H^{2} regularity for the $p(x)$-Laplacian in two-dimensional convex domains ${ }^{\star \pi}$

Leandro M. Del Pezzo ${ }^{\text {a,* }}$, Sandra Martínez ${ }^{\text {b }}$
a CONICET and Departamento de Matemática, FCEyN, UBA, Pabellón I, Ciudad Universitaria (1428), Buenos Aires, Argentina
${ }^{\text {b }}$ IMAS-CONICET and Departamento de Matemática, FCEyN, UBA, Pabellón I, Ciudad Universitaria (1428), Buenos Aires, Argentina

A R T I C L E I N F O

Article history:

Received 3 August 2011
Available online 17 September 2013
Submitted by Goong Chen

Keywords:

Variable exponent spaces
Elliptic equations
H^{2} regularity

Abstract

In this paper we study the H^{2} global regularity for solutions of the $p(x)$-Laplacian in twodimensional convex domains with Dirichlet boundary conditions. Here $p: \Omega \rightarrow\left[p_{1}, \infty\right)$ with $p \in \operatorname{Lip}(\bar{\Omega})$ and $p_{1}>1$.

(C) 2013 Elsevier Inc. All rights reserved.

1. Introduction

Let Ω be a bounded domain in \mathbb{R}^{2} and let $p: \Omega \rightarrow(1,+\infty)$ be a measurable function. In this work, we study the H^{2} global regularity of the weak solution of the following problem

$$
\begin{cases}-\Delta_{p(x)} u=f & \text { in } \Omega \tag{1.1}\\ u=g & \text { on } \partial \Omega\end{cases}
$$

where $\Delta_{p(x)} u=\operatorname{div}\left(|\nabla u|^{p(x)-2} \nabla u\right)$ is the $p(x)$-Laplacian. The hypothesis over p, f and g will be specified later.
Note that, the $p(x)$-Laplacian extends the classical Laplacian $(p(x) \equiv 2)$ and the p-Laplacian $(p(x) \equiv p$ with $1<p<+\infty)$. This operator has been recently used in image processing and in the modeling of electrorheological fluids, see [3,5,24].

Motivated by the applications to image processing problems, in [8], the authors study two numerical methods to approximate solutions of the type of (1.1). In Theorem 7.2, the authors prove the convergence in $W^{1, p(\cdot)}(\Omega)$ of the conformal Galerkin finite element method. It is of our interest to study, in a future work, the rate of this convergence. In general, all the error bounds depend on the global regularity of the second derivatives of the solutions, see for example [6,22]. However, there appear to be no existing regularity results in the literature that can be applied here, since all the results have either a first order or local character.

The H^{2} global regularity for solutions of the p-Laplacian is studied in [22]. There the authors prove the following: Let $1<p \leqslant 2, g \in H^{2}(\Omega), f \in L^{q}(\Omega)(q>2)$ and u be the unique weak solution of (1.1). Then:

- If $\partial \Omega \in C^{2}$ then $u \in H^{2}(\Omega)$;

[^0]- If Ω is convex and $g=0$ then $u \in H^{2}(\Omega)$;
- If Ω is convex with a polygonal boundary and $g \equiv 0$ then $u \in C^{1, \alpha}(\bar{\Omega})$ for some $\alpha \in(0,1)$.

Regarding the regularity of the weak solution of (1.1) when $f=0$, in [1,7], the authors prove the $C_{\text {loc }}^{1, \alpha}$ regularity (in the scalar case and also in the vectorial case). Then, in the paper [15] the authors study the case where the functional has the so-called (p, q)-growth conditions. Following these ideas, in [17], the author proves that the solutions of (1.1) are in $C^{1, \alpha}(\bar{\Omega})$ for some $\alpha>0$ if Ω is a bounded domain in $\mathbb{R}^{N}(N \geqslant 2)$ with $C^{1, \gamma}$ boundary, $p(x)$ is a Hölder function, $f \in L^{\infty}(\Omega)$ and $g \in C^{1, \gamma}(\bar{\Omega})$; while in [4], the authors prove that the solutions are in $H_{l o c}^{2}(\{x \in \Omega: p(x) \leqslant 2\})$ if $p(x)$ is uniformly Lipschitz $(\operatorname{Lip}(\Omega))$ and $f \in W_{l o c}^{1, q(\cdot)}(\Omega) \cap L^{\infty}(\Omega)$.

Our aim, it is to generalize the results of [22] in the case where $p(x)$ is a measurable function. To this end, we will need some hypothesis over the regularity of $p(x)$. Moreover, in all our result we can avoid the restriction $g=0$, assuming some regularity of $g(x)$.

On the other hand, to prove our results, we can assume weaker conditions over the function f than the ones on [4]. Since, we only assume that $f \in L^{q(\cdot)}(\Omega)$, we do not have a priori that the solutions are in $C^{1, \alpha}(\Omega)$. Then we cannot use it to prove the H^{2} global regularity. Nevertheless, we can prove that the solutions are in $C^{1, \alpha}(\bar{\Omega})$, after proving the H^{2} global regularity.

The main results of this paper are:
Theorem 1.1. Let Ω be a bounded domain in \mathbb{R}^{2} with C^{2} boundary, $p \in \operatorname{Lip}(\bar{\Omega})$ with $p(x) \geqslant p_{1}>1, g \in H^{2}(\Omega)$ and u be the weak solution of (1.1). If
(F1) $f \in L^{q(\cdot)}(\Omega)$ with $q(x) \geqslant q_{1}>2$ in the set $\{x \in \Omega: p(x) \leqslant 2\}$;
(F2) $f \equiv 0$ in the set $\{x \in \Omega: p(x)>2\}$,
then $u \in H^{2}(\Omega)$.
Theorem 1.2. Let Ω be a bounded domain in \mathbb{R}^{2} with convex boundary, $p \in \operatorname{Lip}(\bar{\Omega})$ with $p(x) \geqslant p_{1}>1, g \in H^{2}(\Omega)$ and u be the weak solution of (1.1). If f satisfies (F1) and (F2) then $u \in H^{2}(\Omega)$.

Using the above theorem we can prove the following:
Corollary 1.3. Let Ω be a bounded convex domain in \mathbb{R}^{2} with polygonal boundary, p and f as in the previous theorem, $g \in W^{2, q(\cdot)}(\Omega)$ and u be the weak solution of (1.1) then $u \in C^{1, \alpha}(\bar{\Omega})$ for some $0<\alpha<1$.

Observe that this result extends the one in [17] in the case where Ω is a polygonal domain in \mathbb{R}^{2}.

Organization of the paper. The rest of the paper is organized as follows. After a short Section 2 where we collect some preliminary results, in Section 3, we study the H^{2}-regularity for the non-degenerated problem. In Section 4 we prove Theorem 1.1. Then, in Section 5, we study the regularity of the solution u of (1.1) if Ω is convex. In Section 6, we make some comments on the dependence of the H^{2}-norm of u on p_{1}. Lastly, in Appendices A and B we give some results related to elliptic linear equation with bounded coefficients and Lipschitz functions, respectively.

2. Preliminaries

We now introduce the spaces $L^{p(\cdot)}(\Omega)$ and $W^{1, p(\cdot)}(\Omega)$ and state some of their properties.
Let Ω be a bounded open set of \mathbb{R}^{n} and $p: \Omega \rightarrow[1,+\infty)$ be a measurable bounded function, called a variable exponent on Ω and denote $p_{1}:=\operatorname{essinf} p(x)$ and $p_{2}:=\operatorname{esssup} p(x)$.

We define the variable exponent Lebesgue space $L^{p(\cdot)}(\Omega)$ to consist of all measurable functions $u: \Omega \rightarrow \mathbb{R}$ for which the modular

$$
\varrho_{p(\cdot)}(u):=\int_{\Omega}|u(x)|^{p(x)} d x
$$

is finite. We define the Luxemburg norm on this space by

$$
\|u\|_{L^{p(\cdot)}(\Omega)}:=\inf \left\{k>0: \varrho_{p(\cdot)}(u / k) \leqslant 1\right\}
$$

This norm makes $L^{p(\cdot)}(\Omega)$ a Banach space.
For the proofs of the following theorems, we refer the reader to [12].

Theorem 2.1 (Hölder's inequality). Let $p, q, s: \Omega \rightarrow[1,+\infty]$ be measurable functions such that

$$
\frac{1}{p(x)}+\frac{1}{q(x)}=\frac{1}{s(x)} \quad \text { in } \Omega
$$

Then the inequality

$$
\|f g\|_{L^{s(\cdot)}(\Omega)} \leqslant 2\|f\|_{L^{p(\cdot)}(\Omega)}\|g\|_{L^{q(\cdot)}(\Omega)}
$$

holds for all $f \in L^{p(\cdot)}(\Omega)$ and $g \in L^{q(\cdot)}(\Omega)$.
Let $W^{1, p(\cdot)}(\Omega)$ denote the space of measurable functions u such that u and the distributional derivative ∇u are in $L^{p(\cdot)}(\Omega)$. The norm

$$
\|u\|_{W^{1, p(\cdot)}(\Omega)}:=\|u\|_{p(\cdot)}+\||\nabla u|_{p(\cdot)}
$$

makes $W^{1, p(\cdot)}(\Omega)$ a Banach space.

Theorem 2.2. Let $p^{\prime}(x)$ be such that $1 / p(x)+1 / p^{\prime}(x)=1$. Then $L^{p^{\prime}(\cdot)}(\Omega)$ is the dual of $L^{p(\cdot)}(\Omega)$. Moreover, if $p_{1}>1, L^{p(\cdot)}(\Omega)$ and $W^{1, p(\cdot)}(\Omega)$ are reflexive.

