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In affirmative, the equivariant inverse problem for Maxwell-type Euler-Lagrange expressions 
is solved. This allows the proof of the uniqueness of the Maxwell equations. 

I. INTRODUCTION 

It is very well known that Maxwell equations can be 
written in covariant form as! 

F ij Ji IJ = , (1.1 ) 

*FijIJ = 0, (1.2) 

where Fij is a skew-symmetric tensor and *Fij = 1JijhkF hk . 

Equation (1.2) is equivalent to the existence of a covector 
field tPi such that 

Fij=tPi,J-tPJ,i' (1.3) 

The Maxwell equations can be deduced from a vari
ational principle as follows. If 

L=L(gij;tPi;tPi,J)' (1.4) 

then from a variation of tPi we obtain as Euler-Lagrange 
equations, 

( 1.5) 

on choosing 

L = JgFijFij' (1.6) 

Eqs. (1. 5) become (1.1). 
The left-hand side of ( 1.1) has two properties of covar

iance: (1) by a transformation of coordinates it changes as a 
vector; and (2) by a change of gauge, i.e., by a transforma
tion ofthe type tPi -+tPi + f/J,i> where f/J is a scalar, it is invar
iant. These properties are also possessed by the Lagrangian 
( 1.6). However, the last assertion is not mandatory since the 
Lagrangian does not have, in general, any physical meaning, 
although the Euler-Lagrange expressions do have a mean
ing. The main purpose of this article is to prove that the 
situation already encountered with the Maxwell equations is 
found always in spaces of dimension 4, i.e., the assumption of 
the two covariance properties for the Euler-Lagrange ex
pressions implies that the Lagrange is equivalent to (it has 
the same Euler-Lagrange expressions as) a Lagrangian with 
the same properties.2 This solves for the affirmative the equi
variant inverse problem3 for Maxwell-type Euler-Lagrange 
expressions. 

Precisely, we consider a quantity 

B i = B i(gij;gij,h ;tPi;tPi,J;tPi,Jh) ( 1.7) 

such that 

(i) B i is a vector, 

(ii) B i is gauge invariant, ( 1.8) 

(iii) B i = E i(L!) for L! of the type (1.4). 

Here we do not assume any covariance property for L! 

with respect to transformations of coordinates or changes of 
gauge. We will prove that (1.7) and (1.8) imply the exis
tence of L = L (gij ;tPi ;tPi,J ), which is a gauge-invariant scalar 
density such that Ei(L) =Bi. 

II. THE EQUIVARIANT INVERSE PROBLEM 

The condition (iii) in (1. 8) written in full is 

B i - L i L i,J;hkg L i,j;h.I, - - hk,J - 'f/h,J 

- !(L i,j;h,k + L i,k;h,J)tPh.kJ' (2.1) 

whereL i = aLlatPi,L i,J = aL latPi,J' andL hk = aLlaghk . 

The coefficients of (2.1) depend only on gij' tPi' and tPi,J' 

Since B i is gauge invariant, by the replacement 
theorem4 we have 

B i -Hi IHijhF 2 HijhkF 
- - '2 hJ - "3 hk IJ' (2.2) 

where 

Hi =L i(g .. ·O·l F .. ) Hijh =L i,J;h(g .. ·O·! p.) 
9' '2 1J ' 1J"2 IJ ' 

Hijhk = !(L i,J;h,k + L i,k;h,J)(gij;O;! Fij)' 
(2.3) 

Since B i is a tensorial density, the same is true for 
aBilatPh,kJ' From (2.1) this derivative is 
!(L i,J;h,k + L i,k;h,J). ThenHijhk defined by (2.3) is also a ten-
sorial density. Hence, by (2.2), Hi -! HijhFhJ is a vector 
density and depends only on gij and Fij . It is known5 that 
such vector densities are zero, and so we obtain 

B i 2 HijhkF = -"3 hklJ . (2.4) 

Denoting Wijhk = !(L i,j;h,k + L i,k;h,J) , from (2.1) and 
(2.2) we deduce 

WijhktPh,kJ = Hijhk(tPh,kJ -tPk,hJ) + ( ... ), (2.5) 

where in ( ... ) we have gathered the terms that do not de
pend on tPh,kJ . From the equality of the cross derivatives it is 
easily obtained that Wijhk = Whkij, and by (2.3), Hijhk 

= Hhkij. Also, Wijhk = WikhJ is valid and so Hijhk = HikhJ. 

