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We obtain a unique expression for a Darlington realization of a contractive
matrix-valued function S(z)e.%n, valid for the three following cases: (a) S(z) is
inner: (b) S(z) is not inner and det[/,— S*(&) S(¢)]#0 ae; (¢) S(z) is not inner
and det[ ], — S*(1/2) S(z)] =0 (z€ D). On the basis of this result we examinate the
problem of multiplicity of realizations for the case (c¢). 1987 Academic Press. Inc.

1. INTRODUCTION AND SUMMARY OF KNOWN RESULTS
We shall denote by L>(C") the class of measurable functions A(&) (& =¢".
0 < r<2n), with values in C” such that

HhIP=§%f:“ h(e™)12 dr < .

It consists of the functions whose Fourier series is (in the sense of
convergence in the mean)

o

WEY=Y h&h meC”  and  hP= Y I (e [1D).

We shall denote by L2 (C”) the subspace of L*(C") which consists of those
functions for which A, =0, k<0. H*(C") denotes the Hilbert space of
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functions h(z) =3 °_, h,z* (z=re"), h, e C", holomorphic in the unit disk
D= {z;|z| <1}, such that

1 " ity 2
5;[0 \A(re™)|>dt  (0<r<1)

has a bound independent of r.

A function u(z) holomorphic in D is called inner if |u(z)| <1 (ze D) and
lu(&)] =1 a.e. A function @(z), holomorphic in D is called outer if

1 (e 4z

qs(z):;(exp—f 2 lnk(tydt  (zeD),
21 o € —Z
where k(¢) >0, Ink(t)e L' and y is a complex number of modulus 1. For a
function w(z), meromorphic in D, the characteristic of Nevanlinna is
defined by the expression

T(w, r)= j “In* w(re") dt

1 r2
21 g

+Jrn(t’—w)-ti(wdt+n(0, wln r,
4]

where

In* ae Ina if a1
0 if 0<a<t,

and n(f, w) is the number of poles of w(z), each one with its multiplicity,
inside the circle |z| < t.

We say that w(z) is of bounded characteristic if sup, ., |T(w;r)| < co.
According to a theorem of Nevanlinna [2] the class of functions of boun-
ded characteristic coincides with the class of functions that can be written
as the ratio of two bounded holomorphic functions (ze€ D). Then, these
functions are uniquely defined by their boundary values a.e. in the unit
circle.

We design with N, the class of functions f(z) of bounded characteristic
(z e D) that can be written as a product of an inner function and an outer
function. For functions of N, the maximum principle holds. A matrix S is
called contractive iff / — S*S >0, where I is the unit matrix and the symbol
* denotes hermitian conjugation. We use J to design a matrix for which
J*=J and J?=1 A matrix 4 is called J-expansive iff 4*J4 —J>0, and
J-unitary iff 4¥*J4 —J=0.

We will design by & the class of contractive matrix-valued functions, i.e.,
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the matrix-valued functions holomorphic in D for which [|S(z)| <1
S(z)e ¥ is inner if [—S*(£)S(¢)=0 ae. We say that a matrix-valued
function is of bounded characteristic if all its elements possess that
property, and that belongs to the class N, if all its elements are functions of
Ny. A matrix-valued functions S(z) € & belongs to the class ¥z if it has the
additional property that its boundary values a.e. on the unit circle are,
simultaneously, boundary values of a matrix-valued function Si(z)
meromorphic in D = {z; |z] > 1} with elements of bounded characteristic
there [3], e,

lim §(z)= lim S(z) ae.
=111 2111

A meromorphic matrix-valued function A(z) is J-expansive (ze D) if it
assumes J-expanding values at each point of holomorphicity =, ie.,

A*(z) JA(z)—-J =0,

and a J-expansive matrix-valued function A(z) is J-inner if it is J-unitary
a.e. in the unit circle, i.e.,

A*(S) JA(E) =/ =0.

An arbitrary J-expansive matrix-valued function is of bounded charac-
teristic [3].
Of importance for us is the

Basic Lemma [3]. Let A(z)= () M) be a matrix-valued function of

hounded characteristic of order n + m, with diagonal elements «(z) of order n
and 8(z) of order m, where det 5(z) £ 0 (z € D), that satisfies the condition

A*(E)jA(E)—=j=0 a.e.,

where

and
a(z)=a(z)— f(z) & ~'(z) y(z) € Ny;
b(z)=P(z) 0~ '(z) € Ny;
c(z)=0 "(z)y(z) e Ny;
d(z)=38"'(z)e N,.

