Addendum to "The equivariant inverse problem in gauge field theories and the uniqueness of the Yang-Mills equations" [J. Math. Phys. 30, 2382 (1989)]

R. J. Noriega, and C. G. Schifini

Citation: Journal of Mathematical Physics 31, 1503 (1990); doi: 10.1063/1.528743
View online: https://doi.org/10.1063/1.528743
View Table of Contents: http://aip.scitation.org/toc/jmp/31/6
Published by the American Institute of Physics

Addendum to "The equivariant inverse problem in gauge field theories and the uniqueness of the Yang-Mills equations" [J. Math. Phys. 30, 2382 (1989)]

R. J. Noriega
Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
C. G. Schifini
Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina and CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina

(Received 19 July 1989; accepted for publication 17 January 1990)
The main theorem of the previous paper is extended to the case where $L=L\left(g_{i j} A_{i}^{\alpha} ; A_{i, j}^{\alpha}\right)$. References and notations are the same.

Let $T=T\left(g_{i j} F_{i j}^{\alpha}\right)=L\left(g_{i j} 0 ;-\frac{1}{2} F_{i j}^{\alpha}\right)$. Since $L^{h k}$ is gauge invariant, by the replacement theorem ${ }^{1} L^{h k}=T^{h k}$. Then $T^{h k}$ is gauge invariant and T has the form required in Theorem 1. Hence, $T=L_{1}+L_{2}+K$. Since $(L-T)^{h k}$ $=0$, it follows that $L=L_{1}+L_{2}+S$, where S $=S\left(A_{i}^{\alpha} ; A_{i, j}^{\alpha}\right)$. Since $E_{\alpha}^{i}(L)$ is a gauge tensorial density, $L_{\alpha}^{i, j ; h, k}+L_{\alpha}^{i, k ; h_{\beta} j}$ is a gauge tensorial density. Now, $\partial L_{1} / \partial A_{i, j}^{\alpha}=-2 \partial L_{2} / \partial F_{i j}^{\alpha}$. Then

$$
4 L_{1 \alpha \beta}^{i j ; h k}+4 L_{1 \alpha \beta}^{i k ; h j}+4 L_{2 \alpha \beta}^{i j h k}+4 L_{2 \alpha \beta}^{i k ; h j}+S_{\alpha \beta}^{i, j ; h, k}+S_{\alpha \beta}^{i, k ; h, j}
$$ is a gauge tensorial density. This is also true for the sum of the first two terms, and the sum of the following two terms is null. Thus $S_{\alpha}^{i, j, h, k}+S_{\alpha}^{i, k ; h_{\beta}^{j} j}$ is a tensorial density. As we proved in the original paper, it has the form $a_{\alpha \beta} e^{i j h k}$ and it is symmetric in k, j. Thus it is null and $S_{\alpha, \beta}^{i, j, h, k}$ $=-S_{\alpha}^{i, k ; h_{\beta} j}$, from where it follows that

$$
E_{\alpha}^{i}(S)=S_{\alpha}^{i}-S_{\alpha \beta \beta}^{i, j ; h} A_{h, j}^{\beta}
$$

We deduce easily that

$$
E_{\alpha}^{i}(S)\left(0 ;-\frac{1}{2} F\right)=-E_{\alpha}^{i}(S)\left(0 ;-\frac{1}{2} F\right)
$$

(making $\bar{x}^{i}=-x^{i}$). Then, by the replacement theorem, ${ }^{1}$

$$
E_{\alpha}^{i}(L)=E_{\alpha}^{i}\left(L_{1}\right)\left(g ; 0 ;-\frac{1}{2} F ;-\frac{2}{3} F^{\prime}\right)
$$

Since this equation is tensorial, it is valid for all coordinate systems. Then

$$
E_{\alpha}^{i}\left(L_{2}+S\right)\left(g ; 0 ;-\frac{1}{2} F ;-\frac{2}{3} F^{\prime}\right)=0,
$$

and so

$$
5 g^{l m} g_{l m, s} l_{\gamma \alpha} \varepsilon^{s i h k} F_{h k}^{\gamma}+E_{\alpha}^{i}(S)\left(0 ;-\frac{1}{2} F\right)=0
$$

It follows easily that $l_{\alpha \beta}=0$, i.e., $L_{2}=0$. Thus $E_{\alpha}^{i}(S)$ is a tensorial density, and so the same is true for $E_{\alpha}^{i}(S)_{\beta}^{h, k ; ;_{\alpha}, s}$. Then it is null, which means that $E_{\alpha}^{i}(S)$ is a polynomial of degree $\leqslant 1$ in $A_{i, j}^{\alpha}$. Then

$$
E_{\alpha}^{i}(S)=d_{\alpha \beta \gamma} e^{i j h k} A_{j, h}^{\gamma} A_{k}^{\beta}+C_{\alpha \beta \gamma \theta} \epsilon^{i j h k} A_{j}^{\beta} A_{h}^{\gamma} A_{k}^{\theta},
$$

where $c_{\alpha \beta \gamma \theta}$ is skew symmetric in β, γ, θ. If B_{α}^{i} $=E_{\alpha}^{i}(S)$, then B_{α}^{i} must satisfy

$$
\begin{aligned}
B_{\alpha \beta}^{i, j, h} & =-B_{\beta \alpha}^{j, i, h} \\
B_{\alpha \beta}^{i, j} & =B_{\beta \alpha}^{j ; i}+\frac{\partial}{\partial x^{h}}\left(B_{\alpha \beta}^{i, j, h}\right)
\end{aligned}
$$

(see Ref. 2). We deduce

$$
d_{\alpha \beta \gamma}+d_{\beta \alpha \gamma}+d_{\alpha \gamma \beta}=0, \quad c_{\alpha \beta \gamma \theta}+c_{\beta \alpha \gamma \theta}=0 .
$$

If

$$
S_{1}=\frac{1}{3} d_{\alpha \beta \gamma} \epsilon^{i j h k} A_{j, h}^{\gamma} A_{k}^{\beta} A_{i}^{\alpha}+\frac{1}{4} c_{\alpha \beta \gamma \theta} \epsilon^{i j h k} A_{i}^{\alpha} A_{j}^{\beta} A_{h}^{\gamma} A_{k}^{\theta}
$$

we have $E_{\alpha}^{i}(S)=E_{\alpha}^{i}\left(S_{1}\right)$, and S_{1} is a scalar density. Then

$$
E_{\alpha}^{i}(L)=E_{\alpha}^{i}\left(L_{1}+S_{1}\right)
$$

and besides

$$
E^{i j}(L)=E^{i j}\left(L_{1}+S_{1}\right)
$$

Being that $L_{1}+S_{1}$ is a scalar density, we are in the same situation as the one studied in the original paper. Now, the theorem follows for $L=L\left(g_{i j} ; A_{i}^{\alpha} ; A_{i, j}^{\alpha}\right)$.

[^0]
[^0]: ${ }^{1}$ G. W. Horndeski, Utilitas Math. 19, 215 (1981).
 ${ }^{2}$ I. M. Anderson and T. Duchamp, Am. J. Math. 102, 781 (1980).

