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Factorization of J-biexpansive operator-valued functions on an infinite-dimen- 
sional Hilbert space is performed, to extract terms with an arbitrary number of 
poles of first order on the left and right half planes. Special emphasis is given to the 
case of reciprocal poles, which has an application to the synthesis of reciprocal 
passive linear systems as an extension of the classical synthesis of reciprocal n-ports 
by factor decomposition. 0 1986 Academic Press, Inc. 

J-expansive operators play an important role in modern network theory 
[2, 12, 141. Scattering, chain and transfer matrices of electrical passive n- 
ports are J-expansive matrix functions in the right half plane, Rep > 0. 
Decomposition of these matrices into products of J-expansive matrices 
with a simpler structure, called elementary operators, can be applied to cir- 
cuit synthesis (see, e.g., [l, 3, 8,9, 11, 151). The only singularities of these 
elementary operators are simple poles, originally belonging to the given .I- 
expansive operator (or its inverse, eventually), and transfered to the 
elementary factor by the extraction method. 

The idea of an electrical network has a natural extension to that of a 
Hilbert port, which is a linear system whose input and output signals 
belong to an infinite-dimensional Hilbert space [16]. This concept has a 
wide variety of applications, including scattering theory and non relativistic 
quantum mechanics [ 10, 133. A passive Hilbert port, in particular, is a 
system described by an operator J-expansive in the right half plane, 
together with its adjoint. A large number of physical systems that can be 
described by means of a J-expansive operator function possess two 
additional properties: reality and reciprocity. Reality originates from the 
fact that the output signals must be real for all real inputs. On the other 
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hand, reciprocity is connected to the reversibility exhibited by a wide class 
of physical systems. The mathematical definitions of these properties are 
given in the next section. 

The present paper describes factorizations of passive Hilbert port 
operators with special emphasis on reciprocal systems. These factorizations 
generalize results obtained by Efimov and Potapov [3], Ginzburg [4], 
and this author [6] concerning extraction of poles located in Rep # 0 and, 
in particular, can be applied to decompose a reciprocal operator into a 
product of elementary reciprocal operators, preserving the reality condition 
if desired. The problem of factorizing passive Hilbert ports with poles on 
the imaginary axis requires additional properties to be imposed on the 
given operator and has been studied in [7]. 

Let X be a Hilbert space, P, a projector in X”, P- = I- P, , where I 
denotes the identity operator. Let J= P, - P- A linear bounded 
operator U is J-unitary iff VJU = J, UJU* = J, where U* denotes the 
adjoint of U. A linear bounded operator S is J-expansive iff S*JS> J. It is 
J-biexpansive if both S and S* are J-expansive. The symbol 2”’ denotes 
the Cartesian product Hilbert space &‘“” = 2 x 2 x . . . x 2’ (m times). 
Given x= (xi, x2 ,..., x,) and y= (yl, y, ,..., y,) ES”‘, the inner product 
in 2” is (x,Y),=(x~,Y~)+(x~,Y~)+ ... +(x,,Y,), where (., .) 
denotes the inner product in 2”. 

Let S, be the class of operators S(p) holomorphic in the open right half 
plane (Rep > 0), except for a set of isolated points, that are equal to a J- 
biexpansive operator at each point of holomorphism. Let M, be the class 
of operators S(p) ES, such that S-‘@)E S,. This M, is the class of J- 
biexpansive operators meromorphic in the right half plane. The 
operator E(p) E S, is an elementary operator iff it is J-unitary on the 
imaginary axis and has poles of first order only. 

We extend the definition of S(p) to the left half plane taking 

S-‘(p)=JS*(-p)J, Rep<O. (1) 

Consequently, S(p) EM, is - J-biexpansive in Rep < 0. Moreover, if 
S(p) is holomorphic in a domain symmetric with respect to the imaginary 
axis and takes J-unitary values on a segment of the imaginary axis con- 
tained in this domain, then this extension coincides with the analytic con- 
tinuation of S(p) into the left half plane. 

