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Table 1

Nichols algebras still open.

G Class Obs. Centralizer Rep.

Fiyy 22A, 22B quasi-real j=3,g%#g Z/22 X—1

B 16C, 16D real order 2048
32A, 32B real order 128
32C, 32D quasi-real j=3,g%#g order 128
34A real Z/34x7)]2 X-1®¢€,

X—1®sgn

46A, 46B quasi-real j=3, g% #g 7./46 X1

M 32A, 32B real order 128
46A, 46B quasi-real j=3,g%#g 7/23 x Dy €® P2
92A, 92B quasi-real j=3,g%#g 7/92 X1
94A, 94B quasi-real j=3,g%#g 7,/94 X1

simple, groups. See [AFGV1] and references therein for G symmetric or alternating. Nichols algebras
over Mathieu groups are partially studied in [F]. In this paper we deal with sporadic simple groups.

Definition 1. We shall say that a finite group G collapses if for any finite-dimensional pointed Hopf
algebra H, with G(H) ~ G, then H ~kG.

Theorem L. If G is a sporadic simple group, then it collapses, except for the groups G = Fiyy, B, M. For these
groups, the list of irreducible Yetter-Drinfeld modules M (O, p) whose Nichols algebra is not known to be
finite-dimensional appears in Table 1.

Notice that the Nichols algebras of reducible Yetter-Drinfeld modules over the groups in Table 1 are
infinite-dimensional [HS, 8.3]. The conjugacy classes of sporadic groups are labeled as in the ATLAS;
the notation for the representations in Table 1 is discussed in Section 3.1.

Another approach to the mentioned classification problem is through Nichols algebras associated
to racks. Precisely, one has to attack the following question:

For every finite indecomposable rack X, for every n € N, and for every 2-cocycle q € Z2(X, GL(n, k*)),
determine if dim*B (X, q) < oo.

Here B(X, q) denotes the Nichols algebra associated to the pair (X, q), see Section 1.1. We refer
to [AG], [AFGV1, Introduction] for the relation between this question and the classification problem.
Again, it is natural to consider separately different classes of finite racks; again, it is natural to start
by the class of finite simple racks. These were classified in [AG, Theorem 3.9, Theorem 3.12], see
also [J]; among them, there are the racks arising as non-trivial conjugacy classes of finite simple
groups. A substantial part of the proof of Theorem I follows from a much more general result for
a large family of conjugacy classes of sporadic groups. It is convenient to introduce the following
terminology before stating our next main theorem.

Definition 2. We shall say that a finite simple rack X collapses if dim25(X, q) = oo for any 2-cocycle
q € Z>(X,GL(n,k*)), for any n € N.

See Definition 2.1 for the notion of rack of type D; such rack collapses by [AFGV1, Theorem 3.6],
recalled in Theorem 2.2. This result is a translation to the language of racks of [HS, Theorem 8.6],
whose proof relies on results from [AHS].

Theorem II. If G is a sporadic simple group and O is a non-trivial conjugacy class of G NOT listed in Table 2,
then O is of type D, hence it collapses.
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Table 2
Conjugacy classes not known of type D; those which are NOT of type D
appear in bold.

G Classes G Classes
Miq 8A, 8B, 11A, 11B Coq 3A, 23A, 23B
M1z 11A, 11B J1 15A, 15B, 19A, 19B, 19C
M 11A, 11B 0'N 31A, 31B
M3 23A, 23B I3 5A, 5B, 19A, 19B
Jen 23A, 23B Ru 29A, 29B
12 2A, 3A He all collapse
Suz 3A Fiy 2A, 22A, 22B
HS 11A, 11B Fip3 2A, 23A, 23B
McL 11A, 11B HN all collapse
Cos 23A, 23B Th all collapse
Coy 2A, 23A, 23B T 2A

G Classes

Ly 33A, 33B, 37A, 37B, 67A, 67B, 67C

Ja 29A, 37A, 37B, 37C, 43A, 43B, 43C

Fi, 23A, 23B, 27B, 27C, 29A, 29B, 33A, 33B, 39C, 39D
B 2A, 16C, 16D, 32A, 32B, 32C, 32D, 34A, 46A, 46B, 47A, 47B
M 32A, 32B, 41A, 46A, 46B, 47A, 47B, 59A, 59B,

69A, 69B, 71A, 71B, 87A, 87B, 92A, 92B, 94A, 94B

Theorem II is not merely an auxiliary step towards Theorem I; its consequences, illustrated by
Theorems 2.4 and 2.6, show how crucial is the use of racks in the classification of pointed Hopf
algebras.

Our proofs of Theorems I, Il and 2.4 are based on reductions to problems on conjugacy classes of
finite groups; we solve these problems in the present setting with the help of [GAP]. For completeness,
we review these reductions in Section 1, and discuss the elements of GAP that we are using. We
discuss in Section 2 the algorithms used to justify Theorem II. We discuss Theorem I in Section 3.
We treat the classes not covered by Theorems II in Section 3.1. In Section 3.2, we explain why the
remaining classes in Table 1 are beyond our present knowledge.

In this paper we explain the algorithms, and their theoretical support, for the proofs of our main
results. The details of how these algorithms are actually implemented are given in the companion
paper [AFGV2]. We believe, and hope, that these details are enough to guide the diligent reader to
repeat and corroborate our calculations.

