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We study small random perturbations by additive white-noise of a spatial discretization of
a reaction–diffusion equation with a stable equilibrium and solutions that blow up in finite
time. We prove that the perturbed system blows up with total probability and establish its
order of magnitude and asymptotic distribution. For initial data in the domain of explosion
we prove that the explosion time converges to the deterministic one while for initial data
in the domain of attraction of the stable equilibrium we show that the system exhibits
metastable behavior.
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1. Introduction

We consider small random perturbations of the following ODE⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

U ′
1 = 2

h2
(−U1 + U2),

U ′
i = 1

h2
(Ui+1 − 2Ui + Ui−1), 2 � i � d − 1,

U ′
d = 2

h2

(−Ud + Ud−1 + hg(Ud)
)
.

(1.1)

Here g : R → R is a reaction term given by g(x) = (x+)p − x with p > 1, and h > 0 is a parameter. We also impose an initial
condition U0 ∈ Rd . This kind of systems arises as spatial discretizations of diffusion equations with nonlinear boundary
conditions of Neumann type. In fact, it is known that as h → 0 solutions to this system converge to solutions of the PDE⎧⎪⎪⎪⎨

⎪⎪⎪⎩

ut(t, x) = uxx(t, x), 0 < x < 1, 0 � t < T ,

ux(t,0) = 0, 0 � t < T ,

ux(t,1) = g
(
u(t,1)

)
, 0 � t < T ,

u(0, x) = u0(x), 0 � x � 1.

For more details on this convergence see [6]. This and more general reaction–diffusion problems including for instance the
possibility of a nonlinear source term like g and other type of boundary conditions appear in several branches of pure

* Corresponding author.
E-mail addresses: pgroisma@dm.uba.ar (P. Groisman), ssaglie@dm.uba.ar (S. Saglietti).
URL: http://mate.dm.uba.ar/~pgroisma (P. Groisman).
0022-247X/$ – see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2011.06.034

http://dx.doi.org/10.1016/j.jmaa.2011.06.034
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:pgroisma@dm.uba.ar
mailto:ssaglie@dm.uba.ar
http://mate.dm.uba.ar/~pgroisma
http://dx.doi.org/10.1016/j.jmaa.2011.06.034


P. Groisman, S. Saglietti / J. Math. Anal. Appl. 385 (2012) 150–166 151
and applied mathematics. They have been used to model heat transfer, exothermic chemical reactions, population growth
models, geometric flows, etc.

An important feature of this type of problems is that they admit solutions which are local in time, with the possibility
of blow-up in finite time. The asymptotic behavior of solutions to (1.1) can be briefly summarized as follows (we give
a detailed description afterwards): the system has two equilibriums U0 ≡ 0 and U0 ≡ 1. The first one is stable while the
second is unstable. Hence, there exists a domain of attraction D0 for the zero solution such that if U0 ∈ D0 then the solution
U (t) = (U1(t), . . . , Ud(t)) with initial condition U0 is globally defined and U (t) → 0 as t → ∞. There exists also a stable
manifold for the unstable equilibrium which is of co-dimension one and coincides with the boundary of D0. For U0 ∈ D

c
0

the solution U blows up in finite time T = T (U0).
Since mathematical models are not exact, it is important to understand what changes arise in the behavior of the system

when it is subject to perturbations. We study random perturbations given by additive white-noise. More precisely, we
consider Stochastic Differential Equations (SDE) of the form⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dU u,ε
1 = 2

h2

(−U u,ε
1 + U u,ε

2

)
dt + ε dW1,

dU u,ε
i = 1

h2

(
U u,ε

i+1 − 2U u,ε
i + U u,ε

i−1

)
dt + ε dW i, 2 � i � d − 1,

dU u,ε
d = 2

h2

(−U u,ε
d + U u,ε

d−1 + hg
(
U u,ε

d

))
dt + ε dWd,

(1.2)

which can be written in matrix form as

dU u,ε =
(

−AU u,ε + 2

h
g
(
U u,ε

d

)
ed

)
dt + ε dW . (1.3)

Here W = (W1, . . . , Wd) is a d-dimensional standard Brownian motion, ε > 0 is a small parameter and ed = (0, . . . ,1) is the
d-th canonical vector on Rd . In the sequel we use U u,ε for a solution to (1.2) with initial condition U u,ε(0) = u ∈ Rd . In the
case ε = 0 we are left with the deterministic equation and so we use the notation U u := U u,0 to denote a solution to (1.1).

The field b(U ) := −AU + 2
h g(Ud)ed is a gradient (b = −∇φ) with potential given by

φ(U ) = 1

2
〈AU , U 〉 − 2

h

( |U+
d |p+1

p + 1
− Ud

2

2

)
.

The SDE associated to this energy functional can be compared with the classic double-well potential model, which we now
briefly summarize. We refer to [16, p. 294] for a more detailed description.

In the double-well potential model one considers a stochastic differential equation of the form

dXε = r
(

Xε
)

dt + ε dW (1.4)

where W is a standard d-dimensional Brownian motion and r is a globally Lipschitz gradient field over Rd given by the
double-well potential φ̃. More precisely, this potential φ̃ possesses exactly three critical points: two local minima p and q of
different depth and a saddle point z with higher energy, that is φ̃(z) > φ̃(p) > φ̃(q). Each minimum corresponds to a stable
equilibrium and hence for initial data lying outside the stable manifold of z, the deterministic system (ε = 0) converges
to one of them depending on the initial condition. When considering random perturbations, for compact time intervals
the stochastic system converges as ε → 0 to the deterministic one uniformly but the qualitative behavior of the perturbed
system is quite different from that of the deterministic solution for large times. If the potential grows fast enough at infinity
the resulting stochastic system admits a stationary probability measure which converges to a Dirac delta concentrated at
the bottom of the deepest well q. Hence, for initial data in the domain of attraction of the shortest well p we observe that:

(i) Due to the action of the field r, the process is attracted towards the bottom of the shortest well p; once near p, the
field becomes negligible and the process is then pushed away from the bottom of the well by noise. Being apart from p,
noise becomes overpowered by the field r and this allows for the previous pattern to repeat itself: a large number of
attempts to escape from the given well, followed by a strong attraction towards its bottom. This phase is known as
thermalization.

(ii) Eventually, after many frustrated attempts, the process succeeds in overcoming the barrier of potential and reaches the
deepest well. Since the probability of such an event is small, we expect this tunneling time to be exponentially large.
Moreover, due to the large number of attempts that are necessary, we expect this time to show little memory.

(iii) Once in the deepest well, the process behaves as in (i). Since the new barrier of potential is higher, the next tunneling
time is expected to happen on a larger time scale.

This description was proved rigorously in [5,10,13,7,14] using different techniques. The phenomenon is known as metasta-
bility. For a detailed description of it we refer to [16].

Coming back to our potential φ, the situation is slightly more complex. Instead of having a deepest well, we have a
direction along which the potential goes to −∞ and, hence, the size of the “deepest well” is now infinity and there is no
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return from there. Moreover, since the potential behaves like −sp+1 in this direction, if the system falls in this “well”, it
reaches infinity in finite time (explosion).

The purpose of this paper is to study the metastability phenomenon for this kind of potentials where there is a shortest
(finite) well and a deepest well which leads to infinity in finite time. The ideas developed here can be extended to other
systems with the same structure. The typical situation with this kind of geometry is the case of reaction–diffusion equations
where the reaction comes from a nonlinear source with superlinear behavior at infinity such as

ut = uxx + up
+,

with p > 1, in a bounded domain of R and homogeneous Dirichlet boundary conditions. In this case the diffusive term
pushes the solution towards zero (a stable equilibrium) while the source up

+ pushes it to infinity. In this situation we expect
the same behavior as the one of solutions to (1.2).

