
J. Math. Anal. Appl. 389 (2012) 792–811
Contents lists available at SciVerse ScienceDirect

Journal of Mathematical Analysis and
Applications

www.elsevier.com/locate/jmaa

On algebras of holomorphic functions of a given type ✩

Santiago Muro a,b,∗
a Departamento de Matemática – Pab I, Facultad de Cs. Exactas y Naturales, Universidad de Buenos Aires, (1428) Buenos Aires, Argentina
b CONICET, Argentina

a r t i c l e i n f o a b s t r a c t

Article history:
Received 5 October 2011
Available online 13 December 2011
Submitted by Richard M. Aron

Keywords:
Holomorphy types
Polynomial ideals
Fréchet algebras
Riemann domains

We show that several spaces of holomorphic functions on a Riemann domain over a
Banach space, including the nuclear and Hilbert–Schmidt bounded type, are locally m-
convex Fréchet algebras. We prove that the spectrum of these algebras has a natural
analytic structure, which we use to characterize the envelope of holomorphy. We also show
a Cartan–Thullen type theorem.

© 2011 Elsevier Inc. All rights reserved.

0. Introduction

Holomorphy types were defined by Nachbin [45] in order to include in a single theory the most commonly used spaces
of holomorphic functions on infinite dimensional spaces, like the current, nuclear, compact or Hilbert–Schmidt type. Since
Pietsch’ definition of ideals of multilinear forms [47], the theory of holomorphy types began to interact with the concept of
normed ideal of homogeneous polynomials (see for example [34,8,7,12]). We follow this approach in this article incorporat-
ing them to the definition of holomorphy type.

A holomorphy type A at a Banach space E is a sequence {An(E)} of normed spaces of n-homogeneous polynomials with
the property that if a polynomial is in A, then all its differentials also belong to A and such that their norms have con-
trolled growth. In [32], Harris deduced a tight bound for the usual norm of the differentials of a homogeneous polynomial.
Noticeably, we are able to show that every known (to us) example of holomorphy type satisfies the same bound (see the
examples of the first section).

A holomorphic function on an open set U of E is of type A if it has positive A-radius of convergence at each point of U
[45,23,1]. Similarly, entire functions of bounded A-type are defined as functions that have infinite A-radius of convergence
at zero [28,11,6], and it is immediate to generalize this definition to holomorphic functions of bounded A-type on a ball.
We propose a definition of holomorphic function of bounded A-type on a general open set U of E and on a Riemann
domain spread over E , and study some properties of the space HbA(U ) of this class of functions. When A is the sequence
of all continuous homogeneous polynomials (i.e. for the current holomorphy type) we recover Hb(U ), the space of bounded
type holomorphic functions on U . The space Hb(U ) is a Fréchet algebra with the topology of uniform convergence on
U -bounded sets. On the other hand, the spaces of nuclear [23] (see also [25, Exercise 2.63]) and Hilbert–Schmidt [46,35]
polynomials were proved to be algebras, and thus the corresponding spaces of entire functions of bounded type are also
algebras. A more general approach was followed in [11,13], where multiplicative sequences of normed ideals of polynomials
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were studied. A sequence A of normed ideals of polynomials is multiplicative if a bound for the norm of the product of two
homogeneous polynomials in A can be obtained in terms of the product of the norms of these polynomials. It was shown
there that several spaces of entire functions of bounded type are algebras (with continuous multiplication). In Section 3,
we prove that for every previously mentioned example of holomorphy type the corresponding space HbA(U ), is actually a
locally m-convex Fréchet algebra with its natural topology. We also show that algebras HbA(E) are test algebras for Michael’s
problem on the continuity of characters.

We study the spectrum of the algebra HbA(U ) and show in Theorem 4.3 that, under fairly general conditions on A,
it may be endowed with a structure of Riemann domain over the bidual of E , generalizing some of the results in [4,13].
We show in Section 5 that the Gelfand extensions to the spectrum are holomorphic and that the spectrum is a domain
of holomorphy with respect to the set of all holomorphic functions, as it was proved in [26] for the current holomorphy
type. We also characterize the HbA-envelope of holomorphy of an open set U as a part of the spectrum of HbA(U ). The
envelope of holomorphy for the space of holomorphic functions of a given type was constructed by Hirschowitz in [33]. He
also raised the question whether the holomorphic extensions to the envelope of holomorphy are of the same type, see [33,
pp. 289–290]. We investigate this question for the case of holomorphic functions of bounded A-type in the last section of
the article. We need to deal there with weakly differentiable sequences. The concept of weak differentiability was defined in
[13] and it was proved there that it is, in some sense, dual to multiplicativity (see also Remark 6.4). The importance of this
duality can be seen, for instance, in Examples 3.12 and 6.5, where we prove that the Hilbert–Schmidt norm of the product
of two homogeneous polynomials is bounded by the product of their Hilbert–Schmidt norms. When the sequence A is
weakly differentiable we succeed to show that the extension of a function in HbA(U ) to the HbA-envelope of holomorphy
of U is of type A, thus answering in this case the question of Hirschowitz positively. On the other hand, it is known (see
[16, Example 2.8]) that the extension of a bounded type holomorphic function to the Hb-envelope of holomorphy may fail
to be of bounded type, thus, we cannot expect the extension of every function in HbA(U ) to be of bounded A-type on the
HbA-envelope. We end the article with a version of the Cartan–Thullen theorem for HbA(U ).

We refer to [25,42] for notation and results regarding polynomials and holomorphic functions in general and to [21,
29–31] for polynomial ideals and symmetric tensor products of Banach spaces.

1. Preliminaries

Throughout this article E is a complex Banach space and B E (x, r) denotes the open ball of radius r and center x in E .
We denote by P k(E) the Banach space of all continuous k-homogeneous polynomials from E to C.

We define, for each P ∈ P k(E), a ∈ E and j � k the polynomial Pa j ∈ P k− j(E) by

Pa j (x) = ∨
P

(
a j, xk− j) = ∨

P (a, . . . ,a︸ ︷︷ ︸
j

, x, . . . , x︸ ︷︷ ︸
k− j

),

where
∨
P is the symmetric k-linear form associated to P . For j = 1, we write Pa instead of Pa1 .

A Riemann domain spread over E is a pair (X,q), where X is a Hausdorff topological space and q : X → E is a local
homeomorphism. For x ∈ X , a ball of radius r > 0 centered at x is a neighborhood of x that is homeomorphic to B E(q(x), r)
through q. It will be denoted by B X (x, r). When there is no place for confusion we denote the ball of center x and radius r
by Br(x) (where x can be in E or in X ). We also define the distance to the border of X , which is a function dX : X → R>0
defined by dX (x) = sup{r > 0: Br(x) exists}. For a subset A of X , dX (A) is defined as the infimum of dX (x) with x in A. A
subset A of X is called an X-bounded subset if dX (A) > 0 and q(A) is a bounded set in E .

Let us recall the definition of polynomial ideal [29,30].

Definition 1.1. A Banach ideal of (scalar-valued) continuous k-homogeneous polynomials is a pair (Ak,‖ · ‖Ak ) such that:

(i) For every Banach space E , Ak(E) = Ak ∩ P k(E) is a linear subspace of P k(E) and ‖ · ‖Ak(E) is a norm on it. Moreover,
(Ak(E),‖ · ‖Ak(E)) is a Banach space.

(ii) If T ∈ L(E1, E) and P ∈ Ak(E), then P ◦ T ∈ Ak(E1) with

‖P ◦ T ‖Ak(E1) � ‖P‖Ak(E)‖T ‖k.

(iii) z 	→ zk belongs to Ak(C) and has norm 1.

We use the following version of the concept of holomorphy type.

Definition 1.2. Consider the sequence A = {Ak}∞k=1, where for each k, Ak is a Banach ideal of k-homogeneous polynomials.
We say that {Ak}k is a holomorphy type if for each l < k there exists a positive constant ck,l such that for every Banach
space E , the following hold:

if P ∈ Ak(E), a ∈ E then Pal belongs to Ak−l(E) and ‖Pal ‖Ak−l(E) � ck,l‖P‖Ak(E)‖a‖l. (1)
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Remark 1.3. (a) The difference between the above definition and the original Nachbin’s definition of holomorphy type [45]
is twofold. First, Nachbin did not work with polynomial ideals, a concept that was not defined until mid 80’s after the work
of Pietsch [47]. We think however that polynomial ideals are in the spirit of the concept of holomorphy type. Holomorphy
types defined as above are global holomorphy types in the sense of [7]. Second, the constants considered by Nachbin were
of the form ck,l = (k

l

)
Ck for some fixed constant C . In most of the results we require that the constants satisfy, for every k, l,

ck,l � (k + l)k+l

(k + l)!
k!
kk

l!
ll
. (2)

These constants are more restrictive than Nachbin’s constants, but, as we will see below, the constants ck,l of every usual
example of holomorphy type satisfy (2).

Remark 1.4. In [12] we defined and studied coherent sequences of polynomial ideals. Any coherent sequence is a holomor-
phy type. In fact, a coherent sequence is a holomorphy type which satisfies the following extra condition: for each l,k ∈ N

there exists a positive constant dk,l such that for every Banach space E ,

if P ∈ Ak(E), γ ∈ E ′ then γ l P belongs to Ak+l(E) and ‖γ l P‖Ak+l(E) � dk,l‖P‖Ak(E)‖γ ‖l. (3)

The constants appearing in [12] were of the form ck,l = Cl and dk,l = Dl . The extra condition asked for the coherence is very
natural since conditions (1) and (3) are dual to each other in the following sense: if {Ak}∞k=1 is a sequence of polynomial
ideals which satisfies (1) (respectively (3)) then the sequence of adjoint ideals {A∗

k }∞k=1 satisfies (3) (respectively (1)) with
the same constants (see [12, Proposition 5.1]). Thus we may think a coherent sequence as a sequence of polynomial ideals
which form a holomorphy type and whose adjoint ideals are also a holomorphy type.

We present now some examples of holomorphy types with constants as in (2).

Example 1.5. The sequence P of ideals of continuous polynomials is, by [32, Corollary 4], a holomorphy type with constants
as in (2). The same holds for other sequences of closed ideals as the sequence P w of weakly continuous on bounded sets
polynomials, and the sequence P A of approximable polynomials.

Slight modifications on the results of [12, Corollaries 5.2 and 5.6] (see also [44, Section 3.1.4]) show that if a sequence
{Ak}∞k=1 of ideals form a holomorphy type with constants ck,l the sequence of maximal ideals {Amax

k }∞k=1 and the sequence of
minimal ideals {Amin

k }∞k=1 are also holomorphy types with the same constants ck,l . Also, as already mentioned in Remark 1.4,
if the sequence {Ak}∞k=1 satisfies the condition of coherence (3) with constants dk,l then the sequence of adjoint ideals
{A∗

k }∞k=1 is a holomorphy type with constants dk,l . As a consequence we have the following.

