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We prove a freeness result for Nichols algebras over certain Nichols subalgebras.
This result allows us in particular to classify pointed Hopf algebras of prime and
prime squared index. � 2000 Academic Press

1. INTRODUCTION AND NOTATION

1.1. Introduction

Ž .Let V be a vector space and let c � End V � V be a solution of the
braid equation

c � id id � c c � idŽ . Ž . Ž .
� id � c c � id id � c � End V � V � V .Ž . Ž . Ž . Ž .

Let AV and CV be, respectively, the tensor algebra and tensor coalgebra
of V; they are both braided bialgebras. There exists a unique bialgebra
map S: AV � CV extending the identity id: V � V in degree one. The

Ž . Ž .image � V � Im S � CV is a braided bialgebra usually called a quan-
Ž .tum symmetric algebra. If c is rigid see Definition 1.3.1 below , then we say

Ž . Ž .that � V is a Nichols algebra. In such case it is known that � V is a
braided Hopf algebra in a rigid braided category.

Ž .In this article we consider a rigid solution V, c of the braid equation
Ž .and a subspace W � V such that c W � W � W � W. We identify the

Ž . Ž .quantum symmetric algebra � W with a subalgebra of � V . Under

1 This work was partially supported by CONICET, UBA, CONICOR, and SeCyT-UNC.
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certain additional hypotheses it is a Nichols algebra, possibly in a
Ž .different rigid braided category. Assume further that � W is finite

Ž .dimensional. Our main result, Theorem 3.8, shows then that � V is free
Ž . Ž .over � W . More precisely, we describe a graded subalgebra K of � V

Ž . Ž . Ž . Ž Ž ..which is also a left coideal such that � V � K � � W as K, � W -
Ž . Ž . Ž . Ž Ž .bimodules. Consequently, P t � P t P t where P t �� ŽV . K � ŽW . A

i .Ý dim A t is the Hilbert polynomial of A � � A and in particular thei i ii
Ž . Ž .dimension of � W divides that of � V . Moreover, assume that there is

Ž .a decomposition V � � V such that c V � V � V � V for all i, j andi i j j ii
Ž .that there exists for each i a possibly trivial subspace W 	 V verifyingi i

Ž . Ž .the hypotheses of the first part. Then Ł P t divides P t .i � ŽW . � ŽV .i


 �It was recently proved independently by Scharfschwerdt Sf and Takeuchi

 � 
 �T3 that the Nichols�Zoeller theorem NZ holds in Yetter�Drinfeld

Ž . Ž .categories. In general, however, our algebras � V , � W lie in different
braided categories, and their result does not apply in the present situation
Ž Ž .moreover, our result applies also to the case when � V is infinite

.dimensional . We prove 3.8 using algebras of quantum differential operators
Ž Ž ..opAAV � End � V . To this end, we generalize the definition for the


 � Ž‘‘abelian case’’ given, for instance, in FG this algebra was considered also
.by Kashiwara and Lusztig . The author was not able to find this general

notion in the literature.
As an application of our main result we classify, in 4.1 and 4.2, pointed

2 Ž .Hopf algebras of index p and p p a prime number . This classification

 �generalizes results from D, AS2 . Here, for a pointed Hopf algebra A we

Ž . 
 Ž .� Ž .define the index as the ratio dim A��G A � A : G A , where G A is
the group of group-likes of A.

The results of this article can be combined with a parameterization of
k � Ž .Nichols algebras of ranks 3 and 4 in YY DD � a finite group in order tok �

give a classification of Nichols algebras of dimension � 32. This, together

 �with the ‘‘lifting procedure’’ of AS1 , is a first step for the classification of

pointed Hopf algebras of index � 32. These and related problems are

 �considered in G2 .

The article is organized as follows: in Section 2 we state and prove some
first results on quantum symmetric algebras and Nichols algebras. For
V �k �

YY DD, we define the subspaces that will play the role of W in thek �

applications and study the behavior of the braiding with respect to these

 �subspaces. We also prove in Section 2 a generalization of AS1, 3.4, 3.5 for

general abelian braided categories. Section 3 is devoted to algebras of
quantum differential operators and to the main result. Finally, in Section 4
we classify all pointed Hopf algebras of prime index and all pointed Hopf
algebras of prime squared index.
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 �1.3. Notation. We refer to Mo for notation on Hopf algebras. We fix
k as an algebraically closed field of characteristic 0. All vector spaces,
algebras, tensor products, and homs are considered over k unless explicitly
stated. For comultiplication we use Sweedler’s notation without the sum-

Ž Ž . .mation symbol � z � z � z .Ž1. Ž2.
ŽIt is worth noting that most of the results of this article in particular,

. Žthe main Theorem 3.8 are true in positive characteristic with the same
.proofs . The results in Section 4 also hold, assuming char k does not divide

dim A.
Ž . Ž .We call a braided pair BP a pair V, c , where V is a vector space and

Ž .c: V � V � V � V is a bijective solution of the braid equation. Through-
out, V shall be finite dimensional. It is well known that there exists a
braided category containing V as an object and such that c coincides with


 � Ž 
 �.the braiding in the category, a construction due to Ly see also H, Sn .
Moreover, this category is abelian and has countable direct sums. Explic-
itly, one can take the category of comodules over the FRT bialgebra

Ž . Ž 
 �.generated by V, c see for instance AA .
When working in a non-symmetric braided category, one must distin-

guish between right and left duals. Since it is more convenient for our
purposes, we shall use right duals, and hence consider evaluation and
coevaluation maps as

e : V � V � � k, b: k � V � � V .

Let f : X � Y � Y � X be a map of finite dimensional vector spaces. It is
customary to denote by f �: Y � X � � X � � Y the morphism defined by

� ² :id � x , f y � � � f x � y , � � id ,Ž . Ž . Ž . Ž .¦ ;
²Ž . Ž .: ² :² :where we use the pairing a � b , � � � � a, � b, � .


 � Ž .DEFINITION 1.3.1 Ly, Gu . Let V, c be a braided pair such that V is
Ž Ž . . �finite dimensional. We say that c is rigid or that V, c is an RBP if c is

Ž 
 � Ž �1 . �an isomorphism it is proved in LS that this is equivalent to c being
.an isomorphism .
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Ž .When V, c is an RBP, we have isomorphisms

� � ��1
�c � c : V � V � V � V ,Ž .V , V

�1
� ��

�c � c : V � V � V � V ,Ž .V , V

c � � � c� : V � � V � � V � � V � ,V , V

where we use the pairing above for the definition of c�. Furthermore, in
this case both V and V � can be considered to be objects of one and the
same braided category, and the evaluation and coevaluation maps e:
V � V � � k and b: k � V � � V are maps in the category. Hence, the
condition on c to be rigid is equivalent to the condition on V to lie in a
rigid braided category.

