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An alternative approach for the calculation of the electron-positron �e-p� contribution to magnetic
properties based on two-component Breit–Pauli spinors is presented. In it, the elimination of the
small component scheme is applied to the inverse propagator matrix of e-p pairs. The effect of the
positronic manifold is expressed as an operator acting on Breit–Pauli spinors. The operator form
thus obtained sums up the relativistic correction as a geometric series and as a result a totally
different behavior in the vicinity of a nucleus is obtained as compared to the one of the linear
response approximation. This feature has deep influence in numerical values of the e-p contribution
to the nuclear magnetic shielding of heavy atoms. Numerical calculations carried out for Kr, Xe, and
I show that with this approach, the e-p contributions to this property are in good agreement with
those of four-component methods. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3063639�

I. INTRODUCTION

Relativistic effects have proven to be of major impor-
tance on molecular magnetic properties of heavy atom con-
taining compounds, especially for those involving the field of
a magnetic nucleus, such as NMR parameters.1,2 Significant
advances have been achieved in recent years in the theoreti-
cal description of such effects, both within Dirac four-
component spinors and quasirelativistic two-component
approaches.3–20,27–29 The question of the diamagnetic-
paramagnetic separation of terms at the four-component
level has also been a subject of discussion in several papers
in the field.4,17–20 In the particular case of the NMR nuclear
magnetic shielding tensor, numerical results in model com-
pounds within four-component approaches stand as bench-
mark values to decide the accuracy of computationally less
expensive two-component approximations.

However, beyond the superiority of fully relativistic
four-component approaches from a theoretical point of view,
two-component approaches have shown to adequately de-
scribe qualitatively or even quantitatively different aspects of
relativistic effects. In fact, quasirelativistic theories are
nowadays available which are exactly equivalent to a four-
component theory and very promising results were obtained
in this context.21–26 Other two-component approaches are
also worthy to mention as they have shown to be very suc-
cessful in practical applications. For instance, the zeroth or-
der relativistic approximation �ZORA� has been widely ap-
plied for the study of both nuclear magnetic shieldings and
spin spin couplings.10–12 Approaches based on the Douglas–
Kroll decomposition have received increasing attention in

recent years.27–30 Approaches based on the Breit–Pauli ap-
proximation are also in widespread use and produce particu-
larly chemical shift results that are very competitive com-
pared to other approaches available for both the light and
heavy nuclei of a molecule.2,6–9,31–36

In the linear response within the elimination of the small
component �LRESC� approach,6 the elimination of the small
component �ESC� reduction is applied directly to a four-
component Rayleigh–Schrödinger perturbation theory
�RSPT� expression of magnetic properties. In this sense, it is
wholly consistent with the most direct relativistic theory of
magnetic properties, as it is explicitly related to a perturba-
tional treatment of the four-component magnetic interaction
given by the operator W=� ·A in Dirac’s equation. The
equivalence of the total result of the usual Breit–Pauli and
LRESC schemes was theoretically proven, although the par-
ticular operators involved are different.37 The LRESC or
Breit–Pauli schemes are interesting because they present sev-
eral advantages compared to other approaches. First, from
the physical point of view, they are based on the Schrödinger
Hamiltonian and perturbation operators are amenable to
physical interpretation in terms of usual nonrelativistic spin
orbitals. Second, from the computational point of view, the
problems of generating the small component of spinors and
taking account of negative energy solutions are avoided, with
great savings of computational resources. Such approaches
are in widespread use currently and produce particularly
chemical shift results that are very competitive as compared
to other approaches available.31–33 It is therefore of great
interest to establish theoretically and numerically the reliabil-
ity of results of such schemes for elements of different rows
of the Periodic Table.a�Electronic mail: azua@df.uba.ar.
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One particular feature of the LRESC scheme is that
proper track of contributions coming from electronic excita-
tions and negative energy �i.e., positronic� states can be kept
in the whole derivation in a way fully consistent with the
usual four-component random phase approximation �RPA�
scheme.3,4 In numerical applications, large negative relativ-
istic effects on the positronic contribution to the nuclear
magnetic shielding of a heavy element are found.7,43 Al-
though this result is in line with the corresponding one in
four-component calculations,4 it seems to be somewhat over-
estimated. A separation into atomic orbital contributions
shows that such effect is largely dominated by contributions
from inner shell s atomic orbitals.43 This fact suggests that
such contributions are overestimated and it might be inter-
esting to develop an alternative formulation which could cor-
rect this problem.