Example 1.6. The sequence P I of ideals of integral polynomials is a holomorphy type with constants ck,l = 1. Indeed, since
condition (3) is trivially satisfied by the sequence P with constants dk,l = 1 and since (P k)∗ = P k

I , the result follows from
the above comments.

Example 1.7. The sequence PN of ideals of nuclear polynomials is a holomorphy type with constants ck,l = 1 because
P k

N = (P k
I )

min.

Example 1.8. Sequences of polynomial ideals associated to a sequence of natural symmetric tensor norms. For a symmetric tensor
norm βk (of order k), the projective and injective hulls of βk (denoted as \βk/ and /βk\ respectively) are defined as the
tensor norms induced by the following mappings (see [15]):(⊗k,s

�1(B E),βk

) 1
�

(⊗k,s
E,\βk/

)
,(⊗k,s

E, /βk\
) 1

↪→
(⊗k,s

�∞(B E ′),βk

)
.

In [15], natural tensor norms for arbitrary order are introduced and studied, in the spirit of the natural tensor norms of
Grothendieck. A finitely generated symmetric tensor norm of order k, βk is natural if βk is obtained from εk (the injective
symmetric tensor norm) and πk (the projective symmetric tensor norms) taking a finite number of projective and injective
hulls (see [15] for details). For k � 3, it is shown in [15] that there are exactly six non-equivalent natural tensor norms and
for k = 2 there are only four.

Let Ak be an ideal of k-homogeneous polynomials associated to a finitely generated symmetric tensor norm αk . Small
variations in Lemma 3.1.34 of [44] show that if {Ak} is a holomorphy type with constants ck,l then so are the sequences
of maximal (or minimal) ideals associated to the projective and injective hulls of αk . In particular, any of the sequences of
maximal (or minimal) ideals associated to any of the sequences of natural norms is a holomorphy type with constants as
in (2).
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Example 1.9. The sequence Pe of ideals of extendible polynomials. Since the ideal of extendible polynomials P k
e is the maximal

ideal associated to the tensor norm \εk/, we have by the previous example that the sequence Pe is a holomorphy type with
constants as in (2).

Example 1.10. The sequence Mr of ideals of multiple r-summing polynomials. It was shown in [12, Example 1.13] that it is a
coherent sequence with constants equal to 1 thus, in particular, it is a holomorphy type with constants ck,l = 1.

Example 1.11. The sequence S2 of ideals of Hilbert–Schmidt polynomials. It was shown in [27, Proposition 3] that it is a holo-
morphy type with constants ck,l = 1.

Example 1.12. The sequence S p of p-Schatten–von Neumann polynomials. Let H be a Hilbert space. Recall that for 1 < p < ∞,
the p-Schatten–von Neumann k-homogeneous polynomials on H may be defined, using the complex interpolation method,
interpolating nuclear and approximable polynomials on H [18,11] as follows:

S k
p(H) := [

P k
N(H), P k

A(H)
]
θ
,

where p(1 − θ) = 1. The space of Hilbert–Schmidt polynomials coincide (isometrically) with the space of 2-Schatten–von
Neumann polynomials. Since interpolation of holomorphy types is a holomorphy type (see [13, Proposition 1.2]), we can
conclude that {S k

p} is a holomorphy type with constants

ck,l �
(

(k + l)k+l

(k + l)!
k!
kk

l!
ll

)1− 1
p

.

Moreover, using the Reiteration theorem [5, 4.6.1], we have that, for 1 < p < 2, S k
p(H) := [P k

N(H), S k
2(H)]2θ , with

p(1 − θ) = 1. Thus, for 1 < p < 2, we can obtain ck,l = 1. Similarly, for 2 < p < ∞ we have

ck,l �
(

(k + l)k+l

(k + l)!
k!
kk

l!
ll

)1− 2
p

.

2. Holomorphic functions of A-bounded type

There is a natural way to associate to a holomorphy type A a class of holomorphic functions on a Riemann domain (X,q)

spread over a Banach space E . This space, denoted by HA(X), consists on all holomorphic functions that have positive A-
radius of convergence at each point of X , see for example [23, Definition 2]. To give the precise definition, let us recall that
if f is a holomorphic function on X , then its k-th differential is defined by

dk f (x)

k! := dk[ f ◦ (q|Bs(x))
−1]

k!
(
q(x)

)
.

Definition 2.1. Let A = {Ak}k be a holomorphy type; E a Banach space, and (X,q) a Riemann domain spread over a Banach
space E . A holomorphic function f is of type A on X if for each x ∈ X , dk f (x) belongs to Ak(E) and

lim
k→∞

∥∥∥∥dk f (x)

k!
∥∥∥∥1/k

Ak(E)

< ∞.

We denote by HA(X) the space of type A functions on X .

We may also define a space of entire functions of bounded A-type [11,28,6] as the set of entire functions with infinite A-
radius of convergence at zero (and hence at every point). Similarly we can define the holomorphic functions of A-bounded
type on a ball of radius r as the holomorphic functions which have A-radius of convergence equal r.

Definition 2.2. Let A = {Ak}k be a holomorphy type; E a Banach space, x ∈ E , and r > 0. We define the space of holomorphic
functions of A-bounded type on Br(x) by

HbA

(
Br(x)

) =
{

f ∈ H
(

Br(x)
)
:

dk f (x)

k! ∈ Ak(E) and lim sup
k→∞

∥∥∥∥dk f (x)

k!
∥∥∥∥1/k

Ak

� 1

r

}
.

We consider in HbA(Br(x)) the seminorms ps , for 0 < s < r, given by

ps( f ) =
∞∑

k=0

∥∥∥∥dk f (x)

k!
∥∥∥∥

Ak

sk,

for all f ∈ HbA(Br(x)). Then it easy to show that (HbA(Br(x), F ), {ps}0<s<r) is a Fréchet space.
The following examples of spaces of holomorphic functions of bounded type on the unit ball B E were already defined in

the literature and can be seen as particular cases of the above definition.
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Example 2.3.

(a) If A is the sequence of ideals of continuous homogeneous polynomials, then HbA(B E ) = Hb(B E ).
(b) If A is the sequence of ideals of weakly continuous on bounded sets polynomials, then it is not difficult to see that

HbA(B E ) is the space H wu(B E ) of weakly uniformly continuous holomorphic functions on B E -bounded sets.
(c) If A is the sequence of ideals of nuclear polynomials then HbA(B E ) is the space of holomorphic functions of nuclear

bounded type HNb(B E) defined by Gupta and Nachbin (see also [38]).
(d) If A is the sequence of ideals of extendible polynomials, then by [10, Proposition 14], HbA(B E ) is the space of all

f ∈ H(B E ) such that, for any Banach space G ⊃ E , there is an extension f̃ ∈ Hb(BG) of f .
(e) If A is the sequence of ideals of integral polynomials, then HbA(B E ) is the space of integral holomorphic functions of

bounded type HbI (B E ) defined in [22].

Remark 2.4. In general, we have that HbA � HA ∩ Hb . Indeed, Dineen found in [23, Example 9] an entire function of
bounded type on a Hilbert space E , f ∈ Hb(E), such that f is of nuclear type on E , f ∈ H N (E), but f is not an entire

function of nuclear bounded type because limn→∞ ‖ dn f (0)
n! ‖

1
n
N = 1.

We now define holomorphic functions of A-bounded type on a Riemann domain (X,q) spread over a Banach space. If f
is of type A on X , and it has A-radius of convergence greater than s > 0 at x ∈ X , then we define

px
s( f ) =

∞∑
k=0

sk

∥∥∥∥dk f (x)

k!
∥∥∥∥

Ak(E)

.

The holomorphic functions of A-bounded type on X are the holomorphic functions on X which are of the class HbA on
every ball contained in X and, on each open X-bounded set A, the seminorms px

s (with x ∈ A and Bs(x) ⊂ A) are uniformly
bounded.

Definition 2.5. A holomorphic function f is of A-bounded type on (X,q) if:

(i) f ◦ (q|Bs(x))
−1 ∈ HbA(q(Bs(x))) for every s � dX (x).

(ii) For each open X-bounded set A,

p A( f ) := sup
{

px
s( f ): Bs(x) ⊂ A

}
< ∞.

We denote by HbA(X) the space of all holomorphic functions of A-bounded type on (X,q).

When A is the sequence P of ideals of continuous homogeneous polynomials, by the Cauchy inequalities, HbA(X) =
Hb(X). If A is the sequence of ideals of weakly continuous on bounded sets polynomials and U is a balanced open set then
HbA(U ) = H wu(U ) (see, for example [9, Proposition 1.1]).

Remark 2.6. Condition (i) in above definition states that f is a holomorphic function of A-bounded type on each ball con-
tained in X . The space of holomorphic functions on X that satisfy this condition is denoted by HdA(X) in [44, Section 3.2.6].
This resembles much the definition given in [26, Section 3] of the space Hd(X) (indeed HdA(X) = Hd(X) when A = P ). The
seminorms {px

s : 0 < s < dX (x), x ∈ X} define a topology on HdA(X) which is always complete but not necessarily a Fréchet
space topology unless E is separable. In that case we may follow the proof of [26, Proposition 3.2] to show that HdA(X) is
a Fréchet space. Most of the results in this article remain true if we replace HbA by HdA .

Proposition 2.7. The seminorms {p A: A open and X-bounded} define a Fréchet space topology on HbA(X).

Proof. It is clear that the topology may be described with the countable set of seminorms {p Xn }n∈N , where Xn = {x ∈
X: ‖q(x)‖ < n and dX (x) > 1

n }, so we only need to prove completeness. Let ( fk)k be a Cauchy sequence in HbA(X), then it is
a Cauchy sequence in Hb(X), so there exists a function f ∈ Hb(X) which is limit (uniformly in X-bounded sets) of the fk ’s.

Let x ∈ X and r � dX (x). Then ( fk ◦ (q|Br (x))
−1)k is a Cauchy sequence in HbA(Br(q(x))) which converges pointwise to

f ◦ (q|Br (x))
−1. Since HbA(Br(q(x))) is complete we have that f ◦ (q|Br (x))

−1 belongs to HbA(Br(q(x))), and thus f satisfies
(i) of Definition 2.5. Moreover, for each k, px

s( f − fk) � lim sup j px
s( f j − fk) for every s < dX (x). Thus, if A is an X-bounded

set,

p A( f − fk) = sup
Bs(x)⊂A

px
s( f j − fk) � lim sup

j
sup

Bs(x)⊂A
px

s( f j − fk) = lim sup
j

p A( f j − fk),

which goes to 0 as k → ∞. Therefore, f is in HbA(X) and ( fk) converges to f in HbA(X). �
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3. Multiplicative sequences

In this section we show that under a condition on A which is satisfied by most of the commonly used polynomial ideals,
the space HbA(X) is a locally m-convex Fréchet algebra.