We define the space $W_{0}^{1, p(\cdot)}(\Omega)$ as the closure of the $C_{0}^{\infty}(\Omega)$ in $W^{1, p(\cdot)}(\Omega)$. Then we have the following version of Poincaré's inequity (see Theorem 3.10 in [21]).

Lemma 2.3 (Poincaré's inequity). If $p: \Omega \rightarrow[1,+\infty)$ is continuous in $\bar{\Omega}$, there exists a constant C such that for every $u \in W_{0}^{1, p(\cdot)}(\Omega)$,

$$
\|u\|_{L^{p \cdot \cdot}(\Omega)} \leqslant C\|\nabla u\|_{L^{p(\cdot)}(\Omega)}
$$

In order to have better properties of these spaces, we need more hypotheses on the regularity of $p(x)$.
We say that p is log-Hölder continuous in Ω if there exists a constant $C_{\log }$ such that

$$
|p(x)-p(y)| \leqslant \frac{C_{\log }}{\log \left(e+\frac{1}{|x-y|}\right)} \quad \forall x, y \in \Omega
$$

It was proved in [10, Theorem 3.7], that if one assumes that p is log-Hölder continuous then $C^{\infty}(\bar{\Omega})$ is dense in $W^{1, p(\cdot)}(\Omega)$ (see also [9,12,13,21,25]).

We now state the Sobolev embedding theorem (for the proofs see [12]). Let

$$
p^{*}(x):= \begin{cases}\frac{p(x) N}{N-p(x)} & \text { if } p(x)<N \\ +\infty & \text { if } p(x) \geqslant N\end{cases}
$$

be the Sobolev critical exponent. Then we have the following:
Theorem 2.4. Let Ω be a Lipschitz domain. Let $p: \Omega \rightarrow[1, \infty)$ and p be log-Hölder continuous. Then the imbedding $W^{1, p(\cdot)}(\Omega) \hookrightarrow$ $L^{p^{*}(\cdot)}(\Omega)$ is continuous.

3. $\boldsymbol{H}^{\mathbf{2}}$-regularity for the non-degenerated problem for any dimension

In this section we assume that Ω is a bounded domain in \mathbb{R}^{N}, with $N \geqslant 2$.
We want to study higher regularity of the weak solution of the regularized equation,

$$
\begin{cases}-\operatorname{div}\left(\left(\varepsilon+|\nabla u|^{2}\right)^{\frac{p(x)-2}{2}} \nabla u\right)=f & \text { in } \Omega \tag{3.2}\\ u=g & \text { on } \partial \Omega\end{cases}
$$

where $0<\varepsilon \leqslant 1$, and $f \in \operatorname{Lip}(\Omega)$ and $g \in W^{1, p(\cdot)}(\Omega)$.
The existence of a weak solution of (3.2) holds by Theorem 13.3.3 in [12].
Remark 3.1. Given $\varepsilon \geqslant 0, p \in C^{\alpha_{0}}(\bar{\Omega})$ for some $\alpha_{0}>0$, and $g \in L^{\infty}(\Omega)$ we have the following results:
(1) Since $f, g \in L^{\infty}(\Omega)$, by Theorem 4.1 in [18], we have that $u \in L^{\infty}(\Omega)$.
(2) By Theorem 1.1 in [17], $u \in C_{\text {loc }}^{1, \alpha}(\Omega)$ for some α depending on $p_{1}, p_{2},\|u\|_{L^{\infty}(\Omega)}$ and $\|f\|_{L^{\infty}(\Omega)}$. Moreover, given $\Omega_{0} \subset \subset \Omega,\|u\|_{C^{1, \alpha}\left(\Omega_{0}\right)}$ depends on the same constants and $\operatorname{dist}\left(\Omega_{0}, \partial \Omega\right)$.
(3) Finally, by Theorem 1.2 in [17], if $\partial \Omega \in C^{1, \gamma}$ and $g \in C^{1, \gamma}(\partial \Omega)$ for some $\gamma>0$ then $u \in C^{1, \alpha}(\bar{\Omega})$, where α and $\|u\|_{C^{1, \alpha}(\Omega)}$ depend on $p_{1}, p_{2}, N,\|u\|_{L^{\infty}(\Omega)},\|p\|_{C^{\alpha_{0}}(\Omega)}, \alpha_{0}$ and γ.

We will first prove the H^{2}-local regularity assuming only that $p(x)$ is Lipschitz. Then, we will prove the global regularity under the stronger condition that $\nabla p(x)$ is Hölder.

3.1. H^{2}-local regularity

While we were finishing this paper, we found the work [4], where the authors give a different proof of the H^{2}-local regularity of the solutions of (3.2). Anyhow, we leave the proof for the completeness of this paper.

Theorem 3.2. Let $p, f \in \operatorname{Lip}(\Omega)$ with $p_{1}>1$ and u be a weak solution of (3.2), then $u \in H_{l o c}^{2}(\Omega)$.
Proof. First, let us define for any function F and $h>0$,

$$
\Delta^{h} F(x)=\frac{F(x+\mathbf{h})-F(x)}{h}
$$

where $\mathbf{h}=h e_{k}$ and e_{k} is a vector of the canonical base of \mathbb{R}^{N}.
Let $\eta(x)=\xi(x)^{2} \Delta^{h} u(x)$ where ξ is a regular function with compact support. Therefore, if we take $v_{\varepsilon}=\left(|\nabla u|^{2}+\varepsilon\right)^{1 / 2}$ and $h<\operatorname{dist}(\operatorname{supp}(\xi), \partial \Omega)$, we have

$$
\begin{aligned}
& \int_{\Omega}\left\langle v_{\varepsilon}(x)^{p(x)-2} \nabla u(x), \nabla \eta(x)\right\rangle d x=\int_{\Omega} f(x) \eta(x) d x, \\
& \int_{\Omega}\left\langle v_{\varepsilon}(x+\mathbf{h})^{p(x+\mathbf{h})-2} \nabla u(x+\mathbf{h}), \nabla \eta(x)\right\rangle d x=\int_{\Omega} f(x+\mathbf{h}) \eta(x) d x .
\end{aligned}
$$

Subtracting, using that $\nabla \eta=2 \xi \nabla \xi \Delta^{h} u+\xi^{2} \Delta^{h}(\nabla u)$ and dividing by h we obtain

$$
\begin{aligned}
I= & \int_{\Omega}\left\langle\Delta^{h}\left(v_{\varepsilon}(x)^{p(x)-2} \nabla u\right), \Delta^{h}(\nabla u)\right| \xi^{2} d x \\
= & -2 \int_{\Omega}\left\langle\Delta^{h}\left(v_{\varepsilon}(x)^{p(x)-2} \nabla u\right), \xi \nabla \xi \Delta^{h} u\right\rangle d x+\int_{\Omega} \xi^{2} \Delta^{h} f \Delta^{h} u d x \\
= & 2 \int_{\Omega}\left(\int_{0}^{1} v_{\varepsilon}(x+\mathbf{h} t)^{p(x+\mathbf{h} t)-2} \nabla u(x+\mathbf{h} t) d t\right) \frac{\partial}{\partial x_{k}}\left(\xi \nabla \xi \Delta^{h} u\right) d x \\
& +\int_{\Omega} \xi^{2} \Delta^{h} f \Delta^{h} u d x \\
= & I I+I I I
\end{aligned}
$$

Now, let us fix a ball B_{R} such that $B_{3 R} \subset \subset \Omega$ and take $\xi \in C_{0}^{\infty}(\Omega)$ supported in $B_{2 R}$ such that $0 \leqslant \xi \leqslant 1, \xi=1$ in B_{R}, $|\nabla \xi| \leqslant 1 / R$ and $\left|D^{2} \xi\right| \leqslant C R^{-2}$.

By Remark 3.1, there exists a constant $C_{1}>0$ such that $|\nabla u| \leqslant C_{1}$ in $B_{3 R}$, therefore we get

$$
\begin{aligned}
I I & \leqslant 2 \int_{B_{2 R}} \frac{C}{R}\left|\Delta^{h} u_{x_{k}}\right| \xi d x+2 \int_{B_{2 R}} \frac{C}{R^{2}}\left|\Delta^{h} u\right| d x \\
& \leqslant \frac{C}{R} \int_{B_{2 R}}\left|\Delta^{h}(\nabla u)\right| \xi d x+C R^{N-2}
\end{aligned}
$$

On the other hand, since f is Lipschitz we have that

$$
|f(x+\mathbf{h})-f(x)| \leqslant C_{2} h
$$

for some constant $C_{2}>0$. This implies that

$$
I I I \leqslant C_{2} R^{N}
$$

Therefore, summing II and III, and using Young's inequality, we have that for any $\delta>0$

$$
\begin{equation*}
I \leqslant \delta \int_{B_{2 R}}\left|\Delta^{h}(\nabla u)\right|^{2} \xi^{2} d x+C \tag{3.3}
\end{equation*}
$$

for some constant C depending on R and δ.
On the other hand observe that $I=I_{1}+I_{2}$ where

$$
I_{1}=\frac{1}{h} \int_{B_{2 R}}\left\langle\left(v_{\varepsilon}(x+\mathbf{h})^{p(x+\mathbf{h})-2} \nabla u(x+\mathbf{h})-v_{\varepsilon}(x)^{p(x+\mathbf{h})-2} \nabla u(x)\right), \Delta^{h}(\nabla u)\right) \xi^{2} d x
$$

and

$$
I_{2}=\frac{1}{h} \int_{B_{2 R}}\left\langle\left(v_{\varepsilon}(x)^{p(x+\mathbf{h})}-v_{\varepsilon}(x)^{p(x)}\right) \frac{\nabla u(x)}{v_{\varepsilon}(x)^{2}}, \Delta^{h}(\nabla u)\right) \xi^{2} d x
$$