(1.2)
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Then A(z) is J-expansive (ze€ D) and |a(z)] <1; |b(2)| <€1; |le(2)) €1,
ld(z)| < 1.

We will use also

THEOREM [4]. Let S(z) be a matrix-valued function of order n, of the
class &n. Then its boundary values ae. S(&) can be represented in the form

S0 =Uy"(€) SO Ui(&), (1.3)

where U (&) and U,(&) are ae. limiting values of inner matrix-valued
Sfunctions U \(z) and U,(z), and S'(&) has a diagonal form with blocks S,(¢)
of order k and S,(&) of order n—k, ie.,

S'(&) = diag(S,(£), S»(8)) (14)

verifying a.e. the relations || S,(E)|l <1 and | S,(&)) = 1.

We will decribe briefly the way we have constructed in [4] the matrix-
valued functions U,({) and U,(£), because of their importance in the
development that follows. For each fixed ¢ where T(&) =" S*(&) S(&) is
defined, we arranged the eigenvalues of the nonnegative matrix I, — T(&) in
nonincreasing order, and considered the orthonormal base of C”* formed by
the corresponding eigenvectors {®,(&)}” Introducing the notation

m—1"

¢n(é) = ((pml(é)’ ®n12(£)"“’ (Dmn(é))‘7
where the symbol ( )' denotes transposition, we construct the matrix
U(&)= {@bgf(‘f)};f/:l-

Due to the orthonormality of {@®,,(&)}%, UF(&) U, (&) =1, for each fixed &
in the unit circle except, possibly, a set of zero measure. According to the
way we ordered the eigenvalues, the last (n-—k) rows of U,(£) are the
eigenvectors corresponding to the eigenvalue 0. We applied a similar
procedure to construct U,(¢), which T7(&) =" S(&) S$*(¢) playing the role
of T(&).

Arov has proved in [3] that a necessary and sufficient condition for a

matrix-valued function S(z) to be Darlington realizable is that S(z) belongs
to the class &n, and considered separately three cases:

(a) S(z) is inner;
(b) S(z)is not inner and det[ ], — S*(&) S(£)1#0 ae.;
(c) S(z)is not inner and det[,— S*(1/z) S(z)]=0 (ze D).

Using results from [3,4] we obtain in this article a unique expression,
valid for the three cases for a Darlington realization of a matrix function
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S(z)e #n. This result allows us to examine the problem of multiplicity of
realizations not only in Case (b), solved in [3], but also in Case (c¢)
proposed in [37] as an open problem.

2. DARLINGTON REALIZATIONS

By Darlington realization of a matrix-valued function S(z)e &, of order
nx m, we mean the representation of S(z) as the linear fractional transfor-
mation [3],

S(z)=[az)e+B(2)1[7(z)e+6(z)] . (2.1)

over a constant matrix ¢ €.%, of order n x m, with a j-inner matrix of coef-
ficients
A(,):(a(z> /f(:))
7(z) 4(z)

THeEOREM II.1. Let S(z)e 1 be a matrix-valued function of order n.
Then S'(&), defined by (1.3), can be written as the linear fractional
transformation

S'(&)=[a'(&)e+ B () (e+0(¢)] (2.2)
over a constant matrix ¢€ £, with a matrix of coefficients

x'(E) ﬂ'(é))

4 (é)=<, &) 5

that is j-unitary a.e.

Proof. As an illustration we describe briefly the steps of the proof,
which consist of

(1) making a convenient selection of ¢ (formula (2.5)) and

(2) carry out the demonstration of the thesis with the particular
choice of A4'(¢) specified in (2.6).
Let us observe that, since S(z)e &=n, the nonnegative matrix-valued
functions

def

Fi(§) = L —SFE) Si(&) ae,

def

Fi(&) = I,—S(&) ST ae

409,125.2-3
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are boundary values of matrix-valued functions F,(z) and F'(z) of bounded
characteristic in D. Hence there exist [5, 6] solutions 8(£) and (&) of the
factorization problems

Fi($)=0%()0(¢)  ae, (2.3)
FiQ) =y y*() ae (24)

that are a.e. boundary values of bounded holomorphic functions 6(z) and
(z). These solutions are uniquely defined by the following normalization
conditions: det 6(z) and det (z) are outer functions, 6(0) =0 and y(0) > 0.
We will construct the representation (2.2) with

