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  We present an algorithm for modeling the magnetotelluric response of three-dimensional 

multilayered structures with irregular interfaces. In this formulation, based on a Rayleigh-

Fourier technique, the effect of vertical anisotropy in the electrical conductivity has also been 

included. This method has an applicability range complementary to other solutions based on 

finite differences or on integral equations, which are especially adequate to model localized 

bodies intruded in a host medium. 

   To test the method, the MT response of a simple conductive structure was modeled and 

compared with the solutions obtained using integral equations. A good agreement between 

the results with similar processing times have been observed. Finally, the effect of anisotropy 

was estimated for the particular case of a conductive basin, showing a non-negligible contribu-

tion, depending on the relation between the vertical and horizontal values of the conductivity.

1. Introduction

   The magnetotelluric method has been proved to be the one of most reliable ways to charac-
terize crustal and upper mantle regional conductivity anomalies. The interpretation of MT data 
requires the application of numerical methods to model the geoelectrical structures. Due to the 
complexity of them, they are often simplified assuming a 2-D geometry. 

   Several methods have been developed for 2-D modeling, usually using finite element and finite 
difference techniques (e.g., Wannamaker et al., 1987; Smith and Booker, 1991) or Rayleigh-Fourier 
expansions (e.g., Jiracek et al., 1989; Osella and Martinelli, 1993). In order to determine the 
applicability of these models for the interpretation of field data, a previous analysis of distortions 
have to be performed. Different diagnostic tests have been developed to establish the dimension 
of the structure and the best way to approach it (Bahr, 1988; Groom and Bailey, 1989). Though 
for many studies, the 2-D modeling can give a realistic interpretation of data, the presence of 3-D 
structures introduces strong distortions to the electromagnetic responses (see e.g., Livelybrooks 
et al., 1996; Mackie et al., 1996; Pomposiello et al., 1996). 

   In recent years, many efforts have been focused to solve this kind of problems. First methods 
have been developed using integral equation (IE) approaches (e.g., Hohmann, 1975; Wannamaker, 
1991). These methods are specially adequate when dealing with a few number of blocks embedded 
in a 1-D layered medium, but become difficult to apply when the complexity of the structure 
increases. 

   3-D modeling using difference equations (DE) have been carried out, e.g., by Mackie et al. 
(1993) and Livelybrooks (1993). In these papers, 3-D algorithms were proposed which let to 
model more arbitrary complex media, using finite differences on a staggered grid. The design 
of the grid becomes then an important element in the description of the model, and again the
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complexity increases as the structure is more variable, specially when changes occur in a gradual 
way. 

   In a previous paper, we have developed an algorithm to model the MT response of 2-D 
structures composed of homogeneous anisotropic layers with smooth irregular boundaries, using 
a Rayleigh-Fourier (RF) technique. Results obtained with this method were in agreement with the 
ones obtained by finite elements and finite differences for some simple structures and have proved 
to be more adequate when large scale variations are involved (e.g., Osella et al., 1993). Then, 
in the present paper, we modify this method in order to apply it to model 3-D structures. The 
development of this method is performed assuming anisotropic media. We apply it to a conductive 
intrusion model and compare the results with the ones obtained using integral equations, from 
Wannamaker (1991) and also with the curves obtained assuming a 2-D behavior. Finally, we 
model a conductive basin to evaluate the effect produced by vertical electric anisotropy.

2. Theoretical Model

   The method is formulated for 3-D layered structures with irregular boundaries described by 
functions z = S„ (x, y) with 1 < n < N - 1 (see Fig. 1). 

    It is assumed that each medium is linear, homogeneous and non-magnetic, but the model 
includes the possibility of vertical anisotropy of the electrical conductivity; the electric and mag-
netic field vectors have a harmonic time dependence exp(iwt). For the frequencies w employed 
in magnetotelluric soundings and for the conductivities usually encountered, the quasi-stationary 
approximation is valid; then inside the earth, in layer n, the fields satisfy:

V x En = -iwµo Hn, 

OxH = o E
(1) 
(2)
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Fig. 1. Proposed N-layered model. Interfaces are functions of x and y . The electrical conductivity of each 
   medium can present electrical anisotropy.
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where µo is the ma gnetic permeability of free space and

or, =

 (n) 
h 
0 

0

0 

a (n) h 

0

the electrical conductivity tensor. 
   In the air (medium 0): 

                                V2Ho=0. 

   The unknown external field, that can be considers 
form: 

                 He(W) _ (Hye)(W)x+

0 

0 

or (n)

considered horizontal

(w)x+H(e>(W)g).