Ž .Let V, c be a BP. Since c is a solution of the braid equation, the Artin
braid group � acts on V �n giving braidingsn

c � i � j : V �i � V � j � V � j � V �i.V , V

�n Ž .Let TV be the tensor space TV � � V . This makes TV, c into an
Ž .braided pair. If V, c is an RBP then c gives an action of � onn

nŽ � . Ž Ž � . .T V � V and T V � V , c becomes a BP.
Ž .Let V, c be a BP. We denote, respectively, by AV, CV the tensor

algebra and the tensor coalgebra of V. As vector spaces, they coincide with
TV. The multiplication components of AV are simply the identity maps
m � id: AiV � A jV � Ai jV. Dually, the comultiplication componentsi, j

of CV are the identity maps � � id: C i jV � C iV � C jV. Both AVi, j

and CV are graded braided Hopf algebras. We denote the comultiplication
components of AV and the multiplication components of CV by

S : Ai jV � AiV � A jV ,i , j

T : C iV � C jV � C i jVi , j

Ž Ž . 
 �they are given by i, j -shuffles, we refer for instance to AG for the
. Ž .details . There exists a unique graded map of Hopf algebras S � AV �

� nCV such that S � id: V � V. We denote by S the restriction of thisV

map to AnV.

Ž . Ž .DEFINITION 1.3.2. Let V, c be a BP. We say that the image S AV 	
CV is a quantum symmetric algebra, or QSA. It is a braided graded Hopf

Ž .algebra and is determined by V. We denote it by � V . We denote also by
iŽ . Ž . iŽ .� V the homogeneous component of degree i, i.e., � V � � � V .i

Ž . Ž .Notice that � V � TV�ker S .
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Ž .DEFINITION 1.3.3. If V, c is an RBP, then the quantum symmetric
algebra generated by V will be called a Nichols algebra and will also be

Ž .denoted by � V . In this case, since V belongs to a rigid braided category,
� Ž � .then V also does, and in particular it makes sense to consider � V ,

which is also a Nichols algebra.

Nichols algebras have some important properties that distinguish them
from the general concept of QSA: they have a dual braided Hopf algebra
Žand in particular have non-zero spaces of integrals when they are finite

.dimensional . Moreover, finite dimensional Nichols algebras satisfy a Poin-
care duality.´

Ž .Let V, c be a BP. It is easy to see that the braiding commutes with the
n Ž Ž n . Ž n..�n �nmaps S that is, S � id c � c id � S , whence c gives aV , V V , V

Ž . Ž . Ž . Ž . Ž Ž . .braiding c : � V � � V � � V � � V , and � V , c be-� ŽV . � ŽV .

comes a braided pair.
Ž .For a root of unity q, we denote by N q its order if q � 1. If q � 1

Ž .then we define N q � �. We recall the definition of q-numbers: for
n, m � �, n � m, define

q n � 1
2 n�1n � � 1  q  q  ��� qŽ . q q � 1

!n nŽ . q! nn � i � .Ž . Ž .q qŁ ! !ž /m q m n � mi�1 Ž . Ž .q q

Let H be a Hopf algebra with bijective antipode. We denote by H
YY DDH

Ž .the category of left-left Yetter�Drinfeld modules over H of arbitrary
dimension. It is a braided category. The full subcategory of finite dimen-
sional Yetter�Drinfeld modules is furthermore rigid. For an object V �
H

YY DD, we shall denote by � : V � H � V the H-coaction and by � :H
Ž .H � V � V the H-action. We sometimes denote the action by h � �

h � � .

2. FIRST RESULTS ON NICHOLS ALGEBRAS

Ž .DEFINITION 2.1. Let V, c be a BP, V � � V . We say that this directii
Ž . Ž Ž . . �sum is a decomposition of V, c and that V, c is decomposable if c :V �Vi j

�V � V � V � V . In this case we denote by b the restriction b � c .V �Vi j j i i j i j i j

Ž .It is straightforward to see that if V, c is an RBP and V � � V is aii
decomposition of V as a BP, then this decomposition induces a decompo-
sition of V � � � V � and taking the corresponding restrictions c � b ofi i i ii

Ž .c then each V , c becomes an RBP.i i
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If � is a finite group, H � k �, and V � H
YY DD, then V can be decom-H

Ž . Ž .posed as V � � M g , 	 , where 	 : � � Aut Y is an irreducible repre-i i i g ii i

Ž Ž .sentation of the centralizer � of g the definition of M g, 	 is given ing ii
.2.15 below . However, sometimes it is possible to further decompose some

of the summands, or to give a different decomposition. These decomposi-
H Ž .tions usually fail to lie in YY DD, but since V, c is an RBP any decomposi-H


tion gives a direct sum of RBPs. For instance, it is proved in AG,
�Proposition 3.1.11 that if V is two-dimensional then it can be decomposed

Ž .as a sum of two one-dimensional subspaces. We say that V, c comes from
the abelian case if V can be decomposed as a sum of one-dimensional
subspaces.

Ž .When V � � V is a decomposition of V, c , then the knowledge of theii
QSAs generated by the V ’s gives information on the QSA generated by V.i


The next result, which is a generalization of AS1, Lemma 3.4 and
�Proposition 3.5 for the non-abelian case, gives a first relation between

Ž . Ž .� V and the � V ’s.i

Ž .THEOREM 2.2. Let V, c be a braided pair and suppose it is decompos-
n Ž .able as V � � V such that � V is finite dimensional 
 i. Theni ii�1

Ž . n Ž .dim � V � Ł dim � V . Furthermore, the equality holds if and only ifi�1 i
b � b�1 
 i � j.i j ji

� 1 Ni4 Ž .Proof. Let � , . . . , � be a set of homogeneous vectors of T V suchi i i
that the set

Sd1
i � 1 , . . . , Sd Nii � NiŽ . Ž .½ 5i i

Ž . k kis a basis of � V , where d is the degree of � . The seti i i

BB � � k1 � ��� � � k n � T V � ��� � T V � 1 � k � NŽ . Ž .� 41 n 1 n i i

Ž . Ž Ž ..is linearly independent in T V and has Ł dim � V elements. Notei i
that the set

Sd k11 � k1 � ��� � Sd k nn � k n � 1 � k � N� 41 n i i

is also linearly independent. It is enough for the first part to prove that BB

remains linearly independent after applying S to it. Then, suppose that a
linear combination Ý� � k1 � ��� � � k n lies in ker S. Now, the spacek , . . . , k 1 n1 n

Ž .T V can be decomposed in homogeneous components with respect of the
ŽV ’s and the hypothesis made on c namely, that c behaves well with thei

