(z_{(2)} \mid \mathbf{S}^{n_{2}} w_{2}\right)\left(z_{(3)} \mid \mathbf{S}^{n_{1}} w_{1}\right) \quad \text { by }(2.11) \\
& \quad=\left(\mathbf{S}^{n_{3}} \otimes w_{2} \otimes w_{1}\right)\left(\operatorname{id} \otimes \mathbf{S}^{n_{2}} \otimes \mathbf{S}^{n_{1}}\right)\left(\mathbf{S}_{n_{3}, n_{2}, n_{1}}(z)\right) \\
& \quad=\left(\mathbf{S}^{n_{3}} \otimes w_{1} \cdot w_{2}\right)\left(\operatorname{id} \otimes \mathbf{S}^{n_{2}+n_{1}}\right)\left(\mathbf{S}_{n_{3}, n_{2}+n_{1}}(z)\right) \quad \text { by }(2.10) \\
& \quad=\left(\mathbf{S}^{n_{3}} \otimes \mathbf{S}^{n_{2}+n_{1}}\left(w_{1} \cdot w_{2}\right)\right)\left(\mathbf{S}_{n_{3}, n_{2}+n_{1}} z\right) \\
& \quad=h\left(w_{1} \cdot w_{2}\right)(p z) \quad \text { by }(2.11)
\end{aligned}
$$

The factorizability through $\mathfrak{B}\left(V^{*}\right)$ is now a consequence of (2.11). The injectivity of ι follows immediately from the non-degeneracy of (\mid).

As a first consequence of this result, we have
Corollary 2.12. Let $\partial_{0} \in V^{*}$ be such that $c\left(\partial_{0} \otimes \partial_{0}\right)=q \partial_{0} \otimes \partial_{0}$, where $q \neq 1$ is a root of unity of order N. Then $\left(\partial_{0}\right)^{N}=0$ as an operator of $\mathfrak{B}(V)$.

Definition 2.13. We shall denote by [,] the action given by \bar{d}; i.e., for $\mathbf{S}^{n} z \in \mathfrak{B} \mathfrak{B}^{n}(V), \mathbf{S}^{m} w \in \mathfrak{B}^{m}\left(V^{*}\right)(n \geq m)$,

$$
\left[\mathbf{S}^{n} z, \mathbf{S}^{m} w\right]=\mathbf{S}^{n-m}\left(z_{(1)}\right)\left(\mathbf{S}^{m} z_{(2)} \mid w\right) \in \mathfrak{B}^{n-m}(V) .
$$

We characterize now the RBPs (V, c) arising in Yetter-Drinfeld categories over group algebras. The following remark is due to the referee.

Remark 2.14. Let V be a finite dimensional module in ${ }_{\mathbf{k} \Gamma}^{\mathbf{k} \Gamma} \mathscr{Y} \mathscr{D}$, where Γ is a group. As a $\mathbf{k} \Gamma$-comodule, V can be decomposed as $V=\oplus_{g \in \Gamma} V^{g}$, where $\delta(x)=g \otimes x \forall x \in V^{g}$. Then, for $x \in V^{g}, y \in V$ we have $c(x \otimes y)$ $=g \rightharpoonup y \otimes x \in V \otimes x$. Thus V has a basis $\left\{x_{1}, \ldots, x_{n}\right\}$ such that $c\left(x_{i} \otimes V\right)$ $=V \otimes x_{i}$. Conversely, let (V, c) be a BP with a basis $\left\{x_{1}, \ldots, x_{n}\right\}$ such that $c\left(x_{i} \otimes V\right)=V \otimes x_{i}$. Let $g_{i} \in \operatorname{Aut}(V)$ be defined by

$$
c\left(x_{i} \otimes y\right)=g_{i}(y) \otimes x_{i},
$$

and let Γ be the subgroup of $\operatorname{Aut}(V)$ generated by $\left\{g_{1}, \ldots, g_{n}\right\}$. Then V is an object of ${ }_{\mathbf{k} \Gamma}^{\mathbf{k} \Gamma \mathscr{D}}$. In particular, it is an RBP.

Proof. The comodule structure is determined by $\delta\left(x_{i}\right)=g_{i} \otimes x_{i}$. The module structure is given by $g_{i} \rightharpoonup y=g_{i}(y)$. We must prove the YD-compatibility condition between \rightharpoonup and δ, which reads as $\delta(g \rightharpoonup y)=$ $g y_{(-1)} g^{-1} \otimes g y_{(0)}$, with $g \in \Gamma, \delta(y)=y_{(-1)} \otimes y_{(0)}$. It is sufficient to prove it for $y=x_{i}$ and $g=g_{j}$, which is equivalent to prove that $g_{j}\left(x_{i}\right) \in V^{g_{j} g_{i} g_{j}^{-1}}$. Let $g_{j} x_{i}=\sum_{k} c_{k} x_{k}$. The braid equation applied to $x_{j} \otimes x_{i} \otimes y$ implies that

$$
\sum_{k} g_{j} g_{i}(y) \otimes c_{k} x_{k} \otimes x_{j}=\sum_{k} g_{k} g_{j}(y) \otimes c_{k} x_{k} \otimes x_{j},
$$

which tells that $c_{k}=0$ if $g_{j} g_{i} \neq g_{k} g_{j}$.
Remark 2.15. Let $V \in{ }_{\mathbf{k} \Gamma}^{\mathbf{k} \Gamma} \mathscr{Y} \mathscr{D}$, with Γ a finite group. Then $V=$ $\oplus_{i} M\left(g_{i}, \rho_{i}\right)$, where $\rho_{i}: \Gamma_{g_{i}} \rightarrow \operatorname{Aut}\left(Y_{i}\right)$ is an irreducible representation of $\Gamma_{g_{i}}$, and

$$
M\left(g_{i}, \rho_{i}\right)=\operatorname{Ind}_{\Gamma_{\varepsilon_{i}}}^{\Gamma} \rho_{i}=\mathbf{k} \Gamma \otimes_{\mathbf{k} \Gamma_{g_{i}}} Y_{i}
$$

with comodule structure $\delta(h \otimes y)=h g_{i} h^{-1} \otimes(h \otimes y)$. Let $\left\{x_{1}^{i}, \ldots, x_{r_{i}}^{i}\right\}$ be a basis of Y_{i}, and let $\left\{h_{1}^{i}, \ldots, h_{s_{i}}^{i}\right\}$ be a set of representatives of left coclasses in $\Gamma / \Gamma_{g_{i}}$. Then $M\left(g_{i}, \rho_{i}\right)$ has basis $\left\{z_{j l}^{i}=h_{j}^{i} \otimes x_{l}^{i}, 1 \leq j \leq s_{i}\right.$, $\left.1 \leq l \leq r_{i}\right\}$, and consequently $\left\{z_{j l}^{i} l_{i, j, l}\right.$ is a basis of V. Let $\left\{\partial_{j j}^{i}\right\}_{i, j, l}$ be the dual basis. Let $t_{j}^{i}=h_{j}^{i} g_{i}\left(h_{j}^{i}\right)^{-1}$ (thus, the conjugacy class of g_{i} is $\left\{t_{1}^{i}, \ldots, t_{s_{i}}^{i}\right\}$), and note that $\delta\left(z_{j l}^{i}\right)=t_{j}^{i} \otimes z_{j l}^{i}$. Let $W_{j l}^{i}=\operatorname{span}\left\{z_{j_{2} l_{2}}^{i_{2}} \mid(i, j, l) \neq\left(i_{2}, j_{2}, l_{2}\right)\right\}$. Then $W_{j l}^{i}$ is a $\mathbf{k} \Gamma$-submodule of V. For further use, we compute