Definition 3.1. Let {Ak}k be a sequence of polynomial ideals. We say that {Ak}k is multiplicative at E if there exist constants
ck,l > 0 such that for each P ∈ Ak(E) and Q ∈ Al(E), we have that P Q ∈ Ak+l(E) and

‖P Q ‖Ak+l(E) � ck,l‖P‖Ak(E)‖Q ‖Al(E).

If {Ak} is a multiplicative sequence then the sequence of adjoint ideals {A∗
k } is a holomorphy type with the same

constants, and it is moreover a weakly differentiable sequence (see Remark 6.4).
In [13] we studied multiplicative sequences with constants ck,l � Mk+l for some constant M � 1 and proved that in this

case the space of entire functions of A-bounded type is an algebra. To obtain algebras of holomorphic functions on balls or
on Riemann domains we need to have more restrictive bounds for ck,l . Actually, we impose the constants ck,l to satisfy the
inequality (2) for every k, l ∈ N.

Remark 3.2. Stirling’s Formula states that e−1nn+1/2 � en−1n! � nn+1/2 for every n � 1, so we have that

(k + l)k+l

(k + l)!
k!
kk

l!
ll

� e2
(

kl

k + l

)1/2

. (4)

As a consequence, if A is multiplicative with ck,l as in (2) then, for each ε > 0 there exists a constant cε > 0 such that for
every k, l ∈ N, P ∈ Ak(E) and Q ∈ Al(E), we have,

‖P Q ‖Ak+l(E) � cε(1 + ε)k+l‖P‖Ak(E)‖Q ‖Al(E).

We will show below that every example of holomorphy type mentioned in Section 1 is a multiplicative sequence with
constants that satisfy (2). Let us see before that in this case HbA(X) is a locally m-convex Fréchet algebra, that is, the
topology may be given by a sequence of submultiplicative seminorms. By a theorem by Mitiagin, Rolewicz and Zelazko [40],
it suffices to show that they are (commutative) B0-algebras1 and that functions in H(C) operate on HbA (that is, if g(z) =∑

k ak zk belongs to H(C) and f ∈ HbA , then
∑

k ak f k belongs to HbA). We consider first the case of a ball and the whole
space.

Proposition 3.3. Suppose that A is multiplicative with ck,l as in (2), and E a Banach space. Then,

(i) for each x ∈ E and r > 0, HbA(Br(x)) is a locally m-convex Fréchet algebra.
(ii) HbA(E) is a locally m-convex Fréchet algebra.

Proof. We just prove (i) because (ii) follows similarly. We will show this for r = 1 and x = 0, that is for Br(x) = B E . The
general case follows by translation and dilation. We already know that HbA(B E ) is a Fréchet space. Let us first show that it
is a B0-algebra.

Let f = ∑
k Pk and g = ∑

k Q k be functions in HbA(B E ). We must show that dn f g(0)
n! belongs to An(E) and that ps( f g) =∑∞

n=0 sn‖ dn f g(0)
n! ‖An(E) < ∞ for every s < 1. Since dn f g(0)

n! = ∑n
k=0 Pk Q n−k and A is multiplicative, dn f g(0)

n! belongs to An(E).
On the other hand, by (4),

∞∑
n=0

sn

∥∥∥∥dn f g(0)

n!
∥∥∥∥

An(E)

� e2
∞∑

n=0

sn
n∑

k=0

(
k(n − k)

n

)1/2

‖Pk‖Ak(E)‖Q n−k‖An−k(E)

= e2
∞∑

k=0

√
ksk‖Pk‖Ak(E)

∞∑
n=k

sn−k
(

n − k

n

)1/2

‖Q n−k‖An−k(E)

� e2 ps(g)

∞∑
k=0

√
ksk‖Pk‖Ak(E).

1 Recall that a B0-algebra is a complete metrizable topological algebra such that the topology is given by means of an increasing sequence ‖ ·‖1 � ‖ ·‖2 �
· · · of seminorms satisfying that ‖xy‖ j � Ci‖x‖ j+1‖y‖ j+1 for every x, y in the algebra and every j � 1, where Ci are positive constants. It is possible to
make Ci = 1 for all i [52].
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Therefore, for each ε > 0 there exists a constant c = c(ε, s) > 1 such that

ps( f g) =
∑

sn

∥∥∥∥dn f g(0)

n!
∥∥∥∥

An(E)

� cps(g)ps+ε( f ). (5)

Define, for each n � 1, sn = 1 − 1
2n and cn = c( 1

2n+1 ,1 − 1
2n ). Then, for every f , g ∈ HbA(B E ), we have

psn ( f g) � cn psn (g)psn+1( f ) � cn psn+1( f )psn+1(g). (6)

Since the seminorms psn determine the topology of HbA(B E ), we conclude that HbA(B E ) is a B0-algebra. Note also that (6)
implies that psn ( f k) � ck−1

n psn+1 ( f )k−1 psn ( f ) � ck
n psn+1 ( f )k. Take now an entire function h ∈ H(C), h(z) = ∑

akzk z. Then for
f ∈ HbA(B E ),

psn

(
M∑

k=N

ak f k

)
�

M∑
k=N

ak psn

(
f k) �

M∑
k=N

ak
(
cn psn+1( f )

)k
,

which tends to 0 as N, M increase because h is an entire function. This means that entire functions operate in HbA(B E ).
Therefore [40, Theorem 1] implies that HbA(B E ) is locally m-convex. �
Remark 3.4. Michael’s conjecture [39] states that on any Fréchet algebra, every character is continuous. Adapting some of
the ideas in [20,17,51], Mujica showed (see [42, Section 33] or [43]) that if every character on Hb(E) is continuous for
some infinite dimensional Banach space E then the conjecture is true for every commutative Fréchet algebra. As a corollary
of his results we may deduce that the same is true for the Fréchet algebra HbA(E) for any multiplicative sequence A

with constants as in (2). We would like however to sketch an alternative proof of this fact as consequence of a result by
Ryan [48] on the convergence of monomial expansions for entire functions on �1. Theorem 3.3 in [48] states that for each
f ∈ Hb(�1) there exist unique complex coefficients (am)m∈N(N) such that f (z) = ∑

m∈N(N) amzm , where a multi-index m ∈ N(N)

is a sequence of are non-negative integers such that only a finite number of them are non-zero and where zm = Π j∈Nz
m j

j .
The convergence of the monomial expansion of f is absolute for every z ∈ �1 and uniform on bounded sets of �1. Moreover,
the coefficients satisfy

lim|m|→∞
(|am|mm/|m||m|)1/|m| = 0. (7)

Conversely, any such coefficients define a function in Hb(�1). Let A be a commutative, complete, Hausdorff locally m-convex
algebra which has an unbounded character ψ . We may suppose that A has unit e. Let x = (xn) be a sequence in A such
that

∑
n p(xn) < ∞ for each continuous seminorm p on A, and that (ψ(xn)) is unbounded. For m = (m1,m2, . . .) ∈ N(N) , let

xm = Π j∈Nx
m j

j , where x0 = e for every x ∈ A. Let T : Hb(�1) → A be defined by T f = ∑
m∈N(N) amxm , where (am)m∈N(N) are

the coefficients of f . Note that g(z) = ∑
m∈N(N) |am|zm defines a function in Hb(�1) because its coefficients satisfy (7). Thus,

for a continuous seminorm p on A,∑
m∈N(N)

|am|p(
xm)

�
∑

m∈N(N)

|am|Π j∈N p(x j)
m j = g

((
p(x j)

)
j

)
,

which implies that T is well defined. Clearly T is an algebra homomorphism.
Note also that T (e′

j) = x j , where e′
j is the j-th coordinate functional in �1. Therefore ψ ◦ T is a discontinuous character

on Hb(�1).
Let now E be any Banach space and let (y j), (y′

j) be a biorthogonal sequence in E with ‖y j‖ < 1 and (y′
j) bounded.

Let M be the closed space spanned by the y j ’s and let (zk) be a dense sequence in the unit ball of M that contains the
sequence (y j). Say y j = zn j . Then the linear map which sends each ek ∈ �1 to zk induces an isomorphism from a quotient
of �1 to M . Consider the following mapping R = R4 R3 R2 R1 : Hb(E) → Hb(�1)

HbA(E)
R1−→ Hb(E)

R2−→ Hb(M)
R3−→ Hb(�1)

R4−→ Hb(�1),

where R1 is the inclusion, R2 is the restriction from E to M , R3 is the composition with the quotient map and R4 is the
restriction to the closed space spanned by the en j ’s (we identify this space with �1). Then R(y′

j) is a linear functional on �1.
Moreover, if z denotes the class of z ∈ �1 in the quotient of �1 isomorphic to M , then enk = znk = yk . Thus R(y′

j)(ek) =
R3 R2 R1(y′

j)(enk ) = R2 R1(y′
j)(enk ) = y′

j(yk) = δkj , that is, R(y′
j) = e′

j .
Since (y′

j) is a bounded sequence in HbA(E) and R is an algebra homomorphism, ψ ◦ T ◦ R is a discontinuous character
on HbA(E).

We will now prove that HbA(X) is a locally m-convex Fréchet algebra, for (X,q) an arbitrary Riemann domain over E .
We first need the following.
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Lemma 3.5. Let A be an X-bounded set with dX (A) � δ. If Bs(x) ⊂ A then Bs+δ(x) exists.

Proof. Suppose that we can show that Bs+ δ
4
(x) exists. Then Bs+ δ

4
(x) is contained in the X-bounded set A δ

4
= ⋃

x∈A B δ
4
(x),

and dX (A δ
4 ) � 3δ

4 . Applying the result proved to Bs+ δ
4
(x) and A δ

4
we have that Bs+ δ

4 (1+ 3
4 )

(x) exists. Applying the same

process n + 1 times, we have that Bs+ δ
4 (1+ 3

4 +···+( 3
4 )n)

(x) exists. Clearly
⋃

n∈N
Bs+ δ

4 (1+ 3
4 +···+( 3

4 )n)
(x) is Bs+δ(x). Thus, it suffices

to prove that Bs+ δ
4
(x) exists.

Let C = ⋃
y∈Bs(x) B δ

4
(y). Then q(C) = ⋃

y∈Bs(x) B δ
4
(q(y)) = Bs+ δ

4
(q(x)). If we show that q|C is injective then C = Bs+ δ

4
(x).

