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The notion of p-compact sets arises naturally from Grothendieck’s characterization of
compact sets as those contained in the convex hull of a norm null sequence. The definition,
due to Sinha and Karn (2002), leads to the concepts of p-approximation property and
p-compact operators (which form an ideal with its ideal norm κp). This paper examines
the interaction between the p-approximation property and certain space of holomorphic
functions, the p-compact analytic functions. In order to understand these functions we
define a p-compact radius of convergence which allows us to give a characterization
of the functions in the class. We show that p-compact holomorphic functions behave
more like nuclear than compact maps. We use the ε-product of Schwartz, to characterize
the p-approximation property of a Banach space in terms of p-compact homogeneous
polynomials and in terms of p-compact holomorphic functions with range on the
space. Finally, we show that p-compact holomorphic functions fit into the framework of
holomorphy types which allows us to inspect the κp-approximation property. Our approach
also allows us to solve several questions posed by Aron, Maestre and Rueda (2010).

© 2012 Elsevier Inc. All rights reserved.

0. Introduction

In the theory of Banach spaces (or more precisely, of infinite dimensional locally convex spaces), three concepts appear
systematically related since the foundational articles by Grothendieck [21] and Schwartz [29]. We are referring to compact
sets, compact operators and the approximation property. A Banach space E has the approximation property whenever the
identity map can be uniformly approximated by finite rank operators on compact sets. Equivalently, if E ′ ⊗ E , the subspace of
finite rank operators, is dense in Lc(E; E), the space of continuous linear operators considered with the uniform convergence
on compact sets. Another classical reformulation states that E has the approximation property if F ′ ⊗ E is dense in K(F ; E),
the space of compact operators, for all Banach spaces F . It was not until 1972 that Enflo provided us with the first example
of a Banach space without the approximation property [19]. In the quest of a better understanding of these concepts,
important variants of the approximation property have emerged and were intensively studied in relation with different
spaces of functions. For the main developments on the subject we refer the reader to [9,23] and the references therein.

Inspired by Grothendieck’s result which characterizes relatively compact sets as those contained in the convex hull of
a norm null sequence of vectors of the space, Sinha and Karn [30] introduced the concept of relatively p-compact sets.
Loosely speaking, these sets are determined by norm p-summable sequences. Associated to relatively p-compact sets we
have naturally defined the notions of p-compact operators and the p-approximation property (see definitions below). Since
relatively p-compact sets are, in particular, relatively compact, the p-approximation property can be seen as a way to
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weaken the approximation property. These three concepts were first studied by Sinha and Karn [30,31] and, more recently,
several authors continued the research on this subject [10,12–14,20].

This paper examines the interaction between the p-approximation property and the class of p-compact holomorphic
functions. The connection between the approximation property and the space of holomorphic functions is not without
precedent. The pioneer article on this topic is due to Aron and Schottenloher [5], who prove that a Banach space E has
the approximation property if and only if (H(E), τ0), the space of the entire functions with the compact open topology,
has the approximation property. Since then, many authors studied the approximation property for spaces of holomorphic
functions in different contexts, see for instance [6,7,17,18,25]. Recently, Aron, Maestre and Rueda [2] prove that E has the
p-approximation property if and only if (H(E), τ0p) has the approximation property, here τ0p denotes the topology of the
uniform convergence on p-compact sets. The relation between the approximation property and holomorphic mappings was
studied in detail in [5], where the class of compact holomorphic functions plays a crucial role.

The article is organized as follows. In the first section we fix the notation and state some basic results on p-compact
mappings. In Section 2 we study the behavior of p-compact homogeneous polynomials which can be considered as a
polynomial Banach ideal with a natural norm denoted by κp . We use the standard linearization of polynomials via the
symmetric projective tensor product and show that any p-compact homogeneous polynomial P factors through a quotient
of �1 and a quotient of �q , 1

p + 1
q = 1, and give a characterization of the κp-norm of P in terms of these factorizations.

We also prove that the Aron–Berner extension preserves isometrically the class of p-compact polynomials and exhibit an
isometric relationship between the adjoint of p-compact polynomials and quasi-p-nuclear operators.

Section 3 is devoted to the study of p-compact holomorphic mappings. Since p-compact functions are compact, we pay
special attention to the results obtained by Aron and Schottenloher [5], where the authors prove that any holomorphic
function is compact if and only if each polynomial of its Taylor series expansion at 0 is compact [5, Proposition 3.4]. Then,
Aron, Maestre and Rueda [2, Proposition 3.5] show that each component of the Taylor series expansion of a p-compact
holomorphic mapping has to be also p-compact and wonder if there is reciprocal result. We define a natural p-compact
radius of convergence and, in Proposition 3.4, we give a characterization of this type of functions. Surprisingly, we found
that p-compact holomorphic functions behave more like nuclear than compact mappings. We show this feature with two
examples. Example 3.7 shows that Proposition 3.4 cannot be improved and also that it is possible to find an entire function
whose polynomials at 0 are p-compact but the function fails to be p-compact at 0, which answers by the negative the
question posed in [2, Problem 5.2]. In Example 3.8 we construct an entire function on �1 which is p-compact on the open
unit ball, but it fails to be p-compact at the first element of the canonical basis of �1, giving an answer to [2, Problem 5.1].

We apply the results of Sections 2 and 3 to study the p-approximation property in Section 4. We characterize the
p-approximation property of a Banach space in terms of p-compact homogeneous polynomials with range on the space.
Our proof requires the notion of the ε-product of Schwartz [29]. We show that a Banach space E has the p-approximation
property if and only if p-compact homogeneous polynomials with range on E can be uniformly approximated by finite rank
polynomials. We also give the analogous result for p-compact holomorphic mappings endowed with the Nachbin topology,
Proposition 4.7.

The final section is dedicated to the p-compact holomorphic mappings within the framework of holomorphy types,
concept introduced by Nachbin [26,27]. This allows us to inspect the κp-approximation property introduced, in [13], in the
spirit of [5, Theorem 4.1].

1. Preliminaries

Throughout this paper E and F are Banach spaces. We denote by B E the closed unit ball of E , by E ′ its topological
dual, and by �p(E) the Banach space of the p-summable sequences of elements of E , endowed with its natural norm. Also,
c0(E) denotes the space of null sequences of E endowed with the supremum norm. Following [30], we say that a subset
K ⊂ E is relatively p-compact, 1 � p � ∞, if there exists a sequence (xn)n ∈ �p(E) so that K is contained in the closure of
{∑αnxn: (αn)n ∈ B�q }, where B�q denotes the closed unit ball of �q , with 1

p + 1
q = 1. We denote this set by p-co{xn} and its

closure by p-co{xn}. With p = ∞ the definition of compact sets is recovered. When p = 1, the 1-convex hull is obtained by
considering coefficients in B�∞ or, if necessary, with some extra work by coefficients in Bc0 , see [14, Remark 3.3].

Since the sequence (xn)n in the definition of a relatively p-compact set K converges to zero, any p-compact set is
compact. Such a sequence is not unique, then we may consider

mp(K ; E) = inf
{∥∥(xn)n

∥∥
p: K ⊂ p-co{xn}

}
which measures the size of K as a p-compact set of E . If K ⊂ E is not p-compact, we write mp(K ; E) = ∞. For simplicity,
along this work we write mp(K ) instead of mp(K ; E). When K ⊂ p-co{xn}, (xn)n ∈ �p(E), any x ∈ K has the form x = ∑

αnxn

for some (αn)n ∈ B�q . By Hölder’s inequality, ‖x‖ � ‖(xn)n‖�p(E) and ‖x‖ � mp(K ), for all x ∈ K . We use without any further
mention the following equalities: mp(K ) = mp(K ) = mp(Γ (K )), where Γ (K ) denotes the absolutely convex hull of K , a
relatively p-compact set.
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The space of linear bounded operators from E to F is denoted by L(E; F ) and E ′ ⊗ F denotes its subspace of finite rank
operators. As in [30], we say that an operator T ∈ L(E; F ) is p-compact, 1 � p � ∞, if T (B E ) is a relatively p-compact set
in F . The space of p-compact operators from E to F is denoted by K p(E; F ). In K p(E; F ) there is a natural norm defined as

κp(T ) = inf
{∥∥(yn)n

∥∥
p: (yn)n ∈ �p(F ) and T (B E) ⊂ p-co{yn}

}
,

for any T ∈ K p(E; F ), where κ∞ coincides with the supremum norm. The pair (K p, κp) is a Banach operator ideal [28] (see
also [14]).

The Banach ideal K p is associated by duality with the ideal of quasi-p-nuclear operators, introduced and studied by
Persson and Pietsch [28]. Recall that an operator T ∈ L(E; F ) is quasi-p-nuclear if and only if there exists a sequence
(x′

n)n ⊂ �p(E ′), such that

‖T x‖ �
(∑

n

∣∣x′
n(x)

∣∣p
) 1

p

,

for all x ∈ E and the quasi-p-nuclear norm of T is given by

νQ
p (T ) = inf

{∥∥(x′
n)n

∥∥
p: ‖T x‖p �

∑
n

∣∣x′
n(x)

∣∣p
, ∀x ∈ E

}
.

