
An ab initio path integral Monte Carlo simulation method for molecules and clusters:
Application to  and 
Ruben O. Weht, Jorge Kohanoff, Darı́o A. Estrin, and Charusita Chakravarty

Citation: The Journal of Chemical Physics 108, 8848 (1998); doi: 10.1063/1.476331
View online: https://doi.org/10.1063/1.476331
View Table of Contents: http://aip.scitation.org/toc/jcp/108/21
Published by the American Institute of Physics

Articles you may be interested in
Ab initio path integral molecular dynamics: Basic ideas
The Journal of Chemical Physics 104, 4077 (1996); 10.1063/1.471221

Efficient and general algorithms for path integral Car–Parrinello molecular dynamics
The Journal of Chemical Physics 104, 5579 (1996); 10.1063/1.471771

Improving the convergence of closed and open path integral molecular dynamics via higher order Trotter
factorization schemes
The Journal of Chemical Physics 135, 064104 (2011); 10.1063/1.3609120

Competing quantum effects in the dynamics of a flexible water model
The Journal of Chemical Physics 131, 024501 (2009); 10.1063/1.3167790

Calculation of heat capacities of light and heavy water by path-integral molecular dynamics
The Journal of Chemical Physics 123, 134502 (2005); 10.1063/1.2035078

Exploiting the isomorphism between quantum theory and classical statistical mechanics of polyatomic fluids
The Journal of Chemical Physics 74, 4078 (1981); 10.1063/1.441588

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1858055942/x01/AIP-PT/MB_JCPArticleDL_WP_0818/large-banner.jpg/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/Weht%2C+Ruben+O
http://aip.scitation.org/author/Kohanoff%2C+Jorge
http://aip.scitation.org/author/Estrin%2C+Dar%C4%B1o+A
http://aip.scitation.org/author/Chakravarty%2C+Charusita
/loi/jcp
https://doi.org/10.1063/1.476331
http://aip.scitation.org/toc/jcp/108/21
http://aip.scitation.org/publisher/
http://aip.scitation.org/doi/abs/10.1063/1.471221
http://aip.scitation.org/doi/abs/10.1063/1.471771
http://aip.scitation.org/doi/abs/10.1063/1.3609120
http://aip.scitation.org/doi/abs/10.1063/1.3609120
http://aip.scitation.org/doi/abs/10.1063/1.3167790
http://aip.scitation.org/doi/abs/10.1063/1.2035078
http://aip.scitation.org/doi/abs/10.1063/1.441588


An ab initio path integral Monte Carlo simulation method for molecules
and clusters: Application to Li 4 and Li 5
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A novel method for simulating the statistical mechanics of molecular systems in which both nuclear
and electronic degrees of freedom are treated quantum mechanically is presented. The scheme
combines a path integral description of the nuclear variables with a first-principles adiabatic
description of the electronic structure. The electronic problem is solved for the ground state within
a density functional approach, with the electronic orbitals expanded in a localized~Gaussian! basis
set. The discretized path integral is computed by aMETROPOLISMonte Carlo sampling technique on
the normal modes of the isomorphic ring polymer. An effective short-time action correct to ordert4

is used. The validity and performance of the method are tested by studying two small lithium
clusters, namely Li4 and Li5

1. Structural and electronic properties computed within this fully
quantum-mechanical scheme are presented and compared to those obtained within the classical
nuclei approximation. Quantum delocalization effects turn out to be significant as shown by the fact
that quantum simulation results at 50 K approximately correspond to those of classical simulations
carried out at 150 K. The scaling factor depends, however, on the specific physical property, thus
evidencing the different character of quantum and thermal correlations. Tunneling turns out to be
irrelevant in the temperature range investigated~50–200 K!. © 1998 American Institute of
Physics.@S0021-9606~98!51421-3#

I. INTRODUCTION

Light atoms, such as H, He, Li, or Be, cannot very often
be treated as classical particles, particularly at low tempera-
tures. As temperature decreases and the thermal de Broglie
wavelength increases, the quantum character emerges, and a
description in terms of classical coordinates and momenta
breaks down. The most obvious manifestation of the quan-
tum character of light atoms is a large zero-point energy
~ZPE!. A particle of massm in a harmonic potential with
characteristic frequencyv will have a ZPE of\v/2 and an
associated spatial delocalization ofDx5A\/mv. For in-
stance, a proton in a typical bonding environment such as a
H–O bond or a H2 molecule, will have a ZPE of 0.15–0.25
eV andDx between 0.2 and 0.3 Å. This represents a sizable
effect which could be decisive in stabilizing a particular
crystalline structure for a solid, or the ground state configu-
ration of a molecule or a cluster. An even more interesting

manifestation of quantum effects is the possibility that these
light nuclei can tunnel across potential energy barriers, thus
exploring classically forbidden regions of configuration
space and giving rise to a variety of interesting quantum
effects such as temperature-independent diffusion, exotic
ground states, resonances in ion–surface scattering, and flux-
ional molecules. Signatures of quantum effects can also be
observed in low-energy atomic collisions, or in proton-
transfer reactions in the gas and condensed phases.

To date, most studies that consider the quantum charac-
ter of atomic nuclei are based on an empirical description of
the interatomic interactions, or otherwise consist of extend-
ing and/or correctinga posteriorithe results obtained within
a classical nuclei approximation. Classical potentials are fre-
quently not transferable from one environment to another,
and are ill-suited to modeling phenomena involving signifi-
cant electronic density redistribution, as in the making and
breaking of chemical bonds. The natural route to overcome
these limitations is to describe the interactions at a first-
principles level, i.e., by including explicitly the electronic
component in the description of the system. The recent de-
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velopment of such schemes, which address the question of
the interplay between electronic structure and the quantum
nature of light nuclei, has only very recently began to be
realized, thus opening a fascinating field with important im-
plications in many branches of physics, chemistry, and biol-
ogy.