Since the drift in (1.2) is not globally Lipschitz, we are only able to prove the existence of local solutions and in fact,
explosions occur for solutions of (1.2). In particular, classical large deviation principles as well as other Freidlin–Wentzell
estimates do not apply directly. All these results deal with globally Lipschitz coefficients. Also, the loss of memory for the
tunneling time was proved only in the globally Lipschitz case where explosions do not occur. The only exception is the
work of Azencott [2] where locally Lipschitz coefficients are considered and explosions are allowed, but the large deviations
estimates developed there apply only to neighborhoods of solutions which do not explode in a fixed time interval (and
hence the perturbed system is automatically defined in the whole interval for ε small enough). In that work the author also
considers the exit from a domain problem, but explosions are not allowed in his analysis.

As opposed to this last case, we specifically focus on trajectories that blow up in finite time. The asymptotic behavior (as
ε → 0) of the explosion time for (1.2) is not understood yet, and this is the goal of this article.

In order to study this kind of systems, localization techniques may be applied but this has to be done carefully. The main
difficulties lie in (i) the geometry of the potential (and its respective truncations) which is far from being as simple as in the
double-well potential and (ii) the explosion phenomena itself. Localization techniques apply reasonably well to deal with
the process until it escapes any bounded domain, but dealing with process from there up to the explosion time requires
different tools, which include a careful study of the blow-up phenomenon. Clearly, localization arguments are useless for
this last part.

The paper is organized as follows. In Section 2 we give the necessary definitions, review some Freidlin–Wentzell es-
timates and detail the results of this article. Section 3 is devoted to giving a detailed description of the deterministic
system (1.1). In Section 4 we begin our analysis of the stochastic system. We prove that explosions occur with probability
one for every initial datum. In Section 5 we prove that for initial data in the domain of explosion, the explosion time con-
verges to the deterministic one as ε → 0. Throughout Section 6 we study the characteristics associated to metastability for
initial datum in the domain of attraction of the origin: exponential magnitude of the explosion time and asymptotic loss of
memory. Finally, in Section 7 we discuss how to extend our results to more general systems.

2. Definitions and results

2.1. Solutions up to an explosion time

Throughout the paper we study stochastic differential equations of the form

dX = b̃(X)dt + ε dW (2.1)

where ε > 0 and b̃ : Rd → Rd is locally Lipschitz. It is possible that such equations do not admit strong solutions in the
usual sense as these may not be globally defined but defined up to an explosion time instead. We now formalize the idea of
explosion and properly define the concept of solutions for this kind of equations. We follow [15].

Definition 2.1. A solution up to an explosion time of the stochastic differential equation (2.1) on the probability space (Ω,F, P ),
with respect to a filtration (Ft)t�0 satisfying the usual conditions and a fixed Brownian motion (Wt ,Ft)t�0 with (a.s. finite)
initial condition ξ is an adapted process X with continuous paths taking values in Rd ∪ {∞} which satisfies the following
properties:

• If we define τn = inf{t > 0: |X(t)| = n} then for every n � 1 we have

P

( t∧τn∫
0

∣∣b̃(
X(s)

)∣∣ds < +∞
)

= 1 ∀0 � t < +∞

and

P

(
X
(
t ∧ τn) = ξ +

t∫
0

b̃
(

X(s)
)
1{s�τn} ds + εW

(
t ∧ τn); ∀0 � t < +∞

)
= 1.
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• X has the strong Markov property, i.e. if we note τ := limn→+∞ τn and τ̃ is a stopping time of X then, conditional on
τ̃ < τ and X(τ̃ ) = x, the future {X+(t) = X(t + τ̃ ): t < τ − τ̃ } is independent of the past {X(s): s � τ̃ } and identical in
law to the process started at x.

We call τ the explosion time for X . Notice that the assumption of continuity of X in Rd ∪ {∞} implies that

τ = inf
{

t > 0: X(t) /∈ Rd} and X(τ−) = X(τ ) = ∞ on {τ < +∞}.
We stipulate that X(t) = ∞ provided that τ � t < +∞ but we do not assume that limt→+∞ X(t) exists when τ = +∞.

Notice that the assumption of finiteness of ξ grants us P (τ > 0) = 1. Also, if P (τ = +∞) = 1 then we are left with the
usual definition of strong solution to the equation.

Remark 2.1. It can be proved that if b̃ ∈ C1(Rd) then there exists a unique solution of (2.1) up to an explosion time (see
[11,15]).

2.2. Freidlin–Wentzell estimates

One of the most valuable tools in the study of perturbations by additive white-noise of an ODE is the Freidlin–Wentzell
theory, whose main results we briefly describe here.

Let Xx,ε be a solution to the SDE

dXx,ε = b̃
(

Xx,ε)dt + ε dW

with initial condition x ∈ Rd , where b̃ is globally Lipschitz with Lipschitz constant K . Fix T > 0 and let P ε,T
x denote the law

of Xx,ε on C([0, T ],Rd). Let us also consider Xx the unique solution to the deterministic equation

Ẋ(t) = b̃
(

X(t)
)

with initial condition x ∈ Rd .

Theorem 2.2. (See Freidlin and Wentzell [7].) For each x ∈ Rd and T > 0 the family (P ε,T
x )ε>0 satisfies a large deviations principle on

C([0, T ],Rd) with scaling ε−2 and (good) rate function Ix
T given by

Ix
T (ϕ) =

{
1
2

∫ T
0 |ϕ̇(s) − b̃(ϕ(s))|2 ds if ϕ is absolutely continuous and ϕ(0) = x,

+∞ otherwise.

As a matter of fact, we need only the following weaker statement for our analysis: for every fixed T > 0 and δ > 0 there
exist positive constants C1 and C2 depending on T , δ and K such that for all 0 < ε � 1

sup
x∈Rd

P
(

sup
t∈[0,T ]

∣∣Xx,ε(t) − Xx(t)
∣∣ > δ

)
� C1e

− C2
ε2 . (2.2)

2.3. Main results

We now state the main results of the article. The first of them concerns the explosion time of solutions to (1.2). In the
following Pu denotes the law of the solution to (1.2) up to the explosion time τ u

ε with initial condition u. When the initial
condition is clear we often write τε instead of τ u

ε to simplify the notation.

Theorem 2.3. Let U u,ε be a solution to (1.2). Then Pu(τε < ∞) = 1.

Let us notice that this result establishes a first difference in behavior with respect to the deterministic system. While
global solutions exist in the deterministic equation, they do not for the stochastic one.

We then focus on establishing the order of magnitude and asymptotic distribution of the explosion time for the different
initial conditions u ∈ Rd . We deal first with initial conditions in the domain of explosion De and show the following result.

Theorem 2.4. Given δ > 0 and u ∈ De we have

lim
ε→0

Pu
(|τε − τ0| > δ

) = 0. (2.3)

Moreover, the convergence is exponentially fast.
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This last theorem shows that for small ε > 0 the behavior of the stochastic system does not differ significantly from the
deterministic one for initial conditions in De . However, this is not the case for initial data in the domain of attraction of the
origin. Here is where important differences appear and where characteristics associated with metastability are observed. In
order to properly state the results achieved in this matter, we need to introduce some notation.