The space of quasi-p-nuclear operators from E to F is denoted by QN p(E; F ). The dual relationship is as follows. Given
T ∈ L(E; F ), T is p-compact if and only if its adjoint is quasi-p-nuclear. Also, T is quasi-p-nuclear if and only if its adjoint
is p-compact, see [14, Corollary 3.4] and [14, Proposition 3.8].

A mapping P : E → F is an m-homogeneous polynomial if there exists a (unique) symmetric m-linear form
∨
P :

E × · · · × E︸ ︷︷ ︸
m

→ F such that

P (x) =∨
P (x, . . . , x),

for all x ∈ E . The space of m-homogeneous continuous polynomials from E to F is denoted by P (m E; F ), which is a Banach
space considered with the supremum norm

‖P‖ = sup
{∥∥P (x)

∥∥: x ∈ B E
}
.

Given a homogeneous polynomial P ∈ P (m E, F ), there are two natural mappings associated to it. The linearization, de-
noted by L P ∈ L(

⊗m
πs

E; F ), where
⊗m

πs
E stands for the completion of the symmetric m-tensor product endowed with the

symmetric projective norm. Also we have the polynomial P ∈ P (m E ′′, F ′′), known as the Aron–Berner extension of P [1], which
is the extension of P from E to E ′′ obtained by weak-star density. We have ‖L P ‖ � mm

m! ‖P‖ and ‖P‖ = ‖P‖ [11].
A mapping f : E → F is holomorphic at x0 ∈ E if there exists a sequence of polynomials Pm f (x0) ∈ P (m E, F ) such that

f (x) =
∞∑

m=0

Pm f (x0)(x − x0),

uniformly for all x in some neighborhood of x0. We say that
∑∞

m=0 Pm f (x0) is the Taylor series expansion of f at x0 and
that Pm f (x0) is its m-component of the series at x0. A function is said to be holomorphic or entire if it is holomorphic at x
for all x ∈ E . The space of entire functions from E to F is denoted by H(E; F ).

We refer the reader to [16,24] for general background on polynomials and holomorphic functions.

2. The p-compact polynomials

We want to understand the behavior of p-compact holomorphic mappings. The definition, due to Aron, Maestre and
Rueda [2] was introduced as a natural extension of p-compact operators to the nonlinear case. In [2] the authors show
that for any p-compact holomorphic function each m-homogeneous polynomial of its Taylor series expansion must be
p-compact. Motivated by this fact we devote this section to the study of polynomials.

Recall that P ∈ P (m E; F ) is said to be p-compact, 1 � p � ∞, if P (B E) is relatively p-compact in F . In particular, any
p-compact polynomial is compact. We denote by P K p (

m E; F ) the space of p-compact m-homogeneous polynomials and by
P K (m E; F ) the space of compact polynomials. On P K p (

m E; F ) we may define

κp(P ) = mp
(

P (B E)
)
,

which is a norm satisfying that ‖P‖ � κp(P ), for any p-compact homogeneous polynomial P . Also, (P K p (
m E; F ), κp) is a

polynomial Banach ideal.

Lemma 2.1. Let E and F be Banach spaces and let P ∈ P (m E; F ). The following statements are equivalent.
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(i) P is p-compact.
(ii) L P : ⊗m

πs
E → F , the linearization of P , is a p-compact operator.

Moreover, we have κp(P ) = κp(L P ).

Proof. To show the equivalence, we appeal to the familiar diagram, where Λ is a norm one homogeneous polynomial
(Λ(x) = xm) and P = L P Λ:

E
P

Λ

F

⊗m
πs

E

L P (1)

Note that the open unit ball of
⊗m

πs
E is the absolutely convex hull Γ {xm: ‖x‖ < 1}. Then, we have that P (B E) ⊂

Γ ({L P (xm): ‖x‖ < 1}) = Γ (P (B E )). Now, the equality L P (Γ {xm: ‖x‖ < 1}) = Γ (P (B E )) shows that any sequence (yn)n ∈
�p(F ) involved in the definition of κp(P ) is also involved in the definition of κp(L P ) and vice versa, which completes the
proof. �

The behavior of p-compact polynomials is similar to that described for p-compact operators in [20, Proposition 2.9] (see
also [10, Theorem 3.1]).

Proposition 2.2. Let E and F be Banach spaces, 1 � p < ∞, P ∈ P (m E; F ). Then, if 1
p + 1

q = 1, the following are equivalent.

(i) P ∈ P K p (
m E; F ).

(ii) There exist subspaces M ⊂ �1 and N ⊂ �q, a compact polynomial Q ∈ P K (m E;�q/N) and operators T ∈ K p(�q/N;�1/M) and
S ∈ K(�1/M; F ) such that P = ST Q . In this case

κp(P ) = inf
{‖S‖κp(T )‖Q ‖},

where the infimum is taken over all the factorizations as above.

Proof. We only have to prove (i) implies (ii). By Lemma 2.1, P = L P Λ where L P is p-compact and κp(P ) = κp(L P ). Now,
we merge diagram (1) with that of [20, Proposition 2.9] for the operator L P and obtain

E
P

Λ

F

⊗m
πs

E

L P

R
�q/N

T
�1/M

S

where the operators R and S are compact and T is p-compact. Then, with Q = RΛ we have the factorization desired. Note
that κp(P ) � ‖S‖κp(T )‖Q ‖ � ‖S‖κp(T )‖R‖. By [20, Proposition 2.9], κp(L P ) = inf{‖S‖κp(T )‖R‖}. Using again Lemma 2.1,
the proof is complete. �

It is shown in [14, Corollary 3.6], that an operator T : E → F is p-compact if and only if its bitranspose T ′′ : E ′′ → F ′′ is
p-compact with κp(T ′′) � κp(T ). In [20, Corollary 2.6], it is proved that, in fact, κp(T ′′) = κp(T ) regardless T ′′ is considered
as an operator on F ′′ or, thanks to the Gantmacher theorem, as an operator on F . This result, allows us to show that
the Aron–Berner extension is a κp-isometric extension which preserves the ideal of p-compact homogeneous polynomials.
Recall that P denotes the Aron–Berner extension of P .

Proposition 2.3. Let E and F be Banach spaces, 1 � p < ∞, and P ∈ P (m E; F ). Then P is p-compact if and only if P is p-compact.
Moreover, κp(P ) = κp(P ).

Proof. Clearly, P is p-compact whenever P is and also κp(P ) � κp(P ). Now, suppose that P is p-compact. By Lemma 2.1,
we can factorize P via its linearization as P = L P Λ, with ‖Λ‖ = 1 and L P a p-compact operator. Since P = L′′

P Λ, applying
[20, Corollary 2.6] and Lemma 2.1, we see that P is p-compact and κp(P ) � κp(L′′

P ) = κp(L P ) = κp(P ), which gives the
reverse inequality. �

We finish this section by relating the transpose of p-compact polynomials with quasi-p-nuclear operators. Given an
m-homogeneous polynomial P : E → F its adjoint is defined as the linear operator P ′ : F ′ → P (m E) given by P ′(y′) = y′ ◦ P .
In [20, Corollary 2.7], it is shown that the transpose of a p-compact linear operator satisfies the equality κp(T ) = νQ

p (T ′).
Since P ′ = L′ , where L P is the linearization of P , using Lemma 2.1 we immediately have:
P
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Corollary 2.4. A homogeneous polynomial P ∈ P (m E; F ) is p-compact if and only if its transpose P ′ ∈ L(F ′; P (m E)) is quasi-p-
nuclear, and κp(P ) = νQ

p (P ′).

When this manuscript was complete we learned that R. Aron and P. Rueda were also been working on p-compact
polynomials [3]. They obtained Lemma 2.1 and a nonisometric version of the corollary above.

3. The p-compact holomorphic mappings

In this section we undertake a detailed study of p-compact holomorphic mappings, whose definition recovers the notion
of compact holomorphic mappings for p = ∞ [2]. Recall that for E and F Banach spaces, 1 � p � ∞, a holomorphic function
f : E → F is said to be p-compact at x0 if there is a neighborhood V x0 of x0, such that f (V x0 ) ⊂ F is a relatively p-compact
set. Also, f ∈ H(E; F ) is said to be p-compact if it is p-compact at x for all x ∈ E . We denote by H K p (E; F ) the space of
p-compact entire functions and by H K (E; F ) the space of compact holomorphic mappings. For homogeneous polynomials,
it is equivalent to be compact (p-compact) at some point of E or to be compact (p-compact) at every point of the space
[2,5]. The same property remains valid for compact holomorphic mappings [5, Proposition 3.4] although the situation is
very different for p-compact holomorphic functions, 1 � p < ∞. Indeed, we show that p-compact holomorphic mappings,
1 � p < ∞, behave more like nuclear than compact holomorphic functions.

Having in mind that (P K p (
m E; F ), κp) is a polynomial Banach ideal with κp(P ) = mp(P (B E )), and that all polynomials in

the Taylor series expansion of a p-compact holomorphic function at x0 are p-compact [2, Proposition 3.5], we propose to
connect the concepts of p-compact holomorphic mappings and the size of p-compact sets measured by mp . We start with
a simple but useful lemma.