Using that $p(x)$ is Lipschitz and the fact that $|\nabla u(x)| \leqslant C_{1}$ we have that, for some b between $p(x+h)$ and $p(x)$,

$$
\frac{1}{h}\left|v_{\varepsilon}(x)^{p(x+\mathbf{h})}-v_{\varepsilon}(x)^{p(x)}\right|=\left|v_{\varepsilon}(x)^{b} \log \left(v_{\varepsilon}(x)\right) \frac{p(x+\mathbf{h})-p(x)}{h}\right| \leqslant C
$$

for some constant $C>0$ depending on $p_{1}, p_{2}, \varepsilon, C_{1}$ and the Lipschitz constant of $p(x)$.
Therefore, we have that

$$
-I_{2} \leqslant C C_{1} \varepsilon^{-1} \int_{B_{2 R}}\left|\Delta^{h}(\nabla u)\right| \xi^{2} d x
$$

By (3.3), the last inequality and using again Young's inequality we have that, for any $\delta>0$,

$$
\begin{equation*}
I_{1} \leqslant \delta \int_{B_{2 R}}\left|\Delta^{h}(\nabla u)\right|^{2} \xi^{2} d x+C \tag{3.4}
\end{equation*}
$$

for some constant $C>0$ depending on $p_{1}, p_{2}, \varepsilon, C_{1}$ and the Lipschitz constant of $p(x)$.
To finish the proof, we have to find a lower bound for I_{1}. By the well-known inequality, we have that

$$
\left\langle\left(v_{\varepsilon}(x+\mathbf{h})^{p(x+h)-2} \nabla u(x+\mathbf{h})-v_{\varepsilon}(x)^{p(x+\mathbf{h})-2} \nabla u(x)\right),(\nabla u(x+\mathbf{h})-\nabla u(x))\right\rangle \geqslant C_{\varepsilon}|\nabla u(x+\mathbf{h})-\nabla u(x)|^{2}
$$

where

$$
C_{\varepsilon}= \begin{cases}\varepsilon^{(p(x+\mathbf{h})-2) / 2} & \text { if } p(x+\mathbf{h}) \geqslant 2 \\ (p(x+\mathbf{h})-1) \varepsilon^{(p(x+\mathbf{h})-2) / 2} & \text { if } p(x+\mathbf{h}) \leqslant 2\end{cases}
$$

Therefore, using that $p_{1}>1$, we arrive at

$$
I_{1} \geqslant \int_{B_{2 R}} C h^{-2}|\nabla u(x+\mathbf{h})-\nabla u(x)|^{2} \xi^{2} d x=C \int_{B_{2 R}}\left|\Delta^{h}(\nabla u(x))\right|^{2} \xi^{2} d x
$$

Finally combining the last inequality with (3.4) we have that

$$
\int_{B_{R}}\left|\Delta^{h}(\nabla u(x))\right|^{2} d x \leqslant C(N, p, f, \varepsilon)
$$

This proves that $u \in H_{l o c}^{2}(\Omega)$.

3.2. H^{2}-global regularity

Now we want to prove that if $f \in \operatorname{Lip}(\Omega)$ and $g \in C^{1, \beta}(\partial \Omega)$, the regularized equation (3.2) has a weak solution $u \in$ $C^{2}(\Omega) \cap C^{1, \alpha}(\bar{\Omega})$ for an $\alpha \in(0,1)$. We already know, by Remark 3.1, that $u \in C^{1, \alpha}(\bar{\Omega})$. Then, we only need to prove that $u \in C^{2}(\Omega)$.

Lemma 3.3. Let Ω be a bounded domain in \mathbb{R}^{N} with $\partial \Omega \in C^{1, \gamma}, p \in C^{1, \beta}(\Omega) \cap C^{\alpha_{0}}(\bar{\Omega}), f \in \operatorname{Lip}(\Omega)$ and $g \in C^{1, \beta}(\partial \Omega)$. Then, the Dirichlet Problem (3.2) has a solution $u \in C^{2}(\Omega) \cap C^{1, \alpha}(\bar{\Omega})$.

Proof. Observe that by Theorem 3.2, we know that the solution is in $H_{l o c}^{2}(\Omega)$. Then for any $\Omega^{\prime} \subset \subset \Omega$ we can derive the equation and look at the solution of (3.2) as the solution of the following equation,

$$
\begin{cases}L_{\varepsilon} u=a(x) & \text { in } \Omega^{\prime}, \tag{3.5}\\ u=u & \text { on } \partial \Omega^{\prime} .\end{cases}
$$

Here,

$$
L_{\varepsilon} u=a_{i j}^{\varepsilon}(x) u_{x_{i} x_{j}}
$$

with

$$
\begin{align*}
& a_{i j}^{\varepsilon}(x)=\delta_{i j}+(p(x)-2) \frac{u_{x_{i}} u_{x_{j}}}{v_{\varepsilon}^{2}}, \quad v_{\varepsilon}=\left(\varepsilon+|\nabla u|^{2}\right)^{\frac{1}{2}} \quad \text { and } \\
& a_{\varepsilon}(x)=\ln \left(v_{\varepsilon}\right)\langle\nabla u, \nabla p\rangle+f v_{\varepsilon}^{2-p} . \tag{3.6}
\end{align*}
$$

The operator L_{ε} is uniformly elliptic in Ω, since for any $\xi \in \mathbb{R}^{N}$

$$
\begin{equation*}
\min \left\{\left(p_{1}-1\right), 1\right\}|\xi|^{2} \leqslant a_{i j}^{\varepsilon} \xi_{i} \xi_{j} \leqslant \max \left\{\left(p_{2}-1\right), 1\right\}|\xi|^{2} \tag{3.7}
\end{equation*}
$$

On the other hand, by Remark 3.1, $u \in C^{1, \alpha}(\bar{\Omega})$. Then, $a_{i j}^{\varepsilon} \in C^{\alpha}(\bar{\Omega})$, since $\varepsilon>0$. Using that $f \in \operatorname{Lip}(\Omega)$, we have that $a \in C^{\rho}(\Omega)$ where $\rho=\min (\alpha, \beta)$. If $\partial \Omega^{\prime} \in C^{2}$, as u is the unique solution of (3.5), by Theorem 6.13 in [19], we have that $u \in C^{2, \rho}\left(\Omega^{\prime}\right)$. This ends the proof.

Remark 3.4. By the H^{2} global estimate for linear elliptic equations with $L^{\infty}(\Omega)$ coefficients in two variables (see Lemma A. 1 and (3.7)) we have that

$$
\|u\|_{H^{2}(\Omega)} \leqslant C\left(\left\|a_{\varepsilon}\right\|_{L^{2}(\Omega)}+\|g\|_{H^{2}(\Omega)}\right)
$$

where u is the solution of (3.2) and C is a constant independents of ε.

4. Proof of Theorem 1.1

Before proving the theorem, we will need a global bound for the derivatives of the solutions of (3.2).
Lemma 4.1. Let $f \in L^{q(\cdot)}(\Omega)$ with $q^{\prime}(x) \leqslant p^{*}(x), g \in W^{1, p(\cdot)}(\Omega), \varepsilon>0$ and u_{ε} be the weak solution of (3.2) then

$$
\left\|\nabla u_{\varepsilon}\right\|_{L^{p(\cdot)}(\Omega)} \leqslant C
$$

where C is a constant depending on $\|f\|_{L^{q \cdot(\cdot)}(\Omega)},\|g\|_{W^{1, p(\cdot)}(\Omega)}$ but not on ε.
Proof. Let

$$
J(v):=\int_{\Omega} \frac{1}{p(x)}\left(|\nabla v|^{2}+\varepsilon\right)^{p(x) / 2} d x
$$

By the convexity of J and using (3.2) we have that

$$
\begin{aligned}
J\left(u_{\varepsilon}\right) & \leqslant J(g)-\int_{\Omega}\left(\left|\nabla u_{\varepsilon}\right|^{2}+\varepsilon\right)^{(p-2) / 2} \nabla u_{\varepsilon}\left(\nabla g-\nabla u_{\varepsilon}\right) d x \\
& \leqslant C\left(1+\int_{\Omega} f\left(u_{\varepsilon}-g\right) d x\right) \\
& \leqslant C\left(1+\|f\|_{L^{q \cdot()}(\Omega)}\left\|u_{\varepsilon}-g\right\|_{L^{q^{\prime} \cdot(\cdot)}(\Omega)}\right) \\
& \leqslant C\left(1+\|f\|_{L^{q \cdot(\cdot)}(\Omega)}\left\|\nabla u_{\varepsilon}-\nabla g\right\|_{L^{p \cdot \cdot}(\Omega)}\right),
\end{aligned}
$$

where in the last inequality we are using that $W^{1, p(\cdot)}(\Omega) \hookrightarrow L^{p^{*}(\cdot)}(\Omega)$ continuously and Poincaré's inequality.
Thus we have that there exists a constant independent of ε such that

$$
\int_{\Omega}\left|\nabla u_{\varepsilon}\right|^{p(x)} d x \leqslant C\left(1+\left\|\nabla u_{\varepsilon}\right\|_{L^{p(\cdot)}(\Omega)}\right)
$$

and using the properties of the $L^{p(\cdot)}(\Omega)$-norms this means that

$$
\left\|\nabla u_{\varepsilon}\right\|_{L^{p(\cdot)}(\Omega)}^{m} \leqslant C\left(1+\left\|\nabla u_{\varepsilon}\right\|_{L^{p(\cdot)}(\Omega)}\right)
$$

for some $m>1$. Therefore $\left\|\nabla u_{\varepsilon}\right\|_{L^{p(\cdot)}(\Omega)}$ is bounded independent of ε.
To prove Theorem 1.1, we will use the results of Section 3. Therefore, we will first need to assume that $p \in C^{1 . \beta}(\Omega) \cap$ $C(\bar{\Omega})$.