(3)

             (4) 

and spatially uniform, has the

(5)

   Then, defining Hhor ,n and Ehor,n as: 

              Hhor,n(x,y,z,W) = Hin)(x,y,z,w)x+ Hyn)(x,y,z,W)y, (6) 
               Ehor,n(x,y,z,W) = E(n)(x,y,z,W)x+Eyn)(x,y,z,W)y, (7) 

and taking into account the linearity of Maxwell equations, the following relations can be written: 

                        Hhor,n(x, y, z, W) _ 77.(x, y, z, W)He(W), (8) 
                       Hin) (x, y, z, W) = 0z,n (x, y, z, W )IL (W), (9) 

                        Ehor,n(x, y, z, W) = bn(x, y, z,W)He(W), (10) 
                    E(n)(x,y,z,W) = fz,n(x,y,z,W)H0(W) (11)

where the quantities 77, and l;n, which are tensors of dimension (2 x 2), and 7/z, and Sz,n, which 
are file vectors of dimension 2, do not depend on the inducing field. Then, the impedance tensor, 
Z, and the tipper, T, are given by: 

                   Z(x,y,W) = t1(x,y,O,W)Oir(x,y,0,w), (12) 
                   T(x,y,W) = O2,i(x,y,O,W)rhl(x,y,0,W). (13)

   They are calculated obtaining the response at the earth surface for two different linearly 
polarized external fields, one in the x direction and the other in the y direction. This is done 
applying Rayleigh's scattering theory on every interface. As it is well known, as some multiple 
reflections are not included in Rayleigh's formalism, it actually constitutes an approximation. 
However, this approximation works well in many cases provided that boundary slopes are not 
too large (Lippmann, 1953; Miller, 1971); using the method presented here, structures have been 
accurately modeled having maximum boundary slopes between 50 and 60 degrees, depending on 
layer resistivities. 
   The treatment can be simplified assuming that the interfaces Sn(x,y) are even and peri-
odic functions of x and y, their periodicities namely A and Ay. The studied area (see Fig. 1) 
corresponds to points (x,y) such that Ix - as/41 < Ls/2 and Iy - Ay/41 < Ly/2; outside this 
zone, that is, for points such that Ls/2 < Ix - az/4I < As/2 and Ly/2 < ly - Ay/41 < A,/2, the 
interfaces are plane. The effect that the imposed symmetries and periodicities exert over the zone 
of interest can be neglected if A and ay are taken long as compared with Lx and Ly.
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2.1 External field polarized in the x direction 
  When He has the form: 

He(w) = Hse)(w)2 
from Eq. (5) and Eqs. (8) to (11) it is obtained that: 

                  Hj") (x, y, z, w) = rljx) (x, y, z, w)H(e) (w), 
                    Ej") (x, y, z, w) = (n) (X, y, z, w)Hye)(w) 

with j = x, y and z. 
   Due to the imposed symmetries and periodicity, gjx) and ~(z) can be written as: 

             nzx) (x, y, z, w) _ f ,m (z, w) cos(kx{x) cos(kymy), 
                                                l,m>_0 

             '7ys)(x,y,z,w) _ - E gi,.).(z,w)sin(kx{x)sin(kymy), 
                                                  l,m>_o 

             rhx)(x,y,z,u) _ h „),(z,w)sin(kxlx)cos(kymy), 

             c(x)(x,y,z,w) _ - p1 n(z, )sin(kx{x)sin(kymy), 
                                          l,m>0 

             £(x) (x, y, z, w) _ > q ,,) (z, W)                                        cos(kx{x) cos(kymy), 
                                                l,m>0 

             ~zx)(x,y,z+w) _ - 1 r(m(z,w)cos(ky(x)sin(kymy) 
                                              {,m>_0 

with: 

                                  kxl = 217r/Ax, 
                                  kym = 2mir/ay. 

For n > 1, replacing Eq. (2) in Eq. (1) and defining: 

                             'Yn - zwµaaA")+ 
                                         a(n) 

                          an = 
a(n) , 

the following is obtained: 

          (-an ay - a2 + 12)H,") + an,90vHyn) +,9X 8xH(n) = 0, 
              a-MYHi") + (-anax - ai + 7y)Hyn) + ayax Hin) = 0 

               Ox 8.H(n) + 8y8xHy") + (-as - 8y + ryn)H(n) = 0. 