If a conjugation is defined in 2, an operator S(p) is real iff Se) = S(p). 
The operator R(p) is reciprocal iff R( -p) = J’R@)J’, where J’ = J’*, J2 = I, 
JJ’ = -J’J, J and J’ real operators. Given that R(p) has a pole at p =pl, 
then reciprocity implies that it has a pole of the same order at p = --Is,. 
Henceforth, p1 and -pi will be called reciprocal poles. 

We shall make extensive use of the following: 
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Fundamental Inequality. 

Let the operator S(p) E S, have poles at the points pk, Rep, = ck # 0 
(k = 1,2,..., m) with a Laurent expansion 

Then 

S(A,) JS*(A,) - J ... S(L) J~*(U - J ~(k,,) - S(P) 
L+fG L+L &l-P 

s*(J,)-S*cP) ... S*(A,) - S*(p) S*(p) JS(p) -J 

4 -F L-P p+P 

k 0. 

(2) 

n-oof of this assertion is given in [S]. It is a generalization of a similar 
inequality for m = 1 due to Ginzburg 141. 

We shall now proceed to prove two lemmas stating properties of Laurent 
coefficients of poles of operators S(P)E S, with special emphasis on 
reciprocal poles. 

LEMMA 1. Let the operator S(p) ES, have poles at the points pl, p2 = 
-PI (Rep,=a,#O) and let S(p)=@--p,)-‘Wj+(p-pj)-“j+‘Bj+ ... 
(j= 1,2) be the Laurent expansion in the neighborhood of these points. Then, 
the following properties hold. 

(i) C, JCy= 0; 

(ii) C,JBf= B,JCT; 

(iii) 

t 

C,JC:/20, C, JB: C,/@, -P) 

B, JC: C2 JC,*I20, Gl@, -P) 

GAP, -A c,*m* -PI (s*(P) Ja-J) -JM.P +a 1 

> 0. 

Proof: In the neighborhood of p1 we have 

S(p)= @-pl)-“‘C, + (P-P~)-~‘+‘B, + *.. . 

From (1) we see that 

S-‘(p)=(-1)“‘(p-p,)-“1JC:J+(-l))”’-’(p-p,)-”’+’JB:J+ . . . . 
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in the neighborhood of pz. Therefore, the identity S(p),‘?‘(p) = I implies 
that (i) and (ii) are valid. 

Inequality (iii) is derived from (2) for m = 2 by multiplying the matrix on 
the left by 

N=diag {(A, -p,Yl, (&-P~)“*}, 

and on the right by N* and taking limits for ,Ij + pi 0’ = 1,2). 
An extension of inequality (iii) for m poles can be derived with the help 

of the following operators on X”‘, defined in terms of m x m matrices of 
operators on X. 

T= (Tj/c) (j, k = 1, 2 ,..., m), 

T, = 
Jk i 

CjJi@j+Bk) when pj # -Pk, 
BiJ when pj = -jik, 

Z=diag {C,, C2 ,..., C,}, 

A = TZ*, 

Lo?) = diag {(PI -p)-‘4 (p2 -PI-‘L..., (P, -p)V’Z), 

WP) = (S*(P)Js(P) - JY(P +IsF 

LEMMA 2. Zf the operator S(~)E S, has poles at the points pi, 
Repj=aj#O (j= 1, 2,..., m) and its Laurent expansion in the neighborhood 
of these points is S(p)=(p-pj)-nCj+(p-pj)-n~+lBj$ *.‘, then given 
f~X”“andh=(h,,h ,,..., h, ) E X”“, the following inequality holds: 

(AS,f),(Wp)h,, h,)B l(L*(pV*f, hL12. (3) 

Taking the proof of Lemma 1 into account, this inequality is a direct 
consequence of (2). 

The possibility of extracting elementary factors with an arbitrary number 
of poles (including pairs of reciprocal poles if desired), from a given 
operator S(p) E M, is based on the following two theorems. 

THEOREM 1. Let T, Z, and A be the bounded linear operators defined 
previously and let 3’ = ker Z + rge T*. Then, dp is dense in X”. 