1. Preliminaries
1.1. Nichols algebras

A braided vector space is a pair (V,c), where V is a vector space and ¢ € GL(V ® V) is a solution
of the braid equation, that is

(c®id)(id®c)(c®id) = (d®c)(c®id)(id ® c). (1.1)

The braid equation is equivalent to the celebrated quantum Yang-Baxter equation, that plays an im-
portant role in statistical mechanics.

There is a very interesting object associated to a braided vector space, its Nichols algebra, defined
as follows.

e The solution c of the braid equation (1.1) induces a representation of the braid group B, in the
n-th tensor product V",
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o Let M :S; — B, be the so-called Matsumoto section; it preserves the product only when the
length is preserved.

o Let 2, = Zaegn M(o) € End(V®") and let | = @n>2 ker £2,,. The Nichols algebra of the braided
vector space (V,c) is B(V,c)=T(V)/].

The study of Nichols algebras is unavoidable in the classification problem of pointed Hopf algebras.
A notable example of a Nichols algebra is the positive part U;’(g) of a quantized enveloping algebra
when ¢ is not a root of 1 [LR,S]. It is in general very difficult to compute explicitly the Nichols
algebra of a braided vector space - that is, to determine its dimension, or even better, an efficient set
of generators. We refer to [AS1] for a detailed discussion of alternative definitions, basic results and
examples of Nichols algebras. In the present paper, we shall make use of the following observation:

If (W, ¢) is a braided vector subspace of (V, c), then B(W, c) — B(V, ).

In particular, if we find a braided vector subspace (W,c) of (V,c) with infinite-dimensional
Nichols algebra, then dim®B(V,c) = oo too. We shall reduce the search of a suitable braided vec-
tor subspace to problems in finite group theory, and then we will solve them for sporadic groups
using GAP.

1.2. Yetter-Drinfeld modules

We now describe the class of braided vector spaces whose Nichols algebras we need to show that
have infinite dimension. Let G be a finite group. We denote by Z(G) the center of G and by IrrG
the set of isomorphism classes of irreducible representations of G. If g € G, we denote by C¢(g) the
centralizer of g in G. The conjugacy class of g is denoted by O4 or by (’)g. if emphasis on the group
is needed.

A Yetter-Drinfeld module over G is a G-graded vector space M = EBgec M, provided with a G-
module structure such that g- My = My, for any g,t € G. The category ﬁgyp of Yetter-Drinfeld
modules over G is semisimple and its irreducible objects are all of the following form. Let O be
a conjugacy class of G, g € O fixed, p € Irr Cg(g). We describe the corresponding irreducible Yetter—
Drinfeld module M(O, p). Let g1 = g, ..., gn be a numeration of O and let x; € G such that x;>g = g;
for all 1 <i<m. Then

MO, p)=Ind¢ V= P x®V.
1<i<m

Let x;v :=x®Vv € M(O, p), 1 <i<m, v eV. The Yetter-Drinfeld module M(Q, p) is a braided vector
space with braiding given by

CxXiv @ Xxjw) = gj - (x;w) @ XV =X,,0(Y)(W) @ x;v (1.2)

for any 1 <i,j<m, v,w eV, where g;xj =x,y for unique h, 1 <h<m and y € C5(g). The Nichols
algebra! of M(O, p) is simply denoted B(O, p).

Let H be a pointed Hopf algebra with G(H) >~ G. Then there are two fundamental invariants of H,
a Yetter-Drinfeld module V over kG (called the infinitesimal braiding of H) and its Nichols algebra
B(V), see [AS1,A]. A basic problem for the classification of finite-dimensional pointed Hopf algebras
over G is the determination of all Yetter-Drinfeld modules V over kG such that the Nichols algebra
B (V) is finite-dimensional. In particular, the following statements are equivalent:

(1) If H is a finite-dimensional pointed Hopf algebra with G(H) ~ G, then H ~ kG.

T We omit to mention the braiding c in the notation of a Nichols algebra from now on.
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(2) If V #£ 0 is a Yetter—Drinfeld module over kG, then dim*B (V) = oo.
(3) If V is an irreducible Yetter-Drinfeld module over kG, then dim 5 (V) = oco.

Therefore, for a fixed group G, we aim to know when dim ‘B (V) = oo for an irreducible V € ]ﬁigyD;
that is, when dim B (O, p) = oo for a pair (O, p) as above. As we said, we shall look at braided vector
subspaces of V, and to describe them we find convenient the language of racks and cocycles.

1.3. Racks

A rack is a pair (X,>) where X is a non-empty set and >: X x X — X is a function such that
¢i: X > X, ¢i(j) ;=i j, is a bijection for all i € X, and i> (j>k) = (i j) > (i>k) for all i, j, k € X. For
instance, a group G, and any conjugacy class in G, is a rack with x>y = xyx~1. In this case, ji=1i
whenever i j=j and i>i=i for all i € G. A rack X is abelian if for any x, y € X, x>y = y. See [AG]
for a survey on racks.