   Parameters an measure layer anisotropies; they are usually greater or equal that 
   Considering Eqs. (15), (17), (18) and (19), it is found that V t, m > 0 the function 
and hfm satisfy the equations: 

n (n) 
         (n'nkym + 7.)f(m) - dzf{2m) - ~nkx{kymgl(. + kx{ dhi"' = 0, 

                            dz dz

(14)

(15) 

(16)

(17) 

(18) 

(19) 

(20) 

(21) 

(22)

(23) 

(24)

25 

26(

xayHy,n/ + asa~H,,n' = 0, (27) 
7n)Hyn) + aya.H,nl = 0 (28) 
8y + Tn)Hyn) = 0. (29) 

are usually greater or equal than one. 

)und that V 1, m > 0 the functions .fl(mn), 9,(.n)

(30)
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            -ankx(kym fl(m) + (ankxi + Yn)9i 1 ddzz 1 + kv ddzm = 0, (31) 
(.n I -kx1 ddz f/(m) - kYm dg~ 1 + (ka/ + kym +'Y2 )hs+n = 0, (32)                   d~z dz 

whose general solutions are (see Appendix): 

   fiml (z, w) _ (Akxl + 61obmo)(Ain; (w) exp(Ri„W (w)z) + Biml (w) exp(-Rim (w)z)) 
             +(akym + 6lo6mo) (C1m) (w) exP Pin; (w) z) 

             +Dirm(w)exp(-Q1 )(w)z)), (33) 
    9tml (z, w) _ (Akym + 6to6mo)(A%l (w) exP(Rira (w)z) + Bin (w) eXp(-Ri,.,' (w)z)) 
              -(Akxt + 61o6ma) (Ciml (w) exp(Qim (w)z) 

             +Dj(.,)(w)exP(-Qi )(w)z)), (34) 

    him (z, w) _ Akam (AInni (w) exp(Rin; (w)z) - Bi,nnl (w) eXp(-Rim(w)z)) (35) 
          R(n (w) 

where A= axay and: 

                                           ym, (36)                                  krzlm = kxzl + k2 

                      (Rlm )2 = krim +'yn, (37) 
                        (Qim )2 = ankrim + "Yn' (38) 

   For each frequency, Airs , B,(ml, C,(ml and Dim) are complex numbers that depend only on the 
subsurface structure. B ) and Di„) are related with the upgoing fields and Aim and Ciml with 
the downgoing ones. 

   Considering, from Eqs. (18) and (19), that gj) is undefined when l or m are 0 and ha is 
undefined for any m, the value of these functions is chosen to be 0. To satisfy this condition it is 

necessary that: 

               A00 = Cool, (39) 
                R00 = Dool, (40) 
                Ao,a = Bonn) = Clon1 = Dio -0 . (41) 

   Once the general solutions for the magnetic field have been found, the electric field can be 
obtained from Eq. (2). Considering Eqs. (20), (21) and (22), it results that: 

 p(aa;(z,w) = R(n)nn + 6n(w)a [Alm(w)eXp(Rim(w)z)-Biml(w)exp(-Rim(w)z)) 
               tm( ) 

\            + (Ql'Yn(w) xl + 7 45106.0 n (1-M)~/ [Ciml(w)exp(Q1_(w)z) 
           DIm (w) eXp(-Qim(w)z)), (42) 

 4j(Z) (z,w) _ (R(nli +(w)A ) 'M (A(')(w)eXp(Rin(w)z)-Binl(w)exp(-Ri.(w)z)j 
               im(w) yn
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          + Qin, (w)kem + 6to6mo ~Cin)(w)eXp(Qdn(w)z) 
               7n(w) 'Yn(w)~ 

          -Dim) (w) exp(-Qim (w)z)), 
 rim) (z, w) _ - yin krlm [Clm) (w) eXP(Qtm (w)z) + Dim (w) eXp(-Qin)                                     ; (w)z)). 

              7n (w) 
   In the air, g g            taking into 

of Eq. (4) are: 

         ftlm)(z,w) = (AkxlAion)(w)+AkymC(,on)(w))exp(krlmz)+26to6mo, 
         9im)(z,w) = (akymAion)(w) - akszCim)(w))exp(krlmz), 
         him) (z,,,) = \kr1mAim) (w) exp(krlmz) 

with: 

                      Aoo =Cio)=0 
Vl,m>0. 

   When Rayleigh's approximations are valid the s                                              series 
and m can be truncated at a finite number L. This 
each layer n in the earth is determined by 4L(L + 1) 
Applying the adequate boundary conditions, the coe 
the response at the earth surface can be calculated. 

