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It will be proven that if a gauge-invariant Lagrangian density having the local form 
L = L(gij;Ai;A,,J) is such that its Euler-Lagrange equations E’(L) = 0 have the same set of 
solutions as E ‘( L, ) = 0, where L, = g’j2F vFU, then L and CL, are equivalent for same 
constant c, i.e., E’(L) = E ‘( CL, ). From a previous result it follows that L = CL, + D + eg1’2, 
where D is a divergence and e is a constant. 

I. INTRODUCTION 

In recent years, much attention has been paid to the 
study of the relation between Lagrangians such that their 
Euler-Lagrange equations have the same set of solutions, 
e.g., Refs. l-7. In this paper we study Lagrangians that are 
concomitants of a metric, a covector, and its first partial 
derivatives, i.e., 

L = L(g,,;A,;Aij), (1) 
and their relation with the usual L, giving rise to Maxwell 
field equations, i.e., 

Lo = g’/2F’jFti, (2) 
where g = det (g, ) and Fti = Aij - Aj,i. We use the summa- 
tion convention and indices are raised or lowered with gV and 
g,. This g, is a Lorentz metric on a four-dimensional space- 
time. 

In a general situation, there are three notions of equiv- 
alence between two Lagrangians L, and L, : 

(a) L, and L, are s-equivalent if, for any given metric 
g,,(xh), a field F,, = F,(x’) is a solution of E’(L, ) = 0 if 
and only if it is a solution of E ‘( L, ) = 0; 

(b) L, andL, areequiualentifE’(L,) =E’(L,); 
(c) L, and L, are completely equivalent if 

L, = L, + D, where D is a divergence, i.e., D = D ‘, i, where 
a comma stands for partial differentiation. 

For Lagrangians of the form ( 1) that are scalar densi- 
ties, Lovelock’ has proved a result that can be rephrased in 
the following terms: if L and L, are equivalent and L is a 
scalar density, then there exist constants c and e such that L 
and CL, + eg”2 are completely equivalent. In this paper we 
will prove that, for L of the form (l), if E ‘(L) is a gauge 
invariant tensorial density (which is mandatory for field 
equations) and L and L, are s-equivalent, then L and L, are 
equivalent. In other words, under the above-mentioned hy- 
pothesis, s-equivalence implies equivalence, i.e., (a) implies 
(b). 

The importance of this result lies in the fact that s-equiv- 
alence is the really significant identification of Lagrangians 
from a physical point of view. The essential uniqueness of L, 
follows from our result, which reinforces the choice of the 
usual Maxwell equations for the determination of the elec- 
tromagnetic field in a four-dimensional space-time. 

Before dealing with the proof, we remark that, due to 
the local character of L, the notion (a) means that every 

local solution of E ‘(L) = 0 is a local solution of E i( L, ) = 0 
and vice versa. Besides, the local form ( 1) is restrictive; oth- 
erwise, relation ( 10) below could be weaker, such as, for 
instance, 

E’(L,x) = d3x’ A;(x,x’)Ej(LO,x’). 
s 

The crucial point is that it avoids the Lagrangian from being 
explicitly dependent on position (see Ref. 6 for the some 
restriction in mechanics, i.e., the Lagrangian not being expli- 
citly dependent on time). 

II. s-EQUIVALENCE IMPLIES EQUIVALENCE 

For L of the form ( 1)) its Euler-Lagrange expressions 
are 

E’(L) 2L-& JL 
aA, a.+%’ ( > (3) 

or, in full expression, 

E’(L) =Li-$..! ghkj - (L “)hAhJ - (L “)hkAh,kj, (4) 
hk 

whereLi=aL/dAiandLO=dL/aAij. 
Let us assume that E’(L) is a gauge invariant tensorial 

density. Then it is knowngP” that L is equivalent to a gauge 
invariant scalar density. So we can assume this last property 
for L from the start. Then, from the replacement theorem,” 

L(g,;Ai;Ajj) = L(g,;O; - ;FU) = L, (g,;Fti). (5) 

Denoting L iij = dL, /aF,, we see from (5) that 
77 L;I=~(LJ~--LJ). (6) 

But the invariance identities that L has to fulfill12 imply 
that L ii is skew symmetric in ij. So, from (6) 

7 L p = L ii (7) 
Then it is easy to prove that 

E’(L) = (L”)hkF,,ckkj, (8) 
where a bar stands for covariant derivative with respect to 
the Christoffel symbols associated to g,, and a parenthesis 
means symmetrization. 

