Equivalence and s-equivalence of vector-tensor Lagrangians

M. C. López, R. J. Noriega, and C. G. Schifini

Citation: Journal of Mathematical Physics 32, 2063 (1991); doi: 10.1063/1.529227
View online: https://doi.org/10.1063/1.529227
View Table of Contents: http://aip.scitation.org/toc/jmp/32/8
Published by the American Institute of Physics

Equivalence and s-equivalence of vector-tensor Lagrangians

M. C. López, R. J. Noriega, and C. G. Schifini
Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina

(Received 1 December 1989; accepted for publication 12 March 1991)
It will be proven that if a gauge-invariant Lagrangian density having the local form $L=L\left(g_{i j} ; A_{i} ; A_{i j}\right)$ is such that its Euler-Lagrange equations $E^{i}(L)=0$ have the same set of solutions as $E^{i}\left(L_{0}\right)=0$, where $L_{0}=g^{1 / 2} F^{i j} F_{i j}$, then L and $c L_{0}$ are equivalent for same constant c, i.e., $E^{i}(L)=E^{i}\left(c L_{0}\right)$. From a previous result it follows that $L=c L_{0}+D+e g^{1 / 2}$, where D is a divergence and e is a constant.

I. INTRODUCTION

In recent years, much attention has been paid to the study of the relation between Lagrangians such that their Euler-Lagrange equations have the same set of solutions, e.g., Refs. $1-7$. In this paper we study Lagrangians that are concomitants of a metric, a covector, and its first partial derivatives, i.e.,

$$
\begin{equation*}
L=L\left(g_{i j} ; A_{i} ; A_{i, j}\right), \tag{1}
\end{equation*}
$$

and their relation with the usual L_{0} giving rise to Maxwell field equations, i.e.,

$$
\begin{equation*}
L_{0}=g^{1 / 2} F^{i j} F_{i j} \tag{2}
\end{equation*}
$$

where $g=\operatorname{det}\left(g_{i j}\right)$ and $F_{i j}=A_{i, j}-A_{j, i}$. We use the summation convention and indices are raised or lowered with $g^{i j}$ and $g_{i j}$. This $g_{i j}$ is a Lorentz metric on a four-dimensional spacetime.

In a general situation, there are three notions of equivalence between two Lagrangians L_{1} and L_{2} :
(a) L_{1} and L_{2} are s-equivalent if, for any given metric $g_{i j}\left(x^{h}\right)$, a field $F_{i j}=F_{i j}\left(x^{h}\right)$ is a solution of $E^{i}\left(L_{1}\right)=0$ if and only if it is a solution of $E^{i}\left(L_{2}\right)=0$;
(b) L_{1} and L_{2} are equivalent if $E^{i}\left(L_{1}\right)=E^{i}\left(L_{2}\right)$;
(c) L_{1} and L_{2} are completely equivalent if $L_{1}=L_{2}+D$, where D is a divergence, i.e., $D=D^{i}, i$, where a comma stands for partial differentiation.

For Lagrangians of the form (1) that are scalar densities, Lovelock ${ }^{8}$ has proved a result that can be rephrased in the following terms: if L and L_{0} are equivalent and L is a scalar density, then there exist constants c and e such that L and $c L_{0}+e g^{1 / 2}$ are completely equivalent. In this paper we will prove that, for L of the form (1), if $E^{i}(L)$ is a gauge invariant tensorial density (which is mandatory for field equations) and L and L_{0} are s-equivalent, then L and L_{0} are equivalent. In other words, under the above-mentioned hypothesis, s-equivalence implies equivalence, i.e., (a) implies (b).

The importance of this result lies in the fact that s-equivalence is the really significant identification of Lagrangians from a physical point of view. The essential uniqueness of L_{0} follows from our result, which reinforces the choice of the usual Maxwell equations for the determination of the electromagnetic field in a four-dimensional space-time.

Before dealing with the proof, we remark that, due to the local character of L, the notion (a) means that every
local solution of $E^{i}(L)=0$ is a local solution of $E^{i}\left(L_{0}\right)=0$ and vice versa. Besides, the local form (1) is restrictive; otherwise, relation (10) below could be weaker, such as, for instance,

$$
E^{i}(L, x)=\int d^{3} x^{\prime} \Lambda_{j}^{i}\left(x, x^{\prime}\right) E^{j}\left(L_{0}, x^{\prime}\right)
$$

The crucial point is that it avoids the Lagrangian from being explicitly dependent on position (see Ref. 6 for the some restriction in mechanics, i.e., the Lagrangian not being explicitly dependent on time).