.decomposition V � � V guarantees that c is a homogeneous morphism.ii
Hence, the linear combination of above can be treated for each homoge-
neous component, and we consequently may suppose that there exist
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d , . . . , d such that � � 0 if dk i � d for some i. Let1 n k , . . . , k i i1 n

m � d  ��� d .1 n
Ž .Now, by 2.8 , for m � i  j we have

S i � S j �S � Sm � T � S i � S j .Ž . Ž .i , j i , j

This implies that

0 � Sm � � k1 � ��� � � k nÝŽ .k , . . . , k 1 n1 n

� T Sd1 � ��� � Sdn � � k1 � ��� � � k nŽ . ÝŽ .d , . . . , d k , . . . , k 1 n1 n 1 n

� s x Sd1 � ��� � Sdn � � k1 � ��� � � k n , 2.3Ž . Ž . Ž .Ý ÝŽ .k , . . . , k 1 n1 n
�1x �Sh d , . . . , d1 n

where Sh � �m is the shuffle. Furthermore, the homogeneousd , . . . , d1 n

Ž .component with degrees d , . . . , d of CV can be decomposed as a direct1 n
sum taking all the possible orders for d tensorands of V . Explicitly, leti i

� 4 � 4 �1Z � f : 1, . . . , m � 1, . . . , n � � f i � d 
1 � i � n .Ž .� 4Ž .d , . . . , d i1 n

The decomposition just stated is nothing but

the d , . . . , d component of CVŽ .Ž .1 n

� V � V � ��� � V � V .� �f Ž1. f Ž2. f Žm. f
f�Z f�Zd , . . . , d d , . . . , d1 n 1 n

Ž .�1It is clear that there exists a bijection � : Sh � Z suchd , . . . , d d , . . . , d1 n 1 n

Ž .�1 Ž . � � d � dthat for x � Sh the image of s x lies in V .1 nV � � � � �Vd , . . . , d � Ž x .1 n1 n

Ž . Ž .�1Hence 2.3 implies, for each x � Sh , thatd , . . . , d1 n

0 � s x Sd1 � ��� � Sdn � � k1 � ��� � � k n ,Ž . Ž . ÝŽ .k , . . . , k 1 n1 n

Ž .but since s x is an isomorphism for each x � � , this implies thatn

0 � Sd1 � ��� � Sdn � � k1 � ��� � � k nŽ . ÝŽ .k , . . . , k 1 n1 n

� � Sd1� k1 � ��� � Sdn� k n ,Ž .Ý k , . . . , k 1 n1 n

which in turn implies that � � 0 
k , . . . , k . This proves the firstk , . . . , k 1 n1 n

part.
For the second part, suppose there exist i, j, i � j such that b b � id,ji i j

Ž . Ž .and let � � V , w � V such that b b � � w � � � w . Consider thei j ji i j
Ž . Ž .Ž .element z � T V given by z � id � b � � w . Since the linear span ofi j
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Ž . � Ž . 4 Ž .the set S BB � S y , y � BB is a subspace of � V with dimension
Ž . Ž .Ł dim � V , it is sufficient to prove that S z does not lie in this linearl l

Ž . Ž .Ž .span. Note that since deg z � 2, S z � id  c z . Suppose that

S z � S � � k1 � ��� � � k n .Ž . ÝŽ .k , . . . , k 1 n1 n

Looking at the homogeneous components, we must have � � 0 ifk , . . . , k1 n

Ž k1 k n. Ž .d , . . . , d � e  e , where e � 0, . . . , 0, 1, 0, . . . , 0 with the 1 in the1 n i j l
l-coordinate. In other words, if i � j there exist u , . . . , u � V , u� , . . . , u�

1 s i 1 s
� V , and � , . . . , � � k such thatj 1 s

S z � S � u � u�Ž . Ý t t tž /
t

Ž Ž . Ž � . .if i 	 j we have S z � S Ý � u � u and it is analogous . Now, sincet t t t
Ž .Ž . Ž . Ž .Ž .z � 1 � c � � w and S z � 1  c z , we have

1 � c2 � � w � 1  c � u � u� ,Ž . Ž . Ž . Ý t t tž /
t

but the component in V � V in the left hand side vanishes, and hence wej i

Ž � .have c Ý � u � u � 0. Since c is an isomorphism, we must havet t t t
Ý � u � u� � 0, but this implies that the V � V component in the rightt t t t i j

2Ž . Ž .hand side vanishes, whence c � � w � � � w , a contradiction.
Ž .It only remains to prove that if b b � id 
 i � j then S BB is a basis ofi j ji

Ž . Ž .� V . This is the same as saying that BB generates T V modulo ker S.
� 1 Mi4Let w , . . . , w be a basis of V . Leti i i

˜ r1 rmBB � w � ��� � w � m � �, 1 � r � M and a � a � ��� � a .� 4a a t a 1 2 m1 m t

˜Ž .Since, modulo ker S , the elements of BB are linear combinations of
˜ Ž .the elements of BB, it remains to prove that BB generates T V modulo

Ž .ker S . To see this, it suffices to prove that if i � j and 1 � r � M ,i i
r j r i ˜1 � r � M , then w � w can be expressed in terms of elements in BB.j j j i

Ž .Ž r j r i. Ž . Ž .Ž .Let z � 1 � c w � w . Since b b � id, we have S z � 1  c z �j i i j ji
0, which gives the relation

w rj � w ri � b w rj � w ri mod ker S .Ž .Ž .j i ji j i

Ž r j r i.Now, b w � w � V � V , and it can be written as a linear combina-ji j i i j
˜tion of elements in BB.

Ž .From now on, we concentrate on Nichols algebras. Let V, c be an
RBP. Since V and V � belong to a braided category CC, we have that V �n
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Ž � .�mand V also belong to CC, and it is easy to see that the map S:
Ž . Ž � .AV � CV is a map in the category, whence both � V and � V lie in

CC, and in particular they lie in one and the same braided category.
Ž . n n �We shall use the bilinear form � : T V � T V � k given by

² : ² : ² :z z ��� z � w w ��� w � z , w � z , w ��� z , w ,Ž . Ł1 2 n 1 2 n i n1�i 1 n n 1
1�i�n

2.4Ž .

Ž � . ² :where z , z , . . . , z � V, w , w , . . . , w � V , and � , � is the evalua-1 2 n 1 2 n
Ž . nŽ . mŽ � .tion map. We define also z � w � 0 if z � T V , w � T V , and

n � m. It is easy to see that c � � is the transpose of c when oneV , V V , V
Ž .� � �identifies V � V � V � V with this form. Furthermore, as proved in


 � nŽ .AG, Proposition 3.2.20 , this bilinear form satisfies for z � T V , w �
nŽ � .T V ,

Snz � w � z � Sn w , 2.5Ž . Ž . Ž .

from where Sn: T nV � � T nV � is the transpose of Sn: T nV � T nV with
Ž .respect to the pairing � . We thus have proved:

Ž . nŽ � . Ž nŽ ..�LEMMA 2.6. Let V, c be an RBP. Then � V � � V for all
Ž . Ž � . Ž Ž ..�n � 0. If � V is finite dimensional then � V � � V and

Ž Ž . .� V , c is an RBP.� ŽV ., � ŽV .

