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We obtain a unique expression for a Darlington realization of a contra&e 
matrix-valued function S(Z)E.Y’TL valid for the three following cases: (a) S(Z) is 
inner: (b) S(T) is not inner and det[I,-S*(c) S(<)] #O a.e.; (c)S(:) IS not inner 
and det[I,, - .S*( l/Z) S(Z)] =0 (;E D). On the basis of this result we examinate the 
problem of multiplicity of realizations for the case (c). ( IV,47 Ac.&mlc Prcrr. lni 

1. INTRODUCTION AND SUMMARY OF KNOWN RESULTS 

We shall denote by L*(C,r) the class of measurable functions h(t) (5 = c”. 
0 < t G 2x), with values in c” such that 

It consists of the functions whose Fourier series is (in the sense of 
convergence in the mean) 

h(l)= i h,t”, h, E C” and llhll*= i llh~ll* (cf. [Ill). 
L , 

We shall denote by L$ (Cm) the subspace of L*(P) which consists of those 
functions for which hk = 0, k < 0. H*(P) denotes the Hilbert space of 
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332 CORTINA AND D’ATTELLIS 

functions h(z) = CFzO h,zk (z = re”), h, E C”, holomorphic in the unit disk 
D = {z; IzI < 1 }, such that 

1 
50 s 2n I)h(rei’)\(2 dt (O<r< 1) 

has a bound independent of Y. 
A function U(Z) holomorphic in D is called inner if lu(z)l < 1 (z E D) and 

lu({)\ = 1 a.e. A function Q(z), holomorphic in D is called outer if 

Q(z) = 1 exp k lzz e”+z In k(t) dt 
o err-z @ED), 

where k(t) > 0, In k(t) E L’ and x is a complex number of modulus 1. For a 
function w(z), meromorphic in D, the characteristic of Nevanlinna is 
defined by the expression 

T(w, ,)=&j:zln+ w(re”) dt 

+ ji ‘(” w) 1 n(“’ w, dt + n(0, w) In r, 

where 

In+ a= 
i 

In a if a31 
0 if O<a< 1, 

and n(t, w) is the number of poles of w(z), each one with its multiplicity, 
inside the circle \z( < t. 

We say that w(z) is of bounded characteristic if sup,,, < 1 Ir(w; r)l < co. 
According to a theorem of Nevanlinna [2] the class of functions of boun- 
ded characteristic coincides with the class of functions that can be written 
as the ratio of two bounded holomorphic functions (z E D). Then, these 
functions are uniquely defined by their boundary values a.e. in the unit 
circle. 

We design with N, the class of functions f(z) of bounded characteristic 
(z E D) that can be written as a product of an inner function and an outer 
function. For functions of N, the maximum principle holds. A matrix S is 
called contractive iff I- S*S 2 0, where I is the unit matrix and the symbol 
* denotes hermitian conjugation. We use J to design a matrix for which 
J* = J and J* = I. A matrix A is called J-expansive iff A *JA - J L 0, and 
J-unitary iff A *JA - J = 0. 

We will design by Y the class of contractive matrix-valued functions, i.e., 



DARLINGTON REALIZATIONS 333 

the matrix-valued functions holomorphic in D for which /lS(z)jl 6 1. 
S(Z)E .Y is inner if I- S*(t) S(t) = 0 a.e. We say that a matrix-valued 
function is of bounded characteristic if all its elements possess that 
property, and that belongs to the class N, if all its elements are functions of 
N,. A matrix-valued functions S(z) E Y belongs to the class YTC if it has the 
additional property that its boundary values a.e. on the unit circle are, 
simultaneously, boundary values of a matrix-valued function s(z) 
meromorphic in D = {z; 1;) > 1 } with 1 e ements of bounded characteristic 
there [3], i.e., 

lim S(z) = ,$m, S(z) 
/:I I 1 

a.e. 

A meromorphic matrix-valued function A(z) is J-expansive (z E D) if it 
assumes J-expanding values at each point of holomorphicity 2, i.e., 

A*(z)JA(z)-JBO. 

and a J-expansive matrix-valued function A(z) is J-inner if it is J-unitary 
a.e. in the unit circle, i.e.. 

An arbitrary J-expansive matrix-valued function is of bounded charac- 
teristic [ 3 1. 