Since small clusters usually exhibit rich landscapes of
isomeric forms within narrow energy bands,1 they constitute
good systems for studying the effects of quantum delocaliza-
tion and associated tunneling behavior. Lithium clusters are
particularly interesting because in addition to the small
atomic mass, they are bound by metallic many-body interac-
tions which cannot be adequately represented by means of
classical interatomic potentials.2

In the remainder of Sec. I we outline the methodology
that we have developed to study this class of problems, and
review the present understanding of Li clusters which is the
test system for our method. In Section II we introduce the
theoretical framework of ourab initio path integral approach
and discuss the approximations involved. Section III is de-
voted to the details of the practical implementation of the
path integral Monte Carlo~PIMC! and the electronic struc-
ture methods. In Sec. IV we present the validation of the
electronic structure calculations, zero-temperature geom-
etries, and electronic properties of Li4 and Li5

1 clusters. The
results of our simulations for the classical and quantum Li4

and Li5
1 clusters at finite temperatures are presented in

Sec. V. Section VI contains our conclusions and an assess-
ment of the potential of this novel simulation tool.

A. Methodological aspects

The goal of the present work is to introduce a novel
computational technique for studying the statistical mechan-
ics of isolated systems like clusters and molecules containing
light atoms. Our approach combines an imaginary-time path
integral description of the nuclear degrees of freedom3 with a
first-principles density functional~DFT! description of the
electronic structure.4 Since the natural choice for investigat-
ing isolated systems is to use a localized basis set for the
electronic orbitals, we adopt a Gaussian basis set.5 In the
present implementation the electronic structure is computed
at the all-electron level, i.e., explicitly including core elec-
trons. The sampling of the path integral is implemented us-
ing Monte Carlo~MC! techniques. The electronic energy is
minimized for each nuclear configuration, and the MC rejec-
tion step is also performed using the energy calculated at the
same level of sophistication.

Other schemes along these lines have been recently pro-
posed by Marx and Parrinello6 and Chenget al.7 At variance
with our approach, these two methods use molecular dynam-
ics ~MD! for sampling the path integral, a plane–wave~PW!
expansion for the electronic orbitals, and treat the electron–
ion interaction at the pseudopotential level. PW expansions
with periodic boundary conditions are more appropriate for
extended systems such as solids or liquids though they can
be adequately modified to deal with isolated systems.6

The evaluation of real-time path integrals, which would
include the full dynamical information, is an extremely dif-
ficult numerical task because the integrand is a rapid oscilla-

tory function of the path. In the imaginary-time framework
the statistical weight is real and positive definite, so that the
integrals are well-conditioned, but the price is that the dy-
namics is not directly accessible. In the absence of real-time
dynamical information, it is not particularly advantageous to
sample the integral using MD in place of MC techniques. In
particular, the MD technique requires elaborate thermostat-
ting mechanisms8 in order to overcome ergodicity problems
in the sampling of the quasiharmonic degrees of freedom that
appear in the path integral formulation~see Sec. II!. In the
present method we propose aMETROPOLIS MC sampling
technique on the normal modes of the polymer, which has
less severe ergodicity problems, and is more convenient from
the point of view of efficient evaluation of the path action
~see Sec. III!.9 Moreover, the MC strategy is easy to interface
with any electronic structure code.

B. Small lithium clusters

Structural and electronic properties of Lin and Lin
1 clus-

ters have been systematically investigated forn52 – 9 by
means ofab initio configuration-interaction calculations.10 A
key observation was the existence of several isomers of com-
parable energy. Recently,ab initio classical MD simulations
at the Hartree–Fock~HF! and nonlocal density functional
~NLDF! level were carried out in order to explore the cluster
dynamics as a function of temperature, to analyze isomeriza-
tion reactions, and to study the melting transition.11–14 The
extent to which different levels of first-principles calcula-
tions are reliable for describing small Li clusters has been
very recently discussed by Rousseau and Marx,15 who con-
cluded that eitherab initio MP2 calculations or gradient cor-
rected NLDF provide a reasonable potential energy land-
scape, while HF and LDF are inadequate.

This aspect is very important because the energy land-
scape determines the probability with which the cluster visits
different possible geometries. In general, the ability to jump
from one minimum to another will depend on the extent of
both thermal and quantum fluctuations. Figure 1 shows three
typical situations: At low temperatures quantum delocaliza-
tion is the dominant mechanism. If the ZPE is higher than
the barrier between the two minima~a!, or smaller than the
barrier but larger than the energy difference between them
~b! ~tunneling regime!, the ground state wave function will
sample both configurational minima. If, instead, it is smaller
than the energy difference between the two minima~c!, then
the ground state will be basically unchanged from the clas-
sical one, though all structural distributions will be broad-
ened by quantum delocalization. Thermal excitations can
promote a classical-like situation like~c! to a thermally as-
sisted tunneling regime.

The above picture is valid as long as the electronic
ground state is nondegenerate, and this is realized for clusters
with closed electronic shells. Open-shell clusters undergo
Jahn–Teller distortions, and are characterized by degenerate
ground states andpseudorotations. An adequate treatment of
this situation would require the introduction of the concepts
of conical intersections and geometric phases.16 Though
these phenomena are of great interest, and have indeed been

8849J. Chem. Phys., Vol. 108, No. 21, 1 June 1998 Weht et al.



detected in Li3 ~Ref. 17! and Li5,
18 we have preferred to

avoid this extra complication at this stage in the development
of our method.

Quantum nuclear effects in Li clusters were first ad-
dressed by Ballone and Milani,19 who studied magic-number
clusters~20, 40, and 92 atoms! by means of PIMC simula-
tions using a simple, jellium model description of the elec-
tronic component. Their most interesting observation was the
existence of a large number of isomers differing only in the
location of the outermost atoms, such that quantum tunneling
among these isomers led to a fluid like behavior. A very
recentab initio path integral MD study of Li8 and Li20 clus-
ters by Rousseau and Marx20 shows that this picture does not
hold when the description of the electronic component is
improved, thus demonstrating the necessity of going beyond
the jellium-type description.