Take x0 �= x1 in C . Then there exist y0, y1 ∈ Bs(x) such that x j ∈ B δ
4
(y j), j = 0,1. If B δ

4
(y0)∩ B δ

4
(y1) �= ∅, then x0 and x1

are in Bδ(y0). Since q is injective on Bδ(y0), we have that q(x0) �= q(x1). On the other hand, if B δ
4
(y0) ∩ B δ

4
(y1) = ∅, then

Bs(q(x)) ∩ B δ
4
(q(y0)) ∩ B δ

4
(q(y1)) = ∅, because q is injective on Bs(x). But, since q(y0) and q(y1) are in Bs(q(x)), we can

conclude that B δ
4
(q(y0)) ∩ B δ

4
(q(y1)) = ∅ and thus q(x0) �= q(x1). �

Theorem 3.6. Suppose that A is a multiplicative sequence with constants as in (2) and let (X,q) be a Riemann domain over E. Then
HbA(X) is a locally m-convex Fréchet algebra.

Proof. We know from Proposition 2.7 that HbA(X) is a Fréchet.
Let Xn denote the set {x ∈ X: ‖q(x)‖ < n and dX (x) > 1

n }. If Bs(x) is contained in Xn and εn < 1
n − 1

n+1 then Bs+εn (x) ⊂
Xn+1 (note that Bs+εn (x) exists by Lemma 3.5). Proceeding as in Proposition 3.3, we can show that for every f , g ∈ HbA(X),
px

s( f g) � cn px
s+εn

( f )px
s(g), which implies that p Xn ( f g) � cn p Xn+1( f )p Xn (g). Thus, HbA(X) is a commutative B0-algebra.

Moreover, we also have that p Xn ( f k) � ck
n p Xn+1( f )k , which implies that entire functions operate on HbA(X). Therefore by

[40, Theorem 1] we conclude that HbA(X) is a locally m-convex algebra. �
To finish this section we present some examples of multiplicative sequences with constants ck,l as in (2).

Example 3.7. It is clear that the following sequences are multiplicative with constants ck,l = 1.

(i) P , of continuous homogeneous polynomials,
(ii) P w , of weakly continuous on bounded sets polynomials,

(iii) P A , of approximable polynomials,
(iv) Pe , of extendible polynomials.

Example 3.8. The sequence P I of integral polynomials.
It was shown in [13, Example 2.3 (c)] that if P , Q are homogeneous integral polynomials then P Q is integral with

‖P Q ‖I � (k+l)k+l

(k+l)!
k!
kk

l!
ll
‖P‖I‖Q ‖I .

Example 3.9. The sequence PN of nuclear polynomials.
Proposition 2.6 in [13] implies that if {Ak} is a multiplicative sequence then the sequences of maximal and minimal hulls,

{Amax
k } and {Amin

k }, are multiplicative with the same constants. Since nuclear polynomials are the minimal ideal associated
to integral polynomials (see for example [29, 3.4]), we have that they form a multiplicative sequence with constants as
in (2). See also [25, Exercise 2.63].

Note that, as a consequence of Proposition 3.3, the space of nuclearly entire functions of bounded type is a locally
m-convex Fréchet algebra.

The sequences P , PN , Pe , P I and P A are particular cases of the following.

Example 3.10. Let {αk}k be any of the sequences of natural symmetric tensor norms. Then the sequences {Amax
k }k and {Amin

k }k of
maximal and minimal ideals associated to {αk}k are multiplicative with constants ck,l as in (2).

This follows from the inequalities

πk+l
(
σ(s ⊗ t)

)
� (k + l)k+l

(k + l)!
k!
kk

l!
ll
πk(s)πl(t), εk+l

(
σ(s ⊗ t)

)
� εk(s)εl(t)

for every s ∈ ⊗k,s E ′ , t ∈ ⊗l,s E ′ together with Proposition 2.6 and Lemma 2.9 of [13].

Example 3.11. The sequence Mr of multiple r-summing polynomials is multiplicative with constants ck,l = 1.
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Proof. Let P ∈ Mk
r (E), Q ∈ Ml

r(E), then

(P Q )∨(x1, . . . , xk+l) = k!
(k + l)!

k+l∑
s1,...,sl=1
s1 �=···�=sl

∨
P

(
x1,

s1···sl. . . , xk+l
) ∨

Q (xs1 , . . . , xsl )

where
∨
P (x1,

s1···sl. . . , xk+l) means that coordinates xs1 , . . . , xsl are omitted.

Take (x
i j

j )
m j

j=1 ⊂ E , for j = 1, . . . ,k + l, such that wr((x
i j

j )) = 1. Then, using the triangle inequality for the �r -norm,

( m1,...,mk+l∑
i1,...,ik+l=1

∣∣(P Q )∨
(
xi1

1 , . . . , x
ik+l
k+l

)∣∣r

) 1
r

� k!
(k + l)!

k+l∑
s1,...,sl=1
s1 �=···�=sl

( m1,...,mk+l∑
i1,...,ik+l=1

∣∣∨
P

(
x1,

s1···sl. . . , xk+l
)∣∣r∣∣ ∨

Q (xs1 , . . . , xsl )
∣∣r

)1/r

� k!
(k + l)!

k+l∑
s1,...,sl=1
s1 �=···�=sl

( ms1 ,...,msl∑
is1 ,...,isl =1

∣∣ ∨
Q (xs1 , . . . , xsl )

∣∣r‖P‖r
Mk

r

)1/r

� k!
(k + l)!

k+l∑
s1,...,sl=1
s1 �=···�=sl

‖P‖Mk
r
‖Q ‖Ml

r
= ‖P‖Mk

r
‖Q ‖Ml

r
.

Hence, P Q is multiple r-summing with ‖P Q ‖Mk+l
r

� ‖P‖Mk
r
‖Q ‖Ml

r
. �

Example 3.12. The sequence S2 of Hilbert–Schmidt polynomials.
It was proved in [46] that the ideals of Hilbert–Schmidt polynomials form a multiplicative sequence with ck,l � 2k+l .

Shortly after, Lopushansky and Zagorodnyuk showed in [35] that actually ck,l = 1. We will give an alternative proof of
this fact in Example 6.5 based on the duality between multiplicativity and weak differentiability (see Remark 6.4 and [13,
Proposition 3.16]).

Example 3.13. The sequence S p of p-Schatten–von Neumann polynomials.
Using the Reiteration theorem for the complex interpolation method and the previous examples we deduce that {S k

p} is
a multiplicative sequence with constants ck,l = 1 for 2 < p < ∞ and

ck,l �
(

(k + l)k+l

(k + l)!
k!
kk

l!
ll

) 2
p −1

for 1 < p < 2.

4. Analytic structure on the spectrum

Let (X,q) be a Riemann domain over a Banach space E . In this section we prove that, under fairly general conditions,
the spectrum of the algebra HbA(X) may be endowed with a structure of Riemann domain spread over the bidual E ′′ . This
will extend some of the results in [4,13].

As in the case of Hb studied in [4] or entire functions in HbA(E) studied in [13], extensions to the bidual will be crucial,
so we will need them to behave nicely. Indeed, we will need the following two conditions which were already defined
in [13].

Definition 4.1. Let A be a sequence of ideals of polynomials. We say that A is AB-closed if for each Banach space E , k ∈ N

and P ∈ Ak(E) we have that AB(P ) belongs to Ak(E ′′) and ‖AB(P )‖Ak(E ′′) � ‖P‖Ak(E) , where AB denotes the Aron–Berner
extension [2].

Recall that an Arens extension of a k-linear form A on E is an extension to the bidual E ′′ obtained by w∗-continuity on
each variable in some order.



S. Muro / J. Math. Anal. Appl. 389 (2012) 792–811 801
Definition 4.2. We say that a sequence of ideals of polynomials A is regular at E if, for every k and every P in Ak(E), we

have that every Arens extension of
∨
P is symmetric. We say that the sequence A is regular if it is regular at E for every

Banach space E .

All the examples given in Section 3 are known to be AB-closed (see [13,14]). All the examples given in Section 3 but
P and Mr are known to be regular at any Banach space. Any sequence of polynomial ideals is regular at a symmetrically
regular Banach space.

We proved in the previous section that if A is multiplicative with constants as in (2), then HbA(X) is a Fréchet algebra.
We denote by MbA(X) its spectrum, that is, the set of non-zero multiplicative and continuous linear functionals on HbA(X).
Note that evaluations at points of X are in MbA(X). Following [3,26], we define π : MbA(X) → E ′′ by π(ϕ)(x′) = ϕ(x′ ◦ q).

The main purpose of this section is to prove the following result.

Theorem 4.3. Let A be a multiplicative holomorphy type with constants as in (2) which is regular at E and AB-closed. Then
(MbA(X),π) is a Riemann domain over E ′′ .

First we will need some preliminary lemma.

Lemma 4.4. Let A be a holomorphy type with constants as in (2). Define δ
(w

k1
1 ,...,w

kh
h )

∈ Ak(E)′ by,

δ
(w

k1
1 ,...,w

kh
h )

(Q ) = ∨
Q

(
wk1

1 , . . . , wkh
h

)
,

where, w1, . . . , wh ∈ E and k1, . . . ,kh ∈ N are such that k1 + · · · + kh = k. Then for any P ∈ Ak+l(E), the polynomial R(x) :=
δ
(w

k1
1 ,...,w

kh
h )

(Pxl ) is in Al(E) and

‖R‖Al(E) � (k + l)k+lk1! . . .kh!l!
(k + l)!kk1

1 . . .kkh
h ll

‖w1‖k1 · · · ‖wh‖kh ‖P‖Ak+l(E).

If A is also AB-closed and regular at E then the above statements hold for any w1, . . . , wh ∈ E ′′ , where δ
(w

k1
1 ,...,w

kh
h )

∈ Ak(E)′ is

defined by δ
(w

k1
1 ,...,w

kh
h )

(Q ) = ∨
AB(Q ) (wk1

1 , . . . , wkh
h ).

Proof. We proceed by induction on h. For h = 1, this is a consequence of A being a holomorphy type. Suppose that it holds
for h = n and let Q (x) = δ

(w
k1
1 ,...,wkn

n )
(Pxkn+1+l ). Then Q belongs to Akn+1+l(E) and

‖Q ‖Akn+1+l(E) � (k + l)k+lk1! . . .kn!(kn+1 + l)!
(k + l)!kk1

1 . . .kkn
n (kn+1 + l)kn+1+l

‖w1‖k1 · · · ‖wn‖kn‖P‖Ak+l(E). (8)

Thus, x 	→ δ
wkn+1

n+1
(Q xl ) = δ

(w
k1
1 ,...,w

kn+1
n+1 )

(Pxl ) belongs to Al(E) and

∥∥x 	→ δ
wkn+1

n+1
(Q xl )

∥∥
Al(E)

� (kn+1 + l)kn+1+lkn+1!l!
(kn+1 + l)!kkn+1

n+1 ll
‖wkn+1‖n+1‖Q ‖Akn+1+l(E). (9)

Putting (8) and (9) together, we obtain our claim. The last statement follows similarly. �
Lemma 4.5. Let A be a holomorphy type with constants as in (2), k ∈ N, w1, . . . , wh ∈ E and k1, . . . ,kh ∈ N such that

k1 + · · · + kh = k. Then δ
(w

k1
1 ,...,w

kh
h )

◦ dk f
k! belongs to HbA(X).