Proof: To simplify notation, we shall take p1 and p2 = -p, as the only 
pair of reciprocal poles. An extension of the proof to the case of several 
pairs of reciprocal poles is obvious. Let ~19, u = (u,, Us,..., u,,) E X”‘. 
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Then u E ker Tn cl rge Z* (where cl rge denotes the closure of the range). 
Thus, 

CjJ 2 (Pj+jk)-‘uk+ B,Ju,=O (i,n)=(L2)or(2,1), (4) 
kfn 

and 

CjJC (P,+Pk)-‘Uk=O j# 1, 2. (5) 
k 

Given that u E cl rge Z*, there exists a sequence ( x, 1, 
x, = <-%I,, x,2,-, x,,,,), such that Z*x, + u. Since A B 0 by Lemma 2, we 
have 

(‘xn, Xn)m= 1 1 (CjJCk*Xnk, xnj)/bj+pk) 

jf1.2 k 

+ 1 (c,Jck*Xnkv Xn,)/(P, +Pk) + (B, JG%z, x,,) 
kf2 

+ c (c,J%k-, x,2)/b’, +jk) + (& JW,, , x,2) 2 0. (6) 

k#l 

Taking limits for c,*x& --) uk, k # 1, and using (4) we get 

jz2F (J’k, uj)/(pj+Pk)+ 1 (JUk, Cfxn~)/(P, +pk) 
kf 1.2 

+ (JCYxn,> c:&,)/(P, +I%)+ c (JUk, d/(&+Pk) 
k#l 

-,;, {(J% ~~xn,)/(P, +Pk)+ (c:x,,, JUk)/(f+ +Pk)} 20. 

Now, from (5) we obtain 

1 (JU/c, uj)/(pi+~k)=Ov j# 1,2. 
k 

Therefore, for C:x,, + u,, we have 

c (Juk, U2)/(P2+ijk)- c (Ju,, Uk)/(&+&)>O- 
k#l k#2 

Starting again from (6) and taking limits for C,*x,, + uk, k # 2, using (4) 
and then letting C,*x,, + u2, we obtain the opposite inequality. This implies 
that in both cases (Ax,, x,),+0, so that, by Lemma 2, we have 
(u, L@)h), = 0, with h = (II,, h, ,..., h, ). Since h, is arbitrary and the fac- 
tOrS (p -pk) -’ are linearly independent, then u = 0. Therefore 9 is dense 
in #“. 

409/l 1412.7 
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In the absence of reciprocal poles, proof of Theorem 1 is straightforward 
and is a direct generalization of [6, Lemma 2, Part I]. 

THEOREM 2. The equation AX= 2, where A and Z are the operators 
defined previously, has a solution in a subspace Y dense in 2”“. Furthermore, 
the operator Z*X is bounded on 9 and can accordingly be extended to all of 
2”” as a bounded nonnegative operator. 

Proof The proof of the boundedness of Z*X will be carried out by 
induction. 

For m = 1, A = C, JC: and the equation is C, JC:X= C,. The 
operator X is defined on Y = ker C, + rge JC:, which is dense in 2 
according to Theorem 1. Therefore Xy = (C, JCy)[ - ’ ]C, y, y E dp, where 
AC -‘I denotes the inverse of the operator defined by the hermitian 
operator A on its range. From (3) we know that 

Let f= Xy, h, = y, and let p0 be a point of holomorphism of W(p). Then, 

(C.,Y,XY) IIWP,)ll (Y,Y)2 IP*-Pol~21(c:~Y,Y)12~ 

so that 

Now, assume that the proposition is valid for m - 1 poles, that is, that 
the operator Zi-, X, = Zz-, A[- ‘]Z,,- , is defined and bounded on a 
subspace 9, _, . Here A, denotes the operator A corresponding to m - 1 
poles and Z, _, = diag {C,, C, ,..., C, _, }. Since dpm _, is dense in 2” ~ ‘, 
by Theorem 1, Zz _, X, can be extended to all of 2”” - ’ as a bounded 
operator. 