Ž . �DEFINITION 2.7. Let V, c be an RBP. For y � V , we denote by y
the operator

 � id � y ��i�1, 1 : � i V � � i�1 V .Ž . Ž . Ž .y

� 4 � 4 �If B � x , . . . , x is a basis of V, let  , . . . ,  be the basis of V dual1 n 1 n
to B. We denote also by  , j � 1, . . . , n, the operator  . We warn that forj  j

the case V � H
YY DD, usually these are not morphisms in H

YY DD.H H
Because of the coassociativity of AV, we have for i , i , i � �1 2 3

S � id S � S � id � S S , 2.8Ž .Ž . Ž .i , i i i , i i , i , i i , i i , i i1 2 1 2 3 1 2 3 2 3 1 2 3

which has the following consequence:

Ž . �PROPOSITION 2.9. Let V, c be an RBP. Consider the map  : V �
� opŽ . Ž . Ž Ž ..End � V gi�en in 2.7, and denote by  : T V � End � V the

Ž .unique algebra map extending  to the tensor algebra. Then  factors
Ž � .through � V as

� � op� � � T V � � V � End � V .Ž . Ž . Ž .Ž .
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Ž . nŽ .Proof. We use the bilinear form � of 2.4. Notice that if z � T V ,
� mŽ . nŽ � . � mŽ � .z � T V , w � T V , w � T V , then

z � z� � w�
� w � z� � w� z � w . 2.10Ž . Ž . Ž . Ž .

nŽ � . mŽ . Ž n .For w � T V , z � T V we take the pairing z � w � S z � w . By
Ž Ž ..�definition this pairing gives a functional w � � V , and we define the

Ž . Ž . Ž .Ž . Ž .Ž .operator h w � End � V by h w x � w � x, i.e., h w x �
Ž . mŽ . Ž . mŽ .x w x . In other words, if z � T V then S z � � V and we have,Ž1. Ž2.
Ž .using 2.5 ,

h w S z � S z w S z � S z z � Sn wŽ . Ž . Ž . Ž . Ž .Ž . Ž .Ž . Ž .Ž1. Ž2. Ž1. Ž2.

� Sm� n � �� Sn w S z . 2.11Ž . Ž . Ž .Ž . m� n , n

We prove now that h �  . In degree 1 this is just the definition of h, so
niŽ � .it is enough to prove that h is multiplicative. Let w � T V for i � 1, 2i

n1n 2n 3Ž .and z � T V . Then

h w � h w pzŽ . Ž . Ž .Ž .1 op 2

� h w pz w z � pz w z w zŽ . Ž . Ž . Ž . Ž .2 Ž1. 1 Ž2. Ž1. 2 Ž2. 1 Ž3.

� Sn3 z z � Sn2 w z � Sn1w by 2.11Ž . Ž .Ž . Ž .Ž1. Ž2. 2 Ž3. 1

� Sn3 � w � w id � Sn2 � Sn1 S zŽ . Ž .Ž . Ž .2 1 n , n , n3 2 1

� Sn3 � w � w id � Sn2n 1 S z by 2.10Ž . Ž . Ž .Ž . Ž .1 2 n , n n3 2 1

� Sn3 � Sn2n 1 w � w S zŽ .Ž . Ž .1 2 n , n n3 2 1

� h w � w pz by 2.11 .Ž . Ž . Ž .1 2

Ž � . Ž .The factorizability through � V is now a consequence of 2.11 . The
Ž .injectivity of � follows immediately from the non-degeneracy of � .

As a first consequence of this result, we have
� Ž .COROLLARY 2.12. Let  � V be such that c  �  � q �  ,0 0 0 0 0

Ž .Nwhere q � 1 is a root of unity of order N. Then  � 0 as an operator0
Ž .of � V .


 �DEFINITION 2.13. We shall denote by , the action given by  ; i.e., for
n nŽ . m mŽ � . Ž .S z � � V , S w � � V n � m ,


 n m � n�m m n�mS z , S w � S z S z � w � � V .Ž . Ž .Ž .Ž1. Ž2.

Ž .We characterize now the RBPs V, c arising in Yetter�Drinfeld cate-
gories over group algebras. The following remark is due to the referee.
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Remark 2.14. Let V be a finite dimensional module in k �
YY DD, where �k �

is a group. As a k �-comodule, V can be decomposed as V � � V g,g � �

Ž . g g Ž .where � x � g � x 
 x � V . Then, for x � V , y � V we have c x � y
� 4 Ž .� g � y � x � V � x. Thus V has a basis x , . . . , x such that c x � V1 n i

Ž . � 4� V � x . Conversely, let V, c be a BP with a basis x , . . . , x such thati 1 n
Ž . Ž .c x � V � V � x . Let g � Aut V be defined byi i i

c x � y � g y � x ,Ž . Ž .i i i

Ž . � 4and let � be the subgroup of Aut V generated by g , . . . , g . Then V is1 n
an object of k �

YY DD. In particular, it is an RBP.k �

Ž .Proof. The comodule structure is determined by � x � g � x . Thei i i
Ž .module structure is given by g � y � g y . We must prove the YD-com-i i

Ž .patibility condition between � and � , which reads as � g � y �
�1 Ž .gy g � gy , with g � �, � y � y � y . It is sufficient to prove itŽ�1. Ž0. Ž�1. Ž0.

Ž . g j g i g�1
jfor y � x and g � g , which is equivalent to prove that g x � V .i j j i

Let g x � Ý c x . The braid equation applied to x � x � y implies thatj i k k k j i

g g y � c x � x � g g y � c x � x ,Ž . Ž .Ý Ýj i k k j k j k k j
k k

which tells that c � 0 if g g � g g .k j i k j

Remark 2.15. Let V � k �
YY DD, with � a finite group. Then V �k �

Ž . Ž .� M g , 	 , where 	 : � � Aut Y is an irreducible representation ofi i i g ii i

� , andg i

M g , 	 � Ind� 	 � k � � Y ,Ž .i i � i k � ig gi i

Ž . �1 Ž . � i i 4with comodule structure � h � y � hg h � h � y . Let x , . . . , x bei 1 r i

� i i 4a basis of Y , and let h , . . . , h be a set of representatives of lefti 1 si

Ž . � i i icoclasses in ��� . Then M g , 	 has basis z � h � x , 1 � j � s ,g i i jl j l ii

4 � i 4 � i 41 � l � r , and consequently z is a basis of V. Let  be thei jl i, j, l jl i, j, l
i i Ž i .�1 Ž � i i 4.dual basis. Let t � h g h thus, the conjugacy class of g is t , . . . , t ,j j i j i 1 si

Ž i . i i � i � i2 Ž . Ž .4and note that � z � t � z . Let W � span z � i, j, l � i , j , l .jl j jl jl j l 2 2 22 2