Theorem 4.2. Let Ω be a bounded domain in \mathbb{R}^{2} with C^{2} boundary, $p \in C^{1 . \beta}(\Omega) \cap C^{\alpha_{0}}(\bar{\Omega})$ with $p(x) \geqslant p_{1}>1, g \in H^{2}(\Omega)$ and u be the weak solution of (1.1). If f satisfies (F1) and (F2) then $u \in H^{2}(\Omega)$.

Proof. Let $f_{\varepsilon} \in \operatorname{Lip}(\Omega)$ and $g_{\varepsilon} \in C^{2, \alpha}(\bar{\Omega})$ such that
$f_{\varepsilon} \rightarrow f$ strongly in $L^{q(\cdot)}(\Omega)$,
$g_{\varepsilon} \rightarrow g$ strongly in $H^{2}(\Omega)$,
as $\varepsilon \rightarrow 0$. Observe that, since $f(x)=0$ if $p(x)>2$, we can take $f_{\varepsilon} \equiv 0$ in $\{x \in \Omega: p(x)>2\}$.
Now, let us consider the solution of (3.2) as the solution of

$$
\begin{cases}a_{11}^{\varepsilon}(x) \frac{\partial^{2} u_{\varepsilon}}{\partial x_{1}^{2}}+2 a_{12}^{\varepsilon}(x) \frac{\partial^{2} u_{\varepsilon}}{\partial x_{1} \partial x_{2}}+a_{22}^{\varepsilon}(x) \frac{\partial^{2} u_{\varepsilon}}{\partial x_{2}^{2}}=a_{\varepsilon}(x) & \text { in } \Omega \\ u_{\varepsilon}=g_{\varepsilon} & \text { on } \partial \Omega\end{cases}
$$

where $a_{11}^{\varepsilon}, a_{22}^{\varepsilon}, a_{12}^{\varepsilon}, a_{\varepsilon}$ are defined as in Lemma 3.3, substituting f and g by f_{ε} and g_{ε} respectively. By Lemma 3.3 we know that $u_{\varepsilon} \in C^{2}(\Omega) \cap C^{1, \alpha}(\bar{\Omega})$.

First we will prove the $\left\{u_{\varepsilon}\right\}_{\varepsilon \in(0,1]}$ is bounded in $H^{2}(\Omega)$. By Remark 3.4, we have that

$$
\begin{align*}
\left\|u_{\varepsilon}\right\|_{H^{2}(\Omega)} & \leqslant C\left(\left\|a_{\varepsilon}(x)\right\|_{L^{2}(\Omega)}+\left\|g_{\varepsilon}\right\|_{H^{2}(\Omega)}\right) \\
& \leqslant C\left(\left\|\ln \left(v_{\varepsilon}\right) \nabla u_{\varepsilon} \nabla p\right\|_{L^{2}(\Omega)}+\left\|f_{\varepsilon} v^{2-p}\right\|_{L^{2}(\Omega)}+\left\|g_{\varepsilon}\right\|_{H^{2}(\Omega)}\right) \tag{4.8}
\end{align*}
$$

Taking $\Omega_{1}=\left\{x \in \Omega:\left|\nabla u_{\varepsilon}(x)\right|>1\right\}$, using that $p(x)$ is Lipschitz and Hölder's inequality, we have

$$
\begin{equation*}
\left\|\ln \left(v_{\varepsilon}\right) \nabla u_{\varepsilon} \nabla p\right\|_{L^{2}(\Omega)} \leqslant C\left\|\ln ^{2}\left(v_{\varepsilon}\right) \nabla u_{\varepsilon}\right\|_{L^{p^{\prime} \cdot()}\left(\Omega_{1}\right)}^{1 / 2}\left\|\nabla u_{\varepsilon}\right\|_{L^{p(\cdot)}\left(\Omega_{1}\right)}^{1 / 2}+C . \tag{4.9}
\end{equation*}
$$

On the other hand, since $q(x) \geqslant q_{1}>2$, we have that $q^{\prime}(x) \leqslant p^{*}(x)$. Then, as $\left\|f_{\varepsilon}\right\|_{L^{q(\cdot)}(\Omega)}$ and $\left\|g_{\varepsilon}\right\|_{H^{2}(\Omega)}$ are bounded independent of ε, using Lemma 4.1 we conclude that $\left\|\nabla u_{\varepsilon}\right\|_{L^{p(\cdot)}(\Omega)}$ is uniformly bounded.

Observe that, for all $s>0$ there exists a constant $C>0$ such that

$$
\ln \left(v_{\varepsilon}\right) \leqslant C v_{\varepsilon}^{s / 2}<C\left|\nabla u_{\varepsilon}\right|^{s / 2} \quad \text { in } \Omega_{1}
$$

thus

$$
\begin{aligned}
\left\|\ln ^{2}\left(v_{\varepsilon}\right)\left|\nabla u_{\varepsilon}\right|\right\|_{L^{p^{\prime}(\cdot)}\left(\Omega_{1}\right)} & \leqslant C\left\|\left|\nabla u_{\varepsilon}\right|^{1+s}\right\|_{L^{p^{\prime}(\cdot)}\left(\Omega_{1}\right)} \\
& \leqslant C\left\|\nabla u_{\varepsilon}\right\|_{L^{p^{\prime}(\cdot)(1+s)}\left(\Omega_{1}\right)}^{(1+s)} \\
& \leqslant C\left\|u_{\varepsilon}\right\|_{H^{2}\left(\Omega_{1}\right)}^{(1+s)}
\end{aligned}
$$

In the last line, we are using that $2^{*}=\infty$, since $N=2$.
Then, by the last inequality, (4.8) and (4.9), we get

$$
\begin{equation*}
\left\|u_{\varepsilon}\right\|_{H^{2}(\Omega)} \leqslant C\left(\left\|u_{\varepsilon}\right\|_{H^{2}(\Omega)}^{(1+s) / 2}+\left\|f_{\varepsilon} v_{\varepsilon}^{2-p}\right\|_{L^{2}(\Omega)}+1\right) \tag{4.10}
\end{equation*}
$$

Taking

$$
A_{1}=\{x \in \Omega: p(x)=2\} \quad \text { and } \quad A_{2}=\{x \in \Omega: p(x)<2\}
$$

and using that $f_{\varepsilon} \equiv 0$ in $\{x \in \Omega: p(x)>2\}$, we have that

$$
\left\|f_{\varepsilon} v_{\varepsilon}^{2-p}\right\|_{L^{2}(\Omega)} \leqslant\left\|f_{\varepsilon}\right\|_{L^{2}\left(A_{1}\right)}+\left\|f_{\varepsilon} v_{\varepsilon}^{2-p}\right\|_{L^{2}\left(A_{2}\right)}
$$

Since $\left\|f_{\varepsilon}\right\|_{L^{2}\left(A_{1}\right)}$ is bounded, to prove that $\left\{u_{\varepsilon}\right\}_{\varepsilon \in(0,1]}$ is bounded in $H^{2}(\Omega)$, we only have to find a bound of $\left\|f_{\varepsilon} v_{\varepsilon}^{2-p}\right\|_{L^{2}\left(A_{2}\right)}$.