This is the aim of the present work. We present an alter-
native approach for considering the negative energy state
�i.e., positronic� contributions to magnetic properties within
the LRESC approach. We apply the ESC approximation to
the inverse electron-positron �e-p� propagator matrix. How-
ever, we formally eliminate explicit evaluation of matrix el-
ements involving positronic states and therefore we obtain a
final expression which is evaluated in terms of Breit–Pauli
spinors.38 The propagator thus obtained adds up the relativ-
istic correction as a geometric series. Although this improve-
ment will have little effect on the calculated chemical shifts,
which are very well reproduced at this theoretical level, we
believe that it is of fundamental physical interest to introduce
this improvement in the LRESC scheme, as the total absolute
shielding results are largely affected. Numerical results are
presented for selected model compounds. A very good agree-
ment with four-component RPA results is recovered follow-
ing such scheme. It is explicitly shown that linearization of
the propagator yields precisely the LRESC expression of
previous work.

II. THEORY

The LRESC scheme for the calculation of magnetic
properties which are bilinear in the magnetic vector potential
is based on a second order RSPT expression in Dirac–Fock
space:6

E�2� = �
n�0

�0�� · A�n��n�� · A�0�
E0 − En

− �
n�vac

�vac�� · A�n��n�� · A�vac�
Evac − En

, �1�

where the last term accounts for the correction to the
“vacuum” energy when adopting the quantum electrodynam-
ics �QED� picture in which negative energy states are rein-
terpreted as positive energy states for positrons.39 In this
work, atomic units based on the Gaussian system of units for
the electromagnetic field are adopted. Therefore, the mag-
netic susceptibility of vacuum and other factors are taken
into account by a factor of c−1 accompanying the magnetic
vector potential A. Therefore, the mechanical momentum
takes the form

� = p +
1

c
A . �2�

Such c factor should not be confused with a relativistic cor-
rection factor.

In Eq. �1�, states �0�, �n� stand for eigenstates of the
Dirac–Coulomb–Breit Hamiltonian in Dirac–Fock space. As
a consequence, such states correspond to states with a well
defined charge Q=−eN, where N is the number of electrons
of the system in the nonrelativistic limit, but they do not
have a fixed number of particles.40 The consideration of such
Hamiltonian within the subspace of fixed N particle states
constitutes the no pair approximation.

In the presence of the magnetic perturbation W=� ·A,
different particle number manifolds are connected even if the
Coulomb–Breit interaction between particles is neglected.
The aim of the present work is to analyze in detail the pair
creation contribution to magnetic properties, which yields
the diamagnetic term in the nonrelativistic limit.41 Particle
states used to span the Dirac–Fock space are the solutions of
a one-body Hamiltonian. This Hamiltonian can be taken as
the Dirac Hamiltonian for a particle in the field of the nuclei
in the molecule or alternatively as that corresponding to the
Dirac–Hartree–Fock approximation.42 In the last case the in-
teraction between particles is included in the mean-field ap-
proximation, and the �magnetically� nonperturbed Hamil-
tonian connects different particle number manifolds only
through the “fluctuation” potential of the interaction. How-
ever, such terms will be neglected in the present work. In this
approximation state �0� is an N particle state, and it may be
connected to states �n� of different particle numbers only by
the magnetic interaction.

Therefore, the RSPT expression of Eq. �1� can be sepa-
rated into two terms according to the particle number of the
excited states involved:6

E2 = Ea + Eb, �3�

where

Ea = �
nN�0N

�0N�� · A�nN��nN�� · A�0N�
E0,N − EnN

, �4�

Eb = �
nN+2

�0N�� · A�nN+2��nN+2�� · A�0N�
E0,N − En,N+2

− �
n=2

�vac�� · A�n2��n2�� · A�vac�
Evac − En,2

. �5�

The vacuum correction is included in Eb, and in this
term the number of particles of the “excited” states is N=2.
If an e-p pair is created by the magnetic interaction, the same
positron state must be destroyed to give a state overlapping
with the ground state �0�, but a different electronic state may
be involved. As a result, it may be written as

Eb = �
e,e�occ,p

�e�� · A�p�Pep,e�p�p�� · A�e�� . �6�

The sum runs over occupied electronic states only. P stands
for the propagator of pair creation excitations of the system.
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Taking into account that the Hamiltonian under consideration
is a one-body Hamiltonian, the propagator has a straightfor-
ward expression in terms of the corresponding eigenstates
and eigenvalues:

Pep,e�p�
−1 = �e,e��p,p��Ee + Ep� . �7�

In this case, Eb can be re-expressed as

Eb = �
eocc

�
p

�e�� · A�p�Pep,ep�p�� · A�e� . �8�

This is our starting point to obtain the nonrelativistic
limit and the leading order relativistic correction coming
from these terms. The Dirac �or Dirac–Fock� Hamiltonian
for electrons and positrons can be expressed as