Of importance for us is the 

BASIC LEMMA [3]. Let A(z) = (;{:I f#) h e u matrix-valued fimction of’ 
bounded characteristic of order n + m, with diagonal elements a(z) qf order n 
and 6(;) of order m, where det 6(z) $ 0 (ZE D), that satisjies the condition 

A*(S).iff(O -j> 0 ci.e., 

and 

a(z)=a(z)-/qZ)s-‘(z)y(z)EN,); 

h(z)=&)S-I(z)E 

c(z) = 6 ‘(z) y(z) E N,; 

d(z)=& ‘(z)EN~. 

(1.2) 
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Then A(z) is J-expansive (zED) and Ila(z)\l d 1; I\b(z)l\ G 1; Ilc(z)ll G 1; 
ll4z)ll G 1. 

We will use also 

THEOREM [4]. Let S(z) be a matrix-valued function of order n, of the 
class Y4p?1. Then its boundary values a.e. S(t) can be represented in the form 

S(5)= U,‘(5) S’(5) U,(5), (1.3) 

where U,(r) and U,(t) are a.e. limiting values qf inner matrix-vahed 
fimctions U,(z) and U,(z), and s’(t) has a diagonal form with blocks S,(t) 
of order k and S,(l) ef order n -k, i.e., 

s’(t) = diag(S,(t), h(t)) (1.4) 

verifying a.e. the relations ljS,(~)l1 < 1 und jlS2(<)11 = 1. 

We will decribe briefly the way we have constructed in [4] the matrix- 
valued functions V,(t) and V,(l), because of their importance in the 
development that follows. For each fixed 5 where T(t) =def S*(r) S(t) is 
defined, we arranged the eigenvalues of the nonnegative matrix I, - T(5) in 
nonincreasing order, and considered the orthonormal base of C” formed by 
the corresponding eigenvectors { @,,,( [) >; _, . Introducing the notation 

where the symbol ( )’ denotes transposition, we construct the matrix 

‘l(t)= {@~j(O}~j=l' 

Due to the orthonormality of {@,J<)}y, U:(t) U,(t) = I, for each fixed 5 
in the unit circle except, possibly, a set of zero measure. According to the 
way we ordered the eigenvalues, the last (n-k) rows of U,(t) are the 
eigenvectors corresponding to the eigenvalue 0. We applied a similar 
procedure to construct U,(c), which T’(r) =def S(t) S*(t) playing the role 
of T(5). 

Arov has proved in [3] that a necessary and sufficient condition for a 
matrix-valued function S(z) to be Darlington realizable is that S(z) belongs 
to the class Yx, and considered separately three cases: 

(a) S(z) is inner; 
(b) S(Z) is not inner and det[Z,, - S*(t) S(t)] #O a.e.; 
(c) S(z) is not inner and det[Z, - S*( l/z) S(z)] = 0 (z E D). 

Using results from [3,4] we obtain in this article a unique expression, 
valid for the three cases for a Darlington realization of a matrix function 
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S(Z) E 9’~. This result allows us to examine the problem of multiplicity of 
realizations not only in Case (b), solved in [3], but also in Case (c) 
proposed in [3] as an open problem. 

2. DARLINGTON REALIZATIONS 

By Darlington realization of a matrix-valued function S(z) E 9, of order 
IZ x m, we mean the representation of S(z) as the linear fractional transfor- 
mation 131, 

S(z) = [a(z)c + fi(z)][y(z)c + 6(z)] ‘. (2.1 I 

over a constant matrix c E 9, of order IZ x m, with a .j-inner matrix of coef- 
ficients 

THEOREM 11.1. Let S(z) E YII he a matrix-valued ,fimction qf’ order II. 

Then S’(t), defined by (1.3), can be M!ritten as the linear ,fractionul 
transformation 

s’(r) = Ca’(5b + 8’(4)1Cll’(O~ + 6’(<)1 ’ (2.2) 

over a constant matrk F E Y, with a matrix of coejficients 

( 
x’(5) P’(t) 

A’(t)= f(4) (j’(C) J 
that is ,j-unitary a.e. 