Then W � i is a k �-submodule of V. For further use, we computejl

id �  i1 c z i2 � z i3 � id �  i1 t i2 � z i3 � z i2Ž . Ž . Ž . Ž .j l j l j l j l j j l j l1 1 2 2 3 3 1 1 2 3 3 2 2

� � � � t i1 � z i3 .Ž .i , i j , j l , l j j l1 2 1 2 1 2 1 3 3

Moreover,

 i1 � id c z i1 � z i2 �  i1 t i1 � z i2 z i1 � �  i1 t i1 � z i1 z i1 .Ž . Ž . Ž . Ž .j l j l j l j l j j l j l i , i j l j j l j l1 1 1 1 2 2 1 1 1 2 2 1 1 1 2 1 1 1 2 2 1 1

2.16Ž .
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Ž i1 i1 . Ž i1 i1Ž i1.�1 . i1 i1 Ž .Now, we have � t � z � t t t � t � z , whence 2.16j j l j j j j j l1 2 2 1 2 1 1 2 2
i1 i1Ž i1.�1 i1 i1 i1 ivanishes if t t t � t , i.e., if t � t , but for the definition of t andj j j j j j j1 2 1 1 2 1

i i1 Ž i1 .h this is equivalent to j � j . Moreover, for y � Y , t � h � y �j 1 2 i j j1 1 1
i1 Ž i1.�1 i1 i1 Ž .Ž . i1 Ž .h g h h � y � h � 	 g y � q h � y, from where 2.16 van-j i j j j i i i j1 1 1 1 1 1 1 1 1

ishes if l � l . Then, we have proved1 2

�
i i i iŽ .c z � z � q z � z ,jl jl i jl jl

�
i � i � i iŽ .c z � W � W � z ,jl jl jl jl

�
� i � iŽ .� W 	 k � � W .jl jl

We close this section with a useful bound for dimension of Nichols
algebras:

LEMMA 2.17. Let V � k �
YY DD, with � finite, and let V be finite dimen-k �

� 4 Ž .sional. Then by 2.15, we ha�e a basis x , . . . , x of V such that c x � V �1 n i
Ž . Ž .V � x and c x � x � q x � x , with q a root of unity. Let N � N q .i i i i i i i i i

Ž Ž ..Then Ł N � dim � V .i i

� 4 � � 4Proof. Let  , . . . ,  be the basis of V dual to x , . . . , x . Note first1 n 1 n
Ni�1 Ž . Ž .that x � 0 because � k x � � V , or simply by direct computation,i i
Ž j. Ž . j�1 Ž . jŽ j. Ž .!since  x � j x and thence  x � j , which is nonzero ifi i q i i i qi i

Ž .j � N we use the Leibniz rule to make the computations; see 3.5 below .i
� j1 jn 4We prove now that the set x ��� x � 0 � j � N is linearly independent.1 n i i

We do it by induction: suppose that the subset with j � 0 for m � m ism 0
l.i. and consider a linear combination

� x j1 ��� x jm0 � 0.Ý j , . . . , j 1 m1 m 00
j , . . . , j1 m 0

Ž .Nm �1
0Applying  we getm0

! j j1 m �10� N � 1 x ��� x � 0,Ž .Ý j , . . . , j , N m 1 m �1q1 m �1 m �1 0 0m0 0 0
j , . . . , j1 m �10

from where the coefficients � vanish. We can apply thenj , . . . , j , N1 m �1 m �10 0

Ž .Nm �2
0 , and get that the coefficients � vanish. Proceed-m j , . . . , j , N �20 1 m �1 m0 0

ing in this way, we see that all the coefficients � � 0, and thej , . . . , j1 m0
inductive thesis follows.

Ž . k � Ž .COROLLARY 2.18. If V � � M g , 	 � YY DD � a finite group andj j k �j
d jŽ . Ž . Ž . Ž Ž ..d � dim M g , 	 , q � 	 g , N � N q , then Ł N � dim � V .j j j j j j j j j j
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3. MAIN RESULT

DEFINITION 3.1. We say that a finite dimensional braided Hopf algebra
Ž .R, c is rigid if R is a Hopf algebra in a rigid braided category. This is

Ž .equivalent to R, c being an RBP and the structure morphisms of R
commuting with the braiding. In particular replacing P by R and by R�

we have

c id � m � m � id c : P � R � R � R � P ,Ž . Ž .P , R R R P , ŽR�R.

�1 �1c id � m � m � id c : P � R � R � R � P ,Ž . Ž . Ž . Ž .R , P R R ŽR�R. , P

and analogous equalities for �, u, � , SS .

For rigid braided Hopf algebras, most of the ‘‘classic’’ results on finite
dimensional Hopf algebras can be stated mutatis mutandis in a braided


 �sense, and we refer to T2 for this. We shall use the existence of a
Ž � .non-zero integral in R and R and the non-degenerate bilinear form

given by it.

Ž . Ž .DEFINITION 3.2. Let V, c be an RBP such that � V is finite dimen-
Ž � . Ž Ž ..� Ž Ž . .sional. We have seen that � V � � V and that � V , c is an� ŽV .

RBP. It is straightforward to see by the definitions of the structure
Ž . Ž .morphisms in � V that it is a rigid braided Hopf algebra. Then � V has

a one-dimensional space of integrals, which is easily seen to be homoge-
Ž . Ž .neous. We denote by top V the degree of the integral of � V . We

Ž .further denote by � a non-zero integral of � V .� ŽV .

The non-degenerate bilinear form gives the Poincare duality found by´
Ž 
 �. iŽ .Nichols see, e.g., AG, Proposition 3.2.2 , namely, that dim � V �

topŽV .� iŽ . topŽV .Ž . topŽV . iŽ .dim � V ; in particular, dim � V � 1 and � V � 0

 i 	 0.

The following lemma, which we have mostly proved, is an addendum to
this duality.

Ž .LEMMA 3.3. Let V, c be an RBP.
nŽ � . Ž nŽ ..� 
 �1. � V � � V �ia the form , of 2.13.

Ž . Ž . 
2. If � V is finite dimensional and n � top V , then � ,� ŽV .
topŽV .�nŽ � .� nŽ .� V � � V .

Ž .Proof. 1 This is part of the content of 2.6, once we see the definition

 �of , .

Ž . topŽV .�nŽ � . 
 �2 If D � � V is such that � , D � 0, we can take� ŽV .
� nŽ � . � 
 �� �D � � V such that � � DD , and then � , � �� ŽV . � ŽV . � ŽV .
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 � � �� , D , D � 0, which contradicts 1. Then we have a monomorphism� ŽV .
topŽV .�nŽ � . nŽ .� V � � V . Since by 1 and the Poincare duality both spaces´

have the same dimension, we are done.