For our study we have chosen the following two ex-
amples: Li4 has a single isomer and is well described by a
quasiclassical picture. Li5

1 has two isomers at an energy dif-
ference of about 150 K, and two other isomers at higher
energies~see Sec. V!. The zero-point energy is of the order
of 100 K, so that Li5

1 could constitute a good candidate for
exhibiting significant quantum effects in terms of the sam-
pling of configurational minima. The results presented in
Sec. V will show that, in spite of this, Li5

1 actually behaves
in a very similar way to Li4.

II. THE AB INITIO PATH INTEGRAL PARTITION
FUNCTION

The statistical mechanics of quantum many-body sys-
tems can be formulated in terms of the two-point density
matrix, or imaginary-time propagator:

r~R,R8,b!5^Ruexp~2bH!uR8&, ~1!

whose trace is the partition functionZ. b51/kBT is the
inverse temperature. The path integral representation of the
density matrix is given by

r~R,R8,b!5E D@R~u!#e2S@R~u!#, ~2!

whereR(u) represents the configuration of anN-body sys-
tem as a function of imaginary timeu. The range ofu is
from 0 tob\ and the paths considered are restricted to those
beginning atR(0)5R and ending atR(b\)5R8. The par-
tition function can be similarly expressed as a path integral
with contributions from all possible cyclic paths for which
R(0)5R(b\). D@R(u)# represents the differential element
for all paths. The Euclidean action,S@R(u)#, associated with
a path is defined as

S@R~u!#5
1

\ E
0

b\S m

2 FdR

duG2

1V@R~u!# Ddu. ~3!

The first term corresponds to the kinetic energy contri-
bution to the action, withm the mass of the particles. The
generalization to heterogeneous systems, i.e., composed of
two or more species of different masses, is straightforward.

In order to devise a feasible computational scheme, the
path integral is typically discretized by representing the cy-
clic paths as a finite set of 3N-dimensional configurations,
Ri , at equispaced points in imaginary time between 0 and
b\. The degree of discretization is referred to as the Trotter
number,P. The short-time or high temperature propagator,
r(Ri ,Ri 11 ;b/P), can be evaluated semiclassically at differ-
ent levels of approximation. The contribution of the kinetic
energy term to the short-time action is written in terms of a
first-order finite difference between configurations on adja-
cent time slices, while the short-time integral of the potential
energy together with higher-order corrections to the kinetic
energy is replaced with an effective, quantum-corrected po-
tentialVeff(R). The sum of the two terms is referred to as the
effective action. Therefore, the expression for the partition
function of N interacting, distinguishable quantum particles
with Trotter numberP is given by

ZNP5S mP

2p\2b D 3NP/2E S )
i 51

P

dRi D
3expS 2

mP

2\2b (
i 51

P

~Ri2Ri 11!22
b

P (
i 51

P

Veff~Ri !D .

~4!

According to the level of approximation of the effective
action, the number of slicesP needed to achieve conver-
gence in the partition function can be small enough that the
problem is tractable, or large enough that the evaluation of
the multidimensional integral becomes a hopeless task. It is
therefore important to use the best possible effective action
compatible with the computational complexity involved in
its calculation. The simplest one, orprimitive approximation,
replaces the effective potential by the bare potential, which is
equivalent to an end-point approximation for the short-time
integral:

FIG. 1. A schematic representation of a potential energy surface with two
minima separated by a barrier. Dashed lines represent different possible
values of the zero-point energy~ZPE!: ~a! ZPE is larger than the barrier
~resonant regime!, ~b! ZPE is between the bottom of the higher well and the
top of the barrier~tunneling regime!, ~c! ZPE is below the bottom of the
higher well ~classical regime!.
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1

\ E
0

t\

V@R~u!#du'tFV~R!1V~R8!

2 G , ~5!

and is correct only to ordert2. At the other extreme, the
pair-action approximation provides a very accurate technique
when the full, many-body potential can be reasonably ap-
proximated with a sum of pair potentials. This scheme has
been very effectively exploited to investigate the properties
of liquid and superfluid He down to temperatures of about 1
K,21 a task that would not have been possible using the
primitive action.

As mentioned in Sec. I, classical interaction potentials
are computationally fast, but very often unreliable. Realistic
interaction potentials can instead be obtained from more ex-
pensive first-principles techniques. In the latter, the elec-
tronic degrees of freedom are explicitly included in the
Hamiltonian description of the system:

Ĥ~R,r !5T̂n1T̂e1V̂ee~r !1V̂en~r ,R!1V̂nn~R!, ~6!

wherer andR are the electronic and nuclear coordinates,T̂
and V̂ stand for kinetic and potential operators, while the
subscriptse and n indicate electronic and nuclear compo-
nents, respectively. The path integral representation for the
partition function could then be developed using the coordi-
nate basis for both the electrons and the nuclei.22

However, standard electronic structure calculations are
carried out in a wave function representation by resorting to
the adiabatic separation of nuclear and electronic motion. It
is therefore more convenient to expand the electronic com-
ponent in the adiabatic basis set where electronic wave func-
tions ufa& and total energiesEa(R) are obtained by diago-
nalizing the electronic HamiltonianT̂e1V̂ee(r )1V̂en(r ,R)
1V̂nn(R). If t5b/P, then the discretized partition function
reads:

ZP5(
a1

¯(
aP

E ¯E )
i 51

P

@ra i ,a i 11
~Ri ,Ri 11 ,t!dRi #, ~7!

where

ra,g~R,R8,t!5^Ru^fauexp~2tĤ!ufg&uR8&. ~8!