$$
\begin{aligned}
\left(\operatorname{id} \otimes \partial_{j_{1} l_{1}}^{i_{1}}\right) c\left(z_{j_{2} l_{2}}^{i_{2}} \otimes z_{j_{3} l_{3}}^{i_{3}}\right) & =\left(\operatorname{id} \otimes \partial_{j_{1} l_{1}}^{i_{1}}\right)\left(t_{j_{2}}^{i_{2}} \rightharpoonup z_{j_{3} l_{3}}^{i_{3}} \otimes z_{j_{2} l_{2}}^{i_{2}}\right) \\
& =\delta_{i_{1}, i_{2}} \delta_{j_{1}, j_{2}} \delta_{l_{1}, l_{2}}\left(t_{j_{1}}^{i_{1}} \rightharpoonup z_{j_{3} l_{3}}^{i_{3}}\right) .
\end{aligned}
$$

Moreover,

$$
\begin{equation*}
\left(\partial_{j_{1} l_{1}}^{i_{1}} \otimes \mathrm{id}\right) c\left(z_{j_{1} l_{1}}^{i_{1}} \otimes z_{j_{2} l_{2}}^{i_{2}}\right)=\partial_{j_{1} l_{1}}^{i_{1}}\left(t_{j_{1}}^{i_{1}} \rightharpoonup z_{j_{2} l_{2}}^{i_{2}}\right) z_{j_{1} l_{1}}^{i_{1}}=\delta_{i_{1}, i_{2}} \partial_{j_{1} l_{1}}^{i_{1}}\left(t_{j_{1}}^{i_{1}} \rightharpoonup z_{j_{2} l_{2}}^{i_{1}}\right) z_{j_{1} l_{1}}^{i_{1}} . \tag{2.16}
\end{equation*}
$$

Now, we have $\delta\left(t_{j_{1}}^{i_{1}} \rightharpoonup z_{j_{2} l_{2}}^{i_{1}}\right)=\left(t_{j_{1}}^{i_{1}} t_{j_{2}}^{i_{1}}\left(t_{j_{1}}^{i_{1}}\right)^{-1}\right) \otimes t_{j_{1}}^{i_{1}} \rightharpoonup z_{j_{2} l_{2}}^{i_{1}}$, whence (2.16) vanishes if $t_{j_{1}}^{i_{1}} t_{j_{2}}^{i_{1}}\left(t_{j_{1}}^{i_{1}}\right)^{-1} \neq t_{j_{1}}^{i_{1}}$, i.e., if $t_{j_{2}}^{i_{1}} \neq t_{j_{1}}^{i_{1}}$, but for the definition of t_{j}^{i} and h_{j}^{i} this is equivalent to $j_{1} \neq j_{2}$. Moreover, for $y \in Y_{i_{1}}, t_{j_{1}}^{i_{1}} \rightharpoonup\left(h_{j_{1}}^{i_{1}} \otimes y\right)=$ $h_{j_{1}}^{i_{1}} g_{i_{1}}\left(h_{j_{1}}^{i_{1}}\right)^{-1} h_{j_{1}}^{i_{1}} \otimes y=h_{j_{1}}^{i_{1}} \otimes \rho_{i_{1}}\left(g_{i_{1}}\right)(y)=q_{i_{1}} h_{j_{1}}^{i_{1}} \otimes y$, from where (2.16) vanishes if $l_{1} \neq l_{2}$. Then, we have proved

- $c\left(z_{j l}^{i} \otimes z_{j l}^{i}\right)=q_{i} z_{j l}^{i} \otimes z_{j l}^{i}$,
- $c\left(z_{j l}^{i} \otimes W_{j l}^{i}\right)=W_{j l}^{i} \otimes z_{j l}^{i}$,
- $\delta\left(W_{j l}^{i}\right) \subseteq \mathbf{k} \Gamma \otimes W_{j l}^{i}$.

We close this section with a useful bound for dimension of Nichols algebras:

Lemma 2.17. Let $V \in{ }_{\mathbf{k} \Gamma}^{\mathbf{k} \Gamma} \mathscr{Y} \mathscr{D}$, with Γ finite, and let V be finite dimensional. Then by 2.15 , we have a basis $\left\{x_{1}, \ldots, x_{n}\right\}$ of V such that $c\left(x_{i} \otimes V\right)=$ $V \otimes x_{i}$ and $c\left(x_{i} \otimes x_{i}\right)=q_{i} x_{i} \otimes x_{i}$, with q_{i} a root of unity. Let $N_{i}=N\left(q_{i}\right)$. Then $\prod_{i} N_{i} \leq \operatorname{dim}(\mathfrak{B}(V))$.

Proof. Let $\left\{\partial_{1}, \ldots, \partial_{n}\right\}$ be the basis of V^{*} dual to $\left\{x_{1}, \ldots, x_{n}\right\}$. Note first that $x_{i}^{N_{i}-1} \neq 0$ because $\mathfrak{B}\left(\mathbf{k} x_{i}\right) \hookrightarrow \mathfrak{B}(V)$, or simply by direct computation, since $\partial_{i}\left(x_{i}^{j}\right)=(j)_{q_{i}} x_{i}^{j-1}$ and thence $\left(\partial_{i}\right)^{j}\left(x_{i}^{j}\right)=(j)_{q_{i}}^{!}$, which is nonzero if $j<N_{i}$ (we use the Leibniz rule to make the computations; see 3.5 below). We prove now that the set $\left\{x_{1}^{j_{1}} \cdots x_{n}^{j_{n}} \mid 0 \leq j_{i}<N_{i}\right\}$ is linearly independent. We do it by induction: suppose that the subset with $j_{m}=0$ for $m \geq m_{0}$ is 1.i. and consider a linear combination

$$
\sum_{j_{1}, \ldots, j_{m_{0}}} \alpha_{j_{1}, \ldots, j_{m_{0}}} x_{1}^{j_{1}} \cdots x_{m_{0}}^{j_{m_{0}}}=0 .
$$

Applying $\left(\partial_{m_{0}}\right)^{N_{m_{0}}-1}$ we get

$$
\sum_{j_{1}, \ldots, j_{m_{0}-1}} \alpha_{j_{1}, \ldots, j_{m_{0}-1}, N_{m_{0}-1}}\left(N_{m_{0}}-1\right)_{q_{m_{0}}}^{!} x_{1}^{j_{1}} \cdots x_{m_{0}-1}^{j_{m_{0}-1}}=0,
$$

from where the coefficients $\alpha_{j_{1}, \ldots, j_{m_{0}-1}, N_{m_{0}-1}}$ vanish. We can apply then $\left(\partial_{m_{0}}\right)^{N_{m_{0}}-2}$, and get that the coefficients $\alpha_{j_{1}, \ldots, j_{m_{0}-1}, N_{m_{0}}-2}$ vanish. Proceeding in this way, we see that all the coefficients $\alpha_{j_{1}, \ldots, j_{m_{0}}}=0$, and the inductive thesis follows.