0, 0
s=<0 IH>’ (2.5)

here n— k is the dimension of the subspace

N={heC";, S*(&) S({)h=h}

for each value of ¢ where S(&) is defined [4]; and the matrix of coefficients
A'(&) with elements

= {diag(¥*(£), 0,_ ) +e[U; (&) + U (&) S™*(E)1} ' +3U,(&)e,
(&)= 5'(¢){diag(6(¢), 0, ) +e[Uy (&) + Uy H(E) S'(E)]} ' —3U(E)e,
() =8"*(&){diag(¥*(£), 0, )
+e[U; (O + U (O S™(E)]} ' —1U(&)e,
&'(¢) = {diag(0(¢), 0, _ ) + LU (&) + Uy (&) ()1} " +3Ui(E)e, (26)
where U, (¢) and U,(£) are the unitary matrix-valued functions a.e.

involved in (1.3) and defined in [4]. With this choice of ¢ and 4'(&), (2.2)
holds. In fact

SO (©e+ ()]~ [« (e +B(S)]
= diag(S¥(&) $1(8) — I, 0, ) {diag(¥*(£), 0, _4)
+e[U; (O +UTE) S]]} e=0 ae

To finish the proof we will show that

A'*(8)jA'(§)—j=0  ae.
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or, equivalently, that

)=y HE) V(&) =1, ae,
OO - pHEB(E)=1, ae,
a* (&) BE) -y *(E)d'(E)=0 ae. (2.7)

Substituting (2.6) into (2.7) we get

2 H(E) ()~ 7 (E) Y (E)
=diag(y ()1~ S1(&) SHETY* (61,0, )
atuzm S(E) UE)] " diag(@(£),0, )+e} '
+ Lo {diagW*(£), 0, LU, (O + U () SHE] " +e) '=1, ae
5H(E) (&) = BH(E) BE)
=diag(0* '(&)[1,—SHE) S(E)0(£).0, ;)
+Le{diag(0(¢), 0, LU, (E)+ U, (OS] "+e) '+o

=1, ae.,

aHE)FUE)—7"M(E) 0'(C)
=5e{diag(6(¢), 0, LU (O + U, (&) S'(E)] ' +e)
=HLULE) +S(E) U (¢)] ' diag(y(£),0, )+e) '=0 ae.

This completes the proof of Theorem II.1.
Using this theorem and (1.3) we obtain
SE)=U; (O (Oe+ B(E)I[(E)e+1(&)] U (&)
=[U; /() ' (E)e+ Uy (&) B(EITU (L) y'(E)e
Ur'(©)e(e)l 't ae

This is a linear fractional transformation of S(&) over the same constant
matrix g, given by (2.5), with a matrix of coefficients A(&)= U(&) A'(&),
where

U(&) = diag(U; (&), U '(&)). (2.8)
Note that A(&) verifies

A(i):jlim A(z) ae,
zl—1
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where

A(z)=U(z) A'(z) (29)

is a matrix-valued function of bounded characteristic in D. This is due to
the construction of U,(&), U,(&) (cf. [4]) and A'(&). We shall prove now

THeOREM I1.2. Let S(z)e &n be a matrix-valued functions of order n.
Then the representation

S(z)=[a(z)e + B(z)][v(z)e +(z)] " (2.10)

with & specified by (2.5) and A(z) = (3} %)) given by (2.9) is a Darlington
realization of S(z).

Proof. To prove the thesis we will show that A(&) is j-unitary a.e., and
A(z) is j-expansive (ze D). Since U,(£) and U,(¢) are unitary ae. by
construction, using (2.7), (2.8), and (2.9) we have

A*(E)JA(L) — j=UX(&) A () jA(E) U(E) —J
=U*(&)jU(E)—j=0  ae. (2.11)

In view of this result, we will verify that the elements of A(¢) are a.e. boun-
dary values of matrix-valued functions that satisfy the hypotheses of the
Basic Lemma [3].