Then, in the spirit of expression~4!, the short-time propaga-
tor can be written as

ra,g~R,R8,t!5^Ru^fauexp~2tT̂n!ufg&uR8&

3expS 2
t

2
@Ea

eff~R!1Eg
eff~R8!# D , ~9!

whereEa
eff(R) is an effective potential which derives directly

from the electronic structure. In the primitive approximation,
which is what has been used in otherab initio path integral
methods,6,7 the effective potential is simply the total energy
corresponding to adiabatic statea of the electronic Hamil-
tonian, i.e.,Ea(R).

The nuclear kinetic energy operator can give rise to
nonadiabatic coupling matrix elements between adiabatic
eigenstates. If these are negligible, but more than one Born–
Oppenheimer~BO! surface is occupied due to thermal exci-
tations, then the partition function will split into independent

manifolds indexed by the BO electronic eigenstate. In the
absence of degeneracies in the ground electronic state, the
energy differences between electronic eigenstates are typi-
cally orders of magnitude larger than reasonable thermal ki-
netic energies. Consequently, only the ground electronic
state contributes to the partition function and the electrons
only enter at the level of replacing the total potential energy
with the ground state first-principles effective potential
E0

eff(R) in Eq. ~4!:

ZNP5S mP

2p\2b D 3NP/2E S )
i 51

P

dRi D
3expS 2

mP

2\2b (
i 51

P

~Ri2Ri 11!22
b

P (
i 51

P

E0
eff~Ri !D .

~10!

This is the partition function that will be evaluated using
Monte Carlo techniques. The expression forZNP can be
interpreted as the partition function ofN classical polymers,
each ofP monomeric units or beads, with adjacent beads
linked by harmonic springs with force constantmP/b\2.
Beads on two separate cyclic polymers are coupled by the
interaction potential only if they lie on the same time slice.

Let us remark that the computation of excited electronic
states is an open issue in density functional theory, and it is
known that the usual approximations to exchange and corre-
lation, like the LDA and even NLDF do not provide reliable
excitation energies. Excited states could be calculated prop-
erly using very high-levelab initio methods. However, since
we have developed a methodology in which the electronic
degrees of freedom are dealt within DFT, we are for the time
being not in a position to incorporate nonadiabatic couplings
and excited electronic manifolds.

III. PRACTICAL IMPLEMENTATION

A. Path integral Monte Carlo

1. Effective action

We use a discretized time representation in which a path
is described as a set of configurations,$Ri%, i 51,...,P, at
P-equispaced points in imaginary time. The effective short-
time propagator for two adjacent points along the path has
been evaluated to fourth-order accuracy int5b/P, so that
the first-principles effective potential reads23

E0
eff~Ri !5E0~Ri !1S b2\2

24mP2D (
j 51

N S ]E0~Ri !

]xi j
D 2

, ~11!

wherexi j is the three-dimensional vector of the coordinates
of particle j in slice i , such thatRi5(xi1 ,xi2 ,...,xiN). This
form of the effective action leads to an error of the order of
P(b/P)5 in the partition function and allows us to signifi-
cantly reduce the Trotter number required for convergence as
compared to the primitive action~see Sec. V!.

The quantum correction to the potential requires the
evaluation of the first-principles forcesFj52]E0 /]xj in the
ground electronic state. The cost of this operation is of the
same order of magnitude as the rest of the electronic struc-
ture calculation, at least in mostab initio or density func-
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tional schemes. In contrast, second- and higher-order deriva-
tives are sufficiently expensive to evaluate that the
computational advantages of a more accurate short-time ac-
tion are lost.

2. Normal modes sampling

The above expression for the partition function can be
directly used to set up aMETROPOLISMC simulation scheme
by assigning the appropriate Boltzmann weight to each con-
figuration of theN3P-dimensional isomorphic classical sys-
tem. However, as quantum effects increase, the degree of
discretization must be increased to maintain accuracy. Since
the harmonic force constant between adjacent beads on the
quantum polymer ismP/b\2, increasing the Trotter index
results in increasingly stiff harmonic links and the computa-
tional problem of ensuring the ergodicity of theMETROPOLIS

walk becomes intractable. An intuitively appealing and com-
putationally simple way for circumventing this difficulty
comes from considering the normal modes of the quantum
polymer.24 In the absence of an interaction potential, all Car-
tesian degrees of freedom of the system are decoupled. For a
single degree of freedom the harmonic intrapolymer poten-
tial is given byVp5(mP/2b\2)( l 51

P (xl2xl 11)2. Diagonal-
ization of the second derivative matrix of this potential leads
to the normal coordinates,$Qk%, k51,...,P,

Qk5~1/AP!(
l 51

P

xl exp~2p ikl /P!. ~12!

In the normal mode representation, the kinetic energy
contribution to the path action is

E
0

b\ m

2 S dx

duD 2

du5
2mP

b\2 (
k51

P

uQku2 sin2~pk/P!. ~13!

The zero-frequency mode (k5P) corresponds to motion
of the center of mass of the polymer and makes no
contribution to the kinetic energy. All other normal modes
would be Gaussian distributed with variance
sk

25b\2/4mP sin2(pk/P) if they corresponded to free par-
ticles. The potential energy term couples these normal modes
and causes distortions from the free-particle distribution. The
low-frequency modes correspond to large, collective motions
of all beads of the polymer, while the high-frequency modes
cause small, local path fluctuations. The normal modes are
then used asMETROPOLIS variables and the displacements
scaled according to the Gaussian dispersions associated with
each normal mode.

3. Observables

The canonical ensemble average of an observableO is
given by

^O&5Tr$r̂Ô%/Tr$r̂%, ~14!

whereÔ is the corresponding quantum mechanical operator.
If the operatorÔ is diagonal in the coordinate representation,
then

^O&5E dRO~R!r~R,R;b!. ~15!

Our MC strategy samples configurationsR with prob-
ability proportional tor~R,R;b!, such that equilibrium aver-
ages can be readily estimated via discrete summations. Dy-
namical variables that can be related to the partition function
are also straightforward to obtain using thermodynamic esti-
mators. With our choice of the short-time action, thermody-
namic estimators of the total energy^E&, the kinetic energy
^K&, and the potential energŷV& are given by

^V&5^U2&12^Uc&, ~16!