Ž . Ž � .DEFINITION 3.4. Let V, c be an RBP and consider the map �: � V
Ž .op Ž .� End � V of 2.9. Given x � � V , we denote also by x the map in

Ž .op Ž .End � V given by right multiplication by x. We have hence � V and
Ž � . Ž .� V acting on � V . We define the quantum differential operators

Ž .op Ž .algebra AAV as the subalgebra of End � V generated by � V and
Ž � .� V .

When V � k �
YY DD, it can be given a nice basis of AAV.k �

LEMMA 3.5. Let V � k �
YY DD be finite dimensional.k �

� 4 Ž .1. Let x , . . . , x be a basis of V such that � x � g � x . Let1 n i i i
� 4 � � 4 , . . . ,  be the basis of V dual to x , . . . , x . Then AAV can be presented1 n 1 n

� 4with generators  , . . . ,  , x , . . . , x and relations1 n 1 n

�
m Ž . Ž .ker S : TV � � V , m � 0, i.e., the relations in � V ,

�
m � � �Ž . Ž .ker S : TV � � V , m � 0, i.e., the relations in � V , and

� Ž .x  � �   g x for 1 � i, j � n.i j i j j j i

� m m 4 mŽ .Furthermore, for m � 0 take z , . . . , z a basis of � V , and let1 dm

� m m 4 mŽ � . Ž .w , . . . , w be the dual basis of � V gi�en by the duality in 3.3 .1 dm

Then the set

w i z j � i , j � 0, 1 � k � d , 1 � l � d� 4k l i j

is a basis of AAV.

2. Suppose W � V is a k �-subcomodule which is �
�-stable, where

� Ž . � Ž .� � � is the smallest subgroup such that � W 	 k � � W. Then c W � W
Ž � .� W � W, the pair W, c � c is an RBP, and it makes sense toW�WW V

Ž . � �consider � W . Suppose furthermore that V � W � W , where W is a
k �-subcomodule and a k �

�-submodule. Let W � � V � be the map gi�en by
� Ž �.�the identification W � W . Then there is a monomorphism of algebras

AAW � AAV ,

induced by W � V and W � � V �.

Before giving the proof, we note that if � is finite, 2.15 tells that the
conditions of the second part are fulfilled taking, for i, j, l fixed, W �

� i 4 � � ispan z and W � W .jl jl

Ž . Ž .Proof. 1 The relations in � V hold in AAV because it acts by the
Ž � .regular representation. The relations in � V hold in AAV because of
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Ž . k �2.9. Of course, AV, CV, and � V lie in YY DD, whence we may considerk �

Ž Ž ..g acting on Aut � V . It is immediate to see from the definition that thei
derivations  verify the Leibniz rulei

 ab �  a g b  a b ,Ž . Ž . Ž . Ž .i i i i

which implies at once the last set of relations taking b � x .j
� 4Thus, if B is the algebra defined with generators  , . . . ,  , x , . . . , x1 n 1 n

and the stated relations, we have a surjection B � AAV. Moreover, the last
set of relations implies that any monomial in B can be written in the form
Ý a b , where the a ’s are generated by the  ’s and the b ’s are generatedr r r r i r
by the x ’s. Now, the first and second set of relations imply that we cani

� i 4 � j4choose a and b to be, respectively, in the sets w and z . The lastr r k l
� i j4thing to be proved is the linear independence of the set w z . Since AAVk l

� 4 � 4 Ž .is generated by x and  , which act on � V in a graded way, then AAVi i
Ž . Ž .is a graded algebra with degrees given by deg x � 1 and deg  � �1,i i

and then it is enough to prove the linear independence of the subsets with
the same degree. Let then

T � � w i z j � 0,Ý i jk l k l
�ij�n

k , l

�and suppose some of the � � 0. We take m � min i � � j, k, l s.t. � �i jk l i jk l
40 and let

˜ i jT � � w z .Ý i jk l k l
j�nm , i�m

k , l

˜ m ˜Ž .Since T and T � T act trivially on � V then T also does. Thus, for any
k� we have

m m m nm˜ � �0 � T z � z , w � zŽ . Ý Ýk k k m , nm , k , l l
k l

� � � z nm ,Ý m , nm , k , l l
l

� nm4but then the linear independence of the set z implies thatl l
� � 0 
k, l, which contradicts the definition of m.m , nm , k , l

Ž . Ž . � 42 The pair W, c is an RBP thanks to 2.14. Let x , . . . , x be aW 1 m
Ž . � 4basis of W such that � x � g � x . We consider  , . . . ,  the duali i i 1 m

� � � Ž � � � Ž �.�.basis of W and extend it by  � 0 i.e., W � V as W � W .Wi
The condition on W � to be a k �-subcomodule implies that in AAV we have

Ž . � �x  � �   g x for 1 � i, j � m. The condition on W to be a k � -i j i j j j i
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Ž � � . � �
�submodule implies that c W � W � W � W , and it is easy to seeV

� � �� �that the restriction c coincides with c , the braiding given byW �WV W
considering W � as an object of k �

�

� YY DD. Thus,k �

�n �n� �nker S : W � WŽ . Ž .Ž .
�n �n �n� � �n� ker S : V � V � W .Ž . Ž . Ž .Ž .

Since clearly

ker Sn : W �n � W �n � ker Sn : V �n � V �n � W �n ,Ž . Ž .

by the first part this gives a well defined morphism of algebras AAW � AAV.
We must prove that this map is injective, but this is also a consequence of

� 4 Ž . � 4the first part, for if we take z a basis of � W and w a basis ofi j
Ž � . � 4� W then the set w z is a basis of AAW, and it is linearly independentj i

Ž Ž . Ž � ..in AAV completing the bases to bases of � V and � V . The assertion
follows.

Ž . �EXAMPLE 3.6. If V � k x and c x � x � qx � x, let  � V such that
Ž . � i j Ž .4 x � 1. Then AAV has basis  x � 0 � i, j � N q , and it can be seen

by induction that the relation x � q  x  1 implies that for i, j � 0 we
have

j !ii j Ž j�l .Ž i�l . j�l i�lx � l q  x .Ž . qÝ ž / ž /l lq ql�0

Remark 3.7. Let V � k �
YY DD. We note that the relations in AAV implyk �

� � h Ž .that if  � V is such that  � 0 
h � g and z � � V , then z �V

 � Ž . Ž � .z,    g z in AAV. Thus, if w � � V , we have


 �zw � z , w

 terms beginning with elements of positive degree in � V � .Ž .

Now, for a finite dimensional graded space A � �n A we denote theii�0
Ž . n Ž . iHilbert polynomial P t � Ý dim A t . We are in position to proveA i�0 i

the main theorem.