Let us consider the function

d(z)= {[diag(6(z), 0,_,)1 U,(z) + el 1, + S(z)]}
x{I,+e[l,+S(z)]} ! (ze D). (2.12)
Assuming that the unity is not an eigenvalue of —S(z), the function
{I,+¢[I,+S(z)]} ' exists [3], and taking into account that 6(z), U,(z),

and S(z) are bounded and holomorphic (ze D), we conclude that
d(z) e N,. Note that

d-NE)=6(&)= lim 8(z) ae.

|z| =1

From (2.11) we know that

a* Q) a(Q) =) v() =1, ae,
Y*(E) 8L —a*(E) (E)=0  ae
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Then, using (1.2) we obtain
a¥ &) =a(l) ae

This relationship leads us to examine if @(¢) is the boundary value of a
matrix-valued function a(z) satisfying the hypothesis of the Basic Lemma.
The expression (2.6) of «'(£) may be used to derive a formal expression for
a(z),

a(z)=2{21,+ [1,+ S(z)]e} "{U,'(z)diag(¥(z), O, ,)
+ (1, + S5(2) e} (2.13)

Admitting, without restriction, that unity is not an cigenvalue of S(z)
(ze D), it can be seen that {21,+ [I,+ S(z)]e} ' exists and its elements
are functions of N, (cf. [3]).

Consider now the second factor in (2.13). The matrix-valued function
U, !(z) is, by its construction, of bounded characteristic in D. We can select
an inner scalar function b,(z) being common denominator of all the
elements of U; !(z), and construct a function ¥(&)=(<) b,(E), where
Yol&) is a solution of (2.4) uniquely defined by the normahzatlon
conditions. Therefore (&) is also solution of (2.4). Furthermore,

lﬁ(i):l}‘irjll w(z) ae,
where /(z)=1(z) b,(z) is bounded and holomorphic in D. With this
choice of (z) the elements of U; !(z) diag(y(z), O, .,) are scalar functions
of N,. Since [1,+ S(z)] is holomorphxc and bounded (ze D), the above
conclusions allow us to afirm that a(z)e N,.
Consider now the clement

E)=PE)d (G =) dE)  ae
Using (2.6) and (2.12), b(z) may be written
b(z)= {S(z)—3e[L,+ S()1} {1, + 1, +S(z)]} ' (zeD)

When we examined the element d(z), we have shown that I, + &[], + 5(z)]
is invertible. This fact, together with property of boundedness and
holomorphicity of S(z), implies that b(z)e N,.

Let us now consider the block

«(&)=0 NN =d($) U (&) diag(SF(S), SF(E))
x {diag(y*(&), 0, ) +diag(0,, 1, I[U; &)+ U '(&)
x diag(ST(&), S¥())} ' —3d(&) U '(§) diag(Oy, 1, _»)-
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Since we have proved that d(&) € N,, it follows immediately that the second
term at the right also satisfies that condition. Hence it is left to show
that the first term belongs to the class N,. We denote this term by ¢'(&).
Replacing d(£) in it and using the equality
{In + % diag(ok’ In« k)[In + S(é)]} !
=1,— {1, +3diag(O, I, )1, + S(&)1} ' 3 diag(Oy, 1, )
x [1,+S(8)]

we obtain

(&) =c1(&) —ea(Q), (2.14)

where

(€)= {diag(6(¢), 0, ) U,(&) + diag(O,, I, )1, + S(¢)]
x U (&) diag(ST(E), S¥(&)){diag(y*(¢), 0, )
+diag(0y, 1,_ LU (&) + Uy (&) diag(SH(E), SH(E)} !
and
(&) = 3d(&) diag(Oy, I, _ )L, + S(&)] Uy (&) diag(SF(&), SF(8))
x {diag(y*(&), 0, _,) +diag(O,, I, )[U; (&) + U (&)
x diag(SF(&), SF(EN1} .

The term ¢ (&) can be rewritten in the form

1(&) = c3(8) + 2¢5(8), (2.15)

where

¢5(&) = diag(0(&) S¥(£), 0, ) {diag(¥y*(¢), 0, )
+diag(Oy, I, - )LU (&) + U (&) diag(SF(E), SF(ENT}
Observe that the factor between brackets is, due to its construction, a

triangular matrix-valued function, with its right superior block equal to
zero. Therefore

c3(&) = diag(6(&) SFHE) y*71(&), 0, &) (2.16)
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Replacing (2.16) and (2.15) in (2.14) we obtain
(&) =diag(0(¢) SFE) ¥ ~*(&), 0, 1)+ cs(€).