Proqf!f: As an illustration we describe briefly the steps of the proof, 
which consist of 

(I ) making a convenient selection of c: (formula (2.5)) and 
(2) carry out the demonstration of the thesis with the particular 

choice of A’(5) specified in (2.6). 
Let us observe that, since S(Z)E Yn, the nonnegative matrix-valued 

functions 

F,(5) $5 Ik - V(i”) S,(5) a.e., 

F;(4) ‘5 Ik - S,(5) $75) a.e. 
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are boundary values of matrix-valued functions F,(z) and F;(z) of bounded 
characteristic in D. Hence there exist [S, 61 solutions e(t) and I&<) of the 
factorization problems 

F,(r) = e*(l) Q(5) a.e., (2.3) 

E;(t) = +(5) ICI*(t) a.e. (2.4) 

that are a.e. boundary values of bounded holomorphic functions 0(z) and 
$(z). These solutions are uniquely defined by the following normalization 
conditions: det e(z) and det tj(z) are outer functions, 0(O) >, 0 and $(O) b 0. 
We will construct the representation (2.2) with 

here n-k is the dimension of the subspace 

N= {kC”;S*(()S(<)h=h} 

for each value of 5 where S(t) is defined [4]; and the matrix of coefficients 
A’(<) with elements 

@‘k3 = WagW*W, 0,-d + UT’(<) + Wk3 S’*Wl} -’ +&(4b, 
P’(~)=S’(S)(~~~~(~(S),O,~,)+ECU;’(~)+ ~~‘(5)S’(4)1}-‘-~~,(5)~, 
~‘(5) = S’*(S)(dias(ll/*(O, Lk) 

+dU,‘(t)+ U;‘(5) s’*(r)l}y -W,(S)&, 
S’(t) = {diag(NO, L k) + E[IU;‘(O + U;‘(5) S’(t)])-’ + $Jl(tk (2.6) 

where U,(c) and U,(l) are the unitary matrix-valued functions a.e. 
involved in (1.3) and defined in [4]. With this choice of E and A’(t), (2.2) 
holds. In fact 

S’(OCY’(T)E + s’(t)1 - [a’(t)& + P’(t)1 

=diag(Si+Tt) Sl(t)-zk, O,-,){di4~*(5)~ Lk) 
+~[Uz'(t)+ U;l(~)S'*([)]}ple=O a.e. 

To finish the proof we will show that 

A’*(<)jA’(t)-j=O a.e. 
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or, equivalently, that 

a’*(t) ~‘(5) -y’*(t) y’(t) = I,, as., 

s’*(5) J’(5) - B’*(t) B’(t) = I,, a.e., 

x’*(5)B’(5)-Y’*(r)s’(i)=o a.e. (2.7) 

Substituting (2.6) into (2.7) we get 

=dk(ti ‘(5)Czk - S,(t) S:(t)1 ti* ‘(CL O,, k) 

+ ii CU2(0 + S’(t) U,(t)1 ’ dias($(i’), O,, k) + c) ‘1: 

+ $ejdiag($*(5), O,,~~,)[U, ‘(0 + Ui ‘(t) S’*(t)] ’ + E) ’ = I,, a.e 

ii’*(~)6’(1’)-p’*(4)8’(~) 

= diag( 0* ‘(4)CIk -V(4) s,(t)1 0~ ‘(<L o,, J 

+$:(diag(@(tLO,, k)[U, ‘(t)+U, ‘(t)S’(<)] ‘+E; ‘+t: 

= Z,, a.e., 

r’*(i’) p’(i’)-y’*(<) S’(C) 

=${diag(0(t),O,~ k)[U;l(O+ r/i ‘(()S’(()] ‘+E) I 

-i(CUz(5:)+S’(5) V,(5)] -‘diag($(t),O,, h)+~) ‘=O a.e. 

This completes the proof of Theorem 11.1. 

Using this theorem and (1.3) we obtain 

S(;‘)= ui ‘(S)Ccr’(~)c+8’(5)l[r’(ir)E+s’(4)] ‘u, ‘(5) 

= [U,- ‘(4) a’(518 + U,-‘(t) B’(j’)lCU,‘(O f(i;b 
+ K’(r) s’(t)1 -’ a.e. 