For each ε > 0 we define

βε = inf
{

t � 0: P0(τε > t) � e−1}
which is well defined since P0(τε < +∞) = 1 for every ε > 0. We first show that the family (βε)ε>0 verifies

lim
ε→0

ε2 logβε = 


with 
 := 2(φ(1) − φ(0)). In fact, we prove the stronger statement featured in the following theorem.

Theorem 2.5. For each u ∈ D0 and δ > 0

lim
ε→+∞ Pu

(
e


−δ

ε2 < τε < e

+δ

ε2
) = 1,

where the convergence is uniform over compact subsets of D0 .

This theorem characterizes the asymptotic order of magnitude of the explosion time for any initial condition u ∈ D0.
Regarding its distribution, we show the asymptotic loss of memory in our last result.

Theorem 2.6. For each u ∈ D0 and t > 0

lim
ε→0

Pu(τε > tβε) = e−t,

where the convergence is uniform over compact subsets of D0 .

3. The deterministic system

Throughout this section we state some properties and study the behavior of solutions to (1.1). This is carried out in [1]
for solutions with nonnegative initial conditions. The purpose of this section is to extend the analysis in [1] to any arbitrary
initial data u ∈ Rd .

Let us start by noticing that Eq. (1.1) can be written as

U̇ (t) = b
(
U (t)

)
for b = −∇φ where φ is defined as

φ(U ) = 1

2
〈AU , U 〉 − 2

h

( |U+
d |p+1

p + 1
− Ud

2

2

)
. (3.1)

Here A is as in (1.2)–(1.3). Notice that the potential φ has exactly two critical points: 1 := (1, . . . ,1) and the origin. Both of
them are hyperbolic. The origin is the only local minimum of φ while 1 is a saddle point. Our goal is to decompose Rd into
distinct regions, each of them having different asymptotic characteristics under our system. To be able to accomplish such
decomposition we need a few results concerning solutions to (1.1). We begin with the following proposition.

Proposition 3.1. Let U = (U1, . . . , Ud) be a solution to (1.1). Then the application t �→ φ(U (t)) is monotone decreasing.

Proof. Since A is symmetric and U̇ = −AU + 2
h g(Ud)ed , a direct calculation shows that

dφ(U (t))

dt
= 〈

U̇ (t), AU (t)
〉 − 2

h
g
(
Ud(t)

)
U̇d(t) = −∣∣U̇ (t)

∣∣2 � 0. �
Next we show that solutions to (1.1) satisfy a Maximum Principle.

Lemma 3.2 (Maximum Principle). Let U = (U1, . . . , Ud) be a solution to (1.1). Then U satisfies

max
k=1,...,d

∣∣Uk(t)
∣∣ � max

{
max

k=1,...,d

∣∣Uk(0)
∣∣, max

0�s�t
Ud(s)

}
. (3.2)
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Proof. We prove first that

max
k=1,...,d

∣∣Uk(t)
∣∣ � max

{
max

k=1,...,d

∣∣Uk(0)
∣∣, max

0�s�t

∣∣Ud(s)
∣∣} (3.3)

and then we check that if (3.3) holds then

max
{

max
k=1,...,d

∣∣Uk(0)
∣∣, max

0�s�t

∣∣Ud(s)
∣∣} = max

{
max

k=1,...,d

∣∣Uk(0)
∣∣, max

0�s�t
Ud(s)

}
which allows us to conclude (3.2). Let j be the node that maximizes max0�s�t |U j(s)|. Let us observe that if j = d then (3.3)
is immediately verified. Hence, we can assume that 1 � j < d. Consider t0 = min{t′ ∈ [0, t]: max0�s�t |U j(s)| = |U j(t′)|}, the
first time in which the maximum is attained. Note that |U j(t0)| = maxk=1,...,d(max0�s�t |Uk(s)|). If t0 = 0 then

max
k=1,...,d

∣∣Uk(0)
∣∣ �

∣∣U j(t0)
∣∣ = max

k=1,...,d

(
max

0�s�t

∣∣Uk(s)
∣∣) � max

k=1,...,d

∣∣Uk(t)
∣∣

and we get (3.3). If t0 > 0 we must consider two cases: U j(t0) � 0 and U j(t0) < 0. If U j(t0) � 0 then by definition of t0 we
get that U j(t0) � U j(s) for all 0 � s � t . From this it follows that U ′

j(t0) � 0. On the other hand, the choice of j guarantees
that U j(t0) � Uk(t0) for all k = 1, . . . ,d. This implies that

U ′
j(t0) = 1

h2

((
U j+1(t0) − U j(t0)

) + (
U j−1(t0) − U j(t0)

))
� 0 if 1 < j < d

and

U ′
1(t0) = 2

h2

(
U2(t0) − U1(t0)

)
� 0 if j = 1.

In any case we conclude that U ′
j(t0) = 0 and, in particular, that U j+1(t0) = U j(t0). We conclude that |U j+1(t0)| =

maxk=1,...,d(max0�s�t |Uk(s)|) which allows us to repeat the same argument, now for j + 1 instead of j. Thus, an inductive
procedure eventually yields that Ud(t0) = U j(t0). From here we obtain (3.3) if U j(t0) � 0. The case U j(t0) < 0 is analogous.
To conclude (3.2) we notice that if t1 = min{t′ ∈ [0, t]: max0�s�t |Ud(s)| = |Ud(t′)|} > 0 then Ud(t1) � 0 because, otherwise,
from (1.1) and (3.3) we get that U ′

d(t1) > 0 which contradicts the definition of t1. �
As a consequence of the Maximum Principle we have the following characterization of globally defined solutions to (1.1).

Lemma 3.3. Let U be a globally defined solution to (1.1). Then U is bounded.

Proof. Let us suppose that U is not bounded. Then by the Maximum Principle we obtain that max0�s�t Ud(s) → +∞ as
t → +∞.

1. Given M > 0 we define tM := inf{t � 0: |Ud(t)| > M}. From this definition it follows that |Ud(tM)| � M and that
|Ud(tM)| = max0�s�tM |Ud(s)|. If M > maxk=1,...,d |Uk(0)| then tM > 0 and by the Maximum Principle we have Ud(tM) � 0
and |Ud−1(tM)| � Ud(tM). This gives us the inequality

U ′
d(tM) � 2

h
U p

d (tM) −
(

4

h2
+ 2

h

)
Ud(tM).

2. From here it is easy to see that if M is large enough we have that Ud : [tM ,+∞) → R is monotone increasing. This
implies that for t � tM we have Ud(t) = max0�s�t |Ud(s)| � M and, as a consequence, that U ′

d(t) � 2
h U p

d (t) − ( 4
h2 + 2

h )Ud(t).

If M is taken large enough then U verifies U ′
d(t) � 1

h U p
d (t) for t � tM and, therefore, cannot be globally defined. This is a

contradiction which implies that U must be bounded. �
From the previous lemma and the fact that (1.1) admits the Lyapunov functional (3.1) we obtain the following corollary.

Corollary 3.4. Let U be a solution to (1.1). Then either U explodes in finite time or is globally defined and converges to a stationary
solution as t → +∞.

With this result at our disposal we can obtain the following theorem, whose proof is in [1].

Theorem 3.5.

(1) Eq. (1.1) has exactly two equilibriums U ≡ 0 and U ≡ 1. The first one is stable and the second one is unstable.
(2) Let u be a nonnegative initial datum such that U u is globally defined and limt→+∞ U u(t) = 1. Then
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Fig. 1. The phase diagram of Eq. (1.1).