The matrix-valued function defined by (2.16) is the boundary value a.e. of
the matrix-valued function

cy(z)=diag(0(z) S¥(1/2)y* '(1/21. 0, )  (zeD)

of bounded characteristic in D. Let b,(z) be an inner scalar function that is
the common denominator of S¥(1/Z) y* ~'(1/7). If 0,(&) is a solution of the
factorization problem (2.3) satisfying the normalization conditions, then
(&) = b5(&) B,(&) is also a solution of that problem. Moreover, 8(¢) verifies

0(&)= lim 6(z) a.e.,

EE

where #(z) is an holomorphic and bounded matrix-valued function (z € D).
Therefore we can conclude that c¢;{(&)e N,. To prove that ¢(&)e N, it is
only left to show that ¢,(&)e N,. By virtue of (1.3) the term ¢,(&) can be
written as follows:

2(8)=1d() diag(Oy, I, LU, '(§) diag(SF(E), SF(EN + U, (&)
xdiag(S,() SF(E), 1, )+ Uy '(§)— U, (&) ]{diag(y*(£), 0, )
+diag(Oy. 1, U5 (&) + Uy '(E) diag(SHE), SHENTT
= 3d() diag(Oy, 1, U, '(&) diag(S,($) SHE) 1, 0, )
+[U, (&) + U, (&) diag(ST(E). S3(E) ) {diag(y*(S), 0, )
+diag(O,, 1, U, HE)+ Uy (&) diag(SF(E), SFHENT)
= 3d(&) diag(O,, 1, ) Uy ()
x diag([S1(£) SFE) — L y* '(£), 0, )
+3d(8) diag(Oy., 1, Uy (&) + U, () diag(SF(E), SF(E))]
x {diag(y*(£), O, ) +diag(Oy, I, I[U; ")+ U (&)
diag(SF(E), SF(ENT;

Without loss of generality we can suppose that the unity is not eigenvalue
of S(z), and, using the same argument we have mentioned when we con-
sider the block b(z), we can afirm that [7+ S(£)] is invertible, therefore
[U; &)+ U (&) diag(SF(E), S¥(E))] is also invertible. Taking this into
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account and recalling that (&) is solution of the factorization problem
{2.4) we arrive at the conclusion that

cy(&)=3d(¢) Uy (&) diag(¥ (&), 0, _ ) + 3d(E) diag(Oy, 1, )
x {diag(y*(£), 0,_ LU (&) + U ()
x diag(SH(&), $¥(¢))] ' + diag(Oy, 1, i)} !
= 3d(¢) diag(O,, I, ) Uy (&) diag(¥ (&), 0, _ ) +3d(¢)
x diag(O,, I,,_ ;).
Recalling that with the convenient construction of ¥(&) we have set when
the block a(z) was examined, the elements of U, '(z)diag(y(z), 0,_,)
are bounded and holomorphic scalar functions (ze€ D), we arrive to the
conclusions that ¢,(£)e Ny. Therefore, ¢({)e N,. Hence the matrix of

coefficients A(z), defined by (2.9) is j-inner and the proof that (2.10) is a
Darlington realization is finished.

3. SET OF REALIZATIONS

The Darlington realization of a matrix-valued function S(z)e ¥ is not
unique [3]. It is important for a practical viewpoint (synthesis of an n-port
with specified scattering matrix) to describe all the possible realizations of
S(z). An analogous problem has been cited by Cauer [6], in the case of
reactance matrices, the equivalence problem.

Let us consider an arbitrary realization of S(z)e ¥,

S(z) = [a(z)e + f(z)1[v(z)e + d(s)1 ", (3.1)

over a constant matrix ¢ (€ %) with a j-expansive matrix of coefficients

(dz) B2)
A(Z"<y(z) 6(z)>

since ¢ €.%, the matrices
F=1In—c¢¥*g,
F =In—ec*,
are nonnegative, and there exist unitary matrices V', and V', diagonalizing

them. If we denote by r the dimension of the range of F, and introduce the
matrix

A (32)
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we know (cf. 4, Theorem III.1]) that ¢’ may be written in a diagonal form,
le.,

¢’ = diagfe,, ¢,), (3.3)

with blocks ¢, of order r and &, of order n—r satisfying {¢,|| <1 and
lle,) = 1. Note that

— X Py
F,=1—¢fe,,
L \ *
Fi=1 —¢¢&f,

are positive definite matrices.
Consider now the linear fractional transformation