Let X be a rack. Given n e N, a map q: X x X — GL(n, k) is a 2-cocycle if

dx,y>z9y.z = Qx>y,x>zqx,2»

for all x, y,z € X. Let q be a 2-cocycle, V =kX ® k", where kX is the vector space with basis ey, for
x € X. We denote eyVv := ey ® v. Consider the linear isomorphism c?: V@V -V ®V,

clexv ® eyWw) = ex.yqx,y(W) ® exv,

xeX,yeX,vek" wek™ Then c? is a solution of the braid equation; its Nichols algebra is denoted
B(X, q). Pointed Hopf algebras are related to Nichols algebras over racks by the following observa-
tions, see [AG, Theorem 4.14].

e If X isarack, neN, and q: X x X — GL(n, k) is a 2-cocycle, then there exists a group G such
that V =kX ®Kk" is a Yetter-Drinfeld module over G and the braiding of V as an object in ﬁigyD
coincides with cf. If the image of q is contained in a finite subgroup I" C GL(n, k), then G can be
chosen to be finite.

e Conversely, if G is a finite group and V = M(O, p) € ﬂigyl) is irreducible, then there exists a
finite subgroup I of GL(n, k), n =dim p, and a 2-cocycle q: X x X — I" such that V is given as
above and the braiding ¢ € Aut(V ® V) in the category ﬁgyl) coincides with cd.

14. Abelian techniques

Let G be a finite group, O a conjugacy class of G, g € O and (p, V) € IrrC(g). Our next goal
is to describe techniques to conclude that dim% (O, p) = co from the analysis of abelian subracks;
these will be applied in the proof of Theorem I. Abelian subracks give rise to braided subspaces
of M(O, p) of diagonal type; then the classification of braided vector spaces of diagonal type with
finite-dimensional Nichols algebra [H] may be invoked. We shall freely use the notations and results
from [H], in particular the notion of generalized Dynkin diagram. We start by subracks with one ele-
ment. By the Schur lemma, p(g) is a scalar. It is well known that

pg=1 = dimBO,p)=cc. (1.3)
We consider next subracks with two or three elements.

Lemma 1.1. (See [AZ, 2.2].) Assume that dim B (O, p) < co.If g € G isreal, thatis g=1 € O, then p(g) = —1.
In particular, the order of g is even.
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Fig. 1.

If g is not real, but it is conjugated to g/ # g for some j € Z, then we shall say that g€ G and O
are quasi-real.

Lemma 1.2. (See [AF, 1.8 and 19], [FGV, 2.2].) Assume that dimB(O, p) < oo and that there exists j such
that g # g’ € O.

(i) Ifdegp > 1, then p(g) = —1 and g has even order.
(ii) Ifdeg p =1, then p(g) = —1 and g has even order or p(g) € Rs.

(iii) If g° # g, then p(g) = —1.

Involutions, that is elements of order 2, are real but Lemma 1.1 does not give useful information.
Our next criterium deals with classes of involutions and representations of degree greater than one.
Another useful criterium for classes of involutions is Proposition 1.8 below.

Lemma 1.3. Let G be a finite group, O the conjugacy class of an involution g € G and (p, V) € Irr Cg(g).
Assume that there exists an involution x such that h = xgx and gh = hg. If p(h) has a eigenvalues 1, b eigen-
values —1, where eithera > 0and b > 3 ora > 3 and b > 0, then dim*B(O, p) = oco.

Proof. By (1.3) we can assume p(g) = —1. Let x; =e and x, = x. Since gh = hg, there exists a linear
basis {v1, ..., vy} of V such that p(g) and p(h) are simultaneously diagonalizable in this basis. Define
W as the subspace generated by x,v; = x; ® v;, where £ =1, 2 and 1 <i <n. Then W is a braided
vector space of diagonal type with braiding given by c(x,v; ® X,vj) = —x¢v; @ x¢v; and

cx1vi®x2vj) =x2p(M)v; @ x1vi,
cxvi®@xvj) =x10M)vj@x2v;,

for £ =1, 2, and 1 < i, j < n. Therefore, the results follow from [H] because the generalized Dynkin
diagram has at least one vertex with valency > 3. For instance assume that a =4 and b = 1. Then the
generalized Dynkin diagram is Fig. 1.

This completes the proof. O

The computation of the multiplicities a and b in the statement of the lemma can be performed
using the following remark.

Remark 14. Let G be a finite group, g € G and (p, V) a representation of G. The multiplicities of the
eigenvalues of p(g) are the scalar products of the restriction of the representation to the cyclic group
generated by g with the irreducible characters of this cyclic group. The GAP function EigenvaluesChar
can be used for this computation.

1.5. The technique of the subgroup

Let G be a finite group, o € G, og = OC its conjugacy class, Cg(c) its centralizer and p €
IrrCg(o). If H is a subgroup of G and o € H, then O,’j = OM denotes the conjugacy class of o
in H. Let plcy o) =T1® - ® Ts where 7; elirCy(0), 1< j<s.
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Lemma 1.5. (See [AFGV1, 3.2].)

(i) IfdimB(OM, 1) = oo for all A € Irr Cy (o), then dim B(OC, p) = oo for all p € Irr Cg (o).
(i) Let oq,00 € O N H. Let O; = O} and assume that Oy # O,. If diim BM(O1, M) & M(O2, A2)) = 00
for all pairs 11 € Irr Cy(071), Ay € Irr Cy(02), then dim B(OC, p) = oo for all p € Irr Cg (o).