• 0 � v � u �⇒ U v is globally defined and limt→+∞ U v (t) = 0.
• u � v �⇒ U v explodes in finite time.

(3) Consider λ > 0 and a nonnegative initial condition u. Then there exists λc > 0 such that
(a) λ < λc �⇒ Uλu is globally defined and limt→+∞ Uλu(t) = 0.
(b) λc < λ �⇒ Uλu explodes in finite time.
(c) λ = λc �⇒ Uλu is globally defined and limt→+∞ Uλu(t) = 1.

These results allow us to give a good description of the behavior of the deterministic system U for the different initial
conditions u ∈ Rd . Indeed, we have a decomposition

Rd = D0 ∪ Ws
1 ∪ De

where D0 denotes the stable manifold of the origin, Ws
1 is the stable manifold of 1 := (1, . . . ,1) and De is the domain of

explosion, i.e., if u ∈ De then U u explodes in finite time. The sets D0 and De are open in Rd . The origin is an asymptotically
stable equilibrium of the system. Ws

1 is a manifold of co-dimension one. Also 1 admits an unstable manifold of dimension
one which we shall note by Wu

1 . This unstable manifold is contained in Rd+ , has nonempty intersection with both D0 and
De and joins 1 with the origin. An illustration of this decomposition is given in Fig. 1 for the 2-dimensional case.

4. Explosions in the stochastic model

In this section we focus on proving that solutions to (1.2) blow up in finite time with probability one for any initial
condition u ∈ Rd and every ε > 0. The idea is to show that, conditioned on non-explosion, the system is guaranteed to enter
a specific region of space in which we can prove that explosion occurs with total probability. From this we can conclude
that non-explosion must happen with zero probability. We do this by comparison with an adequate Ornstein–Uhlenbeck
process.

Proof of Theorem 2.3. Let Y y,ε be the solution to

dY y,ε = −
(

AY y,ε + 2

h
Y y,ε

d ed

)
dt + ε dW (4.1)

with initial condition Y y,ε(0) = y. Notice that the drift term is linear, and given by a negative definite matrix. Hence, Y y,ε is
in fact a d-dimensional Ornstein–Uhlenbeck process which admits an invariant distribution supported in Rd . We also have
convergence to this equilibrium measure for any initial distribution and therefore the hitting time of Y y,ε of any open set
is finite almost surely.

On the other hand, since the drift term of (4.1) is smaller or equal than b we can apply the stochastic comparison
principle to obtain that U u,ε(t) � Y y,ε holds a.s. as long as U u,ε is finite, if u � y. From here, the result follows applying
the following lemma and the strong Markov property. �
Lemma 4.1. Consider the set

ΘM := {
y ∈ Rd: yk � 0 for all 0 � k � d − 1, yd � M

}
,
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then we have

lim
M→∞ inf

y∈ΘM
P y(τε < ∞) = 1.

Proof. Consider the auxiliary process Z y,ε := U y,ε − εW . Notice that this process verifies the random differential equation

dZ y,ε = b
(

Z y,ε + εW
)

dt, Z y,ε(0) = y.

Let us also observe that Z y,ε has the same explosion time as U y,ε . For each k ∈ N let us define the set Ak :=
{sup0�t�1 |Wd(t)| � k}. On Ak we have that Z y,ε verifies the inequality

dZ y,ε

dt
� −A Z y,ε − 4

h2
εk

∑
ei + 2

h

((
Z y,ε

d − εk
)p
+ − Z y,ε

d − εk
)
ed. (4.2)

Observe that (4.2) can be written as

dZ y,ε

dt
� Q Z y,ε + q + (

Z y,ε
d − εk

)p
+ed � Q Z y,ε + q,

where Q ∈ Rd×d verifies a comparison principle and q ∈ Rd both depend on ε,h and k, but not on M . This allows us to
conclude the inequality Z y,ε

d−1 � −(M + |q|)exp(|Q |) for all 0 � t � min{1, τ
y
ε }. In particular, for all 0 � t � min{1, τ

y
ε } the

last coordinate verifies the inequality⎧⎪⎨
⎪⎩

dZ y,ε
d

dt
� −α1M + α2 Z y,ε

d + α3
(

Z y,ε
d

)p
,

Z y,ε
d (0) � M

for positive constants α1,α2,α3 which do not depend on M . It is a straightforward calculation to check that solutions to
this one-dimensional inequality blow up in a finite time that converges to zero as M → +∞. Therefore, for each k ∈ N there
exists Mk such that P (Ak) � infy∈ΘM P y(τε < ∞) for all M � Mk . Since limk→+∞ P (Ak) = 1, this concludes the proof. �
5. Convergence of τ u

ε for initial conditions in De

This section is devoted to prove that for initial data in the domain of explosion of the deterministic system, the explosion
time is of order one and, moreover, as ε → 0 converges to the explosion time of the deterministic system. Observe that
due to the lack of boundedness this result does not follow from standard perturbation arguments for dynamical systems
(deterministic or stochastic). We first introduce the truncations of the drift that we use here to prove one of the bounds
and we are going to make more profit of them in Section 6 when we deal with initial data in the domain of attraction of
the origin.

5.1. Truncations of the potential and localization

The large deviations principle originally formulated by Freidlin and Wentzell for solutions of stochastic differential
equations like (2.1) requires a global Lipschitz condition on the drift term b̃. While this condition is met on the classic
double-well potential model, it is not in our case. As a consequence, we cannot apply such estimates to our system directly.
Nonetheless, the use of localization techniques helps us to solve this problem and allows us to take advantage of the theory
developed by Freidlin and Wentzell despite the fact that our drift term is not globally Lipschitz. In the following lines we
give details about the localization procedure to be employed in the study of our system.

For every n ∈ N let Gn : R → R be of class C2 such that

Gn(u) =
{

|u+|p+1

p+1 − u2

2 if u � n,

0 if u � 2n.

We consider then the family (φn)n∈N of potentials over Rd given by

φn(u) = 1

2
〈Au, u〉 − 2

h
Gn(ud).

This family satisfies the following properties:

(i) For every n ∈ N the potential φn is of class C2 and bn = −∇φn is globally Lipschitz.
(ii) For n � m ∈ N we have bn ≡ bm over the region Πn = {u ∈ Rd: |ud| < n}.

(iii) For every n ∈ N we have lim inf|u|→+∞ φn(u)
> 0.
|u|
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Since bn is globally Lipschitz, for each u ∈ Rd there exists a unique solution to the ordinary differential equation

U̇n,u = bn(Un,u)
with initial condition u. Such solution is globally defined and describes the same trajectory as the solution to (1.1) starting
at u until the escape from Πn . In the same way, for each x ∈ Rd and ε > 0 there exists a unique global solution to the
stochastic differential equation

dUn,u,ε = bn(Un,u,ε
)

dt + ε dW (5.1)

with initial condition u.
As before we use Un,u for Un,u,0. Since bn coincides with b over the ball Bn(0) of radius n centered at the origin, if we

write

τn,u
ε = inf

{
t � 0:

∣∣Un,u,ε(t)
∣∣ � n

}
, τ u

ε := lim
n→+∞τn,u

ε ,

then for t < τ u
ε we have that U u,ε(t) := limn→+∞ Un,u,ε(t) is a solution to

dU u,ε = b
(
U u,ε

)
dt + ε dW (5.2)

until the explosion time τ u
ε with initial condition u. Moreover, if we define the stopping times

πn,u
ε = inf

{
t � 0: Un,u,ε(t) /∈ Πn},

it can be seen that (ii) implies that

τ u
ε = lim

n→+∞πn,u
ε

and that U u,ε coincides with the process Un,u,ε until the escape from Πn . On the other hand, (i) guarantees that for each
n ∈ N and u ∈ Rd the family (Un,u,ε)ε>0 satisfies a large deviations principle. Finally, from (iii) we get that there is a unique
invariant probability measure for the process Un,ε for each ε > 0 given by the formula

μn
ε(A) := 1

Zn
ε

∫
A

e
− 2

ε2 φn(u)
du, A ∈ B

(
Rd)

where Zn
ε = ∫

Rd e
− 2φn(u)

ε2 du. Hereafter, when we refer to the solution of (5.2) we mean the solution constructed in this
particular way.