�HD − mc2��e = Ee��e, �9�

− �HD + mc2��p = Ep��p. �10�

The leading order in the energy E is given by the rest mass of
the electron and positron, and the difference, represented by
E�, which depends strictly on the states involved, will be
considered as a perturbation. As a consequence the propaga-
tor can be separated accordingly:

Pep,e�p�
−1 = Pep,e�p�

�0�−1 + Pep,e�p�
�1�−1 , �11�

Pep,e�p�
�0�−1 = 2mc2�e,e��p,p�, �12�

Pep,e�p�
�1�−1 = �e,e��p,p��Ee� + Ep�� = Pep,e�p�

�0�−1 . Me�p�,e�p�, �13�

Mep,e�p� = �e,e��p,p�
Ee� + Ep�

2mc2 . �14�

The definition of matrix M in Eq. �14� allows one to write
the propagator as

P = �1 + M�−1P�0�. �15�

Taking into account electronic states on one hand and
positronic states on the other, it is possible to write

�1 + M�ep,e�p� = �e,e��1 + M�e��p,p�, �16�

i.e., for each electronic state a corresponding matrix involv-
ing only positronic states can be defined. This matrix is dif-
ferent for each electronic state. This is clear as matrix M�e�
contains the eigenvalue of the electronic state under consid-
eration. The usefulness of such separation is given by the
fact that the inverse matrix can be factorized in the same
way, i.e.,

�1 + M�ep,e�p�
−1 = �e,e��1 + M�e��p,p�

−1 . �17�

It is readily seen that the lowest possible approximation
to the propagator P of Eq. �15� is of order 1 /c2, and only P�0�

is retained in this case. This yields the nonrelativistic dia-
magnetic term of magnetic properties. Expansion of P in
terms of 1 /c requires the linearization of the inverse matrix
as M is of order 1 /c2, and the proper definitions of the elec-
tronic and positronic manifolds in the one-particle state
space. This was the way followed in previous work.6 In the

present work we intend to develop an approximation of order
1 /c2 to the inverse polarization propagator �PP� matrix,
keeping it in the denominator of Eq. �15�. This procedure
sums the relativistic effects as a geometric series of the first
order correction, in close resemblance to the RPA approxi-
mation. Therefore, it is expected to bring calculated results
closer to four-component RPA ones.

In what follows a fixed electronic state is assumed and
the whole positronic contribution is added up. To this end we
consider matrix �1+M�e��, Eq. �17�. Consistently to order
c−2 the eigenvalue Ep� can be replaced by the nonrelativistic
limit of the Dirac equation for positrons. We start from

− �HD + mc21��p = Ep��p. �18�

Separating into upper �U� and lower �L� components, the
following is obtained:

− ��2mc2 + V��p
U + c�� · p��p

L� = Ep��p
U, �19�

− �c�� · p��p
U + V�p

L� = Ep��p
L. �20�

As it is seen, in this case �p
U plays the role of the small

component and �p
L is the large one. Following the standard

ESC scheme the following is obtained at the lowest order:

�p
U = −

� · p

2mc
�p

L, �21�

and the following equation is obtained for �p
L:

	 p2

2m
− V
�p

L = Ep��p
L, �22�

which has the form of the Schrödinger equation for a particle
in a repulsive potential. This is the only component that re-
mains at the order c0. As a consequence, consistently to the
order c−2,

M�e�p,p� =
1

2mc2 �Ee� · 1 + H+�p,p�, �23�

where H+ stands for the operator in Eq. �22�. In order to
obtain an explicit expression of this operator in four-
component Dirac space, it is useful to introduce the projec-
tors onto electronic and positronic state spaces and a unitary
operator that expresses these projectors as diagonal
operators.

The projectors onto the subspace of electronic states �Pe�
and of positronic states �Pp� consistent with the ESC scheme
up to order c−2 can be expressed as38

Pe = �1 − x2 x

x x2� �24�

and

Pp = � x2 − x

− x 1 − x2� , �25�

where
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x =
� · p

2mc
. �26�

Neglecting terms of order higher than c−2 the transformation

U = 1 −
x2

2
− x

x 1 −
x2

2
� �27�

is unitary and has the properties

U�1 0

0 0
�U† = Pe, �28�

U�0 0

0 1
�U† = Pp, �29�

i.e., this transformation yields a representation such that elec-
tronic states have nonzero amplitude only in the first two
components of the corresponding 4-spinor. In fact, this am-
plitude is described by the Pauli two-component spinor �̃e:

��e
L

�e
S � = U · ��̃e

0
� . �30�

Positronic states have nonzero amplitude only in the last
two components of the corresponding four-component
spinor. This being the case, the projection of matrix 1
+M�e� �Eq. �17�� onto the positronic manifold has the form

1 + M�e� = 0 0

0 1 +
1

2mc2 �Ee�1 + H+� � . �31�

The corresponding inverse is defined only for the lower 2
�2 block, as needed. It is readily obtained as

�1 + M�e��−1 = 0 0

0 	1 +
1

2mc2 �Ee�1 + H+�
−1 � . �32�

As mentioned above, in this representation electronic
states are described by the corresponding Pauli spinor. In
order to evaluate the matrix element of Eq. �8� the magnetic
interaction operator must be transformed to this representa-
tion:

�� · A�T = U† · � · A · U . �33�

The following is obtained:

�� · A�T = �− �x�� · A�R + R�� · A�x� R�� · A�R − x�� · A�x
R�� · A�R − x�� · A�x R�� · A�x + x�� · A�R � , �34�

where

R = 1 −
x2

2
. �35�

For the sake of brevity we define

a1 = − �x�� · A�R + R�� · A�x� ,

�36�
a2 = R�� · A�R − x�� · A�x ,

and thus

�� · A�T = �a1 a2

a2 − a1
� . �37�

This result is now inserted in Eq. �8�, where the elec-
tronic state is represented by the corresponding Pauli spinor,
denoted by �̃e:

Eb = �
eocc

1

2mc2 ��̃e�a2	1 +
1

2mc2 �Ee�1 + H+�
−1

a2��̃e� .

�38�

In order to separate explicitly the term containing the inverse
matrix of the propagator, Eb can be splitted as

Eb = Eb,NR + Eb,A + Eb,P, �39�

where

Eb,NR =
1

2mc2 �
eocc

��e�A2��e� , �40�

Eb,A =
1

2mc2 �
eocc

��e�a2
2 − A2��e�

+
1

2mc2E�2��Hmv + HDw;A2� , �41�

Eb,P =
1

2mc2 �
eocc

��e�A		1 +
1

2mc2 �Ee�1 + H+�
−1

− 1
A��e� , �42�

where ��e� are the Schrödinger spin orbitals; E�2��A ,B�
stands for a second order RSPT expression for operators A,
B:

E�2��A,B� = �
n�0

�0�A�n��n�B�0� + �0�B�n��n�A�0�
E0 − En

, �43�

and the mass-velocity and Darwin operators are given by38
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Hmv = −
p4

8m3c2 , �44�

HDw =
�2VC

4m2c2 . �45�

In Eqs. �40�–�42� a singlet ground state is assumed and there-
fore triplet operators are excluded from the final
expressions.

Eb,A gathers relativistic effects originated in the c−2 ex-
pansion of the magnetic operators a1 and a2, Eq. �36�, and on
the molecular ground state �second term of Eq. �41�. These
corrections keep the form of previous work. Eb,P, on the
other hand, contains relativistic corrections strictly originated
in the e-p propagator, which are added up as a geometric
series in the present work.

The expression of Eb, Eq. �38�, is consistent to the order
c−2. The effect of the positronic manifold is wholly taken
into account in this expression by means of operator H+. This
procedure sums the linear correction of previous work as a
geometric series and therefore it will be referred to as the
geometric ESC approximation �GESC�. The lowest order ap-
proximation is obtained by setting R=1, neglecting the term
of order c−2 in the denominator, and replacing the Pauli
spinors by the Schrödinger ones. The nonrelativistic diamag-
netic term of magnetic properties is thus obtained. In the
relativistic result, it is seen that a different operator is defined
for each electronic state. However, this dependence is only
through the corresponding orbital energy. It can be taken out
from the operator either by neglecting its value, as in the
ZORA,10–12 or by linearizing its contribution, leaving a
unique operator for the positronic contribution for all elec-
tronic states. The full linearization of the operator yields the
diamagnetic term of previous work,6 as it will be explicitly
shown in Sec. II A. It is worthy to note that from the com-
putational point of view, in order to evaluate the diamagnetic
term of Eq. �42�, the matrix representation of p2 /2m and V
are required, which are readily included as part of any
quantum chemistry program. Therefore, there is nearly no
need of extra computational effort to carry out numerical
calculations.