1.6. The group A4 and conjugacy classes of involutions

In this section we give another criterium for Nichols algebras over the conjugacy class of an invo-
lution.

Lemma 1.6. Let g, h € G with g an involution, h and gh of order 3; let O be the conjugacy class of g. Then
dimB(O, p) = oco.

Proof. The alternating group in four letters A4 can be presented by generators g and h with relations
g2 =h3 = (gh)? = e [D]. Thus, the subgroup H of G generated by g and h is isomorphic to Ag.
Indeed, the hypothesis implies that the elements g, h, h?, gh, (gh)? of G are all distinct, but a proper
subgroup of A4 has at most 4 elements. From [AF], the conjugacy class of involutions in A4 gives
infinite-dimensional Nichols algebras for every representation. Hence Lemma 1.5 applies. O

Now we need an efficient way of checking if A4 is a subgroup. To this purpose, first recall a very
useful result from the theory of groups.

Proposition 1.7. (See [Go, Theorem 4.2.12].) Let G be a finite group and let O;, O;, Oy be some conjugacy
classes. If S(O;, Oj, Ok) is the number of times that a given element of O can be expressed as an ordered
product of an element of O; with an element of O, then

5(04,0j,0p) =

1Gill0)1 ZX(Oi)X(Oj)X(Ok) (14)

6l 4 x()

where x runs over all irreducible characters of G.
The last proposition will be used in connection with the following criterium.

Proposition 1.8. Let O be the conjugacy class of an involution, and Cq, IC; conjugacy classes of elements of
order 3. If S(O, K1, K2) > 1 then dimB(O, p) = oo.

Proof. By hypothesis, there exist a € O and b; € K;, i =1, 2, such that ab; = b;. Then Lemma 1.6
applies. O

1.7. A technique with simple affine racks
We now apply [HS, Theorem 8.2] to racks arising as union of two affine racks. This is used for the
conjugacy classes labeled 8A, 8B of the Mathieu group M1, that cannot be treated otherwise.

If G is a finite group and g, h € G, then the conjugacy classes Oy and Oy, commute if st =ts for all
s € Og, and for all t € Oy. Let

F(G) = {0 conjugacy class of G: dimB(O, p) < oo for some p}.

Theorem 1.9. (See [HS, Theorem 8.2].) Let G be a finite group such that any two conjugacy classes in F(G) do
not commute. Let 0 £ U € ﬁ:gyD such that dimB(U) < oo. Then U is irreducible.
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If A is an abelian group and T € Aut(A), then A becomes a rack with x>y =(1—T)x+ Ty. It will
be denoted by (A, T) and called an affine rack. We realize it as a conjugacy class in the semi-direct
product G = A x (T). The conjugation in G gives

(v, T") > (w, T9) = (T"(w) + (id = T7) (v), TY). (1.5)

We denote Qix,r :={(w, TH): we A}, jeZ/d, a subrack of G isomorphic to the affine rack (A, T4).
We assume that (A, T) is a simple affine rack; that is, A=T., p a prime, and T € GL(t, Fp) — {id}
of order d, acting irreducibly.

Lemma 1.10. Suppose that p > 2 whend iseven. Let G = Ax (T).If0£ U € ﬁzg)}D satisfies dim*B(U) < oo,
then U is irreducible.

Proof. By Theorem 1.9, we have to show that any two conjugacy classes in F(G) do not commute.
We claim that

a e conjugacy classes of G are either I wit j , or else the orbits of T in A.
(a) Th j 1 fG ith Qf” h j#0 Ise the orb fTin A
(b) F(G) C {Qf”: j #0}; hence any two conjugacy classes in F(G) do not commute, cf. (1.5).

Part (a) is elementary, but we sketch the argument. It is evident from (1.5) that the conjugacy
class of (w,id) is the orbit of w under T. If 0 < j <d, then id—T/ is bijective, since its kernel
is a T-invariant subspace, but we are assuming that T is irreducible. Hence the class of (0, T4 is
Q-

We prove (b). Let v € A — 0; the centralizer of v is A. Set o, = T¥(v) and x; = (0, T¥); thus
X > 00 =0} and o¢Xxy = Xk0y_, 0< €,k <d—1. Let x elrrA; then the braiding in M(O,, x) is given
by c(xk ® X¢) = X (Ok_¢)Xe ® X In other words, this is of diagonal type with matrix qg, = x (T¥~¢(v)).
Let A be the generalized Dynkin diagram associated to (qx¢). Now we can identify A =T, with
q = p', in such a way that T(v) = £v, where & € IFqX has order d. Hence qreqex = x (7% + g=6)v).
Notice that the order of qi,qg divides p. Also,

1+6+62 4+ =0. (16)

We can assume x (v) # 1. Now, we consider different cases.
Suppose that d is odd.