Lemma 3.1. Let E be a Banach space and consider K1, K2, . . . a sequence of relatively p-compact sets in E, 1 � p < ∞. If∑∞
j=1 mp(K j) < ∞, then the series

∑∞
j=1 x j is absolutely convergent for any choice of x j ∈ K j and the set K = {∑∞

j=1 x j: x j ∈ K j} is

relatively p-compact with mp(K ) �
∑∞

j=1 mp(K j) < ∞.

Proof. Note that K is well defined since for x j ∈ K j , ‖x j‖ � mp(K j), for all j and
∑∞

j=1 mp(K j) < ∞.
First, suppose that p > 1 and fix ε > 0. For each j ∈ N, we may assume that K j is nonempty and we may choose

(x j
n)n ∈ �p(E) such that K j ⊂ p-co{x j

n: n ∈ N} with ‖(x j
n)n‖p � mp(K j)(1+ ε

2 j mp(K j)
−1)1/p . Now, take λ j = mp(K j)

−1/q , where
1
p + 1

q = 1 and define the sequence (zk)k ⊂ E such that each term is of the form λ j x
j
n , following the standard order:

λ1x1
1 λ1x1

2 λ1x1
3 . . .

λ2x2
1 λ2x2

2 λ2x2
3 . . .

λ3x3
1 λ3x3

2 λ3x3
3 . . .

Then

∞∑
k=1

‖zk‖p =
∞∑
j=1

∞∑
n=1

λ
p
j

∥∥x j
n

∥∥p

=
∞∑
j=1

mp(K j)
−p/q

∥∥(
x j

n
)

n

∥∥p
�p(E)

�
∞∑
j=1

mp(K j)
−p/qmp(K j)

p
(

1 + ε

2 j
mp(K j)

−1
)

=
∞∑
j=1

mp(K j) + ε.

Hence, (zk)k belongs to �p(E) and ‖(zk)k‖�p(E) � (
∑∞

j=1 mp(K j) + ε)1/p .
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Now, take K = {∑∞
j=1 x j: x j ∈ K j} and x ∈ K , x = ∑∞

j=1 x j with x j ∈ K j . For each j ∈ N, there exists (α
j

n)n ∈ B�q such

that x j = ∑∞
n=1 α

j
nx j

n . Then x = ∑∞
j=1

∑∞
n=1 α

j
nx j

n , and the series converges absolutely as the partial sums of |α j
n|‖x j

n‖ are

convergent. We may write x = ∑
mp(K j)

1/qα
j

nλ j x
j
n with

∑∣∣mp(K j)
1/qα

j
n

∣∣q =
∞∑
j=1

∞∑
n=1

∣∣α j
n

∣∣q
mp(K j) �

∞∑
j=1

mp(K j).

Then K is p-compact as K ⊂ (
∑∞

j=1 mp(K j))
1/q p-co{zk}. Also

mp(K ) �
( ∞∑

j=1

mp(K j)

)1/q∥∥(zk)k
∥∥

�p(E)
�

( ∞∑
j=1

mp(K j)

)1/q( ∞∑
j=1

mp(K j) + ε

)1/p

.

Letting ε → 0, we conclude that mp(K ) �
∑∞

j=1 mp(K j).
With the usual modifications, the case p = 1 follows from the above construction considering λ j = 1, for all j. �
Aron, Maestre and Rueda [2, Proposition 3.5] prove that if f is a p-compact holomorphic mapping at some x0 ∈ E , every

homogeneous polynomial of the Taylor series expansion of f at x0 is p-compact. At the light of the existent characterization
for compact holomorphic mappings [5], they also wonder if the converse is true [2, Problem 5.2]. To tackle this question we
need to define the p-compact radius of convergence of a function f at x0 ∈ E .

Definition 3.2. Let E and F be Banach spaces, f ∈ H(E; F ) and x0 ∈ E . If
∑∞

m=0 Pm f (x0) is the Taylor series expansion of f
at x0, we say that

rp( f , x0) = 1/ lim supκp
(

Pm f (x0)
)1/m

is the radius of p-compact convergence of f at x0, for 1 � p < ∞.
As usual, we understand that whenever lim supκp(Pm f (x0))

1/m = 0, the radius of p-compact convergence is infinite.
Also, if Pm f (x0) fails to be p-compact for some m, f fails to be p-compact and rp( f , x0) = 0.

The following lemma is obtained by a slight modification of the generalized Cauchy formula given in the proof of
[2, Proposition 3.5], which asserts that if f ∈ H(E; F ), x0 ∈ E and ε > 0, Pm f (x0)(Bε(0)) ⊂ co{ f (Bε(x0))}, where Bε(x0)

stands for the open ball of center x0 and radius ε. We state the result as it is used in Section 4, also we are interested in
measuring the mp-size of Pm f (x0)(V ) in terms of the mp-size of f (x0 + V ) for certain absolutely convex open sets V ⊂ E .

Lemma 3.3. Let E and F be Banach spaces, let x0 ∈ E and let V ⊂ E be an absolutely convex open set. Let f ∈ H(E; F ) whose Taylor
series expansion at x0 is given by

∑∞
m=0 Pm f (x0). Then

(a) Pm f (x0)(V ) ⊂ co{ f (x0 + V )}, for all m.
(b) If f (x0 + V ) is relatively p-compact then mp(Pm f (x0)(V )) � mp( f (x0 + V )), for all m.

Now we are ready to give a characterization of a p-compact analytic function in terms of the polynomials in its Taylor
series expansion and the p-compact radius of convergence.

Proposition 3.4. Let E and F be Banach spaces and let f ∈ H(E; F ) whose Taylor series expansion at x0 is given by
∑∞

m=0 Pm f (x0).
For 1 � p < ∞, the following statements are equivalent.

(i) f is p-compact at x0 .
(ii) Pm f (x0) ∈ P K p (

m E; F ), for all m and lim supκp(Pm f (x0))
1/m < ∞.

Proof. To prove that (i) implies (ii), take ε > 0 such that f (Bε(x0)) is relatively p-compact and f (x) = ∑∞
m=1 Pm f (x0)(x −

x0), with uniform convergence in Bε(x0). By [2, Proposition 3.5], Pm f (x0)(εB E ) ⊂ co{ f (Bε(x0))} and Pm f (x0) is p-compact,
for all m. Moreover, by the lemma above,

κp
(

Pm f (x0)
) = mp

(
Pm f (x0)(B E)

) = 1

εm
mp

(
Pm f (x0)(εB E)

)
� 1

εm
mp

(
co

{
f
(

Bε(x0)
)})

.

It follows that lim supκp(Pm f (x0))
1/m � 1 , as we wanted to prove.
ε
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Conversely, suppose that lim supκp(Pm f (x0))
1/m = C > 0 and choose 0 < ε < rp( f , x0) such that, for all x ∈ Bε(x0),

f (x) = ∑∞
m=1 Pm f (x0)(x − x0), with uniform convergence. Now we have

f
(

Bε(x0)
) ⊂

{ ∞∑
m=1

xm: xm ∈ Pm f (x0)(εB E)

}
.

By Lemma 3.1, we obtain the result if we prove that
∑∞

m=1 mp(Pm f (x0)(εB E )) < ∞, which follows from the equality

∞∑
m=1

mp
(

Pm f (x0)(εB E )
) =

∞∑
m=1

εmκp
(

Pm f (x0)
)
,

and the choice of ε. �
Remark 3.5. Let f be a p-compact holomorphic mapping at x0 and let

∑∞
m=0 Pm f (x0) be its Taylor series expansion at x0.

Then, if ε < rp( f , x0),

mp
(

f
(

Bε(x0)
))

�
∞∑

m=1

mp
(

Pm f (x0)(εB E)
)
,

where the right hand series is convergent.

The p-compact radius has the following natural property.

Proposition 3.6. Let E and F be Banach spaces, 1 � p < ∞, and f ∈ H(E; F ). Suppose that f is p-compact at x0 with positive
p-compact radius r = rp( f , x0). Then f is p-compact for all x ∈ Br(x0). Also, if f is p-compact at x0 with infinite p-compact radius,
then f is p-compact at x, for all x ∈ E.

Proof. Without loss of generality, we can assume that x0 = 0. For r = rp( f ,0), take x ∈ E,‖x‖ < r. By [26, Proposition 1,
p. 26], there exists ε > 0 such that f (y) = ∑∞

m=1 Pm f (0)(y) converges uniformly for all y ∈ Bε(x). We also may assume
that ‖x‖ + ε < r.

As in Proposition 3.4, we have that f (Bε(x)) ⊂ {∑∞
m=1 xm: xm ∈ Pm f (0)(Bε(x))}. Now, if we prove that∑∞

m=1 mp(Pm f (0)(Bε(x))) < ∞, the result follows from Lemma 3.1. Indeed,

∞∑
m=1

mp
(

Pm f (0)
(

Bε(x)
)) =

∞∑
m=1

(‖x‖ + ε
)m

mp

(
Pm f (0)

(
1

‖x‖ + ε
Bε(x)

))

�
∞∑

m=1

(‖x‖ + ε
)m

mp
(

Pm f (0)(B E)
)

=
∞∑

m=1

((‖x‖ + ε
)
κp

(
Pm f (0)

)1/m)m
.