A. Linearization and LRESC expression
of the diamagnetic contribution

The leading order of the relativistic correction to the
diamagnetic contribution is now obtained by linearizing the
propagator Eq. �38� to obtain

Eb = �
e

1

2mc2 ��̃e�a2	1 −
1

2mc2 �Ee1 + H+�
a2��̃e� . �46�

Due to the factor 1 / �2mc2�2, the last term must be evaluated
for the nonrelativistic �i.e., Schrödinger� electronic state �e

and the nonrelativistic approximation for a2:

a2
�0� = � · A . �47�

Therefore, the expectation value for each electronic state in
the last term has the form

��e�� · A�Ee�1 + H+�� · A��e� , �48�

where Ee� in the nonrelativistic limit is the Schrödinger ei-
genvalue for the electronic state under consideration. Ee� and
� ·A can be commuted to write

��e�� · A�Ee�1 + H+�� · A��e�

= ��e�� · A�� · AH− + H+� · A���e� , �49�

where H− stands for the Schrödinger Hamiltonian for the
electronic state. Explicitly,

� · AH− + H+� · A = � · A	 p2

2m
+ V
 + 	 p2

2m
− V
� · A

= �� · A,
p2

2m
� �50�

since V and � ·A commute. � ,� stands for the anticommuta-
tor. The explicit dependence on the energy eigenvalue Ee� has
been eliminated and the whole contribution can be expressed
as an expectation value. The full result is

Eb =
1

2mc2�
e

��e�A2��e� +
1

2mc2E�2��Hmv + HDw;A2�

+
1

2mc2�
e

��e�a2
2 − A2��e� − ��e�A2x2

+ � · Ax2� · A��e� . �51�

Consistently to the order c−2 and taking into account that
x2 and A2 can be commuted in the expectation value, the last
two term contributions can be rewritten as the expectation
value for the operator:

Odiam,LR = −
1

2mc2 ��A2,x2� + 2� · Ax2� · A + �x� · A�2

+ �� · Ax�2� , �52�

which is exactly the expression found within the LRESC
approximation of previous work for the relativistic correction
of the diamagnetic contribution to magnetic properties.6,37

B. The electron-positron contribution to the nuclear
magnetic shielding tensor

Relativistic effects gathered in Eb,A are equivalent to
those calculated in previous work. The corresponding ex-
pressions for the specific case of the nuclear magnetic shield-
ing tensor are considered in this section. The nuclear mag-
netic shielding tensor of nucleus M can be obtained as

��M�i,j =
�2E

��M,i � Bj
�M=0,B=0, �53�

where E is the molecular energy in the presence of the mag-
netic fields of the nucleus and the uniform external field B0.
For a point dipole nucleus M:

AM =
�M � rM

rM
3 , �54�

and for the external magnetic field B0:
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AB = 1
2B0 � r . �55�

In what follows, the gauge origin is placed at the nucleus
position, i.e., rM =r. The explicit derivation of the final form
of the operators involved in Eb,A and LRESC Eb,P was car-
ried out in Ref. 6. A brief account is presented in the Appen-
dix. The following is obtained:

Eb,A = −
1

8m3c4 �
eocc

��e�
20�

3
�B0 · �M���rM�

+ 4	�M · L

r3 
�B0 · L� + B0 · BM,dip��e�

+
1

mc2E�2��Hmv + HDw;AM · AB� , �56�

Eb,P,LRESC = −
1

8m3c4 �
eocc

��e�	8�

3
�B0 · �M���rM�

+ + 4�AM · AB�p2 + B0 · BM,dip
��e� , �57�

where

BM,dip =
3��M · rM�rM − �MrM

2

rM
5 �58�

is the dipole component of the nucleus magnetic field.
Within the formalism developed in the present work, the ex-
pression of Eb,P is given by

Eb,P =
1

2c2 �
eocc

��e�	�M � r

r3 

�		1 +

1

2mc2 �Ee�1 + H+�
−1

− 1
	B0

2
� r
��e� .

�59�

The corresponding contributions to the magnetic shield-
ing tensor �M obtained according to Eq. �53� will be referred
to as �b,A and �b,P, respectively.

III. METHOD OF CALCULATION

In order to carry out numerical calculations of the e-p
contribution to the nuclear magnetic shielding tensor with
the formalism of the previous section the following proce-
dure was adopted. Contributions contained in Eb,A involve
operators for which explicit numerical results were obtained
in previous works,7–9,43 both with the DALTON �Ref. 44� and
SYSMO �Ref. 45� programs. In order to calculate the newly
developed term Eb,P a computational program was imple-
mented which works as a subroutine of the SYSMO program.
The matrix representation of the inverse propagator of Eq.
�59� is carried out in the molecular orbital �MO� basis set of
a Hartree–Fock calculation. The eigenvalue of the electronic
state E� of each term of Eq. �59� is replaced by the corre-
sponding orbital energy of the involved MO. This is consis-
tent with taking the Fock operator as the one-body Hamil-
tonian of the problem. Consistently, the matrix elements of

operator H+ were also defined on the basis of the Fock op-
erator F in the following way:

H+ = T − VF = 2T − F , �60�

where T is the kinetic energy operator and VF stands for the
Hartree–Fock potential. The corresponding matrix elements
are obtained from the SYSMO program files. Once the matrix
representation of the inverse propagator of Eq. �59� is ob-
tained, the calculation of Eb,P is carried out by inserting the
matrix representations of the nuclear magnetic potential op-
erator and the uniform magnetic field potential operator,
which are included in the SYSMO program. For comparison
purposes, the linearized LRESC propagator is obtained with
the same procedure, i.e., as the matrix products of the linear-
ized propagator and magnetic field operators. The calculated
values can be splitted into individual MO contributions, al-
lowing interesting insight into the obtained values. The non-
relativistic diamagnetic contribution is also obtained with the
nonrelativistic propagator P�0�, Eq. �13�, and the same mag-
netic field operators. It is worthy to observe that both at the
relativistic and nonrelativistic levels, it is necessary to en-
large the atomic basis set with higher angular momentum
basis functions in order to obtain appropriate matrix repre-
sentations of the vector operators involved.

IV. RESULTS AND DISCUSSION

In order to carry out numerical calculations the noble gas
atoms Kr and Xe and the hydrogen halide IH were taken as
model compounds. The main reason for this choice is the
existence of a large amount of benchmark numerical results
for these systems in the current bibliography. The basis sets
used in the calculations are based on Faegri’s basis sets46 for
Kr and Xe and aug-ccpVTZ basis47–49 for I, enlarged in dif-
ferent ways until saturation of results was achieved. On one
hand, tight functions were added in order to have flexibility
in the vicinity of the heavy nucleus. On the other, higher
angular momentum basis functions were added in order to be
able to reproduce the action of the vector operators involved
in Eq. �59�. In the latter case, it was verified that the nonrel-
ativistic value obtained with Eq. �59� in the limit c→	 is
coincident with the result of the diamagnetic operator. The
final results make use of uncontracted basis sets of quality:
�17s24p18d8f� for Kr, �22s21p15d15f� for Xe,
�23s18p13d13f� for I, and �6s4p3d� for H.

Results for the noble gas atoms Kr and Xe are presented
in Tables I and II, respectively. Values obtained with the
formalism developed in the present work are indicated as
“GESC” to indicate that the geometric approximation of the
propagator is used. Values of the LRESC approach are also
quoted for comparison. Contributions from individual con-
verged occupied orbitals are listed. As it was shown in pre-
vious work,50 the total relativistic effect is defined to a large
extent by contributions from the inner shell s-type orbitals. It
is seen that for these contributions the GESC and linearized
LRESC values differ significantly. As a consequence, contri-
bution �b,P to the relativistic effect on e-p rotations is re-
duced in absolute value by a factor of nearly 2 in both Kr and
Xe. The difference between both approaches becomes less
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important as orbitals with zero density at the nucleus are
considered. It is worthy to note a significant difference in the
stability and reliability of results of the GESC and LRESC
calculated values as obtained in the present work. As the
basis set is enlarged with tight s-type functions, the linear-
ized propagator shows numerical problems, which are due to
the 1 /r dependence of H+. This difficulty is only overcome
when the operator form of Eq. �52� based in the elimination
of the potential V in Eq. �50� is considered. On the contrary,
in the GESC expressions, inclusion of tight s functions does
not have a significant influence in the propagator matrix, as
in this case the large effect of the 1 /r dependence is in the
denominator. This is a situation in which the linearization in
terms of c−2 yields an operator expression which is singular
in the vicinity of the nucleus. This singularity is spurious and
does not correspond to a good description of the relativistic
effect. The GESC propagator overcomes this problem in a
way similar to that of the ZORA10–12 approach.

In Table III the total e-p contribution and the total abso-
lute value of the relativistic nuclear magnetic shielding con-
stants of the isolated Kr and Xe atoms and of I in IH ob-
tained in the present work are compared to four-component

and previous Breit–Pauli and LRESC two-component results
of the bibliography. In order to obtain the full e-p values of
Table III, the contributions arising from Eb,A, Eq. �56�, must
be computed. As it is shown in the Appendix, the corre-
sponding values can be obtained by adequate rescaling of
numerical data taken from Refs. 7 and 43 or Refs. 8 and 9. It
is seen that the GESC result comes much closer to the four-
component ones than the LRESC/BPPT values in all cases.
The differences in the cases of Xe and I are within 1% of the
total absolute shielding.