II. s-EQUIVALENCE IMPLIES EQUIVALENCE

For L of the form (1), its Euler-Lagrange expressions are
$E^{i}(L)=\frac{\partial L}{\partial A_{i}}-\frac{\partial}{\partial x^{j}}\left(\frac{\partial L}{\partial A_{i j}}\right)$,
or, in full expression,
$E^{i}(L)=L^{i}-\frac{\partial L^{i j}}{\partial g_{h k}} g_{h k j}-\left(L^{i j}\right)^{h} A_{h j}-\left(L^{i j}\right)^{h k} A_{h, k j}$,
where $L^{i}=\partial L / \partial A_{i}$ and $L^{i j}=\partial L / \partial A_{i j}$.
Let us assume that $E^{i}(L)$ is a gauge invariant tensorial density. Then it is known ${ }^{9,10}$ that L is equivalent to a gauge invariant scalar density. So we can assume this last property for L from the start. Then, from the replacement theorem, ${ }^{11}$

$$
\begin{equation*}
L\left(g_{i j} ; A_{i} ; A_{i j}\right)=L\left(g_{i j} ; 0 ;-\frac{1}{2} F_{i j}\right)=L_{1}\left(g_{i j} ; F_{i j}\right) \tag{5}
\end{equation*}
$$

Denoting $L_{i}^{i j}=\partial L_{1} / \partial F_{i j}$, we see from (5) that

$$
\begin{equation*}
L_{i}^{\bar{j}}=\frac{1}{2}\left(L^{i j}-L^{j i}\right) . \tag{6}
\end{equation*}
$$

But the invariance identities that L has to fulfill ${ }^{12}$ imply that $L^{i j}$ is skew symmetric in i, j. So, from (6)

$$
\begin{equation*}
L_{1}^{\bar{i}}=L^{i j} \tag{7}
\end{equation*}
$$

Then it is easy to prove that

$$
\begin{equation*}
E^{i}(L)=\left(L^{i j}\right)^{h k} F_{h(k j j)} \tag{8}
\end{equation*}
$$

where a bar stands for covariant derivative with respect to the Christoffel symbols associated to $g_{i j}$, and a parenthesis means symmetrization.

We remark that

$$
\begin{equation*}
E^{i}\left(L_{0}\right)=g^{1 / 2} F^{i j}{ }_{l j} . \tag{9}
\end{equation*}
$$

Now we suppose L and $L_{0} s$-equivalent. We first prove two
facts: (i) for any given point with coordinates (\hat{x}^{k}) and for any given set of numbers $\stackrel{\circ}{F}_{i j}$ and ${ }_{F}^{i j, h}$ skew symmetric in i, j, it holds that

$$
\begin{aligned}
& E^{i}\left(L_{0}\right)\left(g_{i j}\left(\dot{x}^{k}\right) ; g_{i j, h}\left(\dot{x}^{k}\right) ; \stackrel{\circ}{F}_{i j} ; \stackrel{i}{F}_{i j, h}\right)=0 \\
& \quad \Rightarrow E^{i}(L)\left(g_{i j}\left(\dot{x}^{k}\right) ; g_{i j, h}\left(\dot{x}^{k}\right) ; \stackrel{\stackrel{\rightharpoonup}{F}}{i j}^{\stackrel{\circ}{F}_{i j, h}}\right)=0 .
\end{aligned}
$$

(ii) There exists a concomitant $\Lambda_{j}^{i}=\Lambda_{j}^{i}\left(g_{i j} ; F_{i j}\right)$ such that $E^{i}(L)=\Lambda_{j}^{i} E^{j}\left(L_{0}\right)$.

To prove (i) we consider a point (\dot{x}^{k}) and $\stackrel{\circ}{F}_{i j}, \stackrel{\circ}{F}_{i j, h}$ such that

$$
0=\stackrel{\dot{F}}{i j}_{j j}=\dot{g}^{i h} \hat{g}^{j k} \stackrel{\circ}{F}_{h k j},
$$

where $\dot{g}^{i / h}=g^{i h}\left(\dot{x}^{k}\right)$ and

$$
\stackrel{\circ}{F}_{h k \downarrow j}=\stackrel{\circ}{F}_{h k, j}-\stackrel{\circ}{\Gamma}_{h j}^{s} \stackrel{\circ}{F}_{s k}-\dot{\circ}_{j k}^{s} \stackrel{\dot{F}}{h s}
$$

We can choose the coordinate system such that $\dot{g}_{i j, h}=0$ and so $\dot{\Gamma}_{i j}^{s}=0$; we can also assume $\dot{x}^{k}=0$.