Since (‖x‖ + ε)r−1 < 1, the last series is convergent and the claim is proved. �
We recently learned that R. Aron and P. Rueda defined, in the context of ideals of holomorphic functions [4], a ra-

dius of I -boundedness which for p-compact holomorphic functions coincides with Definition 3.2. With the radius of
I -boundedness they obtained a partial version of Proposition 3.4.

Thanks to the Josefson–Nissenzweig theorem we have, for any Banach spaces E and F , a p-compact holomorphic map-
ping, f ∈ H K p (E; F ), whose p-compact radius of convergence at the origin is finite. It is enough to consider a sequence
(x′

m)m ⊂ E ′ with ‖x′
m‖ = 1 ∀m ∈ N, and (x′

m)m point-wise convergent to 0. Then, f (x) = ∑∞
m=1 x′

m(x)m belongs to H(E), is
1-compact (hence, p-compact for any p > 1) and rp( f ,0) = 1 since κp((x′

m)m) = ‖x′
m‖ = 1. The example can be modified to

obtain a vector valued holomorphic function with similar properties.
There are two main questions related to p-compact holomorphic functions which were stated as Problem 5.1 and Prob-

lem 5.2 by Aron, Maestre and Rueda [2]. Both arise from properties that compact holomorphic functions satisfy. Recall that
we may consider compact sets as ∞-compact sets and compact mappings as ∞-compact functions, where κ∞(P ) = ‖P‖,
for any compact m-homogeneous polynomial P . Let us consider f ∈ H(E; F ), by [5, Proposition 3.4] it is known that if
f is compact at one point, say at the origin, then f is compact at x for all x ∈ E . Also, if

∑∞
m=0 Pm f (0) is the Taylor

series expansion of f at 0, and for each m the homogeneous polynomial Pm f (0) : E → F is compact, then f is compact.
With Example 3.7 we show that this later result is no longer true for 1 � p < ∞. Note that lim sup ‖Pm‖1/m < ∞ is ful-
filled by the Cauchy inequalities whenever f is compact. Example 3.7 also shows that, in Proposition 3.4, the hypothesis
lim supκp(Pm f (x0))

1/m < ∞ cannot be ruled out. For our purposes, we adapt [15, Example 10].
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Example 3.7. For every 1 � p < ∞, there exists a holomorphic function f ∈ H(�1;�p) such that for all m ∈ N, Pm f (0) is
p-compact, but f is not p-compact at 0.

Furthermore, every polynomial Pm f (y) in the Taylor series expansion of f at any y ∈ �1 is 1-compact, and therefore
p-compact for all 1 � p < ∞, but f is not p-compact at any y.

Proof. Consider {σm}m the partition of the natural numbers such that each σm is a finite set of m! consecutive elements:

σ1 = {1}; σ2 = { 2,3︸︷︷︸
2!

}; σ3 = {4,5,6,7,8,9︸ ︷︷ ︸
3!

}; σ4 = { . . .︸︷︷︸
4!

}; · · · .

Let (e j) j be the canonical basis of �p and denote by (e′
j) j the sequence of coordinate functionals on �1. Fixing m � 1,

consider the polynomial Pm ∈ P (m�1;�p), defined by

Pm(x) =
(

mm/2

m!
)1/p ∑

j∈σm

e′
j(x)me j .

Then

‖Pm‖ =
(

mm/2

m!
)1/p

sup
x∈B�1

∥∥∥∥ ∑
j∈σm

e′
j(x)me j

∥∥∥∥
�p

�
(

mm/2

m!
)1/p

sup
x∈B�1

‖x‖1/p
1 =

(
mm/2

m!
)1/p

.

First, note that Pm is p-compact since it is of finite rank. Now, as lim sup ‖Pm‖1/m � lim( m1/2

m!1/m )1/p = 0, we may define f

as the series
∑∞

m=1 Pm , and f ∈ H(�1;�p).
In order to show that f fails to be p-compact at 0, we show that lim supκp(Pm)1/m = ∞. Fix m ∈ N and take (xn)n ∈

�p(�p), such that Pm(B�1 ) ⊂ p-co{xn}. Each xn may be written by xn = ∑∞
k=1 xn

k ek . For each j ∈ σm , there is a sequence

(α
j

n)n ∈ B�q such that

Pm(e j) =
(

mm/2

m!
)1/p

e j =
∞∑

n=1

α
j

nxn =
∞∑

n=1

∞∑
k=1

α
j

nxn
kek =

∞∑
k=1

( ∞∑
n=1

α
j

nxn
k

)
ek.

Therefore, we have that (mm/2

m! )1/p = ∑∞
n=1 α

j
nxn

j , for each j ∈ σm . Then

mm/2 =
∑
j∈σm

∣∣∣∣
(

mm/2

m!
)1/p∣∣∣∣p

=
∑
j∈σm

∣∣∣∣∣
∞∑

n=1

α
j

nxn
j

∣∣∣∣∣
p

�
∑
j∈σm

( ∞∑
n=1

∣∣α j
nxn

j

∣∣)p

�
∑
j∈σm

( ∞∑
n=1

∣∣α j
n

∣∣q

)p/q ∞∑
n=1

∣∣xn
j

∣∣p

�
∑
j∈σm

∞∑
n=1

∣∣xn
j

∣∣p �
∥∥(xn)n

∥∥p
�p(�p)

.

We have shown that for any sequence (xn)n ∈ �p(�p) such that Pm(B�1 ) ⊂ p-co{xn}, the inequality ‖(xn)n‖�p(�p) � mm/2p

holds. Then, κp(Pm) � mm/2p for all m ∈ N and lim supκp(Pm)1/m = ∞. By Proposition 3.4, f cannot be p-compact at 0,
which proves the first statement of the example.

To show the second assertion, take any nonzero element y ∈ �1 and fix m0 ∈ N. For all x ∈ B�1 ,

Pm0 f (y)(x) =
∞∑

m=m0

(
m

m0

) ∨
Pm

(
ym−m0 , xm0

)

=
∞∑

m=m0

(
m

m0

)(
mm/2

m!
)1/p ∑

j∈σm

e′
j(y)m−m0 e′

j(x)m0 e j.

We claim that the sequence
(( m

m0

)(mm/2

m!
)1/p

e′
j(y)m−m0 e j

)
j∈σm

m>m0

belongs to �1(�p). In fact,

∑
m>m

(
m

m0

)(
mm/2

m!
)1/p ∑ ∣∣e′

j(y)
∣∣m−m0 �

∑
m>m

(
m

m0

)(
mm/2

m!
)1/p

‖y‖m−m0
1 < ∞.
0 j∈σm 0
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Then, since (e′
j(x)m0 ) j∈σm

m�m0

belongs to Bc0 , the set Pm0 f (y)(B�1 ) is included in the 1-convex hull of

{(
m
m0

)(
mm/2

m!
)1/p

e′
j(y)m−m0 e j: m � m0, j ∈ σm

}
,

which proves that Pm0 f (y) is 1-compact and, therefore, p-compact for every 1 � p, for any m0.
To show that f is not p-compact at y, note that fixed m, it is enough to choose j ∈ σm , to obtain that Pm f (y)(e j) =

(mm/2

m! )1/pe j . Now, we can proceed as in the first part of the example to show that lim supκp(Pm f (y))1/m = ∞. And, again
by Proposition 3.4, f cannot be p-compact at y. �

The following example gives a negative answer to [2, Problem 5.1]. We show an entire function which is p-compact at 0,
but this property does not extend beyond the ball Brp( f ,0)(0). Example 3.8 proves, in addition, that Proposition 3.6 cannot
be improved. We base our construction in [15, Example 11].

Example 3.8. For every 1 � p < ∞, there exists a holomorphic function f ∈ H(�1;�p) such that f is p-compact at 0, with
lim supκp(Pm f (0))1/m = 1, but f is not p-compact at e1.

Proof. Consider {σm}m , the partition of the natural numbers given in Example 3.7. Let (e j) j be the canonical basis of �p

and denote by (e′
j) j the sequence of coordinate functionals on �1.

Fixing m � 2, define Pm ∈ P (m�1;�p), the m-homogeneous polynomial

Pm(x) =
(

1

m!
)1/p

e′
1(x)m−2

∑
j∈σm

e′
j(x)2e j.

Then

‖Pm‖ =
(

1

m!
)1/p

sup
x∈B�1

( ∑
j∈σm

∣∣e′
1(x)m−2e′

j(x)2
∣∣p

)1/p

�
(

1

m!
)1/p

sup
x∈B�1

( ∑
j∈σm

∣∣e′
j(x)

∣∣2p
)1/p

�
(

1

m!
)1/p

.