If A is AB-closed and regular at E then the same holds for any w1, . . . , wh ∈ E ′′ .

Proof. We prove the case w1, . . . , wh ∈ E ′′ . The other case is similar. By [45, §10, Proposition 2], dk f ∈ H(X,Ak(E)). Since
ϕ = δ

(w
k1
1 ,...,w

kh
h )

is a continuous linear form on Ak(E), ϕ ◦ dk f is in H(X).

Let Bs(x0) ⊂ X and denote dm f
m! (x0) by Q m . Then, for y ∈ Bs(x0) we have, by [45, p. 41 (1)],

dk f

k! (y) =
∑
m�k

(
m

k

)
(Q m)(q(y)−q(x0))m−k .

This series is absolutely convergent in Ak(E). Indeed, for δ, ε > 0 such that (1 + ε)(δ + ‖q(y) − q(x0)‖) < s and using
Remark 3.2 we have,
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∑
j�0

δ j
∑
m� j

(
m

j

)∥∥(Q m)(q(y)−q(x0))m− j

∥∥
A j(E)

� cε

∑
j�0

δ j
∑
m� j

(
m

j

)
(1 + ε)m‖Q m‖Am(E)

∥∥q(y) − q(x0)
∥∥m− j

= cε px0
(1+ε)(δ+‖q(y)−q(x0)‖)( f ) < ∞.

Then ϕ ◦ dk f
k! (y) = ∑

m�k

(m
k

)
ϕ ◦ (Q m)(q(y)−q(x0))m−k and therefore,

dm−k(ϕ ◦ dk f
k! )

(m − k)! (x0) = x 	→
(

m

k

)
ϕ ◦ (Q m)xm−k .

By the above lemma, the differentials of ϕ ◦ dk f
k! are in A.

Let A be an open X-bounded set and α < dX (A). Let Bs(x0) ⊂ A. Then, by (4) and Lemma 4.4, we have

αk px0
s

(
ϕ ◦ dk f

k!
)

� αk
∑
m�k

sm−k

∥∥∥∥dm−k(ϕ ◦ dk f
k! )

(m − k)! (x0)

∥∥∥∥
Am−k(E)

� eh+1(k1 . . .kh)
1
2 ‖w1‖k1 · · · ‖wh‖khαk

∑
m�k

(
m

k

)
sm−k

√
m − k

m
‖Q m‖Am(E)

� Ckα
k‖w1‖k1 · · · ‖wh‖kh

∑
m�k

(
m

k

)
sm−k‖Q m‖Am(E)

� Ck‖w1‖k1 · · · ‖wh‖kh

∞∑
j=0

α j
∑
m� j

(
m

j

)
sm− j‖Q m‖Am(E)

= Ck‖w1‖k1 · · · ‖wh‖kh px0
s+α( f ) � Ck‖w1‖k1 · · · ‖wh‖kh p Ã( f ),

where Ã = ⋃
x∈A Bα(x) is an open X-bounded set (note that by Lemma 3.5, Bs+α(x0) exists and is contained in Ã). Therefore

p A( f ) < ∞ and thus ϕ ◦ dk f
k! is in HbA(X). �

The following corollary states that, for h = 1 or h = 2 in the previous lemma, we obtain bounds which are independent
of k.

Corollary 4.6. Let A be a holomorphy type with constants as in (2) and f ∈ HbA(X). Let A be an open X-bounded set and α < ρ <

dX (A). Define the open X-bounded set Ã = ⋃
x∈A Bρ(x). Then there exists a positive constant C depending only on α and ρ , such that:

(i) for each k ∈ N and w ∈ E, δw ◦ dk f
k! belongs to HbA(X) and

αk p A

(
δw ◦ dk f

k!
)

� C‖w‖k p Ã( f ).

(ii) for each l � k ∈ N and v, w ∈ E, δ(vk−l,wl) ◦ dk f
k! belongs to HbA(X) and

αk p A

(
δ(vk−l,wl) ◦ dk f

k!
)

� C‖v‖k−l‖w‖l p Ã( f ).

If A is AB-closed and regular at E then the above statements hold for any v, w ∈ E ′′ .

Proof. We prove (ii) for v, w ∈ E ′′ . Let ε > 0 such that α(1+ε) < ρ and let Bs(x0) ⊂ A. By the bound obtained in Lemma 4.5
for h = 2 and ϕ = δ(vk−l,wl) , we have

αk px0
s

(
ϕ ◦ dk f

k!
)

� e3((k − l)l
) 1

2 ‖w‖l‖v‖k−lαk
∑
m�k

(
m

k

)
sm−k

√
m − k

m
‖Q m‖Am(E)

� cε(1 + ε)k‖w‖l‖v‖k−lαk
∑ (

m

k

)
sm−k‖Q m‖Am(E)
m�k
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� cε‖w‖l‖v‖k−l
∞∑
j=0

(1 + ε) jα j
∑
m� j

(
m

j

)
sm− j‖Q m‖Am(E)

= cε‖w‖l‖v‖k−l px0
s+(1+ε)α( f ) � cε‖w‖l‖v‖k−l p Ã( f ),

where cε is chosen so that e3 j � cε(1 + ε) j for every j ∈ N. �
For ϕ ∈ MbA(X) and A an open X-bounded set, we will write ϕ ≺ A whenever there is some c > 0 such that ϕ( f ) �

cp A( f ) for every f ∈ HbA(X).

Lemma 4.7. Let A be a multiplicative holomorphy type with constants as in (2). Let ϕ ∈ MbA(X) and A an open X-bounded set such
that ϕ ≺ A. Let w ∈ E with ‖w‖ < dX (A). Then ϕw belongs to MbA(X), where

ϕw( f ) :=
∞∑

n=0

ϕ

(
dn f (·)

n! (w)

)
.

Moreover, π(ϕw) = π(ϕ)+ w. If A is also AB-closed and regular at E then the above statements hold for w ∈ E ′′ with ‖w‖ < dX (A),
where,

ϕw( f ) :=
∞∑

n=0

ϕ

(
AB

(
dn f (·)

n!
)

(w)

)
.

Proof. We prove the case w ∈ E ′′ . Suppose that Bs(x0) ⊂ A. Let ‖w‖ < α < ρ < dX (A). We can take ε > 0, such that
(1 + ε)α < ρ . By Corollary 4.6, for the open X-bounded set Ã = ⋃

x∈A Bρ(x), we have

αk p A

(
AB

(
dk f (·)

k!
)

(w)

)
� cε‖w‖k p Ã( f ). (10)

Thus, the series
∑

k p A(AB(
dk f (·)

k! )(w)) is convergent. Then,

∞∑
k=0

∣∣∣∣ϕ
(

AB

(
dk f (·)

k!
)

(w)

)∣∣∣∣ � c
∞∑

k=0

p A

(
AB

(
dk f (·)

k!
)

(w)

)
� αccε

α − ‖w‖ p Ã( f ) < ∞.

Therefore ϕw is continuous and ϕw ≺ Ã. The multiplicativity of ϕw and the last assertion follow as in [4, p. 551]. �
In the case of entire functions ϕw may be defined translating functions by w , see [13,25]. We show next that, this

is also true for arbitrary Riemann domains when we complete HbA(X) with respect to the topology given by the norm
p A , if ϕ ≺ A. Given an open X-bounded set A and w ∈ E ′′ with ‖w‖ < dX (A), we define τ̃w( f ) on A as τ̃w( f )(x) =
AB( f ◦ (q|Bx )

−1)(q(x) + w), where Bx denotes the ball BdX (x)(x).

Lemma 4.8. Let A be a multiplicative holomorphy type with constants as in (2) which is regular at E and AB-closed. Let A be an open
X-bounded set, ϕ ∈ MbA(X) such that ϕ ≺ A and w ∈ E ′′ with ‖w‖ < dX (A). Then:

(a) the series
∑∞

n=0 AB(
dn f (·)

n! )(w) converges in HbA(X)p A to τ̃w( f ) and the mapping τ̃w : HbA(X) → HbA(X)p A is continuous,

(b) ϕ may be extended to HbA(X)p A and ϕw( f ) = ϕ(τ̃w f ).

Proof. (a) We have already proved in Lemma 4.7 that the series
∑

n p A(AB(
dn f (·)

n! )(w)) is convergent and that

p A(
∑

n AB(
dn f (·)

n! )(w)) � αccε
α−‖w‖ p Ã( f ).

The equality τ̃w( f )(x) = ∑∞
n=0 AB(

dn f (x)
n! )(w) is clear for each x ∈ A since the Taylor series of f at x converges absolutely

on Br(x), for each r < dX (A).
(b) The first assertion is immediate since ϕ( f ) � cp A( f ) for every f ∈ HbA(X). The second assertion, is a consequence

of the equality τ̃w( f ) = ∑∞
n=0 AB(

dn f (·)
n! )(w) as function in HbA(X)p A , the continuity of ϕ with respect to the norm p A and

the definition of ϕw . �
Lemma 4.9. Let A be a multiplicative holomorphy type with constants as in (2) which is regular at E and AB-closed. Let A be an open
X-bounded set, ϕ ∈ MbA(X) such that ϕ ≺ A and v, w ∈ E ′′ with ‖v‖ + ‖w‖ < dX (A). Then:

(a) τ̃w τ̃v f = τ̃w+v f for every f ∈ HbA(X),
(b) (ϕw)v is a well-defined character in MbA(X) and (ϕw)v = ϕw+v .
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Proof. (a) We must prove that τ̃w τ̃v f (x) = τ̃w+v f (x) for x ∈ A. Write gn for AB(
dn f (·)

n! )(v). Then

τ̃w τ̃v( f ) =
∑

n

τ̃w(gn) =
∑

n

∑
k

AB

(
dk gn(·)

k!
)

(w). (11)

Since A is regular at E , we may proceed as in [4, p. 552] to show that

dk gn(·)
k! =

(
k + n

n

)
AB

(
dk+n f (·)
(k + n)!

)
vn

.

Thus again by regularity,

AB

(
dk gn(·)

k!
)

(w) =
(

k + n

n

)
AB

(
dk+n f (·)
(k + n)!

)∨(
vn, wk) =

(
k + n

n

)
δ(vn,wk) ◦ dk+n f

(k + n)! .