Let us define in A_{2} the function

$$
\tilde{q}(x)= \begin{cases}\frac{1}{2 p(x)-3}+1 & \text { if } \frac{1}{q(x)}+\frac{3}{2} \leqslant p(x)<2 \\ \frac{q(x)}{2}+1 & \text { if } p(x)<\frac{1}{q(x)}+\frac{3}{2}\end{cases}
$$

It is easy to see that $2<\tilde{q}(x) \leqslant q(x)$ for any $x \in A_{2}$.
On the other hand, let us denote $\mu(x)=\frac{2 \tilde{q}(x)}{\tilde{q}(x)-2}$ and $\gamma(x)=\mu(x)(2-p(x))$ then

$$
1<1+\frac{2}{q_{2}} \leqslant \gamma(x) \leqslant \max \left\{2,2+\frac{8}{q_{1}-2}\right\} \quad \forall x \in A_{2}
$$

Now, using Hölder's inequality with exponent $\tilde{q}(x) / 2$, we have

$$
\begin{equation*}
\left\|f_{\varepsilon} v_{\varepsilon}^{2-p}\right\|_{L^{2}\left(A_{2}\right)} \leqslant C\left\|f_{\varepsilon}\right\|_{L^{\tilde{q}(\cdot)}\left(A_{2}\right)}\left\|v_{\varepsilon}^{2-p}\right\|_{L^{\mu(\cdot)}\left(A_{2}\right)} \tag{4.11}
\end{equation*}
$$

Then, if $\left\|v_{\varepsilon}\right\|_{L^{\nu(\cdot)}\left(A_{2}\right)} \leqslant 1$ we have $\left\|v_{\varepsilon}^{2-p}\right\|_{L^{\mu(\cdot)}\left(A_{2}\right)} \leqslant 1$ and since $\tilde{q}(x) \leqslant q(x)$ we get

$$
\left\|f_{\varepsilon} v_{\varepsilon}^{2-p}\right\|_{L^{2}\left(A_{2}\right)} \leqslant C
$$

If $\|v\|_{L^{\gamma(\cdot)}\left(A_{2}\right)} \geqslant 1$, we have

$$
\begin{equation*}
\left\|v_{\varepsilon}^{2-p}\right\|_{L^{\mu(\cdot)}\left(A_{2}\right)} \leqslant\left\|v_{\varepsilon}\right\|_{L^{\gamma(\cdot)}\left(A_{2}\right)}^{2-p_{1}} \leqslant C\left(1+\left\|\nabla u_{\varepsilon}\right\|_{L^{\gamma(\cdot)}\left(A_{2}\right)}^{2-p_{1}}\right), \tag{4.12}
\end{equation*}
$$

where in the last inequality we are using that $\varepsilon \leqslant 1$.
Since $2^{*}=\infty$ and $1<\gamma_{1} \leqslant \gamma(x) \leqslant \gamma_{2}<\infty$, by the Sobolev embedding inequality, we have that

$$
\left\|\nabla u_{\varepsilon}\right\|_{L^{\gamma(\cdot)}\left(A_{2}\right)}^{2-p_{1}} \leqslant C\left\|u_{\varepsilon}\right\|_{H^{2}\left(A_{2}\right)}^{2-p_{1}} \leqslant C\left\|u_{\varepsilon}\right\|_{H^{2}(\Omega)}^{2-p_{1}}
$$

Combining this last inequality with inequalities (4.12), (4.11), (4.10) and the fact that $\tilde{q}(x) \leqslant q(x)$, we get

$$
\left\|u_{\varepsilon}\right\|_{H^{2}(\Omega)} \leqslant C\left(\left\|u_{\varepsilon}\right\|_{H^{2}(\Omega)}^{(1+s) / 2}+\left\|u_{\varepsilon}\right\|_{H^{2}(\Omega)}^{2-p_{1}}+1\right)
$$

Finally, we get that for any $0<s<1$ there exists a constant $C=C(p, g, f, s)$ such that

$$
\left\|u_{\varepsilon}\right\|_{H^{2}(\Omega)} \leqslant C
$$

Then, there exists a subsequence still denoted $\left\{u_{\varepsilon}\right\}_{\varepsilon \in(0,1]}$ and $u \in H^{1}(\Omega)$ such that

$$
\begin{array}{ll}
u_{\varepsilon} \rightarrow u & \text { strongly in } H^{1}(\Omega) \\
u_{\varepsilon} \rightharpoonup u & \text { weakly in } H^{2}(\Omega)
\end{array}
$$

It is clear that u satisfies the boundary condition.
Lastly, by Proposition 3.2 in [2], there exists a constant $M>0$ independent of ε such that

$$
\begin{equation*}
\left|\left(\varepsilon+\left|\nabla u_{\varepsilon}\right|^{2}\right)^{\frac{p(x)-2}{2}} \nabla u_{\varepsilon}-\left(\varepsilon+|\nabla u|^{2}\right)^{\frac{p(x)-2}{2}} \nabla u\right| \leqslant M\left|\nabla\left(u_{\varepsilon}-u\right)\right|^{p(x)-1} \tag{4.13}
\end{equation*}
$$

for all $x \in \Omega$. Then, passing to the limit in the weak formulation of (3.2) and using the above inequality, we have that

$$
\int_{\Omega}|\nabla u|^{p(x)-2} \nabla u \nabla \varphi d x=\int_{\Omega} f \varphi d x
$$

for any $\varphi \in C_{0}^{\infty}(\Omega)$. Therefore $u \in H^{2}(\Omega)$ and solves (1.1).
Now, we are able to prove the theorem.
Proof of Theorem 1.1. First, we consider the case $p \in C^{1}(\bar{\Omega})$. Let $p_{\varepsilon} \in C^{\infty}(\bar{\Omega})$ such that $p_{\varepsilon} \rightarrow p$ in $C^{1}(\Omega)$. Now, we define

$$
f_{\varepsilon}(x)= \begin{cases}f(x) & \text { if } p_{\varepsilon}(x) \leqslant 2 \tag{4.14}\\ 0 & \text { if } p_{\varepsilon}(x)>2\end{cases}
$$

Observe that $f_{\varepsilon} \rightarrow f$ in $L^{q(\cdot)}(\Omega)$ as $\varepsilon \rightarrow 0$.

Then, by Theorem 4.2, the solution u_{ε} of (1.1) (with p_{ε} and f_{ε} instead of p and f) is bounded in $H^{2}(\Omega)$ by a constant independent of ε. Therefore, there exists a subsequence still denoted $\left\{u_{\varepsilon}\right\}_{\varepsilon \in(0,1]}$ and $u \in H^{2}(\Omega)$ such that

$$
\begin{align*}
& u_{\varepsilon} \rightarrow u \quad \text { in } H^{1}(\Omega) \\
& u_{\varepsilon} \rightharpoonup u \quad \text { weakly in } H^{2}(\Omega) . \tag{4.15}
\end{align*}
$$

It remains to prove that u is a solution of (1.1). Let $\varphi \in C_{0}^{\infty}(\Omega)$, then

$$
\begin{align*}
\int_{\Omega} f_{\varepsilon} \varphi d x & =\int_{\Omega}\left|\nabla u_{\varepsilon}\right|^{p_{\varepsilon}(x)-2} \nabla u_{\varepsilon} \nabla \varphi d x \\
& =\int_{\Omega}\left|\nabla u_{\varepsilon}\right|^{p(x)-2} \nabla u_{\varepsilon} \nabla \varphi d x+\int_{\Omega}\left(\left|\nabla u_{\varepsilon}\right|^{p_{\varepsilon}(x)-2}-\left|\nabla u_{\varepsilon}\right|^{p(x)-2}\right) \nabla u_{\varepsilon} \nabla \varphi d x . \tag{4.16}
\end{align*}
$$

Therefore, using that $H^{2}(\Omega) \hookrightarrow W^{1, p(\cdot)}(\Omega)$ compactly, we have that

$$
\begin{equation*}
\int_{\Omega}\left|\nabla u_{\varepsilon}\right|^{p(x)-2} \nabla u_{\varepsilon} \nabla \varphi d x \rightarrow \int_{\Omega}|\nabla u|^{p(x)-2} \nabla u \nabla \varphi d x \tag{4.17}
\end{equation*}
$$

On the other hand, we have

$$
\left|\nabla u_{\varepsilon}(x)\right|^{p_{\varepsilon}(x)-1}-\left|\nabla u_{\varepsilon}(x)\right|^{p(x)-1}=\left|\nabla u_{\varepsilon}(x)\right|^{b_{\varepsilon}(x)} \log \left(\left|\nabla u_{\varepsilon}(x)\right|\right)\left(p_{\varepsilon}(x)-p(x)\right),
$$

where $b_{\varepsilon}(x)=p_{\varepsilon}(x) \theta+(1-\theta) p(x)-1$ for some $0<\theta<1$. Therefore, using that $2^{*}=\infty$ and that $p_{\varepsilon} \rightarrow p$ uniformly, we obtain

$$
\begin{equation*}
\int_{\Omega}\left(\left|\nabla u_{\varepsilon}\right|^{p_{\varepsilon}(x)-2}-\left|\nabla u_{\varepsilon}\right|^{p(x)-2}\right) \nabla u_{\varepsilon} \nabla \varphi d x \rightarrow 0 \tag{4.18}
\end{equation*}
$$

Then, using that $f_{\varepsilon} \rightarrow f$ in $L^{q(\cdot)}(\Omega)$, (4.16), (4.17) and (4.18), we conclude that u is a solution of (1.1).
Now, we consider the case $p \in \operatorname{Lip}(\bar{\Omega})$. By Lemmas B. 1 and B. 2 there exists $p_{\varepsilon} \in C^{1}(\bar{\Omega})$ such that $\left|\Omega \backslash \Omega_{0}\right|<\varepsilon$ where

$$
\Omega_{0}=\left\{x \in \Omega: p_{\varepsilon}(x)=p(x) \text { and } \nabla p_{\varepsilon}(x)=\nabla p(x)\right\} .
$$

We define f_{ε} as in (4.14). Then, the solution u_{ε} of (1.1) with p_{ε} and f_{ε} instead of p and f is bounded in $H^{2}(\Omega)$ by a constant independent of ε. Therefore there exists a subsequence still denoted $\left\{u_{\varepsilon}\right\}_{\varepsilon \in(0,1]}$ and $u \in H^{2}(\Omega)$ satisfying (4.15).