V. CONCLUDING REMARKS

An alternative approach for the calculation of the e-p
contribution to magnetic properties within the LRESC
scheme was developed. Its main features are as follows. The
ESC approximation is applied to the inverse propagator ma-
trix in such a way that the relativistic effect is now summed
up as a geometric series. However, no explicit evaluation of
positronic states is needed and the final form is expressed in
terms of Breit–Pauli spinors corresponding to electronic
states only. Due to the presence of operator H+ in the de-
nominator, a singularity in the vicinity of the nucleus is
avoided, yielding a better description of the sought relativis-
tic effect. This feature has a deep influence in numerical
results of the nuclear magnetic shielding tensor, especially on
those contributions corresponding to inner shell tight orbit-
als. In fact, numerical results presented in this work show
that with the GESC approximation, the inner shell s-type
orbitals yield a smaller contribution in absolute value as
compared to the LRESC scheme. As a consequence, the total
nuclear shielding of the heavy nucleus is in close agreement
with results of four-component approaches for atomic num-
bers of the order Z=50, i.e., in the fifth row of the Periodic
Table.
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APPENDIX: EXPLICIT FORM OF LRESC OPERATORS
FOR THE E-P CONTRIBUTION TO THE
MAGNETIC SHIELDING TENSOR

The first term of Eq. �56� is worked out as follows:6,37

E1
b,A =

1

2c2 �
eocc

��e�a2
2 − A2��e�

=
1

2c2 �
eocc

��e��N�� . A�N − x�� . A�x�2 − A2��e�

=
− 1

8c4 �
eocc

��e�
1

2
p2A2 + Ap2A + �� · A� · p�2

+
1

2
� · Ap2� · A +

1

2
A2p2 + �� · A� · p�2��e� , �A1�

where x and N were defined in Eqs. �26� and �35� and terms

TABLE I. Atomic orbital contributions to relativistic effects on the nuclear
magnetic shielding constant of Kr for the isolated atom arising from e-p
rotations given by Eq. �59�. LRESC, GESC, and difference between both.
Values in ppm.

AO NR

�b,P

DifferenceGESC LRESC

1s 1260.13 
121.27 
208.73 87.45
2s 281.11 
13.64 
23.91 10.27
2P ��3� 279.32 
3.09 
3.21 0.12
3s 93.63 
2.28 
3.09 1.62
3p ��3� 89.56 
0.53 
0.54 0.02
3d ��5� 80.83 
0.17 
0.17 0.001
4s 28.55 
0.24 
0.83 0.59
4p ��3� 23.29 
0.04 0.07 
0.11
Total 3244.08 
149.26 
249.28 100.02

TABLE II. Atomic orbital contributions to relativistic effects on the nuclear
magnetic shielding constant of Xe for the isolated atom arising from e-p
rotations given by Eq. �59�. LRESC, GESC, and difference between both.
Values in ppm.

AO NR

�b,P

DifferenceGESC LRESC

1s 1898.06 
324.70 
618.91 294.20
2s 436.98 
39.39 
63.39 24.01
2p ��3� 436.28 
11.06 
12.10 1.03
3s 160.71 
8.24 
16.80 8.56
3p ��3� 157.76 
2.48 
2.71 0.24
3d ��5� 152.80 
1.017 
1.035 0.017
4s 65.41 
1.75 
5.23 3.48
4p ��3� 61.82 
0.504 
0.546 0.042
4d ��5� 53.56 
0.170 
0.173 0.003
5s 23.00 
0.218 
0.304 0.086
5p ��3� 19.47 
0.059 
0.026 
0.033
Total 5641.98 
422.56 
756.82 334.27
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of order higher than c−4 have been neglected. The following
relations hold:

��e�p2A2��e� = ��e�A2p2��e� �A2�

for ��e� a real wave function,

��� · p��� · A��2 + ��� · A��� · p��2

= ��� · p��� · A� + �� · A��� · p��2 − �� · p�A2�� · p�

− �� · A�p2�� · A� �A3�

in the Coulomb gauge,

�� · p��� · A� + �� · A��� · p� = 2p · A + � · B , �A4�

pA2p = �pA2� · p + A2p2, �A5�

where the brackets indicate that p acts only on A2.
Considering a singlet ground state wave function and

therefore neglecting spin-dependent operators, Eq. �A1� can
be re-expressed as

E1
b,A = −

1

8c4 �
eocc

��e�4�p · A�2 + B2 − �pA2� · p��e� , �A6�

��e��pA2� · p��e� = 1
2 ��e��2A2��e�

= ��e��A · �2A� + ��iAj���iAj���e� ,

�A7�

where i , j stand for Cartesian components and Einstein’s
convention of sum of repeated indices is applied.