(I) Assume that 3 td. If there exists £, with 1 < ¢ <d—1, such that qoeqeo # 1, then dimB(Oy, x) =
oo. Indeed, A contains a cycle of length greater than 3, namely the set of vertices 0, ¢, 2¢, ...,
(M —1)¢, where M is the order of £. Then the result follows from [H]. If there is not such ¢, then
v=— Zlgeg(dq)/z@( +£9-4y e ker x by (1.6), a contradiction.
(II) Suppose that 3 |d.
(i) If there exists ¢, with 1< ¢<d—1and € # 4,2, such that goeqeo # 1, then dimB(O,, x) =
oo because A contains a cycle as in (I).
(ii) Assume that qo¢qeo =1 for all ¢, with 1< £<d—1 and ¢ # %, 23—d. If qogq%’o :qo%dq%) =1,
then x(v) =1 by (1.6), a contradiction. On the other hand, if w := qogqgo = q023_dq2?do #1,
then A contains a triangle like in Fig. 2, but no triangle of this sort appears in [H, Table 2].

Assume that d is even. Then qyaqa, = X (v)72 #£1 because p > 2; hence, 0 is connected to % and
2 2

the sub-diagram spanned by 0 and % is of Cartan type Agl). By [H], dimB(O,, x) = co. In conclusion,
Oy ¢ F(G). This proves (b). O
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Fig. 2.

Proposition 1.11. Let G be a finite group; (A, T) an affine simple rack with |T| =d and p > 2 as above; and
¥ : A x(T) — G a monomorphism of groups. Assume that the conjugacy class O of o = ¥ (0, T) is quasi-real
oftype j,1 < j<d.If p €lirCg (o), then dimB(O, p) = co.

Proof. This follows from Lemmata 1.5(ii) and 1.10 applied to H = the image of . Indeed, (’)g’ and
OM; are both contained in O, but Of N0, =¢. O

Example 1.12. Let T € GL(2,F3) of order 8 and G = ]F% X (T)~ (Z/3 ® 7Z/3) x Z/8. Then there is a
monomorphism of groups ¥ from G to the Mathieu group M1 such that v/ (T) belongs to the class
O labeled 8A (resp. 8B) in ATLAS, which is quasi-real of type 3. Then dim*B(O, p) = co for any p.

1.8. The dihedral group and conjugacy class of involutions

Let n be an even number. Recall that the dihedral group of 2n elements is given by
Dy =(r,s | " =s2=1, srs= r’]).

The involutions of D, split in three conjugacy classes S = {r?’s [0 <i< 3 — 1}, R={r?*1s|0<i<
2 —1} and {r"/2}.

Lemma 1.13. Let n > 4 be an even number. Then Y = R U S is of type D.
Proof. Let 01 =s € S and 0y =75 € R; clearly, (6102)% # (0201)%. O

Lemma 1.14. Let A be a conjugacy class of involutions in a finite group G and let 3 be a conjugacy class with
representative of order n, withn > 2 even. If S(A, A, B) > 0, then the conjugacy class A is of type D.

Proof. Since S(A, A, B) > 0, there exist s,t € A and r € B such that ts =r, Proposition 1.7. Hence,
(r,s) >~ Dy, and A contains the subrack Y = R 1 S which is of type D by Lemma 1.13. O

Example 1.15. The conjugacy classes of involutions of the Conway group Co; are of type D. In fact,
S(2A,2A,6E) =6, S(2B, 2B, 6A) = 2592 and S(2C, 2C, 6A) = 25920.

Example 1.16. The conjugacy class 2C of the Baby Monster group B is of type D, since S(2C, 2C, 6C) =
82752.

1.9. The ATLAS

The ATLAS of Finite Groups, often simply known as the ATLAS, is a group theory book by John
Conway, Robert Curtis, Simon Norton, Richard Parker and Robert Wilson (with computational assis-
tance from J.G. Thackray), published in 1985 - see [CC+]. It lists basic information about finite simple
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groups such as presentations, conjugacy classes of maximal subgroups, character tables and power
maps on the conjugacy classes.

The ATLAS is being continued in the form of an electronic database - see [WWT+]. It currently
contains information (including 5215 representations) on about 716 groups. In order to access to the
information contained in the ATLAS, we use the AtlasRep package for GAP - see [WPN+].

We recall some notations from the ATLAS for the reader not used to it.

The notation for families of simple groups can be found in pp. x-xiii of [CC+]:

Ln(q) =PSL(n,Fy) is the projective special linear group.

Un(q) =PSU(n, IFy) is the projective special unitary group.

Son(q) =PSp(2n, Fy) is the projective symplectic group.

0n(q) < PSO(n, Fy), for n odd, and ng(q) < PSO(2k, Fy), for n = 2k even, is the usual simple
subgroup of the projective special orthogonal group, where € =+ means the plus/minus type of
the corresponding quadratic form.

e G2(q), Eg(q) are exceptional groups in the family of Chevalley groups.

There are various ways to combine groups or abbreviate some groups structures — see p. XX
of [CC+]. Assume that K and G are groups. Then:

e K.G means a group L fitting into an extension 1 — K — L — G — 1; which extension should
be clear from the context. Besides, K : G means that the extension is split (i.e. when K.G is a
semi-direct product) and K - G means that the extension is non-split.

K x G is the direct product of K and G.

K™ denotes the direct product of m groups isomorphic to K.

p™, for p prime, denotes the elementary abelian group of order p™.