Lastly, we prove that u is a solution of (1.1). Let $\varphi \in C_{0}^{\infty}(\Omega)$. By Hölder's inequality, since $2^{*}=\infty$ and by (3) of Lemma B. 2 we have

$$
\begin{aligned}
& \int_{\Omega \backslash \Omega_{0}}\left(\left|\nabla u_{\varepsilon}\right|^{p_{\varepsilon}(x)-2}-\left|\nabla u_{\varepsilon}\right|^{p(x)-2}\right) \nabla u_{\varepsilon} \nabla \varphi d x \\
& \quad \leqslant C\left(\left\|\nabla u_{\varepsilon}\right\|_{L^{p}(\Omega)}\|1\|_{L^{p}\left(\Omega \backslash \Omega_{0}\right)}+\left\|\nabla u_{\varepsilon}\right\|_{L^{p}(\Omega)}\|1\|_{L^{p}\left(\Omega \backslash \Omega_{0}\right)}\right) \\
& \quad \leqslant C\left\|u_{\varepsilon}\right\|_{H^{2}(\Omega)}\left(\|1\|_{L^{p_{\varepsilon}}\left(\Omega \backslash \Omega_{0}\right)}+\|1\|_{L^{p}\left(\Omega \backslash \Omega_{0}\right)}\right) .
\end{aligned}
$$

Then, since $\left\|u_{\varepsilon}\right\|_{H^{2}(\Omega)}$ is bounded independent of ε and $\left|\Omega \backslash \Omega_{0}\right|<\varepsilon$ we obtain that

$$
\int_{\Omega \backslash \Omega_{0}}\left(\left|\nabla u_{\varepsilon}\right|^{p_{\varepsilon}(x)-2}-\left|\nabla u_{\varepsilon}\right|^{p(x)-2}\right) \nabla u_{\varepsilon} \nabla \varphi d x \rightarrow 0
$$

Therefore, since (4.16), (4.17) again hold, using that $f_{\varepsilon} \rightarrow f$ in $L^{q(\cdot)}(\Omega)$, and the above equation, we conclude that u is a solution of (1.1).

5. The convex case

Lastly, we want to prove that the solution is in $H^{2}(\Omega)$ if we only assume that $\partial \Omega$ is convex. We want to remark here that this result generalizes the one in Theorem 2.2 in [22] in two ways. In that paper the authors consider the case $p=$ constant and $g=0$. Instead, we are allowed to cover the case where g is any function in $H^{2}(\Omega)$ and $p(x) \in \operatorname{Lip}(\bar{\Omega})$.

Remark 5.1. Let Ω be a convex set and $p: \Omega \rightarrow[1, \infty)$ be log-continuous in $\bar{\Omega}$. Then, there exists a sequence $\left\{\Omega_{m}\right\}_{m \in \mathbb{N}}$ of convex subset of Ω with C^{2} boundary such that $\Omega_{m} \subset \Omega_{m+1}$ for any $m \in \mathbb{N}$ and $\left|\Omega \backslash \Omega_{m}\right| \rightarrow 0$.
(1) Then, there exists a constant C depending on $p(x),|\Omega|$ such that

$$
\|v\|_{L^{p \cdot \cdot}\left(\Omega_{m}\right)} \leqslant C\|\nabla v\|_{L^{p(\cdot)}\left(\Omega_{m}\right)} \quad \forall v \in W_{0}^{1, p(\cdot)}\left(\Omega_{m}\right)
$$

for any $m \in \mathbb{N}$. This follows by Theorem 3.3 in [21], using that $\Omega_{m} \subset \Omega_{m+1}$ for any $m \in \mathbb{N}$.
(2) The Lipschitz constants of $\Omega_{m}(m \in \mathbb{N})$ are uniformly bounded (see Remark 2.3 in [22]). Therefore, the extension operators

$$
E_{1, m}: W^{1, p(\cdot)}\left(\Omega_{m}\right) \rightarrow W^{1, p(\cdot)}(\Omega) \quad \text { and } \quad E_{2, m}: H^{2}\left(\Omega_{m}\right) \rightarrow H^{2}(\Omega)
$$

define as Theorem 4.2 in [11] satisfy that $\left\|E_{1, m}\right\|$ and $\left\|E_{2, m}\right\|$ are uniformly bounded.
(3) By (2) and Corollary 8.3.2 in [12], there exists a constant C independent of m such that

$$
\|v\|_{L^{p^{*}(\cdot)}\left(\Omega_{m}\right)} \leqslant C\|v\|_{W^{1, p(\cdot)}\left(\Omega_{m}\right)} \quad \forall v \in W^{1, p(\cdot)}\left(\Omega_{m}\right)
$$

for any $m \in \mathbb{N}$.
We want to remark that all the constants of the above inequalities are independent of p_{1} (see Section 6 for the applications).

Proof of Theorem 1.2. We begin taking $\left\{\Omega_{m}\right\}_{m \in \mathbb{N}}$ as in Remark 5.1 and u_{m} the solution of

$$
\begin{cases}-\Delta_{p(x)} u_{m}=f & \text { in } \Omega_{m}, \\ u_{m}=g & \text { on } \partial \Omega_{m} .\end{cases}
$$

By Theorem 1.1, $u_{m} \in H^{2}\left(\Omega_{m}\right)$ for any $m \in \mathbb{N}$. Moreover, u_{m} solves

$$
\begin{cases}L^{m} u_{m}=a_{i j}^{m}(x) u_{m, x_{i} x_{j}}=a^{m}(x) & \text { in } \Omega_{m}, \\ u_{m}=g & \text { on } \partial \Omega_{m},\end{cases}
$$

with

$$
\begin{aligned}
& a_{i j}^{m}(x)=\delta_{i j}+(p(x)-2) \frac{u_{m, x_{i}}(x) u_{m, x_{j}}(x)}{\left|\nabla u_{m}(x)\right|^{2}}, \\
& a^{m}(x)=\ln \left(\left|\nabla u_{m}(x)\right|\right)\left\langle\nabla u_{m}(x), \nabla p(x)\right\rangle+f(x)\left|\nabla u_{m}(x)\right|^{2-p(x)} .
\end{aligned}
$$

Then $v_{m}=u_{m}-g$ solves

$$
\begin{cases}L^{m} v_{m}=-L^{m} g+a^{m}(x) & \text { in } \Omega_{m}, \\ v_{m}=0 & \text { on } \partial \Omega_{m} .\end{cases}
$$

Thus, using that $v_{m} \in H^{2}\left(\Omega_{m}\right) \cap H_{0}^{1}\left(\Omega_{m}\right)$ and since the coefficients $a_{i j}^{m}(x)$ are bounded independent of m, we can argue as in Theorem 2.2 in [22] and obtain

$$
\begin{align*}
\left\|v_{m}\right\|_{H^{2}\left(\Omega_{m}\right)} & \leqslant C\left\|-L^{m} g+f\left|\nabla u_{m}\right|^{2-p(\cdot)}+\ln \left(\left|\nabla u_{m}\right|\right)\left|\nabla u_{m}\right|\right\|_{L^{2}\left(\Omega_{m}\right)} \\
& \leqslant C\left(\left\|\left|\nabla u_{m}\right|^{2-p(\cdot)}\right\|_{L^{2}\left(\Omega_{m}\right)}+\left\|\ln \left(\left|\nabla u_{m}\right|\right)\left|\nabla u_{m}\right|\right\|_{L^{2}\left(\Omega_{m}\right)}+1\right) \tag{5.19}
\end{align*}
$$

where the constant C is independent of m.
As in Lemma 4.1 we can prove, using Remark $5.1(1)$ and (3), that the norms $\left\|\nabla u_{m}\right\|_{L^{p(\cdot)}\left(\Omega_{m}\right)}$ are uniformly bounded. Therefore, proceeding as in Theorem 4.2, we obtain

$$
\begin{equation*}
\left\|\ln \left(\left|\nabla u_{m}\right|\right)\left|\nabla u_{m}\right|\right\|_{L^{2}\left(\Omega_{m}\right)}+\left\|f\left|\nabla u_{m}\right|^{2-p}\right\|_{L^{2}\left(\Omega_{m}\right)} \leqslant C\left(\left\|\nabla u_{m}\right\|_{L^{p^{\prime}(\cdot)(1+s)\left(\Omega_{1, m}\right)}}^{(1+s) / 2}+\left\|\nabla u_{m}\right\|_{L^{\gamma(\cdot)}\left(A_{2, m}\right)}^{2-p_{1}}+1\right) \tag{5.20}
\end{equation*}
$$

with C independent of m, where

$$
\Omega_{1, m}=\left\{x \in \Omega_{m}:\left|\nabla u_{m}(x)\right|>1\right\} \quad \text { and } \quad A_{2, m}=\left\{x \in \Omega_{m}: p(x)<2\right\} .
$$

Now, using Remark 5.1(3) and (2), we have that for any $r>1$

$$
\begin{align*}
&\left\|v_{m}\right\|_{W^{1, r}\left(\Omega_{m}\right)} \leqslant\left\|E_{2, m} v_{m}\right\|_{W^{1, r}(\Omega)} \\
& \leqslant C\left\|E_{2, m} v_{m}\right\|_{H^{2}(\Omega)} \\
& \leqslant C\left\|v_{m}\right\|_{H^{2}\left(\Omega_{m}\right)} \tag{5.21}
\end{align*}
$$

where C is independent of m.