Inserting the magnetic potentials of the uniform and
nucleus fields and retaining terms bilinear in � and B0 the
following is obtained:

��e�2��iAN,j���iAB,j���e� = ��e�B0 · BN��e� , �A8�

��e� − AB�2AN��e� = 4���e�AB · �� � ���rN����e� ,

�A9�

��e�AB · �� � ���r����e� = ��e�� · B0��rN���e� , �A10�

and, therefore,

E1
b,A =

− 1

8c4 �
eocc

��e�4	� . LN

rN
3 
�B0 · L� + B0 · BN

+ 4�� · B0��rN���e� . �A11�

Separating explicitly the Fermi contact term of the nucleus
magnetic field the following is obtained:

E1
b,A = −

1

8c4 �
eocc

��e�4	� · LN

rn
3 
�B0 · L� + B0 · BN,dip

+
20�

3
� · B0��r���e� . �A12�

The Eb,P,LRESC contribution contains the following matrix el-
ements:

��e��� · A���� · A�p2 + p2�� · A����e�

= ��e�A2p2 + Ap2 · A��e� , �A13�

where only spin-independent operators are retained as a sin-
glet ground state wave function is assumed. Since

p2A = �p2A� + 2�piA�pi + Ap2, �A14�

TABLE III. Comparison of e-p contributions and total values of the nuclear magnetic shielding constant of Kr, Xe, and I obtained with present work GESC
formalism, LRESC, and four-component methods. Values in ppm.

Nucleus Kr Xe I

NR 3244.08, 3245.67a 5641.98, 5642.30b 5505.40b

�b,Ac 
124.51 
420.48 
385.72
�b,P LRESC 
249.28, 
251.12c 
756.82, 
882.57c 
819.05
�b,P GESC 
149.26 
422.56 
400.61
Total e-p LRESC 2868.45 4338.93 4300.63
Total e-p GESC 2968.5 4798.94 4719.07
Four-component e-p 2990a 4992.8,b 4905a 4889.1b

LRESC e-ed 685.3 1379.6 1242.9
Total LRESC/BPPT 3553.8e 6718.5,e 6747.2f 5543.5g

Total GESC 3653.8 7052.8 5962.0
Total four component 3598,h 3525.5,i 3572.6,j

3577.3,a 3593.4k
7040,h 6660.9,i 6982.2,j

6938,a 7011.6,b

7017.5,k 7019.8f

5855.3,b 5913.7e

aReference 4.
bReference 5.
cReference 43. Rescaled as indicated in the Appendix.
dCalculated as the difference of the total LRESC/BPPT value and present LRESC e-p contributions.
eReference 9.
fReference 31.
gReference 7.
hReference 52 �RRPA�.
iReference 51. FPT-DF calculation with finite nucleus.
jReference 13.
kReference 20.
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2A · �piA�pi = �pA2� · p , �A15�

where once again brackets are used to indicate that operator
p acts only on functions contained in it and making use of
Eq. �A7� the following is obtained:

��e�Ap2 · A��e� = ��e���iAj���iAj� + A2p2��e� . �A16�

As a consequence, Eq. �A13� can be expressed as

��e�A2p2 + Ap2 · A��e� = ��e�2A2p2 + ��iAj���iAj���e� .

�A17�

Inserting the magnetic potentials of the uniform and nucleus
magnetic fields and retaining terms bilinear in � and B0 the
following is obtained:

Eb,P,LRESC = −
1

8c4 �
eocc

��e�4�AB · AN�p2

+
8�

3
�� · B0��rN� + B0 · BN,dip���e� . �A18�

In Refs. 8, 9, and 43 numerical values for the relativistic
corrections of the diamagnetic term are classified as �cont,
�d-KE, �L-PSO and �dip, which are obtained from the following
energy expressions:

Econt = −
2�

3c4 �
eocc

��e��� · B0��rN����e� , �A19�

Ed-KE = −
1

2c4 �
eocc

��e�4�AB · AN�p2��e� , �A20�

EL-PSO = −
1

2c4 �
eocc

��e�4	� · LN

rn
3 
�B0 · L���e� , �A21�

Edip = −
1

4c4 �
eocc

��e�B0 · BN,dip��e� . �A22�

This last term makes no contribution to the isotropic shield-
ing for the systems under study in the present work.

Explicitly, the relations applied in order to obtain nu-
merical results from Ref. 43 are

E1
b,A = 5

4Econt + EL-PSO + 1
2Edip, �A23�

Eb,P,LRESC = 1
2Econt + Ed-KE + 1

2Edip. �A24�
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