5.2. Proof of Theorem 2.4

We split the proof of Theorem 2.4 into two parts, the first one is immediate from the continuity of the solutions of (1.2)
with respect to ε in intervals where the deterministic solution is bounded.

Proposition 5.1. For any fixed δ > 0 and u ∈ De we have

lim
ε→0

Pu(τε < τ0 − δ) = 0.

Proof. We may assume that τ u
0 > δ since the proof is trivial otherwise. Now, as the deterministic system U u is defined up

until τ u
0 , if we take M := sup0�t�τ u

0 −δ |U u
t | < +∞ then τ u

ε < τu − δ implies that

sup
0�t�τu−δ

∣∣U 2M,u,ε(t) − U 2M,u(t)
∣∣ > 1.

By (2.2) we get (5.1). �
Proposition 5.2. For any δ > 0 and u ∈ De we have

lim
ε→0

Pu(τε > τ0 + δ) = 0.

Moreover, the convergence is uniform over compact subsets of De .

Proof. Fix δ > 0, K a compact set contained in De and let Y u be the solution to the ordinary differential equation

Ẏ u = −
(

AY u + 2
Y u,ε

d ed

)

h
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with initial condition u ∈ K. By the comparison principle we have that U u � Y u for as long as U u is defined. Since Y u is the
solution to a linear system of ordinary differential equations whose associated matrix is symmetric and negative definite,
we get that there exists ρK ∈ R such that for all u ∈ K every coordinate of U u remains bounded from below by ρK + 1 up
until τ u

0 . If for ρ ∈ R and M > 0 we write

ΘM
ρ := {

y ∈ Rd: yk � ρ for all 0 � k � d − 1, yd � M
}

then by the Maximum Principle and the previous statement we have that Tu := inf{t � 0: U u
t ∈ ΘM+1

ρK+1} is finite. Moreover,

as U M+2,u agrees with U u until the escape from ΠM+2, we obtain the expression Tu = inf{t � 0: U M+2,u
t ∈ ΘM+1

ρK+1
}. Taking

TK := supu∈K Tu < +∞ we may compute

Pu
(
τε

(
ΘM

ρK

)
> Tu

)
� Pu

(
π M+2

ε ∧ τε

(
ΘM

ρK

)
> Tu

) + Pu
(
π M+2

ε � Tu, τε

(
ΘM

ρK

)
> Tu

)
� 2Pu

(
sup

0�t�Tu

∣∣U M+2,ε(t) − U M+2(t)
∣∣ > 1

)

� 2Pu

(
sup

0�t�TK

∣∣U M+2,ε(t) − U M+2(t)
∣∣ > 1

)
,

from which by (2.2) we obtain

lim
ε→0

sup
u∈K

Pu
(
τε

(
ΘM

ρK

)
> Tu

) = 0. (5.3)

On the other hand, by the strong Markov property for U u,ε we get

Pu(τε > τ0 + δ) � Pu(τε > Tu + δ) � sup
y∈ΘM

ρK

P y(τε > δ) + sup
u∈K

Pu
(
τε

(
ΘM

ρK

)
> Tu

)
.

Taking into consideration (5.3), in order to finish the proof we only need to show that the first term on the right hand side
tends to zero as ε → 0 for an adequate choice of M . To see this we consider for each ε > 0 and y ∈ ΘM

ρK
the processes Y y,ε

and Z y,ε defined by

dY y,ε = −
(

AY y,ε + 2

h
Y y,ε

d ed

)
dt + ε dW ,

and Z y,ε := U y,ε − Y y,ε , respectively. Notice that since Y y,ε is globally defined and both U y,ε and Z y,ε have the same
explosion time. Also note that Z y,ε satisfies the random differential equation

dZ y,ε = −
(

A Z y,ε + 2

h

([(
U y,ε

d

)+]p − Z y,ε
d

)
ed

)
dt.

The continuity of trajectories allows us to use the Fundamental Theorem of Calculus to show that almost surely Z y,ε(ω) is
a solution to the ordinary differential equation

Ż y,ε(t)(ω) = −A Z y,ε(ω) + 2

h

([(
U y,ε

d

)+]p
(ω) − Z y,ε

d (ω)
)
ed. (5.4)

For each y ∈ ΘM
ρK

and ε > 0 let Ω
y
ε be a set of probability one in which (5.4) holds. Notice that for every ω ∈ Ω

y
ε we have

the inequality

Ż y,ε(ω) � −A Z y,ε(ω) − 2

h
Z y,ε

d (ω)ed.

Using the comparison principle we conclude that Z y,ε(ω) � 0 for every ω ∈ Ω
y
ε and, therefore, that the inequality U y,ε(ω) �

Y y,ε(ω) holds for as long as U y,ε(ω) is defined.
For each y ∈ ΘM

ρK
and ε > 0 let us also consider the set

Ω̃
y
ε =

{
ω ∈ Ω: sup

0�t�δ

∣∣Y y,ε(ω, t) − Y y(ω, t)
∣∣ � 1, sup

0�t�δ

∣∣εW (ω, t)
∣∣ � 1

}
.

Note that limε→0 infy∈ΘM
ρK

P (Ω̃
y
ε ) = 1. Our goal is to show that if M is chosen adequately then for fixed y ∈ ΘM

ρK
the

trajectory U y,ε(ω) explodes before time δ for all ω ∈ Ω
y
ε ∩ Ω̃

y
ε . From this we get that

inf
y∈ΘM

ρK

P
(
Ω̃

y
ε

) = inf
y∈ΘM

ρK

P
(
Ω

y
ε ∩ Ω̃

y
ε

)
� inf

y∈ΘM
ρK

P y(τε � δ),

and by letting ε → 0 we conclude the result.
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So let us take y ∈ ΘM
ρK

, ω ∈ Ω
y
ε ∩ Ω̃ε and suppose that U y,ε(ω) is defined in the interval [0, δ]. Notice that since

ω ∈ Ω
y
ε ∩ Ω̃ε then the (d − 1)-th coordinate of Y y,ε(ω, t) is bounded from below by ρK − 1 for t ∈ [0, δ]. By comparison

we know that the (d − 1)-th coordinate of U y,ε
t (ω, t) is bounded from below by ρK − 1 as well. From here we deduce that

the last coordinate of U y,ε(ω) verifies the integral equation

U y,ε
d (ω, t) � U y,ε

d (ω, s) +
t∫

s

2

h2

(−U y,ε
d (ω, r) + ρK − 1 + hg

(
U y,ε

d (ω, r)
))

dr − 1

for s < t ∈ [0, δ]. We can take M ∈ N large enough to guarantee that there exists a constant α > 0 such that for all m � M
we have

2

h2

(−m + ρK − 1 + hg(m)
)
� αmp .