Since lim‖Pm‖1/m � lim( 1
m! )

1/pm = 0, we may define f as f (x) = ∑
m�2 Pm(x), which belongs to H(�1;�p) and∑

m�2 Pm is its Taylor series expansion at 0.
Note that each Pm is p-compact, as it is of finite rank, for all m � 2. Moreover, when computing ‖Pm‖, we showed

that α(x) = (e′
1(x)m−2e′

j(x)2) j ∈ B�q for all x ∈ B�1 . Then Pm(B�1 ) ⊂ ( 1
m! )

1/p p-co{e j: j ∈ σm} and since ‖(e j) j∈σm ‖�p(�p) =
(
∑

j∈σm
1)1/p = (m!)1/p , we have that κp(Pm) � ( 1

m! )
1/p(m!)1/p = 1. Then, lim supκp(Pm)1/m � 1 and, by Proposition 3.4,

f is p-compact at 0.
To show that rp( f ,0) = 1, fix m � 2 and ε > 0. Take x j ∈ B�1 such that e′

1(x j) = 1 − ε, e′
j(x j) = ε and e′

k(x j) = 0 for
j ∈ σm and k 
= j.

Now, fix any sequence (yn)n ∈ �p(�p) such that Pm(B�1 ) ⊂ p-co{yn} and write yn = ∑∞
k=1 yn

k ek .

Then, for each j ∈ σm there exists (α
j

n)n ∈ B�q so that

Pm(x j) =
(

1

m!
)1/p

(1 − ε)m−2ε2e j =
∞∑

n=1

α
j

n yn.

Thus, for each j ∈ σm , the equality ( 1
m! )

1/p(1 − ε)m−2ε2 = ∑∞
n=1 α

j
n yn

j holds.
In consequence

(
(1 − ε)m−2ε2)p =

∑
j∈σm

1

m!
(
(1 − ε)m−2ε2)p

=
∑
j∈σm

∣∣∣∣
(

1

m!
)1/p

(1 − ε)m−2ε2
∣∣∣∣p

=
∑ ∣∣∣∣∣

∞∑
α

j
n yn

j

∣∣∣∣∣
p

j∈σm n=1
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�
∑
j∈σm

( ∞∑
n=1

∣∣α j
n yn

j

∣∣)p

�
∑
j∈σm

∞∑
n=1

∣∣yn
j

∣∣p �
∥∥(yn)n

∥∥p
�p(�p)

.

Finally, we get that κp(Pm) � (1 − ε)m−2ε2 which implies that lim supκp(Pm)1/m � 1 − ε. Since ε > 0 was arbitrary, we
obtain that rp( f ,0) = 1.

Now, to prove that f is not p-compact at e1 we show that the 2-homogeneous polynomial P2 f (e1) : �1 → �p is not
p-compact. We have

P2 f (e1)(x) =
∞∑

m=2

(
m

2

) ∨
Pm

(
em−2

1 , x2) (2)

where
∨
Pm is the symmetric m-linear mapping associated to Pm .

By the definition of Pm we easily obtain a multilinear mapping Am ∈ L(m�1;�p) satisfying Pm(x) = Am(x, . . . , x), defined
by

Am(x1, . . . , xm) =
(

1

m!
)1/p

e′
1(x1) · · · e′

1(xm−2)
∑
j∈σm

e′
j(xm−1)e′

j(xm)e j .

Let Sm be the symmetric group on {1, . . . ,m} and denote by Aξ
m , the multilinear mapping given by Aξ

m(x1, . . . , xm) =
Am(xξ(1), . . . , xξ(m)), where ξ ∈ Sm . Then we have

∨
Pm

(
em−2

1 , x2) = 1

m!
∑
ξ∈Sm

Aξ
m
(
em−2

1 , x2).
Since Am(x1, . . . , xm−2, e1, xm−1) = Am(x1, . . . , xm−1, e1) = 0, for all x1, . . . , xm−1 ∈ �1, and Am(em−2

1 , x2) = ( 1
m! )

1/p ×∑
j∈σm

e′
j(x)2e j , we obtain

∨
Pm

(
em−2

1 , x2) = 1

m!2(m − 2)!
(

1

m!
)1/p ∑

j∈σm

e′
j(x)2e j . (3)

Combining (2) and (3) we get that

P2 f (e1)(x) =
∑
m�2

(
1

m!
)1/p ∑

j∈σm

e′
j(x)2e j .

Suppose that P2 f (e1) is p-compact. Hence, there exists a sequence (yn)n ∈ �p(�p), yn = ∑∞
k=1 yn

k ek such that P2 f (e1)(B�1 ) ⊂
p-co{yn}. For each j ∈ σm , there exists (α

j
n)n ∈ B�q such that P2 f (e1)(e j) = ( 1

m! )
1/pe j = ∑∞

n=1 α
j

n yn . As in Example 3.7, we

conclude that ( 1
m! )

1/p = ∑∞
n=1 α

j
n yn

j , if j ∈ σm .
Hence

∑
m�2

∑
j∈σm

((
1

m!
)1/p)p

=
∑
m�2

∑
j∈σm

∣∣∣∣∣
∞∑

n=1

α
j

n yn
j

∣∣∣∣∣
p

�
∑
m�2

∑
j∈σm

( ∞∑
n=1

∣∣α j
n

∣∣q

)p/q ∞∑
n=1

∣∣y j
n

∣∣p

�
∑
m�2

∑
j∈σm

∞∑
n=1

∣∣y j
n

∣∣p

�
∥∥(yn)n

∥∥p
�p(�p)

< ∞,

which is a contradiction since
∑

m�2
∑

j∈σm
(( 1

m! )
1/p)p is not convergent. Therefore, f cannot be p-compact at e1, and the

result is proved. �
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4. The p-approximation property and p-compact mappings

The concept of p-compact sets leads naturally to that of p-approximation property. A Banach space E has the
p-approximation property if the identity can be uniformly approximated by finite rank operators on p-compact sets. Since
p-compact sets are compact, every space with the approximation property has the p-approximation property. Then, this
property can be seen as a way to weaken the classical approximation property.

The p-approximation property has been studied in [10,12] related with p-compact linear operators and in [2] related
with nonlinear mappings. The relation between the approximation property and compact holomorphic mappings was first
addressed in [5]. Here, we are concerned with the study of the p-approximation property and its relation with p-compact
polynomials and holomorphic functions in the spirit of [2] and [5].

We start by characterizing the notion of a homogeneous polynomial P being p-compact in terms of different conditions
of continuity satisfied by P ′ the transpose of P . The first proposition gives an answer to [2, Problem 5.8] and should be
compared with [5, Proposition 3.2].

Before going on, some words are needed on the topologies which we use. We denote by Pc(
m E) the space P (m E)

considered with the uniform convergence on compact sets of E , if m = 1 we simply write E ′
c . When compact sets are

replaced by p-compact sets we use the notation Pcp(m E) and E ′
cp . By the Ascoli theorem, any set L ⊂ Pc(

m E) is relatively
compact if and only if supP∈L ‖P‖ is finite. Also, if L ⊂ Pcp(m E) is relatively compact we have that L is point-wise bounded
and then, by the principle of uniform boundedness, L is relatively compact in Pc(

m E). Now we have:

Proposition 4.1. Let E and F be Banach spaces, 1 � p < ∞, and P ∈ P (m E; F ). The following statements are equivalent.

(i) P ∈ P K p (
m E; F ).

(ii) P ′ : F ′
cp → P (m E) is continuous.

(iii) P ′ : F ′
cp → Pc(

m E) is compact.
(iv) P ′ : F ′

cp → Pcq(
m E) is compact for any q, 1 � q < ∞.

(v) P ′ : F ′
cp → Pcq(

m E) is compact for some q, 1 � q < ∞.

Proof. Suppose (i) holds, then K = P (B E ) is p-compact and its polar set K ◦ is a neighborhood in F ′
cp . For y′ ∈ K ◦ we have

that ‖P ′(y′)‖ = supx∈B E
|y′(P x)| � 1, and P ′ : F ′

cp → P (m E) is continuous.
Now suppose (ii) holds, then there exists a p-compact set K ⊂ F such that P ′(K ◦) is equicontinuous in P (m E). By the

Ascoli theorem, P ′(K ◦) is relatively compact in Pc(
m E) and P ′ : F ′

cp → Pc(
m E) is compact.

The continuity of the identity map Pc(
m E) ↪→ Pcq(

m E) gives that (iii) implies (iv), for all 1 � q < ∞. Obviously, (iv) im-
plies (v). To complete the proof, suppose (v) holds. Then, there exist an absolutely convex p-compact set K ⊂ F and a
compact set L ⊂ Pcq(

m E) such that P ′(K ◦) ⊂ L and therefore, there exists c > 0 such that supy′∈K ◦ ‖P ′(y′)‖ � c. Note

that for any x ∈ c− 1
m B E and y′ ∈ K ◦ we have that |P ′(y′)(x)| = |y′(P x)| � 1. Then P (x) ∈ K , for all x ∈ c− 1

m B E and P is
p-compact. �

Now, we characterize the p-approximation property on a Banach space in terms of the p-compact homogeneous polyno-
mials with values on it. In order to do so we appeal to the notion of the ε-product introduced by Schwartz [29]. Recall that
for E and F two locally convex spaces, FεE is defined as the space of all linear continuous operators from E ′

c to F , endowed
with the topology of uniform convergence on all equicontinuous sets of E ′ . The space FεE is also denoted by Lε(E ′

c; F ). In
[5, Proposition 3.3] is shown, for all Banach spaces E and F , that (P (m F ),‖.‖)εE = Lε(E ′

c; (P (m F ),‖.‖)) = (P K (m F ; E),‖.‖),
where the isomorphism is given by the transposition P ↔ P ′ . As a consequence, it is proved that P (m F ) has the approx-
imation property if and only if P (m F ) ⊗ E is ‖.‖-dense in P K (m F ; E) for all Banach spaces E and all m ∈ N. We have the
following result.