¢'=[aeq+ B 1[vieo+03.17"

specified by

g,=diag(0,, I, ,) (3.4)
and the j-unitary matrix
ar' ﬁr'
U =% .
¢ <"l’c’ 51:’)
where
x::' = dlag(F, N 1,"2’ 82)* B:;' = dlag(F ]/23 On r)*
‘ : (3.5)

Yo = dlag(E]*F; 1”’2’ 071— V)J 55:' = diag(F{ 1 2’ In r)'

Using this construction we conclude that

ngax80+ﬁ5][y(:80+(szz] Iv (36)
where
L ﬂs : -1 -1 /
U,= 0 =diag(V, ", V; ")YxU,, (3.7)

is j-unitary. This is due to (3.2) and the fact that ', and V, are unitary.
Substituting (3.6) into (3.1), the resultant expression for S(z) is

S(z)=[oo(z) &9+ Po(2) 1[70(z) €6+ (=) ] ! (ze D) (3.8)
with a matrix of coefficients

Ao(z)=A(2) U.. (3.9)
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Using (1.2) together with (3.7) we obtain a linear fractional transformation
of

S(E)=[a(&) o+ B O (E) e+ ()] ae, (3.10)

with a matrix of coefficients, expressed in terms of 4,, A'({)=
diag(U,(&), U,(&)) Ag(E). A'(&) is j-unitary a.e. because the unitarity of
U, (&) and U,(¢), and the j-unitarity of 4,(&). For a matrix-valued function
S(z)e ¥n, we define [4]

N,={h(&)e L (C"),  T(E)h(&)=h()ae}, (3.11)

where T(&)= S*(&) S(&), we have proved in [4] that N, is a closed linear
manifold and, consequently, that

L{L(Cn):Nx@Nx_La

where the symbol L denotes orthogonal complement. For each value of &
where T(¢£) is denoted we set [4],

N:.=t{heC", T({)h=h},
N.={heC, TEHN=h}
where T'(&) = S(&) S*(¢) a.e. These relations imply
Cn = N{ @ Nfl_ N
C"=N.®N,,,
and we known from [4] that the subspaces N, have the same dimension
for almost every ¢ in the unit circle.

Let wus consider a vector-valued function A(¢)eN,. From
definition (3.11) it follows that

(L,—T()]hE)=0 ae
This relationship, together with (1.3), may be used to derive
UL, =S SN U AE=0  ae (3.12)

Taking into account the particular way of constructing U,(¢) and the fact
that A(&)e N, we conclude that

x(&)=Uy(&) h(&) = (0,..., 0, X4 1 1(&)ss X,(E))'s (3.13)
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Since U,(&) is unitary a.e. from (3.12) it follows that
[1,-8%)S(E]1x(E)=0  ae

Recalling that the dimension of the range of F is r, we suppose without loss
of generality, that dim N.=n— &, and introduce the notation

)>, {3.14)

where w,(£) is a block of kxr (kK columns and r rows), wi,(¢) of
(n—k)yxr, wy, of kx(n—r) and wi,(&) of (n—k)x (n—r). Therefore, the
expression (3.13) may be written using (3.4) in the alternative form

wi(&

)
wi(&) wh,

(C)—[T )Eo+0'(E)] l:<

w'* (&) diag({,,0, ,)w(&)x(&)y=0 ae. (3.15)

This relationship, together with (3.13) and (3.14), ensures that wi,(&) =0
ae. Using for 7'(£) and §'(¢) a notation consistent with (3.14), it is easy
now to express the blocks of w'(£) in terms of the blocks of (&) and 8'(¢).

1E..
(& :<}”11(§) 712(¢) 5(E) = [07(E) o)

where the blocks v1,(&) and 07,(¢) are of rxk; +5,(&) and 95,(¢) of
Fx(n—kY, 715(&) and 81,(&) of (n—r)xk: and y5,(Z) and 0%(¢
(n—r)x(n—k); and

( 5, () 0
[7E)+05(E)] 1 0lE) 01 1) [5(E) +05(E)] 1)

On examinating the expressions (3.16), (3.15), and (1.4) it is found that
L—SFE) S1(E)=67, "*(&) d1¥(&) a.e.. (3.17)

we know [5] that there exists a solution 0,(Z) of the factorization problem
(3.17), verifying
Bo(E)= lim By(z),

f=l 1

where 6,(z) is bounded and holomorphic in D, uniquely defined among the
infinite set of solutions by the normalization conditions 64(0)>0 and
det 8,(z) is an outer function. We also know [ 5] that any solution of (3.17)
satisfies 0(&)= V(&) 05(¢) ae., where V(&) is a unitary matrix valued
function a.e. This fact and (3.17) imply