Corollary 2.18. If $V=\oplus_{j} M\left(g_{j}, \rho_{j}\right) \in{ }_{\mathbf{k} \Gamma}^{\mathrm{k} \Gamma} \mathscr{Y} \mathscr{D}(\Gamma$ a finite group) and $d_{j}=\operatorname{dim} M\left(g_{j}, \rho_{j}\right), q_{j}=\rho_{j}\left(g_{j}\right), N_{j}=N\left(q_{j}\right)$, then $\Pi_{j} N_{j}^{d_{j}} \leq \operatorname{dim}(\mathfrak{B}(V))$.

3. MAIN RESULT

Definition 3.1. We say that a finite dimensional braided Hopf algebra (R, c) is rigid if R is a Hopf algebra in a rigid braided category. This is equivalent to (R, c) being an RBP and the structure morphisms of R commuting with the braiding. In particular replacing P by R and by R^{*} we have

$$
\begin{aligned}
c_{P, R}\left(\mathrm{id} \otimes m_{R}\right) & =\left(m_{R} \otimes \mathrm{id}\right) c_{P,(R \otimes R)}: P \otimes R \otimes R \rightarrow R \otimes P, \\
\left(c_{R, P}\right)^{-1}\left(\mathrm{id} \otimes m_{R}\right) & =\left(m_{R} \otimes \mathrm{id}\right)\left(c_{(R \otimes R), P}\right)^{-1}: P \otimes R \otimes R \rightarrow R \otimes P,
\end{aligned}
$$

and analogous equalities for $\Delta, u, \varepsilon, \mathscr{S}$.
For rigid braided Hopf algebras, most of the "classic" results on finite dimensional Hopf algebras can be stated mutatis mutandis in a braided sense, and we refer to [T2] for this. We shall use the existence of a non-zero integral (in R and R^{*}) and the non-degenerate bilinear form given by it.

Definition 3.2. Let (V, c) be an RBP such that $\mathfrak{B}(V)$ is finite dimensional. We have seen that $\mathfrak{B}\left(V^{*}\right) \simeq(\mathfrak{B}(V))^{*}$ and that $\left(\mathfrak{B}(V), c_{\mathfrak{B}(V)}\right)$ is an RBP. It is straightforward to see by the definitions of the structure morphisms in $\mathfrak{B}(V)$ that it is a rigid braided Hopf algebra. Then $\mathfrak{B}(V)$ has a one-dimensional space of integrals, which is easily seen to be homogeneous. We denote by $\operatorname{top}(V)$ the degree of the integral of $\mathfrak{B}(V)$. We further denote by $\Lambda_{\mathfrak{B}(V)}$ a non-zero integral of $\mathfrak{B}(V)$.

The non-degenerate bilinear form gives the Poincaré duality found by Nichols (see, e.g., [AG, Proposition 3.2.2]), namely, that $\operatorname{dim} \mathfrak{B}^{i}(V)=$ $\operatorname{dim} \mathfrak{B}^{\operatorname{top}(V)-i}(V)$; in particular, $\operatorname{dim} \mathfrak{B}^{\operatorname{top}(V)}(V)=1$ and $\mathfrak{B}^{\operatorname{top}(V)+i}(V)=0$ $\forall i>0$.

The following lemma, which we have mostly proved, is an addendum to this duality.

Lemma 3.3. Let (V, c) be an RBP.

1. $\mathfrak{B}^{n}\left(V^{*}\right) \simeq\left(\mathfrak{B}^{n}(V)\right)^{*}$ via the form $[$,$] of 2.13$.
2. If $\mathfrak{B}(V)$ is finite dimensional and $n \leq \operatorname{top}(V)$, then $\left[\Lambda_{\mathfrak{B}(V)}\right.$, $\left.\mathfrak{B}^{\operatorname{top}(V)-n}\left(V^{*}\right)\right]=\mathfrak{B}^{n}(V)$.

Proof. (1) This is part of the content of 2.6 , once we see the definition of [,].
(2) If $D \in \mathfrak{B}^{\operatorname{top}(V)-n}\left(V^{*}\right)$ is such that $\left[\Lambda_{\mathfrak{B}(V)}, D\right]=0$, we can take $D^{\prime} \in \mathfrak{B}^{n}\left(V^{*}\right)$ such that $\Lambda_{\mathfrak{B}\left(V^{*}\right)}=D D^{\prime}$, and then $\left[\Lambda_{\mathfrak{B}(V)}, \Lambda_{\mathfrak{B}\left(V^{*}\right)}\right]=$
$\left[\left[\Lambda_{\mathfrak{B}(V)}, D\right], D^{\prime}\right]=0$, which contradicts 1 . Then we have a monomorphism $\mathfrak{B}^{\operatorname{top}(V)-n}\left(V^{*}\right) \hookrightarrow \mathfrak{B}^{n}(V)$. Since by 1 and the Poincaré duality both spaces have the same dimension, we are done.

Definition 3.4. Let (V, c) be an RBP and consider the map $\iota: \mathfrak{B}\left(V^{*}\right)$ \rightarrow End $\mathfrak{B}(V)^{\mathrm{op}}$ of 2.9 . Given $x \in \mathfrak{B}(V)$, we denote also by x the map in End $\mathfrak{B}(V)^{\text {op }}$ given by right multiplication by x. We have hence $\mathfrak{B}(V)$ and $\mathfrak{B}\left(V^{*}\right)$ acting on $\mathfrak{B}(V)$. We define the quantum differential operators algebra $\mathscr{A} V$ as the subalgebra of End $\mathfrak{B}(V)^{\text {op }}$ generated by $\mathfrak{B}(V)$ and $\mathfrak{B}\left(V^{*}\right)$.

When $V \in{ }_{\mathbf{k} \Gamma}^{\mathbf{k} \Gamma} \mathscr{Y} \mathscr{D}$, it can be given a nice basis of $\mathscr{A} V$.
Lemma 3.5. Let $V \in{ }_{k}^{\mathbf{k} \Gamma} \mathscr{Y} \mathscr{D}$ be finite dimensional.

1. Let $\left\{x_{1}, \ldots, x_{n}\right\}$ be a basis of V such that $\delta\left(x_{i}\right)=g_{i} \otimes x_{i}$. Let $\left\{\partial_{1}, \ldots, \partial_{n}\right\}$ be the basis of V^{*} dual to $\left\{x_{1}, \ldots, x_{n}\right\}$. Then $\mathscr{A} V$ can be presented with generators $\left\{\partial_{1}, \ldots, \partial_{n}, x_{1}, \ldots, x_{n}\right\}$ and relations

- $\operatorname{ker} \mathbf{S}^{m}: T V \rightarrow \mathfrak{B}(V), m \geq 0$, i.e., the relations in $\mathfrak{B}(V)$,
- $\operatorname{ker} \mathbf{S}^{m}: T V^{*} \rightarrow \mathfrak{B}\left(V^{*}\right), m \geq 0$, i.e., the relations in $\mathfrak{B}\left(V^{*}\right)$, and
- $x_{i} \partial_{j}=\delta_{i j}+\partial_{j} g_{j}\left(x_{i}\right)$ for $1 \leq i, j \leq n$.