    At the earth surface, Hx and Hy are continuous, gr 
0, from Eqs. (33) to (35) and Eqs. (45) to (47), it is obtained that:

(43) 

(44)

         account that the external field is spatially uniform, the neral solutions e

(45) 

(46) 

(47)

(48)

    (17) to (22) converge, so subscripts l 
implies that the value of the fields inside 

+2 coefficients, Aa ~, Binn), C(nl) and Dim. 
fficients Aim, Bim, C~ and Dim that define 

then for each l and m r or equal than                    eate

 akxlAIM (w) + aky nCIM (w) + 26to6mo = \kxt(Ain (w) + B$ (w)) + Akym(Cim (w) + Dim (w)) 
                         + 26L06mo(Aoo (w) + B o) (w)), (49) 

 akynA1°n)(w)-akxlCl(oa)(w)=.\kym(Aim(w)+Bim(w))-Akxl(Cim(w)+Diln)(w)). (50) 
   On each interface n, with 1 < n < N - 1, the tangential components of H and E are 
continuous. Then, considering Eq. (15) and Eqs. (17) to (19): 

               fl(m(S, (x, y), w) cos(kxlx) cos(kymy) 
                      l,m>0 

                  +axSn(x, y) > hl m(Sn(x, y), w) sin(kxlx) cos(kymy) 
                                                l,m> _0 

                   fl(')(Sn(x,y),w)cos(kxlx)cos(kymy) 
                              l,m>0

    +axSn(x,y) It lml)(Sn(x,y),w)sin(kxlx)cos(kymy), 
                       1,m>_0 

   gi m(Sn(x, y), w) sin(kxlx) sin(kymy) 
l,m>0 

      -8ySn(x,y) hin (Sn(x,y),w)sin(kxlx)cos(kymy) 
                          l,m>_0 

      g1,, (S-(x, y), w) sin(kxlx) sin(kymy) 
        l,m>0 

    -aySn(x,y) E hlml)(Sn(x,y),w)sin(kxlx)cos(kymy) 
                       l,m>0

(51)

(52)
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where fi',n, ga ,n and hi „l, are given by Eqs. (33) to (35). On the same way, from Eq. (16) and 
Eqs. (20) to (22):

   pi„l,(Sn(x,y),w) sin(kxtx) sin(kymy) 
l,m> _0 

      +axSn(x, y) > r,n(SS(x, y),w) cos(kxtx) sin(kymy) 
                          i,m>0 

        pl m 11 (Sn(x, y), w) sin(kxix) sin(kymy) 
        l,m>_0 

    +axSn(x, y) rd m 1) (SS(x, y), W) cos(kyix) sin(kymy), 
                       l,m>_0 

   qi,' (So (X, y), w) cos(kxtx) cos(kymy) 
i,m>0 

       -aySn(x, y) > ri,m(Sn(x, y),w) cos(kxtx) sin(kymy) 
                          i,m>_0 

   _ 9,n;ll(Sn(x,y),w)cos(kxix)cos(kymy) 
        i,m>0 

    -aySn(x,y) > r,n ll(Sn(x,y),w)cos(kxix)sin(kymy) 
                     i,m>0

(53)

(54)

with p~ ,;, ql ,n and r~ n defined by Eqs. (42) to (44). 
   Multiplying Eq. (54) by cos(kxtx) cos(kyjy), for 0 < i, j < L, and Eq. (52) by 

sin(kxix)sin(kyjy),for 1 < i,j < L, and then integrating over the rectangle -ax/2 < x < ax/2, 
-.\ y/2 < y < ay/2, 2L(L + 1) + 1 linear equations that relate the coefficients Aim, Bi,,,, Clm and 
Dim of the medium n with the ones of the medium n + 1 are obtained. These equations do not 
depend on the coordinates. Giving a similar treatment to the Eqs. (53) and (54) which arise from 
the continuity of the tangential components of E, 2L(L + 1) + 1 additional relations are obtained. 
It must also be considered that in the deepest medium, N, Aim) and C(') are 0. 

    These systems of equations are solved to obtain the functions rlxx, tiyx, rizz, exx and Syx for 
n = 1, at z = 0, using an analogous procedure to the one implemented for the 2-D case (Osella 
and Martinelli, 1993). This 2-D Rayleigh-Fourier method has been widely tested by comparison 
with FE and FD techniques to establish a self-consistency criterion for the determination of 
the validity of Rayleigh's approximation, in each particular case. As Rayleigh solutions are an 
approximation, there are residual discontinuities of the tangential components of the fields at layer 
interfaces. When the approximation is valid, the root mean squared values of these residuals can 
be reduced to a level below one or two points per cent; in addition, the series expansion of the field 
components converge. On the contrary, when the approximation is no more valid, the residual 
discontinuities are large, and cannot be reduced by increasing the number of scattering orders, L; 
in these cases, either, the series directly exhibit an oscillatory behavior, or they are convergent 
for small values of L and then become divergent as L increases. These results are in agreement 
with those obtained by Jiracek et al. (1989), and they seem to be valid also for 3-D cases, as it 
has been observed analyzing the behavior of RF solutions of a great variety of 3-D structures. 
The maximum boundary slopes that can be correctly modeled lie typically in the range 50-60 
degrees, but can exceed these values in very resistive cases.
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2.2 External field polarized in the y direction 
   In this case He is given by: 