S (&)=0""¢) ae, (3.18)
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where 6(&) is the boundary value a.e. of a bounded holomorphic matrix-
valued function (z € D) and solution of the factorization problem (3.17).
We introduce now the notation

(@) () B Bu®)
““"(a;,(é) aaz(@)’ d m‘(ﬁal(:) ﬂ’zz(é))’

and consider again a vector-valued function A(&)e N,. We know [4] that
for each fixed value of & except, possibly, a set of zero measure it holds that

S(E) h(E)=h'(E)e N

which may be written in the equivalent form

S'(&) x(&) = ['(&) & + B (EY] w'(£) x(&) = x'(S), (3.19)

where x(&) is defined by (3.13) and
x'(&)=Ux(&) H'(&) =(0,..., 0, X} 1 1(&)ery X,(E))" (3.20)

To derive this last expression we use analogous arguments to those we
mentioned in obtaining (3.13). A vector-valued function g(&) e N, verifies
the following expression [4] for almost every fixed £ on the unit circle

S(&)g(&)=g'(§)e Nz,

which may be written in the alternative form

S'(E) (&)= y' (), (3.21)

where

&) =U(&) g(&) = (¥1(E)s 14(£), 0,..., 0)',
V(&) =Ux&) g'(8) = (¥1(E)ss ¥il &), 0,..0; O).
From (3.19), (3.20), (3.21), and (3.22) we conclude, after a simple
calculation, that
[o22(8) + B5(E)I[y2(E) +09(8) 17" = Sa(8)  ae, (3.23)
Bu(&) i '(&)=5,(&)  ae, (3.24)
215(8) + f12(£) =0 ae., (3.25)
$2(£) 85,(8) 817 '(&) = Bn(&) 817 () =0 a.c.,

(3.22)
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where the last equality may be immediately rewritten as

Bu(&)=8,(8) 05,(8)  ae (3.26)

The fact that 4'(£) is j-unitary a.e. is equivalent to the following system for
the blocks of 4'(&),

a*E) ' (E) =7 *E)y(E)=1, ae,
5’*(5)5(5)—/5’ (&) p(&y=1, ae.,
a (&) PE)—y*(E)d'(E)=0 a.e.

Let us develop these equations using the notation we introduce for the
block of A'(¢),

2 FE) o (E) + 23T (€) a5y (&) — 7iT(E) ¥1 (&) — 751 (8) yal &) = Ik ae.

(3.27)

as¥(C) a:(&) + a3 (8} 212(E) —p3(E) y2a(E) — 7B () via(E) =1, ., ae.

21 F(E) ain(E) + a5 F(E) s (E) = yiT(E) 712(8) — 71%(E) 15:(8) =0 ae.

(3.28)

O11(E) 01,(8) +057(S) 05,(&) — BiT(E) B1s (&) — B3F () Pr(&) =1, a.e

055(8) 05() +013(8) 01,(8) — B33 (é)ﬁzz(f =B B =1, , ae

O1T(S) 612AE) + 027(E) 05,(8) — BiT(E) B1aAE) — B2F(S) Bra(E) =0 a.e.

0 T(E) Bl + a3 (E) Boy (&) — ,11(6)5’11(“) 72¥(8) 05,(&) =0 ae.

(3.29)

<) B1a(&) +a3¥(S) Bra(S) — viT(£) 612(E) — 13F(£) 055() =0 a.e.,

(3.30)

i 3(C) B1(E) + a53(E) BailE) —713(8) 0711(E) — 23(£) 912(8) =0 ac.