Furthermore, for $m \geq 0$ take $\left\{z_{1}^{m}, \ldots, z_{d_{m}}^{m}\right\}$ a basis of $\mathfrak{B}^{m}(V)$, and let $\left\{w_{1}^{m}, \ldots, w_{d_{m}}^{m}\right\}$ be the dual basis of $\mathfrak{B}^{m}\left(V^{*}\right)$ (given by the duality in 3.3). Then the set

$$
\left\{w_{k}^{i} z_{l}^{j} \mid i, j \geq 0, \quad 1 \leq k \leq d_{i}, \quad 1 \leq l \leq d_{j}\right\}
$$

is a basis of $\mathscr{A} V$.
2. Suppose $W \subset V$ is a $\mathbf{k} \Gamma$-subcomodule which is Γ^{\prime}-stable, where $\Gamma^{\prime} \subset \Gamma$ is the smallest subgroup such that $\delta(W) \subseteq \mathbf{k} \Gamma^{\prime} \otimes W$. Then $c(W \otimes W)$ $=W \otimes W$, the pair $\left(W, c_{W}=\left.c_{V}\right|_{W \otimes W}\right)$ is an RBP, and it makes sense to consider $\mathfrak{B}(W)$. Suppose furthermore that $V=W \oplus W^{\prime}$, where W^{\prime} is a $\mathbf{k} \Gamma$-subcomodule and $a \mathbf{k} \Gamma^{\prime}$-submodule. Let $W^{*} \hookrightarrow V^{*}$ be the map given by the identification $W^{*}=\left(W^{\prime}\right)^{\perp}$. Then there is a monomorphism of algebras

$$
\mathscr{A} W \hookrightarrow \mathscr{A} V,
$$

induced by $W \hookrightarrow V$ and $W^{*} \hookrightarrow V^{*}$.
Before giving the proof, we note that if Γ is finite, 2.15 tells that the conditions of the second part are fulfilled taking, for i, j, l fixed, $W=$ $\operatorname{span}\left\{z_{j l}^{i}\right\}$ and $W^{\prime}=W_{j l}^{\prime i}$.

Proof. (1) The relations in $\mathfrak{B}(V)$ hold in $\mathscr{A} V$ because it acts by the regular representation. The relations in $\mathfrak{B}\left(V^{*}\right)$ hold in $\mathscr{A} V$ because of
 g_{i} acting on $\operatorname{Aut}(\mathfrak{B}(V))$. It is immediate to see from the definition that the derivations ∂_{i} verify the Leibniz rule

$$
\partial_{i}(a b)=\partial_{i}(a) g_{i}(b)+a \partial_{i}(b)
$$

which implies at once the last set of relations taking $b=x_{j}$.
Thus, if B is the algebra defined with generators $\left\{\partial_{1}, \ldots, \partial_{n}, x_{1}, \ldots, x_{n}\right\}$ and the stated relations, we have a surjection $B \rightarrow \mathscr{A} V$. Moreover, the last set of relations implies that any monomial in B can be written in the form $\sum_{r} a_{r} b_{r}$, where the a_{r} 's are generated by the ∂_{i} 's and the b_{r} 's are generated by the x_{i} 's. Now, the first and second set of relations imply that we can choose a_{r} and b_{r} to be, respectively, in the sets $\left\{w_{k}^{i}\right\}$ and $\left\{z_{l}^{j}\right\}$. The last thing to be proved is the linear independence of the set $\left\{w_{k}^{i} z_{l}^{j}\right\}$. Since $\mathscr{A} V$ is generated by $\left\{x_{i}\right\}$ and $\left\{\partial_{i}\right\}$, which act on $\mathfrak{B}(V)$ in a graded way, then $\mathscr{A} V$ is a graded algebra with degrees given by $\operatorname{deg}\left(x_{i}\right)=1$ and $\operatorname{deg}\left(\partial_{i}\right)=-1$, and then it is enough to prove the linear independence of the subsets with the same degree. Let then

$$
T=\sum_{\substack{-i+j=n \\ k, l}} \alpha_{i j k l} w_{k}^{i} z_{l}^{j}=0,
$$

and suppose some of the $\alpha_{i j k l} \neq 0$. We take $m=\min \left\{i \mid \exists j, k, l\right.$ s.t. $\alpha_{i j k l} \neq$ $0\}$ and let

$$
\tilde{T}=\sum_{\substack{j=n+m, i=m \\ k, l}} \alpha_{i j k l} w_{k}^{i} z_{l}^{j} .
$$

Since T and $T-\tilde{T}$ act trivially on $\mathfrak{B}^{m}(V)$ then \tilde{T} also does. Thus, for any k^{\prime} we have

$$
\begin{aligned}
0 & =\tilde{T}\left(z_{k^{\prime}}^{m}\right)=\left[z_{k^{\prime}}^{m}, \sum_{k} w_{k}^{m}\right] \sum_{l} \alpha_{m, n+m, k, l} z_{l}^{n+m} \\
& =\sum_{l} \alpha_{m, n+m, k^{\prime}, l} z_{l}^{n+m}
\end{aligned}
$$

but then the linear independence of the set $\left\{z_{l}^{n+m}\right\}_{l}$ implies that $\alpha_{m, n+m, k, l}=0 \forall k, l$, which contradicts the definition of m.
(2) The pair $\left(W, c_{W}\right)$ is an RBP thanks to 2.14. Let $\left\{x_{1}, \ldots, x_{m}\right\}$ be a basis of W such that $\delta\left(x_{i}\right)=g_{i} \otimes x_{i}$. We consider $\left\{\partial_{1}, \ldots, \partial_{m}\right\}$ the dual basis of W^{*} and extend it by $\left.\partial_{i}\right|_{W^{\prime}}=0$ (i.e., $W^{*} \hookrightarrow V^{*}$ as $\left.W^{*}=\left(W^{\prime}\right)^{\perp}\right)$. The condition on W^{\prime} to be a $\mathbf{k} \Gamma$-subcomodule implies that in $\mathscr{A} V$ we have $x_{i} \partial_{j}=\delta_{i j}+\partial_{j} g_{j}\left(x_{i}\right)$ for $1 \leq i, j \leq m$. The condition on W^{\prime} to be a $\mathbf{k} \Gamma^{\prime}-$
submodule implies that $c_{V^{*}}\left(W^{*} \otimes W^{*}\right)=W^{*} \otimes W^{*}$, and it is easy to see that the restriction $\left.c_{V^{*}}\right|_{W^{*} \otimes W^{*}}$ coincides with $c_{W^{*}}$, the braiding given by considering W^{*} as an object of ${ }_{\mathbf{k}^{\prime}}^{\mathrm{kr}^{\prime}} \mathscr{Y} \mathscr{D}$. Thus,

$$
\begin{aligned}
& \operatorname{ker}\left(\mathbf{S}^{n}:\left(W^{*}\right)^{\otimes n} \rightarrow\left(W^{*}\right)^{\otimes n}\right) \\
& \quad=\operatorname{ker}\left(\mathbf{S}^{n}:\left(V^{*}\right)^{\otimes n} \rightarrow\left(V^{*}\right)^{\otimes n}\right) \cap\left(W^{*}\right)^{\otimes n} .
\end{aligned}
$$

Since clearly

$$
\operatorname{ker}\left(\mathbf{S}^{n}: W^{\otimes n} \rightarrow W^{\otimes n}\right)=\operatorname{ker}\left(\mathbf{S}^{n}: V^{\otimes n} \rightarrow V^{\otimes n}\right) \cap W^{\otimes n},
$$

by the first part this gives a well defined morphism of algebras $\mathscr{A} W \rightarrow \mathscr{A} V$. We must prove that this map is injective, but this is also a consequence of the first part, for if we take $\left\{z_{i}\right\}$ a basis of $\mathfrak{B}(W)$ and $\left\{w_{j}\right\}$ a basis of $\mathfrak{B}\left(W^{*}\right)$ then the set $\left\{w_{j} z_{i}\right\}$ is a basis of $\mathscr{A} W$, and it is linearly independent in $\mathscr{A} V$ (completing the bases to bases of $\mathfrak{B}(V)$ and $\mathfrak{B}\left(V^{*}\right)$). The assertion follows.