THEOREM 3.8. Let V � k �
YY DD be finite dimensional.k �

Ž .1. Suppose there exists W as in 3.5, part 2 such that � W is finite
� 4 � 4dimensional. Take the basis x , . . . , x of W and the dual basis  , . . . , 1 m 1 m

� � Ž � � .of W � V extend them to V by  � 0 
 i . Consider then the  ’s asWi i
Ž . m Ž . Ž . Ž .operators on � V and let K � � ker  . Then � V � K � � W asi�1 i
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Ž .right � W -modules and as left K-modules. In particular,

P t � P t P t ,Ž . Ž . Ž .� ŽV . K � ŽW .

Ž . Ž .and thus dim � W di�ides dim � V .
Ž .2. Suppose that � V is finite dimensional and V � V � ��� � V is a1 �

Ž . Ž Ž . .decomposition of V, c that is, c V � V � V � V . For each 1 � i � � ,i j j i
Ž .let W 	 V be a possibly zero subspace of V as in 3.5, part 2; i.e., for eachi i i

i, W is a k �
�-comodule for �

� 	 � a subgroup, it is k �
�-stable, and therei i i

exists W � 	 V a k �-subcomodule and a k �
�-submodule such that V � W �i i i

� Ž . Ž .W . Thus, if P t is the Hilbert polynomial of � W , then the producti i i
� Ž . Ž . 
 �Ł P t di�ides P t and the quotient lies in � t . In particular,i�1 i � ŽV .
� Ž . Ž .Ł dim � W di�ides dim � V .i�1 i

Ž . Ž .Proof. 1 Since � W is finite dimensional, we can fix � and� ŽW .
� � integrals such that� ŽW .

�� , � � 1.� ŽW . � ŽW .

� 4 Ž .Let z , . . . , z be a basis of homogeneous elements of � W , and let1 n
� 4z , . . . , z be the dual basis with respect to the Poincare duality, i.e.,˜ ˜ ´1 n

 �� �z z ,� � � . Let p � AAW be defined by p � z � z . Now, by˜ ˜i j � ŽW . i j i i i � ŽW . i

Ž . Ž � .3.7, we have that if z � � W and w � � W then

� � 
 �� zw � � z , w .� ŽW . � ŽW .

Thus, by definition we have p p � � p , i.e., the p ’s are mutually orthog-i j i j i i
Ž .onal idempotents. Furthermore, let z � � W , z � Ý � z . Then˜j j j

�p z � � z z , � z � � z � z ,Ž . ˜ ˜ ˜Ý Ý Ýi j j i � ŽW . i j jž /
i i , j j

whence Ý p � 1. Because of the immersion AAW � AAV, the equalityi i
Ý p � 1 also holds in AAV. Now, since the image of � � lies in K, wei i � ŽW .
have that

� V � � V z � � z 	 Kz .Ž . Ž . ˜ ˜Ý Ýi � ŽW . i i
i i

Ž . Ž .This tells that the canonical map �: K � � W � � V given by multi-
plication is surjective. We shall prove that the sum is direct and that �
restricted to K � z is injective 
 i, which completes the proof. To see this,ĩ
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if 0 � Ý k z with k � K, then for each j we have˜i i i i

0 � p k z̃Ýj i iž /
i

� k z z � � z˜ ˜Ý i i j � ŽW . j
i

�� k z z , �˜ŽÝ i i j � ŽW .
i

terms beginning with elements of positive degree in � W � zŽ . ˜. j

� k z .˜j j

This proves that the sum is direct. Now, if k � K and, for some i, kz � 0,ĩ
dŽ � .then let d be the degree of z and let w be an element in � W , suchĩ i


 �that z , w � 1. We haveĩ i

0 � kz w � k z , w˜ ˜i i i i

k terms beginning with elements of positive degree in � W �Ž .Ž .
� k ,

which implies the injectivity of �.

Ž .2. Consider in � V the multi-degree given by the decomposition
n ŽV � � V . The condition on the V ’s implies that the map S is mul-i ii

. Ž .ti- graded for each n, whence we can take the Hilbert polynomial of � V

 �in � t , . . . , t , i.e.,1 �

P t , . . . , t � dim � i1 , . . . , i� V t i1 ��� t i�Ž . Ž .Ý� ŽV . 1 � 1 �
i , . . . , i1 �

Ž i1, . . . , i� Ž . Ž ..� V the homogeneous component of degree i , . . . , i . If K �1 � i
Ž . �� V is the intersection of the kernels of  for all  � W , then we cani


 �take also the Hilbert polynomial of K in � t , . . . , t since the elements ini 1 �

W � act in an homogeneous way. By the first part, we have that P �i � ŽV .


 �P P , where P � � t . Thus, for each i the polynomial PK � ŽW . � ŽW . i � ŽW .i i i i

divides P , and since these polynomials are coprime, their product also� ŽV .
Ždivides P . Moreover, since the product is a monic polynomial because� ŽV .

topŽWi.Ž . . 
 �dim � W � 1 the quotient lies in � t , . . . , t . The result followsi 1 �

taking t � ��� � t � t.1 �

Remark 3.9. In the situation of the first part of the theorem, the
Ž .Leibniz rule tells immediately that K is a subalgebra of � V . It is in
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Ž .general not a coalgebra, but with the help of 2.8 it is easy to see that it is
Ž . Ž .a left coideal. The fact that the morphism K � � W � � V is the

Ž . Ž Ž ..multiplication of � V shows that they are isomorphic as K, � W -bi-
modules.

Ž . k �Remark 3.10. Let V � � M g , 	 be a module in YY DD, with �i i k �i
i Ž . Ž .finite. Let z � z � M g , 	 be as in 2.15. Then c z � z � qz � z,jl i i

Ž . Ž � � i.where q � 	 g . By the first part of Theorem 3.8 taking W � W , wei i jl
Ž . Ž . Ž .have that N q divides dim � V . Furthermore, a basis of � V is given

� b Ž .4 � 4 iby y z � 0 � b � N q , where y is a basis of ker  .a a jl
i Ž . Ž . Ž .Taking one element z in each M g , 	 and q � 	 g , N � N q ,j l i i i i i i ii i

Žby the second part of Theorem 3.8 W being the subspace generated byi
i � � i . Ž .z and W � W we have that Ł N divides dim � V .j l i j l i ii i i i

Remark 3.11. We notice the difference between this result, 2.2 and
2.17. Let � be finite, and let V � k �

YY DD be finite dimensional, V �k �

Ž . Ž . Ž . Ž .� M g , 	 � �V . Let d � dim V , q � 	 g , N � N q , and D �i i i i i i i i i i ii
Ž Ž .. Ž Ž ..dim � V . Then by 2.2 we have dim � V � Ł D and by 2.17 we havei i i

d i Ž Ž ..D � N . Finally, 3.8 tells that if dim � V is finite, then it can bei i

divided by Ł N .i i
Ž Ž ..We warn that it is not in general true that dim � V is divisible by

di � 4 ŽŁ N . For instance taking V with basis x , x , x and braiding c x �i i 0 1 2 i
. Ž .x � �x � x we take the subindices in ��3 , then d � 3 and N � 2,j �i�j i

Ž Ž .. Ž 
 � 
 �.but dim � V � 12 it is computed in MS ; see also AG .
This example shows also why 3.8 is not a consequence of a braided

Ž .version of the Nichols�Zoeller theorem. Taking W � span x , we have0
Ž . Ž . Ž Ž . Ž .. Ž Ž .c V � W � W � V , and in particular c � V � � W � � W �
Ž .. Ž .� V , from where � W is not a categorical braided Hopf subalgebra of
Ž . 
 �� V in the sense of T 3 , which is one of the hypotheses of Nichols�Zoeller

theorem for braided Hopf algebras.