If we recall that U y,ε
d (ω,0) � M then our selection of M implies that

U y,ε
d (ω, t) � M − 1 + α

t∫
0

(
U y,ε

d (ω, u)
)p

du

for all t ∈ [0, δ]. But if this inequality holds and M is large enough, one can check that U y,ε(ω) explodes before time δ,
which contradicts our assumptions. Therefore, if y ∈ ΘM

ρK
and ω ∈ Ω

y
ε ∩ Ω̃ε then U y,ε(ω) explodes before time δ and this

fact concludes our proof. �
Combining these two propositions we get Theorem 2.4. Observe that the bounds obtained decay to zero exponentially

fast due to Eq. (2.2).

6. Metastable behavior for initial conditions in D0

Finally we focus on initial data in D0, where the metastability phenomenon can be appreciated. We start with the
construction of an auxiliary domain that contains the origin and such that the exit time from this domain is asymptotically
equivalent to the explosion time.

6.1. Construction of an auxiliary domain

In order to proceed with our analysis of the explosion time we must first construct an auxiliary bounded domain. The
purpose behind this construction is to reduce our problem to a simpler one, the escape from this domain. This is easier
because we may assume that the drift coefficient b is globally Lipschitz, as the escape only depends on the behavior of the
system while it remains inside a bounded region. In this case, large deviations estimates as the ones proved by Freidlin and
Wentzell apply. We need a bounded domain G which verifies the following properties:

(1) G is bounded, contains 1 and the origin.
(2) There exists c > 0 such that Bc(0) ⊆ G and for all y ∈ Bc(0) the system U y is globally defined and tends to zero without

escaping G .
(3) The border of G can be decomposed in two parts: ∂1 and ∂G \ ∂1. The region of the border ∂1 is closed and satisfies

minu∈∂G φ(u) = minu∈∂1 φ(u) and

inf
u∈∂G\∂1

φ(u) > min
u∈∂G

φ(u).

(4) For all y ∈ ∂1 the deterministic system U y explodes in finite time.

The domain G can be constructed as follows. Let us consider the value of φ at the saddle point 1, φ(1) = −1/(p + 1) +
1/2 > 0 = φ(0) and c > 0 such that φ(u) < φ(1) for u ∈ Bc(0).

For each point u ∈ ∂ Bc(0) consider the ray Ru := {λu: λ > 0}. Since the vector 1 is not tangent to Ws
1 at 1, we may take

a sufficiently small neighborhood V of c1 such that for all u ∈ V ∩ ∂ Bc(0) the ray Ru intersects Ws
1 ∩ (R>0)

d . For such V
we may then define λ̄u = inf{λ > 0: λu ∈ Ws

1} for u ∈ V ∩ ∂ Bc(0). If we consider1

η := inf
u∈∂[V ∩∂ Bc(0)]φ(λ̄uu) > φ(1)

1 By ∂[V ∩ ∂Bc(0)] we mean the border of the (d − 1)-dimensional manifold V ∩ ∂Bc(0).
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Fig. 2. The level curve Cη and the stable manifold of 1.

then the fact that φ(U (t)) is strictly decreasing (see Proposition 3.1) allows us to shrink V into a smaller neighborhood V ∗
of c1 such that φ(v) = η for all v ∈ ∂[V ∗ ∩ ∂ Bc(0)]. Let us also observe that since 1 is the only saddle point we can take
V sufficiently small so as to guarantee that max{φ(λu): λ > 0} � η for all u ∈ ∂ Bc(0) \ V ∗ . Then if we take the level curve
Cη = {x ∈ Rd: φ(x) = η} every ray Ru with u ∈ ∂ Bc(0) \ V ∗ intersects Cη . With this we may define for each u ∈ ∂ Bc(0)

λ∗
u =

{
λ̄u if u ∈ V ∗,
inf{λ > 0: λu ∈ Cη} if u ∈ Bc(0) \ V ∗.

Notice that the application u �→ λ∗
u is continuous. Due to this fact, if G̃ := {λu: 0 � λ < λ∗

u, u ∈ ∂ Bc(0)} then ∂ G̃ = {λ∗
uu: u ∈

∂ Bc(0)}. To finish the construction of our domain we must make a slight radial expansion of G̃ , i.e., for α > 0 consider G
defined by the formula

G := {
λu: 0 � λ < (1 + α)λ∗

u, u ∈ ∂ Bc(0)
}
.

Let us observe that Theorem 3.5 insures that G verifies condition (1). Since λ∗
u > 1 for all u ∈ ∂ Bc(0) then it must also

verify (2). Also, if we define ∂1 := {(1 + α)λ∗(u): λ∗(u)u ∈ V ∗} then ∂1 is closed and if α > 0 is taken small enough then
(3) holds. Finally, due to Theorem 3.5 we have ∂1 ⊂ De and so (4) is verified. See Fig. 2.

6.2. The escape from G

The behavior of the explosion time for initial data u ∈ D0 is proved by showing that, with overwhelming probability as
ε → 0, the stochastic system describes the following path:

(i) It enters a neighborhood of the origin Bc(0) in before a finite time T that does not depend on ε.
(ii) Once in Bc(0) the system remains in G for a time of order e
/ε2

and then escapes from G through ∂1 since the barrier
imposed by the potential is the lowest there.

(iii) After escaping G through ∂1 the system explodes before a finite time τ which does not depend on ε.

The fact that the domain G is bounded allows us to assume that b is globally Lipschitz if we wish to study the behavior
of our system while it remains inside G . Indeed, we may take n0 ∈ N such that G ⊂ Bn0 (0) and study the behavior of
the solution to (5.1) since it coincides with our process until the escape from G . Then we can proceed as in the double-
well potential case to obtain the following results (see [16, pp. 295–300] for their proofs). Hereafter, Bc(0) denotes the
neighborhood of the origin highlighted in the construction of G in the previous section.

Theorem 6.1. Given δ > 0 we have

lim
ε→0

sup
u∈Bc(0)

Pu
(
e


−δ

ε2 < τε(∂G) < e

+δ

ε2
) = 1.

Theorem 6.2. The stochastic system verifies

lim
ε→0

sup
u∈Bc(0)

Pu
(
U ε

(
τε(∂G)

)
/∈ ∂1) = 0.

From these two theorems we can obtain the following useful corollary.
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Corollary 6.3. For any δ > 0 we have

lim
ε→0

sup
u∈Bc(0)

Pu
(
τε

(
∂1) > e


+δ

ε2
) = 0.

Proof. One can easily check that

sup
u∈Bc(0)

Pu
(
τε

(
∂1) > e


+δ

ε2
)
� sup

u∈Bc(0)

Pu
(
τε(∂G) � e


+δ

ε2
) + sup

u∈Bc(0)

Pu
(
U ε

τε(∂G) /∈ ∂1). �

Concerning the asymptotic distribution of τε(∂G) we can obtain the following result.

Theorem 6.4. Let γε > 0 be defined by the relation

P0
(
τε(∂G) > γε

) = e−1.

Then there exists ρ > 0 such that for all t � 0 we have

lim
ε→0

sup
u∈Bρ(0)

∣∣Pu
(
τε(∂G) > tγε

) − e−t
∣∣ = 0.

6.3. Bounds for the explosion time

This section is devoted to the lower and upper bounds for the explosion time. More precisely, in this section we show
that given δ > 0, for all u ∈ D0 one has

lim
ε→0

Pu
(
τε < e


−δ

ε2
) = 0

and

lim
ε→0

Pu
(
τε > e


+δ

ε2
) = 0,

where the convergence can be taken uniform over compact subsets of D0. The proofs of these bounds essentially follow
[16], where analogous bounds are given for the tunneling time. However, unlike the double-well potential model, the use of
localization techniques becomes necessary at some points throughout our work. We begin first with the lower bound.