This is a linear fractional transformation of S(t) over the same constant 
matrix c, given by (2.5), with a matrix of coefficients A(t) = U(c) A’([), 
where 

Ut)=diw(U,‘(r’), U,-‘(<)). (2.8 1 

Note that A(5) verifies 

A(t) = ,fim, A(z) a.e., 
*+ 
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where 

A(z) = U(z) A’(z) (2.9) 

is a matrix-valued function of bounded characteristic in D. This is due to 
the construction of U,(t), U,(r) (cf. [4]) and A’(l). We shall prove now 

THEOREM 11.2. Let S(z) E Yn be a matrix-valued functions of order n. 
Then the representation 

S(z) = Edzb + P(Z)lCY(Zb + ~~z)l --I (2.10) 

with E specified by (2.5) and A(z) = ($] $I:]) given by (2.9) is a Darlington 
realization of S(z). 

Proof To prove the thesis we will show that A(5) is j-unitary a.e., and 
A(z) is j-expansive (ZE D). Since U,(t) and U,(t) are unitary a.e. by 
construction, using (2.7), (2.8), and (2.9) we have 

A*(i”)jN<) -j= u*(t) A’*(t)jA’(S) u(t) -j 

= U*(<)jU({)- j=O a.e. (2.11) 

In view of this result, we will verify that the elements of A(<) are a.e. boun- 
dary values of matrix-valued functions that satisfy the hypotheses of the 
Basic Lemma [3]. 

Let us consider the function 

d(z) = { Cdiag(Q), L,)l u,(z) + $1, + S(z)1 1 

x (z,+E[z,+S(Z)]}-’ (zED). (2.12) 

Assuming that the unity is not an eigenvalue of -S(z), the function 
{In + $Z?l+ S(z)1 I-’ exists [3], and taking into account that O(z), U,(z), 
and S(z) are bounded and holomorphic (ZE D), we conclude that 
d(z) EN,. Note that 

d-‘(t) = &<I = ,~;‘sI W) a.e. 

From (2.11) we know that 

a*(t) 45) -y*(t) y(t) = 1, 

Y*(o s(t) -a*(t) D(5) = 0 

a.e., 
a.e. 
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Then, using (1.2) we obtain 

tl* -I([) = a([) a.e. 

This relationship leads us to examine if a(<) is the boundary value of a 
matrix-valued function u(z) satisfying the hypothesis of the Basic Lemma. 
The expression (2.6) of a’(<) may be used to derive a formal expression for 
4: L 

u(z)=2{2Z,,+[Z,,+S(z)]c) ‘[U2 ‘(z)diag($(z), 0,, x) 

+ [Z,, + S(:)]e}. (2. I3 ) 

Admitting, without restriction, that unity is not an eigenvalue of S(J) 
(z E D), it can be seen that (2Z,, + [Z,, + S(z)] z) - I exists and its elements 
are functions of N,, (cf. [3]). 

Consider now the second factor in (2.13). The matrix-valued function 
ci, ‘(2) is, by its construction, of bounded characteristic in D. We can select 
an inner scalar function h,(z) being common denominator of all the 
elements of Uiz I(z), and construct a function $(<) = tj,({) h,(r), where 
$(,(<) is a solution of (2.4) uniquely defined by the normalization 
conditions. Therefore $([) is also solution of (2.4). Furthermore, 

where $(z) = Go(z) h,(z) is bounded and holomorphic in D. With this 
choice of $(z) the elements of U; ‘(z) diag($(z), 0,, k) are scalar functions 
of N,. Since [I,, + S(z)] is holomorphic and bounded (z E D), the above 
conclusions allow us to atirm that a(:)~ N,,. 

Consider now the element 

NO=B(OJ ‘(4)=B(<)45) a.e. 

Using (2.6) and (2.12) h(z) may be written 

h(z)= iS(z)-~E[z,+S(z)]}{z,+E[z,,+S(Z)]) ’ (ZE D). 

When we examined the element d(z), we have shown that Z, + e[Z, + S(z)] 
is invertible. This fact, together with property of boundedness and 
holomorphicity of S(z), implies that h(z) E N,. 