Let us consider the local field defined by

$$
F^{i j}=\dot{g}^{1 / 2} g^{-1 / 2}\left(\dot{F}^{i j}+\dot{\mathscr{F}}^{i j}, r x^{r}\right) .
$$

A straightforward computation proves that
(1) $F_{i j}\left(\hat{x}^{k}\right)=\stackrel{\circ}{F}_{i j}$,
(2) $F_{i j, h}\left(\dot{x}^{k}\right)=\stackrel{\stackrel{\rightharpoonup}{F}}{i j, h}$,
(3) $F^{i j}=0$.

Then we have proved that any point which is a solution of $E^{i}\left(L_{0}\right)=0$ can be extended locally to a field which is a solution of $E^{i}\left(L_{0}\right)=0$ in a neighborhood of \dot{x}^{k}. By s-equivalence, $E^{i}(L)=0$ in that neighborhood, and so, making $x^{k}=\dot{x}^{k}$, we have the implication proved.

To prove (ii) we use the following fact from linear algebra which is easy to prove: if every solution of the linear system $A x=a$ is a solution of the system $B x=b$ (A and B being $n \times m$ matrices and a and b vectors in R^{n}), then there is an $n \times n$ matrix C such that $B=C A$ and $b=C a$. It means, in our case

$$
\begin{equation*}
E^{i}(L)=\Lambda_{j}^{i} E^{j}\left(L_{0}\right) \tag{10}
\end{equation*}
$$

for some matrix Λ_{j}^{i}. Differentiating (10) with respect to $A_{h, k j}$ and taking (4) into account, we deduce

$$
\begin{align*}
\left(L^{i i}\right)^{h k}+\left(L^{i k}\right)^{h j} & =\Lambda_{s}^{i}\left(g^{s k} g^{h j}+g^{s j} g^{h k}-2 g^{s h} g^{j k}\right) g^{1 / 2} \\
& =\left(\Lambda^{i k} g^{h j}+\Lambda^{i j} g^{h k}-2 \Lambda^{i h} g^{j k}\right) g^{1 / 2} \tag{11}
\end{align*}
$$

Multiplying (11) by $g_{j k}$ and summating over k and j, we obtain

$$
g^{-1 / 2} 2\left(L^{i j}\right)^{h k} g_{j k}=\Lambda^{i h}+\Lambda^{i h}-8 \Lambda^{i h}=-6 \Lambda^{i h}
$$

Then

$$
\begin{align*}
g^{1 / 2} \Lambda^{i h} & =-\frac{1}{3}\left(L^{i j}\right)^{h k} g_{j k}=-\frac{1}{3}\left(L^{i k}\right)^{h j} g_{j k} \\
& =-\frac{1}{3}\left(L^{h j}\right)^{i k} g_{j k}=\Lambda^{h i} g^{1 / 2} \tag{12}
\end{align*}
$$

i.e., $\Lambda^{i h}$ is a symmetric tensor concomitant of $g_{i j}$ and $F_{i j}$. In this case it is known ${ }^{13}$ that

$$
\Lambda^{i h}=\alpha g^{i h}+\beta F_{s}^{i} F^{s h}
$$

for some scalars α, β concomitants of $g_{i j}$ and $F_{i j}$. Substitution of (12) in (9) gives

$$
\begin{equation*}
g^{-1 / 2} E^{i}(L)=\alpha F_{j}^{i j}+\beta F^{h j}{ }_{j} F_{l}^{i} F_{h}^{i} \tag{13}
\end{equation*}
$$

Now we will prove that $\beta=0$. Since $E^{i}(L)$ is a Euler-La-
grange expression, it has to fulfill certain identities. ${ }^{14}$ One of them is

$$
\begin{equation*}
\frac{\partial E^{i}(L)}{\partial A_{r, t l}}=\frac{\partial E^{r}(L)}{\partial A_{i, t l}} \tag{14}
\end{equation*}
$$

But $F^{i j}{ }_{i j}$ certainly fulfills (14). Then, from (13), we obtain

$$
\begin{equation*}
\beta\left(g^{s t} F_{s}^{i} F^{s t}+g^{r t} F_{s}^{i} F^{s t}\right)=\beta\left(g^{i l} F_{s}^{r} F^{s t}+g^{i t} F^{r} F^{s l}\right) \tag{15}
\end{equation*}
$$