Proposition 6.5. Given δ > 0 and u ∈ D0 we have

lim
ε→0

Pu
(
τε < e


−δ

ε2
) = 0. (6.1)

Moreover, the convergence is uniform over compact subsets of D0 .

Proof. First observe that since for u ∈ G we have Pu(τε � τε(∂G)) = 1 then (6.1) holds uniformly over any small neigh-
borhood of the origin by Lemma 6.1. Next, we generalize the result for any u ∈ D0. For each u ∈ D0 there exist Tu > 0,
δu > 0 and nu ∈ N such that the deterministic system beginning at u reaches B ρ

2
(0) before Tu , remaining in Bnu (0) and at

a distance δu from ∂ Bnu (0) on [0, Tu]. It follows that Unu ,u does so as well. From this we obtain

Pu
(
τε

(
Bρ(0)

)
> Tu

)
� Pu

(
min

{
τnu
ε , τε

(
Bρ(0)

)}
> Tu

) + Pu
(
τnu
ε � Tu

)
� Pu

(
sup

0�t�Tu

∣∣Unu,ε(t) − Unu (t)
∣∣ >

ρ

2

)
+ Pu

(
sup

0�t�Tu

∣∣Unu,ε(t) − Unu (t)
∣∣ >

δu

2

)
.

Using estimation (2.2) for the family (Unu ,u,ε)ε>0 we conclude

lim
ε→0

Pu
(
τε

(
Bρ(0)

)
> Tu

) = 0. (6.2)

Therefore, if we write

Pu
(
τε < e


−δ

ε2
)
� Pu

(
τε

(
Bρ(0)

)
< τε < e


−δ

ε2
) + Pu(τε � Tu) + Pu

(
τε

(
Bρ(0)

)
> Tu

)
,

then the last two terms on the right tend to zero when ε → 0 as a consequence of what we stated above. By the strong
Markov property for U u,ε we have

Pu
(
τε

(
Bρ(0)

)
< τε < e


−δ

ε2
)
� sup

y∈B (0)

P y
(
τε < e


−δ

ε2
)
� sup

y∈B (0)

P y
(
τn0(∂G) < e


−δ

ε2
)

ρ ρ
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where n0 is taken as in the first step. Since the rightmost term tends to zero by Lemma 6.1 we conclude the result for
arbitrary u ∈ D0. The uniform convergence over compact subsets K of D0 is proved in a similar fashion by taking δu and
Tu uniformly over K as in Proposition 5.2. �

Now we turn to the proof of the upper bound. As we stated before, when studying the behavior of the stochastic system
under initial conditions u ∈ G and for small ε > 0 we typically observe that the process U u,ε escapes from G through ∂1

since the cost imposed by the potential is the lowest there. Once in ∂1 the influence of noise becomes negligible and the
process then describes a path similar to the deterministic trajectory until exploding in a finite time. We formalize this
statement in the following proposition.

Proposition 6.6. There exists T0 > 0 such that

lim
ε→0

sup
u∈∂1

Pu(τε > T0) = 0.

Proof. Since ∂1 is a compact set contained in De , the proof follows from Proposition 5.2 and the fact that supu∈∂1 τ 0
u <

+∞. �
With this proposition we are able to conclude the upper bound.

Proposition 6.7. For each δ > 0 and u ∈ D0 we have

lim
ε→0

Pu
(
τε > e


+δ

ε2
) = 0.

Moreover, the convergence is uniform over compact subsets of D0 .

Proof. We proceed in two steps.

1. We check that given δ > 0 we get

lim
ε→0

sup
x∈Bc(0)

P x
(
τε > e


+δ

ε2
) = 0. (6.3)

It is not hard to show that for ε > 0 small enough the strong Markov property yields

sup
u∈Bc(0)

Pu
(
τε > e


+δ

ε2
)
� sup

u∈Bc(0)

Pu
(
τε

(
∂1) > e


+ δ
2

ε2
) + sup

u∈∂1
Pu(τε > T0) + sup

u∈Bc(0)

Pu
(
U ε

τε(∂G) /∈ ∂1)
where T0 > 0 is taken as in Proposition 6.6. We finish this first step by observing that the right hand side converges to zero.
Indeed, the first term does so by Corollary 6.3, the second by Proposition 6.6 and the third by Lemma 6.2.

2. We now generalize the result for u ∈ D0. This follows from the fact that

Pu
(
τε > e


+δ

ε2
)
� sup

u∈Bc(0)

Pu

(
τε >

e

+δ

ε2

2

)
+ Pu

(
τε

(
Bc(0)

)
> Tu

)
by the strong Markov property. Observing that the first term on the right hand side of the equation tends to zero by (6.3)
and that the second term does by (6.2), we obtain our result. The convergence over compact subsets of D0 can be seen as
in Proposition 5.2. �
6.4. Asymptotic distribution of the explosion time

Our main objective in this section is to prove the asymptotic memory loss of the normalized explosion time τε
βε

. The
proof focuses on studying the escape from G . The asymptotic memory loss for τε can be deduced once we show that the
time in which the process exits from G and the explosion time are asymptotically similar. We formalize this last statement
in the following proposition.

Proposition 6.8. There exists a positive constant T0 such that for all u ∈ D0 ∩ G

lim
ε→0

P x
(
τε > τε(∂G) + T0

) = 0.
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Proof. Let us observe that by the strong Markov property

Pu
(
τε > τε(∂G) + T0

)
� sup

y∈∂1
P y(τε > T0) + Pu

(
τε(∂G) < τε

(
Bc(0)

)) + sup
u∈Bc(0)

Pu
(
U ε

τε(∂G) /∈ ∂1).
We can now conclude our desired result by the use of Proposition 6.6 and Lemma 6.2. �

We are now ready to establish the asymptotic memory loss of the explosion time. Having the former proposition at our
disposal, the rest of the proof is very similar to the one offered in the double-well potential model. We emphasize that
the main difference with this case lies in how to show this last proposition. In the double-well potential the corresponding
statement to Proposition 6.8 holds due to the fact that the tunneling time for initial conditions in the deepest well is of
order one. This can be easily deduced from the Freidlin–Wentzell estimates. Analogously, in our model Proposition 6.8 holds
since now the explosion time for initial data in De is of order one. However, the lack of a global Lipschitz condition forces us
to proceed differently in order to show this last fact. We recall that a proof of this is contained essentially in Proposition 5.2.
We now give a brief sketch of the rest of the proof of Theorem 2.6 in the following lines and refer to [10] for further details.

Sketch of proof of Theorem 2.6.

(1) We first check that, for ρ > 0 small enough, limε→0 supu∈Bρ(0) |Pu(τε(∂G) > tβε) − e−t | = 0. This is due to the fact that

limε→0
βε
γε

= 1.