                       He (w) = Hye) (w)y (55) 

then, from Eq. (5) and Eqs. (8) to (11): 

                 H(n)(x,y,z,w) = rhy (x, y, z,w)Hye)(w), (56) 
                Ejn)(x,y,z,w) _ ~jy)(x,y,z,w)Hae)(w) (57) 

with k = x, y and z. 

   Now, the existing symmetries imply that: 

            'gzy)(x,y,z,w) _ - > f1,R(z,w)sin(kx,x)sin(kymy), (58) 
        1,m>_0 

             ~1(y)(x,y,z,w) _ g(n) (z,ul)cos(kxlx)cos(kymy), (59) 
                                               l,m>0 

            r)~y)(x, y, Z' W) _ - hi „(z, w) cos(kxlx) sin(k,my), (60) 
        1,m>_0 

            ~zy)(x, y, z, w) _ Pi (z, w) cos(kxlx) cos(kymy), (61) 
                                               1,m>0 

             ~yy)(x,y,z,w) _ - g1,.(z,w)sin(kxlx)sin(kymy), (62) 
                                                  l,m>_o 

             f~o(x,y,z,w) _ ri,.(z,w)sin(kxlx)cos(kymy). (63) 
                                               l,m>_o 

   For n >- 1 it can be demonstrated that, for this polarization, the functions fl~m, g~ m, h( n, 
pi , qj„ and r(n) also have the form shown in Eqs. (33) to (35) and Eqs. (42) to (44), but in 
this case:

                A00 = -Coo), 
               B00 = -Duo , 

                    A10 (n) = B10 = C0m = D(n) = 0. 

   In the medium 0, considering the form of the external field, it results: 

         f(o„)(z,w) _ (Akx1Aim)(w)+Aky,,,Ci,,;(w))exp(krlmz), 
         9iv.)(z,w) _ (AkymAlm(w)-AkxtC(o (w))exp(krlmz)+261o6mo, 
         him)(z,w) = AkrlmAim)(w)eXp(krlmz) 

with: 

                       Aio)-C0m)=0. 
   The response at the earth surface is obtained applying th 
in the last section, continuity of the tangential components o 
S. (x, y), 

{with 1 < n < N - 1, and continuity of Hx and Hy qyy, 'gxy, Sxy and £yy, for n = 1 are obtained.

(64) 

(65) 

(66)

(67) 

(68) 

(69)

              (70) 

e same boundary conditions that 
f the fields on each interface z = 
at z = 0; then, the functions rlxy,
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 3. A Conductive Intrusion: Comparison of IE and RF Solutions and Evaluation of 3-D Effects 

   To test the formulation, its results are compared with those obtained using the IE method 
implemented by Wannamaker (1991), for an isotropic case. 
   The structure modeled by IE consists of a conductive cuboid embedded in a host, semi-
infinite medium of resistivity 50 92m; the resistivity of the body ranges from 5 S2m at its center to 
30 Qm at its border (Fig. 2(a)). This structure is approximated by a three layer, smooth model, 
with resistivities pi = 50 S2m, p2 = 5 Qm and p3 = 50 Stm (Fig. 2(b)). The boundaries are 
described by the following function: 

            if 0<x<xoand0<y<yo: 
             SS(x,y) = P + D., (71) 

            if xo + G < x and yo + G < y: 
             Sn(x,y) = P, (72) 

            if xo<xCxo+Gand0<y<yo: 

          S.(x,y)=P+2 n [1+cos\7r(xCxo))] (73) 
            if 0<xCxoandyo <yCyo+G:

a

E 2000 

N

!GPi

7r (a)

50 ohm-m

30 ohm-m 

10 ohm-m 

5 ohmtn

4000

a

E 2000 

N

4000

-4000 -2000 0 
x(m)

2000 -4000 -2000 a 

y (m)