^K&5^U1&1^Uc&, ~17!

^E&5^U1&1^U2&13^Uc&, ~18!

where

U15
3NP

2b
2(

i 51

P
mP~Ri2Ri 11!2

2b2\2 , ~19!

U25
1

P (
i 51

P

E0~Ri !, ~20!

Uc5
1

P

b2\2

24mP2 (
i 51

P

(
j 51

N S ]E0~Ri !

]xi j
D 2

. ~21!

B. Electronic structure calculations

The calculation of the electronic energies is carried out
within the framework of DFT. For a given nuclear configu-
ration, Kohn–Sham single-particle equations25 are solved
self-consistently for the electronic density, and the total en-
ergy and forces are computed accordingly. Kohn–Sham or-
bitals are expanded in a Gaussian basis set.

The electronic density is also expanded in an additional
Gaussian basis set.26 The coefficients for the fit of the elec-
tronic density are computed by minimizing the error in the
Coulomb repulsion energy. The use of this procedure results
in an important speedup, since the cost of evaluating matrix
elements reduces fromO(N4) to O(N2M ) ~N is the number
of functions in the orbital set, andM the number of functions
in the auxiliary set, typically of size comparable toN!.

Matrix elements of the exchange–correlation potential
are calculated by a numerical integration scheme based on
grids and quadratures proposed by Becke.27 During the self-
consistency cycle, the integration is performed on a set of
coarse atom-centered, spherical grids. At the end of the self-
consistent procedure, the exchange–correlation energy is
evaluated using an augmented, finer grid. This strategy of
combining coarse and fine grids results in a considerable
gain in computational efficiency, which is very important
because this part is one of the main bottlenecks of the calcu-
lation.

The exchange–correlation term is described at a gradient
corrected NLDF level. Correlation is given by the parametri-
zation of the homogeneous electron gas of Voskoet al.28

supplemented with the gradient corrections proposed by
Perdew.29 Gradient corrections to the exchange term are
taken from Becke.30

The first derivatives of the energy with respect to the
nuclear coordinates, required by the fourth-order effective
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action, are evaluated by taking analytical derivatives of one-
electron and Coulomb terms, while the exchange–correlation
contribution is obtained by numerical integration.5

IV. GROUND STATE PROPERTIES OF CLASSICAL Li 4
AND Li 5

1

A. Validation of the basis set and optimized
geometries

We have analyzed five different basis sets for Li4 and
Li5

1. The first one~labeled 1! is the standard 3-21 G basis.31

The second set~labeled 2! is a double zeta plus polarization
basis set, optimized for DFT calculations.32 The third one
~labeled 3! is the standard 6-311G basis,33 the fourth set
~labeled 4! is the 6-311G set augmented with a polarization
function(6-311G* ), and finally the fifth set~labeled 5! con-
sists of a large uncontracted basis set (13s/9p/1d), proposed
by Dunning.34 The calculations performed with basis sets
optimized for standardab initio calculations~labeled 1, 3, 4,
and 5! have been carried out using an uncontracted auxiliary
basis set with a scheme (7s/3p/3d), as proposed in Refs. 32
and 10. The calculations performed with basis set 2 have
been carried out using an auxiliary basis set proposed in
Ref. 32, with a scheme (7s/2p/1d). Full geometry optimiza-
tions without symmetry constraints have been performed in
all cases.

In agreement with previous work,10,15 only one stable
minimum with a rhombus geometry has been found for Li4

~see Fig. 2!, while for Li5
1 we found four stable local minima

~also shown in Fig. 2!. The highest energy isomer, i.e., iso-
mer I, consists of two triangles which lie on the same plane,
joined by a shared central atom. The second isomer, i.e.,
isomer II, is similar to isomer I, but now the triangles lie on
perpendicular planes. The third isomer, i.e., isomer III, has
C2 symmetry, and can be described as an isosceles triangle
plus a dimer. The dimer is located perpendicular to the plane
of the triangle, close to its shortest side. The fourth isomer,
i.e., isomer IV, has a trigonal bipyramidal structure. It should
be pointed out that neither isomer II nor isomer III have been
reported in earlier works, probably because of symmetry

constraints used during the geometry optimization procedure.
The basis set dependence of the binding energies is shown in
Fig. 3. Relevant structural parameters for all basis sets con-
sidered here are given in Table I. Our results for basis set 4
agree with those reported for the same functional and basis
set in Ref. 15 for Li4 and for isomers I and IV of Li5

1.
The data in Fig. 3 and Table I show that calculations

performed using basis set 2 yielded results that deviate con-
siderably from the ones obtained using the very large basis
set 5, which can be considered as almost converged. Even if
the errors in computed bond lengths and binding energies are
not too large~about 5% for bond lengths and 5%–10% for
binding energies!, calculations carried out using basis set 2
fail in reproducing the energy sequence of isomers of Li5

1.
This can be ascribed to the fact that the description of thep
shell using this set is rather poor, since it contains only one
function. On the other hand, calculations performed with ba-
sis sets 1, 3, and 4 yield the same energy ordering for iso-
mers of Li5

1 and structural results within 2%–3% from the
almost converged, basis set 5, values.

FIG. 2. The single isomer of Li4 ~left-hand panel! and the four isomers of
Li 5

1 ~right-hand panel!. Isomer IV is the most stable, followed by isomer III.
Isomers I and II are quite higher in energy and are almost degenerate. FIG. 3. Dependence of the energetics of Li clusters on the size of the basis

set ~BS!. BSs are ordered in increasing size.

TABLE I. Selected geometrical parameters of Li4 and Li5
1 ~in Å!. Atoms are

labeled as in Fig. 2.