Differentiating (2.5) with respect to tP a,be and taking 
into account the mentioned symmetries, we have 

(2.6) 

Changing i with a and c with b in (2.6) and subtracting the 
resulting equation to (2.6), it follows that 

Habei + H acbi _ H icba _ Hibea = O. (2.7) 

Changing a with c and b with i in (2.7) and subtracting the 
resulting equation to (2.7), we have H acbi = H ibca, or else 

(2.8) 
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Denoting 

Tijhk= _!(Hijhk_Hijkh), 

it follows that Tijhk is a tensor, such that 

B i = ,fgTijhkFhk Ij , 

and besides, 

Tijhk = _ T jihk = Thkij. 

Using Theorem 3 in Kerrighan,5 we deduce 
Tijhk =A *Fij *Fhk _B(Fik *Fjh _Fih *Fjk 

_Fjk *Fih +Fjh *Fik ) + CFijF hk 

+ W(ihg jk _ ikgjh) + E1]ijhk, 

(2.9) 

(2.10) 

(2.11 ) 

(2.12) 

where A, B, C, D, and E are scalar concomitants of gij and 
Fij' Then 

Bi = ,fg{(A *FhFhk +B(FhFhk + *FijFhk ) 

+ CFijFhk)Fhklj + DFijlj}. (2.13) 
I 

Since B i is a Euler-Lagrange expression, it satisfies cer
tain identities6

: 

B i;j,hk = B j;i,h\ (2.14 ) 

Bi;j,h= _Bj;i,h+2 a~k (Bj;i,hk), (2.15) 

.. " a "h a 2 "hk B';J=BJ',' __ (B);I,) + (BJ;" ). (2.16) 
axh axhaxk 

It is easy to see that (2.14) is satisfied identically. Let us 
see what restrictions (2.15) imposes onA, B, C, and D. It is 
known 7 that there are functions A I' ..1.2, ..1.3, and ..1.4 of two real 
variables such that 

A = Al «(J,t/J) , B = ..1.2 «(J,t/J) , 

C=A3«(J,t/J), D=A4 «(J,t/J); 

where 

(2.17) 

(J=*FijFij' t/J=FijF;j' (2.18) 

Equation (2.15) gives rise, in view of (2.13), to the fol
lowing: 

{2 aAI (F hk *Fac *Fib _ Fab *F ic *Fhk) + 2 aA2 (FhkFac *F ib _ FabFic *Fhk ) + 2 aA2 (*FhkFab *F ic _ *F *FiCF hk ) 
at/J at/J a(J ab 

+ 2 aA2 (*FhkFacF 1b _ *FabFicFhk) + aA4 (*Fhk~i~b _ *Fhk~b~i _ 2 *Fabghig"c) 
a(J a(J 

+ aA4 (Fhk~i~b _ Fhk~b~i _ 2FabghigkC) + A2(*F ibghagkc +! *Fhkib~a _! *Fhkia~b) 
at/J 

+A3(Fibghagkc+!Fhkib~a_!Fhkia~b)} (t/Jh,kc -t/Jk,hc) + (i~) = ( ... ), (2.19) 

where (j~) denotes symmetrization of the previous 
expression with respect to i and a, and where we have gath
ered in ( ... ) all the terms that do not depend on the second 
derivatives of t/Ji' 

It is known8 that given a point on the underlying mani
fold there is a coordinate system such that, at the point 

C
1 0 0 

V' 
(g,) ~ ~ 0 

0 
0 0 (2.20) 

C 
a 0 

~} -a 0 0 
(Fij) = ~ 0 0 

0 -{3 

from where we deduce 

(F') ~(~ 
-a 0 

~} 0 0 
0 0 
0 -{3 

(2.21) 