30 ohm-m 

10 ohm-m 

5 ohmm

2000 4000

         (b) air sir 

           So ohm-m SO Ohmm        0 I 0 

 E I D 

 N 2000 5ohman 2000D 
                                                                  DZ 

                                                           S ohmm 
                              X0 G Yo G 

           50 ohm-m 50 ohmin 

    4000 4000 I. 
      -4000 -2000 0 2000 4000 -4000 -2000 0 2000 4000 

                x(m) y(m) 

Fig. 2. Conductive intrusion models chosen to make the comparison between the IE method from Wannamaker 
   (1991) (2a) and the RIP method presented here (2b). Figure 2(b) also shows the geometrical meaning of the 
  parameters involved in the definition of the interfaces (Eqs. (71) to (75)).
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(d)

A
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a
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4

 _..+....

-A-

  T- IO. 

    IE 

_..+..._ y=Om 

     p120om 
...... } ... y-2000M
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Fig. 3. Apparent resistivity curves pzy and pyz for the conducting cuboid obtained by IE together with the 
   results corresponding to the smooth model calculated by RF.

          S,(x,y)=P+-" I1+cos(~(yGyo)11 (74) 
             if xo <x< - and yo <y <yo+G: 

         S„(x,y)=P+Da [i+cos(7r(xGxo))] Ll+cos',,(yGyo))] (75) 
for n = 1 and 2. Selected values of the parameters are: xo = 1500 m, yo = 500 m,G = 1000 m, 
P = 2000 m, D1 = -500 m and D2 = 500 m; their geometrical meaning is also indicated in 
Fig. 2(b). 
   Figures 3 and 4 show the response of the cuboid, obtained using IE, together with the results 
of the smooth model calculated by RE 
   The dependence with x of the apparent resistivities pry and pyr at different values of y can
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Fig. 4. The same as in Fig. 3 for the phases of the components of the impedance tensor 0, and 0,

be seen in Figs. 3(a) and 3(b) for a period T = 1 sec, and in Figs. 3(c) and 3(d) for T = 10 sec; 
the phases of the components of the impedance tensor wry and 0yr, are shown only for T = 1 sec 
(Fig. 4) because the effect for T = 10 sec is negligible. Graphics are done only for positive values 
of x and y, considering that the curves are symmetric respect to the origin for the two coordinates. 
   The results obtained by each method are not coincident due to the differences between the 
models, but their general behavior is similar. Over the center of the structures, pry and pyr reach 
their minimum values while Dry and 0., are maxima; for increasing x or y, apparent resistivities 
increase and phases decrease, and far from the intrusion they recover the values corresponding to 
the half space. 

   In particular, the values of pry for both models, which are related with the amount of current 
induced in the x direction, are quite similar in the central zone, and coincide outside the body. 
The greatest differences appear for x between 1500 m and 2500-3000 m; this can be attributed 
to the existence of border effects at the vertical contacts in the cuboid that tend to increase the 
apparent resistivity. 
   On the other hand, pyr detects the differences between the structures for all the values of 
x and y over or near the anomaly, a result that can be understood taking into account that the 
body has less extension in the y direction. 
   The agreement found between the results obtained by each method is also better for Ory 
than for Oyr. 
   The width in the y direction of the 3-D conducting body modeled by RF, whose interfaces 
axe described by Eqs. (71) to (75), is determined by the value of the parameter yo. Making yo 
tend to infinite without changing the value of the other parameters, a 2-D structure with strike 
direction y that has the same x-z profile than the initial 3-D model, is obtained. Comparing the 
responses of these two models, the importance of three-dimensional effects can be analyzed. 
   The apparent resistivities of the 2-D and 3-D intrusions as functions of x at y = 0 are plotted 
in Fig. 5 and the phases are shown 

,~, in Fig. 6. It must be noted that for this profile, in the 2-D case, the curves pry,0ry, and pyr,Wyr correspond respectively, to the TM and TE modes. Two 
important conclusions are derived from these figures: the first is that the 

~ anomaly produced is greater in the 2-D case, the second is related with the behavior of pyr and wyr curves. As it is well
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Fig. 5. Comparison between the apparent resistivity curves psy and p, at y = 0, calculated by RF in the 3-D 
   and 2-D cases.

known, for 2-D structures, the sensitivity of the TE response to the distribution of conductivity 
diminishes as the penetration depth of the fields increases. In the particular case presented here, 
TE resistivity and phase curves as functions of x, become progressively flatter than TM curves, 
as period increases. It can be seen from Figs. 5(c) and 5(d), that pyz(x) variations are clearly 
lower than pxy(x) variations, at T = 10 sec. On the other hand, a much lower effect is observed 
in the curves corresponding to the 3-D intrusion.