[m], for m € N, denotes an arbitrary group of order m.

m denotes the cyclic group of m elements.

p™*™ indicates a case of p".p™.

p'+2" or pl*2" or pI™" is used for the particular case of an extraspecial group.

Product of three or more groups are left-associated. That is, A.B.C means (A.B).C, and implies the
existence of a normal subgroup isomorphic to A.
We extracted from the ATLAS:

o The relevant information about maximal subgroups of a given sporadic simple group G and, if
possible, the information about the fusion of conjugacy classes from maximal subgroups of G

into G.
e The notation for the conjugacy classes. The conjugacy classes that contain elements of order n
are named nA, nB, nC,..., and notice that the alphabet used here is potentially infinite. The

conjugacy classes computed with GAP of a group given by a particular representation (taken from
the ATLAS or not) are not necessarily named following the ATLAS notation. To avoid problems, in
all these cases, we print sizes of the centralizers to recognize the classes we are working with.

1.10. Notations and results from GAP
We checked with GAP the following information:

e Real and quasi-real conjugacy classes. To recognize real conjugacy classes we use the GAP func-
tion RealClasses. To recognize quasi-real conjugacy classes we developed the GAP function
QuasiRealClasses. This function uses the GAP function PowerMaps. See [AFGV2] for more
details.

e If H is a subgroup of a group G, we use the function PossibleClassFusions or Fusion-
ConjugacyClasses for computing, or recovering, the fusion of conjugacy classes from H to G.
See [AFGV2] for more details.
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e We computed with GAP sums S(O, K1, K3), where O is the conjugacy class of an involution and
K1, ICy are conjugacy classes of elements of order 3, in order to apply Proposition 1.8. See (1.4).

2. On Theorem II
2.1. TypeD

Let X be arack, ne N, I C GL(n, k) a subgroup, q: X x X — I' a 2-cocycle. Let V =kX ® k" as in
Section 1.3 and g : X — GL(V) be the morphism of racks given by

gx(eyw) =exyqxy(w), X, yeX, weV. (2.1)
Definition 2.1. Let (X,>) be a rack and q a 2-cocycle.

e We say that X is faithful if ¢ : X — Sy is injective.

e We say that (X, q) is faithful if q: X — GL(V) is injective; if X is clear from the context, we shall
also say that q is faithful. If X is faithful, then (X, q) is faithful for any gq.

e We say that X collapses if for any faithful cocycle g with values in a finite group I C GL(n, k), for
any n € N, dim®B(X, q) = oo.

e A rack X is decomposable iff there exist disjoint subracks Xi, X C X such that X = X7 u X.
Otherwise, X is indecomposable.

e We say that X is of type D if there exists a decomposable subrack Y = RuU S of X such that

re (s> (res)) #s, forsomereR, seS. (2.2)

Our main tool is the following rack-theoretical version of [HS, Theorem 8.6], whose proof uses the
main result of [AHS].

Theorem 2.2. (See [AFGV1, 3.6].) If X is a finite rack of type D, then X collapses.

Let X be a simple rack that is not a permutation rack. Then X is faithful, hence any cocycle is
faithful, and the notion of collapsing in Definitions 2.1 and 2 in the Introduction coincide. Therefore,
for the purposes of this paper, we first need to check when a conjugacy class in a sporadic simple
group is of type D. We collect some useful consequences of Theorem 2.2.

Lemma 2.3.

(i) Let X be arack of type D and let Z be a finite rack that admits a rack epimorphism f : Z — X, X of type D.
Then Z is of type D.

(ii) Let f : G — H be a group epimorphism and let g € G such that f(g) = h. If the conjugacy class of h is of
type D, then the conjugacy class of g is of type D.

Proof. For (i), 7 ~1(Y) =71 (R)umw~1(S) is a decomposable subrack of Z satisfying (2.2). Clearly, (ii)
follows from (i). O

Notice the inference of Theorem 2.4 from Theorem II by Lemma 2.3(1).

Theorem 2.4. Let G be any finite group, Q a conjugacy class of G and g € Q. Assume that there is a rack
epimorphism Q@ — O, where O is a non-trivial conjugacy class of a sporadic group NOT listed in Table 2. Then
dimB(Q, p) = oo for every p € Irr C; (g).
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Let us say that a finite group is of type D if all its non-trivial conjugacy classes are of type D. By
Theorem 2.2, a finite group of type D collapses.

Proposition 2.5. Let 0 — K L, 6 % H — 0beashort exact sequence of finite groups such that K and H are
of type D. Then G is of type D.

Proof. Let g € G. If p(g) =1, then g €i(K) and the conjugacy class of g in G is of type D (since the
conjugacy class in K of k € K, where i(k) = g, is of type D). If 1 # p(g), then the conjugacy class of
h=p(g) in H is of type D and then, by Lemma 2.3, the conjugacy class of g in G is of type D. O

We get immediately the following result.

Theorem 2.6. Let G be any finite group. Assume that the simple factors of G in the Jordan-Hélder decomposi-
tion of G are of type D. Then G is of type D, hence it collapses.

By Theorem II, the groups Th, He and HN are of type D; we also know that the groups G2(3),
G, (5) are of type D.