Let us now consider the block 

c(t) = 8 ‘(t) r(5) = 45) U; ‘(4) diag(S’:(O, W4)) 

x {diag($*(t), O,,~,)+diag(O,, I,, ,)CUz-‘(5)+ U,-‘(t) 

xdiag(S:(5),S:(<)]}~ ‘-&d(5) U;‘(<)diag(O,,Z, mk). 
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Since we have proved that d(t) E IV,, it follows immediately that the second 
term at the right also satisfies that condition. Hence it is left to show 
that the first term belongs to the class N,. We denote this term by c’(t). 
Replacing d(t) in it and using the equality 

t~,+tdiag(~,,~,.,)CZ,+S(5)1}~’ 

=I,- (Z,+tdiag(O,,Z,_,)[Z,+S(~)l}-‘~diag(O,,Z,-,) 

x cz,+s(ol 

we obtain 

c’(5) = cl(t) - c,(t), (2.14) 

where 

and 

CA<) = $45) diag(Ok, z,-,Kz, + S(t)1 u;‘(t) diag(GYO, W5)) 

x {dias($*(5), O,-,)+diag(O,,z,-,)CU,‘(4)+ U;‘(t) 

x dkdW5), X(0)1)-‘. 

The term c,(t) can be rewritten in the form 

cl(t) = CAtI + 2c*(5), (2.15) 

where 

Observe that the factor between brackets is, due to its construction, a 
triangular matrix-valued function, with its right superior block equal to 
zero. Therefore 

cg(<)=diag(&5) %Tt) 11/*-‘(t), O,-,). (2.16) 
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Replacing (2.16) and (2.15) in (2.14) we obtain 

c’(O=diag(Q(O S?(C) II/ -‘*(<L 0,, k)+c,(C). 

The matrix-valued function defined by (2.16) is the boundary value a.e. of 
the matrix-valued function 

~~(2) = diag(@z) S:( l/Y) $* ‘(l/2), O,, i) (LED) 

of bounded characteristic in D. Let h,(;) be an inner scalar function that is 
the common denominator of S:( l/Z) $ * ‘(l/F). If N,(t) is a solution of the 
factorization problem (2.3) satisfying the normalization conditrons, then 
O(t) = h,(t) O,( 5) is also a solution of that problem. Moreover, S(t) verities 

where H(z) is an hoiomorphic and bounded matrix-valued function (2 E D ). 
Therefore we can conclude that CUE A’,,. To prove that CENT) it is 
only left to show that CUE IV,. By virtue of (1.3) the term C?(C) can be 
written as follows: 

(.At)=@(5)diag(O,, I,,- ,,)[U, ‘(t)diag(S:(t), ST(S))+ L/1 ‘(5) 

xdiag(S,(O&Yi’), I,, -k)+ U;‘(t)- U, ‘(<)l{diag($*(5), 0,, i) 

+ diag(OkT I,, -k)CU; ‘(4) + UC ‘(ir) diag(S:(O, Wt))]) ’ 

= &Z(C) diag(O,, I,,~ ,){ U; ‘(5) diag(S,(<) ST(<) - I,, 0,, k) 

+ CU, ‘(4) + U, ‘(5) diag(WO, %(<)I i~{diag(l//*(O, O,, h) 

+ diag(O,, Z,, mk)[UI ‘(5) + Ii; ‘(i’) diag(S:(<), S,*(S))] j ’ 

= &‘(c’) diag(O,, I,, k) U; '(0 

xdiag(CS,(S) Wi’) - Ikl $* ‘(51, O,, n) 

+ $40 diag(Ok, I,, k)CU~ ‘(0 + C’, ‘(t) diag(S?(O, Wi’))l 
x {diag($*(O, 0,, mk) + diag(O,, I,, ,)[ U; I(<) + U,~ I(<) 

diag(W5)~ G(O)1 I --‘. 

Without loss of generality we can suppose that the unity is not eigenvalue 
of S(z), and, using the same argument we have mentioned when we con- 
sider the block h(z), we can afirm that [I+ S(t)] is invertible, therefore 
CU;‘(O+ ui ‘(5) diag(Wt), ST(<))1 . IS a so invertible. Taking this into 1 
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account and recalling that $(<) is solution of the factorization problem 
(2.4) we arrive at the conclusion that 

~~(5) = $45) u,‘(5) diag(ll/(O, 0,-k) + id(t) diag(Ok, In-d 

x (dk(ti*(4h ~,-k)C~z’(~)+ u;‘(l) 

x diag($‘Y5), WO)Y ’ f didOk, Zn-k)}p’ 

= MO diag(Ok, znpk) U;‘(5) diag($(t), o,-d+f4t) 

x diag(O,, I,-,). 