 4. A Sedimentary Basin: Modeling and Evaluation of the Effect of Anisotropy 

   In this section, RF method is applied to model a 3-D basin. The structure proposed is 
composed of an upper sedimentary layer overlying a basement of resistivity 500 Qm (Fig. 7). The
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dary between these layers is described by the following function: 

               Sn(x, Y) = P + D(
I // \1 ,I

loom

(76)
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P + D is the maximum sedimentary thickness, reached at x = y = 0; Gs and Gy are related 
to the lateral extension of the basin in the x and y directions, respectively. The selected values 
of the parameters were: P = 300 m, D = 1000 m, Gr = 1000 m and Gy = 2000 m; then, the 
extension of the basin is maximum in the y direction. 
   The first modeling was made assuming an isotropic sedimentary layer of resistivity 5fm. The 
response of this structure, calculated at a representative period T = 10 sec for two perpendicular 
transects (one correspondent to set y = 0 and the other to set x = 0), is shown in Figs. 8 and 9. 
It is worth to be noted that this kind of structure would be difficult to model using the other 
methods. 
   Like in the case of the conductive intrusion, a decrease of the apparent resistivities occurs 
over the basin, but the anomaly is greater in this case. 

   In Figs. 8(a,b) and 9(a,b), the response of a 2-D structure with the same x-z profile than the 
3-D basin, but with an infinite y extension, also is shown. In this case, pry and O. , give the TM
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response while pyx and 0yr correspond to the TE mode. 
   According to the discussion at the last section, for 2-D structures, at large periods, the TM 
response is more sensitive to the distribution of conductivity than the TE response; for example, 
at the center of the proposed 2-D basin, TE apparent resistivity is more than three times greater 
than TM resistivity. At the center of the 3-D basin, pyr also is greater than pry, but in this case, 
the difference between these quantities is lower than in the 2-D case. 
   The same can be said about the values of ¢ry and ¢yr calculated over the center of each 
structure: the lowest difference is obtained for the 3-D model (see Figs. 9(a) and 9(b)). 

   It is shown next, how changes in the vertical resistivity of the sedimentary cover modify the 
response of the 3-D basin. The horizontal resistivity was not varied, but two different values were 
taken for the vertical resistivity: 25 f)m and 1 Qm; the first corresponds to a factor of anisotropy 
(see .Eq. (26)) a = 5 and the second to a = 1/5. As it was indicated previously, a is usually
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Fig. 10. Effect of sedimentary layer's vertical anisotropy on the apparent resistivity curves pry and pyr.

greater or equal than one, but for completeness the other possibility was also considered. 
   Apparent resistivities and phases, calculated at T = 10 see, are plotted in Figs. 10 and 11. 
The results obtained for each case show that the effects of the anisotropy are maxima at x = y = 0, 
and decrease as x or y increase, because then, vertical currents tend to disappear. It can be 
observed that, when a = 5, apparent resistivities are greater and phases are lower than in the 
isotropic case, over the central zone of the basin. On the contrary, resistivities are lower and 
phases are greater than in the isotropic case, if a = 1/5. We point out that these results were 
obtained just to show the effects exerted by the presence of an anisotropic layer in a concrete 
example, and not to make a general study of these effects. A discussion about this subject can 
be seen in Osella and Martinelli (1993), for the 2-D case.
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5 Summary

   Magnetotelluric data are usually interpreted applying 2-D methods. In many cases, reliable 

information can be obtained with this approach, but in others an adequate imaging of subsurface 

structure only can be achieved using 3-D techniques. 

    The increase of computational resources allowed the development of various 3-D methods 

during the last years. 
   In particular, IE methods can be used to model localized bodies intruded in layered media, 

while finite difference solutions permit the modeling of more general structures, assigning slowly 

varying conductivities to elements of three-dimensional grids. 

   In this paper, a method with a different applicability range is presented; it is intended for the 
modeling of multilayered structures with smooth irregular boundaries. In the formulation, the 

possibility of vertical anisotropy of the electrical conductivity of any layer, has also been included.
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   For all the methods mentioned above, memory requirements and processing times increase 
as the complexity of the structures does. For IE and FD techniques, the design of the grids 
becomes complicated; for RF method, the number of terms of the series that must be considered 
(defined by the value of the parameter L) and the number of points needed to calculate the 
integrals increase. 
   For the examples analyzed here, RF method showed good convergence. In the case of the 
conductive intrusion, similar processing times have been required for RF and IE modeling, a few 
minutes in a Sun Spare station 20. For the anisotropic structures, the time has been larger, about 
17 min for each period, due to the shape of the interface, which represented a more extended 
anomaly. 