Therefore, using (5.19), (5.20) and (5.21), we get

$$
\begin{aligned}
\left\|v_{m}\right\|_{H^{2}\left(\Omega_{m}\right)} & \leqslant C\left(\left\|v_{m}\right\|_{H^{2}\left(\Omega_{m}\right)}^{(1+s) / 2}+\left\|v_{m}\right\|_{H^{2}\left(\Omega_{m}\right)}^{2-p_{1}}+\|g\|_{H^{2}\left(\Omega_{m}\right)}^{(1+s) / 2}+\|g\|_{H^{2}\left(\Omega_{m}\right)}^{2-p_{1}}+1\right) \\
& \leqslant C\left(\left\|v_{m}\right\|_{H^{2}\left(\Omega_{m}\right)}^{(1+s) / 2}+\left\|v_{m}\right\|_{H^{2}\left(\Omega_{m}\right)}^{2-p_{1}}+1\right),
\end{aligned}
$$

where the constant C is independent of m. This proves that $\left\{\left\|v_{m}\right\|_{H^{2}\left(\Omega_{m}\right)}\right\}_{m \in \mathbb{N}}$ is bounded.
Now we have, as in the proof of Theorem 2.2 in [22], that there exist a subsequence still denote $\left\{v_{m}\right\}_{m \in \mathbb{N}}$ and a function $v \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ such that

$$
v_{m} \rightarrow v \text { strongly in } H^{1}\left(\Omega^{\prime}\right)
$$

for any $\Omega^{\prime} \subset \subset \Omega$. Then $u=v+g \in H^{2}(\Omega)$ and

$$
u_{m} \rightarrow u \text { strongly in } H^{1}\left(\Omega^{\prime}\right)
$$

for any $\Omega^{\prime} \subset \subset \Omega$. Thus, using (4.13), we have

$$
\begin{equation*}
\left|\nabla u_{m}\right|^{p(x)-2} \nabla u_{m} \rightarrow|\nabla u|^{p(x)-2} \nabla u \quad \text { strongly in } L^{p^{\prime}(\cdot)}\left(\Omega^{\prime}\right) \tag{5.22}
\end{equation*}
$$

for any $\Omega^{\prime} \subset \subset \Omega$.
On the other hand, for any $\varphi \in C_{0}^{\infty}(\Omega)$ there exists m_{0} such that for all $m \geqslant m_{0}$

$$
\int_{\Omega_{m}}\left|\nabla u_{m}\right|^{p(x)-2} \nabla u_{m} \nabla \varphi d x=\int_{\Omega_{m}} f \varphi d x .
$$

Therefore, using (5.22) we have that u is a weak solution of (1.1).
Proof of Corollary 1.3. By the previous theorem we have that $u \in H^{2}(\Omega)$, then we can derive Eq. (1.1) and obtain

$$
\begin{cases}-a_{i j}(x) u_{x_{i} x_{j}}=a(x) & \text { in } \Omega \\ u=g & \text { on } \partial \Omega\end{cases}
$$

where

$$
\begin{aligned}
& a_{i j}(x)=\delta_{i j}+(p(x)-2) \frac{u_{x_{i}}(x) u_{x_{j}}(x)}{|\nabla u(x)|^{2}} \\
& a(x)=\ln (|\nabla u(x)|)\langle\nabla u(x), \nabla p(x)\rangle+f(x)|\nabla u(x)|^{2-p(x)}
\end{aligned}
$$

Using that $f \in L^{q(\cdot)}(\Omega)$ with $q(x) \geqslant q_{1}>2$ and following the lines in the proof of Theorem 4.2, we have that $a(x) \in L^{s}(\Omega)$ with $s>2$. Therefore, by Remark A.3, we have that $u \in C^{1, \alpha}(\bar{\Omega})$.

6. Comments

In the image processing problem it is of interest the case where p_{1} is close to 1 . By this reason, we are also interested in the dependence of the H^{2}-norm on p_{1}.

If $N=2, g \in H^{2}(\Omega)$ and u_{ε} is the solution of (3.2), we have by Lemma A.1, (3.6) and (3.7), that there exists a constant C independent of p_{1} and ε such that

$$
\left\|u_{\varepsilon}\right\|_{H^{2}(\Omega)} \leqslant \frac{C}{\left(p_{1}-1\right)^{\kappa}}\left(\left\|a_{\varepsilon}\right\|_{L^{2}(\Omega)}+\|g\|_{H^{2}(\Omega)}\right)
$$

where $\kappa=1$ if Ω is convex and $\kappa=2$ if $\partial \Omega \in C^{2}$. Therefore, using that the Poincaré inequality and the embedding $W^{1, p(\cdot)}(\Omega) \hookrightarrow L^{p^{*}(\cdot)}(\Omega)$ hold in the case $p_{1}=1$ and following the lines of Theorem 1.1 and Theorem 1.2 we have that

$$
\|u\|_{H^{2}(\Omega)} \leqslant \frac{C}{\left(p_{1}-1\right)^{\kappa}}
$$

where the constant C is independent of p_{1}.

Appendix A. Regularity results for elliptic linear equations with coefficients in $\boldsymbol{L}^{\boldsymbol{\infty}}$

Let Ω be a bounded open subset of \mathbb{R}^{2} and

$$
\mathcal{M} u=a_{i j}(x) u_{x_{i} x_{j}},
$$

such that $a_{i j}=a_{j i}$ and for any $\xi \in \mathbb{R}^{N}$

$$
\begin{equation*}
\lambda|\xi|^{2} \leqslant a_{i j}(x) \xi_{i} \xi_{j} \leqslant \Lambda|\xi|^{2}, \tag{A.1}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{1} \leqslant a_{11}(x)+a_{22}(x) \leqslant M_{2} \quad \text { in } \Omega \tag{A.2}
\end{equation*}
$$

where λ, Λ, M_{1} and M_{2} are positive constant.
In the next lemma, we will give an H^{2}-bound for solutions of

$$
\begin{cases}\mathcal{M} u=f & \text { in } \Omega \tag{A.3}\\ u=g & \text { on } \partial \Omega\end{cases}
$$

In fact, the following result is proved in Theorem 37, III in [23], but the dependence of the bounds on the ellipticity and the L^{∞}-norm of $\left(a_{i j}(x)\right)$ are not explicit. Then, following the proof of the mentioned theorem we can prove

Lemma A.1. Let Ω be a bounded domain in $\mathbb{R}^{2}, f \in L^{2}(\Omega)$ and $g \in H^{2}(\Omega)$. Then, if u is a solution of (A.3) and $u \in H^{2}(\Omega)$ we have that

$$
\|u\|_{H^{2}(\Omega)} \leqslant \frac{C}{\lambda^{\kappa}}\left(\|f\|_{L^{2}(\Omega)}+\|g\|_{H^{2}(\Omega)}\right)
$$

where $\kappa=1$ if Ω is convex and $\kappa=2$ if $\partial \Omega \in C^{2}$ and C is a constant independent of λ.
Proof. In this proof, we denote $u_{i j}=u_{x_{i} x_{j}}$ for all $i, j=1,2$ and C is a constant independent of λ.
First, we consider the case $g \equiv 0$. Using (A.1), we have that

$$
\left(a_{11}(x)+a_{22}(x)\right)\left(u_{12}^{2}-u_{11} u_{22}\right)=\sum_{i, j, k=1}^{2} a_{i j} u_{k i} u_{k j}-\Delta u \sum_{i j=1}^{2} a_{i j} u_{i j} \geqslant \lambda \sum_{i k=1}^{2} u_{k i}^{2}-\Delta u f(x)
$$

Then, using Young's inequality, we get

$$
\frac{\lambda}{2\left(a_{11}(x)+a_{22}(x)\right)} \sum_{i k=1}^{2} u_{k i}^{2} \leqslant \frac{4}{\lambda\left(a_{11}(x)+a_{22}(x)\right)} f(x)^{2}+u_{12}^{2}-u_{11} u_{22},
$$

and by (A.2), we have that

$$
\begin{equation*}
\sum_{i k=1}^{2} u_{k i}^{2} \leqslant \frac{C}{\lambda^{2}} f(x)^{2}+\frac{C}{\lambda}\left(u_{12}^{2}-u_{11} u_{22}\right) \tag{A.4}
\end{equation*}
$$

Now, using (37.4) and (37.6) in [23], we have that for any $u \in H^{2}(\Omega)$

$$
\begin{equation*}
\int_{\Omega}\left(u_{12}^{2}-u_{11} u_{22}\right) d x=-\int_{\partial \Omega}\left(\frac{\partial u}{\partial v}\right)^{2} \frac{H}{2} d s \tag{A.5}
\end{equation*}
$$

where H is the curvature of $\partial \Omega$. If Ω is convex, then $H \geqslant 0$ and therefore, using (A.4) and (A.5), we have that

$$
\begin{equation*}
\left\|D^{2} u\right\|_{L^{2}(\Omega)} \leqslant \frac{C}{\lambda}\|f\|_{L^{2}(\Omega)} \tag{A.6}
\end{equation*}
$$

In the general case, we can use the following inequality

$$
\begin{equation*}
\int_{\partial \Omega}\left(\frac{\partial u}{\partial v}\right)^{2} d s \leqslant C\left(\left(1+\delta^{-1}\right) \int_{\Omega}|\nabla u|^{2} d x+\delta \int_{\Omega} \sum_{i k=1}^{2} u_{k i}^{2} d x\right) \tag{A.7}
\end{equation*}
$$

for any $\delta>0$. See Eq. (37.6) of [23].