The operator A on %” will be expressed as A = ($ :i), where 
A, = C, JCz/2u, and the definition of A ,* follows directly from that of 
A, A,,: ti + JY-‘. The operator equation AX= Z can be written in 
terms of A,, A,2, and A2 through the following set of equations: 

J~,X,,+A,J~,=Z,-,, (7) 

‘4,X,,+J4,,X22=0, (8) 

A2X22 + A:J,z = C,, (9) 

A2XZ, + A:,X,, =O. (10) 
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According to Theorem 1, X is defined on 9 = ker Z + rge T* which is 
dense in 2”. Then, A, X1* = - A,*Xz2 on a subspace P” dense in #, so 
that 

(A,-A:,A;-“A12)X22~=C v m 3 VEY. (11) 

Since A = ZT*, there exists a bounded operator F such that 
A12=Zm--lF and therefore, A~,A~-1~A,2=F*Z~~lA~-‘~Zm~,F. Thus, 
the inductive hypothesis implies the boundedness of A&A!- ‘1A12. 

Let us consider inequality (3) withf= ( -A[-llZm~l~n,y), U,E LE’,,,-~, 
y E %‘. Taking limits for u, + Fy, we obtain 

where L,- r(p) =diag { (pr -p))‘Z, (p2 -p)-‘I,..., (p,- 1 -p)-‘Z} and 
h= (h,,h* )..., h*)E3+P-‘. Now, for y = X2*u, v E Y and h, = Y we have, 
taking (11) into account, 

(Cmv, x22 VI ( WPh VI IP, -PI2 (12) 

~I(P,-P)(-~~-,(P)Z~-,A~-“A,,X,,~,~),-,+(C~X~,~,~)~*. 

Consider now a circle Z? Ip -pm1 = p, such that S@) is holomorphic on 
f. Let supPEJ( W(p)ll = y. Take pu, pb E Z such that p, -p,,, = - (pb -p,). 
Then from (12) and defining ~(p)=(LI1:_,(p)Z~_,AE-‘]A,,X,,o,h),_,, 
we have 

P2Yh 0) (09 cax22V) 2 (cv**V, 4’ + P214(P,)12 

+ W222uy 4 Re {(L-P,) #(P,)} 20 

and 

P2Yb4 0) (v, cs-**VI 2 (Clt,X**V, 4* + P21~(Pb)12 

+ WP22uv 0) Re ( -CA -Pm) 4(pb)} 2 0. 

Given v, we have the following alternatives: 

(0 Re {ti,-P,)4(~,)}~0 and/or Re {-(Pu-h,J4(pb)}>0. In 
this case 

p2y(u, v) (v, C~~*,V) a (C322V, VI*. (13) 

(ii) Both Re {(PY-Pm)4(~Jl ~0 and Re {-(Pa-~m)4(~b)~ ~0. 
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Since 4(p) is a continuous function of p on r, there exists p0 E I- such 
that Re ((~7, -Pm) &p,) } = 0. This implies .that inequality ( 13) is also valid 
in this case. 

We can write (13) as 

0 6 (c:x,,u, u)/(u, v) 6 p2y. 

Thus CZX,, is bounded on a dense subspace P” of 2. 
Consider now the relationship 

z:_,x,,u= -z:_ ,A~~“A,J2,U, UEY, 

(14) 

(15) 

which is a consequence of (8). We will show that Zz ~ 1 X,, is a bounded 
operator. 

We know that, since it > 0, then 

(~,~~x),--,(~*Y~Y)~l(~12Y~~),-I12. (16) 

Since Zz _ 1A [- llZ,P, is bounded by hypothesis, let IC be the norm of 
this operator. Taking x = A i ~ ‘1Z ,,-,u, UEJ?,,.., and y=X,,v, VEF, in 
(16) and using (14) and (15) we get 

and, therefore, 

for all UE%~-‘. 
Now, let ZJ = Zz _ r XI2 v, v E 9’. Then, 

Therefore, Zz _ 1 X,, is bounded on .F, a dense subspace of L%. 
The same reasoning can be applied to the rest of the poles, taking 

A, = C, JC,*/20,, k = I,2 ,..., m - 1. This leads to the conclusion that Z*X 
is a bounded operator on 2. 

The previous result shows that there exists a bounded operator Y on 
#“, which is the extension of Z*X. That is, 

Yy = z*xy, YEJZ. (17) 

Since A B 0, then 

0 Q (AXy, XY), = WY, J’Y), = (Y, Z*xy),,, = (Y, YY),. 



RECIPROCAL HILBERT PORT OPERATORS 393 

Therefore, Y > 0. 
This completes the proof of Theorem 2. 