2.2. Algorithms

We now explain our algorithms to implement the technique of the previous subsection.
Algorithm L. Let I" be a finite group and let O be a conjugacy class. Fix r € O.

(1) For any s € O, check if (rs)? s (sr)?; this is equivalent to (2.2).
(2) If such s is found, consider the subgroup H generated by r, s. If O N Ol = ¢, then Y = OF uOH
is the decomposable subrack we are looking for and O is of type D.

We have found that a useful variant, instead of going over all the elements, is to choose randomly
a certain number of s € O and check the conditions above. This turns out to be very often a much
quicker way to see if O is of type D.

In the practice, for large groups, it is more economical to implement the algorithm in a recursive
way.

Algorithm II. Let G be a finite group.

(1) List all maximal subgroups of G up to conjugacy, say Mji,..., My, with M| <Mz <--- <
[ M.

(2) Perform Algorithm I for every conjugacy class of I = M. Let Dy be the set of conjugacy classes
of G that contain a conjugacy class of M of type D.

(3) Perform Algorithm I for every conjugacy class of I" = M, that is not contained in any O € D;.
Let D, be the set of conjugacy classes of G that either contain a conjugacy class of M of type D,
or else are in Dy.

(4) Continue in this way, performing Algorithm I for every conjugacy class of the various maximal
subgroups M and producing at each step a set of discarded classes D;.

(5) Perform Algorithm I for every conjugacy class O of G not in Dy. Let D be the set of conjugacy
classes of G that either are of type D by this argument, or else are in Dy. This set D is the output
of the algorithm.

The treatment of a maximal subgroup M can be simplified if it fits into a short exact sequence
of groups 1 - K > M 2, H — 1, where we know the conjugacy classes in H of type D. To apply
Lemma 2.3 to a conjugacy class in M, we just need to know that some specific conjugacy classes in
H are of type D.
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Lemma 2.7. Let g € M of order m. Assume that every conjugacy class in H with representative of order k is of
type D, for every k such that k | m and ',”—C | |K|. Then the conjugacy class of g in M is also of type D.

Proof. If h = p(g) has order k, then k | m. Also, since g € ker(p) =i(K) and i is a monomorphism,
we have that % = ﬁ | |K|. Thus, it suffices to have these conjugacy classes of type D to conclude
from Lemma 2.3. O

Here is another useful remark.

Lemma 2.8. Let G = H x K be a direct product of finite groups. Let O be a conjugacy class of H with repre-
sentative h, and k € K. If O is of type D, then the conjugacy class of h x k is of type D.

The proof of Theorem II follows by applying Algorithm II either to the sporadic groups or their
maximal subgroups. The details of the computations are in [AFGV2], except for the involutions treated
in Examples 1.15 and 1.16.

3. On Theorem I
3.1. Proof of Theorem I
As explained in Section 1.2, Theorem I is equivalent to the following statement.

Theorem 3.1.

(1) If G is a sporadic group but not Fiyy, B, M, then the Nichols algebra of any irreducible Yetter-Drinfeld
module has infinite dimension.
(2) If G is Fipp, B or M and the pair (O, p) is not listed in Table 1, then dim B(O, p) = co.

Proof. By Theorems II and 2.2, it remains to consider the conjugacy classes listed in Table 2; we
summarize the methods for each class in Table 3. The corresponding Nichols algebras have infinite
dimension by the following reasons:

e If the class is real, then Lemma 1.1 applies.

e If the class is quasi-real, then Lemma 1.2 applies.

e If the class contains an involution, then often Proposition 1.8 applies, since some sum (shown in
the table) is not zero.

e The conjugacy classes labeled 2A of the groups Coy, Fiyy, Fiz3 or B do not collapse, but
dimB(O, p) = oo for any irreducible representation p of the corresponding centralizer. Indeed, it
is enough to consider the representations p such that p(g) = —1. By Lemma 1.3, we are reduced
to find an involution x such that gh = hg, for h = xgx~!, and to compute the multiplicities of the
eigenvalues of p(h). For this last task, we use Remark 1.4. In the case of the group Fiy3, we first
apply Lemma 1.3 to Sg(2), that is isomorphic to a subgroup of Fi3, and then apply Lemma 1.5.
Finally, the class labeled 2A of Fi;3 embeds as a subrack of the class labeled 2A of B, hence the
technique of the subgroup applies. See [AFGV2] for details.

We finally explain the representations appearing in Table 1.

Let O be one of the conjugacy classes 22A, 22B of Fiy,, 46A, 46B of B, 92A, 92B, 94A, 94B of M.
Then the centralizer of g € O is the cyclic group (g). Thus IrrCg(g) is also cyclic; say . is the
representation such that y,(g) = w, @ a root of 1 whose order divides the order of g. On the
other hand these classes are quasi-real, as stated in Table 1. By Lemmata 1.1 or 1.2, only x_; sur-
vives.
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Table 3
Proof of Theorem 1.
G Classes Relevant information
M1 8A, 8B Example 1.12

11A, 11B quasi-real j=3,g%#g
M 11A, 11B quasi-real j=3, g%#g
My, 11A, 11B quasi-real j=3,g°#g
M3 23A, 23B quasi-real j=2, g*#g
Magq 23A, 23B quasi-real j=2, g*#g
Iz 2A S(2A,3B,3B) =18