Example 3.6. If $V=\mathbf{k} x$ and $c(x \otimes x)=q x \otimes x$, let $\partial \in V^{*}$ such that $\partial(x)=1$. Then $\mathscr{A} V$ has basis $\left\{\partial^{i} x^{j} \mid 0 \leq i, j<N(q)\right\}$, and it can be seen by induction that the relation $x \partial=q \partial x+1$ implies that for $i, j \geq 0$ we have

$$
x^{i} \partial^{j}=\sum_{l \geq 0}\binom{i}{l}_{q}\binom{j}{l}_{q}(l)_{q}^{!} q^{(j-l)(i-l) \partial^{j-l} x^{i-l} .}
$$

Remark 3.7. Let $V \in{ }_{\mathrm{k} \Gamma}^{\mathrm{k} \Gamma} \mathscr{Y} \mathscr{D}$. We note that the relations in $\mathscr{A} V$ imply that if $\partial \in V^{*}$ is such that $\left.\partial\right|_{V^{h}}=0 \forall h \neq g$ and $z \in \mathfrak{B}(V)$, then $z \partial=$ $[z, \partial]+\partial g(z)$ in $\mathscr{A} V$. Thus, if $w \in \mathfrak{B}\left(V^{*}\right)$, we have

$$
\begin{aligned}
z w= & {[z, w] } \\
& + \text { terms beginning with elements of positive degree in } \mathfrak{B}\left(V^{*}\right) .
\end{aligned}
$$

Now, for a finite dimensional graded space $A=\oplus_{i=0}^{n} A_{i}$ we denote the Hilbert polynomial $P_{A}(t)=\sum_{i=0}^{n} \operatorname{dim}\left(A_{i}\right) t^{i}$. We are in position to prove the main theorem.

Theorem 3.8. Let $V \in{ }_{\mathbf{k} \Gamma}^{\mathbf{k} \Gamma} \mathscr{Y} \mathscr{D}$ be finite dimensional.

1. Suppose there exists W as in 3.5 , part 2 such that $\mathfrak{B}(W)$ is finite dimensional. Take the basis $\left\{x_{1}, \ldots, x_{m}\right\}$ of W and the dual basis $\left\{\partial_{1}, \ldots, \partial_{m}\right\}$ of $W^{*} \subset V^{*}$ (extend them to V by $\left.\partial_{i}\right|_{W^{\prime}}=0 \forall i$). Consider then the ∂_{i} 's as operators on $\mathfrak{B}(V)$ and let $K=\bigcap_{i=1}^{m} \operatorname{ker}\left(\partial_{i}\right)$. Then $\mathfrak{B}(V) \simeq K \otimes \mathfrak{B}(W)$ as
right $\mathfrak{B}(W)$-modules and as left K-modules. In particular,

$$
P_{\mathfrak{B}(V)}(t)=P_{K}(t) P_{\mathfrak{B}(W)}(t),
$$

and thus $\operatorname{dim} \mathfrak{B}(W)$ divides $\operatorname{dim} \mathfrak{B}(V)$.
2. Suppose that $\mathfrak{B}(V)$ is finite dimensional and $V=V_{1} \oplus \cdots \oplus V_{\theta}$ is a decomposition of (V, c) (that is, $\left.c\left(V_{i} \otimes V_{j}\right)=V_{j} \otimes V_{i}\right)$. For each $1 \leq i \leq \theta$, let $W_{i} \subseteq V_{i}$ be a (possibly zero) subspace of V_{i} as in 3.5, part 2; i.e., for each i, W_{i} is a $\mathbf{k} \Gamma_{i}^{\prime}$-comodule for $\Gamma^{\prime} \subseteq \Gamma$ a subgroup, it is $\mathbf{k} \Gamma_{i}^{\prime}$-stable, and there exists $W_{i}^{\prime} \subseteq V a \mathbf{k} \Gamma$-subcomodule and a $\mathbf{k} \Gamma_{i}^{\prime}$-submodule such that $V=W_{i} \oplus$ W_{i}^{\prime}. Thus, if $P_{i}(t)$ is the Hilbert polynomial of $\mathfrak{B}\left(W_{i}\right)$, then the product $\prod_{i=1}^{\theta} P_{i}(t)$ divides $P_{\mathfrak{B}(V)}(t)$ and the quotient lies in $\mathbb{Z}[t]$. In particular, $\prod_{i=1}^{\theta} \operatorname{dim} \mathfrak{B}\left(W_{i}\right)$ divides $\operatorname{dim} \mathfrak{B}(V)$.

Proof. (1) Since $\mathfrak{B}(W)$ is finite dimensional, we can fix $\Lambda_{\mathfrak{B}(W)}$ and $\Lambda_{\mathfrak{B}\left(W^{*}\right)}$ integrals such that

$$
\left[\Lambda_{\mathfrak{B}(W)}, \Lambda_{\mathfrak{B}\left(W^{*}\right)}\right]=1 .
$$

Let $\left\{z_{1}, \ldots, z_{n}\right\}$ be a basis of homogeneous elements of $\mathfrak{B}(W)$, and let $\left\{\tilde{z}_{1}, \ldots, \tilde{z}_{n}\right\}$ be the dual basis with respect to the Poincaré duality, i.e., $\left[\tilde{z}_{i} z_{j}, \Lambda_{\mathfrak{B}\left(W^{*}\right)}\right]=\delta_{i j}$. Let $p_{i} \in \mathscr{A} W$ be defined by $p_{i}=z_{i} \Lambda_{\mathfrak{B}\left(W^{*}\right)} \tilde{z}_{i}$. Now, by 3.7, we have that if $z \in \mathfrak{B}(W)$ and $w \in \mathfrak{B}\left(W^{*}\right)$ then

$$
\Lambda_{\mathfrak{B}\left(W^{*}\right)} z w=\Lambda_{\mathfrak{B}\left(W^{*}\right)}[z, w] .
$$