Proposition 4.2. Let E and F be Banach spaces. Then (P K p (
m F ; E),‖.‖) is isometrically isomorphic to Lε(E ′

cp
; (P (m F ),‖.‖)).

As a consequence, E has the p-approximation property if and only if P (m F )⊗ E is ‖.‖-dense in P K p (
m F ; E) for all Banach spaces F

and all m ∈ N.

Proof. Note that [(i) implies (ii)] of Proposition 4.1, says that the transposition operator maps a p-compact polynomial into
a linear operator in Lε(E ′

cp
; (P (m F ),‖.‖)). Now, take T in Lε(E ′

cp
; (P (m F ),‖.‖)). Since the identity map ι : E ′

c → E ′
cp is

continuous, T belongs to Lε(E ′
c; (P (m F ),‖.‖)). By [5, Proposition 3.3], we have that T = P ′ for some P ∈ P K (m F ; E). In

particular, P ′ : E ′
cp → P (m F ) is continuous and by [(ii) implies (i)] of Proposition 4.1, P is p-compact.

For the second statement, if E has the p-approximation property, G ⊗ E is dense in Lε(E ′
cp

; G), for every locally convex
space G [22]. In particular we may consider G = (P (m F ),‖.‖). Conversely, with m = 1 we have that F ′ ⊗ E is ‖.‖-dense in
K p(F ; E) for every Banach space F . Now, an application of [12, Theorem 2.1] completes the proof. �
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At the light of [5, Proposition 3.3], it would be expected to obtain a result of the type P (m E) has the p-approximation prop-
erty if and only if P (m E)⊗ F is ‖.‖-dense in P K p (

m E; F ) for all Banach spaces F and all m ∈ N. Unfortunately, our characterization
is not as direct as we wanted and requires the following notion.

Definition 4.3. Let E be a Banach space, A an operator ideal and α a norm on A. We say that E has the (A,α)-
approximation property if F ′ ⊗ E is α-dense in A(F , E), for all Banach spaces F .

The relation between an ideal A with the ideal of those operators whose transpose belongs to A leads us to work with
the ideal of quasi-p-nuclear operators QN p .

Proposition 4.4. Let E be a Banach space and fix m ∈ N. Then,

(a) P (m E)⊗ F is ‖.‖-dense in P K p (
m E; F ), for all Banach spaces F if and only if P (m E) has the (QN p,‖.‖)-approximation property.

(b) P (m E) has the p-approximation property if and only if P (m E) ⊗ F is ‖.‖-dense in {P ∈ P (E; F ): L p ∈ QN p(
⊗m

πs
E; F )}, for all

Banach spaces F .

Proof. The space P (m E), or equivalently (
⊗m

πs
E)′ , has the (QN p,‖.‖)-approximation property if and only if (

⊗m
πs

E)′ ⊗ F
is ‖.‖-dense in K p(

⊗m
πs

E; F ) for all Banach spaces F [22]. In virtue of Lemma 2.1, it is equivalent to have that P (m E) ⊗ F
is ‖.‖-dense in P K p (

m E; F ). Then, statement (a) is proved. Note that (a) can be reformulated saying that P (m E) has the
(QN p,‖.‖)-approximation property if and only if P (m E) ⊗ F is ‖.‖-dense in {P ∈ P (E; F ): L p ∈ K p(

⊗m
πs

E; F )}, for all
Banach spaces F .

For the proof of (b), we use that the p-approximation property corresponds to the (A,‖.‖)-approximation property for
the ideal A = K p , of p-compact operators. The result follows proceeding as before if the ideal K p and its dual ideal QN p

are interchanged. �
Now, we change our study to that of p-compact holomorphic mappings. Aron and Schottenloher described the space of

compact holomorphic functions considered with τw , the Nachbin topology [26], via the ε-product. Namely, they show that
(H K (E; F ), τω) = Lε(F ′

c; (H(E), τω)), where the isomorphism is given by the transposition map f �→ f ′ [5, Theorem 4.1].
The authors use this equivalence to obtain, in presence of the approximation property, results on density similar to that of
Proposition 4.2. Recall that f ′ : F ′ → H(E) denotes the linear operator given by f ′(y′) = y′ ◦ f . With the next proposition
we try to clarify the relationship between p-compact holomorphic mappings and the ε-product. The result obtained gives,
somehow, a partial answer to [2, Problem 5.6].

Proposition 4.5. Let E and F be Banach spaces. Then,

(a) (H K p (E; F ), τω) is topologically isomorphic to a subspace of Lε(F ′
cp; (H(E), τω)).

(b) Lε(F ′
cp; (H(E), τω)) is topologically isomorphic to a subspace of { f ∈ H(E; F ): Pm f (x) ∈ P K p (

m E; F ), ∀x ∈ E, ∀m ∈ N},
considered with the Nachbin topology, τω .

Proof. To prove (a), fix f in H K p (E; F ) and consider q any τω-continuous seminorm on H(E). By [16, Proposition 3.47], we
may consider only the seminorms such that, for g ∈ H(E),

q(g) =
∞∑

m=0

∥∥Pm g(0)
∥∥

K+am B E
,

with K ⊂ E an absolutely convex compact set and (am)m a sequence in c+
0 . There exists V ⊂ E , an open set such that

2K ⊂ V and f (V ) ⊂ F is p-compact. Fix m0 ∈ N such that 2K + 2am B E ⊂ V , for all m � m0. Now, choose c > 0 such that
c(2K + 2am B E) ⊂ 2K + 2am0 B E ⊂ V , for all m < m0. The polar set of f (V ), f (V )◦ , is a neighborhood in F ′

cp . By the Cauchy
inequalities for entire functions, we have for all y′ ∈ f (V )◦ ,

q
(

f ′(y′)) =
∞∑

m=0

∥∥Pm
(

y′ ◦ f
)
(0)

∥∥
K+am B E

=
∞∑

m=0

1

2m

∥∥Pm
(

y′ ◦ f
)
(0)

∥∥
2K+2am B E

=
∑

m<m

1

2m

∥∥Pm
(

y′ ◦ f
)
(0)

∥∥
2K+2am B E

+
∑ 1

2m

∥∥Pm
(

y′ ◦ f
)
(0)

∥∥
2K+2am B E
0 m�m0
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�
∑

m<m0

1

(2c)m

∥∥Pm
(

y′ ◦ f
)
(0)

∥∥
c(2K+2am B E )

+
∑

m�m0

1

2m

∥∥Pm
(

y′ ◦ f
)
(0)

∥∥
2K+2am B E

�
∑

m<m0

1

(2c)m

∥∥y′ ◦ f
∥∥

c(2K+2am B E )
+

∑
m�m0

1

2m

∥∥y′ ◦ f
∥∥

2K+2am B E

�
∑

m<m0

1

(2c)m

∥∥y′ ◦ f
∥∥

V +
∑

m�m0

1

2m

∥∥y′ ◦ f
∥∥

V

�
∑

m<m0

1

(2c)m
+

∑
m�m0

1

2m
< ∞.

Then f ′ ∈ L(F ′
cp; (H(E), τω)). Again, we use the continuity of the identity map ι : F ′

c → F ′
cp now, [5, Theorem 4.1] implies

the result.
To prove that (b) holds, take T ∈ L(F ′

cp; (H(E), τω)) which, in particular, is an operator in L(F ′
c; (H(E), τω)). By

[5, Theorem 4.1], T = f ′ for some f ∈ H K (E; F ). By virtue of Proposition 4.1, it is enough to show that (Pm f (x))′ : F ′
cp →

(P (m E),‖.‖) is continuous, for each m ∈ N. Consider Dm
x : (H(E), τω) → (P (m E),‖.‖) the continuous projection given by

Dm
x (g) = Pm g(x), for all g ∈ H(E). Note that (Pm f (x))′ and Dm

x ◦ f ′ coincide as linear operators. Hence, the result fol-
lows. �

Example 3.7 shows that there exists an entire function f : �1 → �p , so that every homogeneous polynomial in its Taylor
series expansion at y is q-compact, for any y ∈ �1, for all 1 � q < ∞, but f fails to be q-compact at y, for every y and
every q � p. However, we have the following result.

Lemma 4.6. Let E and F be Banach spaces. Then,

H K p (E; F ) is τω-dense in
{

f ∈ H(E; F ): Pm f (x) ∈ P K p

(m E; F
)
, ∀x ∈ E, ∀m ∈ N

}
.