2 3(E) 1A E) + 03 () fa(E) —713(E) 012(E) — 7iT(E) 022(E) =0 ae.
From (3.28) and (3.30), we get

7a(E)=S8F({)ay()  ae (3.31)

and replacing the above equation, together with (3.24) and (3.26), in (3.29)
we find that

P18y =SHE) a1(<) a.e. (3.32)
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Let us consider now the factorization problem

—S5(&) SHO =¥ Y*(<)  ae

From among the infinite set of solutions we uniquely define a function
Yo(&), which is the boundary value of a bounded and holomorphis matrix-
valued function Yo(z) (ze D) satisfying the normalization conditions
V¥o(0) >0 and det y(z) is an outer function. Any solution of this problem is
obtained by means of

Y(&)=¥o(E) V2(d),

where V,(&) is an isometric matrix-valued function [5]. Substituting (3.31)
and (3.32) into (3.27) we obtain

(&) =y~ "*(&) ae.
P& =SKHO Y *()  ae,

and recalling that the functions 8(¢) and (&) may be expressed in terms of
the solutions 0,(¢) and yy(&), ie

0(8)= V(&) 80(2), (3.33)
Y (&) =yol(&) V1(E), (3.34)
using (3.18) and (3.24) we arrive at the following resuits:
01,(8)=105(&) Vi '(Q),
B1(&) = S:(&) 65 (&) Vi (<),
ap(E) =y *(E) V(&)
(&)= SHE Y* (&) V&),

where V(&) and V,(&) are unitary matrix-valued functions a.e. We know
also from (3.16) that

712(8) = —01,(&) ae.

Finally, by virtue of the above results, we get the following expression for
the matrix-valued function A'(&),

FHOVAE) (8 SUE () VNG —xha(d)

A(E)= %,(¢) 5,(¢) $5(£) 85.1(8) B2:($)
SO WS UG Vo) 7iald) 05 (&) V(&) —712(8)

SF(E) a(E) 22(&) 02:(¢) (&)
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and, recalling that S(z)e =,

v (1/2) Valz) aix(2) $1(2) 05 (2) Vi '(z) —alu(2)

o 2,(2) #o(z) S () ()
SKU2IWE () Valz) 7n(z) 0, M2V, M2 —vial2)

SHUZ ahy(z)  7aal2) 5(2) 5(2)
(zeD). (3.35)

The relationships (3.8) and (3.9) allows us to conclude that the matrix of
coefficients of any Darlington realization of a matrix-valued function
S(z)(e ¥n), may be written in the form

A(z)=diag(U; '(z), U, (z)) A'(z) U, ", (3.36)

where A4'(z) is specified by (3.3) and U, by (3.5); and verify the hypothesis
of the Basic Lemma [3]. The formula (3.36) is a solution to the problem of
multiplicity of Darlington realizations. Varying V(&) and V,(&) [3] we
obtain all the possible realizations of S(z).

To complete this development it is convenient to show that (3.36) con-
tains, as a particular case, formula (4.14) obtained by Arov in [3]. When
the condition 7— 7(&) > 0 a.e. is satisfied, dim N;=0 and (3.35) is reduced
to

,4«7):( /) Sl(zwo‘(z))(vzu) 0>
OASHIDYE E) 05 () 0 ¥ ')

and, in addition, it holds that

S(Ey=U; (&) Si(& U(&)  ae

The above relationship, together with

L,=TE)=U (&) 05() 0() Ui(S)  ae,
1,=T (&) =Uy Wo(E) (&) Us(&) ae.

Introducing the notation

P(&) € 0,(8) U,(£),
Q&) E U (&) dol8),
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we conclude that

[0 S@P M) Vi 0N,
A(Z)‘(S*u/z'm*-‘(l/z‘) Pl 0 V;‘(z))Ue

which coincides with formula (4.14) from [3] obtained by Arov as a
description of the set of realizations of S(z) when I, — T(£) >0 a.e.

REFERENCES

1. B. Sz.-NaGy anD C. Foias, “Harmonic Analysis of Operators on Hilbert Spaces,” North-
Holland, Amsterdam/New York; Akad. Kiad6, Budapest, 1970.

2. R. NEvaLInNA, “Eindeutige analitische funktionen,” Springer-Verlag, Berlin/Gottingen/
Heidelberg, 1953.

3. D. Z. Arov, Darlington realization of matrix-valued functions, /zv. Akad. Nauk SSSR, Ser.
Mat. 37 (6) (1973); English Translation, Math. USSR Izv. 7 (6) (1973), 1295-1326.

4. E. CorTiNa AND C. D’ATTELLIS, On the representation of a class of contractive matrix-
valued functions, J. Math. Anal. Appl., in press.

S. D. Z. Arov, On unitary coupling with losses, Funktional Anal. i Prilozhen 8 (4) (1974),
English Translation, Funct. Anal. Appl. 8 (1974), 280-294.

6. W. CauEr, “Synthesis of Linear Communications Networks,” McGraw-Hill, New York,
1958.