Thus, by definition we have $p_{i} p_{j}=\delta_{i j} p_{i}$, i.e., the p_{i} 's are mutually orthogonal idempotents. Furthermore, let $z \in \mathfrak{B}(W), z=\sum_{j} \alpha_{j} \tilde{z}_{j}$. Then

$$
\left(\sum_{i} p_{i}\right)(z)=\sum_{i, j} \alpha_{j}\left[\tilde{z}_{j} z_{i}, \Lambda_{\mathfrak{B}\left(W^{*}\right)}\right] \tilde{z}_{i}=\sum_{j} \alpha_{j} \tilde{z}_{j}=z,
$$

whence $\sum_{i} p_{i}=1$. Because of the immersion $\mathscr{A} W \hookrightarrow \mathscr{A} V$, the equality $\sum_{i} p_{i}=1$ also holds in $\mathscr{A} V$. Now, since the image of $\Lambda_{\mathfrak{B}\left(W^{*}\right)}$ lies in K, we have that

$$
\mathfrak{B}(V)=\sum_{i} \mathfrak{B}(V) z_{i} \Lambda_{\mathfrak{B}\left(W^{*}\right)} \tilde{z}_{i} \subseteq \sum_{i} K \tilde{z}_{i} .
$$

This tells that the canonical map $\mu: K \otimes \mathfrak{B}(W) \rightarrow \mathfrak{B}(V)$ given by multiplication is surjective. We shall prove that the sum is direct and that μ restricted to $K \otimes \tilde{z}_{i}$ is injective $\forall i$, which completes the proof. To see this,
if $0=\sum_{i} k_{i} \tilde{z}_{i}$ with $k_{i} \in K$, then for each j we have

$$
\begin{aligned}
0 & =p_{j}\left(\sum_{i} k_{i} \tilde{z}_{i}\right) \\
& =\sum_{i} k_{i} \tilde{z}_{i} z_{j} \Lambda_{\mathfrak{B}\left(W^{*}\right)} \tilde{z}_{j} \\
& =\sum_{i} k_{i}\left(\left[\tilde{z}_{i} z_{j}, \Lambda_{\mathfrak{B}\left(W^{*}\right)}\right]\right.
\end{aligned}
$$

$$
\left.+ \text { terms beginning with elements of positive degree in } \mathfrak{B}\left(W^{*}\right)\right) \tilde{z}_{j}
$$

$$
=k_{j} \tilde{z}_{j}
$$

This proves that the sum is direct. Now, if $k \in K$ and, for some $i, k \tilde{z}_{i}=0$, then let d be the degree of \tilde{z}_{i} and let w_{i} be an element in $\mathfrak{B}^{d}\left(W^{*}\right)$, such that $\left[\tilde{z}_{i}, w_{i}\right]=1$. We have

$$
\begin{aligned}
0= & k \tilde{z}_{i} w_{i}=k\left[\tilde{z}_{i}, w_{i}\right] \\
& +k\left(\text { terms beginning with elements of positive degree in } \mathfrak{B}\left(W^{*}\right)\right) \\
= & k
\end{aligned}
$$

which implies the injectivity of μ.
2. Consider in $\mathfrak{B}(V)$ the multi-degree given by the decomposition $V=\oplus_{i} V_{i}$. The condition on the V_{i} 's implies that the map \mathbf{S}^{n} is (mul-$\mathrm{ti}-$)graded for each n, whence we can take the Hilbert polynomial of $\mathfrak{B}(V)$ in $\mathbb{Z}\left[t_{1}, \ldots, t_{\theta}\right]$, i.e.,

$$
P_{\mathfrak{B}(V)}\left(t_{1}, \ldots, t_{\theta}\right)=\sum_{i_{1}, \ldots, i_{\theta}} \operatorname{dim} \mathfrak{B}^{i_{1}, \ldots, i_{\theta}}(V) t_{1}^{i_{1}} \cdots t_{\theta}^{i_{\theta}}
$$

$\left(\mathfrak{B}^{i_{1}, \ldots, i_{\theta}}(V)\right.$ the homogeneous component of degree $\left.\left(i_{1}, \ldots, i_{\theta}\right)\right)$. If $K_{i} \subset$ $\mathfrak{B}(V)$ is the intersection of the kernels of ∂ for all $\partial \in W_{i}^{*}$, then we can take also the Hilbert polynomial of K_{i} in $\mathbb{Z}\left[t_{1}, \ldots, t_{\theta}\right]$ since the elements in W_{i}^{*} act in an homogeneous way. By the first part, we have that $P_{\mathfrak{B}(V)}=$ $P_{K_{i}} P_{\mathfrak{B}\left(W_{i}\right)}$, where $P_{\mathfrak{B}\left(W_{i}\right)} \in \mathbb{Z}\left[t_{i}\right]$. Thus, for each i the polynomial $P_{\mathfrak{B}\left(W_{i}\right)}$ divides $P_{\mathfrak{B}(V)}$, and since these polynomials are coprime, their product also divides $P_{\mathfrak{B}(V)}$. Moreover, since the product is a monic polynomial (because $\operatorname{dim} \mathfrak{B}^{\operatorname{top}\left(W_{i}\right)}\left(W_{i}\right)=1$) the quotient lies in $\mathbb{Z}\left[t_{1}, \ldots, t_{\theta}\right]$. The result follows taking $t_{1}=\cdots=t_{\theta}=t$.

Remark 3.9. In the situation of the first part of the theorem, the Leibniz rule tells immediately that K is a subalgebra of $\mathfrak{B}(V)$. It is in
general not a coalgebra, but with the help of (2.8) it is easy to see that it is a left coideal. The fact that the morphism $K \otimes \mathfrak{B}(W) \rightarrow \mathfrak{B}(V)$ is the multiplication of $\mathfrak{B}(V)$ shows that they are isomorphic as $(K, \mathfrak{B}(W))$-bimodules.

Remark 3.10. Let $V=\oplus_{i} M\left(g_{i}, \rho_{i}\right)$ be a module in ${ }_{\mathrm{k} \Gamma}^{\mathrm{k} \Gamma} \mathscr{Y} \mathscr{D}$, with Γ finite. Let $z=z_{j l}^{i} \in M\left(g_{i}, \rho_{i}\right)$ be as in 2.15. Then $c(z \otimes z)=q z \otimes z$, where $q=\rho_{i}\left(g_{i}\right)$. By the first part of Theorem 3.8 (taking $\left.W^{\prime}=W_{j l}^{\prime}\right)$, we have that $N(q)$ divides $\operatorname{dim} \mathfrak{B}(V)$. Furthermore, a basis of $\mathfrak{B}(V)$ is given by $\left\{y_{a} z^{b} \mid 0 \leq b<N(q)\right\}$, where $\left\{y_{a}\right\}$ is a basis of ker $\partial_{j l}^{i}$.

Taking one element $z_{j_{i} l_{i}}^{i}$ in each $M\left(g_{i}, \rho_{i}\right)$ and $q_{i}=\rho_{i}\left(g_{i}\right), N_{i}=N\left(q_{i}\right)$, by the second part of Theorem 3.8 (W_{i} being the subspace generated by $z_{j_{i} l_{i}}^{i}$ and $W_{i}^{\prime}=W_{j_{i} i_{i}}^{\prime i}$) we have that $\Pi_{i} N_{i}$ divides $\operatorname{dim} \mathfrak{B}(V)$.