Let Y = (Y,), j, k = 1, 2,..., m. From the definition (17) of Y we find that 
TY= TZ*X=AX=Z on 9, so that 

where 6, is the Kroenecker delta, and 

C,=c T,Y,,,. (18) 
n,k 

It is not difficult to show (see [6, p. 181 for a similar proof) that 

(i, k = 1, 2 ,..., m), 

If we define the operators 

pk=Jc ynk (k = 1, 2 ,..., m), (19) 

then, the following identities hold 

(20) 

Therefore, if p, and p, are a pair of reciprocal poles (i.e., p3 = -PI), 

P,*JP, = 0. (21) 

A consequence of these identities is the fact that the operator 

E(d=z+x (/?bc-‘Pk, 
k 

is J-biexpansive in Rep > 0, J-unitary on Rep = 0 and - J-biexpansive in 
Re p < 0. Thus E(p) is an elementary operator. 

Since E-‘(p) = JE*( -p) J, then 

CjE-‘(p) = CjJ Z-1 (p +pk)-lPz 
( 

J 
k > 

= Cj-1 (P+Dk)-lCjJYkn, 
k,n 

where the sum over k extends over poles Pk .# --pi only, since Ci JC,* = 0 for 
reciprocal poles so that C,JY,, = 0 for all n. 
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Thus, using (18) 

cjEmm'(P,)= oeJp*~ 
i 

ifp, # -jjk, k = 1, 2 ,..., m, 

I k 
if pi = -pk for some value of k. 

(22) 

With the help of the properties obtained previously the factorization 
procedure is established in the following 

THEOREM 3. Let the operator S(p) EM, have poles at the points pi 
(Re pi = aj # 0) and a Laurent expansion in the neighborhood of these points 
of the form 

S(p)=(p-pi)-“‘C,+(p-pj)~“‘+lBj+ ... (j= 1, 2 ,..., m). 

If we define the operator E(p) = I+ c,(p -pi)- ‘Pi, where the Pi’s are 
given by (19), then, 

(I) E(p) E M, and is J-unitary on the imaginary axis; 

VU S(P)= S,(P) E(P), with S,(P)E MJ; 

(III) S,(p) has a pole of order nj - 1 at the point pjfj= 1, 2,..., m); 

(IV) Ifpj= -Is, for some k (k = 1, 2,..., m) then S-‘(p) has a pole of 
order nk at the point pi and S; ‘(p) has a pole of order nk - 1 at the point pi; 

(V) Ifpj# -Dk (k = 1, 2,*.., m) and pj is a pole of order mi > 0 of the 
operator S-‘(p), the order of the pole of S;‘(p) at pi is mi. 

A detailed proof of this theorem will not be carried out: 
Propositions (I)-(V) are essentially contained in Eqs. (18)-(22) and can be 
derived, mutatis mutandis, from [6, Theorem 23; property (IV) is a con- 
sequence of the definition of S(p) in Rep < 0 in terms of its values in 
Rep>O. 

Remark 1. Since S(p) is J-biexpansive, a similar factorization theorem 
can be established to extract elementary factors on the left, i.e., to obtain a 
decomposition of the form S(p) = g(p) z,(p). 

Remark 2. The operator S ‘(p) is - J-biexpansive. Therefore, an 
extraction of its poles can be carried out in the form 
S-‘(p)=F-‘(p) S;‘(p), with both factors belonging to AC-, and F-‘(p) 
elementary. Equivalently, S(p) = S,(p) F(p), where F(p) E M, is elemen- 
tary and has poles which are reciprocal to the poles of F- l(p), 

F(p)=JF*-‘(-p)J. 

The previous results have an interesting application to the problem of 
synthesizing reciprocal Hilbert ports. This reciprocity condition is satisfied 
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by a large variety of physical systems and it is desirable to preserve it in a 
product decomposition, i.e., to carry out the factorization in terms of 
elementary operators that are also reciprocal. 