   In the two cases considered, convergences were achieved taking L = 10, then 11 Mb of RAM 
memory were required, but 55 Mb were needed if L increased to 15. 

    This work was partially supported by CONICET, Universidad de Buenos Aires and Fundaci6n 
Antorchas. 

                                   APPENDIX 

   For I = m = 0, Eqs. (30), (31) and (32) are given by: 

                 n oo) dzf2o                          Y )                               f dz = 0, (A.1) 

                 7n9oo dz92o) 
                         hoo = 0. (A.3) 

Then, the general solutions axe: 

          foo)(z,W) = (Aoo (W) + CG(o)(W))eXp(7n(W)z) 
                      +(Boo)(W) + Doo)(W))exP(-7n(W)z), (A.4) 

           goon)(z,w) = (Aoo (W) - CO(G) (w))eXp("Y5(W)z) 
                     +(Boo (W)-Doo (W))eXP(-7n(w)z), (A.5) 
               hoo (Z' L,,) = 0. (A.6) 

When I or m are not 0, replacing Eq. (32) in Eqs. (30) and (31), it is obtained that: 

                                                    d 2n) = 0, (A.7)       (ankym +7n) f!(m) kym +7a ddz2 anksikymgi n) + ka(n)))z z                 (Rini )z (R(n 
               n) kz{kym dz.f!(n) 2 z (n) kzi + 1n dz9[m)         ankstkymftm + 

(Rim )z dzz + (anks! + Yn)9!m - (R (n))2 dzz = 0. (A.8) 

   These equations can be uncoupled defining the functions Is (n) ) and An(n) in the form: 

                      f!(,") = AksjIs,R + Aky,,,An„a , (A.9) 
                       9i ,n„) = Akymisl,,; - AkXIAnI.. (A.10)
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   Then, replacing Eqs. (A.9) and (A.10) in Eqs. (A.7) and (A.8) and doing                                                            alg 

tions, it can be proved that Is and An satisfy: 

                   d27sin _ (R(n 
                           z2 )21S(n) = 0, d 

                  d2Ani,n _ (Qim))2Anim - 0.                          7z-2 

The solutions of these equations are given by: 

        Isim(z,w) = Aim(w)exp(Rin(w)z)+B1n)(w)exp(-R%(w)z), 
        An1,n(z,w) = Cim)(w)eXp(Qim(w)z) + D1m)(w)exp(-Q1 (w)z) 

   So, from Eqs. (A.9) and (A.10): 

      fil..)(z,u) = Aks!(A1 .)(w)eXp(Rin.)(w)z)+B1n)(w)exp(-R1,n..)(w)z))

d doi          ebraic calcula-

(A.11)

(A.12)

(A.13) 

(A.14)

                +Akym(C(n)(w)exp(Q1 (w)z) + D )(w)exp(-Q1„)(w)z)), (A.15) 
      9im) (z W) = Akym(Alm(w)eXP(Ri)(w)z)+B1'.a)(w)exp(-Rim)(w)z)) 
                -Aksl (Cim) (w) exp(Qim (w)z) + Din (w) eXP(-Q(n) (w)z)), (A.16) 

and then, from Eq. (32): 

    h(n) n(z, w) = 
Ri,.)(w) (Ai,n (w) eXp(R,,n(w)z) - B1,,, (w) exp(-Rmm (w)z)). (A.17) 

   Finally, taking into account that R09 = Q0) = 'Y,,; Eqs. (A.4) to (A.6) and Eqs. (A.15) to 
(A.17) can be put in a general form valid for every l and m >_ 0: 

   ftln,.)(z,w) = (),kza+b,obmo)(Aim(w)exP(Rin(w)z)+Bia)(w)eXP(-Rim(w)z)) 
             +(Akym + 6eo5mo)(Cim)(w)eXP(Qin(w)z) 
             +Di (w)eXP( Q, (w)z)), (A.18) 

    9im)(z,w) _ (Akym + 8106 o)(Ain,(w)eXP(Ri,n(w)z) + Bim)(w)exP(-R1 (w)z)) 
              (,\k=1 + Saotmo)(Cim)(w) exp(Qi,n(w)z) 

             +D1 )(w)exp(-Q1 (w)z)), (A.19) 

   hI,,n(z,w) _ f 
(w(Aim(w)eXP(Rin(w)z) B(n)(w)exP(-R1 (w)z)). (A.20)           Rim(w)
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