Proof. Fix f ∈ H(E; F ) so that Pm f (x) ∈ P K p (
m E; F ) for all x ∈ E and for all m. Let ε > 0 and let q be any τω-continuous

seminorm on H(E; F ) of the form

q(g) =
∞∑

m=0

∥∥Pm g(0)
∥∥

K+am B E
,

with K ⊂ E absolutely convex and compact and (am)m ∈ c+
0 . Consider m0 ∈ N such that

∑
m�m0

‖Pm f (0)‖K+am B E < ε. Now,
let f0 = ∑

m<m0
Pm f (0), which is p-compact. Note that q( f − f0) � ε and the lemma follows. �

Proposition 4.7. Let E be a Banach space. Then, the following statements are equivalent.

(i) E has the p-approximation property.
(ii) H(F ) ⊗ E is τω-dense in H K p (F ; E) for all Banach spaces F .

Proof. If E has the p-approximation property, E ⊗ G is dense in Lε(E ′
cp

; G) for all locally convex space G [22], in particular
if we consider G = (H(F ), τω). Applying Proposition 4.5(a), we have the first assertion.

For the converse, put H0 = { f ∈ H(F ; E): Pm f (x) ∈ P K p (
m F ; E), ∀x ∈ E, ∀m ∈ N}. By Lemma 4.6, H(F ) ⊗ E is τω-dense

in H0. Now, take T ∈ K p(F ; E) and ε > 0. Since T ∈ H0 and q( f ) = ‖P1 f (0)‖ is a τω-continuous seminorm, there exists
g ∈ H(F ) ⊗ E such that q(T − g) � ε. But q(T − g) = ‖T − P1 g(0)‖ and since P1 g(0) ∈ F ′ ⊗ E , we have shown that F ′ ⊗ E
is ‖.‖-dense in K p(F ; E). By [12, Theorem 2.1], E has the p-approximation property. �
5. Holomorphy types and topologies

In this section we show that p-compact holomorphic functions fit into the framework of holomorphy types. Our notation
and terminology follow that given in [15]. Since, P K p (

m E; F ) is a subspace of P (m E; F ) and P K p (
0 E; F ) = F , the first two

conditions in the definition of a holomorphy type are fulfilled. Therefore, we only need to corroborate that the sequence
(P K p (

m E; F ), κp)m satisfies the third condition. Indeed, this last condition is also fulfilled if we show

κp
(

P j(P )(a)
)
� (2e)mκp(P )‖a‖m− j, (4)

for every P ∈ P K p (
m E; F ), for all j = 1, . . . ,m and for all m, where P j(P )(a) denotes the j-component in the expansion of P

at a.
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To give a simple proof of the fact that the sequence (P K p (
m E; F ), κp)m satisfies the inequalities given in (4) we use the

following notation. Let P ∈ P (m E; F ) and fix a ∈ E , we denote by Pa j the (m − j)-homogeneous polynomial defined as

Pa j (x) :=∨
P

(
a j, xm− j),

for all x ∈ E and j < m. Note that, for any l < j < m, we have that Pa j = (Pa j−l )al and that P j(P )(a) = ( m
m− j

)
Pam− j . We

appeal to the description of Pa given in [8, Corollary 1.8, b)]:

Pa(x) =∨
P

(
a, xm−1) = 1

m2

1

(m − 1)m−1

m−1∑
j=1

P
(
(m − 1)r jx + a

)
, (5)

where r ∈ C is such that rm = 1 and r j 
= 1 for j < m.

Theorem 5.1. For any Banach spaces E and F , the sequence (P K p (
m E; F ), κp)m is a holomorphy type from E to F .

Proof. If P ∈ P K p (
m E; F ) by [2, Proposition 3.5] or Proposition 3.4 we have that P j(P )(a) ∈ P K p (

j E; F ) for all a ∈ E , for all
j � m. To prove the holomorphy type structure, we show that κp(P j(P )(a)) � 2mem‖a‖m− jκp(P ), for all j � m.

Fix a ∈ E . If we show that κp(Pa) � e‖a‖κp(P ) then the proof is complete using a generalized inductive reasoning. Indeed,
suppose that for any p-compact homogeneous polynomial Q , of degree less than m, the inequality κp(Q a) � e‖a‖κp(Q )

holds. Then, since Pal = (Pal−1 )a and P j(P )(a) = ( m
m− j

)
Pam− j , we obtain

κp
(

P j(P )(a)
) =

(
m

m − j

)
κp(Pam− j ) =

(
m

m − j

)
κp

(
(Pam− j−1)a

)
�

(
m

m − j

)
e‖a‖κp

(
(Pam− j−1)

)
�

(
m

m − j

)
em− j‖a‖m− jκp(P )

� 2mem‖a‖m− jκp(P ).

Now, take P ∈ P K p (
m E; F ). Then

κp(Pa) = mp
(∨

P
(
a, Bm−1

E

)) = ‖a‖mp

(∨
P

(
a

‖a‖ , Bm−1
E

))
. (6)

Using (5) and Lemma 3.1 we have

‖a‖mp

(∨
P

(
a

‖a‖ , Bm−1
E

))
� ‖a‖

m2(m − 1)m−1

m−1∑
j=1

mp

(
P

(
(m − 1)r j B E + a

‖a‖
))

.

Since sup{‖x‖: x ∈ (m − 1)r j B E + a
‖a‖ } = m,

‖a‖mp

(∨
P

(
a

‖a‖ , Bm−1
E

))
� ‖a‖

m2(m − 1)m−1

m−1∑
j=1

mmmp

(
P

(
1

m

(
(m − 1)r j B E + a

‖a‖
)))

� ‖a‖
(

m

m − 1

)m−1

κp(P ) � e‖a‖κp(P ). (7)

Combining (6) and (7) we get that κp(Pa) � e‖a‖κp(P ), as desired. �
A function f ∈ H(E; F ) is said to be of holomorphic type κp at a, if there exist c1, c2 > 0 such that each component

of the Taylor series expansion of f at a is a p-compact polynomial satisfying that κp(Pm f (a)) � c1cm
2 . Now, we have the

following result.

Corollary 5.2. Let f be a function in H(E; F ), then f ∈ H K p (E; F ) if and only if f is of κp-holomorphy type.

Proof. It follows from Theorem 5.1 and [2, Proposition 3.5] or Proposition 3.4. �
Remark 5.3. Theorem 5.1 can be improved. Indeed, the same proof of Theorem 5.1 shows that the sequence (P K p (

m E; F ))m
is a coherent sequence associated to the operator ideal K p(E; F ) (see [8] for definitions).
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Since H K p (E, F ) is a holomorphy type, following [27] we have a natural topology defined on H K p (E, F ) denoted by τω,mp .
This topology may be generated by different families of continuous seminorms. The original set of seminorms used to
define τω,mp corresponds to the family of seminorms given below in Theorem 5.5, item (c). Our aim is to characterize the
κp-approximation property of a Banach space E in an analogous way to [5, Theorem 4.1]. In order to do so, we give different
descriptions of τω,mp . First, we need the following result.

Proposition 5.4. Let E and F be Banach spaces. Then, f ∈ H K p (E; F ) if and only if, for all m, Pm f (0) ∈ P K p (
m E; F ) and for any

absolutely convex compact set K , there exists ε > 0 such that
∑∞

m=0 mp(Pm f (0)(K + εB E )) < ∞.

Proof. Take f ∈ H K p (E; F ) and K an absolutely convex compact set. Then, 2K is also absolutely convex and compact. For
each x ∈ 2K , there exists εx > 0 such that f (x + εx B E) is p-compact. Now, we choose x1, . . . , xn ∈ 2K such that 2K ⊂⋃n

j=1(x j + εx j B E) and with V = ⋃n
j=1(x j + εx j B E ) we have that f (V ) is p-compact. Let d = dist(2K , C V ) > 0, where C V

denotes the complement of V . Let us consider W = 2K + dB E , then W is an absolutely convex open set and 2K ⊂ W ⊂ V .
Then, applying Proposition 3.3 we have

∞∑
n=0

mp

(
Pm f (0)

(
K + d

2
B E

))
=

∞∑
n=0

(
1

2

)m

mp
(

Pm f (0)(W )
)
� 2mp

(
f (W )

)
< ∞,

which proves the first claim.
Conversely, let f ∈ H(E; F ) satisfy the conditions in the proposition. We have to show that f is p-compact at x for

any fixed x ∈ E . Consider the absolutely convex compact set K , given by K = {λx: |λ| � 1}. Then, there exists ε1 > 0
such that

∑∞
n=0 mp(Pm f (0)(K + ε1 B E)) < ∞. Since f is entire, by [26, Proposition 1, p. 26], there exists ε2 > 0 such that

f (y) = ∑∞
m=1 Pm f (0)(y) uniformly for y ∈ Bε2 (x). Let ε = min{ε1;ε2}, then f (Bε(x)) ⊂ {∑∞

m=0 xm: xm ∈ Pm f (0)(Bε(x))}.
Also

∞∑
m=0

mp
(

Pm f (0)
(

Bε(x)
))

�
∞∑

m=0

mp
(

Pm f (0)(K + ε1 B E)
)
< ∞.

Now, by Lemma 3.1, f is p-compact at x, and the proof is complete. �
The next characterization of the topology τω,mp associated to the holomorphy type H K p (E; F ) follows that of [15]

and [26].