We remark that 
E’(L,) =g”2F$ (9) 

Now we suppose L and Lo s-equivalent. We first prove two 
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facts: (i) for any given pvint wit,h coordinates (J$~) and for 
any given set of numbers F, and Fq+h skew symmetric in i,j, it 
holds that 

Ei(L,)(g,(~k);gah(~k);~~;~~,h) = 0 

~E’(L)(g,(ik);gti,~ (ik);k4;P;ti,h) = 0. 

(ii) There exists a concomitant Ai = A/ (g,;F@) such 
that E’(L) = AjEj(L,). 

To prove (i) we consider a point ( Kk) and kg,., i;;ih such 
that 

0 = i;@, =grh&jkkhkli, 

where 8” = g”(fk) and 
0 0 

Fhkb = F,,kj - tf,jp;;, - f-;,j& 
We can choose the coordinate system such that&h = 0 and 
so f;: = 0; we can also assume 2’ = 0. 

Let us consider the local field defined by 
F” = g’/2g - l/2@ + +ijrx’). 

A straightforward computation proves that 

(1) Fb(ik) = &, 

(2) Fgs,, (2’) = &,,h, 
(3) F”,=O. 

Then we have proved that any point which is a solution 
of E ‘(L, ) = 0 can be extended locally to a field which is a 
solution of E ‘( L, ) = 0 in a neighborhood ofkk. By s-equiv- 
alence, E’(L) = 0 in that neighborhood, and so, making 
xk = .?k, we have the implication proved. 

To prove (ii) we use the following fact from linear alge- 
bra which is easy to prove: if every solution of the linear 
system Ax = a is a solution of the system Bx = b (A and B 
being n X m  matrices and a and b vectors in R “), then there 
is an n X n matrix Csuch that B = CA and b = Ca. It means, 
in our case 

E’(L) = A;E”(L,) (10) 
for some matrix A;. Differentiating ( 10) with respect to A,, 
and taking (4) into account, we deduce 
(L O)hk + (L ik)hi = A: cgrkghj + gtighk _ 2ghgik)g*/2 

= ( Aik$’ + A@ti” - 2Aihgik)g*/2+ ( 11) 

Multiplying ( 11) by gJk and summating over k and j, we 
obtain 

g- “22(L ygjk = Ajh + Aih _ gAih = _ 6Aih 

Then 
g*/2Aih = _ S(L V)hkgJk = - $(L ik)hjgjk 

= - i(~ M)ikgik = Ahig*“, (12) 
i.e., Aih is a symmetric tensor concomitant of g, and FG. In 
this case it is knownI that 

Aih = agih + flF;Fsh 

for some scalars a, fl concomitants of g, and FO. Substitu- 
tion of (12) in (9) gives 

g -1’2Ei(L) = aF@, +@Fhj,FiF’,. (13) 
Now we will prove that fl= 0. Since E’(L) is a Euler-La- 

grange expression, it has to fulfill certain identities. l4 One of 
them is 

(14) 

But Feli certainly fulfills ( 14). Then, from ( 13), we obtain 
,B(griF’sFs* $ grtFisF”) =P(gi$‘rsFst + giFrsFSt). 

(15) 
If p #O, we can cancel p in ( 15). Multiplying by g, ,differ- 
entiating the resulting expression with respect to Fmk and 
then with respect to F,, and multiplying the identity ob- 
tained by g,g,,g,,, we deduce 160 = 40. Then it must be 
/?=O,andso 

E’(L) = &'@bg1/2. (16) 
Differentiating (16) with respect tOAhjk, we obtain 
(L ii)hk + a(gihgjk -gikgjh)gl/2 

= _ ((L ik)hj + a(g*hgik _ ggghk)g*/2), (17) 
Now, the left-hand side of ( 17) is skew symmetric in ij and 
h,k, while the right-hand side is skew symmetric in i,k and 
hj. Then the left-hand side is skew symmetric in all of its 
indices. Since we are working in a four-dimensional space- 
time, it follows that 

(L ij)hk + g*/2a(gihgjk _ gikgjh) = ,q+hk. (181 
Differentiating ( 18) with respect to F, and using the com- 
mutativity of partial derivatives, it follows that 

a”(g ihgjk -gikgM) =ahk(grrg~s-gj~d)h (19) 
Multiplying (19) by g@ihr we deduce a” = 0. Then 
a = (g,); it is known I5 that a must be a constant, say c. 
Then 

E’(L) = cE”(L,) = E’(cL,). 
This means that L and CL, are equivalent. In this case we 
have’* 

L = CL, f dechkFtiFhk + egxi2 (20) 
for some COnStantS d and e. Since cijhk Fu F&k iS a divergence, 
we see that L and CL, f eg”2 are completely equivalent, 
which is the result we asserted in the Introduction. 
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