System Set 1 Set 2 Set 3 Set 4 Set 5

Li4 d12 2.658 2.678 2.638 2.625 2.622
d13 3.068 3.117 3.050 3.042 3.039

Li5
1 d23 2.879 2.889 2.853 2.853 2.853

Isomer I d12 3.114 3.144 3.105 3.105 3.104

Li5
1 d23 2.888 2.905 2.868 2.860 2.854

Isomer II d12 3.099 3.155 3.101 3.090 3.095

Li5
1 d14 2.713 2.735 2.695 2.680 2.672

Isomer III d23 2.851 2.857 2.842 2.823 2.825
d15 3.035 3.053 3.012 3.012 3.004

Li5
1 d34 3.353 3.485 3.360 3.345 3.352

Isomer IV d12 2.772 2.800 2.754 2.734 2.729
d14 3.207 3.250 3.196 3.186 3.184
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Basis set superposition error~BSSE!35 calculations for
Li4 yield 14.36, 1.00, 0.96, 2.34, and 0.13 kJ/mol, for basis
sets 1, 2, 3, 4, and 5, respectively. It is clear that in order to
reduce BSSE, and obtain meaningful interaction energies, a
better description of thep shell than the one provided by the
small basis set 1 is required.

In view of these results, the intermediate basis set
3 ~6-311G!, which yields results close to the ones obtained
with the larger sets is chosen to perform the electronic struc-
ture calculations required in the MC simulations. The rela-
tive energies with respect to the most stable isomer, isomer
IV, for isomers I, II, and III, are 17.58, 15.16, and 9.67
kJ/mol, respectively, for calculations using basis set 3, com-
pared with 19.38, 17.08, and 11.01 kJ/mol, respectively, us-
ing the large set 5.

B. Electronic properties: Dipole moments, Mulliken
population charges, and eigenvalues

The Li4 cluster is nonpolar~vanishing dipole moment!
for symmetry reasons. Li5

1 is a charged system, so its dipole
moment depends on the choice of the origin. However, it is
customary to evaluate the dipole moment using the center of
charge as the origin, and in that case it provides a useful
indicator of the asymmetry of the charge distribution, and
could also be experimentally relevant. Isomers I and II are
nonpolar, isomer IV is only slightly polar, but isomer III is
considerably polar. The dipole moments of isomers III and
IV, computed using basis set 3, are 1.163D and 0.017D,
respectively. Mulliken population charges36 are also useful
indicators of the charge distribution. Results obtained with
basis set 3 for Li4 and the four isomers of Li5

1 are shown in
Table II. Significant differences are observed between differ-
ent isomers—even between isomers I and II which are very
similar both geometrically and energetically. Both quantities
provide useful indicators of isomerization during the MC
simulations in the Li5

1 case.
In addition, we present the two highest occupied and two

lowest unoccupied molecular orbital energies for Li4 and the
four isomers of Li5

1 in Table II. The HOMO–LUMO gap is
quite large in all cases, with values around 1 eV. Therefore,
it is unlikely that either thermal or quantum fluctuations will
contribute to its closure.

V. RESULTS OF THE PIMC-DFT SIMULATIONS

A. Sampling strategy and convergence of the path
integral with the degree of discretization

We used a simpleMETROPOLIS algorithm for the PIMC
simulations with each trial move consisting of an attempt to
move all the normal modes associated with all the particles.
Two different step sizes were used:dc and ds . The maxi-
mum displacement of the center of mass was set bydc , and
that of the normal modes of orderk—associated with a
length scalesk—by skds . We have analyzed the possibility
of introducing an additional convergence parameterk* , such
that modes withk,k* or k.P2k* are moved with a rela-
tively small step size,dssk , while those associated with
small length scale fluctuations are moved by amounts pro-
portional tod lsk (d l.ds). However, it turned out that, in
this particular case, a single step sizeds for all values ofk
was efficient enough. This is often not the case when a large
number of Trotter slices is used. The various parameters
were adjusted to keep the overall acceptance ratio around
50% though occasional runs were used with acceptance ra-
tios between 40% and 60%. The same displacement param-
eter for the center of massdc was used for both classical and
quantum simulations.

Simulations on the Li2 dimer using a classical potential
fitted to first-principles calculations were used to check the
convergence of various properties with the degree of discreti-
zation.

Table III gives the PIMC results for the expectation
value of the potential and kinetic energies using the primitive
action and the fourth-order corrected form of the action. It
can be observed that convergence to within the statistical
error bars occurs with a Trotter number of just 4 when using
the fourth-order correction, in contrast to 16 when using the
primitive action. Errors in̂ V& are an order of magnitude less
than those in^K&. This is typical of the relatively facile
convergence of expectation values of operators diagonal in
the coordinates as opposed to those than must be evaluated
using thermodynamic estimators. In our experience, struc-
tural quantities such as pair distribution functions converge
even faster than the potential energy. The increase in the
error bars—at constant number of MC configurations—as
the Trotter number is increased is also typical of PIMC simu-
lations. Based on our tests with Li2 we used a Trotter number
of 4 at 100 K and 8 at 50 K for the larger clusters.

We have performed a series of classical and quantum

TABLE II. Mulliken populations and orbital energies of Li4 and Li5
1 com-

puted with basis set 3~in Å and eV!. Atoms are labeled as in Fig. 2. The two
lowest energy unoccupied and two highest energy occupied orbital energies
are given.