Recalling that with the convenient construction of $(<) we have set when 
the block a(z) was examined, the elements of U,‘(z) diag($(z), O,-,) 
are bounded and holomorphic scalar functions (ZE D), we arrive to the 
conclusions that c*(t) E No. Therefore, c(5) E N,. Hence the matrix of 
coefficients A(z), defined by (2.9) is j-inner and the proof that (2.10) is a 
Darlington realization is finished. 

3. SET OF REALIZATIONS 

The Darlington realization of a matrix-valued function S(z) E Yn is not 
unique [3]. It is important for a practical viewpoint (synthesis of an n-port 
with specified scattering matrix) to describe all the possible realizations of 
S(z). An analogous problem has been cited by Cauer [IS], in the case of 
reactance matrices, the equivalence problem. 

Let us consider an arbitrary realization of S(z) E Yrr, 

S(z) = C@(Z)& + P(Z)lCY(Z)& + Q)l-‘, (3.1) 

over a constant matrix E (E 9) with a j-expansive matrix of coefficients 

since E E c4”, the matrices 

F=ln-&*E, 

F = h - EE*, 

are nonnegative, and there exist unitary matrices V, and Vz diagonalizing 
them. If we denote by r the dimension of the range of F, and introduce the 
matrix 

E’ !z? VZE V,‘, (3.2) 
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we know (cf. 4, Theorem 111.11) that E’ may be written in a diagonal form, 
i.e.. 

I:’ = diag(e, , Q), (3.3) 

with blocks E, of order r and E, of order n-r satisfying /It‘, 11 < 1 and 
l/c?/1 = 1. Note that 

F, = I,-c;“c,, 

F, = I,--l:,c:, 

are positive definite matrices. 
Consider now the linear fractional transformation 

specified by 

El= [~:EO+P:][Y:&o+6:]~ ’ 

E,, = diag(O,, I,, ,I (3.4) 

and the ,j-unitary matrix 

where 

x,, = diag(F;-~ I”, Ed), /I,,, = diag(F, I”, 0,, ,), 

;I,, = diag(&:F; I”, O,- ,), 6,., = diag(F; ’ ‘, I,, ,). 

Using this construction we conclude that 

E= C~,~“+PclCYr~O+~rl ‘> 

(3.5) 

(3.6) 

where 

= diag( V; I, V, I ) x u,, (3.7) 

is ,j-unitary. This is due to (3.2) and the fact that V, and V, are unitary. 
Substituting (3.6) into (3.1) the resultant expression for S(z) is 

S(z) = C%(Z) %I + Bo(z)l CYdZ) E” + &(z)l ’ (zED) (3.8) 

with a matrix of coefficients 

A,(z) = A(z) u,:. (3.9) 
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Using (1.2) together with (3.7) we obtain a linear fractional transformation 
of 

S’(t)= C~‘(~)~,+~‘(~)ICY’(~)~~+~‘(~)I~’ a.e., (3.10) 

with a matrix of coefficients, expressed in terms of A,, A’(r) = 
diag( U,(t), V,(t)) A,(t). A’(r) is j-unitary a.e. because the unitarity of 
U,(t) and U,(t), and the j-unitarity of A,({). For a matrix-valued function 
S(z)~9’4~71, we define [4] 

N,= {FEEL:, T(4) 48 = h(5) a.e.>, (3.11) 

where I(5) = S*(t) S(r), we have proved in [4] that N,s is a closed linear 
manifold and, consequently, that 

P+(C”)=N,@N,,, 

where the symbol I denotes orthogonal complement. For each value of r 
where 7”(r) is denoted we set [4], 

N,= (hd’, T(~)h=h}, 

N;= {KEC”, T’(t)h’=h’), 

where T’(t) = S(t) S*(t) a.e. These relations imply 

C”= N,@N,,, 

C”= N;@N:,, 

and we known from [4] that the subspaces N, have the same dimension 
for almost every 5 in the unit circle. 

Let us consider a vector-valued function h(t) E N,. From 
definition (3.11) it follows that 

[Z, - T(t)] h(t) = 0 a.e. 