(2) Next, we prove that P0(τε > tβε) = e−t for t > 0. This is done with the help of Proposition 6.8 and the previous step.
(3) With the help of appropriate coupling techniques we establish the uniform convergence over any small enough neigh-

borhood of the origin.
(4) Finally, by using the strong Markov property, we conclude the result for arbitrary initial data u ∈ D0. �
7. Extension to more general systems

In this final section we discuss how to extend the results of the paper to more general systems. In order to do this we
must understand which particular features of our original system are key in the proofs throughout the article. Following
the ideas and techniques applied in our work we believe that similar results can be achieved for other ordinary differential
equations and even PDEs, despite the fact that some of them may not completely satisfy the conditions we list below. For
example we can consider one of the most studied semi-linear PDE with blow-up given by

ut = 
u + f (u). (7.1)

Here the spatial variable is confined to a bounded smooth domain and the equation is complemented with homogeneous
Dirichlet boundary conditions and a given initial datum. The source term f is assumed to be positive, smooth and convex
and satisfies

∫ ∞ 1/ f < ∞. This equation has been taken as a model problem for the PDE community since it exhibits some
of the essential interesting features which appear in the presence of blow-up (see the books [17,18] or the surveys [3,9]).

We find it important to stress here that when dealing with perturbations of differential equations with blow-up, un-
derstanding how the behavior of the blow-up time is modified or even showing the existence of blow-up phenomenon
itself is by no means an easy task in most cases. There are no general results addressing this matter, not even for non-
random perturbations. This is why the usual approach to this kind of problems is to consider particular models such as
ours. Nonetheless, a few aspects of our analysis in this article are worthy of being taken into consideration for possible
generalizations of these results in the future.

We split our discussion into the three type of results we obtained throughout our article: almost sure explosion of the
perturbed system, convergence of the blow-up time for initial data in the domain of explosion of the deterministic system
and metastable behavior of the explosion time for initial data in the domain of attraction of the origin.

7.1. Almost sure explosion

Let us note that the existence of blow-up phenomena in any deterministic system does not imply the presence of explo-
sions at all when considering small random perturbations of it. An example of this can be seen in [12] where the authors
consider a family of systems of ODE of the Lotka–Volterra type that blow up in finite time. They prove that perturbations by
white-noise give rise to solutions globally defined almost surely, even in the one-dimensional case. Therefore, proving that
the perturbed system explodes almost surely may not always be possible. Nevertheless, if we consider stochastic systems of
the sort

dU u,ε = b
(
U u,ε

)
dt + ε dW (7.2)

where b is locally Lipschitz then from the analysis in Section 4 we can conclude that indeed there will be almost sure
explosion for any initial datum and ε > 0 provided that there exists a family of open subsets (ΘM)M∈N ⊆ Rd such that:
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E1. For any u ∈ Rd , ε > 0 and M ∈ N the hitting time τ ε
u (ΘM) := inf{t � 0: U u,ε(t) ∈ ΘM} is almost surely finite on the set

{τ ε
u = +∞}.

E2. For any ε > 0 we have limM→∞ infu∈ΘM Pu(τε < ∞) = 1.

The techniques and approaches required to prove these two conditions will vary depending on the particular features
of the drift term b being considered. In our case, the first condition holds because our stochastic system can be properly
controlled by a positive recurrent Ornstein–Uhlenbeck process and the second one does because there exists a continuous
function F : Rd × Rd → R such that the process Z y,ε = F (U y,ε, εW ) verifies that for each k ∈ N there are smooth functions
f ε
k : R × R → R satisfying:

• For every y ∈ ΘM we have the inequality dY y,ε � f ε
k (Y y,ε, M)dt on {ω: sup0�t�1 |W (t)| � k}.

• f ε
k is such that Y y,ε explodes in a finite time that converges to zero as M → +∞ for all y ∈ ΘM .

Recall that for our model we took F (x, y) := xd − yd . Let us also notice that if we consider more general ODEs of the type

dU

dt
= −AU + g(U ), (7.3)

where A = (aij)1�i, j�d is a (d × d)-matrix and the reaction term g(x) = (g1(x1), . . . , gd(xd)) verify:

S1. A is symmetric, positive semi-definite and diagonally dominant;
S2. aii � 0 for all i = 1, . . . ,d and aij � 0 if i �= j;
S3. g is locally Lipschitz;
S4. For each i = 1, . . . ,d there exists a positive number λi such that gi(xi) + λi xi � 0 for all xi ∈ R and gi(xi) + λi xi > 0 for

any xi sufficiently large;
S5. For each i = 1, . . . ,d either

∫ ∞
a

dxi
gi(xi)+λi xi

< +∞ for all a large enough or gi is globally Lipschitz;

then the same analysis of Section 4 with even the same choice of F (but possibly with a different family (ΘM)M∈N) can
be used to establish that the associated stochastic system blows up almost surely for any ε > 0. Let us observe that the
conditions imposed on A are necessary to obtain the validity of the comparison principles used throughout the proofs and
to be able to compare our system with other convenient processes. Among this family of systems, the case of particular
interest is where −A is the discrete Laplacian as in (1.1) and gi(xi) = f (xi) with f as in (7.1). This kind of systems arises as
spatial discretizations of (7.1).

7.2. Convergence of the explosion time

Just as it was in the case for almost sure explosions, the convergence of the explosion time (i.e. τε → τ0 in some
adequate sense) may not always occur. For examples on this, see [4,8]. Our analysis shows, however, that the convergence
will indeed take place if for each u ∈ Rd such that U u explodes in finite time there exists a decreasing family (ΘM

u )M∈N of
open sets of Rd which verifies the following conditions:

C1. For every M ∈ N we have ΘM
u ⊆ Rd \ B(0, M).

C2. There exists a time Tu < τ u
0 such that limε→0 Pu(τε(Θ

M
u ) > Tu) = 0.

C3. For any δ > 0 we have limε→0 supy∈ΘM
u

P y(τε > δ) = 0.

The validity of these conditions in our model is guaranteed by, once again, a proper control of our system given by some
suitable, globally defined process and reducing our problem to a 1-dimensional one, with similar arguments to those applied
to prove the almost sure blow-up. Condition (C3) will prove to be vital in establishing the asymptotic order of magnitude
and distribution of the explosion time. Let us also observe that, once again, for systems of the type in (7.3) with A and g
satisfying all S conditions, the analysis of Section 5 can be applied to prove the convergence of the explosion time.

7.3. Metastability

In our study of the asymptotic behavior of the explosion time for the stochastic system we relied heavily on results
originating from Freidlin–Wentzell theory. If one wishes to pursue the same approach with other systems, one must check
that these fall into the conditions imposed by this theory. Essentially, the drift term b needs to be associated to a potential φ

satisfying

(1) φ has a finite number of critical points: only one local minima (which we call 0) and the rest are saddle points. All of
them are hyperbolic. All saddle points have a (d − 1)-dimensional stable manifold and for saddle points with minimum
energy there exists a one-dimensional unstable manifold which connects 0 to the domain of explosion.
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(2) The d-dimensional Euclidean space can be decomposed into three disjoints sets

Rd = D0 ∪ Ws ∪ De,

where D0 denotes the domain of attraction of 0, De the set of initial data such that the solution of the deterministic
system blows up in finite time and Ws is the union of all stable manifolds of the saddle points.

We must also have the existence of a domain G containing 0 and all saddle points with minimal energy such that the
conditions established in Section 6.1 are satisfied. The construction of such a domain need not be easy in more general
systems as the geometry of the potential plays a big role in determining G . In our particular case, we relied heavily on
the accurate description of the system in a neighborhood of the saddle points achieved on [1]. On the last note, we need
the existence of a decreasing family (ΘM)M∈N of open subsets of Rd such that conditions C1, C2 and C3 above hold and if
u ∈ ∂1G2 then U u visits any ΘM in a finite time. This last condition together with C3 will ensure that for initial conditions
in the domain of attraction of the origin, once the stochastic system escapes from G through a neighborhood of the saddle
points with minimal energy in an exponential time, then it must explode afterwards in a much shorter time.
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