Li 4 Li 5
1 ~I! Li5

1 ~II ! Li5
1 ~III ! Li5

1 ~IV !

q1 0.2067 0.5403 0.0419 0.2250 0.3959
q2 0.2067 0.1149 0.2395 0.1808 0.3603
q3 20.2067 0.1149 0.2395 0.1808 0.3603
q4 20.2067 0.1149 0.2395 0.2250 20.0583
q5 0.1149 0.2395 0.1878 20.0583

eN21 23.9334 27.2535 27.2355 27.8535 28.1536
eN 22.8986 26.6867 26.6703 26.5560 26.6603
eN11 22.0169 25.3772 25.0774 25.4975 25.7065
eN12 21.6806 25.0904 25.0774 25.4562 25.7002

TABLE III. Convergence data for Li2 at 100 K. The number of MC con-
figurations is 5.12 mil with acceptance ratios between 0.4 and 0.7. Error bars
are given in brackets. The first two columns correspond to results using the
primitive approximation and the last two to results obtained using the
fourth-order correction to the effective action. Energies are expressed inK.

m ^V& ^K& ^V& ^K&

1 29521.78~0.12! 300.0~0.0! 29485.82~0.14! 335.7~0.1!
2 29491.74~0.15! 330.3~0.5! 29454.41~0.15! 366.2~0.7!
4 29465.76~0.26! 355.4~1.0! 29446.69~0.31! 372.8~0.9!
8 29453.39~0.45! 366.5~1.5! 29447.10~0.32! 371.8~2.4!

16 29449.79~0.40! 373.2~7.6! 29447.50~0.44! 371.1~7.0!
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Monte Carlo simulations for Li4 and Li5
1 clusters, with tem-

peratures ranging from 50 to 200 K. Each of them consisted
of 10 000–15 000 Monte Carlo steps, preceeded by around
1000 steps of thermalization. We stored atomic coordinates,
energies, eigenvalues, Mulliken population charges, and di-
pole moment for each MC step, for later analysis.

In the following we will concentrate only on structural
parameters, one-electron eigenvalues, and dipole moments,
leaving aside other thermodynamical properties which would
need longer simulations to reduce the statistical error bars to
useful values.

B. Results for Li 4 and Li 5
1

As mentioned in Sec. IV, Li4 has a single, deep mini-
mum at the1A singlet state, in the form of a planar rhombus.
Due to this fact the cluster is very rigid and thermal and/or
quantum effects basically sample the potential energy sur-
face~PES! around the minimum. The Li5

1 cluster constitutes
a somewhat richer example due to the existence of several
isomers. In particular, it is interesting to analyze the possi-
bility of thermal activation and quantum tunneling between
different regions of configuration space. In order to explore
different regions of the PES, classical simulations were
started from three different isomers, namely the ground state
~isomer IV! and two higher energy configurations~isomers I
and III!. After a few thousand MC steps it was observed that
the second and third simulations were attracted toward the
ground state basin, showing that our MC strategy is quite
effective in equilibrating and exploring configuration space,
possibly because interconversion barriers were low. Based
on this, quantum simulations were started from the ground
state~isomer IV! and, in order to facilitate the detection of
possible tunneling behavior, also from the first excited iso-
mer ~isomer III!. Again, the isomerization toward the ground
state was observed in the latter; the polymer moved as a
whole, without showing any signature of tunneling. Let us
mention that none of the higher-energy isomers appeared
again during the simulation, although structures slightly
reminiscent of isomer III~the closest in energy to the ground
state! were observed. In other words, Li5

1 appears to be un-
able to sample metastable regions of configurational space
out from the ground state.

Figure 4~a! shows the pair distribution functiong(r ) of
Li 4 in the classical case, and for different temperatures. It can
be observed that the peaks are approximately centered at the
optimized zero-temperature distances. Temperature effects
consist basically of broadening the peaks; the first of them,
corresponding to the first neighbors shell, almost disappears
above 200 K. In Fig. 4~b! we show the effects of the quan-
tum nature of the nuclei by comparing simulations per-
formed at 50 K using the classical and quantum schemes. It
can be observed that quantum effects generate a pronounced
broadening of the peaks, thus demonstrating the importance
of their inclusion.

In Fig. 5 we show the pair distribution functionsg(r ) for
Li 5

1 in the classical~a! and quantum~b! cases. The main
panels contain the distribution averaged over all the five par-
ticles. Two groups of atoms can be identified: one composed

of three atoms more strongly bound, which form the central
triangle of the bipyramidal structure IV, and a second group
composed of the two external atoms. The upper inset shows
the partialg(r ) corresponding to these two groups in the
classical case at 100 K, and the lower inset in the quantum
case at 50 K. No qualitative difference with Li4 can be ob-
served.

The trends discussed above also hold for the electronic
properties, i.e., the distribution of one-particle eigenvalues.
As can be observed in Fig. 6~a!, the HOMO and LUMO
eigenvalue distributions for Li5

1 exhibit significant broaden-
ing upon temperature increase. It is to be remarked that the
widths are different for different eigenvalues, a fact that
could be reflected in the temperature dependence of the op-
tical photoabsorption spectrum.37 Similar broadening can be
observed in the lower panel, corresponding to the quantum
and classical simulations for Li5

1 performed at 50 K. As ad-
vanced above, the minimum HOMO–LUMO distance never
becomes smaller than about 0.5 eV, so that quantum effects
cannot promote an eigenvalue crossing which would result in
a major modification of the electronic properties.

Another important quantity is the electric dipole mo-
ment, because of its experimental relevance. For Li4 the di-
pole moment vanishes at zero temperature due to symmetry
considerations. However, at finite temperature the cluster
samples regions of the PES characterized by a finite dipole
moment, such that the mean value is nonvanishing. A more
pronounced effect of the same type can be observed in the
quantum simulations. The averages computed using the clas-
sical and quantum schemes at 50 K are (0.1760.07) and

FIG. 4. Pair correlation functionsg(r ) for Li 4. The upper panel shows the
classical results for temperatures of 50~solid line!, 100 ~dashed line!, and
200 ~dotted-dashed line! K. The lower panel shows the quantum~dashed
line! and classical~solid line! results forT550 K.
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(0.2960.15)D, for Li4 and (0.1460.07) and (0.25
60.12)D for Li5

1, respectively. The quantum dipole moment
averages and distributions obtained at 50 K are similar to
those obtained classically at about 100 K.