Let R(p) E SJ be reciprocal with a pole at the point p, (Rep, #O). Then, 
in the neighborhood of pI , 

R(p) (p-p,)--T, +(p-p*)-“+lB, + ‘.. . 

The reciprocity property, R( -p) = J’R(p)S indicates that 

R(-~)=(jG~l)-“J’~lJ’+(~-j&-“+lJ’&r’+ . . . . 

so that, in the neighborhood of -p,, 

R(p)=(p+~,))“(-1)“J’~,J’+(p+~,)-”+’(-1)”-’S~,J’+ .*.. 

Thus, R(p) has a pole of the same order at p2 = -p, , with Laurent coef- 
ficients C2 = ( - 1)“J’cJ’ and B, = ( - 1 )“- ‘J’B, S. Also, the validity of (1) 
and reciprocity imply 

R-‘(p) = JR( -p)J= JJ’R(p)J’J, 

so that the poles of R(p) and R-‘(p) coincide and R(p)eM,. In this 
circumstance, the elementary operator E(p) = I+ (p -pI)-‘P, + 
(p -p2) - ‘P, given by Theorem 3 is reciprocal too. To see this, it sufIkes to 
note that the operator Y defined in (17) has the properties Y22 = J’P,,J 
and Y12 = J’Y2,,J’ when R(p) is reciprocal. Therefore 

P,=J(Y,,+ Y2,)=JJ’(F2,+ IQJI= -SJ(F2,+ P,,)S= -J&J’. 

Then, 

E(-j)=Z-(j?+p,)-‘P,-(~-~,)-‘p, 

=z+ (ji+p,)-‘J’P,J’+ (p-pl)-lJ’P,J 

=SE(p)J’. 

Let R(p) = R,(p) E(p). We have, then, 

R,( -p) = R( -p)E?( -p) = J’R(p)J’.J’m’OJ’ =J’R,(p)J’, 

so that R,(p) is reciprocal. 
The previous results may be condensed in the following 

THEOREM 4. Let R(p) E S, be reciprocal-and have a pole at the point p, 
(Rep, # 0). There exists a product decomposition of the form 
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R(p)=R,(p)E(p), E(p)=Z+(p-p,)-~‘P, -(p+jT,).- ,J’P,J’, satisfying 
properties (I)-(IV) qf Theorem 3 with R,(p) and E(p) reciprocal. 

Another important property of physical systems is reality. It is then 
desirable to study the possibility of extracting elementary factors that are 
real and reciprocal. This is expressed in the following 

THEOREM 5. Let Q(p) ES, he reciprocal and real, with a pole at the 
point p, (Rep, = 6, # 0). There exists a factorization of the form 
Q(p) = Q , (p)E( p) satisfying conditions (I)-( IV) of Theorem 3, with Q,(p) 
and E(p) real and reciprocal. If’ Imp, # 0, E(p) = I+ (p -p,)-‘P, + 
(p-p,)-‘P,-(p+p,)-‘J’P,J’-(p+p,)-’J’P,J’. If Imp,=O, E(p)= 

I+ (P-0,) ‘P, -(~+a,)~‘J’P,J’, with P, real. 

Proof If Q(p) has a pole of order n at p, (Im p1 # 0), then it also has 
poles of the same order at p,, -0, and -p, with Laurent coefficients C,, 
(-l)“J’c,J’, (-l)“J’C,J’and B,, (-l)n-‘J’g,J’, (-l)“-‘J’B,J’respec- 
tively, due to reality and reciprocity. By Theorem 3, it is then possible to 
extract a factor of the form 

Let Y = ( Y,), j, k = 1,2, 3,4, be the operator defined in (17). The follow- 
ing relationships arise due to reality and reciprocity. 

Y,, = 8,, = J’P33J’ =J’YJ4J’, 

Y,,= P,, =JTJ=J’YJ, 

with similar identities for the other Yjk’s. 
Thus we see that 

which establishes the reality and reciprocity of E(p). The reciprocity and 
reality of Q,(p) is now straightforward. 

If Imp, = 0, then C, is real and so P, = P,. Extraction of the pair of 
poles at rr, and - 0, gives the desired result. 
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