This relationship, together with (1.3), may be used to derive 

u,- ‘(OCI, - s’*(t) s’(t)1 U,(5) h(5) = 0 a.e. (3.12) 

Taking into account the particular way of constructing U,(t) and the fact 
that h(t) E N,, we conclude that 

-x(t-) = u,(t) h(t) = (o,-., 0, xk+ 1(t),-, x,(t))‘, (3.13) 
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Since (i,(t) is unitary a.e. from (3.12) it follows that 

[I,,- s’*(t) S’(C)1 x(5) = 0 a.e. 

Recalling that the dimension of the range of F is r, we suppose without loss 
of generality, that dim N, = n - k, and introduce the notation 

where IV’,,(~) is a block of kxr (k columns and r rows), LV’,?(<) of 
(n-k)xr, w;, o f k.y(n - r) and n’iL(<) of (n-k) x (n ~ Y). Therefore, the 
expression (3.13) may be written using (3.4) in the alternative form 

\v’*(<) diag(l,, 0,, ,) by’(<) s(z) = 0 a.e. (3.151 

This relationship, together with (3.13) and (3.14) ensures that ~,‘,~(t) = 0 
a.e. Using for y’(t) and 6’(r) a notation consistent with (3.14) it is easy 
now to express the blocks of HX’(<) in terms of the blocks of y%‘(t) and X(s), 
i.e.. 

where the blocks y’,,(t) and (S’,,(t) are of rxk; ;I>,(<) and S;,(t) of 
rx (n--k), ;a;,({, and 6’,>(C) of (/z-r) x k: and y>&(<) and S;L(<) of 
(/I-r)x(n-k); and 

On examinating the expressions (3.16) (3.15). and (1.4) it is found that 

r,-s:(<)s,(()=s;, ‘*((,s;T(:, a.e.. (3.17) 

we know [S] that there exists a solution Q,,(t) of the factorization problem 
(3.17), verifying 

O,(l)= lim fl,,(;), 
I:/ *I 

where U,,(Z) is bounded and holomorphic in D, uniquely defined among the 
infinite set of solutions by the normalization conditions Q,(O) >O and 
det Q,,(Z) is an outer function. We also know [ 51 that any solution of (3.17 ) 
satisfies H(5) = V(t) 0,(t) a.e., where V(5) is a unitary matrix valued 
function a.e. This fact and (3.17) imply 

6\,(1”) = 0 ~~‘(5) a.e., (3.18) 
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where 13(t) is the boundary value a.e. of a bounded holomorphic matrix- 
valued function (z E D) and solution of the factorization problem (3.17). 

We introduce now the notation 

and consider again a vector-valued function h(t) EN,. We know [4] that 
for each fixed value of { except, possibly, a set of zero measure it holds that 

which may be written in the equivalent form 

s’(t) x(5) = [a’(l) Eo + P’(4)] w’(t) x(5) =x’(r), (3.19) 

where x(t) is defined by (3.13) and 

x’(4) = V,(4) h’(5) = (O,..., 0, x;+‘(4),..., xX5))‘. (3.20) 

To derive this last expression we use analogous arguments to those we 
mentioned in obtaining (3.13). A vector-valued function g(5) E N,, verities 
the following expression [4] for almost every fixed 5 on the unit circle 

which may be written in the alternative form 

S’(5)Y(5) = Y’(O, (3.21) 

where 

A<) = U,(5) g(5) = (Y,(5),..., Yk(5), o,..., O)‘, 
Y’(5) = U,(4) s’(5) = (Y;(t:),...> Y;(5), OY.., 0)‘. 

(3.22) 

From (3.19), (3.20) (3.21), and (3.22) we conclude, after a simple 
calculation, that 

C&(5) + LM5)1cY;2(5)+ U4)1-’ = s,(r) a.e., (3.23) 

F”(5) 6;; ‘(0 = S’(5) a.e., (3.24) 

a;2(5) + P’,(5) = 0 a.e., (3.25) 

~,(r)~;l(5)~;r’(5)-8;1(5)~;r1(5)=o a.e., 
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where the last equality may be immediately rewritten as 

L%(5) = &(5) G,(5) a.e. (3.26) 

The fact that A’(t) is j-unitary a.e. is equivalent to the following system for 
the blocks of A’(t), 

a’*(4) a’(5) -Y’*(t) Y’(C) = I,, a.e., 

s’*(r) S’(5) - P’*(r) P’(4) = I,, a.e., 

a’*(0 j?‘(5) - y’*(i’) S’(O = 0 a.e. 