4. APPLICATIONS


 �As a consequence of the main theorem, we have a generalization of D

 �and AS2, Lemma 7.4 :

COROLLARY 4.1. Let A be a finite dimensional pointed Hopf algebra, let
Ž . 
 �� � G A be its group of group-like elements, and let A : � be the index of

ˆ
 � Ž .� in A. If A : � � p is a prime number, then there exists g � Z � , � � �
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� 4a character, and � � 0, 1 such that

� Ž .� g is a primiti�e pth root of unity,
�

p p� � 0 if � � 1 or g � 1,

Ž .and the algebra A is isomorphic to the algebra generated by G A plus an
element x with relations

x p � � g p � 1 ,Ž .
hx � � h xh.Ž .

Ž .The coalgebra structure is gi�en by � x � g � x  x � 1.

Ž 
 �.Proof. With the lifting procedure see AS1 applied to A, we get R a
coradically graded Hopf algebra in k �

YY DD of dimension p. Let R� be thek �

Ž . 
 �subalgebra generated by R 1 . By the Nichols�Zoeller theorem NZ ,
R� � R, and thus R is a Nichols algebra. Take x a non-zero element in
Ž . 
 � tR 1 . The algebra generated by x in R is isomorphic to k x �x , but by 3.8


 � p pand 3.10 we must have t � p, and then R � k x �x . The equality x �
Ž p .� g � 1 is a straightforward computation of the lifting procedure, as


 �done for instance in G1 .

Ž .COROLLARY 4.2. Let A be a pointed Hopf algebra, let � � G A be its

 �group of group-like elements, and let A : � be the index of � in A. If


 � 2A : � � p is a square prime, then either

1. The situation is the same as in 4.1, replacing each occurrence of ‘‘p’’
by ‘‘p2.’’

ˆŽ .2. There exist two elements g , g � Z � , two characters � , � � �,1 2 1 2
and � , � , � � k such that1 2 3

� Ž .� g are pth roots of unity,i i

� Ž . Ž .� g � g � 1,1 2 2 1

�
p pŽ .� � 0 i � 1, 2 if � � 1 or g � 1,i i i

� � � 0 if � � � 1 or g g � 1,3 1 2 1 2

Ž .and the algebra A is isomorphic to the algebra generated by � A plus two
elements x , x with relations1 2

x p � � g p � 1 , i � 1, 2, x x � � g x x � � g g � 1 ,Ž . Ž .Ž .i i i 1 2 2 1 2 1 3 1 2

hx � � h x h.Ž .i i i

The coalgebra structure is gi�en by

� x � g � x  x � 1.Ž .i i i i
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Ž .3. p � 2, there exists an element g � Z � and 	 an irreducible
Ž .representation of � of degree 2 such that 	 g � �id; there exists a �-in-

� 4 2�ariant quadratic form �: span x , x � k such that � � 0 if g � 1, and1 2
the algebra A is isomorphic to the algebra generated by � plus two elements
x , x with relations1 2

hxh�1 � 	 h xŽ . Ž .
� 4for x � span x , x .1 22 2x � � x g � 1Ž . Ž .

Ž .The coalgebra structure is gi�en by � x � g � x  x � 1, or
Ž . 
 �4. There exists an element g � Z � with � : � � 2, and A may beg

presented as an extension

k � B � A � k ��H � k, 4.3Ž . Ž .

where H is the subgroup of � generated by OO and B fits into the case 2.g

Proof. Take R� and R as in the proof of 4.1. Then the dimension of R�

may be p or p2. If it were equal to p, then 3.8 tells that the rank of R� is 1,

 � � �and thus by AS1, Theorem 3.2 R � R , a contradiction. Then R � R �

Ž . Ž .� V , and R is a Nichols algebra. If dim V � 1, then V � M g, � and we
Ž . Ž .are in case 1. If dim V � 2, then either V � M g , � � M g , � and we1 1 2 2

Ž . Ž Ž .are in case 2, V � M g, 	 with deg 	 � 2 and we are in case 3 	 g �
Ž . 2�id is an equivalent condition for � V to be p -dimensional; because of

2 �1.2.2, the condition on � to be �-invariant follows computing hx h , or
Ž . 
 � 
 �V � M g, 	 with � : � � 2, and then by AG, Lemma 3.1.9 R�k � is ang

extension as 4.3 and we are in case 4. The rank of R is necessarily � 2
because of 2.17.

As a last application of 3.8, we classify Nichols algebras of dimension p3

that arise in Yetter�Drinfeld categories over finite groups. Together with

 �the lifting procedure of AS1 , this is a first step in order to classify finite

dimensional pointed Hopf algebras of index p3.
k � Ž . 3Then let V � YY DD be such that dim � V � p . By 2.17 and 3.8, wek �

Ž 
 �. Ž .have dim V � 3. It can be proved see G2 that if V, c does not come
Ž . 3from the abelian case then dim � V 	 p .

Ž .If dim V � 3, � V is a QLS because of 2.2 and 3.8; i.e., V has a basis
� 4 � n1 n2 n3 4 Ž .x , x , x such that the set x x x � 0 � n � p is a basis of � V .1 2 3 1 2 3 i

If dim V � 2 then c has a matrix

q q11 12
q qž /21 22
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where the q ’s are either p-roots or p2-roots of unity. If one of them hasi i
2 Ž . Ž . Ž .order p , say q , then N q � p and � V is a QLS. If N q �22 11 11

Ž . 
 �N q � p then by the results in G2 we have two possibilities:22

Ž .1. p � 2 and q q � 1. Furthermore, for � V to be eight dimen-12 21
Ž .sional, q q � �1. The algebra � V is of type A .12 21 2

2. p 	 2 and q q q � 1. Interchanging q with q we see that12 21 22 11 22
Ž .q q q � 1, whence q � q and � V is of type A .12 21 11 11 22 2

Ž .Thus we reach in both cases the same situation. The algebra � V has a
� m1 n m2 4PBW basis given by x z x � 0 � m , m , n � p , z � x x � q x x .1 2 1 2 2 1 21 1 2

� 4The last case is dim V � 1. We have simply x a basis of V such that
Ž . Ž . 3 Ž . 
 � Ž p3.c x � x � qx � x, N q � p . Thus � V � k x � x .
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