3A real
Suz 3A real
HS 11A, 11B quasi-real j=3,g%#g
McL 11A, 11B quasi-real j=3,g%#g
Cos 23A, 23B quasi-real j=2, g*#g
Coy 2A abelian subrack

23A, 23B quasi-real j=2, g*#g
Coq 3A real

23A, 23B quasi-real j=2, g*#g
J1 15A, 15B, 19A, 19B, 19C real
O0'N 31A, 31B quasi-real j=2, g*#g
I3 5A, 5B real

19A, 19B quasi-real j=4, g% #£g
Ly 33A, 33B quasi-real j=4, g6 £g

37A, 37B, 67A, 67B, 67C real
Ru 29A, 29B real
Ja 29A, 37A, 37B, 37C, 43A, 43B, 43C real
Fiyy 2A abelian subrack
Fiy3 2A abelian subrack

23A, 23B quasi-real j=2, g*#g
Fi’24 27B, 27C, 29A, 29B real

33A, 33B, 39C, 39D real

23A, 23B quasi-real j=2, g*#g
B 2A abelian subrack

47A, 478 quasi-real j=2, g*#g
M 41A real

47A, 47B, 69A, 69B, 71A, 71B, 87A, 87B quasi-real j=2, g4 #8

59A, 59B quasi-real j=3, g%#g
T 2A S(2A, 3A, 3A) = 108

Let O be the conjugacy class 34A of B and g € O. This class is real. By Lemma 1.1, we discard
all irreducible representations p of the centralizer Z/34 x Z/2 except those satisfying p(g) = —1, i.e.
P =xX-1R®€, X—1 ®sgn, where € and sgn mean the trivial and the sign representation of Z/2.

Let O be one of the conjugacy classes 46A, 46B of M and g € O. The class O is quasi-real, as stated
in Table 1. By Lemma 1.2, we discard all irreducible representations p of the centralizer Z/23 x D4
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except the one satisfying p(g) = —1, i.e. p =€ ® p2, where € is the trivial representation of Z/2 and
p2 is the unique irreducible representation of D4 of degree 2. O

In the proof of Theorem 3.1, we needed the structure of the centralizers of some specific elements
in some sporadic groups; this was kindly communicated to us by Thomas Breuer, when not available
in the literature.

3.2. Remarks on the remaining irreducible Yetter-Drinfeld modules in Table 1

Let G be a sporadic group and O a conjugacy class as in Table 1. Assume that r and s are two
elements in O such that (2.2) holds and let H be the subgroup of G generated by r and s. If the
conjugacy classes in H of r and s are disjoint, then O would be of type D. Notice that H should be
contained in a maximal subgroup M of G and, clearly, it would be enough to perform the neces-
sary computations in M. Also, if G is not the Monster group, the list of all maximal subgroups is
known. So, we proceed to investigate these maximal subgroups by the fusion of conjugacy classes,
see Section 1.10.

3.2.1. The classes O labeled 22A, 22B in Fiy;

We know that H should be contained in My =~ 2.Ug(2). It is not possible with our computational
resources to determine if these classes are of type D in M7, i.e. due to the size of these conjugacy
classes it is not possible to complete all the possible elections of r and s. Actually, in all the computed
cases H yields to be the centralizer of the representative of the class or Mj itself.

The same occurs if we want to determine if the conjugacy classes 11A, 11B in Ug(2) are of type D.
So we cannot decide that the corresponding Nichols algebra is infinite-dimensional by lifting racks of
type D from the classes 11A, 11B of Ug(2).

3.2.2. The classes O labeled 16C, 16D, 32A, 32B, 32C, 32D, 34Ain B
The classes 16C, 16D meet the following maximal subgroups:

My ~2.%Es(2): 2, My~ 2122 co,,
My >~ 29716 50(2), My = 22H10420 (ppoo 20 & Sg),

Ms =~ [23].L5(2), Mig = [2%].(Ss x L3(2));

the classes 32A, 32B meet M, My, M7 or Mjp; the classes 32C, 32D meet M1, My, My, M7 or
Myip; the class 34A meets M. The known matrix representations of these subgroups do not allow
us to perform the necessary computations. Notice that the sixth maximal subgroup of B is excluded
of our analysis, because we do not know the fusion of conjugacy classes Mg — B.

3.2.3. The classes O labeled 46A, 46B in B

We know that H should be contained in the second maximal subgroup M. As already said, the
computations for this case are out of our resources. Note also that Co, has no elements of order 46;
thus, if g € M3 has order 46, then its projection in Co, has order 23, but the classes of elements of
order 23 in Coy are not known to be of type D.

3.2.4. The classes O labeled 32A, 32B, 46A, 46B, 92A, 92B, 94A, 94B in M

Among the known maximal subgroups of the Monster, [B] provides the fusion of only 4 of them:
M1 ~2.B, My ~21124 Coy, M3 ~ 3.Fipg, and Mg ~ S3 x Th. The classes 32A, 32B meet M, My;
the classes 46A, 46B meet M, M3, the classes 92A, 92B meet M5, the classes 94A, 94B meet M.
As before, the necessary computations are out of our resources.
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