Let us develop these equations using the notation we introduce for the 
block of A’(l), 

From (3.28) and (3.30), we get 

r;,(t) = moG(5) a.e. (3.31) 

and replacing the above equation, together with (3.24) and (3.26) in (3.29) 
we find that 

fl,(O= mo a;,(t) a.e. (3.32) 
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Let us consider now the factorization problem 

Ik- S,(5) GYo = NO $*(<I a.e. 

From among the infinite set of solutions we uniquely define a function 
rj0(5), which is the boundary value of a bounded and holomorphis matrix- 
valued function rc/,,(z) (z E D) satisfying the normalization conditions 
rjO(0) > 0 and det $(z) is an outer function. Any solution of this problem is 
obtained by means of 

11/(t) = $0(5) V,(5), 

where V,(r) is an isometric matrix-valued function [S]. Substituting (3.31) 
and (3.32) into (3.27) we obtain 

4,(5)=$-‘*(5) a.e. 

I;, = %Yt) F’*(t) a.e., 

and recalling that the functions Q(t) and $(?j) may be expressed in terms of 
the solutions 0,(t) and 11/,,(t), i.e., 

O(5) = V,(5) Rdo, (3.33) 

11/(t) = 1(/o(5) ~A0 (3.34) 

using (3.18) and (3.24) we arrive at the following results: 

s;,(T) = G’(t) v,‘(r), 

Y;,(t)= wo II/*-‘(t) V,(5)? 

where V,(t) and V,(t) are unitary matrix-valued functions a.e. We know 
also from (3.16) that 

fd<) = -s;*(c) a.e. 

Finally, by virtue of the above results, we get the following expression for 
the matrix-valued function A’(t), 

$o* ~ ‘(5) v,(r) G(4) s,(t) 0,’ (0 I/, 

A’(t) = 
&,(O G*(5) &(a &l(5) 

%Yo 1(/o*-%) V*(5) vl2(5) 47 ‘(4) v; ‘(r 

s:(t) &l(5) MO &(t) 



DARLINGTON REALIZATIONS 349 

and, recalling that S(Z) E Yrr, 

The relationships (3.8) and (3.9) allows us to conclude that the matrix of 
coeffkients of any Darlington realization of a matrix-valued function 
S(Z)(E Yn), may be written in the form 

A(z) = diag( U’- ‘(z), U, ‘(1)) A’(z) U, ‘, (3.36) 

where A’(Z) is specified by (3.3) and U, by (3.5); and verify the hypothesis 
of the Basic Lemma [3]. The formula (3.36) is a solution to the problem of 
multiplicity of Darlington realizations. Varying k’,(t) and P’,(r) [3] we 
obtain all the possible realizations of S(Z). 

To complete this development it is convenient to show that (3.36) con- 
tains, as a particular case, formula (4.14) obtained by Arov in [3]. When 
the condition I- 7(g) > 0 a.e. is satisfied, dim N, = 0 and (3.35) is reduced 
to 

A’(z)= ( 
Ijo* -‘(l/z) S,(z) 8, ‘(2) Vz(z) 0 

Sfy1/2) Ii/o* ‘(l/T) 0, ‘(2) I( 0 VI ‘(z) 1 

and, in addition, it holds that 

s(r) = u, ‘(5) s’(t) U,(i’) a.e. 

The above relationship, together with 

I,* - T(t) = U;‘(t) 435) 63(t) U,(i’) a.e., 

1, - T(t) = U,‘11/0(5) ‘ho*(t) U,(i”) a.e. 

Introducing the notation 
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we conclude that 

A(z) = 
p*-‘(l/q S(z) P-‘(z) V2(z) 0 

s*( l/Z) sz* -‘( l/Z) P-‘(z) 0 V;'(z) u,-' ) 

which coincides with formula (4.14) from [3] obtained by Arov as a 
description of the set of realizations of S(z) when Z,, - T(t) > 0 a.e. 
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