Let ‖v‖ + ‖w‖ < α̃ < ρ̃ < dX (A). By Corollary 4.6, if A� = ⋃
x∈A Bρ̃ (x), then there exists a constant C > 0 such that,

∑
n�0

∑
k�0

(
k + n

n

)
p A

(
δ(vn,wk) ◦ dk+n f

(k + n)!
)

� C
∑
n�0

∑
k�0

(
k + n

n

)‖v‖n‖w‖k

α̃n+k
p A� ( f )

= Cp A� ( f )
∞∑

m�0

(‖v‖ + ‖w‖
α̃

)m

< ∞.

Therefore we may reverse the order of summation in (11) to obtain

τ̃w τ̃v( f ) =
∑
n�0

∑
l�n

(
l

n

)
AB

(
dl f (·)

l!
)∨(

vn, wl−n) =
∑
l�0

l∑
n=0

(
l

n

)
AB

(
dl f (·)

l!
)∨(

vn, wl−n)

=
∑
l�0

AB

(
dl f (·)

l!
)

(v + w) = τ̃v+w( f ).

(b) We continue using the notation of part (a). First note that α̃ − ‖v‖ (resp. ρ̃ − ‖v‖) may play the role of α (resp. ρ)
in the proof of Lemma 4.7, thus if Ã = ⋃

x∈A Bρ̃−‖v‖(x), then ϕw and τ̃w may be continuously extended to (HbA(X)p Ã , p Ã).
Moreover, the formula ϕw( f ) = ϕ(τ̃w f ) holds for every f in HbA(X)p Ã .

Second, since ϕw ≺ Ã and dX ( Ã) � dX (A)− (ρ̃ −‖v‖) > dX (A)−‖w‖ > ‖v‖, then by of Lemma 4.7, (ϕw)v is well defined
and by part (a) of Lemma 4.8, τ̃v : HbA(X) → HbA(X)p Ã is continuous.

Therefore, for every f ∈ HbA(X), we have that (ϕw)v ( f ) = ϕw(τ̃v f ) = ϕ(τ̃w τ̃v f ) = ϕ(τ̃w+v f ) = ϕw+v ( f ). �
The equality (ϕw)v = ϕw+v in the above lemma is the key property to show Theorem 4.3. Indeed, once this equality is

proved, the rest of the proof can be almost entirely adapted from [4, Theorem 2.2 and Corollary 2.4]. We just point out the
only difference.

Proof of Theorem 4.3. For ϕ ∈ MbA(X), ϕ ≺ A and 0 < ε < dX (A), define Vϕ,ε = {ϕw : w ∈ E ′′, ‖w‖ < ε}. Then the collec-
tion {Vϕ,ε: ϕ ∈ MbA(X), ε > 0} define a basis for a Hausdorff topology in MbA(X). The fact that it is a basis of a topology
follows as in [4, Theorem 2.2]. We prove that it is Hausdorff. Let ϕ �= ψ ∈ MbA(X) and suppose that π(ϕ) �= π(ψ). Let A, D
be open X-bounded sets such that ϕ ≺ A and ψ ≺ D , and take r < min{dX (A),dX (D)}/2. We claim that Vϕ,r ∩ Vψ,r = ∅.
Indeed, if ‖v‖,‖w‖ < r are such that ϕw = ψ v , then π(ϕ) + w = π(ψ) + v and thus v = w . Moreover, by Lemma 4.9(b),
ϕ = (ϕv )(−v) = (ψ v )(−v) = ψ. The case π(ϕ) = π(ψ) follows as in [4, Theorem 2.2]. Now, we may finish the proof of the
theorem proceeding as in [4, Corollary 2.4]. �
5. Holomorphic extensions

In this section and in the next one we are concerned with analytic continuation. We show first that the canonical
extensions to the spectrum are holomorphic and then we characterize the HbA-envelope of holomorphy of a Riemann
domain in terms of the spectrum.

Proposition 5.1. Let A be a multiplicative holomorphy type with constants as in (2) which is regular at E and AB-closed. For each
f ∈ HbA(X), its Gelfand transform f̃ is holomorphic on MbA(X).
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Proof. Let ϕ ∈ MbA(X), A an open X-bounded set such that ϕ ≺ A and r < dX (A). We prove that f̃ is holomorphic on Vϕ,r ,

or equivalently that f̃ ◦ (π |Vϕ,r )
−1 is holomorphic on π(Vϕ,r) = B E ′′ (π(ϕ), r). It suffices to show that it is uniform limit of

polynomials on rB E ′′ (π(ϕ)). Note that for ‖w‖ < r,

f̃ ◦ (π |Vϕ,r )
−1(π(ϕ) + w

) = f̃
(
ϕw) = ϕw( f ) =

∞∑
k=0

ϕ

(
δw ◦ dk f

k!
)

.

By Lemma 4.5, for w1, . . . , wk ∈ E ′′ , AB(
dk f
k! )∨(w1, . . . , wk) = δ(w1,...,wk) ◦ dk f

k! belongs to HbA(X) and clearly, AB(
dk f
k! )∨ is

clearly k-linear. Thus w 	→ δw ◦ dk f
k! is in P k

a (E ′′, HbA(X)) (the space of algebraic k-homogeneous polynomials). It is also
continuous since, by Corollary 4.6, for each open X-bounded set D , and β < dX (D), there exists C > 0 and an open X-

bounded set D̃ (which do not depended on k) such that βk pD(δw ◦ dk f
k! ) � C‖w‖k pD̃( f ) < ∞.

Therefore, if Q k(w) = ϕ(δw ◦ dk f
k! ) then Q k is in P k(E ′′). Now, for ‖w‖ < r < α < dX (A) and using again Corollary 4.6,

sup
w∈rB E′′

∣∣∣∣∣ϕw( f ) −
m∑

n=0

Q n(w)

∣∣∣∣∣ = sup
w∈rB E′′

∣∣∣∣∣
∞∑

k=m+1

ϕ

(
δw ◦ dk f

k!
)∣∣∣∣∣

� c sup
w∈rB E′′

∣∣∣∣∣
∞∑

k=m+1

p A

(
δw ◦ dk f

k!
)∣∣∣∣∣

� cC
∞∑

k=m+1

(
r

α

)k

p Ã( f ) −→ 0 as m → ∞. �

Remark 5.2. We know that the canonical extensions to MbA(X) need not be in HbA(MbA(X)) (see [16, Example 2.8] and [44,
Proposition 4.3.22]). We do not know whether these extensions belong to HA(MbA(X)). When A is weakly differentiable
(see Section 6) and f is a polynomial, then it is possible to show that its extension to MbA(X) is of type A.

Definition 5.3. Let F ⊂ H(X) and let (Z , p) be another Riemann domain over E . An F -extension is a morphism τ : X → Z
such that for each f ∈ F there exists a unique function f̃ holomorphic on Z , such that f̃ ◦ τ = f . If F = H(X), we call it a
holomorphic extension of X .

Corollary 5.4. Let A be a multiplicative holomorphy type with constants as in (2) which is regular at E and AB-closed. Then MbA(X)

is a domain of holomorphy, that is, any holomorphic extension of MbA(X) is an isomorphism.

Proof. We may follow the steps of [26, Proposition 2.4]. By [42, Theorem 52.6] it suffices to prove that MbA(X) is holo-
morphically separated and that for each sequence {ϕ j} in MbA(X) such that dMbA(X)(ϕ j) → 0, there exists a function F
in H(MbA(X)) such that sup j |F (ϕ j)| = ∞. Since MbA(X) is separated by HbA(X), it is holomorphically separated by the
above proposition. If {ϕ j} ⊂ MbA(X) is such that sup j |F (ϕ j)| < ∞ for all F ∈ H(MbA(X)), then if τ ( f ) := sup j |ϕ j( f )|, τ
defines a seminorm on HbA(X). Thus the set V = { f ∈ HbA(X): τ ( f ) � 1} is absolutely convex and absorbent. It is also
closed because V is the intersection of the closed sets { f ∈ HbA(X): |ϕ j( f )| � 1}. Since HbA(X) is a barreled space, V is
a neighborhood of 0 and thus τ is continuous. Therefore, there are an X-bounded set D and a constant c > 0 such that
τ ( f ) � cpD( f ) for every f ∈ HbA(X), which implies that ϕ j ≺ D for every j ∈ N. By Lemma 4.7, dMbA(X)(ϕ j) � dX (D). �

Let (X,q) be a connected Riemann domain over E . The envelope of holomorphy of X is an extension which is maximal
in the sense that it factorizes through any other extension.

Definition 5.5. The HbA-envelope of X is a Riemann domain EbA(X) and an HbA-extension morphism τ : X → EbA(X) such
that if ν : X → Z is another HbA-extension, then there exists a morphism μ : Z → EbA(X) such that ν ◦ μ = τ .

In [33], Hirschowitz proved, using germs of analytic functions, the existence of EbA(X) (in a more general framework)
and asked whether the extended functions f̃ are also of type A on EbA(X), [33, p. 290]. We will give a partial positive
answer to this question in the next section (Corollary 6.9).

We now characterize the HbA-envelope of holomorphy of X in terms of the spectrum of HbA(X). We sketch the proof
which is an adaptation of [16, Theorem 1.2]. First note that the conditions that A be AB-closed and regular at E were used
in Theorem 4.3 only to deal with Aron–Berner extensions. Thus, it is not difficult to show the following.

Lemma 5.6. Let (X, p) be a Riemann domain spread over a Banach space E and let A be a multiplicative holomorphy type with
constants as in (2). Then (π−1(E),π) ⊂ (MbA(X),π) is a Riemann domain spread over E.
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Proposition 5.7. Let (X, p) be a connected Riemann domain spread over a Banach space E, let A be a multiplicative holomorphy type
with constants as in (2) and let Y be the connected component of π−1(E) ⊂ MbA(X) which intersects δ(X). Then δ : (X, p) → (Y ,π),
δ(x) = δx is the HbA-envelope of X .

Proof. Let σ : X → EbA(X) be the HbA-extension from X to the HbA-envelope of X . By Proposition 5.1, δ : X → Y is an
HbA-extension. Moreover, for each point y ∈ Y , the evaluation δy : HbA(X) → C, δy( f ) = f̃ (y) is continuous. Then there is
a morphism ν : Y → EbA(X) such that σ = ν ◦ δ.