Remark 3.11. We notice the difference between this result, 2.2 and 2.17. Let Γ be finite, and let $V \in{ }_{k \Gamma \Gamma}^{\mathrm{k} \Gamma \mathscr{D}}$ be finite dimensional, $V=$ $\oplus_{i} M\left(g_{i}, \rho_{i}\right)=\oplus V_{i}$. Let $d_{i}=\operatorname{dim}\left(V_{i}\right), q_{i}=\rho_{i}\left(g_{i}\right), N_{i}=N\left(q_{i}\right)$, and $D_{i}=$ $\operatorname{dim}\left(\mathfrak{B}\left(V_{i}\right)\right)$. Then by 2.2 we have $\operatorname{dim}(\mathfrak{B}(V)) \geq \prod_{i} D_{i}$ and by 2.17 we have $D_{i} \geq N_{i}^{d_{i}}$. Finally, 3.8 tells that if $\operatorname{dim}(\mathfrak{B}(V))$ is finite, then it can be divided by $\Pi_{i} N_{i}$.

We warn that it is not in general true that $\operatorname{dim}(\mathfrak{B}(V))$ is divisible by $\prod_{i} N_{i}^{d_{i}}$. For instance taking V with basis $\left\{x_{0}, x_{1}, x_{2}\right\}$ and braiding $c\left(x_{i} \otimes\right.$ $\left.x_{j}\right)=-x_{-i-j} \otimes x_{i}($ we take the subindices in $\mathbb{Z} / 3)$, then $d=3$ and $N=2$, but $\operatorname{dim}(B(V))=12$ (it is computed in [MS]; see also [AG]).

This example shows also why 3.8 is not a consequence of a braided version of the Nichols-Zoeller theorem. Taking $W=\operatorname{span}\left(x_{0}\right)$, we have $c(V \otimes W) \not \subset(W \otimes V)$, and in particular $c(\mathfrak{B}(V) \otimes \mathfrak{B}(W)) \not \subset(\mathfrak{B}(W) \otimes$ $\mathfrak{B}(V)$), from where $\mathfrak{B}(W)$ is not a categorical braided Hopf subalgebra of $\mathfrak{B}(V)$ in the sense of [T3], which is one of the hypotheses of Nichols-Zoeller theorem for braided Hopf algebras.

4. APPLICATIONS

As a consequence of the main theorem, we have a generalization of [D] and [AS2, Lemma 7.4]:

Corollary 4.1. Let A be a finite dimensional pointed Hopf algebra, let $\Gamma=G(A)$ be its group of group-like elements, and let $[A: \Gamma]$ be the index of Γ in A. If $[A: \Gamma]=p$ is a prime number, then there exists $g \in Z(\Gamma), \chi \in \hat{\Gamma}$
a character, and $\lambda \in\{0,1\}$ such that

- $\chi(g)$ is a primitive pth root of unity,
- $\lambda=0$ if $\chi^{p} \neq 1$ or $g^{p}=1$,
and the algebra A is isomorphic to the algebra generated by $G(A)$ plus an element x with relations

$$
\begin{gathered}
x^{p}=\lambda\left(g^{p}-1\right), \\
h x=\chi(h) x h
\end{gathered}
$$

The coalgebra structure is given by $\Delta(x)=g \otimes x+x \otimes 1$.
Proof. With the lifting procedure (see [AS1]) applied to A, we get R a coradically graded Hopf algebra in ${ }_{\mathbf{k} \Gamma}^{\mathrm{k} \Gamma \mathscr{O}}$ of dimension p. Let R^{\prime} be the subalgebra generated by $R(1)$. By the Nichols-Zoeller theorem [NZ], $R^{\prime}=R$, and thus R is a Nichols algebra. Take x a non-zero element in $R(1)$. The algebra generated by x in R is isomorphic to $\mathbf{k}[x] / x^{t}$, but by 3.8 and 3.10 we must have $t=p$, and then $R=\mathbf{k}[x] / x^{p}$. The equality $x^{p}=$ $\lambda\left(g^{p}-1\right)$ is a straightforward computation of the lifting procedure, as done for instance in [G1].

Corollary 4.2. Let A be a pointed Hopf algebra, let $\Gamma=G(A)$ be its group of group-like elements, and let $[A: \Gamma]$ be the index of Γ in A. If $[A: \Gamma]=p^{2}$ is a square prime, then either

1. The situation is the same as in 4.1 , replacing each occurrence of " p " by " p^{2}."
2. There exist two elements $g_{1}, g_{2} \in Z(\Gamma)$, two characters $\chi_{1}, \chi_{2} \in \hat{\Gamma}$, and $\lambda_{1}, \lambda_{2}, \lambda_{3} \in \mathbf{k}$ such that

- $\chi_{i}\left(g_{i}\right)$ are pth roots of unity,
- $\chi_{1}\left(g_{2}\right) \chi_{2}\left(g_{1}\right)=1$,
- $\lambda_{i}=0(i=1,2)$ if $\chi_{i}^{p} \neq 1$ or $g_{i}^{p}=1$,
- $\lambda_{3}=0$ if $\chi_{1} \chi_{2} \neq 1$ or $g_{1} g_{2}=1$,
and the algebra A is isomorphic to the algebra generated by $\Gamma(A)$ plus two elements x_{1}, x_{2} with relations

$$
\begin{gathered}
x_{i}^{p}=\lambda_{i}\left(g_{i}^{p}-1\right), \quad i=1,2, \quad x_{1} x_{2}-\chi_{2}\left(g_{1}\right) x_{2} x_{1}=\lambda_{3}\left(g_{1} g_{2}-1\right), \\
h x_{i}=\chi_{i}(h) x_{i} h .
\end{gathered}
$$

The coalgebra structure is given by

$$
\Delta\left(x_{i}\right)=g_{i} \otimes x_{i}+x_{i} \otimes 1 .
$$

3. $p=2$, there exists an element $g \in Z(\Gamma)$ and ρ an irreducible representation of Γ of degree 2 such that $\rho(g)=-\mathrm{id}$; there exists a Γ-invariant quadratic form $\lambda: \operatorname{span}\left\{x_{1}, x_{2}\right\} \rightarrow \mathbf{k}$ such that $\lambda=0$ if $g^{2}=1$, and the algebra A is isomorphic to the algebra generated by Γ plus two elements x_{1}, x_{2} with relations

$$
\begin{aligned}
& h x h^{-1}=\rho(h)(x) \\
& x^{2}=\lambda(x)\left(g^{2}-1\right)
\end{aligned} \quad \text { for } x \in \operatorname{span}\left\{x_{1}, x_{2}\right\} .
$$

The coalgebra structure is given by $\Delta(x)=g \otimes x+x \otimes 1$, or
4. There exists an element $g \in Z(\Gamma)$ with $\left[\Gamma: \Gamma_{g}\right]=2$, and A may be presented as an extension

$$
\begin{equation*}
\mathbf{k} \rightarrow B \rightarrow A \rightarrow \mathbf{k}(\Gamma / H) \rightarrow \mathbf{k}, \tag{4.3}
\end{equation*}
$$

where H is the subgroup of Γ generated by \mathscr{O}_{g} and B fits into the case 2.
Proof. Take R^{\prime} and R as in the proof of 4.1. Then the dimension of R^{\prime} may be p or p^{2}. If it were equal to p, then 3.8 tells that the rank of R^{\prime} is 1 , and thus by [AS1, Theorem 3.2] $R=R^{\prime}$, a contradiction. Then $R=R^{\prime}=$ $\mathfrak{B}(V)$, and R is a Nichols algebra. If $\operatorname{dim} V=1$, then $V=M(g, \chi)$ and we are in case 1. If $\operatorname{dim} V=2$, then either $V=M\left(g_{1}, \chi_{1}\right) \oplus M\left(g_{2}, \chi_{2}\right)$ and we are in case $2, V=M(g, \rho)$ with $\operatorname{deg} \rho=2$ and we are in case $3(\rho(g)=$ -id is an equivalent condition for $\mathfrak{B}(V)$ to be p^{2}-dimensional; because of 2.2, the condition on λ to be Γ-invariant follows computing $h x^{2} h^{-1}$), or $V=M(g, \rho)$ with $\left[\Gamma: \Gamma_{g}\right]=2$, and then by [AG, Lemma 3.1.9] $R \# \mathbf{k} \Gamma$ is an extension as 4.3 and we are in case 4 . The rank of R is necessarily ≤ 2 because of 2.17 .