('F') ~( -;~ 
2/3 0 

~) 0 0 
2a' 0 0 

0 -2a 0 
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I 
Differentiating (2.19) with respect to t/J a,be and choos

ing j = a = 1, c = b = s = 4, and r = 3, we obtain 

4a aA4 + "1£.1 aA4 = 2aA. + {3.~ . 
a(J ~at/J 2 3 

(2.22) 

Differentiating (2.19) with respect to t/Ja,be and choos
ing j = a = 4, c = b = s = 2, and r = 1, we have 

4/3 aA4 - 2a aA4 = 2/3..1.2 - aA.3· 
a(J at/J 

(2.23 ) 

Let us suppose for the moment that det(Fij ) ;60. Then 
from (2.22) and (2.23) it follows easily that 

A = 2 aA4 ..1.3 = 2 aA4 • (2.24) 2 a(J , at/J 
Differentiating (2.19) with respect to t/J a,be and choos-

ing now a = b = 1, c = j = 2, r = 3, and s = 4, we obtain 

2/3aA2 a aA2 = 2/3aA I a aA3 . 
a(J + at/J at/J + a(J 

(2.25) 

Finally, differentiating (2.19) with respect to t/Ja,be and 
choosing a = b = 4, c = i = 3, r = 1, and s = 2, we have 

2a aA I + {3 aA2 = 2a aA2 + {3 aA3 . 
at/J at/J a(J a(J 

(2.26) 

From (2.25) and (2.26) it follows that 

aA2 aA I aA2 aA3 (2.27) 
a(J = at/J' 

-=-. 
at/J a(J 

Now, (2.24) and (2.27) are the integrability conditions we 

R. J. Noriega and C. G. Schifini 816 



need to establish the existence of a scalar T = T(t/J,t/!) such 
that 

(2.28) 

In this case, a straightforward computation proves that 

(2.29) 

where L =,[gT is a gauge-invariant scalar density. This 
solves the equivariant inverse problem since det (Fii ) ¥- 0 is a 
dense subset of the space of variables gii ,Fii [and then (2.29) 
is valid everywhere by a continuity argument]. 

III. THE MAXWELL EQUATIONS 

We have proved in Sec. II that if B I is of the type (1.7) 
and it satisfies (1.8), then 

B I LiJ = 'Ii' (3.1 ) 

whereL ii = aLlaFii andL = ,[gT(t/J,t/!) , witht/Jand t/!given 
by (2.18). By similarity, with the Maxwell equations (1.1) 
and (1.2), we could claim the field equations to be 

L ii JI Ii = , (3.2) 

*LiilJ =0. (3.3) 

Now, Eqs. (3.3) corresponding to the Maxwell internal 
equations do not depend on the charge and current distribu
tion, and so they should be satisfied identically. Written out 
in full, they are 

*L ii . = I-g [16 a
2
L *FhkFiiF . + 16 a

2
L FhkFIJF 

IJ vS at/J2 hk IJ at/J at/! hk Ii 

817 

+ 8 ~: FlJli + 4 a
2
L *Fhk *FIJFhkli 

U'f' at/!at/J 

+ 4 a2L *FlJphkF ] - 0 
a~ hkli - . (3.4) 

Differentiating (3.4) with respect to t/!a,be' we obtain 
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4 a
2
L (*FabF k + *F~Flb) + 4 a

2
L (FabFle + F~Flb) 

at/J2 at/J Of/! 

+ a
2
L (*Fab *Fle + *Fae *F lb ) 

at/! at/J 

+ a
2
L (Fab*Fle+Fae*Flb) 

a~ 

+ aL (2i"gbc - glbr - gc~b) = O. (3.5) 
at/J 

In the coordinate system in which (2.20) is valid and 
choosing a = b = 1, c = i = 3, we have aL lat/J = 0 if we as
sume det(FIJ ) ¥-O. Choosing now a = i = 1, b = c = 2, it 
follows that a 2 L I a~ = O. By a continuity argument we de
duce that everywhere, 

L=,[g(Ct/l+A), (3.6) 

where A and C are real numbers, and so 

L iili = C ,[gFlJli ' 

which makes (3.2) the usual Maxwell equations. 
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