We show that ν is an isomorphism. ν(Y ) is open in EbA(X) because ν is a morphism.
Let us see that ν(Y ) is closed in EbA(X). Suppose that y ∈ ν(Y ) \ ν(Y ). Let Wn = {ϕ ∈ Y : ϕ ≺ Xn}, where Xn = {x ∈ X:

‖p(x)‖ � n, dX (x) � 1
n }. Then by Lemma 4.7, dY (Wn) � 1

n . Therefore we can get a subsequence of integers (nk)k and a se-
quence (yk)k ⊂ Y such that yk ∈ Wnk+1 \ Wnk and yk → y. Thus there are functions fk ∈ HbA(X) such that p Xnk

( fk) < 1
2k and

| f̃k(yk)| > k+∑k−1
j=1 | f̃ j(yk)|. Then the series

∑∞
j=1 f j converges to a function f ∈ HbA(X) and moreover |(∑∞

j=1 f j)
∼(yk)| =

|∑∞
j=1 f̃ j(yk)| because δyk is HbA(X)-continuous. Therefore

∣∣ f̃ (yk)
∣∣ =

∣∣∣∣∣
∞∑
j=1

f̃ j(yk)

∣∣∣∣∣ �
∣∣ f̃k(yk)

∣∣ −
∣∣∣∣∣

k−1∑
j=1

f̃ j(yk)

∣∣∣∣∣ −
∣∣∣∣∣

∞∑
j=k+1

f̃ j(yk)

∣∣∣∣∣ > k − 1,

so we have that | f̃ (yk)| → ∞ and then f cannot be extended to y. This is a contradiction since y belongs to the HbA-
envelope of X , EbA(X). Thus ν(Y ) is closed in EbA(X). �
6. Type A extensions

It is also natural to consider extensions where the extended functions are not only holomorphic but also of type A. As
mentioned in Remark 5.2, we cannot expect in general that the extensions be of A-bounded type, since even for the current
type, the extension of a bounded type function to the Hb-envelope of holomorphy may fail to be of bounded type. We may
ask instead if, at least, they are in HA .

Definition 6.1. A Riemann domain morphism τ : (X,q) → (Y , q̃) is an HbA–HA-extension if for each f ∈ HbA(X) there
exists a unique f̃ ∈ HA(Y ) such that f̃ ◦ τ = f .

For the current type, HA is the space of all holomorphic functions, thus in this case, every extension of a function in
HbA = Hb belongs to HA = H . On the other hand, Dineen found (see [23, Example 11]) an entire function f of bounded
type that has nuclear radius of convergence r > 0 and such that there exists x ∈ E for which d2 f (x) /∈ P 2

N (E). This means
that f belongs to HbN(rB E ) and it extends to an entire function in Hb(E), but this extension is not in HN (E). Thus, the
extension of a single function in HbA need not be of type A. In this section we show, under the additional hypothesis
of weak differentiability, that when all functions in HbA are extended simultaneously (that is, when one deals with HbA-
extensions), the extended functions are of type A.

Remark 6.2. There is also a corresponding notion of HbA–HA-envelope of holomorphy. This was considered by Moraes
in [41], where she proved, using germs of analytic functions, that the HbA–HA-envelope of holomorphy always exists.
Thus, a positive answer to the question of Hirschowitz whether the extensions to the HbA-envelope are of type A is
equivalent to the coincidence of the HbA-envelope with the HbA–HA-envelope. This will be proved in Corollary 6.9 for
weakly differentiable sequences.

Definition 6.3. Let A be a sequence of polynomial ideals and let E be a Banach space. We say that A is weakly differentiable
at E if there exist constants ck,l > 0 such that, for l < k, P ∈ Ak(E) and ϕ ∈ Ak−l(E)′ , the mapping x 	→ ϕ(Pxl ) belongs to
Al(E) and∥∥x 	→ ϕ(P xl )

∥∥
Al(E)

� ck,l‖ϕ‖Ak−l(E)′ ‖P‖Ak(E).

Remark 6.4. Weak differentiability, a condition which is stronger than being a holomorphy type, was defined in [13] (see
also [28,6], where a holomorphy type satisfying a similar condition is called a π2-holomorphy type) and is dual to multi-
plicativity in the following sense: if {Ak}k is a weakly differentiable sequence then the sequence of adjoint ideals {A∗

k }k is
multiplicative (with the same constants); and if {Ak}k is multiplicative then the sequence of adjoint ideals {A∗

k }k is weakly
differentiable (with the same constants), see [13, Proposition 3.16].

All examples appearing in Section 1 but Mr and S p were shown in [13] to be weakly differentiable sequences. It is
not difficult to see that the constants satisfy (2) in all those cases. We don’t know if the sequence of multiple r-summing
polynomials is weakly differentiable. We prove now that the sequences of Hilbert–Schmidt and Schatten–von Neumann
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ideals of polynomials are weakly differentiable. Moreover, the duality between multiplicativity and weak differentiability
allows us to show that they are also multiplicative.

Example 6.5. The sequence S2 of ideals of Hilbert–Schmidt polynomials is weakly differentiable and multiplicative with
constants ck,l = 1.

Proof. Let H be a Hilbert space with orthonormal basis (ei)i . Recall that S k
2(H) is the completion of finite type k-

homogeneous polynomials on H with respect to the norm associated to the inner product

〈P , Q 〉S k
2(H)

=
∑

i1,...,ik

∨
P (ei1 , . . . , eik )

∨
Q (ei1 , . . . , eik ).

Let P ∈ P k(H). It is not difficult to deduce (see [27, Lemma 1]) that P belongs to S k
2(H) if and only if it is (uniquely)

expressed as a limit in the S k
2(H)-norm by

P =
∑

i1,...,ik

ai1...ik e′
i1

. . . e′
ik
, (12)

with symmetric coefficients ai1...ik ∈ C and∑
i1,...,ik

|ai1...ik |2 = ‖P‖2
S k

2(H)
< ∞.

Let ϕ ∈ S l
2(H)′ and let Q = ∑

i1,...,il
bi1...il e

′
i1

. . . e′
il

∈ S l
2(H) be such that ϕ = 〈·, Q 〉S l

2(H)
. Then

〈P xk−l , Q 〉S l
2(H)

=
∑

i1,...,il

( ∑
il+1,...,ik

ai1...ik xil+1 . . . xik

)
bi1...il .

This series is absolutely convergent, indeed( ∑
i1,...,il

( ∑
il+1,...,ik

|ai1...ik xil+1 . . . xik |
)

|bi1...il |
)2

� ‖Q ‖2
S l

2(H)

∑
i1,...,il

( ∑
il+1,...,ik

|ai1...ik xil+1 . . . xik |
)2

� ‖Q ‖2
S l

2(H)

∑
i1,...,il

( ∑
il+1,...,ik

|ai1...ik |2
)( ∑

il+1,...,ik

|xil+1 . . . xik |2
)

� ‖Q ‖2
S l

2(H)
‖P‖2

S k
2(H)

‖x‖2(k−l).

Thus reversing the order of summation we obtain,

x 	→ 〈P xk−l , Q 〉S l
2(H)

=
∑

il+1,...,ik

( ∑
i1,...,il

ai1...ik bi1...il

)
e′

il+1
. . . e′

ik
.

Note that this representation is as in (12) and since∑
il+1,...,ik

∣∣∣∣ ∑
i1,...,il

ai1...ik bi1...il

∣∣∣∣2

�
∑

il+1,...,ik

( ∑
i1,...,il

|ai1...ik |2
)( ∑

i1,...,il

|bi1...il |2
)

= ‖P‖2
S k

2(H)
‖Q ‖2

S l
2(H)

,

we conclude that x 	→ 〈Pxk−l , Q 〉S l
2(H)

is in S l
2(H) and has S l

2(H)-norm � ‖P‖S k
2(H)

‖Q ‖S l
2(H)

, that is, S2 is weakly differen-

tiable with ck,l = 1.
Moreover, since the adjoint ideal of S k

2 (as a normed ideal of polynomials on Hilbert spaces) is again S k
2 and since the

sequence of adjoint ideals of a weakly differentiable sequence is multiplicative with the same constants by [13, Proposi-
tion 3.16], we conclude that S2 is multiplicative with ck,l = 1. �
Example 6.6. The sequence S p of Schatten–von Neumann polynomials.

Using the Reiteration theorem for the complex interpolation method, or by duality with Example 3.13, we deduce that
S p is weakly differentiable with constants ck,l = 1 if 1 < p < 2 and

ck,l �
(

(k + l)k+l

(k + l)!
k!
kk

l!
ll

)1− 2
p

for 2 < p < ∞.

We prove now that for weakly differentiable holomorphy types every HbA-extension is an HbA–HA-extension.
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Lemma 6.7. Let A be a weakly differentiable holomorphy type with constants as in (2) and f ∈ HbA(X). Then for each open X-bounded

set A and α < dX (A), there exist a positive constant C and an open X-bounded set Ã such that for every k ∈ N and ϕ ∈ Ak(E)′ , ϕ ◦ dk f
k!

belongs to HbA(X) and

αk p A

(
ϕ ◦ dk f

k!
)

� C‖ϕ‖Ak(E)′ p Ã( f ).

Proof. Since A is weakly differentiable, the proof of Lemma 4.5 with the bound obtained in Corollary 4.6 works here for
any ϕ ∈ Ak(E)′ . �
Proposition 6.8. Let (X,q) be a connected Riemann domain spread over a Banach space E, let A be a weakly differentiable holomorphy
type with constants as in (2). Let e : (X,q) → (Y , p) be an HbA-extension. Then for each y ∈ Y there exists a connected open subset
Z , e(X) ∪ {y} ⊂ Z ⊂ Y such that for every f ∈ HbA(X), the extension f̃ to Y is in HbA(Z). In particular, f̃ is of type A on Y .

Proof. Note first that the evaluation at each point y in Y defines a continuous character on HbA(X), δy( f ) := f̃ (y). Indeed,
define the set V ⊂ Y consisting in all points y0 for which there is an open connected subset Z such that y0 belongs to Z
and every point in Z induce a continuous evaluation. Clearly V is an open nonempty set (e(X) is contained in V ). Moreover,
if (yn) ⊂ V and yn → y0, then since δyn is continuous, the seminorm defined by f 	→ supn∈N |δyn ( f )| is continuous (the
sets { f ∈ HbA(X): supn∈N |δyn ( f )| � r} are closed, absolutely convex and absorbent and HbA(X) is a Fréchet space, thus
they have nonempty interior). Therefore there are an open X-bounded set A and a constant c > 0 such that | f̃ (y0)| �
supn∈N |δyn ( f )| � cp A( f ) for every f ∈ HbA(X). Thus V is closed and since Y is connected, we have V = Y .

Take a point y ∈ Y and let γ : [0,1] → Y be a curve such that γ (0) ∈ e(X) and γ (1) = y. By compactness, it follows that
there is some open X-bounded set A such that δγ (t) ≺ A for every t ∈ [0,1], that is, for each t , there exists c > 0 such that
|g̃(γ (t))| � cp A(g) for every g ∈ HbA(X).