Then, by (A.4), (A.5), using that H is bounded and (A.7) (choosing δ properly) we arrive at

$$
\begin{equation*}
\int_{\Omega} \sum_{i k=1}^{2} u_{k i}^{2} d x \leqslant \frac{C}{\lambda^{2}}\left(\int_{\Omega} f(x)^{2} d x+\int_{\Omega}|\nabla u|^{2} d x\right) \tag{A.8}
\end{equation*}
$$

On the other hand, using that $L u=f$ in Ω, (A.1) and the Poincaré inequality, we have

$$
\begin{equation*}
\|\nabla u\|_{L^{2}(\Omega)} \leqslant \frac{C}{\lambda}\|f\|_{L^{2}(\Omega)} \tag{A.9}
\end{equation*}
$$

Therefore, by (A.8) and (A.9), we get

$$
\left\|D^{2} u\right\|_{L^{2}(\Omega)} \leqslant \frac{C}{\lambda^{2}}\|f\|_{L^{2}(\Omega)}
$$

Thus, by the last inequality, (A.9) and (A.6) the lemma is proved in the case $g=0$.
When g is any function in $H^{2}(\Omega)$ the lemma follows taking $v=u-g$.

The following theorem is proved in Corollary 8.1.6 in [20].

Theorem A.2. Let Ω be a convex polygonal domain in $\mathbb{R}^{2}, \mathcal{M}$ satisfying (A.1) and $u \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ be a solution of (A.3) with $g=0$ and $f \in L^{p}(\Omega)$ with $p>2$. Then $\nabla u \in C^{\mu}(\bar{\Omega})$ for some $0<\mu<1$.

Remark A.3. Observe that the above theorem holds also if we consider any $g \in W^{2, p}(\Omega)$, since we can take $v=u-g$ in (A.3) and use that $W^{2, p}(\Omega) \hookrightarrow C^{1,1-2 / p}(\bar{\Omega})$.

Appendix B. Lipschitz functions

Using the linear extension operator defined in [14], we have the following lemma.

Lemma B.1. Let Ω be a bounded open domain with Lipschitz boundary and $f \in \operatorname{Lip}(\bar{\Omega})$. Then, there exists a function $\bar{f}: \mathbb{R}^{N} \rightarrow \mathbb{R}$ such that \bar{f} is a Lipschitz function, $\sup _{\mathbb{R}^{N}} \bar{f}=\inf _{\bar{\Omega}} f$ and $\inf _{\mathbb{R}^{N}} \bar{f}=\max _{\bar{\Omega}} f$.

Lemma B.2. Let $f: \mathbb{R}^{N} \rightarrow \mathbb{R}$ be a Lipschitz function. Then for each $\varepsilon>0$, there exists a C^{1} function $f_{\varepsilon}: \mathbb{R}^{N} \rightarrow \mathbb{R}$ such that
(1) $\mid\left\{x \in \mathbb{R}^{N}: f_{\varepsilon}(x) \neq f(x)\right.$ or $\left.D f_{\varepsilon}(x) \neq D f(x)\right\} \mid \leqslant \varepsilon$.
(2) There exists a constant C depending only on N such that

$$
\left\|D f_{\varepsilon}\right\|_{L^{\infty}\left(\mathbb{R}^{N}\right)} \leqslant C \operatorname{Lip}(f)
$$

(3) If $1<f_{1} \leqslant f(x) \leqslant f_{2}$ in \mathbb{R}^{N}, we have

$$
1<f_{\varepsilon}(x) \leqslant f_{2}+C \varepsilon^{\frac{1}{N}} \quad \text { in } \mathbb{R}^{N}
$$

with C a constant depending only on N.

Proof. Items (1) and (2) follow by Theorem 1, p. 251 in [16].
To prove (3), let us define

$$
\Omega_{0}=\left\{x \in \mathbb{R}^{N}: f_{\varepsilon}(x)=f(x) \text { and } D f_{\varepsilon}(x)=D f(x)\right\}
$$

and let us suppose that there exists $x \in \mathbb{R}^{N} \backslash \Omega_{0}$ such that $f_{\varepsilon}(x)=f_{2}+\delta$ with $\delta>0$. If $x_{0} \in \Omega_{0}$, by (2), we have

$$
C \operatorname{Lip}(f)\left|x-x_{0}\right| \geqslant f_{\varepsilon}(x)-f_{\varepsilon}\left(x_{0}\right)=f_{2}+\delta-f\left(x_{0}\right) \geqslant \delta
$$

Then $B_{\rho}(x) \subset \mathbb{R}^{N} \backslash \Omega_{0}$ where $\rho=\delta(C \operatorname{Lip}(f))^{-1}$ and using (1) we get $\delta \leqslant C \varepsilon^{1 / N}$, for some constant C independent of ε.
Analogously we can prove the other inequality.

References

[1] Emilio Acerbi, Giuseppe Mingione, Regularity results for a class of functionals with non-standard growth, Arch. Ration. Mech. Anal. 156 (2) (2001) 121-140.
[2] Jacques Baranger, Khalid Najib, Analyse numérique des écoulements quasi-newtoniens dont la viscosité obéit à la loi puissance ou la loi de carreau, Numer. Math. 58 (1) (1990) 35-49.
[3] Erik M. Bollt, Rick Chartrand, Selim Esedoḡlu, Pete Schultz, Kevin R. Vixie, Graduated adaptive image denoising: local compromise between total variation and isotropic diffusion, Adv. Comput. Math. 31 (1-3) (2009) 61-85.
[4] S. Challal, A. Lyaghfouri, Second order regularity for the $p(x)$-Laplace operator, Math. Nachr. 284 (10) (2011) 1270-1279.
[5] Yunmei Chen, Stacey Levine, Murali Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math. 66 (4) (2006) 1383-1406 (electronic).
[6] Ph. Ciarlet, The Finite Element Method for Elliptic Problems, vol. 68, North-Holland, Amsterdam, 1978.
[7] A. Coscia, G. Mingione, Hölder continuity of the gradient of $p(x)$ harmonic mappings, C. R. Acad. Sci. Ser. I Math. 328 (1999) 363-368.
[8] Leandro M. Del Pezzo, Ariel L. Lombardi, Sandra Martínez, Interior penalty discontinuous Galerkin FEM for the $p(x)$-Laplacian, SIAM J. Numer. Anal. 50 (5) (2012) 2497-2521.
[9] L. Diening, Theoretical and numerical results for electrorheological fluids, PhD thesis, University of Freiburg, Germany, 2002.
[10] L. Diening, Maximal function on generalized Lebesgue spaces $L^{p(\cdot)}$, Math. Inequal. Appl. 7 (2) (2004) 245-253.
[11] L. Diening, Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces $L^{p(\cdot)}$ and $W^{k, p(\cdot)}$, Math. Nachr. 268 (2004) $31-43$.
[12] L. Diening, P. Harjulehto, P. Hästö, M. Ruzicka, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Math., vol. 2017, Springer-Verlag, New York, 2011.
[13] L. Diening, P. Hästö, A. Nekvinda, Open problems in variable exponent Lebesgue and Sobolev spaces, in: Function Spaces, Differential Operators and Nonlinear Analysis, Milovy, Math. Inst. Acad. Sci. Czech Republic, Praha, 2005.
[14] David E. Edmunds, Jiǐí Rákosník, Sobolev embeddings with variable exponent, Studia Math. 143 (3) (2000) 267-293.
[15] Luca Esposito, Francesco Leonetti, Giuseppe Mingione, Sharp regularity for functionals with (p,q) growth, J. Differential Equations 204 (1) (2004) 5-55.
[16] L.C. Evans, R.F. Gariepy, Measure Theory and Fine Properties of Functions, Stud. Adv. Math., CRC Press, Boca Raton, FL, 1992.
[17] Xianling Fan, Global $C^{1, \alpha}$ regularity for variable exponent elliptic equations in divergence form, J. Differential Equations 235 (2) (2007) $397-417$.
[18] Xianling Fan, Dun Zhao, A class of De Giorgi type and Hölder continuity, Nonlinear Anal., Ser. A: Theory Methods 36 (3) (1999) 295-318.
[19] D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Grundlehren Math. Wiss., vol. 224, Springer-Verlag, Berlin, 1983.
[20] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Monogr. Stud. Math., vol. 24, Pitman (Advanced Publishing Program), Boston, MA, 1985.
[21] O. Kováčik, J. Rákosník, On spaces $L^{p(x)}$ and $W^{k, p(x)}$, Czechoslovak Math. J. 41 (1991) 592-618.
[22] W.B. Liu, John W. Barrett, A remark on the regularity of the solutions of the p-Laplacian and its application to their finite element approximation, J. Math. Anal. Appl. 178 (2) (1993) 470-487.
[23] Carlo Miranda, Partial Differential Equations of Elliptic Type, second revised edition, Ergeb. Math. Grenzgeb., vol. 2, Springer-Verlag, New York, 1970, translated from the Italian by Zane C. Motteler.
[24] Michael Růžička, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Math., vol. 1748, Springer-Verlag, Berlin, 2000 .
[25] S. Samko, Denseness of $C_{0}^{\infty}\left(\mathbf{R}^{N}\right)$ in the generalized Sobolev spaces $W^{M, P(X)}\left(\mathbf{R}^{N}\right)$, in: Direct and Inverse Problems of Mathematical Physics, Newark, DE, 1997, in: Int. Soc. Anal. Appl. Comput., vol. 5, Kluwer Acad. Publ., Dordrecht, 2000, pp. 333-342.

[^0]: से Supported by UBA X117, UBA 20020090300113, CONICET PIP 2009 845/10 and PIP 11220090100625.

 * Corresponding author.

 E-mail addresses: ldpezzo@dm.uba.ar (L.M. Del Pezzo), smartin@dm.uba.ar (S. Martínez).
 URL: http://cms.dm.uba.ar/Members/ldpezzo (L.M. Del Pezzo).