Theorem 5.5. Any of the following families of seminorms generate the topology τω,mp on H K p (E; F ).

(a) The seminorms q satisfying that there exists a compact set K such that for every open set V ⊃ K there exists C V > 0 so that

q( f ) � C V mp
(

f (V )
) ∀ f ∈ H K p (E; F ).

In this case, we say that q is mp-ported by compact sets.
(b) The seminorms q satisfying that there exists an absolutely convex compact set K such that for every absolutely convex open set

V ⊃ K there exists CV > 0 so that

q( f ) � C V mp
(

f (V )
) ∀ f ∈ H K p (E; F ).

In this case, we say that q is AC-mp-ported by absolutely convex compact sets.
(c) The seminorms q satisfying that there exists an absolutely convex compact set K such that, for all ε > 0 there exists C(ε) > 0 so

that

q( f ) � C(ε)

∞∑
m=0

εm sup
x∈K

κp
(

Pm f (x)
) ∀ f ∈ H K p (E; F ).

(d) The seminorms q satisfying that there exists an absolutely convex compact set K such that, for all ε > 0 there exists C(ε) > 0 so
that

q( f ) � C(ε)

∞∑
m=0

mp
(

Pm f (0)(K + εB E)
) ∀ f ∈ H K p (E; F ).

(e) The seminorms of the form

q( f ) =
∞∑

m=0

mp
(

Pm f (0)(K + am B E)
)
,

where K ranges over all the absolutely convex compact sets and (am)m ∈ c+ .
0
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Proof. First note that if f is p-compact and K is a compact set, there exists an open set V ⊃ K such that f (V ) is p-compact.
Then, seminorms in (a) and (b) are well defined on H K p (E; F ). Also, in virtue of Proposition 5.4, seminorms in (d) and (e)
are well defined. Standard arguments show that seminorms in (a) and (b) define the same topology.

Now we show that seminorms in (b) and (c) coincide. Let q be a seminorm and let K be an absolutely convex com-
pact set satisfying the conditions in (c). Let V ⊃ K be any absolutely convex open set and take d = dist(K , C V ) > 0. By
Proposition 3.3, since K + dB E ⊂ V , we get

mp
(

Pm f (x)(dB E)
)
� mp

(
f (x + dB E)

)
� mp

(
f (V )

)
,

for all x ∈ K and f ∈ H K p (E; F ). Thus,

dm sup
x∈K

κp
(

Pm f (x)
)
� mp

(
f (V )

)
,

for each m. Hence

q( f ) � C

(
d

2

) ∞∑
m=0

(
d

2

)m

sup
x∈K

κp
(

Pm f (x)
)
� 2C

(
d

2

)
mp

(
f (V )

)
,

which shows that q is AC-mp-ported by K .
Conversely, let q be a seminorm, let K be an absolutely convex compact set satisfying the conditions in (b). Fix ε > 0

and take x1, . . . , xn in K such that K ⊂ V with V = ⋃n
j=1 Bε(x j). As we did before, we may find an absolutely convex open

set W so that K ⊂ W ⊂ V . Let f ∈ H K p (E; F ), without loss of generality we may assume that ε < rp( f , x) for all x ∈ K . By
Remark 3.5, we obtain

mp
(

f
(

Bε(x j)
))

�
∞∑

m=0

εmκp
(

Pm f (x j)
)
�

∞∑
m=0

εm sup
x∈K

κp
(

Pm f (x)
)
.

As q is AC-mp-ported by K , q( f ) � CW mp( f (W )) � CW mp( f (V )) and therefore

q( f ) � CW

n∑
j=1

mp
(

f
(

Bε(x j)
))

� CW

n∑
j=1

∞∑
m=0

εm sup
x∈K

κp
(

Pm f (x)
)

= nCW

∞∑
m=0

εm sup
x∈K

κp
(

Pm f (x)
)
.

Thus q belongs to the family in (c). If ε � rp( f , x), then
∑

m�0 εm supx∈K κp(Pm f (x)) = ∞ and the inequality follows.
By the proof of [15, Proposition 4], we have that seminorms in (d) and (e) generate the same topology. Finally, we show

that seminorms in (d) and (b) are equivalent. The proof of Proposition 5.4 shows that seminorms in (d) are AC-mp-ported
by absolutely convex compact sets.

To conclude the proof, consider a seminorm q and an absolutely convex compact set K satisfying conditions in (b). We
borrow some ideas of [16, Chapter 3]. For each m, let Wm be the absolutely convex open set defined by Wm = K + ( 1

2 )m B E .
Since q is AC-mp-ported by K , for each m ∈ N, there exists a constant Cm = CWm such that q( f ) � Cmmp( f (Wm)), every
p-compact function f .

For m = 1, there exists n1 ∈ N, such that for all n > n1, C1/n
1 < 2. Take V 1 = 2W1. Now, if n > n1 and Q ∈ P K p (

n E; F ),

q(Q ) � C1mp
(

Q (W1)
) = mp

(
Q

(
C1/n

1 W1
))

� mp
(

Q (V 1)
)
.

For m = 2, there exists n2 > n1 such that C1/n
2 � 2, for all n > n2. Now, take V 2 = 2W2 and, as before, we have for any

Q ∈ P K p (
n E; F ), with n > n2,

q(Q ) � C2mp
(

Q (W2)
) = mp

(
Q

(
C1/n

2 W2
))

� mp
(

Q (V 2)
)
.

Repeating this procedure we obtain a sequence of absolutely convex open sets V j satisfying

q( f ) �
∑
m�0

q
(

Pm f (0)
) =

∑
m<n1

q
(

Pm f (0)
) +

∑
j�1

∑
n j�m<n j+1

q
(

Pm f (0)
)

� C V 1

∑
m<n1

mp
(

Pm f (0)(V 1)
) +

∑
j�1

∑
n j�m<n j+1

mp
(

Pm f (0)(V j)
)

� C

( ∑
m<n1

mp
(

Pm f (0)(V 1)
) +

∑
j�1

∑
n �m<n

mp
(

Pm f (0)(V j)
))
j j+1
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where C = min{1, CV 1 } and the result follows since V j = 2K + ( 1
2 ) j−1 B E and the seminorm q is bounded above by a

seminorm of the family of the form (e). Now, the proof is complete. �
We finish this section by inspecting the κp-approximation property introduced in [13]. We show that p-compact

homogeneous polynomials from F to E can be κp-approximated by polynomials in P (m F ) ⊗ E whenever E has the
κp-approximation property. We then obtain a similar result for p-compact holomorphic functions. What follows keeps
the spirit of [5, Theorem 4.1]. Recall that a Banach space E has the κp-approximation property if for every Banach space F ,
F ′ ⊗ E is κp-dense in K p(F ; E).

Theorem 5.6. Let E be a Banach space. The following statements are equivalent.

(i) E has the κp-approximation property.
(ii) For all m ∈ N, P (m F ) ⊗ E is κp-dense in P K p (

m F ; E), for every Banach space F .
(iii) H(F ) ⊗ E is τω,mp -dense in H K p (F ; E) for all Banach spaces F .

Proof. First, suppose that E has the κp-approximation property and fix m ∈ N. Then, (
⊗m

πs
F )′ ⊗ E is κp-dense in

K p(
⊗m

πs
F ; E) which coincides with (P K p (

m F ; E), κp), by Lemma 2.1. Thus, (ii) is satisfied.
Now, assume (ii) holds. Take f ∈ H K p (F , E), ε > 0. By Theorem 5.5, we may consider a τω,mp -continuous seminorm

of the form q( f ) = ∑∞
m=0 mp(Pm f (0)(K + am B F )), where K ⊂ F is an absolutely convex compact set and (am)m ∈ c+

0 . Let
m0 ∈ N be such that

∑
m>m0

mp(Pm f (0)(K + am B F )) � ε
2 and let C > 0 be such that 1

C (K + am B F ) ⊂ B F , for all m � m0.
Given δ > 0, to be chosen later, by hypothesis, we may find Q m ∈ P (m F )⊗ E such that κp(Pm f (0)− Q m) � δ, for all m � m0.
Define g = ∑m0

m=0 Q m , which belongs to H(F ) ⊗ E , then

q( f − g) =
m0∑

m=0

mp
((

Pm f (0) − Q m
)
(K + am B F )

) +
∑

m>m0

mp
(

Pm f (0)(K + am B F )
)

�
m0∑

m=0

Cmκp
((

Pm f (0) − Q m
)) + ε

2
.

Thus, q( f − g) < ε for a suitable choice of δ, which proves (iii).
Finally, suppose we have (iii). Take T ∈ K p(F ; E), ε > 0 and the seminorm on H K p (F ; E) defined by q( f ) =

κp(P1 f (0)). Since q is τω,mp -continuous, by assumption, there exist f1, . . . , fn ∈ H(F ) and x1, . . . , xn ∈ E , such that
q(T − ∑n

j=1 f j ⊗ x j) < ε. In other words, κp(T − ∑n
j=1 P1 f j(0) ⊗ x j) < ε which proves that F ′ ⊗ E is κp-dense in K p(F , E).

Whence, the proof is complete. �
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