It is interesting to note that where structural properties
are concerned, the overall effect of considering quantum nu-
clei is qualitatively similar to the effect of increasing tem-
perature in the classical simulations. For the closed-shell Li
clusters considered in this work the classical temperature
equivalent to the quantum system at 50 K is around 150 K.
However, the dipole moment and eigenvalue distributions
obtained using the quantum mechanical scheme at 50 K are
qualitatively similar to those obtained within the classical
scheme at about 100 K. This points out an important differ-
ence between the two types of correlations involved in the
statistical mechanics of quantum systems, namely coherent
quantum fluctuations as opposed to incoherent thermal fluc-
tuations. These appear to behave in different ways according
to the physical properties under consideration.

Further characterization of the wave packet behavior of
the nuclei is provided by the imaginary-time correlation
function, R2(t2t8)5^ur (t)2r (t8)u2&, where 0,t5t2t8
,b\. The value att5b\/2 is particularly important be-
cause it gives an estimation of the quantum delocalization of
the nuclei. The delocalization length, or gyration radius, is
about 0.15 Å for both Li4 and Li5

1 at 50 K. The imaginary
time correlation function for Li4 is shown in Fig. 7, averaged
for atoms 1 and 2~lower curve! and for 3 and 4~upper

curve!. It can be noticed that the two atoms which are more
strongly bound~1 and 2 in Fig. 2! are less delocalized than
the other two, as may be expected.

VI. CONCLUSIONS AND OUTLOOK

We have introduced a novel method for simulating the
statistical mechanics of quantum nuclei interacting through
first-principles potentials, i.e., that derive directly from the

FIG. 5. Pair correlation functionsg(r ) for Li 5
1. The upper panel shows the

classical results for temperatures of 50~solid line! and 100~dashed line! K.
The lower panel shows the quantum~dashed line! and classical~solid line!
results forT550 K. The insets show the partialg(r ) for two groups of
atoms, one forming the central triangle and the other consisting of the two
external atoms.

FIG. 6. Distribution of HOMO and LUMO one-electron eigenvalues for
Li 5

1. The upper panel shows the classical results for temperatures of 50
~solid line! and 100~dashed line! K. The lower panel shows the quantum
~dashed line! and classical~solid line! results atT550 K.

FIG. 7. Root-mean-square of the imaginary-time correlation function for Li4

at 50 K plotted vsk ~with 0<k5b\/P<b\!, averaged over atoms 1 and 2
~lower curve!, and over atoms 3 and 4~upper curve!. P is the Trotter num-
ber, 8 in this case.
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electronic structure. The scheme presented and discussed
here combines a path integral description of the nuclear vari-
ables with an adiabatic, ground state, density functional de-
scription of the electronic degrees of freedom. In the present
scheme we have choosen a specific~NLDF-Gaussian! for-
mulation to solve the electronic structure problem, but it is
important to stress that any other implementation is perfectly
valid and compatible with the present scheme, e.g.,ab initio
quantum chemical approaches like Hartree–Fock or MP2,
and/or different localized~linear combination of atomic or-
bitals, linear muffin-tin orbitals! or extended~pseudopoten-
tial or augmented PW! basis sets. Moreover, the present
scheme is extremely simple to interface with any electronic
structure code, since the only input needed to compute the
statistical weights are the~self-consistently! converged en-
ergy and forces. MD sampling schemes are more involved in
this respect.

We have shown the adequacy and the performance of
this methodology by simulating quantum nuclear effects in
the clusters Li4 and Li5

1. The number of imaginary-time
slices needed to achieve convergence to a relative error of
0.5% in the nuclear kinetic energy is 4 at a temperature of
100 K and 8 at 50 K. The same level of accuracy is obtained
only with 16 slices~at 100 K! if the primitive approximation
to the action is used. This represents a gain of a factor of 4,
which is very important due to the high computational cost
of these simulations. The level of gain depends, however, on
the shape of the potential energy surface sampled by the
nuclei.

The results presented here for the above clusters show
that, at temperatures below 50 K, quantum nuclear effects
are crucial to account for their structural and electronic prop-
erties. Pair correlation functions are quite broadened with
respect to the classical counterparts, to a level that similar
distributions would be obtained for an effective temperature
of about 150 K if only thermal, and not also quantum, fluc-
tuations were considered. The results atT550 K can be con-
sidered to be representative of the ground state, as quantum
nuclear effects largely overcome thermal motion. Electronic
properties like one-electron eigenvalues and dipole moments
show the same type of broadened distributions, although the
effective classical temperature appears to be slightly lower,
around 100 K, instead of 150 K. This is to emphasize that
quantum effects cannot be readily mimicked by adding extra
thermal fluctuations, because the correlations involved are of
a completely different character: Quantum motion is coher-
ent while thermal motion is incoherent.

The simulation technology presented here opens up the
possibility of studying the role of light nuclei, especially pro-
tons, in biological and chemical systems. The advantage of
describing the electronic component using a localized basis
set~as Gaussians!, as opposed to a PW basis set, for isolated
clusters and molecules as well as for gas-phase reactions, is
obvious because the vacuum around is easily taken into ac-
count. In addition, very often reactive condensed-phase sys-
tems and large biological molecules do not need a full quan-
tum description because the relevant chemical processes
occur in a circumscribed region of space. For example, en-
zymatic reactions require a first-principles electronic descrip-

tion only in the vicinity of the active site, while the rest of
the system can be treated by means of classical force fields.
Therefore, hybrid schemes that combine quantum and clas-
sical mechanical descriptions in different spatial regions38

are appropriate for these situations and, in conjunction with
the present methodology, constitute a general computational
approach appropriate for studying the effects of nuclear de-
localization in the above situations. In fact, an insight into
the problem of quantum hydrogen bonding in water has al-
ready appeared in the literature,39 thus signaling the time for
a new and exciting area of multidisciplinary research.
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11J. Jellinek, V. Bonacˇić-Koutecký, P. Fantucci, and M. Wiechert, J. Chem.
Phys.101, 10092~1994!.
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