As a last application of 3.8 , we classify Nichols algebras of dimension p^{3} that arise in Yetter-Drinfeld categories over finite groups. Together with the lifting procedure of [AS1], this is a first step in order to classify finite dimensional pointed Hopf algebras of index p^{3}.

Then let $V \in{ }_{\mathbf{k} \Gamma}^{\mathrm{k} \Gamma} \mathscr{Y} \mathscr{D}$ be such that $\operatorname{dim} \mathfrak{B}(V)=p^{3}$. By 2.17 and 3.8 , we have $\operatorname{dim} V \leq 3$. It can be proved (see [G2]) that if (V, c) does not come from the abelian case then $\operatorname{dim} \mathfrak{B}(V)>p^{3}$.

If $\operatorname{dim} V=3, \mathfrak{B}(V)$ is a QLS because of 2.2 and 3.8; i.e., V has a basis $\left\{x_{1}, x_{2}, x_{3}\right\}$ such that the set $\left\{x_{1}^{n_{1}} x_{2}^{n_{2}} x_{3}^{n_{3}} \mid 0 \leq n_{i}<p\right\}$ is a basis of $\mathfrak{B}(V)$.

If $\operatorname{dim} V=2$ then c has a matrix

$$
\left(\begin{array}{ll}
q_{11} & q_{12} \\
q_{21} & q_{22}
\end{array}\right)
$$

where the $q_{i i}$'s are either p-roots or p^{2}-roots of unity. If one of them has order p^{2}, say q_{22}, then $N\left(q_{11}\right)=p$ and $\mathfrak{B}(V)$ is a QLS. If $N\left(q_{11}\right)=$ $N\left(q_{22}\right)=p$ then by the results in [G2] we have two possibilities:

1. $\quad p=2$ and $q_{12} q_{21} \neq 1$. Furthermore, for $\mathfrak{B}(V)$ to be eight dimensional, $q_{12} q_{21}=-1$. The algebra $\mathfrak{B}(V)$ is of type A_{2}.
2. $p>2$ and $q_{12} q_{21} q_{22}=1$. Interchanging q_{11} with q_{22} we see that $q_{12} q_{21} q_{11}=1$, whence $q_{11}=q_{22}$ and $\mathfrak{B}(V)$ is of type A_{2}.

Thus we reach in both cases the same situation. The algebra $\mathfrak{B}(V)$ has a PBW basis given by $\left\{x_{1}^{m_{1}} z^{n} x_{2}^{m_{2}} \mid 0 \leq m_{1}, m_{2}, n<p\right\}, z=x_{2} x_{1}-q_{21} x_{1} x_{2}$.

The last case is $\operatorname{dim} V=1$. We have simply $\{x\}$ a basis of V such that $c(x \otimes x)=q x \otimes x, N(q)=p^{3}$. Thus $\mathfrak{B}(V)=\mathbf{k}[x] /\left(x^{p^{3}}\right)$.

REFERENCES

[AA] A. Abella and N. Andruskiewitsch, Compact quantum groups arising from the FRT-construction, Bol. Acad. Nac. Cs. Córdoba Argentina 63 (1999), 15-44.
[AG] N. Andruskiewitsch and M. Graña, Braided Hopf algebras over non abelian finite groups, Bol. Acad. Nac. Cs. Córdoba Argentina 63 (1999), 45-78.
[AS1] N. Andruskiewitsch and H.-J. Schneider, Lifting of quantum linear spaces and pointed Hopf algebras of order p^{3}, J. Algebra 209 (1998), 659-691.
[AS2] N. Andruskiewitsch and H.-J. Schneider, Finite quantum groups and Cartan matrices, Adv. Math., to appear.
[AS3] N. Andruskiewitsch and H.-J. Schneider, Lifting of Nichols algebras of type A_{2} and pointed Hopf algebras of order p^{4}, in "Proc. Coll. Hopf Algebras and Quantum Groups" (S. Caenepeel, ed.), Dekker, Brussels, 1998, pp. 1-18.
[D] S. Dăscălescu, Pointed Hopf algebras with large coradical, Comm. Algebra 27, No. 10 (1999), 4827-4851.
[FG] Fronsdal and Galindo, The ideals of free differential algebras, q-alg 9806069.
[Gu] D. Gurevich, Algebraic aspects of the quantum Yang-Baxter equation, Leningrad J. Math. 2 (1991), 801-828.
[G1] M. Graña, Pointed Hopf algebras of dimension 32, Comm. Algebra, to appear.
[G2] M. Graña, Nichols algebras of low dimension, Contemp. Math., to appear.
[H] M. Hayashi, Quantum groups and quantum semigroups, J. Algebra 204 (1998), 225-254.
[Ly] V. Lyubashenko, Hopf algebras and vector symmetries, Russian Math. Surveys 41 (1986), 153-154.
[LS] V. Lyubashenko and A. Sudbery, Quantum supergroups of $G L(n \mid m)$ type: Differential forms, Koszul complexes and berezinians, Duke Math. J. 90 (1997), 1-62.
[MS] A. Milinski and H.-J. Schneider, Pointed indecomposable Hopf algebras over Coxeter groups, Contemp. Math., to appear.
[Mo] S. Montgomery, "Hopf Algebras and Their Actions on Rings," CBMS, Vol. 82, Am. Math. Soc., Providence, 1993.
[NZ] W. D. Nichols and M. B. Zoeller, A Hopf algebra freeness theorem, Amer. J. Math. 111 (1989), 381-385.
[Sf] B. Scharfschwerdt, Presented at the Colloquium on Quantum Groups and Hopf Algebras, La Falda, 1999.
[Sn] P. Schauenburg, On coquasitriangular Hopf algebras and the quantum Yang-Baxter equation, Algebra Ber. 67 (1992), 1-76.
[T1] M. Takeuchi, The coquasitriangular Hopf algebra associated with a rigid Yang-Baxter coalgebra, in "Proc. Coll. Hopf Algebras and Quantum Groups" (S. Caenepeel, ed.), Dekker, Brussels, 1998, pp. 251-270.
[T2] M. Takeuchi, Finite Hopf algebras in braided tensor categories, J. Pure Appl. Algebra 138 (1999), 59-82.
[T3] M. Takeuchi, The Nichols-Zoeller theorem for braided Hopf algebras, preprint.

[^0]: ${ }^{1}$ This work was partially supported by CONICET, UBA, CONICOR, and SeCyT-UNC.