If $\beta \neq 0$, we can cancel β in (15). Multiplying by $g_{i t}$, differentiating the resulting expression with respect to $F_{m k}$ and then with respect to F_{t}, and multiplying the identity obtained by $g_{r i} g_{s m} g_{t k}$, we deduce $160=40$. Then it must be $\beta=0$, and so

$$
\begin{equation*}
E^{i}(L)=\alpha F^{i j}{ }_{j} g^{1 / 2} \tag{16}
\end{equation*}
$$

Differentiating (16) with respect to $A_{h j k}$, we obtain

$$
\begin{align*}
& \left(L^{i j}\right)^{h k}+\alpha\left(g^{i h} g^{j k}-g^{i k} g^{j h}\right) g^{1 / 2} \\
& \quad=-\left(\left(L^{i k}\right)^{h j}+\alpha\left(g^{i h} g^{j k}-g^{i j} g^{h k}\right) g^{1 / 2}\right) \tag{17}
\end{align*}
$$

Now, the left-hand side of (17) is skew symmetric in i, j and h, k, while the right-hand side is skew symmetric in i, k and h, j. Then the left-hand side is skew symmetric in all of its indices. Since we are working in a four-dimensional spacetime, it follows that

$$
\begin{equation*}
\left(L^{i j}\right)^{h k}+g^{1 / 2} \alpha\left(g^{i h} g^{i k}-g^{i k} g^{j h}\right)=\lambda \epsilon^{i j h k} . \tag{18}
\end{equation*}
$$

Differentiating (18) with respect to $F_{r s}$ and using the commutativity of partial derivatives, it follows that

$$
\begin{equation*}
\alpha^{h s}\left(g^{i h} g^{j k}-g^{i k} g^{h j}\right)=\alpha^{h k}\left(g^{i r} g^{j s}-g^{i s} g^{i j}\right) \tag{19}
\end{equation*}
$$

Multiplying (19) by $g_{j k} g_{i h}$, we deduce $\alpha^{r s}=0$. Then $\alpha=\left(g_{i j}\right)$; it is known ${ }^{15}$ that α must be a constant, say c. Then

$$
E^{i}(L)=c E^{i}\left(L_{0}\right)=E^{i}\left(c L_{0}\right)
$$

This means that L and $c L_{0}$ are equivalent. In this case we have ${ }^{18}$

$$
\begin{equation*}
L=c L_{0}+d \epsilon^{i j h k} F_{i j} F_{h k}+e g^{1 / 2} \tag{20}
\end{equation*}
$$

for some constants d and e. Since $\varepsilon^{i j h k} F_{i j} F_{h k}$ is a divergence, we see that L and $c L_{0}+e g^{1 / 2}$ are completely equivalent, which is the result we asserted in the Introduction.

ACKNOWLEDGMENT

We thank the referee for helpful suggestions.

[^0]
[^0]: ${ }^{1}$ M. Crampin and G. E. Prince, J. Math. Phys. 29, 1551 (1988).
 ${ }^{2}$ M. Henneaux, J. Phys. A: Math. Gen 1, 75 (1984).
 ${ }^{3}$ M. Henneaux and L. C. Shepley, J. Math. Phys. 23, 2101 (1982).
 ${ }^{4}$ S. Hojman, Phys. Rev, D 27 (2), 451 (1983).
 ${ }^{5}$ S. Hojman and H. Harleston, Bol. Soc. Mex. Fis. 6, 202 (1980).
 ${ }^{6}$ S. Hojman and H. Harleston, J. Math. Phys. 22, 1414 (1981).
 'G. Marmo, E. J. Saletan, and A. Simoni, II Nuovo Cimento B, 96 (2), 159 (1986).
 ${ }^{8}$ D. Lovelock, Gen. Relat. Gravit. 5, 399 (1974).
 ${ }^{9}$ R. J. Noriega and C. G. Schifni, Gen. Relat. Gravit. 18(7), 685 (1986).
 ${ }^{10}$ R. J. Noriega and C. G. Schifini, J. Math. Phys. 28, 815 (1987).
 "G. W. Horndeski, Tensor (N.S.) 32(2), 131 (1978).
 ${ }^{12}$ H. Rund, Abh. Math. Sem. Univ. Hamburg 29, 243 (1966).
 ${ }^{13}$ B. Kerrighan, Gen. Relat. Gravit. 13(1), 19 (1981).
 ${ }^{14}$ I. M. Anderson and T. Duchamp, Am. J. Math. 102(5), 781 (1980).
 ${ }^{15}$ D. Lovelock, Arch. Rat. Mech. Anal. 33, 45 (1969).