Let I denote the set of all t0 ∈ [0,1] such that there exists a connected open subset Z ⊂ Y which contains e(X) and
satisfies that γ (t) ∈ Z for every t � t0 and that g̃|Z belongs to HbA(Z) for every g ∈ HbA(X). To prove the proposition it
is enough to show that I = [0,1]. Since I is clearly open, it suffices to prove that if [0, t0) ⊂ I then t0 belongs to I . Take
t1 < t0 such that γ ((t1, t0]) is contained in some ball B of center γ (t1) and radius r < dX (A) in Y . Let Z be the subdomain
which exists for t1 in the definition of I . Note that e : (X,q) → (Z , p|Z ) is an HbA-extension.

Let ϕk ∈ Ak(E)′ and f ∈ HbA(X). By Lemma 6.7, ϕk ◦ dk f
k! ∈ HbA(X), and since the extension of f to Z , f̃ |Z , belongs to

HbA(Z), we also have that ϕk ◦ dk f̃ |Z
k! ∈ HbA(Z).

Moreover, ϕk ◦ dk f̃ |Z
k! is an extension of ϕk ◦ dk f

k! to Z . Indeed if x ∈ X and (V x,q) is a chart at x in X such that (V e(x), p) =
(e(V x), p) is a chart at e(x) in Z , then

ϕk ◦ dk f̃ |Z

k!
(
e(x)

) = ϕk ◦ dk[ f̃ ◦ (p|Ve(x) )
−1]

k!
(

p
(
e(x)

)) (∗)= ϕk ◦ dk[ f ◦ (q|V x)
−1]

k!
(
q(x)

)
= ϕk ◦ dk f

k! (x),

where (∗) is true because f̃ ◦ (p|V e(x) )
−1 = f ◦ (q|V x)

−1 since e is an HbA-extension.

Since (ϕk ◦ dk f
k! )∼ is also an extension of ϕk ◦ dk f

k! to Z , we must have that(
ϕk ◦ dk f

k!
)∼

= ϕk ◦ dk f̃ |Z

k! . (13)

Therefore for r < α < dX (A),

∑
k

rk

∥∥∥∥dk f̃ |Z

k!
(
γ (t1)

)∥∥∥∥
Ak(E)

=
∑

k

rk sup
ϕk∈BAk(E)′

∣∣∣∣ϕk

(
dk f̃ |Z

k!
(
γ (t1)

))∣∣∣∣
=

∑
k

rk sup
ϕk∈BAk(E)′

∣∣∣∣
(
ϕk ◦ dk f

k!
)∼(

γ (t1)
)∣∣∣∣

�
∑

k

rk sup
ϕk∈BAk(E)′

cp A

(
ϕk ◦ dk f

k!
)

� cC
α

p Ã( f ) < ∞,

α − r
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where Ã and C are, respectively, the X-bounded set and the constant given by Lemma 6.7. Thus f̃ belongs to HbA(Z ∪ B).
Since this holds for every f ∈ HbA(X) and [0, t0] is contained in Z ∪ B , we conclude that t0 is in I . �

As a corollary we have the following partial answer to a question of Hirschowitz (see comments after Definition 5.5).

Corollary 6.9. If A be a weakly differentiable holomorphy type with constants as in (2), then the extensions to the HbA-envelope of
holomorphy are of type A.

The following result can be proved as Corollary 5.4, but using the above corollary instead of Proposition 5.1.

Corollary 6.10. Let A be a multiplicative and weakly differentiable holomorphy type with constants as in (2). Then the HbA-envelope
of holomorphy is an HA-domain of holomorphy, that is, any HA-extension is an isomorphism.

The Cartan–Thullen theorem characterizes domains of holomorphy in Cn in terms of holomorphic convexity. It was
extended for bounded type holomorphic functions on Banach spaces by Dineen [24]. Shortly after, Cartan–Thullen type
theorems were proved for very general classes of spaces of holomorphic functions on infinite dimensional spaces by Coeuré
[19], Schottenloher [49,50] and Matos [36,37]. Despite the generality of this theorems,2 the fact that any holomorphically
convex domain is a domain of holomorphy was only proved for spaces of analytic functions which one may associate to the
current holomorphy type (spaces of analytic functions which are bounded on certain families of subsets, with the topology
of uniform convergence on these subsets). We guess that this may be due to the fact that the concept of holomorphic
convexity considered there make use of the seminorms associated to the current type. We propose instead a concept of
HbA-convexity which uses the seminorms associated to the corresponding holomorphy type, and show then that a Riemann
domain is an HbA-domain of holomorphy if and only if it is HbA-convex.

Definition 6.11. For each open X-bounded set A, we define its HbA(X)-convex hull as

ÂHbA(X) := {
x ∈ X: there exists c > 0 such that

∣∣ f (x)
∣∣ � cp A( f ) for every f ∈ HbA(X)

}
.

Remark 6.12. If the seminorms p A are submultiplicative (as in the case of Hb) then the constant in above definition may
be taken c = 1.

Definition 6.13. We say that a Riemann domain (X,q) is HbA-convex if for each open X-bounded set A, its HbA(X)-convex
hull ÂHbA(X) is X-bounded.

Definition 6.14. We say that a Riemann domain (X,q) is an HbA-domain of holomorphy (HbA–HA-domain of holomorphy)
if each HbA-extension (HbA–HA-extension) morphism is an isomorphism.

We are now ready to prove the Cartan–Thullen theorem for HbA .

Theorem 6.15. Let A be a holomorphy type with constants as in (2). Let (X,q) be a Riemann domain spread over a Banach space E.
Consider the following conditions.

(i) X is HbA-convex and dX ( ÂHbA(X)) = dX (A) for each open X-bounded set A.
(ii) X is HbA-convex.

(iii) For each sequence (xn) ⊂ X such that dX (xn) → 0, there exists a function f ∈ HbA(X) such that supn | f (xn)| = ∞.
(iv) X is an HbA-domain of holomorphy.
(v) For each open subset A of X which is not X-bounded there exists a function f ∈ HbA(X) such that p A( f ) := sup{px

s( f ): Bs(x)
contained in A and X-bounded} = ∞.

(vi) X is an HbA–HA-domain of holomorphy.

Then (i) ⇒ (ii) ⇔ (iii) ⇔ (iv) ⇒ (v) ⇒ (vi).
Moreover, if A is also weakly differentiable with constants as in (2), then all the above conditions are equivalent.

Proof. The implications (i) ⇒ (ii), (iii) ⇒ (v) and (iv) ⇒ (vi) are clear. The equivalence (iii) and (iv) is contained in [19,
Theorem 4.9].

2 The natural Fréchet spaces considered by Coeuré include, by Corollary 4.6, the spaces HbA and so do the regular classes studied by Schottenloher when
the holomorphy type is multiplicative.
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Let us prove equivalence between (ii) and (iii). Suppose that dX (xn) → 0 and that τ ( f ) = supn | f (xn)| < ∞ for every
f ∈ HbA(X). Then the set V = { f ∈ HbA(X): τ ( f ) � 1} is absolutely convex and absorbent. Moreover V is closed since it is
the intersection of the sets { f ∈ HbA(X): | f (xn)| � 1} which are closed because evaluations at xn are continuous in HbA(X).
Since HbA(X) is a barreled space, V is a neighborhood of 0 and thus τ is a continuous seminorm. Therefore, there are an
X-bounded set C and a constant c > 0 such that τ ( f ) � cpC ( f ) for every f ∈ HbA(X). That is, (xn) ⊂ Ĉ HbA(X) , and thus X

is not HbA-convex. Conversely, if A is an X-bounded set such that ÂHbA(X) is not X-bounded, then there is a sequence (xn)

in ÂHbA(X) such that dX (xn) → 0. This sequence satisfies that supn | f (xn)| < ∞.
We prove now that (v) implies (vi). Let τ : X → Y be a morphism which is an HbA–HA-extension but is not surjective

and take y in the border of X . Let (xn) be a sequence contained in X converging to y and let Bn be the ball of center xn and
radius dX (xn)

2 . Since A = ⋃
n Bn is not X-bounded, there is some f ∈ HbA(X) such that p A( f ) = ∞. Let Ak = ⋃

n�k Bn , then

clearly p Ak ( f ) = ∞ for every k � 1. Since f extends to f̃ ∈ HA(Y ), there is some r > 0 such that pBr (y)( f̃ ) < ∞. Moreover,
if k is large enough then Ak ⊂ Br(y). Thus, for k large enough, we have that p Ak ( f ) = p Ak ( f̃ ) � pBr (y)( f̃ ) < ∞, which is a
contradiction.

It remains to prove that (vi) implies (i) when A is weakly differentiable.

Claim. If A be a weakly differentiable holomorphy type with constants as in (2), A an open X-bounded set and y ∈ ÂHbA(X) and

f ∈ HbA(X), then f ◦ (q|B y )
−1 extends to a function f̃ ∈ HbA(BdX (A)(q(y))).

Proof of the claim. Let α < α0 < dX (A). Then by Lemma 6.7, there exists a constant C (independent of k) such that

αk
0 supϕk∈BAk(E)′ p A(ϕk ◦ dk f

k! ) � Cp Ã( f ). Thus,

∑
k

αk

∥∥∥∥dk f

k! (y)

∥∥∥∥
Ak(E)

=
∑

k

αk sup
ϕk∈BAk(E)′

∣∣∣∣ϕk

(
dk f

k! (y)

)∣∣∣∣ �
∑

k

αk sup
ϕk∈BAk(E)′

cp A

(
ϕk ◦ dk f

k!
)

� c
∑

k

(
α

α0

)k

Cp Ã( f ) = cC
α0

α0 − α
p Ã( f ) < ∞.

Since this is true for every α < dX (A), we have that the Taylor series of f ◦ (q|B y )
−1 at q(y) converges on BdX (A)(q(y)) and

that f ◦ (q|B y )
−1 belongs to HbA(BdX (A)(q(y))), and the claim is proved. �

Suppose now that dX ( ÂHbA(X)) < dX (A). Take y ∈ ÂHbA(X) such that dX (y) < dX (A). We define a Riemann domain X̃ ad-
joining to X the ball BdX (A)(q(y)) as follows. First define a Riemann domain (X0,q0) as the disjoint union X ∪ BdX (A)(q(y)),
and q0(x0) = q(x0) if x0 ∈ X ; q0(x0) = x0 if x0 ∈ BdX (A)(q(y)). Then define the following equivalence relation ∼ on X0: each
point is related with itself and two points x0 ∈ BdX (A)(q(y)), x1 ∈ X are related if and only if q(x1) = x0 and x1 may be
joined to y by a curve contained in q−1(BdX (A)(q(y))). Let X̃ be the Riemann domain X0/∼ . By the claim the inclusion
X ↪→ X̃ is an HbA–HA-extension morphism, and it is not an isomorphism. �
Remark 6.16. By [19, Theorem 4.9] we also have that if A is a holomorphy type with constants as in (2) and (X,q) is
a domain over a separable Banach space E , then X is an HbA-domain of holomorphy if and only if X is the domain of
existence of a function f ∈ HbA(X).
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